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Abstract

Adaptive Mixture Independent Component Analysis (AMICA) is one of the best performing ICA
algorithms. But despite being commonly used, the already existing implementations lack the
readability and extensibility needed to allow for future development of the algorithm. This work
uses a MATLAB implementation of the AMICA algorithm as reference to develop an easier to
understand version. This new implementation is written in the scientific programming language
Julia. An evaluation of the correctness, the performance and of how well this implementation
achieves it’s goals is provided in this thesis.
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1 Introduction

Electroencephalography (EEG) is a method to record electric signals in the brain. This is achieved
by placing electrodes along the scalp. The non-invasiveness of this method is it’s biggest advantage,
but it also comes with some drawbacks. The signals might mix and interfere with each other,
making it harder to identify different sources in the brain. Noise also poses an issue. For example,
discharges from neuro-muscular activity might get recorded alongside the brain activity and need
to be filtered out with post-processing techniques. This problem is generally known as the Blind
Source Separation Problem [CL96]. One technique, that can be used to solve the BSS problem,
is Independent Component Analysis (ICA) [Com94]. ICA algorithms model the data as a linear
combination of the source signals. By using the fact that mixed signals tend to be more dependent
on each other than unmixed signals, ICA can separate the data by increasing the independence
between the components. Different variations of ICA exist, one of which is Adaptive Mixture
Independent Component Analysis (AMICA) [HPP+18]. AMICA is a multi-layered mixing network
which combines multiple ICA mixture models with mixtures of generalized Gaussian distributions.
The method has been successfully implemented and used in different programming languages, such
as MATLAB or Fortran. These implementations however come with their own disadvantages. For
example, the Fortran implementation is hard to maintain, understand and further develop. The
MATLAB implementation on the other hand is easier to develop, but suffers from worse performance.
This thesis presents an implementation which is easier to understand and to extend than both the
MATLAB and the Fortran version. The new implementation is called Amica.jl and is written in
the scientific programming language Julia [BEKS17]. An evaluation of the implementation with
regard to the correctness, the performance, the readability and extensibility is provided. The main
goal of this work is to lay a solid foundation for the future, with the hope that at one point Amica.jl
becomes a well rounded, easy to use and well performing AMICA implementation.
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2 Independent Component Analysis

2.1 Blind Source Separation

In a Blind Source Separation (BSS) problem, multiple receivers receive different mixtures of signals
from multiple sources [CL96]. These mixtures typically have the form of linear combinations. The
goal is to identify the original sources from the mixtures alone, without any information about the
structure of those mixtures. A well-known example of this problem is the so called Cocktail Party
Effect [Aro92]. Imagine two people talking simultaneously (Fig. 2.1). Two microphones are placed
in the room and are recording the conversation. As both microphones will be able to record both
people, the recorded sound will have the form of linear mixtures. Those mixtures however will
have a key difference: As the microphones are not in the same place, they will record both voices
at different intensities. This difference can be used to extract the original sources by applying a
method called Independent Component Analysis (ICA) [LCG10].

Figure 2.1: Two different mixtures are recorded from two source signals (Image by Alaa Tharwat,
2018) [Tha21].

2.2 ICA

By modeling data as a linear combination of independent source signals, ICA is able to decompose
the data into different components which are maximally independent from each other [LCG10].
Mathematically this can be expressed as

𝑥 = 𝐴 · 𝑠 (2.1)
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2 Independent Component Analysis

𝑥 being the 𝑛-channeled input data with 𝑁 samples, 𝐴 being the (𝑛 × 𝑛) mixing matrix and 𝑠 the
original source signals (𝑛 × 𝑁). Recovering the sources equals to computing the unmixing matrix
𝑊 = 𝐴−1 so that

𝑠 = 𝑊 · 𝑥 (2.2)

2.2.1 Conditions

Not all signal mixtures are actually separable. In order for ICA to be able to recover the unmixing
matrix, certain conditions must be met. These are the following [CL96; LCG10]:

1. The source signals must be statistically independent from each other. Two random variables 𝑥1
and 𝑥2 with Probability Density Function (PDF) 𝑝𝑖 (𝑥𝑖) are considered temporarily mutually
independent, if 𝑝(𝑥1, 𝑥2) = 𝑝1(𝑥1) · 𝑝2(𝑥2).

2. Mixtures must be linearly independent from each other, as a linearly dependent mixture does
not provide additional information.

3. The source signals must be noise free, as noise can be interpreted as an additional independent
component.

4. The Data must be centered (this is not always a requirement).

5. Only a single source signal is allowed to have a gaussian PDF.

2.2.2 How does ICA work

Many popular ICA algorithms, like InfoMax or FastICA, work by maximizing the non-Gaussianity
of the estimated source signals [LCG10]. This is possible by making use of condition 5 and the
Central Limit Theorem (CLT), which states that the average of multiple random variables will have
a distribution that tends towards the normal distribution, even if the random variables themselves
are not normally distributed. Since the source signals are expected to not be normally distributed,
but their mixture is, recovering them should be possible by rotating the signals until they are as
non-Gaussian as possible. However, there is a little caveat. The data is not 100% recoverable, the
estimated source signals can differ from the original sources by permutation and scaling [NK11].

Permutation: It is not possible for ICA to recover the original order of the source signals. This is
because both the mixing matrix and the source signals can be permuted by a permutation matrix 𝑃

and it’s inverse 𝑃−1, so that the resulting data 𝑥 will still be the same:

𝑥 = 𝐴𝑃−1𝑃𝑠 (2.3)
= 𝐴′𝑠′ (2.4)
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2.2 ICA

Scaling: Because only the mixed data is known, it is impossible to determine whether the source
signals have been scaled or not. This is made clear by the following equation:

𝑥 = 𝐴 · 𝑠 (2.5)

=

𝑁∑︁
𝑗=1

𝑎 𝑗 𝑠 𝑗 (2.6)

=

𝑁∑︁
𝑗=1
(𝑎 𝑗/𝛼 𝑗) (𝛼 𝑗 𝑠 𝑗) (2.7)

Choosing different values for the scaling factor 𝛼 will still produce the same data 𝑥, so it will not be
possible to recover 𝛼 during ICA.

2.2.3 Preprocessing

Before applying ICA to a given data set, it is advised to apply some preprocessing steps. The most
notable ones are centering and sphering/whitening [NK11].

Centering is the practice to subtract the mean from the input data. This allows to assume a zero
mean during the calculation, which simplifies the ICA algorithm. This does not affect the estimation
of the mixing matrix, because the mean can always be added back to estimate the original source
signals [NK11]:

𝑥𝑐 = 𝑥 − 𝐸 (𝑥) (2.8)

𝑠 = 𝐴−1(𝑥𝑐 + 𝐸 (𝑥)) (2.9)

Whitening (also known as sphering) is a method which transforms the input data in such a way, so
that the components have unit variance and satisfy the following equation:

𝐸 (𝑥𝑤 · 𝑥𝑇𝑤) = 𝐼 (2.10)

𝑥𝑤 being the whitened input data and 𝐸 (𝑥𝑤 · 𝑥𝑇𝑤) being the covariance matrix of 𝑥𝑤 . Whitening
the data causes the mixing matrix to be orthogonal, which reduces the amount of elements to be
estimated from 𝑛2 to 𝑛(𝑛 − 1)/2, which significantly reduces the complexity of the calculation
[NK11].

2.2.4 Use Cases

While ICA has a lot of uses in all of signal processing, it is especially useful in EEG [SLB05]. In
EEG, electric brain signals are recorded with the help of electrodes which are placed on the scalp.
While this method has the advantage of being non-invasive, it does also have some drawbacks.
Because the electrodes are not placed directly on the source of the signals, they can only record
mixtures of those signals. Another issue is noise. For example discharges from neuromuscular
activity can get recorded alongside the brain signals. ICA is well suited to identify the underlying
components in the recordings and to filter out the noise.
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2 Independent Component Analysis

Figure 2.2: Decomposition of electric bio-potential recordings via electrodes on the womb of a
pregnant woman (Image by Filipa Campos Viola et al., 2010) [VDTS10].

Figure 2.2 shows recordings of signals on a pregnant woman’s womb. After applying ICA, multiple
components were identified from the mixed signals. For example the red line shows the mothers
heartbeat, while the blue line shows the unborn baby’s heartbeat, which was previously not visible
[VDTS10].
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3 Adaptive Mixture Independent Component
Analysis

A widely used ICA algorithm is AMICA [HPP+18]. AMICA has two unique core features, which
make it stand out from other ICA algorithms:

1. It allows to model the given data with multiple ICA mixture models at the same time, with
different models applying to different samples. This can be advantageous in EEG, as there
is evidence that brain activities can vary depending on the brain state, requiring different
models for each state [HJ17; HPP+18].

2. The PDFs of the estimated source signals are approximated by an adaptive Generalized
Gaussian Mixture Model (GGMM), which is better suited for modeling non-Gaussian source
signals than a pre-defined PDF [PKM06].

Combined with the regular ICA assumption of the data x being a mixture of independent components,
it becomes clear why AMICA truly deserves to have mixture in it’s name. The algorithm ends
up having three separate layers of mixtures: A mixture of ICA models, a mixture of independent
components and a mixture of generalized Gaussians. This is illustrated in figure 3.1.

Figure 3.1: The architecture of AMICA (Image adapted from Sheng-Hsiou Hsu et al., 2018)
[HPP+18].
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3 Adaptive Mixture Independent Component Analysis

3.1 Mixture of ICA models

Just like in regular ICA, the data x is given as an 𝑛 × 𝑁 matrix (𝑛 channels, 𝑁 time samples). In
AMICA however, a different model might apply to a different time sample, so x is modeled by a
mixture of 𝑀 models with model index ℎ = 1, ..., 𝑀 and time 𝑡 = 1, ..., 𝑁:

x(𝑡) = xℎ (𝑡) = Aℎsℎ (𝑡) + cℎ (3.1)

𝐴ℎ being a mixing matrix, sℎ (𝑡) the original source signals and cℎ the bias. Together with ℎ = ℎ(𝑡)
they make up the dominant model at time 𝑡. The likelihood function of the data being generated by
the ICA model mixture can then be written as:

𝑝(X|Θ) =
𝑁∏
𝑡=1

𝑀∑︁
ℎ=1

𝑝(x(𝑡) |𝐶ℎ, \ℎ) · 𝑝(𝐶ℎ) (3.2)

Θ = {\1, ..., \𝑀 } are the model parameters and 𝑝(𝐶ℎ) the probability of model ℎ being active
at time 𝑡. The prior probabilities of a certain model being active satisfy

∑𝑀
ℎ=1 𝑝(𝐶ℎ) = 1. The

probability of the data being generated by a specific ICA model can be calculated with the likelihood
function:

𝑝(x(𝑡) |𝐶ℎ, \ℎ) =
��𝑑𝑒𝑡A−1

ℎ

�� · 𝑛∏
𝑖=1

𝑝(𝑠ℎ𝑖 (𝑡)) (3.3)

This makes use of the independence assumption for the original source signals, which states that
𝑝(𝑥1, 𝑥2) = 𝑝(𝑥1) · 𝑝(𝑥2). The determinant of the unmixing matrix 𝐴−1 is supposed to account for
possible scaling of the data by the mixing process.

3.2 Mixture of Generalized Gaussians

While other ICA algorithms might assume a fixed PDF for the source signals, AMICA instead
models them as a mixture of generalized Gaussian distributions [HPP+18]. A parameterized
Generalized Gaussian Distribution (GGD) is defined by:

𝑞(𝑠; 𝜌, 𝛽, `) = 𝜌

2𝛽 · Γ(1/𝜌) 𝑒

(
−
����� 𝑠 − `

𝛽

�����
)𝜌

(3.4)

The shape of the GGD is set by parameter 𝜌, the scale by 𝛽 and the location by `. The mixture of
multiple GGDs which approximates the PDF of the source signals is therefore defined by:

𝑝(𝑠ℎ𝑖 (𝑡)) =
𝑚∑︁
𝑗=1

𝛼ℎ𝑖 𝑗 · 𝑞(𝑠ℎ𝑖 (𝑡); 𝜌ℎ𝑖 𝑗 , `ℎ𝑖 𝑗 , 𝛽ℎ𝑖 𝑗) (3.5)

with each GGD being weighted differently by the weight parameter 𝛼.

In summary, the likelihood of the data being generated by a given ICA model can be expressed as:

𝐿ℎ (𝑡 ) = 𝑝(𝐶ℎ) ·
��𝑑𝑒𝑡A−1

ℎ

�� · 𝑛∏
𝑖=1

𝑚∑︁
𝑗=1

𝛼ℎ𝑖 𝑗 · 𝑞(𝑠ℎ𝑖 (𝑡); 𝜌ℎ𝑖 𝑗 , `ℎ𝑖 𝑗 , 𝛽ℎ𝑖 𝑗) (3.6)
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3.3 Structure

Figure 3.2: Gaussian mixture model consisting of three equally weighted parameterized Gaussians
(Created with distributions.jl [BPA+19]).

And finally, the probability of a model with index ℎ being active at time 𝑡 can be calculated by
normalizing 𝐿ℎ (𝑡 ) :

𝑝(ℎ(𝑡)) = 𝐿ℎ (𝑡 )/
𝑀∑︁
ℎ=1

𝐿ℎ (𝑡 ) (3.7)

3.3 Structure

In order to model the data, AMICA needs to estimate the model parameters Θ with

Θ = {A−1
h , cℎ, 𝛾ℎ, 𝛼ℎ𝑖 𝑗 , 𝛽ℎ𝑖 𝑗 , 𝜌ℎ𝑖 𝑗 , `ℎ𝑖 𝑗} (3.8)

for ICA models ℎ = 1, ..., 𝑀, channels 𝑖 = 1, ..., 𝑛 and Gaussian mixture models 𝑗 = 1, ..., 𝑚. 𝛾ℎ
is the probability of model ℎ being active with 𝛾ℎ = 𝑝(𝐶ℎ). AMICA works as an Expectation-
maximization (EM) algorithm in order to iteratively maximize the model parameters.

3.3.1 Expectation-Maximization Principle

Maximum likelihood estimation usually requires a complete data set, but an EM algorithm is able
to perform the estimation even when there are latent variables present [DLR77]. This is achieved
by iteratively optimizing a model, while alternating between expectation and maximization steps.
During the E-step, the algorithm calculates a likelihood estimation based on given model parameters.
These parameters are then replaced by better fitting ones during the M-step. This is made possible
by using optimization methods, e.g. gradient descent, on the previously calculated likelihood
function. Since both the model parameters and the actual likelihood function are unknown, the
algorithm needs to be initialized using estimates.

AMICA uses this principle to optimize the model parameters (3.8). During the expectation step, the
source signals 𝑠 are estimated using the unmixing matrix 𝐴−1. The probability density function
of the source signals is estimated by using a mixture of generalized Gaussian distributions. Both
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3 Adaptive Mixture Independent Component Analysis

of those are then used to calculate an estimation of the likelihood function. During the M-step,
AMICA uses the Newton method to maximize the likelihood function and thus generating better
model parameters [PMKR08].

3.3.2 Algorithm

Algorithm 3.1 shows a simplified version of the AMICA algorithm. The parameters for the
generalized Gaussian distribution mixtures are summarized as Ω = {𝛼, 𝛽, 𝜌, `}. In the reference
implementation in MATLAB, some parameters start off as fixed values instead of being initialized
randomly. It is also worth mentioning that AMICA possesses an adaptive learning rate, which can
decrease if the the likelihood gets worse between iterations.

Algorithm 3.1 AMICA algorithm
procedure AMICA(x,𝑀 ,𝑚,𝑚𝑎𝑥𝑖𝑡𝑒𝑟)

x← RemoveMean(x)
x←Whitening(x)
W← InitializeRandomly // Unmixing Matrix W = A−1

𝛀← InitializeRandomly // Gaussian Mixture Model Parameters
for 𝑖𝑡𝑒𝑟 = 1 to 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 do

s← 𝑊 · x // Estimate sources
Lt← CalculateLikelihood(s,𝛀) // Of time points for each model (𝑀 × 𝑁)
LL← CalculateMixtureLL(Lt) // Likelihood for whole ICA model mixture
dLL[𝑖𝑡𝑒𝑟] ← LL[𝑖𝑡𝑒𝑟] − LL[𝑖𝑡𝑒𝑟 − 1] // Change in LL since last iter
if dLL[𝑖𝑡𝑒𝑟] < 𝑚𝑖𝑛𝑑𝐿𝐿 then

Terminate // Terminates if LL increase to small
end if
Ω← UpdateParameters(𝛀) // Improves Gaussian parameters
W← NewtonMethod(W,s) // Improves W
Reparameterize(W,𝛀) // Normalizes parameters

end for
end procedure

20



4 Results

4.1 Implementation

AMICA implementations already exist in Fortran and MATLAB. Both have their own advantages
and disadvantages. While the Fortan implementation performs better, future development might be
hindered because the code is hard to read. The MATLAB implementation on the other hand is
significantly more readable, but suffers from worse performance and also lacks some key features.
The MATLAB code, provided by Jason Palmer, is the basis for the implementation of AMICA in
Julia. Important variables are provided in table 4.1. Because many of them have been renamed, the
variable names of both implementations are provided.

Julia Matlab Definition

data x Input data
A A Mixing matrix
W W Unmixing matrix
centers c Model centers
source_signals b unmixed signals
mindll mindll Termination criterion
iterwin iterwin Window to calculate average likelihood
LL LL Log-likelihood for whole mixture model
Lt Lt Likelihood for each time point per model
dLL dLL LL difference between iters
sdll sdll average dLL over iterwin iterations
ica_weights_per_sample v ICA weights for each sample
ica_weights vsum ICA weights
normalized_ica_weights gm Normalized ICA weights
proportions alpha source density mixture proportion
scale beta source density scale
location mu source density location
shape rho source density shape
y y source signals
Q Q Densities for each sample per Gaussian
z z Normalized Densities for each sample

per Gaussian

Table 4.1: Important variables of AMICA.
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4 Results

4.1.1 Code examples

One major feature of Amica.jl are the mutable structure data types, which are used to define multiple
different types of AMICA algorithms. Those structures define which parameters are needed for a
certain type of AMICA. When the algorithm is executed, an object of the associated data type gets
created. This has multiple advantages:

1. Thanks to Multiple Dispatch, a core feature of the Julia programming language, the same
function can be defined multiple times depending on the data type of a given parameter
[BEKS17]. This allows functions to behave differently if needed, depending on which type of
AMICA object they are given. If a new variation of AMICA gets defined, new versions of the
functions in the algorithm can be created easily without breaking the previous implementation.

2. The code gets significantly more readable, because the functions don’t need to be called
with a dozen parameters. For many functions it is sufficient to call them with no parameters
besides the AMICA object.

Therefore this feature helps to achieve both goals of readability and extensibility.

Figure 4.1: The SingleModelAmica and MultiModelAmica data type.

Figure 4.1 shows the SingleModelAmica and MultiModelAmica data type. SingleModelAmica
is supposed to be used when only one ICA model is needed instead of a mixture model. Multi-
ModelAmica contains an array of SingleModelAmica objects and additional parameters. Note that
SingleModelAmica itself contains an object of another custom data type: GGParameters. This type
contains the parameters which define a GGMM. A possible use case of this is shown in figure 4.2.

Figure 4.2: Multiple Dispatch allows to define a function multiple times for different types of
AMICA.

The function update_mixture_proportions! behaves differently depending on whether it was called
with a SingleModelAmica or a MultiModelAmica object. The additional MultiModelAmica function
is required because it needs the ICA model weights. This parameter is obviously not needed when
performing AMICA with just one ICA model. In some cases however this is not needed. If a
function only requires SingleModelAmica parameters, then it can be used by MultiModelAmica
without the need for overloading it. This is shown in figure 4.3. This code is actually part of
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4.2 Evaluation: Correctness

a MultiModelAmica function. But because the SingleModelAmica versions of the functions are
sufficient, the SingleModelAmica objects which are stored in the MultiModelAmica are given as a
parameter instead.

Figure 4.3: Multiple SingleModelAmica functions being called inside a MultiModelAmica function.

4.2 Evaluation: Correctness

The MATLAB implementation provided by Jason Palmer was used as a the reference implementation
to evaluate the correctness of the Julia implementation. The first test consisted of running both
implementations on a small synthetic data set with 4 channels and 1000 time samples, which was a
mixture of sinus functions and pink Gaussian noise. Usually the model parameters 𝐴, 𝛽 and ` are
initialized with random values. To make the results comparable, they were set to the same fixed
initial values in both implementations during the tests. Because bad initial parameter values can
cause AMICA to terminate early due to NaN or infinite values, the initial values were chosen such
that the algorithm could run until convergence. This was done with a single ICA model and with
a mixture of two ICA models. The amount of generalized Gaussians was set to 3. The iteration
window was set to 10, therefore the algorithm terminated if the average likelihood increase over 10
iterations dropped below 1𝑒−8. No data pre-processing was performed on the synthetic data. All
plots were created with CairoMakie.jl [DK21].

4.2.1 Single Model

As seen in figure 4.4, both implementations were able to identify the the original functions as
independent components. The data was not perfectly recovered and appears to be out of order and
scaled, but that was expected due to ICA ambiguities (see chapter 2.2.2).

The MATLAB implementation terminated after 544 iterations due to convergence with a final
log-likelihood of -1.639571. The Julia implementation terminated after 527 iterations with a
log-likelihood of -1.639574.

4.2.2 Multi Model

For the evaluation of the AMICA algorithm with two ICA models, half of the synthetic data was
mixed with one mixing matrix and the other half with another. Figure 4.5 shows the first and last
100 data samples, both in their original form and mixed.
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4 Results

Figure 4.4: Julia and Matlab unmixing of sinus data after 500 iterations. Top left: Original source
signals; Top right: Mixed source signals. Middle left. Unmixed signals (Julia).
Middle right: Unmixed signals (MATLAB). Bottom left: Likelihood (Julia). Bottom
right: Likelihood (MATLAB).

Figure 4.5: Top: First and last 100 samples of the original sources. Bottom: First and last 100
samples of the mixed data, mixed with two separate mixing matrices.

Since the data was mixed by using two different matrices, MultiModel AMICA should be able to
identify the sources by training both it’s ICA mixture models. As shown in figure 4.6, this is exactly
what happened. Applying both unmixing matrices to their respective parts of the mixed data makes
the source signals visible again.

The Julia implementation terminated after 978 iterations due to convergence, the MATLAB
implementation after 758. Their final log-likelihoods were 0.0151703 and -0.006776 respectively.
The log-likelihood functions can both be seen in figure 4.7.

In order to test if both generated unmixing matrices are only specialized for part of the data, they
were also applied in the other way around. Figure 4.8 shows what happens if the matrix which was
trained for the first half of the data is applied to the second half and vice versa.
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4.3 Evaluation: Performance

Figure 4.6: Top: First and last 100 samples of the data unmixed by the MultiModel Julia
implementation. using both generated unmixing matrices. Bottom: First and last 100
samples of the data unmixed by the MATLAB implementation.

Figure 4.7: Log-likelihood functions of MultiModel Julia (left) and MATLAB (right) when
performed on the synthetic data set.

Figure 4.8: Unmixing matrices applied in reverse. The components do not get properly unmixed.

4.3 Evaluation: Performance

4.3.1 Execution Time

In order to evaluate the performance, the implementations of AMICA in Julia, MATLAB and Fortran
have all been run on the SSVEP data set from MNE [GLL+13]. This data set contains 32-channeled
EEG recordings from two participants who were experiencing visual stimulation in the form of
checkerboard patterns. The data was loaded with a 1Hz highpass filter and 128 Hz resampling.
Mean removal and sphering were applied by the AMICA algorithm. The implementations were
tested with one, two and four ICA mixture models, both with a single active thread and with 64
threads. Every run lasted for 100 iterations and the average time per iteration was calculated. The
initial parameters were set on the same values for Julia and Matlab, but were randomized in Fortran.
Because of this, the Fortran implementation was executed 3 times for each experiment and the
average time was taken.
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4 Results

Figure 4.9: AMICA execute time for 100 iterations with one thread.

As seen in figure 4.9, the Matlab and Julia implementations performed similarly for one model.
Julia took 2.03 seconds per iteration and MATLAB 2.4 seconds. While this is a slight win for
the Julia implementation, both were beaten by the Fortran implementation with 0.26 seconds per
iteration. With an increasing amount of models, the difference in performance grows relatively
smaller. The Fortran implementation was 6.1 times faster than Matlab and 5.08 times faster than
Julia (previously 9.2 times and 7.8 times respectively). With four ICA models, the MATLAB
implementation reached 9.88 seconds per iteration, the Julia implementation reached 8.13 and
the Fortran implementation 1.6 seconds per iteration. Figure 4.10 shows the same experiment
performed with 64 active threads.

Figure 4.10: AMICA execute time for 100 iterations on 64 threads.
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4.3 Evaluation: Performance

In this setup, the MATLAB implementation got ahead of Julia for one, two and four models. This
was expected, as there was not much optimization done on the Julia implementation so far. Another
interesting observation is the Fortran implementation not getting any speed up from being executed
with multiple threads. Quite the opposite, it even got slightly slower, going from 0.27 seconds to
0.315 for one model A possible reason for this is an error in the experimental setup.

Convergence on EEG Data

The three implementations were executed on the same data set as in the previous section. For
Julia and MATLAB, the parameters were initialized with the same fixed values again. The Fortran
implementation ran with random initial parameters. The experiment was done with a single ICA
model. MATLAB and Julia were executed until convergence and the Fortran implementation was
set to 1200 iterations. It terminated with a final log-likelihood of -0.7097. The log-likelihood at
1200 iterations was -1.39657 for Julia and -1.39656 for MATLAB.

Figure 4.11: Log-likelihood of the Fortran AMICA implementation.

The Julia implementation converged with a final log-likelihood of -1.396543 after 1430 iterations
and the MATLAB implementation with -1.3965477 after 1735 iterations. A calculation of the
difference in log-likelihood during iteration 1430 in MATLAB showed that the termination criterion
of sdll < mindll was just missed by −2.1866𝑒−07, with sdll being the avererage difference in
log-likelihood for the last 10 iterations and mindll = 1𝑒−08. This can be due to small differences in
how basic math functions are calculated in Julia.

Figure 4.12: Log-likelihood of the Julia implementation (left) and MATLAB (right).
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5 Conclusion and Outlook

The results show that multiple goals of this project have been achieved. A working implementation
of AMICA has been produced. The evaluation shows that not only is Amica.jl unmixing independent
source signals properly, but the results are very close to the reference implementation in MATLAB.
Another goal that has been achieved is providing a basis for further development in the future. The
code of Amica.jl is is more descriptive, with variables and functions providing information about
their purpose by their names alone. By spreading the functionality among many small parts, the
whole becomes easier to understand. The goal of providing modularity is also achieved. A new
type of AMICA algorithm can simply be defined as a new data type and if some of the existing
functions need to be adjusted, this can be done easily due to Julia’s Multiple Dispatch.

Nevertheless there is still huge room for improvement by every metric. The performance of the
implementation is clearly lackluster. It can be considered an achievement that amica.jl can, at least
with a signle thread, perform better than the reference implementation in MATLAB. But when it
comes to making use of multiple threads, the implementation needs to be adjusted. The Fortran
implementation remains the gold standard when it comes to performance. Regarding readability,
there are still multiple functions in the code which have not been untangled properly. This should
definitely be done.

Another important point is that Amica.jl is based on the MATLAB version, which lacks in function-
ality when compared to the Fortran implementation. For example, the Fortran implementation is
able to restart the algorithm when newly randomized parameters if it encounters a NaN value early.
Amica.jl will just terminate with an exception. Bringing more features like this to Amica.jl should
be the goal for the future.
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