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Kurzfassung 

Für den Erhalt ihrer Wettbewerbsfähigkeit wird es für viele Unternehmen in den 

kommenden Jahren entscheidend sein, personalisierte Produkte in vergleichbaren 

Mengen und Lieferzeiten anbieten zu können wie Massenartikeln. Dies hat nicht nur einen 

Einfluss auf die Fertigungstechnologien der Unternehmen, sondern stellt auch eine große 

Herausforderung für die Gestaltung der organisatorischen Funktionen eines 

Produktionssystems dar, die sich einer wachsenden Komplexität gegenüber sehen. Um 

dieser Problemstellung begegnen zu können, müssen die zur Unterstützung solcher 

Funktionen eingesetzten IT-Werkzeuge zu flexiblen und intelligenten Systemen 

weiterentwickelt werden. Dies betrifft unter anderem Lösungen für die 

Produktionsplanung und -steuerung (PPS). Diese Arbeit beschreibt einen Ansatz, solche 

Systeme durch die Anwendung von Data-Analytics-Komponenten zu gestalten.  

Obwohl die verwendeten analytischen Verfahren verschiedene Funktionen bieten, die den 

Umgang mit Komplexität ermöglichen, ist ihre Nutzung oft problematisch. Dies ist meist 

auf ihre Implementierung als Software-Monolithen zurückzuführen. Die analysierte 

Lösung stellt anhand von Microservices hingegen eine flexible Struktur bereit, die sowohl 

den Anforderungen der Produktionsumgebung als auch den eingesetzten Data-Analytics-

Komponenten gerecht wird. Ein Referenzmodell der Lösung mit den 

Hauptfunktionalitäten wird im Rahmen der Arbeit abgeleitet und veranschaulicht. 

Die Arbeit schließt mit einer kritischen Würdigung des entwickelten microservice-

basierten Ansatzes durch einen Vergleich mit anderen relevanten Lösungen in 

verschiedenen Anwendungsszenarien.  



 

 

 



 

 

Short Summary 

Enterprises that want to remain competitive in the near future need to be able to offer 

personalized products in the same quantities and delivery times as for mass produced 

articles. While this certainly presents a challenge to the manufacturing technology, the 

required organizational functions are of equal (or even greater) importance. To keep up 

with increasing complexity, the IT tools supporting these tasks – such as production 

planning and control (PPC) solutions – must evolve into flexible and intelligent systems. 

This work describes a novel approach for using data analytics-based components to create 

such systems. Although these analytical functionalities offer several capabilities for dealing 

with complexity, applying them successfully is problematic, which is mainly due to their 

implementation as software monoliths. The solution presented to these problems is to 

make use of microservices to provide a flexible and evolving structure that matches the 

requirements of both the production environment and the employed analytical 

functionalities. A reference model of this solution containing the main functions is derived 

and illustrated.  

The work concludes with a critical evaluation of the microservices-based approach, 

comparing it to other possible solutions in several application scenarios. 

 



 

 

 



 

 

1 Introduction and Motivation 

1.1 Current Situation 

Over the years, manufacturing enterprises have developed different types of production 

strategies to deal with changing markets. This development takes its starting point at 

around 1850, when the need for complex products in large quantities drove craft 

production to its limits. Now, 170 years later, the demand for individualization and the 

strive to remain competitive (Kumar 2007, p. 539; Piller 2008, pp. 136‑138) are forcing 

companies to adopt the paradigm of Personalized Production (see Figure 1-1).  

 

 

Figure 1-1: Relationships between volume and variety in manufacturing  

(Koren 2010, p. 38) 

 

But this phase is not like any other before. Not only does it demand a true personalization 

of the products (distancing itself from mass customization) (Mourtzis et al. 2014, p. 3) but 
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it also calls for prices and delivery times comparable to those of mass production (Kumar 

2007, p. 537; Hu 2013, p. 7). 

Therefore, the changes faced by manufacturing enterprises not only comprise the offering 

of personalized products and services, but also the creation of manufacturing systems that 

are able to produce according to the requirements of both customers and manufacturers. 

1.2 Problem Description 

Current initiatives recognize the problems and opportunities created by Personalized 

Production. However, they mainly concentrate on the development of process 

technologies – for example, Fischer et al. (2019, pp. 179‑183), Keller et al. (2018-2018, 

pp. 303‑309), and Rajamani et al. (2021, pp. 1‑19).  However, the challenges faced by 

production management systems, particularly by production planning and control 

systems, also have to be considered (Wehner et al. 2016, pp. 142‑145).  

As the challenges presented by Personalized Production are characterized by an increase 

in complexity, approaches based on the use of data analytics prove adequate (Colangelo 

et al. 2016a, p. 851; Colangelo et al. 2018, pp. 191‑193). Although the potential has 

been recognized, current initiatives present limitations: 

 The use of data analytics (not to be confused with “Big Data”) as an enabler for 

personalization has been acknowledged, but it is mostly proposed for market-based 

predictions (demand), relegating logistic problems to a secondary level (Wehner et al. 

2016, pp. 156‑157). 

 Data analytics-based approaches that deal with issues of production logistics are 

implemented in isolation, lacking an integrated view. Solutions are usually developed 

to address a specific issue within the big system of interrelated processes and 

functionalities of production management – for example, as shown by the review 

performed by Wang et al. (2016, p. 102) – and with a research character (Kusiak 

2017, p. 24). The isolation problem also concerns the required integration with the IT 

landscape (Wierse et al. 2017, p. 374; Woo et al. 2018, pp. 2194‑2195). 
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 Development, implementation, and utilization costs for data analytics solutions (apart 

from the basic ones) are not affordable for most enterprises. Additional obstacles are 

the need for specialists and the difficulty to perceive the benefit of such projects. All 

of this affects the price/performance ratio of the intended solution (PAC 2014, 

pp. 24‑25). Most efforts to address this problem are insufficient (Colangelo et al. 

2018, p. 193). 

It is therefore necessary to develop an approach that does not only cover the requirements 

of production logistics using data analytics but also allows for an easy integration with 

the IT landscape of production management under economic conditions that most 

enterprises can afford. 

The way the data analytics-based approach is implemented as a software solution plays a 

predominant role. It not only determines the way it can integrate with the IT landscape, 

but also defines the capabilities of the analytical support provided (e.g. complexity and 

adaptabilities of the analytical functionalities) and influences the efforts (and costs) related 

with implementing and utilizing the solution. The flexibility allowed by the architecture of 

the software solution is therefore a key factor. 

In this regard, a new architectural approach has gained importance in the last years: 

microservices. This further development of the service-oriented architecture is based on 

the utilization of very small, independent, and autonomous services. This allows for a great 

modularity, but also for number of advantages, such as the ability to the freely choose 

technologies and functionalities thanks to the easy exchange of microservices. The 

resulting solutions are inexpensive and easy to maintain. Furthermore, the approach also 

enables an easy integration (Newman 2015, pp. 2‑8; Dowalil 2018, p. 128). 

1.3 Research Question and Approach 

With a view to the presented problem, the research question to be answered by this work 

is as follows: 
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»How can production logistics in the context of Personalized Production be assisted by 

data analytics-based software solutions in an effective and efficient manner?« 

As the research question consists of several elements, it results necessary to derive a set 

of sub-questions in order to evaluate all pertaining aspects. These sub-questions are: 

 »What aspects of production logistics are relevant and how are they affected by 

Personalized Production?« 

Chapter 2 will first define the characteristics of Personalized Production. Subsequently, 

it will cover the functions of production logistics (and of related software systems) and 

how they are influenced by the requirements of Personalized Production. 

 »What aspects of data analytics are advantageous for Personalized Production?« and 

»What elements of data analytics should be considered by the software solution?« 

Chapter 3 will describe the main characteristics of data analytics. It will not only focus 

on the aspects relevant for Personalized Production, but also present the elements 

important for their implementation, including aspects for improving their 

functionalities (e.g. integration with IT systems). 

 »Which aspects of software design can improve the usability of the data analytics-

based solutions for Personalized Production?«  

The term usability is employed here to describe improvements in both the effectiveness 

and efficiency of the software solution implementing the data analytics-based 

approaches. Chapter 4 will describe the IT architectures used in software design and 

their characteristics, including those affecting their adaptability and IT efficiency. 

Chapter 5 will then propose the utilization of an architectural approach taking into 

account the requirements of Personalized Production (including the aspects of 

production logistics) and data analytics. Chapter 6 will provide further details on the 

approach and chapter 7 will perform an evaluation of the usability. 

To answer the research question, this work presents the following approach:  

A microservices-based constitution, provision, and utilization of data analytics.  

Analytical microservices – as partially presented by Colangelo et al. (2018) – should 

provide a way to deal with issues of production logistics by means of data analytics while 
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allowing for a reduction of several of the associated costs (infrastructure, development, 

etc.), thus ensuring and facilitating the usability of the solution. For this purpose, the 

proposed approach will be driven by two main aspects: 

 increase of benefit (as perceived by the user with regard to the degree to which the 

proposed problem is solved)  

 reduction of costs 

While the first aspect will influence the effectiveness of the solution positively, the second 

one will have a positive effect on its efficiency. Derived from these two fundamental 

aspects, the work hypothesis to answer the research question is established as follows: 

»The construction and usage of production logistics analytics as microservices improves 

the former’s benefit-cost ratio under the requirements of Personalized Production« 

1.3.1 Focus 

The tasks to be fulfilled within this work are 

 to determine the characteristics presented by common issues of production logistics 

within the context of Personalized Production (but not strictly limited to it) and to 

derive the corresponding requirements for addressing the said problems; 

 to determine the features of data analytics-based solutions to deal with these 

requirements while taking into account the characteristics and issues of the analytical 

solutions themselves; 

 to determine the aspects of a microservices-based approach to support the analytical 

solutions, taking into account the determined requirements and features; and 

 to present a recommendation for the construction of a microservices-based solution 

upon the derived aspects. This will consist of the main constructive components and 

functionalities. 

The first three tasks will be addressed in separate chapters, each concluding with an 

overview – presented as tables – of the elements determined and derived. The order of 
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the chapters allows for understanding the path from the characterization of the problems 

to the aspects of the proposed solution. This is illustrated in Figure 1-2. 

 

 

Figure 1-2: From characteristics to implementation aspects 

 

The resulting recommendation should provide a template to be used in the future 

construction of services-based structures and environments, especially as part of the 

expansion of Industrie 4.0 (Industry 4.0) initiatives and products. 

Furthermore, this work will focus on validating the established hypothesis (as described in 

section 1.5). 

1.3.2 Boundaries 

Complementary to the focus of this work, its limits should also be enumerated. These are: 

 This work concentrates on data analytics for production logistics (although the 

approach may be transferable to other areas). 
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 The focus of this work is on the requirements derived from Personalized Production. 

However, this does not mean that the approach cannot be used under less demanding 

circumstances (the application in each new use case must be properly evaluated). 

 The usage of data analytics to support production logistics functionalities is presented 

and analyzed within this work. Nevertheless, it is not the intention to verify this 

approach, as this is the subject of other current projects and research works (some of 

which will be cited). 

 This work describes only those components and considerations necessary for the 

construction and utilization of analytical microservices. The following complementary 

elements are regarded as necessary (and therefore considered) but are not researched 

in detail: security systems, new methods for data cleaning and transformation, and 

the design and construction of a marketplace for the distribution of analytical 

microservices. 

1.4 Scientific Positioning 

The categorization proposed by Ulrich et al. (1976, p. 305) introduces a first 

differentiation between physical and formal sciences (see Figure 1-3). While the former 

are concerned with the description and explanation of perceivable phenomena from the 

real world, the latter deal with the construction of sign systems (with the corresponding 

rules that enable their utilization). 

Information systems can be defined as sociotechnical systems that support the decision-

making process by means of knowledge creation through data processing (WKWI 2011). 

As such, they are compatible with the objective pursued within this work. 

The understanding and construction of information systems is the aim of the German 

discipline known as Wirtschaftsinformatik. This is considered relevant because of its dual 

approach: it is partially based on formal sciences (for the analysis of systems) and on 

physical sciences (allowing for the construction of systems) (WKWI 2011). 
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Figure 1-3: Systematic of the sciences and positioning of the work 

(based on Ulrich et al. 1976, p. 305) 

 

The equivalent Anglo-American discipline of information systems research (ISR), is more 

strongly oriented towards behavioral science (a word in this context referring to the 

application of formal sciences) (Wilde et al. 2007, pp. 280‑285). To fulfil the required 

construction-based vision (taking the role of the physical sciences) it is necessary to 

concentrate on the branch of ISR known as design science (Hevner et al. 2004, p. 76; 

Wilde et al. 2007, p. 285; Winter et al. 2010, p. 257) 

In accordance with the explained duality of information systems, Hevner et al. (2004, 

pp. 79‑80) expresses that while “behavioral science addresses research through the 

development and justification of theories that explain or predict phenomena related to 

the identified business need […] design science addresses research through the building 

and evaluation of artefacts designed to meet the identified business need”. Behavioral 

science therefore seeks the truth, while the goal of design science is utility. In his vision, 

they are inseparable.  
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Figure 1-4: Information Systems Research Framework (Hevner et al. 2004, p. 80) 

 

In order to create a research framework, Hevner complements sciences with two principles 

that guide the ISR: rigor and relevance (see Figure 1-4). While rigor is achieved by 

appropriately applying existing foundations and methodologies (from the knowledge 

base, which in turn can also be expanded by research) (Hevner et al. 2004, p. 80), 

relevance is related to the applicability by a relevant community (Hevner et al. 2004, 

p. 85). 

1.5 Structure of this Work 

Following the ISR methodology, the structure of this work is based on elements of 

behavioral and design science. The constructive objective of design science is achieved by 

applying a methodology proposed by Peffers et al. (2007). The objective of behavioral 

science is achieved by the application of appropriate methods in the corresponding 
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sections: mainly in chapters 5 and 6 (modelling of the solution) and chapter 7 (validation 

of the solution). In this way, the principle of rigor is also fulfilled. 

The principle of relevance is considered by analyzing the problem and by researching the 

state of the art (chapters 1, 2, 3 and 4). 

The resulting structure can be viewed in Figure 1-5, with the chapter description on the 

right side and the corresponding design-science phase (Peffers et al. 2007) on the left 

side. 

The objective of chapters 2 to 4 is to review the state of the art applicable to the problem. 

They also establish the derivation of requirements on a software-based production 

management solution to address the characteristics of Mass Personalization (chapter 2) 

and how these requirements can be met using a data analytics-based solution (chapter 

3). Chapter 5 presents the intended microservices-based solution and describes its 

implementation aspects (as illustrated in Figure 1-2). 

As briefly explained in section 1.4, design science requires an artefact. IT artefacts are 

defined as constructs (vocabulary and symbols), models (abstractions and 

representations), methods (algorithms and practices), and instantiations (implemented 

and prototype systems) that allow for the development and examination of IT solutions 

(Hevner et al. 2004, p. 77; Wilde et al. 2007, p. 281). 

From the list of artefacts proposed by Wilde et al. (2007, p. 282) the one chosen in this 

work is the reference model. It fits in with the objective of this work: making a proposal 

for the constitution and utilization of analytical microservices (using the reference models 

as a support). The description of the solution (by means of the chosen IT artefact) is given 

in chapter 6. 

For the validation intended in chapter 7, the evaluation method consists of a proposal of 

scenarios to demonstrate the utility of the proposed artefacts. As described by Hevner et 

al. (2004, p. 86), the usage of descriptive techniques (of which the utilization of scenarios 

is one) is meant for cases of innovative artefacts for which other forms of evaluation may 
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not be feasible. This, therefore, matches the intentions of this work, limited only to the 

proposal of a solution approach. 

 

 

Figure 1-5: Structure of this work 

 



 

 

 



 

 

2 Manufacturing Aiming to Enable 
Personalized Production 

This chapter introduces the challenges of Mass Personalization. The focus is not placed on 

physical implementation (e.g. product configuration solutions, additive manufacturing, 

etc.) but on how areas of production logistics and the corresponding production 

management systems are affected. For this purpose, the key elements of production 

planning and control (PPC) and the functions of the corresponding software solutions are 

explained as well.  

The objective of this chapter is to derive the requirements for software-based production 

management solutions in order to deal with characteristic situations and problems of Mass 

Personalization. 

2.1 The Mass Personalization Context 

First, it is necessary to comprehend the actual meaning of Mass Personalization. This 

section will focus on defining the main terms necessary to understand the intended 

concept as well as comparing it with other approaches. 

2.1.1 Definitions 

Personalization, being a very promising concept, has different interpretations depending 

on the area and context it is used in. As this work does not intend a deep analysis of the 

meaning of personalization, the elements relevant for production systems are extracted. 

As seen in Figure 1-1, the current momentum of industrialized society is due to mass 

production. This allows for the production of large volumes of products and the 
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maximization of productivity, but with a clear disadvantage: the full standardization of 

the final product (Hu 2013, p. 4). As a way to meet the demand of customized products, 

approaches based on the utilization of prefabricated modules were developed. This makes 

it possible to retain most of the benefits of the economy of scale. Such practice is called 

mass customization (Piller 2008, pp. 153‑234). 

Customization allows, therefore, to address a market segment of a few. Personalization, 

on the other hand, allows to address a market segment of one (Kumar 2007, p. 536). 

The most successful manufacturing of products that is able to meet all requirements made 

by customers is based on the Engineer-to-Order (ETO) approach. This, however, is 

normally meant for small quantities (often only one product) and suffers from long lead 

times and high costs (Kristianto et al. 2013, p. 961). Customers, on the other side, 

increasingly ask for affordable personalized products, either to cover emerging 

requirements regarding a more flexible lifestyle, or to better adapt to existing ones (e.g. 

personalized medicine) (Wehner et al. 2016, pp. 21‑27). Enterprises need to be able to 

personalize in order to become more competitive (Kasanoff 2009). 

To understand the first steps towards the desired production of personalized goods in 

large volumes it is necessary to consider the three views affected: marketing, 

manufacturing (process), and production management. 

Taking them into account, it is possible to differentiate the two main concepts in the 

context of Personalized Production: 

 Mass Individualization: This concept encompasses the way products are designed 

to allow for an individualization according to customer requirements (marketing view). 

For example, Koren et al. (2015, p. 65) proposes the usage of an open hardware 

platform in which modules from different sources can be integrated (as opposed to 

the closed platform of mass customization, where the amount of modules is highly 

limited). 

 Mass Personalization: The term personalization is considered to have a wider and 

deeper reach than individualization (Wehner et al. 2016, pp. 32‑33). This concept 

refers not only to the possibility to construct an individualized product but to the actual 
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creation of products that fulfil the requirements of the customers, even those that are 

not explicitly communicated (marketing view). Also the technology that enables their 

production (manufacturing view) and the way that such production systems are to be 

managed (production management view) in order to meet logistic objectives similar 

to those of conventional mass production are addressed (Mourtzis et al. 2014, pp. 3‑4; 

Wehner et al. 2016, p. 9). Additionally, the way the term Personalized Production is 

used presents similarities to the characteristics of Mass Personalization (Kumar 2007, 

p. 536; Hu 2013, p. 7; Mourtzis et al. 2014, p. 3). This work will refer to both Mass 

Personalization and Personalized Production. 

Since much of the literature focuses on personalization in the area of B2C (Business-to-

Consumer), this work also intends to cover situations present in B2B (Business-to-

Business). The term B2U (Business-to-User) proposed by Wehner et al. (2016, p. 8), which 

refers to the fulfilment of requirements (independently of B2C and B2B), can also be 

utilized. 

Personalized products not only consist of their tangible part but also (increasingly) of the 

accompanying services (Piller 2008, p. 137; Wehner et al. 2016, p. 9). Although this work 

will focus on the creation of physical products, many concepts (such as demand 

prediction) can be of use in the service area. 

2.1.2 Comparison with Other Approaches 

In order to understand how to fulfil the requirements of Mass Personalization and how 

similar problems are addressed, it is necessary to review current manufacturing 

approaches. Following the work of Hoekstra et al. (1992, pp. 6‑8), these can be 

characterized using the different stockpiling strategies, differentiating the areas and 

activities and whether they are depending on the customer order or not. These, with 

several additions, can be observed in Figure 2-1. 
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Figure 2-1: Stockpiling strategies (based on Nyhuis et al. 2009, p. 4) 

 

The five strategies are: 

 Make-to-Stock (MTS): Products are manufactured based on a production program 

(guided by a demand forecast). It presents the advantage of short delivery times but 

at the price of elevated stock costs and a high standardization. 

 Assemble-to-Order (ATO): This strategy prefabricates parts or modules following a 

production program and performs the final assembly depending on the customer 

order. It allows for a customization of products (limited personalization) with relatively 

short delivery times but at the price of elevated stock costs.  

 Make-to-Order (MTO): In this strategy, manufacturing only starts after receiving a 

customer order. The raw materials and the semi-finished goods produced externally 

are purchased in advance, following the disposition parameters (e.g. minimal stock 

levels) and forecasts. It is usually applied for products that require a higher degree of 

customization and/or to avoid stock costs. The disadvantage is not only an increase of 

delivery times but also the reliability of the estimated times and the elevated costs 

resulting from the necessity of a flexible manufacturing system.  

 Purchase-to-Order (PTO): Similar to MTO, but different as to some raw materials 

and semi-finished goods are only purchased when a related customer order exists 

(usually because of their high value or other problems related to keeping them in 
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stock). This contributes to an increase in delivery times and deteriorates their 

estimations. Most systems that claim to produce under a MTO strategy usually use a 

PTO approach. 

 Engineer-to-Order (ETO): This strategy allows for the highest degree of 

personalization, with big parts of the product design influenced by the customer 

requirements. After finishing the design, production is started, procuring all necessary 

material and managing the production resources. The disadvantages are clear: 

customers are facing long lead times before they receive the finalized product, and 

the price is high (Kristianto et al. 2013, p. 961). Important to consider here is the 

Design-to-Order (DTO) strategy. The differentiation between ETO and DTO is often 

not clear, with some authors even using DTO with the same meaning as ETO 

(Schönsleben 2012, pp. 179‑180). This work will consider ETO in general as allowing 

large changes on existing products (Kristianto et al. 2013, pp. 961‑962) and DTO as a 

subtype of ETO in which the customer is actively involved in the design of a new 

product (Mandel 2012, p. 30; H.-H. Wiendahl 2020, p. 209).  

As mentioned before, Mass Personalization and ETO share the fact that products can be 

deeply personalized and manufactured in small lot sizes (reaching even lot size one) (Piller 

2008, pp. 136‑138; Wehner et al. 2016, p. 30). At the same time, there are big 

differences: the price and delivery time expected by customers are, respectively, much 

lower and shorter as in ETO (and similar to those in ATO, MTO, and PTO). Furthermore, 

Mass Personalization works with sales volumes typical of mass production and mostly 

complex products (Kumar 2007, pp. 534‑536; Mourtzis et al. 2014, pp. 3‑4). 

Manufacturers producing with a Mass Personalization approach will probably combine 

several approaches (which usually is the case for all strategies described). Hu et al. (2011, 

p. 729) considers an open product architecture based on three types of modules: common 

modules (shared by all products), customized modules (that can be chosen by the 

customers), and personalized modules (specifically created and designed for each 

costumer). Additionally, a distinction can be made between products whose 

customization and personalization are process-neutral (without changes to the planned 
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process) and those which are process-specific (requiring new or different operations). It 

also must be considered that in some cases products and modules, because of their 

personalization, do not possess a planned process (based on ElMaraghy 2009, pp. 38‑39). 

By extension, a similar distinction can be made in the structure of components and raw 

materials, having products for which the structure is already known and others whose 

structure can be configured. 

A comparison of the manufacturing paradigms required for the different types of 

strategies was performed by Mourtzis et al. (2014, p. 4) and can be seen in Figure 2-2. 

There is no one-to-one correspondence between paradigms and stockpiling strategies, 

since this is highly dependent on the way an enterprise decides to manage its production 

system.  

 

 

Figure 2-2: Characterization of production paradigms (based on Mourtzis et al. 2014, p. 4) 
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Mass production is heavily influenced by its standardization efforts in order to reduce 

costs when producing in large volumes. As a result, it possesses a low flexibility and a low 

complexity of the products offered, what at same time allows for a stable demand (given 

the low product variety offered, addressing a mass market). Lean manufacturing 

represents “an integrated socio-technical system whose main objective is to eliminate 

waste by concurrently reducing or minimizing supplier, customer, and internal variability”. 

Chronologically, it is the next step after mass production, allowing it to deal with the 

increasing product complexity while improving the flexibility of the manufacturing systems 

(Shah et al. 2007, p. 791; Mourtzis et al. 2014, pp. 3‑4). 

Craft production, the first manufacturing paradigm introduced by artisans, is still 

relevant. It can be used, for example, when developing new technologies or serving 

market niches. It allows manufacturing very complex products with a very flexible 

manufacturing system (which makes them inefficient and costly). The demand is stable 

thanks to the very low volume produced (Mourtzis et al. 2014, pp. 3‑4).   

Personalized Production – or, as stated before, Mass Personalization – is located in a 

particularly challenging octant of the illustration, as it mostly deals with high product 

complexity, with unknown demand (the term unpredictable is avoided, as its implications 

are too strong), and requires a highly flexible production system. Mass customization is 

a step below Personalized Production in all three dimensions given the lower degree of 

personalization of the products offered (as explained in section 2.1.1). 

The challenge of Mass Personalization can be described using the concept of complexity 

as developed by Bauernhansl et al. (2014b, pp. 1‑4) for production environments. 

Complexity is defined as having four dimensions: variety (the number of elements), 

heterogeneity (how different the elements are and the number of such differences), 

dynamic (how fast the conditions of the environment change), and opacity (the 

understanding of elements, situations, and their relations; as well as their visibility). 

The correspondence with Mass Personalization can then be stated as follows: 

 variety with high production volumes 

 heterogeneity with elevated personalization of products 
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 dynamic with high exposure to changes in customer requirements, as well as in 

manufacturing and sourcing conditions 

 opacity with unknown demand, constitution, and production characteristics of the 

products 

Bauernhansl et al. (2014b, pp. 1‑4) also proposes that enterprises should deal with 

complexity by managing it (instead of just avoiding it), as it will be a requirement for them 

to remain competitive. For a successful management of complexity internal complexity 

(e.g. products and processes) must correspond with external complexity (originated in the 

environment). This is based on the law of requisite variety, also known as Ashby’s law, 

which states that only “variety can destroy variety” (Ashby 2015, pp. 206‑218). 

Some of the ways to manage such complexity are part of the objective of this work. 

To sum up, the following points are relevant for characterizing Mass Personalization and 

deriving requirements to a solution: 

 the free definition of product features 

 small to size one production lots 

 a high demand (quantity) similar to mass produced products 

 an unknown demand of final products with regard to their configuration and quantity 

(as well as of the corresponding raw and semi-finished goods) 

 similar prices and delivery times as with mass produced products 

2.2 Key Figures of Production Logistics  

This section will deal with defining the concept of production logistics. This, together with 

the description of the related elements and key figures, will be the basis to understanding 

the functions of PPC software and the effects of Mass Personalization. 
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2.2.1 Production Logistics 

Within this work, the focus will be on the production management view of 

personalization – which, of course, is strongly dependent on the other two. In this 

context, production logistics is the main concept chosen to encompass the administration 

and evaluation of the manufacturing system.  

In English-speaking countries, the concept of production logistics is mixed up with that of 

logistics management. The latter is defined as “that part of Supply Chain Management 

that plans, implements, and controls the efficient, effective forward and reverse flow and 

storage of goods, services, and related information between the point of origin and the 

point of consumption in order to meet customer requirements” Mentzer et al. (2008, 

p. 34). 

In Germany the definition of the several elements of production and logistics is more 

detailed. Such is the case with the term production logistics (Produktionslogistik). This 

reads as follows: “Productions logistics characterizes the phase between procurement 

logistics and distribution logistics. Part of production logistics are the planning, control, 

and execution of the transport and storage of raw materials, excipients, supplies, 

purchased parts, spare parts, semi-finished and finished products; as well as the associated 

supporting activities within the production system of a company” (Krieger 2018). Given 

the similarities in the descriptions of the concepts and since several elements to be 

presented from this point onward originate from the German view, this is the definition 

that will be used in this work. 

The definitions of production logistics also imply, through the control of the material flow, 

the management of production activities. For example, in order to dispose of a semi-

finished product at a specific time, it is necessary to plan all the associated orders, 

resources, and materials accordingly.  
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2.2.2 Key Figures 

As expressed before, delivery times, their reliability, and the price are of outmost 

importance in Mass Personalization (and in all production strategies) as they are the 

interface to the customer (Gläßner et al. 1991, pp. 60‑64). Production logistics can help 

to improve these features (assuming that the manufacturing technology is adequate).  

This is addressed by Nyhuis et al. (2009, p. 2) who defines the fundamental goal of 

production logistics as “the pursuance of greater delivery capability and reliability with 

the lowest possible logistic and production costs. Here, the logistic factor of delivery 

capability expresses the degree to which it is possible for a company considering the 

production situation, to commit to the customers preferred delivery date. Delivery 

reliability on the other hand depicts the extent to which the promised dates for the placed 

orders can be met”. 

From this fundamental goal and the key performance indicators for production 

firms – delivery capability, delivery reliability, price, logistic process capability, efficiency, 

and logistic process reliability (Gläßner et al. 1991, pp. 60‑64) – the operational objectives 

of production logistics can be derived (Table 2-1). 

The so defined logistic objectives – schedule adherence, throughput time, output rate, 

and inventory – are contradictory (Nyhuis et al. 2009, p. 9). This conflict is the reason why 

no optimization is possible, as the proposed solutions to the problems are based on 

compromises and prioritization of one or several objectives (H.-H. Wiendahl 2012, p. 53). 

For example, the schedule adherence can be improved at the expense of increasing 

inventories (and the associated costs). 

The “costs” objective can be considered, on a logistic level, as directly dependent on the 

other objectives. 

When categorized according to the main interest, the desired values of the logistic 

objectives are (H.-P. Wiendahl 1997, p. 136): 

 operational goals: high output rate and low inventory 

 market goals: high schedule adherence and low throughput time 
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Table 2-1: Logistic objectives for the production reference processes (Nyhuis et al. 2009, p. 10) 

  Production reference processes 

 
 

Production and  

testing 
Transport 

Storage and  

supply 

L
o

g
is

ti
c 

o
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je
ct

iv
e

s 

Schedule  

adherence 

High  

schedule reliability 

High  

schedule reliability 

Low  

delivery delay 

Throughput 

time 

Short  

throughput time 

Short transport  

throughput time 

Short  

storage time 

Output rate 
High  

utilization 

High  

utilization 
- 

Inventory 
Low 

work in process 

Low 

work in process 

Low 

stock 

Costs Low costs per unit 
Low costs per 

transport operation 

Low 

storage costs 

 

The “costs” objective belongs to both categories (viewed by the market as price), being 

in both case the desired value “low”. 

To achieve the specified objectives, production logistics make use of three so-called 

disposition objects (H.-H. Wiendahl 2012, p. 65). These are: 

 articles (products, materials) 

 resources (machines, workers, etc.) 

 orders 

Orders play a central role, as they contain and summarize all information necessary to 

control the production: the materials involved (with the corresponding quantities), the 

resources required, the processes to be followed, the corresponding scheduling data, and 

all additional parameters. It is worth mentioning that, in this context, the term orders 

refers to production orders and their subtypes (manufacturing, assembly). When referring 

to other order types (such as sales or purchase), it will be explicitly mentioned. 

Order management is the name given to the “set of tasks and areas necessary to plan 

and optimize the order flow in the production” (Westkämper et al. 2006, p. 179). It is the 
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central authority responsible for the availability of the required goods, being its main task 

the assignment of articles, processes, and resources to orders; with regards of time, 

quantity, and place (H.-H. Wiendahl 2012, p. 63).  

Additionally to the disposition objects, H.-H. Wiendahl (2012, p. 65) proposes the division 

of processes (initially) in three phases based on the three main processes of the Supply 

Chain Operations Reference (SCOR) model: source, make, and deliver (SCOR 12.0). To 

simplify, he proposed a joint consideration of make and source (an “external” view of 

production) under “disposition”. 

Based on these two dimensions (disposition objects and process stages) and the logistic 

objectives, H.-H. Wiendahl (2012, p. 108) proposes a series of key figures to measure the 

performance of an order management system (and the associated production logistics). 

These can be found in Table 2-2. 

 

Table 2-2: Logistic key figures (H.-H. Wiendahl 2012, p. 108) 

  Disposition object 

  Order Resource Article 
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Absolute values 
• Delivery time 
• Delivery lot size 
• Delivery deviation 

Relative values 
• Delivery dependability 

Absolute values 
• Sales 

 
• Backlog 

Relative values 
• Backlog coverage 

Absolute values 
 
 

• Missing quantity 

Relative values 
• Delivery delay 
• Fill rate 

D
is

p
o

si
ti

o
n

 

Absolute values 
• Lead time 
• Purchase / manufacturing 

lot size 
• Schedule / quantity 

deviation 

Relative values 
• Flow rate 
• Schedule / quantity reliability 

Absolute values 
• Output 
• Work in process 
 
 
 

Relative values 
• Delivery dependability 
• Work-in-process coverage 

Absolute values 
• Time a product spends in store 
• Inventory 
 
 
 

Relative values 
• Inventory turnover 
• Inventory coverage 

 

In order to influence these key figures, H.-H. Wiendahl (2012, p. 108) mentions four use 

cases (the first three being directly relevant for the regular operation of a logistic system). 

These are: 
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 Reference variables: the specified values to be achieved. They manifest as target (for 

long periods) and set (for short periods) values, as well as the corresponding process 

and planning parameters. 

 Correcting variables: the variables that can be directly influenced through operational 

decisions. 

 Regulating variables: the variables that are monitored and compared to the reference 

variables during the ongoing operation and that are influenced through the correcting 

variables. It is necessary to differentiate between actual (related to present) and 

planned (related to the future) values. 

 Improvement variables: appear during transformation projects and manifest as target 

und actual values. 

To sum up, the following points are relevant for characterizing Mass Personalization and 

deriving requirements to a solution: 

 The logistic objectives and the related key figures are the main way to control the 

performance of manufacturing systems under the different strategies (including Mass 

Personalization). 

 Productions logistics, responsible for fulfilling the logistic objectives, require functions 

for continuous management and optimization in order to do so. 

2.2.3 The Funnel Model 

The Funnel Model, developed by Leibniz Universität Hannover, allows for the modeling 

of logistic objectives and the description of production processes (Lödding 2008, p. 50; 

Nyhuis et al. 2009, p. 17).  

The following cycle elements of an operation can be identified (Nyhuis et al. 2009, 

pp. 17‑23): 

 Work content: a key parameter for the Funnel Model. It is a measure of the planned 

time for an operation on a work station. 
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 Throughput time: in the case of one operation (as it can be seen in Figure 2-3), it is 

the time span an order requires from the completion of the previous operation – or 

from the order’s point of input (at the start of an operation) – until the end of the 

observed operation’s process. In the case of an order, it is the time span between its 

point of input and the end of its last process. Throughput time and lead time are often 

used in the same sense, although the former refers to the internal vision of the 

manufacturer, while the latter is the customer view (time from purchase to delivery). 

 Inter-operation time: the time between the end of the previous operation and the 

start of setup of the observed operation’s process. It can be calculated through the 

addition of the post-process waiting time, the transport time, and the pre-process 

waiting time. This time is assigned to the observed operation. 

 

 

Figure 2-3: The Funnel Model (Nyhuis et al. 2009, p. 22) 
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 Operation time: the time between the start of setup and the end of the observed 

operation’s process. It can be calculated through the addition of the setup time and 

the processing time. It can be alternatively calculated by dividing the work content by 

the capacity of the work station (H.-P. Wiendahl 1997, p. 19). 

These concepts can also be considered at the superordinate levels to the operation (order 

or set of orders to produce an article). The values can be calculated based on the data 

available at the level, or derived from the respective elements of the sub-object (orders, 

operations). 

Often, the values of several elements are not known – for example, setup times are rarely 

recorded. Due to the additive nature of the elements, it is possible to distinguish three 

levels (from the lowest to the highest detail): 

1. Throughput time  

2. Inter-operation time and operation time 

3. Post-process waiting time, transport time, pre-process waiting time, setup time, and 

processing time 

One of the main uses of the Funnel Model is the recognition and analysis of deviations 

(between actual, set, and planned values). 

To sum up, the following points are relevant for characterizing Mass Personalization and 

deriving requirements to a solution: 

 the existence of a structure for describing production processes that can be used for 

management and optimization functions of production logistics 

 the possibility in this structure to work with different levels of detail 

2.3 Elements and Functions of Current PPC Software 

After explaining the meaning of production logistics and the related concepts, it is 

necessary to understand how the corresponding functions are implemented using 

software solutions. 
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From a behavioral point of view, PPC can be defined as “a cross-sectional function within 

the enterprise that deals with operational control of material and information flows. Its 

task is to allocate all required resources to sales orders in terms of quantity and time” 

(Schotten 1998, p. 262). Implemented as a software tool, PPC is “the EDP-supported 

organizational planning, control, and monitoring of production processes from offer 

processing up to dispatch” (Westkämper et al. 2006, p. 180). 

PPC software is responsible for implementing functionalities to perform the tasks of order 

management, as both share the same objectives (H.-H. Wiendahl 2002, p. 33; 

Westkämper et al. 2006, p. 180; H.-P. Wiendahl et al. 2020, pp. 246‑247). 

 

 

Figure 2-4: Functions of production planning and control  

(Hackstein 1989, pp. 3‑17; H.-H. Wiendahl 2002, p. 36, 2020, p. 234) 

 

In Figure 2-4 the areas and functions of PPC are shown. These are, based on H.-P. 

Wiendahl (1997, pp. 12‑14) and H.-H. Wiendahl (2020, p. 234): 
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 Production planning: responsible for planning ahead the manufacturing process for 

a certain period of time in the future. 

This area comprises the following functions: 

o Program planning: This long-term function determines (usually weekly or 

monthly) the primary requirements based on sales forecasts and existing customer 

orders, considering the existing capacity. The result consists of a list of saleable 

products by type and quantity for a planning horizon of months to years 

(depending on the branch). 

o Material requirements planning: The first middle-term function determines 

(usually on a daily basis) the requirements for bought-in and in-house 

manufactured parts in terms of type, quantity, and date, based on the bill of 

materials. Requirements for the same components on a (configurable) certain 

period are organized together into lots. 

The group of sub-functions responsible for carrying out the planning activity, 

usually abbreviated MRP, is described in Figure 2-5. The planning process is known 

as disposition. 
 

 

Figure 2-5: Interaction of material requirements planning functions  

(H.-P. Wiendahl et al. 2020, p. 295) 
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Inventories of raw materials, semi-finished parts, and finished products – as well 

as their foreseeable development over the course of time (reservations) – are 

taken into account. Furthermore, a set of material-related parameters (e.g. in-

house manufacturing time, lot size, etc.) are considered. 

The result is the generation of production and purchase orders for a planning 

horizon of days to months (depending on the branch). 

o Capacity requirements planning: The second middle-term function determines 

(usually on a daily basis) for each production order the start date based on the 

planned due date, the operation sequence in the corresponding routing, and 

other influencing factors (material availability, priorities, etc.). This is referred to as 

load planning. In subsequent capacity planning, the resulting loading of the 

resources (machines and workers involved) is checked. The capacity 

synchronization takes care of load balancing by means of postponements of 

production orders and capacity alignment. The final step is sequence planning, 

which fixes the executing sequence of the production orders (Lödding 2008, 

p. 90). A detailed picture of this planning function is shown in Figure 2-6.  
 

 

Figure 2-6: Interaction of scheduling and capacity planning functions  

(H.-P. Wiendahl et al. 2020, p. 325) 
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The resulting finite production plan (with precise planning of production orders in 

terms of time and resources) refers to a planning horizon of days to weeks 

(depending on the branch). 

 Production control: responsible for the realization of the plan while dealing with 

unavoidable changes regarding production order quantity and date as well as 

disturbances due to staff shortages and machine breakdowns. 

This area comprises the following functions: 

o Order initiation: This short-term function confirms and makes adjustments to 

the assignment of production orders to individual machines and work stations 

based on current conditions (e.g. short-term capacity and material availability).  

This results in the loading plan and schedule, which refers to a planning horizon 

of days to weeks (depending on the branch). 

o Order monitoring: This short-term function undertakes continuous supervision. 

The feedback obtained not only allows for adjusting the plans (H.-H. Wiendahl 

2002, p. 84) and creating key figures, it is also necessary to adjust the master data 

utilized for planning.   

Regarding data management, two types of data are to be considered (as shown in 

Figure 2-5 and Figure 2-6) (Benz et al. 2011, p. 59): 

 Master data remain unchanged over a long period of time. They contain information 

repeatedly required in an identical manner. Examples are material data, bills of 

material, routings, theoretical capacity, etc.  

 Transaction data originate from a process (business transaction). Orders, inventory, 

current capacity, and feedback data are examples of transaction data. They often 

utilize master data as a basis (e.g. production orders are created based on the 

operation sequence contained in a routing). 

This functionalities can be found in one IT solution or (more usually) distributed among 

several (ERP, MES, APS) working together (ANSI/ISA 95; VDI 5600 Blatt 1). 

To sum up, the following points are relevant for characterizing Mass Personalization and 

deriving requirements to a solution: 
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 the existence of planning and control functions to fulfil the management and 

optimization requirements of production logistics 

 the utilization of different levels of detail and time horizons in each function 

 the employment of master and transaction data as a basis for performing the PPC 

functions  

2.4 Requirements of Mass Personalization on a PPC 
Software Solution  

Kletti (2007, p. 22) suggests that every enterprise is a permanently disturbed system: 

“every turn of the machine and every call of the customer changes the conditions”. 

Disturbances are responsible for variations in the planned time flows and stocks, affecting 

the logistic objectives (Westkämper et al. 2000, p. 844) and causing the need to 

permanently update the planning scenario. 

Additionally to internal disturbances (machine breakdown, staff shortage, product quality, 

etc.), PPC systems also face external factors (e.g. unreliable suppliers) over which they do 

not have any control. 

This section will explain the challenges faced by PPC software and how their difficulty is 

further increased by Mass Personalization. Towards the end of the chapter, the emerging 

requirements on a PPC software solution are described. 

2.4.1 Main Aspects of PPC 

To understand the requirements of PPC software solutions and how they are addressed, 

a categorization of the functions based on their main content viewed from an analytical 

standpoint is proposed. Building upon the approach of H.-H. Wiendahl (2002), two 

constitutive aspects of PPC functions are considered: 

 forecasting aspect 
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 decision-making aspect 

Although both concepts are deeply intertwined with each other (decision-making always 

involve some sort of forecasting), the separation helps to understand the form that the 

corresponding functionalities should take. 

Both aspects are relevant in planning: forecasts are made to foresee future states 

(demand, material availability, real capacity, etc.) and subsequent decisions (products to 

be produced, allocation of resources, etc.) are embodied as resulting plans. 

The consideration of both aspects within the control area is of special interest to this work. 

Control functions can be viewed as working on a control loop: data are gathered from 

the work environment and decisions are made (e.g. Is it necessary to change the current 

plan? Are the variables satisfying? etc.) based on an analysis to understand the current 

situation and the prediction of future states (forecasting). These decisions may eventually 

trigger new planning activities. 

H.-H. Wiendahl proposed in Westkämper et al. (2000, pp. 847‑851) to apply Deming’s 

PDCA (plan, do, check, act) approach to constitute the order management cycle (Figure 

2-7). 

 

 

Figure 2-7: Allocation of aspects in order management cycle  

(based on H.-H. Wiendahl in Westkämper et al. 2000, p. 849) 



58 2.4 Requirements of Mass Personalization on a PPC Software Solution 

 

 

As shown in Figure 2-7, forecast and decide are not the only phases present within the 

cycle. Some considerations are therefore necessary: 

 Allocate is responsible for assigning resources based on foreseeable requirements and 

usage (thus addressing both aspects). 

 The learn phase is similar as both, the forecasting and the decision aspect, require 

learning. 

 Evaluate comprehends decision-making based on the analysis of the current situation 

and predictions of future states (thus addressing both aspects). 

 The setting of goals is performed as a result of the decisions made and serves as an 

input for the creation of forecasts. 

Forecasting and decision-making both require the collection of data (feedback) in order 

to act based on reality and as input for the learning phase. However, they do not act 

operatively during this phase and for this reason they are left blank. It is similar with the 

do phase, which represents execution based on the results of forecasting and decision-

making aspects. 

Although the cycle possesses well-defined steps such rigid structure could also be 

problematic. Analysis, forecasts, and decisions based on the current situation and available 

data are continuously required. Furthermore, learning should assist as many functions as 

possible and can be seen as a permanently running process. Such vision responds to a 

modern notion of software solutions (with objects and parallel processes instead of 

structured procedures) and is highly influenced by the requirements of Mass 

Personalization regarding flexibility. 

To sum up, it is relevant for characterizing Mass Personalization and deriving requirements 

to a solution to consider the existence of forecasting and decision-making aspects in PPC 

software, as well as the requirements of PPC functions emerging from said aspects and 

how these requirements can be addressed. 
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2.4.2 Limits of Current Approaches 

The functionalities responsible for implementing the two aspects in PPC systems are based 

on algorithms and models. Originally deterministic algorithms – in which the output 

depends only on the input (Alpaydin 2016, p. 32) – were extended to consider stochastic 

elements by adding statistics-based components (e.g. mean values, regression, 

exponential smoothing, etc.) (Günther et al. 2016; Tempelmeier 2016; Colangelo et al. 

2018, p. 193), thus turning into randomized algorithms (Motwani et al. 2007, pp. x‑xi). 

These are, however, still subject to limitations. 

Extending the ideas of H.-H. Wiendahl (2002, p. 100), the following application of 

algorithms and models can be considered in order management activities:  

 forecast 

 optimization 

 supporting analysis 

While the first one clearly belongs to the forecasting aspect, optimization is, at the bottom 

line, a decision-making process. Supporting analyses are necessary for both, the 

forecasting and the decision-making aspect. 

In PPC functionalities dealing with optimization problems, the usage of heuristic 

algorithms is common – Zhang (2013) provides an example for scheduling. Originating in 

operations research (OR), heuristic methods use experience or judgement to solve 

problems (although they do not guarantee an optimum) (Aickelin et al. 2011, p. 251). 

Typical applications for the mentioned algorithms and models are: 

 Throughput time determination can be affected by a many factors, both random 

and caused by PPC decisions (e.g. false prioritization of orders). This makes it an 

aleatory variable (Tempelmeier 2016, p. 317). As seen in the funnel model, throughput 

time can be determined alone or based on its constitutive elements (each one with its 

own sources of uncertainty). One of the reasons for the importance of this value is its 

application in the estimation of delivery time. 
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 Capacity determination is one of the more difficult estimations. Capacities are not 

only affected by a wide range of factors; the further away planning is from the time 

of production, the more unpredictable the capacity becomes (H.-P. Wiendahl 1997, 

p. 13). This time-based variance is one of the main reasons for the existence of 

different planning levels. In this way, a rough estimation of the capacity (usually based 

on standard values) is used during load planning, while increasingly accurate 

considerations of the actual capacity are used during scheduling and the creation of 

the finite production plan (Lödding 2008, pp. 84‑86). 

 Material availability check requires the consideration of several uncertainties: 

regarding demand, quantity of material to be effectively received (which can differ 

from the one in the purchase order), and replenishment lead time (for production and 

purchase orders) (Günther et al. 2016, p. 240). The values associated to these 

uncertainties need to be properly determined. 

 Lot size determination influences different entrepreneurial objectives. It concerns 

the calculation of lot sizes for both, production and purchase orders. The objective is 

to minimize lot-size-related costs, namely storage, production, and setup costs; while 

keeping production and storage levels within the prescribed lower and upper bounds 

(Lödding 2008, p. 88; Coniglio et al. 2018, p. 764). 

 The determination of production logistics-related costs is mostly directly 

dependent on the other calculated values (e.g. the higher the stocks, the higher the 

inventory costs). Relevant is, however, the estimation of externally influenced factors 

such as, among others, material costs, financial effects of delays, energy prices, etc. 

Methods of cost calculation are utilized for price determination, which in turn affects 

the production strategy (e.g. prioritization of orders). 

 Load planning and sequence planning make use of all of the above-mentioned 

variables, either as standard or as estimated values (depending on the required level 

of detail). They apply them to their optimization tasks, in which they also ponder the 

goals and objectives of each enterprise. Additional sources of uncertainty are related 

to changes in customer orders (specifications, quantity, dates) and urgent orders  

(H.-H. Wiendahl 2002, pp. 27‑30). 
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Additionally, PPC systems can profit from algorithms and models concerning:  

 Quality: internally (scrap and rework) and externally (in received goods) originated 

quality issues can affect PPC plans and their execution.  

 Maintenance: in its three forms – corrective, preventive, and predictive – it affects the 

PPC plans and their execution through planned and unplanned breakdowns. 

Quality and maintenance depend on a large number of factors. This leads to the creation 

and utilization of complex algorithms and models. 

The clear separation of the mentioned values and their determination is merely for the 

purpose of understanding them. In reality, all of them are deeply intertwined. Either as a 

simple dependence (e.g. throughput time and capacity), as a hierarchy (elements of 

throughput time in funnel model), or as chained steps (material availability check and 

capacity calculation before sequencing). 

Many values are not estimated each time they are required. Instead, the determination is 

made on a regular basis (with different frequencies). It is, for example, the case of 

throughput time and capacity, which are stored in the material and the work station 

master data, respectively. Although even standardized production environments have to 

deal with the inaccuracies of this approach, the time and effort (computing resources) 

involved in carrying out these calculations justify its application. 

Algorithms and models dealing with forecasting problems face a basic issue: every 

forecast is essentially false. What matters is to which degree they are false (Günther et al. 

2016, p. 219). 

Furthermore, model-based approaches suffer from inaccuracies when faced with complex 

reality due to the abstraction (reduction and simplification) in their construction. 

Moreover, they have difficulties taking into account nonlinear relations between 

inventory, utilization, and performance (Westkämper et al. 2000, pp. 847‑865). 

The utilization of previously determined values does nothing else but increasing the level 

of these inaccuracies. In order to deal with them, PPC systems use buffers. Although they 

lower the effect of stochastic factors, they also mean increasing time, money and space 
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requirements. Enterprises are therefore forced to find a balance between the risks they 

are willing to take and how many resource they can dedicate to using buffers. 

In addition to the negative effects of buffers, their positive effects are also limited. 

Westkämper et al. (2000, p. 845) refers to the fact that often the buffers are no longer 

available anymore as soon as the process begins. 

Such inaccuracies in planning are usually handled incorrectly during the execution in the 

corresponding control activities. The so-called vicious manufacturing cycle originates 

when trying to correct problems (delays) on particular orders while ignoring the behavior 

of and the effects on the whole system (Mather et al. 1977, pp. 27‑51; Westkämper et 

al. 2000, pp. 844‑845; H.-H. Wiendahl 2012, p. 403). 

Mass Personalization, as stated before, contributes to increasing the complexity of such 

already complex problems. Furthermore, the demand for short delivery times and low 

prices intensifies the pressure (in a production system already stressed by the required 

flexibility) (Piller 2008, p. 141). This also reduces the possibility to use buffers (e.g. in 

throughput time, stocks, etc.) as they would increase times and/or costs to an 

unaffordable extent.  

In order for internal complexity to match the external one, two actions are required. On 

the one side, it is necessary to construct on-demand manufacturing systems. These are 

characterized by flexibility and changeability (ElMaraghy et al. 2009, pp. 3‑24; Hu 2013, 

p. 6).  

On the other side, order management systems need to be able to keep up with this 

development. H.-H. Wiendahl (2009, pp. 197‑212) describes the necessity for PPC 

systems to be able to adapt to the speed of change. He also identifies the effects that 

such complex market conditions can have on PPC systems, calling them turbulences (H.-

H. Wiendahl 2007, pp. 443‑446). He labels the causes for these turbulences as germs and 

divides them into five categories: variations (heterogeneous requirements within the same 

period), fluctuations (heterogeneous requirements within different periods), plan 

adaptations (because of frequently changing circumstances), deviations (unexpected 
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events after order release), and inconsistent tolerances (between sourcing, production, 

and delivery). These are further explained in Figure 2-8. 

 

 

Figure 2-8: Morphology of turbulence germs in production planning and control  

(H.-H. Wiendahl 2007, p. 444) 

 

In Mass Personalization, master data either become rapidly invalid (e.g. capacity) or are 

unavailable (e.g. material data, routings, bills of material, etc.). This affects not only the 

forecasting but also the decision aspect: without experience, it is difficult to assess the 

effects of decisions. 

All of these factors require a more frequent application of algorithms and models to assist 

the forecasting and decision-making processes. These, in turn, need to be able to deal 

with the emerging internal (in response to the external) complexity: the production of an 

unknown number of product varieties with equally unknown effects on the source, make, 

and deliver phases. 

New IT tools and components are necessary for PPC systems to deal with these arising 

requirements and the existing challenges. However, they face another issue: although IT 

systems play an increasingly important role in enterprises, they also require effort and 

expenses (in many cases considerable). Furthermore, many companies already use IT 

solutions for order management and related tasks. Some even have many, as the 
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functionalities are usually distributed among several IT solutions. Therefore, enterprises 

will try to increase the efficiency of their IT landscape by reducing the associated expenses 

and increasing the utilization of existing systems (Dürr 2013, p. 5). Additionally, the work 

in turbulent and evolving markets means that enterprises are required to constantly adapt 

their IT solutions (H.-H. Wiendahl 2009, pp. 197‑198), with the expected effect on the 

desired IT efficiency. Ideally, IT tools and components should be able to flexibly adapt to 

changes and, when necessary, complement existing solutions. 

To sum up, the following points are relevant for characterizing Mass Personalization and 

deriving requirements to a solution: 

 PPC functions are implemented through interdepending algorithms and models, 

whose already existing limitations are further put under stress by the requirements of 

Mass Personalization. 

 PPC functions can work with different levels of accuracy (e.g. through estimations) 

and consider different factors (directly and indirectly influencing them), depending on 

their context and expected efficacy. 

 PPC functions must face turbulences from the production environment (affecting the 

disposition and deliver processes), which are further increased by Mass 

Personalization. 

 With Mass Personalization, normally little to no master data or experience is available 

while executing the PPC functions. 

 Flexible and changeable manufacturing systems are necessary to deal with the 

requirements of Mass Personalization, influencing the need for adequate IT tools. 

 Any approach should take into account aspects of IT efficiency and the 

complementation of existing solutions. 

2.4.3 The Issue of Data Quality 

Missing and false data affect the accuracy of planning and control processes negatively 

and, by extension, the forecasting and decision-making aspects (Westkämper et al. 2000, 
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p. 844; Günther et al. 2016, p. 240; Reuter et al. 2016, pp. 545‑546; Schuh et al. 2017, 

pp. 425‑426). This is worsened by the application of planning with a strong deterministic 

character and by the presence of complex control loops with a short expected reaction 

time (Kletti 2007, p. 22). H.-H. Wiendahl et al. (2005, pp. 642‑646) identifies two 

stumbling blocks directly related to data quality: errors in PPC parameters and insufficient 

quality of feedback data. 

In spite of their importance, many PPC systems in enterprises suffer from the low quality 

of their transaction and master data (Reuter et al. 2016, p. 546). Taking into account that, 

in many cases, master data can be derived from transaction data, the problem of data 

collection becomes even more prominent.  

Günther et al. (2019, p. 585) identifies – based on the concepts of Goos et al. (2002, 

pp. 30‑32),  Wang et al. (1996, pp. 31‑32), Wand et al. (1996, pp. 93‑94), Price et al. 

(2016, pp. 241‑242), and Batini et al. (2009, pp. 6‑9) – five main data quality dimensions 

relevant for PPC systems: 

 Accuracy: Are the data correct and reliable? 

 Completeness: Are the data that represent important states of the reality available? 

 Consistency: Do the data present the same format? Are they compatible with 

previous data? 

 Timeliness: Does the age of the data and/or the time of their availability correspond 

with the intended usage? 

 Relevance: Are the data relevant for the intended usage?  

Despite the growing digitalization of production environments, much of the feedback 

activities is still performed manually (Günther et al. 2019, p. 589). Furthermore, the 

utilization of automatized data collection systems is no guarantee for good data quality 

(Reuter et al. 2017, p. 489). 

PPC systems also face the problem of usually having to function in a heterogeneous 

software landscape. Lack of integration between the solutions and devices available is 

another cause of low data quality (Rudolf et al. 2015, pp. 13‑16). 
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Given the already addressed increase in the need for algorithms and models due to Mass 

Personalization, it is understandable that the demand for data will increase accordingly. 

IT solutions should take the problem of poor data quality into account and be able to deal 

with it in the best possible manner. 

To sum up, the following points are relevant for characterizing Mass Personalization and 

deriving requirements to a solution: 

 Under Mass Personalization the demand for data is prone to increase. 

 The quality of master and transaction data is frequently not adequate for the intended 

use. 

2.4.4 Summary 

Production management systems already have to deal with uncertainties to achieve the 

set objectives in the best possible way. Mass Personalization and its corresponding 

turbulences only contribute to making their tasks more difficult. Although there are 

similarities with other manufacturing strategies, the production of a large number of 

products with freely configurable features forces production management systems to 

forecast and make decisions with little to none experience. This pressure is transferred to 

the assisting software solutions and their functionalities. They do not only have to provide 

responses under situations far more complex than before and be able to continuously 

adapt; they have to do it in the most efficient way possible.  

Table 2-3 summarizes the characteristics of Mass Personalization and the derived 

requirements for a production management software that is able to deal with them. For 

this, the basic conditions and elements presented in this chapter are taken into account. 

The characteristics of Mass Personalization (with the corresponding section in parenthesis) 

are: 

 Personalization (free definition) of final products and their components (2.1.1, 2.1.2) 

 Unknown demand of final products (in kind and quantity) (2.1.2) 
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 Expected similar price as in mass produced products (2.1.2) 

 Expected similar delivery time as in mass produced products (2.1.2) 

 High demand (quantity) similar to mass production (2.1.2) 

 Increasingly turbulent production environment (2.4.2) 

 Lot size one production (2.1.2) 

 Unknown demand of raw and semi-finished goods (in kind and quantity) (2.1.2) 

 Limited possession of master data (2.4.2) 

 Algorithms and models to assist forecasting and decision-making are more demanded 

and must be more capable (reduced buffers) (2.4.2) 

 Increase in demand for data (2.4.3) 

 Lack of experience in producing the specified product or component (2.4.2) 

 Utilization of flexible and changeable manufacturing systems, with corresponding 

management systems (2.4.2) 

Consequently, an adequate production management software is required to 

 be able to deal with an unknown high demand (quantity) of unique products; 

 be able to deal with a high amount of freely configurable product features; 

 be able to deal with changing and unknown disposition and deliver situations; 

 be able to consider direct and indirect influencing factors and effects; 

 be able to deal with low quality, non-existing, and not acquirable data; 

 be able to deal with related and interdepending algorithms and models, providing 

different levels of detail; 

 be able to provide an adequate response in the required time; 

 be able to adapt to and extend existing production management systems; and 

 enhance the IT efficiency. 

Instead of PPC or order management, the slightly more general term production 

management is used. This is because the relevant functions are usually distributed among 

several software solutions.  
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Existing enterprises moving into Mass Personalization will most probably employ some 

sort of software solution. The integration in and expansion of an existing IT landscape 

(that in many cases can be considerably complex) must therefore been taken into account. 

All possible solutions will require data. Additionally to low data quality, two issues gain 

importance:  

 non-existing data corresponding to the production of unknown personalized products 

and components (e.g. bill of material, processing time, etc.) 

 non-acquirable data corresponding to the production of single products or 

components, which affects the learning effect negatively 

In spite of the importance of data, new methods for data collection are not a part of this 

work. 
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Table 2-3: Requirements on a production management software 

 Phase Requirements on a production management software 
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Characteristics of  

Mass Personalization 

Personalization (free 

definition) of final products 

and their components 

 X X X X X X X X   

Unknown demand of final 

products (in kind and 

quantity) 

X X X X X X X X X   

Expected similar price as in 

mass produced products 
 X X X X X X X X   

Expected similar delivery time 

as in mass produced products 
 X X X X X X X X   

High demand (quantity) 

similar to mass production 
 X X X X X X X X   

Increasingly turbulent 

production environment 
X X X X X X X X X   

Lot size one production X X X X X X X X X   

Unknown demand of raw and 

semi-finished goods (in kind 

and quantity) 

X  X X X X X X X   

Limited possession of master 

data 
X X X X X X X X X   

Algorithms and models to 

assist forecasting and 

decision-making are more 

demanded and must be more 

capable (reduced buffers) 

X X X X X X X X X X X 

Increase in demand for data X X     X X X X  

Lack of experience in 

producing the specified 

product or component 

X X   X X X X X X  

Utilization of flexible and 

changeable manufacturing 

systems, with corresponding 

management systems 

X X X X X X X X X X X 



 

 



 

 

3 Data Analytics to Assist Production 
Management Systems 

This chapter introduces the concepts of data analytics approaches relevant for their 

application in assisting production logistics tasks. The intention is not only to explain their 

advantages, but to point out how they can be utilized und what their limitations are. 

Therefore, the purpose of this work is not to describe in detail any technique, but to 

consider the general aspects of data analytics. 

The objective of this chapter is to identify the features of a possible data analytics-based 

solution that addresses the requirements derived from Mass Personalization to a 

production management software.   

3.1 Basic Concepts of Data Analytics 

The last few years have seen a great enthusiasm regarding the utilization of tools for Big 

Data, machine learning, etc. At the same time, this has brought about a confusion 

regarding the meaning and application of the approaches available. In this regard, 

manufacturing has been no exception. 

This subchapter will introduce the basic concepts necessary for the usage of data analytics 

(relevant within the scope of this work). 

3.1.1 Data Analytics-based Approaches 

The first important concept to be specified is that of data mining. Hand et al. (2001, 

p. 1) defines it as “the analysis of (often large) observational data sets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and 
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useful to the data owner”. Witten et al. (2017, p. 6) adds that this process is “automatic 

or (more usually) semiautomatic”. 

A related concept is that of statistics. This kind of applied science makes use of the 

probability theory (its mathematical foundation) to analyze and model data (Bruce et al. 

2017, p. 1). Two types of statistics can be distinguished: descriptive, “summarizing the 

data in a convenient and concise way”; or inferential, “allowing one to make some 

statement about the population from which the data were drawn or about likely future 

data values”, based on samples (Hand et al. 2001, p. 166; Cleff 2015, p. 4). 

Within data analytics, data mining focuses on discovering new information from data; an 

adventurous process, as there are no expectations given on the result (ISO/IEC 13249-

6:2006, p. 6). It therefore differs from statistics, which focuses on collecting data to 

answer specific questions. There are two other big differences: one is the size of the data, 

as data mining is adequate for large-size data sets (problematic for classical statistical 

approaches). The other is the nature of the data analyzed, as data mining deals with 

heterogeneous data usually generated for other purposes (secondary analysis), while the 

data processed in statistics have normally been created for that specific usage (primary 

analysis) (Hand et al. 2001, p. 2).  

At the same time, statistical methods and ideas are fundamental for data mining and it 

extends them in order to apply them to situations with large and complex data (Hand et 

al. 2001, pp. 18‑19). Both concepts make use of two elements: the mathematical model 

(which constitute the base for both approaches) and the computational algorithm 

(essential for data mining and almost a requirement for modern application of statistics) 

(Hand 1999, p. XXVIII).  

Data mining comprises four types of techniques (ISO/IEC 13249-6:2006, p. 11): 

 Association rules discovery concentrates on finding rules of the type “if a 

transaction type contains item X and item Y, then the transaction type also contains 

item Z in N% of all transactions of this type”. 

 Clustering (segmentation) finds rows with similar characteristics and organizes them 

into well-defined clusters. 
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 Classification comprises a set of rows with a set of fields and a special field called 

class label, and tries to compute a model that is able to predict the class label using 

the remaining fields. 

 Regression is similar to classification. They differ in the type value to be predicted, 

with regression concentrating on continuous values. 

Data mining is based on the use of algorithms – in contrast to statistics, where the “model 

is king” (Hand 1999, p. 17). An algorithm is defined in this context as “a well-defined 

procedure that takes data as input and produces output in the form of models or 

patterns” and is constituted by five components (Hand et al. 2001, pp. 141‑142): 

 the data mining task (e.g. visualization, regression, etc.) 

 the structure (functional form) of the model or pattern to be fitted to the data 

 the score function used to evaluate the quality of the fitting of the model or pattern 

to the data (e.g. squared error) 

 the search or optimization method used to optimize the score function (by 

determining the structure and values to maximize or minimize it, depending on the 

context) 

 the data management function used for storing, indexing, and retrieving the data 

Hand et al. (2001, pp. 165‑166) defines a model as “an abstract representation of a real-

world process” and “a high-level, global description of a data set” that may be use for 

descriptive or inferential purposes. 

He defines a pattern, on the other hand, as “a local feature of the data” that is usually 

of interest to find “departures from the general run of the data” (e.g. high correlations 

between variables, a set of items with exceptionally high values, etc.). The reasons for 

using it may also be descriptive or inferential. 

Based on these definitions and the work of Kraker (Kraker et al. (2013) and Kraker (2013), 

referencing a lecture by Markić), patterns can be understood as the specification of 

models in order to apply them to gain knowledge. Witten et al. (2017, p. 6) is in the same 

line of argumentation by defining the pattern discovery as the objective of data mining.  
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This work will mainly refer to models, taking into account the existence of different 

degrees of specification. Patterns will be addressed as the element used to interpret the 

results of the analytical process. 

Three phases are distinguished when employing data mining techniques (ISO/IEC 13249-

6:2006, pp. 11‑13): 

 In the training phase, the model is computed based on the data and the 

corresponding settings. 

 In the test phase, the quality of the computed model (its prediction capability) is 

checked using a test data set. 

 In the application phase, the computed model is utilized for its intended purpose, 

applying it to the corresponding data set. 

Not all techniques require all three phases – for example, it does not make sense testing 

the created clusters. Figure 3-1 sums up the inputs and outputs of each phase, how they 

are related, and which technique each phase requires. 

 

 

Figure 3-1: Phases for data mining techniques 
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The phases take place at different moments, with different running times and resource 

requirements. 

Of special interest is the concept of Machine Learning. Samuel (1959, p. 210) refers to 

machine learning when affirming that “programming computers to learn from experience 

should eventually eliminate the need for […] detailed programming effort”. Alpaydin 

(2016, pp. 14‑25) refers to it as a way of learning by extracting rules from data. The 

learning process is based on a learning algorithm that adjusts the parameters of a model 

in order to optimize a defined performance criterion.  

Three main types of machine learning approaches can be distinguished: 

 In supervised learning, input and output are clear. The aim is “to learn a mapping 

from the input to the output” and a “supervisor provides the correct values” (Alpaydin 

2016, p. 111). A typical example is classification. 

 In unsupervised learning “there is no predefined output and hence no […] 

supervisor”. Its aim is to “find the regularities in the input” (Alpaydin 2016, p. 111), 

or in other words, a structure (Alpaydin 2016, p. 117). A typical example is clustering. 

 Semisupervised learning deals with situations between the two previous 

approaches. While the input for supervised learning consists of labeled data (the 

content is described and interpreted) and unsupervised learning usually deals with 

unlabeled data (without a described content), the goal of semisupervised learning is 

to perform classification (usually only possible with labeled data) by combining 

unlabeled and labeled data (Witten et al. 2017, p. 468). 

Sutton et al. (2018, pp. 1‑9) considers an additional type: reinforcement learning. It 

consists of an iterative process constituted by a “learning agent interacting with its 

environment to achieve a goal”. It is composed of the learning agent, the policy for 

controlling its behavior, the environment (with its corresponding state), the reward signal 

indicating the effect on the environment of the actions of the learning agent, a value 

function to predict future rewards, and, optionally, a model of the environment. The 

methods try out different alternatives, exploiting old actions and exploring new ones, in 

order to maximize the reward signal. While approaches of this type present more 
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characteristics than the ones mentioned, this work will concentrate mainly on their 

iterative and interactive character. 

One can also differentiate the methods depending on when the learning takes place: 

eager methods produce a “generalization as soon as the data has been seen” (Witten et 

al. 2017, p. 85), while lazy methods differ the real learning process beyond training until 

a new instance (case) must be classified (Mitchell 1997, p. 244). The latter are referred to 

as instance-based learning. With such methods, learning during the training phase 

merely comprises storing (memorizing) the instances found (with some kind of 

representation). When a new instance is encountered, the stored instances are accessed 

and compared to the new one in order to classify it (Mitchell 1997, pp. 230‑231; Witten 

et al. 2017, pp. 84‑85). 

Figure 3-2 provides an overview over the mentioned machine learning approaches. 

 

 

Figure 3-2: Overview over machine learning approaches  

(based on Jones 2017; Sutton et al. 2018, p. 54; and Witten et al. 2017, pp. 468‑472) 
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Although machine learning and data mining are considered separately, mainly because of 

the philosophy of the former based on a self-learning approach, they are deeply 

intertwined. This is up to the point where established data mining techniques originate in 

machine learning (e.g. classification, clustering, etc.), making the boundaries between 

them unclear (Fayyad et al. 1996, p. 43; Hand et al. 2001, p. 4; Witten et al. 2017, 

pp. 44‑46). Therefore, this work will mainly refer to data mining when considering aspects 

that affect both approaches. 

Approaches that make use of algorithms to generate models based on the data (data 

mining, machine learning) can be referred to as data-driven, whereas classically those 

based on the direct application of models using stochastic assumptions (statistics) are 

known as model-based (Breiman 2001, p. 199; Freitag et al. 2015, p. 24). The latter 

concept can be extended through the consideration of transfer learning (see section 

3.2.2). 

As can be seen, many concepts come into play when dealing with deriving information 

from data. To address all of them, the term data analytics (DA) can be used. Runkler 

(2016, p. 2) defines it as “the application of computer systems to the analysis of large 

data sets for the support of decisions” while referring especially to its interdisciplinary 

character, as it encompasses concepts from other disciplines (such as statistics, machine 

learning, artificial intelligences, etc.). Ridge (2015, p. 4) provides a more practical 

approach, referring to data analytics as “any activity that involves applying an analytical 

process to data to derive insights from data”. Data analytics can then be seen as a general 

term that comprises all analytical activities.  

Analytics can be organized into four types (Rollings et al. 2017, p. 8; Gartner 2019): 

 Descriptive analytics deals with the question “What happened?” (or “What is 

happening?”). 

 Diagnostic analytics tries to answer the question “Why something happened?” (or 

“Why is it happening?”) . 

 Predictive analytics addresses the question “What will happen?”  
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 Prescriptive analytics concentrates on the question “What should be done to make 

something happen?” 

Although, at first glance, it would seem as if the types were sorted in order of ascending 

development degree, the techniques utilized in each type depend on the complexity of 

the situation at hand (Colangelo et al. 2016b, p. 277). 

It is common to combine several analytical approaches to answer questions or solve 

problems. This is referred to as advanced analytics (Bose 2009, pp. 155‑156). 

Prescriptive analytics constitutes a good example. It normally comprises elements of 

operations research: optimization, simulation, and evaluation methods; all of which are 

combined with predictive analytics in order to assist during decision-making and 

optimization (Liberatore et al. 2011, p. 582; Evans et al. 2012, p. 5; Schniederjans 2015, 

p. 120; Soltanpoor et al. 2016, p. 247; Bertsimas et al. 2020, pp. 1025‑1043). 

This work will mainly refer to data analytics to describe the intended solution. The main 

focus will be on the areas of data mining and machine learning, since they provide 

innovative approaches necessary for the issues presented in chapter 2 (as to be explained 

later). The associated area of statistics will also be taken into account as it supports and 

complements both methods and all four types of data analytics.  

Accordingly, this work will use the term data analytics-based when referring indistinctly 

to data-driven and model-based approaches. 

Approaches of operations research (among others, simulation), which also play a role 

(primarily in prescriptive analytics), will be considered as black boxes, as their specific 

requirements are not within the scope of this work. Such methods are also based on 

mathematical modelling and probability, and are usually implemented using 

computational algorithms (Taha 2017, pp. 34‑38). 
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3.1.2 Complementing Concepts 

Additionally to the reviewed terms it is necessary to consider some commonly used 

concepts. One of great importance in the entrepreneurial context is Business 

Intelligence (BI). This form of data analytics refers to the employment of various tools 

and applications to create key figures that are utilized to assist diverse administrative tasks 

(Wierse et al. 2017, p. 35). Assisting decision-making processes, performance measuring 

(e.g. OEE), or serving as a basis for continuous improvement processes (CIP) are some 

application examples (Dedić et al. 2016, p. 225; Wierse et al. 2017, p. 35). 

One of the concepts often creating a big confusion is Big Data. There are numerous 

definitions, many of which tend to focus on particular aspects relevant for the work area 

of the corresponding author (Dedić et al. 2017, p. 116). One basic and commonly 

accepted definition is that by Gartner (2019): “Big data is high-volume, high-velocity and 

high-variety information assets that demand cost-effective, innovative forms of 

information processing for enhanced insight and decision-making”.  

According to this definition, Big Data can be viewed as problem (complex data processing) 

and as opportunity (possibly valuable information assets). It is based on the so-called 3Vs 

(Furht et al. 2016, p. 3; Oussous et al. 2018, p. 433): 

 Volume refers to the size of the data and to the related structures (records, 

transactions, tables, etc.). 

 Velocity refers to how rapidly the data is generated and transferred (batch, near time, 

real time, and streams), and the rate at which it should be analyzed. 

 Variety refers to the multiplicity of formats in which the data is generated because of 

the diversity of distributed sources. 

Over time, additional Vs have been added. These are: veracity, which refers to how reliable 

the data are); and value, which refers to the usability of the data (Gandomi et al. 2015, 

p. 139; Kacfah Emani et al. 2015, p. 72; Oussous et al. 2018, p. 433).  

With regard to variety, three types of data should be considered (Gandomi et al. 2015, 

p. 138):  
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 Structured data refers mainly to tabular data found in spreadsheets or relational 

databases. Its processing can be automatized without considerable effort. 

 Unstructured data refers to data that do not possess a structure that allows for a 

simple automation of its analysis. For example, texts, video, audio, etc. 

 Semi-structured data refers to the midpoint between the two types; when the data 

possess a structure that is not standardized.  

 

 

Figure 3-3: Overview over concepts of data analytics (based on Dedić et al. 2017, p. 115) 

 

The term Big Data Analytics (BDA) is used to describe analytics tools specifically 

developed to deal with the requirements corresponding to Big Data, namely the analysis 

of large volumes of disparate, structured, and unstructured data (Chan 2013, p. 8; Belle 

et al. 2015). However, they are still a form of data analytics (George et al. 2014, 

pp. 323‑324; Dedić et al. 2017, p. 117). 

Figure 3-3 provides an overview over these concepts. 
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3.1.3 Knowledge Discovery in Databases 

 

Figure 3-4: Knowledge Discovery in Databases (Fayyad et al. 1996, p. 41) 

 

Far from being standalone tasks, the derivation of insights from data must be understood 

and performed as a process in order to succeed. According to Fayyad et al. (1996, 

pp. 39‑41), the term Knowledge Discovery in Database (KDD) “refers to the overall 

process of discovering useful knowledge from data”, being knowledge “purely user 

oriented and domain specific and […] determined by whatever functions and thresholds 

the user chooses”. This knowledge should be valid, novel, and potentially useful. The 

process is illustrated in Figure 3-4. 

Every step identified by Fayyad et al. (1996, pp. 41‑43) – based on the work by Brachman 

et al. (1996, pp. 37‑58) – has a specific task. The first task (not depicted in the illustration) 

is understanding the application domain and identifying the objective of the KDD process 

from the customers’ point of view (e.g. the enterprise). The task of each step is described 

as follows: 
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 Selection is the step in which, based on the understanding of the data and the 

objectives, a determination of the relevant data is performed (Ester et al. 2000, p. 2). 

The result is the target data. 

 Preprocessing consists of two main parts. The integration takes care of bringing 

together data from various sources, usually with different formats and structures. Data 

cleaning tries to solve the data-quality-related problems, like the ones introduced in 

section 2.4.4. The result of this step is preprocessed data (Ester et al. 2000, p. 3). 

 Transformation is the step in which the data is transformed to an appropriate and 

usable representation (Ester et al. 2000, p. 3). Typical transformations are (Ester et al. 

2000, pp. 3‑4; Witten et al. 2017, pp. 288‑315):  

o attribute selection (or feature selection), in which the most relevant attributes for 

the subsequent analysis are chosen, either as an assessment (filter method) or 

directly using the intended analysis (wrapper method), and performed manually 

or automatically; 

o discretizing, in order to obtain nominal attributes; 

o projection, in which general mathematical transformations are performed, and 

o sampling, in which an adequate sample out of a large volume of data is extracted. 

The result of this step is transformed data. 

 Data Mining is the step in which an analysis per se is performed, applying algorithms 

and models. Four parts can be recognized in this step: (1) selection of the method(s) 

to be used (which must match the goal of the KDD process) and, if necessary, the 

creation of the corresponding algorithm/model; (2) model fitting, in which the 

parameters are adjusted; (3) evaluation, in which the model is evaluated (tested); and 

(4) model refinement, referring to the iterative refinement of the model (Brachman et 

al. 1996, p. 44; Fayyad et al. 1996, p. 42) . The result of this step are the patterns. 

 Interpretation is the step in which the gained patterns and values are evaluated and 

the corresponding actions are triggered: “using the knowledge directly, incorporating 

the knowledge into another system for further action, or simply documenting it and 

reporting it to interested parties” (Fayyad et al. 1996, p. 42). 
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The process is iterative within the steps and between them, providing for every step the 

possibility to go back to any of the previous ones (Fayyad et al. 1996, p. 42). Going back 

and forward in the process is not at all unusual, as often several cycles are necessary in 

order to achieve the desired result (e.g. selection of new data sources, features, data 

mining methods, etc.). 

The evaluation in the data mining step is key for the process. It allows analyzing the 

performance of a chosen method (algorithm/model). This can trigger different actions: 

changing the parameters, choosing another data set for training and testing, or changing 

the method (as it enables the comparison between different ones). Statistical techniques 

are used to perform the evaluation (Witten et al. 2017, pp. 161‑202). 

Essential is the correct selection and utilization of training and test data sets. This not only 

requires the correct generation of samples. Advanced techniques allow for a dynamic 

employment of the data sets. An example is repeated holdout, which consists of iterative 

training and testing interchanging the data sets in order to reduce bias in the estimation 

of the error rate. The data sets can be partitioned using a technique known as cross-

validation. With sufficient data, it is even possible to split the training data sets into smaller 

ones in order to test different parameters (Witten et al. 2017, pp. 167‑172).    

Sampling for the data sets is a relatively simple procedure that makes use of methods of 

mathematics and probability in order to improve the standard random sample. For 

example, stratification allows for equal representation of classes in training and test data 

sets (Witten et al. 2017, 167, 315, 368-369). 

When evaluating predictions, often the corresponding costs of making a wrong 

assumption can be considered. Mathematical methods (confusion matrix, cost curves) can 

be used to analyze the costs of the different cases (false positives and false negatives) 

(Wierse et al. 2017, pp. 62‑63; Witten et al. 2017, pp. 179‑182). Accordingly, it is possible 

to consider the cost factors during the learning process in order to improve it (Witten et 

al. 2017, p. 183). 
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Tsai et al. (2015, p. 3) proposes a simplification and generalization of the KDD process. 

He does this by organizing the steps into three phases: input, data analysis, and output 

(Figure 3-5). 

 

 

Figure 3-5: Simplification of the KDD process (Tsai et al. 2015, p. 3) 

 

Tsai et al. (2015, p. 4) argues that other techniques besides data mining are part of the 

KDD process (e.g. statistics). Brachman et al. (1996, p. 44) also speaks of data analysis to 

describe the information-gaining phase. In line with this thought and based on the 

definitions in section 3.1.1 this work will use the comprehensive term data analytics 

when referring to the tasks of data analysis. 

Data analytics approaches do not only belong to the data analysis phase, they are also 

applicable during the input phase. For example, it is usual to apply data mining techniques 

to assist during the preprocessing and transformation steps (Witten et al. 2017, 

pp. 304‑331). 

A KDD process can require the application of several types of data analytics 

(algorithms/models). Either in different steps (input, data analysis) or within the same step 

(e.g. creation of clusters which are later used in classification).  

Also applicable during the input phase is explorative data analysis (EDA). Seltman 

(2018, p. 61) refers to it as “any method of looking at data that does not include formal 

statistical modelling and inference”. It concentrates on trying to understand the data, 
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detecting problems, determining relationships among the variables, and making 

preliminary assumptions. It can be considered as an approach making a joint application 

of descriptive and diagnostic analytics (Freitag et al. 2015, p. 24).  

It is of importance to facilitate the interpretation of the information (patterns) generated. 

Whenever the human factor is involved, visualization plays an important role in providing 

cognitive support (Tory et al. 2004, p. 73). It assists not only in the specific output phase 

(which can have different degrees of automation) but also in the other steps – for 

example, during the EDA or the evaluation of methods. The term Visual Analytics 

describes technologies based predominantly on visual representations and the facilitation 

of user interaction (Wong et al. 2004, p. 20). This is also one of the cornerstones of BI 

(Obeidat et al. 2015, pp. 52‑53). 

There are other processes comparable to KDD such as SEMMA (Sample, Explore, Modify, 

Model, Assess) and CRISP-DM (CRoss-Industry Standard Process for Data Mining). 

Although the steps are described differently to accentuate the focus of the method (e.g. 

CRIPS-DM emphasizes the understanding), they can be considered as implementations of 

KDD (Azevedo et al. 2008, pp. 184‑185). 

To sum up, the following points are relevant for the determination of features of a possible 

data analytics-based solution: 

 A great number of commonly used terms (e.g. data mining, Business Intelligence) can 

be grouped under the concept of data analytics and the shared objective of knowledge 

discovery. 

 Data analytics can be implemented using a variety of approaches (of both types, data-

driven and model-based). 

 Data-driven approaches allow for the dynamic generation of models based on 

algorithms in order to create solutions that fit an specific context. 

 Data analytics approaches are to be considered as processes, either regarding their 

own execution form (e.g. instance-based learning), the general data mining phases, 

or the knowledge discovery process; and the corresponding steps can be deferred in 

time. 
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3.2 Data Analytics in Practice 

Due to the complexity of some approaches, the development of data analytics techniques 

requires a great amount of work on the theoretical side. However, in order to be usable, 

these need to be implemented in a practical context. Relevant elements and characteristics 

of this process are explained in this section.  

3.2.1 Challenges 

Despite their many advantages, data analytics approaches also face challenges when 

applied to real world problems. 

Occam’s razor refers to the conflict between accuracy and simplicity (interpretability) 

(Breiman 2001, p. 206). In this context, accuracy refers to reducing both, the bias error, 

introduced by being unable of “capturing the underlying model”; and the variance error, 

“due to the sensitivity to noise in the data”. The complexity of a model depends on the 

“model type, number of inputs and number of parameters” (Lever et al. 2016, p. 703). 

When several methods are possible, the one fitting the data best is selected (Witten et al. 

2017, p. 34). Accurate models can rapidly become complex and unintelligible (especially 

true in the case of machine learning). This will decrease the bias but also increase the 

variance (overfitting). On the other hand, models that are too simple will have low 

variance and high bias (underfitting). 

The main issue with data analytics projects is their costs. The discovery-based, iterative 

nature of the process involving many resources and (expensive) specialists requires 

considerable amounts of effort (time and money) (Bose 2009, p. 164; PAC 2014, p. 25; 

Gröger 2018, p. 9). The following cost elements can be considered (based on Marbán et 

al. 2008, pp. 135‑137 and Wierse et al. 2017, pp. 356‑383): 

 infrastructure: acquisition and installation of software and hardware 
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 implementation: execution of iterative phases of data input, analysis, and output 

(including realization in the software tools); integration (data interfaces); 

commissioning; and other related tasks (e.g. staff training) 

 maintenance: correction of errors and update of algorithms/models, general 

maintenance of software tools and hardware 

It is important to distinguish between investments (one-time accruing costs), such as the 

purchase of hardware and software, or the development of algorithms/models; and 

operation costs (continuously accruing), such as support or licenses. The utility of the 

investments requires time in order to be evaluated (Dürr 2013, p. 98). If several analytical 

solutions are required at the same time, the investment and some costs (e.g. data input) 

can be better utilized (Wierse et al. 2017, p. 401). 

The phase that by far requires the largest part of the budget is that of data input (often 

referred to as data preparation). 80% of the effort goes into this phase (Stonebraker et 

al. 2018, p. 8). 

Data analytics techniques (and specially data mining) are usually associated with high 

computational costs (Al-Jarrah et al. 2015, p. 87). They are then performed 

asynchronously (in batch mode) or synchronously (in online mode) (Sayad 2011, p. 12). In 

both cases, the running time must match the requirements (Han et al. 2012, p. 31).  

Concepts like real time data mining, online learning and incremental learning usually 

describe – though not meaning exactly the same – situations where the analytical solution 

needs to learn from rapidly changing data streams, unlike approaches where learning is 

done in batches (Sayad 2011, pp. 12‑14; Witten et al. 2017, pp. 509‑512). Constant 

learning is achieved in a number of ways – for example, by updating parameters, creating 

mini batches, etc. – in order to adapt to new instances. This type of approach becomes 

relevant for rapidly changing and time critical scenarios, such as robotic and autonomous 

driving (Gepperth et al. 2016, pp. 357‑361). As such scenarios are not common in 

production logistics (though they can appear in manufacturing, e.g. in machine or process 

monitoring), the solution proposed in this work will not address the requirements of such 

approaches directly. 
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Limitations regarding execution time and computing resources will be further discussed 

in chapter 4. 

To sum up, the following points are relevant for the determination of features of a possible 

data analytics-based solution: 

 When selecting and developing an analytical approach it is necessary to achieve a 

balance between accuracy and simplicity. 

 Approaches to either reduce the investment and operation costs or increase their 

resulting utility are necessary. 

 Data analytics can be performed asynchronously (in batch mode) or synchronously (in 

online mode). 

3.2.2 Domain Knowledge 

The utilization of domain knowledge is important in all phases of the KDD process, as 

it not only enables (e.g. through understanding of the process) but also accelerates them 

(e.g. through restriction of alternatives in data cleaning) (Brachman et al. 1996, p. 47; 

Fayyad 1996, p. 50; Szczuka et al. 2014, p. 343; Witten et al. 2017, pp. 512‑515).  

For Büchner et al. (1999, pp. 448‑449) – based on Anand et al. (1998) – domain 

knowledge can be utilized for “making patterns more visible, for constraining the search 

space, for finding more accurate knowledge, and for filtering out uninteresting patterns”. 

He distinguishes between objective domain knowledge, consisting mostly of  

domain-related facts with little context-dependency (e.g. about a branch) and subjective 

domain knowledge, with a high degree of context-dependency (e.g. about a specific 

enterprise in a branch or the existing data structures). 

On the other hand, the lack of domain knowledge or the knowledge differences of the 

involved stakeholders can affect projects negatively, increasing the necessary effort. 

Moreover, developing solutions every time anew leads to elevated costs and long-duration 
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projects. Reusing analytical solutions could solve this problem (Brodsky et al. 2015, 

pp. 1418‑1419; Gröger 2018, pp. 9‑10).  

In order to reutilize domain knowledge in data analytics, techniques of transfer learning 

can be applied. These function by “transferring knowledge learned in one or more source 

tasks and using it to improve learning in a related target task” (Torrey et al. 2010, p. 242). 

This is done in order to improve the performance of the models, accelerate the learning 

process, and work with data that are either scarce or expensive to acquire (Pan et al. 2010, 

p. 1345; Torrey et al. 2010, p. 243). Pre-trained models – either created from scratch or 

acquired off-the-shelf – are applied as starting point in the target task (Shin et al. 2016, 

pp. 1285‑1286). These can contain different types of knowledge to transfer: full models, 

specific parameters, and relations between data (features). The pre-trained models are 

subsequently fine-tuned as necessary, a process varying from changing parameters to 

retraining the model (using the previous structure as a basis) (Pan et al. 2010, 

pp. 1347‑1352). In some cases, the pre-trained model is directly applied (Yosinski et al. 

2014, p. 3321). Sutton et al. (2005, pp. 748‑750) even proposes combining several 

separately trained models. Every model is a solution to a simple task, providing the 

combination of several models a solution to a more complex problem. This approach is 

also referred to as hierarchical transfer (Torrey et al. 2010, p. 247). 

As transfer learning relies on the utilization of models – that are fine-tuned as required, if 

at all – these approaches are also usually referred to as model-based (Aytar et al. 2011, 

p. 2253; Wang et al. 2019, pp. 367‑374). 

To sum up, the utilization of domain knowledge and transfer learning is relevant for the 

determination of features of a possible data analytics-based solution as it allows increasing 

the accuracy of analytical solutions as well as accelerating their development and reducing 

the associated efforts. 
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3.2.3 Smart Data 

As Fayyad et al. (1996, pp. 41‑42) affirms several times, the KDD is no standalone activity: 

it must be integrated within the processes, from which it receives data and which are 

passive of the improving actions resulting from the knowledge gained. Recently, the term 

smart data has been used to describe such approaches with the objective of a “data-

based design and continuous enhancement of intelligent processes” (Wierse et al. 2017, 

p. 33). As Wierse et al. (2017) refers no only to data-driven but also to model-based 

approaches when talking about smart data (though the first ones are predominant), this 

work will consider data-based as equal to data analytics-based in this case. 

The objective of creating intelligent processes refers to designing them in a way that 

makes them autonomous and context-aware. While the former is achieved through the 

utilization of data analytics, the latter requires interaction with the environment, which 

comprises (as input) historical data, current data, triggers, and (as output) the results of 

data analytics (Schilit et al. 1994, pp. 85‑89; Wierse et al. 2017, pp. 39‑45).  

Implicit in the concept of smart data is the idea of creating a continuous improvement 

process based on the data. The continuity not only refers to the cyclic character of the 

process (see section 2.4.1). It also considers the fact that the work environment is 

continuously changing and that data analytics-based processes should be able to 

permanently adapt to this changes (Christensen et al. 2010, pp. 15‑16). This continuous 

learning process will require to steadily control the performance of the models and, if 

necessary, generate new ones through retraining (even changing the algorithm, if 

required) (Bang et al. 2019, pp. 116‑117). 

Wierse et al. (2017, pp. 43‑44) mentions the utilization of case-based reasoning (CBR) as 

an example of continuous learning and context awareness. This can be considered as an 

implementation of instance-based learning in order to solve situations (cases) based on 

experience (Bichindaritz 2015, pp. 187‑188). Aamodt et al. (1994, pp. 45‑46) proposes 

four phases for the CBR cycle: 

1. Retrieve stored similar cases 
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2. Reuse the retrieved cases to solve the situation (case) at hand 

3. Revise if the application of the proposed solution was successful 

4. Retain based on the successful new experiences (new or modified cases) 

To sum up, the concept of smart data is relevant for the determination of features of a 

possible data analytics-based solution as it refers to creating intelligent and continuously 

improving processes through the integration with the existing ones and their 

environment.  

3.3 Assistance of Production Management Systems 

This section will explain how data analytics can be applied to assist production 

management software to address the requirements posed by Mass Personalization. It ends 

with a summary describing the resulting features of a possible data analytics-based 

solution. 

3.3.1 Application of Data Analytics in Production Management 

As explained in chapter 2, production management systems face numerous uncertainties. 

A situation that is worsened by the requirements of Mass Personalization, taking the 

capabilities of currently utilized algorithms and models to their limits. 

The utilization of techniques of data analytics can greatly assist production management 

software solutions (Colangelo et al. 2018, pp. 193‑194). Important aspects are: 

 The high demand of personalized products generates large volumes of heterogeneous 

data, where relations and causality may be difficult to extract. Dealing with such 

situations – processing large-size unclear data sets to gain insights – is the strong point 

of data analytics (especially of data-driven approaches). They allow generating 

accurate models from the data (albeit sacrificing interpretability). This accuracy is 

necessary to avoid the need of buffers. 
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 Their learning capabilities allow data analytics approaches to deal with uncertainties 

(e.g. future material demand) as well as with unknown situations (e.g. missing master 

data), being also able to adapt to changes (continuous learning). 

 The variety of data analytics techniques and methods allows to work with different 

levels of detail (according to the requirements and the data available) while delivering 

an adequate accuracy. Several data analytics approaches can be combined in order to 

manage complex problems and situations where various processing steps are 

necessary (e.g. data transformation).    

 Domain knowledge transfer allows “outsourcing” the learning process. This allows to 

apply models with good performance, working in situations with low data quality (e.g. 

when using a new machine), and accelerating the own learning process. 

The forecasting and decision-making aspects can profit from predictive and prescriptive 

analytics, respectively. 

Predictive analytics may be used to address uncertainties (e.g. demand) and estimate 

performance based on past data (Shao et al. 2014, p. 2195). A case with different levels 

of details (and of complexity in the prediction) is the estimation of throughput time. It 

may be predicted directly (Lingitz et al. 2018, pp. 1052‑1055) or by calculating the 

influencing factors – for example, the inter-operation time (Schuh et al. 2018, 

pp. 169‑173) or the capacity, by means of fault prediction (Ji et al. 2017, pp. 188‑193). 

Prescriptive analytics techniques are able to evaluate what consequences decisions will 

have on the production system (Shao et al. 2014, p. 2195), thus helping to avoid the 

vicious manufacturing cycle. The most notorious application of this kind of analytics is for 

optimization tasks, such as the ones taking place during planning (Heger et al. 2015, 

pp. 238‑244; Priore et al. 2015, pp. 54‑58; Kozjek et al. 2018, pp. 209‑214). The 

possibility to work with (and combine) various levels of detail allows for dealing with 

uncertainties in different planning horizons.  

Descriptive and diagnostic analytics also play an important role. The corresponding 

techniques can either assist the other analytics – for example, using clustering to support 

scheduling (Chien et al. 2005, p. 328; Tamura et al. 2015, pp. 891‑898), or each other 
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(Brodsky et al. 2015, p. 1419). Descriptive analytics techniques can be used for presenting 

data summarized in a way that allows understanding what is going on in the production 

systems (e.g. average throughput time pro product cluster) while diagnostic analytics 

techniques allow determining cause-effect relationships (e.g. factors that influence 

downtimes and delays) (Shao et al. 2014, pp. 2194‑2195).  

As pointed out before, many of the examples reviewed are combining several 

algorithms/models and techniques, either merged in one or as separate elements, in order 

to provide the most adequate solution to each situation. 

Furthermore, maximal utilization can be achieved through the pursue of smart data-based 

systems by means of building intelligent processes based on the integration of data 

analytics-based solutions. 

3.3.2 Example for Throughput Time Prediction 

A typical problem in production management is the prediction of throughput times when 

planning production orders. Additive manufacturing (also known as 3D printing) allows 

producing highly personalized individual products; however, the resulting throughput 

time for each product depends on a number of different factors, making an accurate 

prediction difficult. 

Data documenting previously manufactured products would possess the following 

attributes: machine (machine ID), main material used (material ID), support material used 

(material ID), volume of main material (cm3), volume of support material (cm3), processing 

time (min), and setup time (min). The considered data table would be the result of merging 

data from several sources (productions orders and historical data from the 3D printer).   

For this example, the utilization of a common classification method known as support 

vector machines (SVM) is proposed. This supervised learning approach creates, based on 

the training example, a hyperplane or a set of hyperplanes in a high or infinite dimensional 

space which is used to separate the examples into categories (Cos Juez et al. 2010, 



94 3.3 Assistance of Production Management Systems 

 

 

p. 1179). This technique can also be adapted to be used for regression, being named in 

this case support vector regression (SVR) (Bishop 2006, pp. 339‑344). This regression 

capability would then allow predicting the throughput time in the considered example, 

an application already examined by several authors – e.g. Cos Juez et al. (2010, 

pp. 1177‑1184) and  Zhu et al. (2021, pp. 1‑16). The throughput time consists, in this 

case, of the addition of processing and setup time (which can be predicted individually), 

disregarding the inter-operation time. 

A characteristic of SVM is that they allow modelling nonlinear class boundaries (Witten et 

al. 2017, p. 252). This is done by utilizing kernel functions which map the data into a high 

dimensional feature space (Cos Juez et al. 2010, p. 1179). Several kernel functions are 

possible, this example will consider two: the polynomial kernel and the radial basis 

function (RBF) kernel. Depending on the kernel applied, the accuracy and performance 

can differ (Savas et al. 2019, pp. 1‑16; Nti et al. 2021, pp. 3404‑3411). Furthermore, such 

techniques are known to be sensitive to the parameters, requiring a careful selection of 

the corresponding values (Duan et al. 2003, pp. 41‑59; Zhu et al. 2021, p. 2). 

Several parameters are possible when using SVM (also depending on the programming 

environment utilized), worth mentioning are (Duan et al. 2003, p. 42; Bishop 2006, 

pp. 340‑341; scikit-learn developers 2022): 

 The regularization parameter C, which “determines the trade-off between minimizing 

the training error and minimizing model complexity”. 

 The degree of the polynomial kernel function. 

 The parameter gamma of the RBF kernel, which “defines how much influence a single 

training example has”. 

 The parameter epsilon, which influences the epsilon-tube related to the error function 

in SVR. 

Furthermore, the utilization of a preprocessing step is proposed in this example. The 

approach consists of utilizing clustering (in this case, the classical k-means technique) 

before performing the regression with SVR. This approach – already considered by other 

authors, for example Evgeniou et al. (2002, pp. 346‑354) – proposes using the weighted 
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examples resulting from the clustering process to enhance the performance of the 

subsequent SVM. 

Further data preparation steps, such as eliminating missing values, are not depicted in this 

example. This includes the possibly necessary conversion of nominal attributes in order to 

use the SVR technique. 

The resulting process is illustrated in Figure 3-6, with the corresponding data mining 

phases. After training the SVR model, this needs to be tested, which results in a score 

measuring its accuracy. If acceptable, the model can be applied to predicting throughput 

times based on the considered attributes. 

 

 

Figure 3-6: Data analytics example for predicting lead time 

 

Two important characteristics of this example need to be highlighted: 
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 The combination of analytical techniques (clustering and SVR) create an analytical 

process. 

 The performance of the SVR technique is highly dependent on the kernel and values 

of the parameters utilized. It is therefore necessary to provide a possibility to compare 

different configurations of the SVR technique in order to choose to most suitable one.   

3.3.3 Summary 

Innovative data analytics approaches offer the possibility to solve complex situations. 

Nevertheless, several aspects must be considered for their utilization: the different types 

of applicable analytics, their combination, the existence of a process for knowledge 

discovery with many iterations (between and within the steps), and the challenges during 

their applications. The objective is the creation of intelligent processes following the ideal 

of smart data.  

A production management software can benefit from the advantages of data analytics. 

For this, it must take into account their capabilities and requirements. The features that a 

possible data analytics-based solution should present are shown in Table 3-1. The rows 

represent the requirements on a software-based production management system derived 

in chapter 2. The columns summarize the features of data analytics reviewed in this 

chapter that are relevant no only to assist production management but also to fulfill their 

own requirements in order to construct effective data analytics solutions. An “X” in the 

table represents a feature being able to address a requirement. 

The considered features (with the corresponding section in parenthesis) are: 

 the possibility to utilize different data analytics techniques (3.1.1, 3.1.2) 

 the dynamic data-driven generation of specific and accurate analytical models (3.1.1) 

 the flexible construction of flows of analytical algorithms/models (3.1.1, 3.1.3) 

 the transfer of domain knowledge through pre-trained models (3.2.2) 

 the transfer of domain knowledge through pre-built flows (3.2.2) 
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 the ability to select the most adequate available solution, considering different levels 

of detail and response (3.2.1) 

 the ability to integrate with existing production management systems to enable data 

analytics, continuous learning, and create intelligent processes (3.2.3) 

 the possibility to use data analytics synchronously and asynchronously (3.2.1) 

The possibility to utilize different data analytics techniques refers to the usage of both, 

model-based and data-driven approaches, and of four data analytics types. The dynamic 

generation of models strives for the permanent adaptation to changes in the 

manufacturing environment. The aim is to materialize continuous learning. 

Important is the possibility to build flows of data analytics. This will allow for the 

combination of data analytics algorithms/models, the implementation of the steps of the 

KDD process, and the required iterations. As with individual models, it is possible to 

transfer the knowledge contained in pre-built flows. 

There must be a form of integration with the manufacturing environment. This will not 

only provide the necessary data. It will also allow for data analytics techniques that require 

interaction with the environment and for continuous learning processes. This also includes 

methods for the timely adaptation (triggering of new learning) of models – for example, 

through performance evaluations based on the consequences of the output generated in 

the real system. Furthermore, the integration must provide the means for the output to 

be utilized in the real system. The objective is, as stated before, the creation of intelligent 

processes. 

The analytical solutions employed must match the required detail and response level 

(reaction time) in the best possible way. The possibility to run data analytics synchronously 

(online mode) and asynchronously (batch mode) refers to the different moments of 

execution, resources needed, and running times in the lifecycles of data analytics. This 

allows the separate performance of the data mining phases (e.g. training and testing in 

batch mode, application in online mode), the separate execution of the KDD steps, and 

for eager and lazy learning. 
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The IT efficiency of the solution can be enhanced by the characteristics of data analytics: 

dynamic generation of models (instead of programming), knowledge transfer, selection 

of the most suitable solution, etc. Nevertheless, this requires an implementation manner 

that covers the necessary integration, flexibility, and KDD process view. If not provided, 

the costs of generating, adapting, and using data analytics may outweigh the gains.  
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Table 3-1: Features of a possible data analytics-based solution 

 Features of a possible data analytics-based solution 
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Requirements on a production 

management software  

(see section 2.4.4) 

Able to deal with an unknown 

high demand (quantity) of unique 

products 

X X X   X  X 

Able to deal with a high amount 

of freely configurable product 

features 

X X X   X  X 

Able to deal with changing and 

unknown disposition and deliver 

situations 

X X X   X X X 

Able to consider direct and 

indirect influencing factors and 

effects 

X X X   X X  

Able to deal with low quality,  

non-existing, and not acquirable 

data 

X X X X X X   

Able to deal with related and 

interdepending algorithms and 

models, providing different levels 

of detail 

X X X   X  X 

Able to provide an adequate 

response in the required time 
X     X X X 

Able to adapt to and extend  

existing  production management  

systems 

     X X X 

Enhances the IT efficiency X X X X X X X X 



 

 



 

 

4 Review of Relevant IT Architectures 

In the IT context, architecture can be defined as “the fundamental organization of a 

system embodied in its components, their relationships to each other, and to the 

environment, and the principles guiding its design and evolution” (IEEE 1471-2000, p. 3).  

This chapter will introduce the concepts and elements of architectures relevant for the 

utilization of data analytics and the design of the intended solution. 

In the first part, current architectural approaches for the utilization of data analytics are 

presented and explained.  

In the second part, the approaches for the creation of software solutions – including data 

analytics software – are covered. A special emphasis is put on the aspect of 

modularization and the new opportunities emerging from cloud-based technologies. 

The combination of elements from both areas will serve as the basis for creating a solution 

that allows the utilization of data analytics in production environments for Mass 

Personalization. 

4.1 Architectures for Data Analytics 

This section will deal with explaining current architectural approaches for the utilization 

of data analytics. 

4.1.1 Data Warehouse 

In order to assist during complex decision-making processes, decision support systems 

(DSS) were created. These are “interactive, computer-based systems intended to provide 

support to the decision makers engaged in solving various semi- to ill-structured problems 
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involving multiple attributes, objectives and goals” (Nemati et al. 2002, p. 144). Their task 

comprises the extraction of valuable information through data processing – performed 

using data analytics – for it to be used at the management level of enterprises. 

DSS face a fundamental problem: they normally rely on heterogeneous operational data 

distributed among different non-integrated systems (Inmon 2005, p. 13). For this 

purpose, data warehouses (DW) were created. They consist of infrastructures that 

enable the integration and utilization of the application data found in the operational 

environment by providing the means to extract, clean, summarize, and store them (serving 

at the same time as a supply of historical data) (Nemati et al. 2002, p. 144; Inmon 2005, 

pp. 1‑50). The term infrastructure refers to the hardware-intensive requirements to run 

this type of software solutions. The basic architecture of a data warehouse solution is 

depicted in Figure 4-1. 

 

 

Figure 4-1: Basic architecture of a data warehouse 

(Schnider et al. 2016, p. 6) 

 

The main architectural components are:  

 Data sources are the origin from where the operational data (distributed among 

several systems) is extracted. They are also referred to as operational level (Inmon 

2005, p. 16) 
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 The staging area is where the data from the different systems (data sources) are 

stored at first. The data are saved as they come, conserving their original structure 

(Schnider et al. 2016, p. 7). 

 The cleaning area is where the required transformations are made in order to 

integrate, clean, and prepare the data from different sources before loading them into 

the core of the data warehouse (Schnider et al. 2016, p. 7). Some authors consider 

the function of the cleaning area as within the staging area (Kimball 2009, p. 16). 

Others refer to this combined area where the data transformations take place as work 

area (Bauer et al. 2013, p. 55). 

 The core is the area where the integrated and prepared data are centrally stored. It 

serves as a source of combined and easy to find historical data (Schnider et al. 2016, 

p. 7). The combination of these three areas can be referred to as atomic level, 

combining integration with a certain level of detail (lower that the operational level) 

and summary (Inmon 2005, p. 16). 

 The data marts contain partial extracts specially prepared for the intended users of 

each mart. Each data mart is created to be used by a specific group (i.e. sales, 

controlling, etc.), containing only the relevant data in the required form (Schnider et 

al. 2016, p. 8). They are also referred to as departmental level, with a decreased 

level of detail, high summarization, and all pertinent measures for a rapid response 

(Inmon 2005, pp. 16‑18). 

 The analysis area utilizes the data from the marts. Though it is common to think of 

data warehouses as enablers for BI solutions, other types of data analytics can be 

employed (Inmon 2005, p. 239; Kimball et al. 2013, p. 23). They are also referred to 

as the individual level (ad hoc und temporary) (Inmon 2005, p. 16). 

 The metadata describes the available data from several points of view:  technical (data 

structures, format, etc.), functional/business (what the data is, where it comes from, 

their relationships, etc.), and process (logs of results of DW operations) (Kimball 2009, 

p. 116; Schnider et al. 2016, p. 8). It is therefore essential for the tasks of the data 

warehouse and the performance of the intended analysis (especially during 

exploration) (Inmon 2005, pp. 102‑103). 
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Kimball (2009, 121–130) considers the architecture of data warehouses as consisting of 

two types of components: data stores, depicting the “the temporary or permanent 

landing places for data”; and services, referring to the operative functions.   

The process (and set of functions) from the extraction of the operational data to the 

loading in the core of the data warehouse receives the name of ETL (extract, 

transformation, and load). As its name indicates, it consists of three steps: 

 The extraction, which consists of copying the source data into the work area. Several 

strategies are possible: (1) periodical extraction, depending on the periods of the type 

of data; (2) extraction on demand; (3) event-driven extraction (e.g. an established 

number of changes is reached); and (4) immediate extraction (because of changes) 

(Kimball 2009, pp. 425‑469; Bauer et al. 2013, p. 56). 

 The transformation tasks, which can  be divided into two categories (Bauer et al. 

2013, p. 57). Those for data migration (also known as data integration) consist of: 

adaptation of data types, conversion of codings, standardization of strings, 

standardization of dates, conversion of units of measure, and combination and 

separation of attribute values (Kimball 2009, pp. 439‑463). The others deal with the 

more complex area of data cleaning. 

 Load, which is “the physical structuring and loading of data into the […] target 

dimensional models” (Kimball et al. 2013, p. 20). This step is required for transferring 

data to the core and the data marts. It must cover both types of data for the intended 

analysis, the specific (e.g. aggregates) and the independent one (Bauer et al. 2013, 

p. 58). 

The data warehouse manager is responsible for the centralized administration of all 

components in the data warehouse, including the ETL process.  

A particularly relevant component type used by the manager are the monitors, which 

detect relevant changes in the data sources (Bauer et al. 2013, p. 43). These can use 

different strategies: (1) log-based, checking the log for changes; (2) trigger-based, 

associating a trigger to a particular change; (3) replication-based, replicating the changes 

in other tables; (4) timestamp-based, using timestamps to detect changes; and (5) 
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snapshot-based, comparing snapshots to detect changes (Vavouras et al. 1999, 

pp. 87‑89; Bauer et al. 2013, p. 54). 

The data warehouse manager also administrates the components responsible for assisting 

the analytical functionalities – for example, by providing the necessary data in the required 

form (via the ETL process) and storing results from analysis in the data marts (Bauer et al. 

2013, pp. 43‑45). 

The term OLAP (online analytical processing) denotes the utilization of special software 

techniques to enable fast, interactive, and diverse accesses to the data stored in the core 

and data marts (Gabriel et al. 2011, p. 52). They are based on the utilization of 

dimensional models to organize the way data are stored (Kimball et al. 2013, pp. 8‑9). 

They can use either relational databases (ROLAP), multidimensional databases 

(MOLAP) – where data are stored as OLAP cubes – or a hybrid combination of both 

(HOLAP) (Bauer et al. 2013, p. 241). 

The open character of the data warehouse architecture allows diverse forms of access to 

its integrated databases (Dittmar 2004, pp. 373‑374). 

4.1.2 Extended Requirements 

The increasing requirements on data analytics systems – described in chapter 3 under Big 

Data – cause for changes in the utilized architectures. 

Marz et al. (2015, pp. 7‑9) describes eight desired properties of Big Data systems: 

1. Robustness and fault tolerance allow systems to deal with the complexity of 

distributed systems and the emerging errors (usually human). 

2. Low latency reads and updates ensures that the applications are provided with 

current data as required. 

3. Ad hoc queries supports the knowledge discovery process by allowing mining a 

dataset arbitrarily. 
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4. Scalability is “the ability to maintain performance in the face of increasing data or 

load by adding resources to the system”. 

5. Generalization allows supporting and being utilized by a wide variety of applications. 

6. Extensibility “allow[s] functionality to be added with a minimal development cost”. 

7. Minimal maintenance allows the reduction of running costs of a system – for 

example, by using components with as little implementation complexity as possible. 

8. Debuggability allows finding the causes of errors. 

Several properties (in particular the first three) refer to the way data are utilized. This is 

addressed in the Big Data context with the Lambda Architecture, which consists of three 

layers, each one building upon the functionality provided by the layers beneath it (Marz 

et al. 2015, pp. 14‑20). These are, from bottom to top: 

1. The batch layer allows preprocessing queries on all the data available at a specific 

moment in time. It must be able to ”store an immutable, constantly growing master 

dataset, and compute arbitrary functions on that dataset”. The precomputed queries 

are stored as batch views. 

2. The serving layer “is a specialized distributed database that loads in a batch view 

and makes it possible to do random reads on it”. It automatically replaces the old 

batch views with the new ones when they become available. 

3. The speed layer produces views based on recent data, thus allowing the 

representation of the data that could not be taken into account during the batch 

precomputation (as they were generated after it started). These real-time views are 

constantly updated with the new data available (incremental approach). When the 

data are stored in the batch layer the corresponding results are deleted from the real-

time views.  

The first two layers cover almost all of the desired properties. The speed layer allows for 

low latency updates (a property missing in the other two). 

In recent years, a new architecture named Kappa has emerged in response to the 

complexity of the Lambda Architecture. This proposes providing the same services as the 

Lambda Architecture but simplifying it by considering only data streams. In this view, 
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batch processing “is simply streaming through historic data”. The trade-off is, however, 

the reduction in speed and efficiency (increased latency) when compared to a true batch 

processing engine (Lin 2017, pp. 62‑64). 

Data analytics must also be able to use scalability, causing the utilization of parallel, 

distributed, and incremental mining algorithms (Han et al. 2012, p. 31). Similar to 

synchronous and asynchronous execution, this also requires a corresponding enabling 

architecture (current approaches will be covered in chapter 5). 

To sum up, architectural approaches for data analytics are necessary in order to integrate 

and utilize heterogeneous data distributed among different systems. Data warehouses 

fulfil this objective by using different areas in order to read, cleanse, merge, prepare, and 

store the data – thus covering the steps of the ETL process – to finally allow for their 

analysis. The summarization and structuring of data in marts enable a rapid and simple 

access to the data. This, however, requires determining first which data is necessary and 

using adequate monitors to keep it up to date. Big Data increases the requirements on 

this approach for aspects such as robustness, scalability, and latency. The corresponding 

solutions (e.g. the Lambda Architecture) are based on layers that allow for previously 

preprocessing data (batch and serving layer) while also providing real-time views (speed 

layer). 

4.2 Software Architectures 

This section will describe the relevant architectural approaches used for building software 

solutions. Furthermore, the aspects of modularization and its subsequent influence on the 

software architecture are explained. 

A summary comparing the different approaches is presented in section 4.3. 
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4.2.1 Monolithic Approach 

Several definitions can be considered for the monolithic architecture depending on the 

point of view. Wolff (2018, p. 3) refers to a monolith as a “large software system that 

can only be deployed as a whole at once” having to “pass as a whole through all phases 

of the continuous delivery pipeline such as deployment, testing, acceptance and release”. 

Dragoni et al. (2017, p. 196) defines it as “a software application whose modules cannot 

be executed independently”. Dowalil (2018, p. 102) considers a monolith as a synonym 

for a “non-distributed system of uniform technology”. 

Some monoliths are called Big Ball of Mud which refers to a system with “multiple tangled 

models without explicit boundaries” (Vernon 2016, p. 17). Although many monolithic 

systems fulfil this definition, this does not necessarily have to be the case (Brown 2014). 

The term can apply to both monolithic and distributed systems, depending on how they 

are developed (Dowalil 2018, p. 102). 

Despite their many critics, monolithic systems possess a series of advantages originating 

in their simplicity. Some are (Dowalil 2018, p. 102): 

 Debugging and troubleshooting are relatively easy. 

 Batches, reports, and similar (predefined) complex procedures can be executed 

without major problems. 

 Interfaces can be easily changed with no impact on other parts of the system (these 

are easy to detect in the code). 

 The diversity of the technologies used is known and limited. 

 Problems with communication over the network can be avoided. 

Despite being usable in several fields, many modern applications discover problems in the 

monolithic architecture. Some of these are: 

 Large-size monoliths become too complex, making them confusing, difficult to 

maintain, and tedious to debug (Daya 2015, p. 6; Dragoni et al. 2017, p. 196). 
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 “Monoliths […] suffer from the dependency hell, in which adding or updating libraries 

results in inconsistent systems that do not compile/run or, worse, misbehave” (Dragoni 

et al. 2017, p. 196). 

 The scalability of monoliths is limited (Dragoni et al. 2017, p. 196). Using a monolithic 

system “requires […] to scale the entire application even though bottlenecks are 

localized” (Daya 2015, p. 6). 

 “Monoliths […] represent a technology lock-in for developers, which are bound to use 

the same language and frameworks of the original application” (Dragoni et al. 2017, 

p. 196). 

Monolithic systems sacrifice flexibility in order to retain a simple construction (as long as 

size allows) and be robust; this last characteristic is however limited, as these systems are 

hard to maintain. 

4.2.2 Modularization 

The concept of software modularization was introduced by Parnas (1972b) – based 

partially on the ideas of Gauthier et al. (1970) – and refers to the way a system is 

decomposed into modules. Each module represents an independent part of the system 

responsible for the execution of a specific task (or related group of tasks) with well-defined 

interfaces. 

A related concept is that of modularity. According to Booch (2007, p. 56), it is “the 

property of a system that has been decomposed into a set of cohesive and loosely coupled 

modules”. This definition introduces two important concepts: 

 Coupling is defined by Stevens et al. (1974, p. 117) as “the measure of the strength 

of association established by a connection from one module to another. Strong 

coupling complicates a system since a module is harder to understand, change, or 

correct by itself if it is highly interrelated with other modules”. Strong coupling leads 

to the utilization of obscure and complex interfaces. On the other hand, loosely 

coupling means “minimizing the dependencies among modules” (Booch 2007, p. 56). 
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 Cohesion “measures the degree of connectivity among the elements of a single 

module” (Booch 2007, p. 113). Yourdon et al. (1979, p. 106) expresses that “clearly, 

cohesion and coupling are interrelated. The greater the cohesion of individual modules 

in the system, the lower the coupling between modules will be”. 

In order to be usable, modularity needs to be complemented by the two following 

concepts: 

 Abstraction, which “denotes the essential characteristics of an object that distinguish 

it from all other kinds of objects and thus provide crisply defined conceptual 

boundaries, relative to the perspective of the viewer” (Booch 2007, p. 44). 

 Encapsulation, which refers to the implementation of measures to achieve 

information hiding. The intention of the information hiding principle, introduced by 

Parnas (1972a, p. 342), is that all characteristics that are likely to change should remain 

hidden in order to facilitate internal modifications. 

All three concepts – modularity, abstraction, and encapsulation – are required. Modularity 

covers the design decisions, trying to create systems with cohesive and loosely coupled 

modules. Abstraction refers to the observable behavior of each module or, in other words, 

to their interfaces. Encapsulation allows the implementation of the internal elements of 

each module and, at the same time, of the explicit barrier of the modules (thus 

implementing the abstraction) (Booch 2007, p. 51; Clyde et al. 2017, p. 109; Goll 2018, 

pp. 5‑6). 

Based on the covered concepts (and, by extension, on the works of authors such as 

Parnas, Gauthier, and Ponto) Goll (2018, pp. 8‑9) recognizes the following characteristics 

in the modules integrating a system: 

 In its design, each module follows the single responsibility principle – stating that “a 

module should be responsible to one, and only one actor” (Martin 2018, 

p. 62) – which guides that it should contain the elements that change together 

(cohesion).  

 Each module can be used and tested without knowing its internal structure 

(abstraction). 
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 Each module can, thanks to its independence from other modules (loose coupling, 

abstraction, and encapsulation), be separately developed, tested, changed, and 

maintained. 

 Each module can be developed and utilized independently from its context (how the 

system is finally implemented), being only dependent on the context communicated 

via its interface (loose coupling and abstraction). 

 Each module can potentially be reused with little effort (cohesion, loose coupling, 

abstraction, and encapsulation). 

At the same time, Goll (2018, p. 8) mentions the resulting following advantages of 

modularization: 

 Complex systems become more manageable as a result of the low dependence 

between the modules. 

 Systems become more flexible, as changes affect only a few modules (ideally one) and 

not the whole system. 

Modularization can be employed to partially address the flexibility issue of monolithic 

system (Brown 2014; Dowalil 2018, p. 103). However, the resulting modular monoliths 

conserve many of the disadvantages of pure monoliths. Some worth mentioning, apart 

from the size of the modules, are: 

 “Any change in one module of a monolith requires rebooting the whole application”, 

generating considerable downtimes (Dragoni et al. 2017, p. 196). 

 “All modules must be brought together into production” (Wolff 2018, p. 3). 

 “When choosing a deployment environment, the developer must compromise with a 

one-size-fits-all configuration, which is either expensive or sub-optimal with respect to 

the individual modules” (Dragoni et al. 2017, p. 196). 

 As the modules share resources such as memory, databases, and files of the same 

machine, they are not independently executable (Mazzara et al. 2020, p. 31). 

Object-orient programming (OOP) and aspect-oriented programming (AOP) can be 

utilized in order to improve the modularity of the classical programming paradigms: 

structured and functional programming (Kiczales et al. 1997, pp. 220‑240; Eden et al. 
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2006, pp. 113‑124; Booch 2007, p. 43; Przybylek 2010, p. 139). This is further pursued 

by the utilization of services and microservices. 

4.2.3 Distributed Systems 

Evolution in computer technology, mainly the development of microprocessors and high-

speed networks, has made it feasible and easy to construct computing systems composed 

of networked computers, be they large or small. Van Steen et al. (2017, pp. 1‑5) defines 

the emerging distributed systems as “a collection of autonomous computing elements 

that appear to its users as a single coherent system”. A computing element – normally 

referred to as a node – can be either a hardware device or a software process. 

According to the definition, distributed systems are based on independently acting 

elements – a principle of distributed systems – albeit in communication with each other, 

distributed among networked computers. The single coherent view intends for the users 

to notice this distribution as little as possible – this is known as distribution transparency. 

They often possess a software layer known as middleware, which allows for the 

communication between the distributed components, while hiding the differences in 

hardware and operating systems. 

The utilization of such systems is not without problems. Rotem-Gal-Oz (2008) explains 

the fallacies formulated by Peter Deutsch to describe the issues faced in distributed 

systems. They are named like this because they originate from underestimating challenges 

such as network reliability, bandwidth, latency, or security. 

Trade-offs are the advantages obtained by utilizing such systems: 

 The execution environment for each software component can be flexibly chosen, 

selecting the one that is able to provide the performance that meets the requirements 

(Dowalil 2018, p. 101).  

 Distributed systems are created with the intention of sharing resources (e.g. storage, 

peripherals, etc.), allowing also for a reduction of costs (van Steen et al. 2017, p. 7). 
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 An additional effect on the performance of distributed systems originates in the fact 

that they are built to be scalable (van Steen et al. 2017, p. 15). 

 As long as they are able to communicate with each other, the technologies of each 

software component can be chosen individually (Dowalil 2018, p. 102). 

 The distribution and network characteristics of distributed systems – especially since 

the introduction of mobile and embedded computing devices – allow them to be 

pervasive (naturally integrating into the environment) and continuously present. This 

results in the constitution of ubiquitous systems (van Steen et al. 2017, pp. 40–41). 

Further important features of such systems are, according to Poslad (2009, pp. 13‑17): 

(1) context-awareness, optimizing the work in accordance to the context; (2) 

autonomy, being “self governing and […] capable of their own independent decisions 

and actions”; and (3) intelligence, which, complementing the other two (similar as in 

section 3.2.3), “can enable systems to act more proactively and dynamically”. 

The term scalable refers to the capability of a system to “handle the addition of users 

and resources without suffering a noticeable loss of performance or increase in 

administrative complexity” (Neuman 1994, p. 463). Van Steen et al. (2017, pp. 20‑23), 

based on the work of Neuman (1994), describes the techniques used in distributed 

systems for scaling out (expanding the system with more machines): 

 Hiding communication latencies means utilizing, if possible, asynchronous 

communication between the applications (to avoid waiting for a response). This is 

often used in batch-systems and parallel applications, where the execution of tasks is 

scheduled while another task is waiting. 

 Partitioning and distribution “involves taking a component, splitting it into smaller 

parts, and subsequently spreading those parts among the system”. 

 Replication and caching refers to making copies of a component and distributing the 

created instances correctly among the system. 

The simple improvement of hardware capacity is referred to as scaling up. 

In recent years, the characterization of distributed systems was greatly affected by the 

introduction of cloud computing (van Steen et al. 2017, p. 30). The most widespread 
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definition may be that of Mell et al. (2011, p. 2) stating that “cloud computing is a model 

for enabling ubiquitous, convenient, on-demand network access to a shared pool of 

configurable computing resources (e.g. networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction”. He also describes its essential characteristics: 

 on-demand self-service, allowing for the automatic provision of computing capabilities 

when required by the consumer 

 broad network access, considering the communication with heterogeneous devices 

 resource pooling, assigning and reassigning “different physical and virtual resources 

dynamically […] according to consumer demand” 

 rapid elasticity, allowing capabilities to be “elastically provisioned and released” 

(sometimes automatically) in order to scale according to demand 

 measured service, meaning that the resource use is controlled and optimized 

automatically by leveraging a metering capability 

These characteristics are provided through the cloud infrastructure. It consists of a physical 

layer (the hardware resources) and an abstraction layer (the software manifesting the 

characteristics) sitting above the former (Mell et al. 2011, p. 2)  

Additionally, Mell et al. (2011, pp. 2‑3) describes the three (widely accepted) basic service 

models in cloud computing: 

 Software as a Service (SaaS) enables the consumer to utilize applications of a 

provider running on a cloud infrastructure. The consumer manages neither the 

application capabilities nor the underlying cloud infrastructure. 

 Platform as a Service (PaaS) enables the consumer to deploy consumer-created or 

acquired applications onto the cloud infrastructure. These are based on programming 

resources supported by the provider. The consumer does not manage the underlying 

cloud infrastructure but is able to control the deployed applications and the setting of 

the execution environment to some extent. 

 Infrastructure as a Service (IaaS) enables the consumer to run any desired software 

applications and operating systems using computing resources of the provider. The 
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consumer does not manage the cloud infrastructure but is able to control its own 

software, the storage, and the networking components. 

Cloud computing allows reducing investments and operations costs related to the 

required hardware, replacing them with pay-per-use models. However, the evaluation of 

the gained advantage is, in many cases, not as simple and straightforward. Enterprises 

should weigh the benefits and costs involved before deciding on migrating applications 

to the cloud (Hajjat et al. 2010, pp. 243‑254). 

Given the requirements of some applications for characteristics such as low latency, quick 

processing of real-time data, or even the secure handling of sensitive data; approaches 

extending the cloud nearer to the field and devices (particularly in an IoT context) emerged 

(Kaur et al. 2020, p. 63). Fog computing is defined by the OpenFog Consortium (2017, 

p. 22) as “a horizontal system-level architecture that distributes computing, storage, 

control and networking functions closer to the users along a cloud-to-thing continuum”. 

A step further is edge computing which, as name the states, locates processing at the 

edge of the network and very close to the devices (without necessarily being in the 

devices) (Yousefpour et al. 2019a, p. 294). This design allows for the support of data 

analytics enabling, for example, the utilization of deep learning by performing 

preprocessing tasks on the fog or edge level (Huang et al. 2017, p. 1; Kaur et al. 2020, 

p. 68), providing also advantages such as the enhancement of sensor fusion and the 

reduction of bandwidth and latency (Yousefpour et al. 2019b, p. 25). 

4.2.4 Service-oriented Computing 

The next step towards the improvement of modularized systems is service-oriented 

computing, which finds its origins in object-oriented programming (Dragoni et al. 2017, 

p. 200). This, as the name indicates, is based on the utilization of services which, from a 

general perspective, are a “software program that makes its functionality available via a 

published API [application programming interface] that is part of a service contract” (Erl 

et al. 2017, p. 21). A service can be considered a collection of capabilities made available 
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through its interface (Erl et al. 2017, p. 23). The Open Group (2009, pp. 1‑2) defines 

further characteristics, by considering that a service is 

 a logical representation of a repeatable business activity that has a specified outcome, 

 self-contained, 

 capable of being composed of other services, and 

 a black box to consumers of the service. 

Service-orientation is based on a distributed solution logic which finds its roots in a theory 

known as separation of concerns. This states that “a large problem is more effectively 

solved when decomposed into a set of smaller problems or concerns”. The service-

orientation approach addresses this concept with the utilization of logical units (services), 

each solving a particular concern while remaining agnostic to the main problem. The 

agnostic character refers to the logic being generic – not specific to a particular 

task – enough to allow its reuse in other business processes (Erl et al. 2017, pp. 23‑24). 

Thus, while distributed systems pursue a performance improvement through division of 

software components (technical view), service-orientation does it in order to improve the 

solution logic (functional view). 

Booch (2007, p. 52) considers that encapsulation leads to a clear separation of concerns 

by providing “explicit barriers among different abstractions”. 

Another important concept for the design of service-oriented solutions is Conway’s law. 

This states that “organizations which design systems [not only software] are constrained 

to produce designs which are copies of the communication structures of these 

organizations” (Conway 1968, p. 31). The law – although it is actually an observation – is 

relevant for the development of service-oriented structures in two ways. On the one side, 

it expresses that if the modularity of a solution is congruent with the structure of the 

organization (formal and informal) it will increase its efficiency. Such solutions are more 

usable (as they fit the way the processes are shaped), accepted, comprehensible, and 

transparent; allowing at the same time for an easier implementation and the reduction of 

changes (as the solution does not required to be adapted) (Dowalil 2018, pp. 7‑8). From 
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the development side, it allows working in independent teams, each concentrating on 

one part of the solution (Wolff 2018, pp. 41‑42). 

Conway’s law is also referred to as the mirroring hypothesis (Colfer et al. 2016, p. 711). 

The last paragraphs explained how service-orientation works at a high level. On a low 

level, Erl et al. (2017, pp. 26‑29) defines eight principles that should guide the design of 

services: 

 Standardized service contract: The service contract communicates the capabilities 

of a service. The standardization allows for the communication (description of 

capabilities and data types) to be consistent. 

 Service loose coupling: This reduced dependency “promotes the independent 

design and evolution of service logic while still guaranteeing baseline 

interoperability” – the latter being the ability to share information between two 

components and use it (IEEE 610.12-1990, p. 42). Services are designed to be natively 

interoperable (reinforced by the standardized service contract). 

 Service abstraction: Only essential information about the service can be found in the 

service contract (the main source of information). 

 Service reusability: The agnostic character of the service logic allows for it to be 

reused. The multipurpose logic in each service is encapsulated, facilitating the sharing 

and reutilization in different business processes (Erl et al. 2017, p. 373). 

 Service autonomy: Services require a high level of control of their underlying 

execution environment in order to operate consistently and reliably. 

 Service statelessness: “Services minimize resource consumption by deferring the 

management of state information when necessary” (for example, in a database). This 

also allows for a better scalability, as the service can be distributed on several nodes, 

where they become stateful (Wolff 2018, pp. 150‑151). 

 Service discoverability: Services need to be identifiable and understandable in order 

to be usable and reusable. This is achieved by utilizing adequate metadata. 
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 Service composability: In order to build sophisticated service-oriented solutions, 

services must be able to be part of compositions, regardless of their size and 

complexity. 

4.2.5 Service-oriented Architecture 

The service-oriented architecture (SOA) introduces an architectural style based on the 

service-oriented design paradigm (The Open Group 2009, p. 1). This makes use of the 

technology of distributed systems in order to attain the design objectives of a service-

oriented solution (Erl et al. 2017, p. 61). 

Based on the service-oriented design principles and the advantages provided by the 

distributed systems technology, Erl et al. (2017, pp. 61‑69) identifies four main 

characteristics that service-oriented architectures should have: 

 They should be business-driven, meaning that the business vision, goals, and 

requirements are the guide for the architectural model. The service-oriented 

technology should be flexible enough to evolve with the organization, maximizing its 

value and lifespan. 

 They should be vendor-neutral, not being dependent on a proprietary vendor 

platform. This allows not only for the utilization and combination of different 

technologies but also for the evolution of the system in order to continuously fulfil and 

adapt to the business requirements in the best way possible. 

 They should be enterprise-centric, meaning that the services should be considered 

enterprise resources. As such, they do not “belong” to a specific application and can 

be freely used (consumed) by other software in the enterprise. This allows them to be 

part of larger software solutions. This characteristic is highly dependent on the 

reusability and standardized communication (interoperability) of the services. 

 They should be composition-centric, referring to the ability of services not only to be 

reused but to behave as “flexible resources that can be plugged into different 

aggregate structures for a variety of service-oriented solutions”. 
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The communication between services is performed via messages (pieces of data) 

(Narkhede et al. 2017, pp. 45‑48). A Message Bus is a simple pattern from the EAIP 

(Enterprise Application Integration Pattern) family, consisting of a transport mechanism 

for asynchronous messages between services guided by endpoints (emitting and 

consuming services). A Message Broker is a more complex pattern, having the 

responsibility of deciding to whom a message must be delivered (Dowalil 2018, 

pp. 76‑77). It works based on a pattern known as publish/subscribe “characterized by the 

sender (publisher) of a piece of data […] not specifically directing it to a receiver, instead, 

the publisher classifies the message somehow, and that receiver (subscriber) subscribes to 

receive certain classes of messages” (Narkhede et al. 2017, p. 1). 

The communication between services can be synchronous or asynchronous. Additionally, 

two types of collaboration emerge: request/response, in which a service waits for an 

answer (normally used for synchronous communication, although it can be used for 

asynchronous); and event-based, in which services subscribe to the events to which they 

should react (used for asynchronous communication) (Newman 2015, pp. 42‑43). 

In accordance with the enterprise-centric and the composition-centric characteristics, 

services can be composed to constitute processes (in line, as per Conway’s law, with the 

business processes). Two architectural styles can be used to implement and manage the 

corresponding sequence of services (Newman 2015, p. 43): 

 orchestration, which utilizes a central instance that “conducts” the process 

 choreography, in which every component is aware of its tasks and must perform 

them autonomously 

The advantage of orchestration is that it provides a good control of the (synchronous) 

process. Its disadvantages are that it creates dependencies between the services – in a 

point-to-point integration (D'Amore 2015) – and the total processing time is the sum of 

the processing times of each service. Furthermore, if the central instance stops working, 

the whole processing stops (Bonham 2017). 

The choreography, on the other hand, is based on services reacting to events to which 

they subscribe. In consequence, the dependency between the services is very low, 
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allowing them to be added and removed as required. Furthermore, a faster end-to-end 

execution is possible, as the services can be executed asynchronously. Also, there is no 

central instance serving a single point of failure. The disadvantage is that the processes 

become unclear, being only modelled implicitly and with the complexity shifted from a 

central instance to the individual service logic (Bonham 2017). This requires more 

monitoring and tracing effort (Newman 2015, p. 45). This issue will be even worse in 

complex processes. 

Although both styles can be applied, SOA solutions are regarded as frequently using 

orchestration (Wolff 2018, pp. 84‑94). This is due to its simplicity and easier ways to 

manage complexity (Dragoni et al. 2017, p. 203). 

An integration platform is where the communication between services takes place. It is 

also regarded as the place where the services are composed using orchestration. The 

communication with external consumers, on the other hand, is usually done by means of 

a portal. This offers an interface through which the services can be used (Wolff 2018, 

p. 85). 

Advantages and Disadvantages of SOA 

Based on the features of service-oriented design and the characteristics of SOA, solutions 

using a service-oriented architecture should present the following advantages: 

 The implementation of the separation of concerns through services enables the 

division of complex problems in simpler services (Dragoni et al. 2017, p. 200). 

 Services are easily reusable, allowing also for a reduction of application-specific logic 

and of the volume of logic overall (Erl et al. 2017, pp. 35‑36). 

 The composition of services can be flexibly changed, allowing for good maintainability 

and extensibility, and in turn increasing the ability of the enterprise to react agilely to 

changes (Erl et al. 2017, pp. 50‑51). Furthermore, the composition of services into 

complex applications enables the generation of new utilizations of existing services 

(Takai 2017, p. 17). 
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 The consistent utilization of service-oriented systems allows reducing waste, 

redundancy, size, and operational costs of IT systems, thus increasing  

cost-effectiveness and IT efficiency (Erl et al. 2017, pp. 52‑53). This factor is also 

reinforced by the reusability, maintainability, and extensibility of SOA systems; 

 The reusability of services, the flexibility (maintainability and extensibility) of SOA 

systems, and the increase in IT cost-effectiveness improve the return on investment 

(ROI) of service-oriented solutions (Erl et al. 2017, pp. 48‑49). 

 The vendor-neutral characteristic enables the utilization of different technologies and 

approaches, improving the effectiveness of the solution and allowing it to evolve (Erl 

et al. 2017, pp. 63‑65). 

 SOA – using characteristics of distributed systems – provides a good scalability for 

services, by being able to choose the best execution environment for each service 

(Dowalil 2018, p. 101). The effect is enhanced by the division of processes into services 

(concurrency) – allowing to execute each part of the process in the most appropriate 

manner – and by splitting the load using several instances of the same service 

processed in parallel in different nodes (partitioning) (Dragoni et al. 2017, p. 200; 

Fowler 2017, p. 5).  

 The integration of the IT landscape with other heterogeneous systems is improved, as 

it requires merely the implementation of standards protocols to communicate (Dragoni 

et al. 2017, p. 200). 

 SOA allows for different development teams to work separately on their own 

applications (services) (Wolff 2018, p. 85). 

Furthermore, the utilization of distributed systems allows using the benefits covered in 

section 4.2.3. This includes the usage of the service models of cloud computing – for 

example, IaaS to reduce infrastructure costs. 

However, the mentioned benefits refer to those which are desired when designing  

service-oriented solutions. Traditional SOA systems present a number of issues product of 

how they are actually realized: 



122 4.2 Software Architectures 

 

 

 Perhaps the biggest problem is the fact that the use of orchestration tends to generate 

a sturdy execution structure, hindering loose coupling by generating dependencies 

between the services and causing the de facto creation of monoliths, with all 

associated problems. In extreme cases, most of the logic is transferred to the central 

orchestration instance, with the services acting only as data managers (Wolff 2018, 

p. 88). 

 These rigid compositions generated by orchestration also cause for a loss of flexibility, 

since making changes requires modifying program code and deploying the whole 

application, with its corresponding effort (Wolff 2018, p. 88). 

 SOA systems are complex, with elevated requirements regarding performance and 

scalability, and with the network problems characteristic of distributed systems (Takai 

2017, p. 16).  

 As changes in a service can affect many users, modifications of the interface – the 

exposed part, thanks to the encapsulation – can become tedious in SOA systems. To 

overcome this problem, versioning becomes necessary, in order to manage old 

interfaces (Wolff 2018, p. 87). 

 Debugging can be challenging due to the need to reproduce the state of orchestrated 

environments and because of the demand to deliver fast solutions in order to reduce 

downtime (Arora et al. 2018, p. 452) (an issue amplified by the characteristic of the 

central orchestration instance as single point of failure). 

 The initial investment to migrate whole legacy systems into the SOA solution can be 

considerable (Wolff 2018, p. 86). 

Mazzara et al. (2020, p. 32) goes one step further by affirming that “SOA has no focus 

on independent deployment units and related consequences, it is simply an approach for 

business-to-business intercommunication”. 
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4.2.6 SOA Reference Architecture 

There are many approaches to describe the constitution of SOA. This work will consider 

the SOA Reference Architecture (RA) described in the ISO/IEC 18384-2:2016, which was 

created together with The Open Group with the intention of normalizing the concepts 

involved. The proposed reference architecture is illustrated in Figure 4-2. The architectural 

building blocks (ABBs) – “logical elements that supports realization of one or more 

capabilities” – are organized into two types of areas (ISO/IEC 18384-2:2016, p. 10): 

 Functional layers are “abstraction[s] of a grouping of a cohesive set of related 

capabilities and their identified ABBs, interactions among ABBs, interactions among 

layers, and the influences on and by architectural decisions”. 

 Aspects are a type of layer that “contains capabilities and functionality that are widely 

useful across functional layers and may need to be coordinated across multiple roles”. 

The aspects can be regarded as transversal to the horizontal functional layers. 

 

 

Figure 4-2: Reference architecture for SOA solutions (based on ISO/IEC 18384-2:2016) 
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The Operational and IT Systems Layer is the intersection between SOA and the 

organization infrastructure. It covers design, deploy, and runtime. Furthermore, it 

represents the existing software systems – for example, legacy applications (ISO/IEC 

18384-2:2016, pp. 30‑31).  

The capabilities of this layer encompass:  

 service delivery, managing the functional delivery of services, including their technical 

implementation and acting as a broker between them and the invoking applications 

(other systems)  

 runtime environment, providing the runtime capabilities for the execution of services 

and other components of the RA 

 virtualization and infrastructure services, managing the capabilities of the underlying 

infrastructure (computing power, storage, etc.) in a native or virtualized manner 

(ISO/IEC 18384-2:2016, p. 32). 

The Service Component Layer contains, as it name indicates, service components. They 

support software components responsible for the functional implementation (or 

realization) and operation of services. Each service component can realize one or more 

services (ISO/IEC 18384-2:2016, p. 43). 

The capabilities of this layer encompass:  

 service realization and implementation (design time) 

 service publication and exposure (design time) 

 service deployment (design time) 

 service invocation (runtime) 

 service binding (runtime), which supports the service interoperability 

(ISO/IEC 18384-2:2016, pp. 44‑45) 

The Service Layer “contains the service descriptions for business capabilities, services and 

IT manifestation used and created during design time, as well as runtime service contracts 

and descriptions that are used at runtime” (ISO/IEC 18384-2:2016, p. 58). 

The capabilities of this layer support the following responsibilities:  
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 identification and definition of services 

 provision of a container which houses the services 

 enabling the use of a registry/repository that virtualizes runtime service access 

 enabling the use of a registry/repository to house and maintain service design-time 

information (ISO/IEC 18384-2:2016, p. 59) 

The Process Layer “covers the process representation, composition methods, and 

building blocks for aggregating loosely coupled services as a sequence of steps aligned 

with business goals”. The emerging service processes – based on compositions of 

services – provide support for specific use cases and business processes (ISO/IEC 18384-

2:2016, p. 69). 

Relevant capabilities of this layer encompass:  

 process definition 

 event handling, managing the reaction to business events (e.g. creation of a 

document) which may need for a service process to be executed 

 process runtime enablement, referring to the realization and deployment of service 

processes, and to the creation, management, and execution of their individual 

instances 

 process information management, managing the information needs of a service 

process such as context and state information, performing the transformation of the 

data as needed within the process, and providing a process repository 

 process integration, making the service process available to be used 

 process monitoring and management, identifying bottlenecks and optimizing the 

workload in service processes (ISO/IEC 18384-2:2016, pp. 72‑73) 

Particularly relevant is the ABB known as Process Engine, which manages the execution 

of processes, their instances, and their context. 

The Consumer Layer is “where consumers, either human actors or SOA solutions, 

interact with the SOA solution or ecosystem. It enables SOA solutions to support a  

client-independent, channel agnostic set of functionality, which is separately consumed 

and rendered through one or more channels (client platforms and devices)”. This 
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interaction takes place using interfaces, which may point to a service or process (ISO/IEC 

18384-2:2016, p. 80). 

Relevant capabilities of this layer encompass:  

 consumer services, which enable the interaction with the service consumer, providing 

a response to a request 

 presentation services, which support the presentation of information in a way that 

meets the requirements of the consumer 

 backend integration, providing the integration with the underlying functional layers 

 information access, sharing access to data and metadata through the Information 

Aspect (ISO/IEC 18384-2:2016, pp. 81‑82) 

The Integration Aspect is responsible for matching service requests and service 

implementations. It acts as a mediator between the service requester (the consumer) and 

the service provider, which are loosely coupled (ISO/IEC 18384-2:2016, p. 90).  

The two main capabilities of this layer can be grouped into (ISO/IEC 18384-2:2016, 

pp. 91‑95):  

 Communication, service interaction, and integration, with the task of connecting the 

service requester with the service provider (including service discovery), even linking 

systems that do not directly support service-style interactions. A main ABB in this 

category is the mediator, which coordinates and handles the service request/response 

interaction.  

 Message processing, with the tasks of performing “the necessary message 

transformation to connect the service requestor to the service provider and to publish 

and subscribe messages and events asynchronously”. An important ABB in this 

category is the event broker, which enables event consumers to subscribe to an event 

and event provider to publish the event. 

The Management and Security Aspect manages the technical (non-functional) features 

and issues of the SOA system, ensuring that it “meets its requirements with respect to: 

monitoring, reliability, availability, manageability, transactionality, maintainability, 
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scalability, security, safety, lifecycle, auditing and logging, etc.” (ISO/IEC 13249-6:2006, 

p. 101) 

The main capabilities of this layer include:  

 security management, for example, administration of roles, access rights, system 

recovery, etc. 

 IT systems monitoring and management 

 service and SOA solution monitoring and management, with a focus on the technical 

performance 

 business activity monitoring and management, elaborating metrics on the 

performance of business processes utilizing the services 

 configuration and change management 

 policy management, storing and implementing policies regarding security, data access, 

the business, etc. (ISO/IEC 18384-2:2016, pp. 104‑108) 

The Information Aspect is responsible for managing and providing data, metadata, and 

information (ISO/IEC 18384-2:2016, p. 121). 

The main capabilities of this layer include:  

 information services, which enable managing the available data 

 information integration, which encompasses ETL tasks in order to provide the data in 

the required form 

 basic information management, responsible for managing metadata and unstructured 

data 

 business analytics, providing support for analytical functionalities 

 information definition and modeling, creating a common information model 

 information repository, which stores relevant information (ISO/IEC 18384-2:2016, 

pp. 122‑124) 

The RA contemplates business analytics only superficially. The considered functionalities 

act mainly as enablers for data analytics (e.g. providing information as basis for a BI 

system). No special advantage for data analytics is therefore derived from the serviced-

oriented constitution.  
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The Governance Aspect “includes both SOA solution governance (governance of 

processes for policy definition and enforcement), as well as service governance (service 

lifecycle)”. The SOA Governance “defines policies, guidelines, standards and processes 

that reflect the objectives, strategies and regulations to which services and SOA solutions 

conform”, and which are in line with the business objectives (ISO/IEC 18384-2:2016, 

p. 136).  

This aspect can then be considered as being constituted by two main capabilities (ISO/IEC 

18384-2:2016, pp. 137‑140): 

 the governance management, providing the ability to plan, define, implement, enable, 

and monitor governance 

 the monitoring of SOA services and solutions with regard to governance 

The Development Aspect “contains all of the components and products needed to 

develop and change implementations of SOA services and solutions” (ISO/IEC 18384-

2:2016, p. 151).  

This aspect can then be considered as being constituted by the following main capabilities:  

 development, with all the related tasks (e.g. debugging) 

 testing 

 deployment 

 publication 

 maintenance, fixing or extending services and solutions (ISO/IEC 18384-2:2016, 

pp. 157‑159) 

This section performs an overview of the layers and aspects in the SOA Reference 

Architecture. The ISO norm provides more details on responsibilities, capabilities, and 

internal dependencies (as the components of the layers communicate with each other). 

Furthermore, throughout all the layers, elements of security and policy management are 

considered (and not only in the management und security aspect). However, these are 

not directly addressed within this work, as its focus lies on the functional view of the 

service-oriented solutions.  
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One important feature of the norm is that the reference architecture described is intended 

for creating a SOA system complementing other IT systems where the business processes 

are performed (e.g. an ERP system). 

4.2.7 Microservices 

Building upon the service-oriented design and with the objective to address several 

problems of SOA – mainly its flexibility – a new development approach by the name of 

microservices was developed. 

Newman (2015, p. 2) defines microservices simply as “small, autonomous services that 

work together”. Nadareishvili (2016, p. 6) provides a more technical concept by defining 

a microservice as an “independently deployable component of bounded scope that 

supports interoperability through message-based communication” while affirming that 

the microservice architecture “is a style of engineering highly automated, evolvable 

software systems made up of capability-aligned microservices”. 

Microservices have the following characteristics, which also define the advantages of their 

utilization: 

 Microservices are small and specialized in performing an individual functionality or 

business capability, in an approach following the single responsibility principle. This 

enables a very good modularity – with loosely coupled elements – and the utilization 

of bounded contexts. In this way, the small size is the reason for most of the following 

features and benefits (Newman 2015, pp. 2‑3; Dragoni et al. 2017, p. 202; Wolff 

2018, p. 32). 

 Microservices are autonomous, each one being a separate and independent entity that 

can be changed and deployed by itself without requiring consumers to change 

(Newman 2015, p. 3). In contrast to SOA; where logic is normally distributed among 

individual services, the orchestration, and other tools (e.g. a portal); the isolation of a 

microservice allows it to contain the whole logic pertaining a functionality (Wolff 2018, 

p. 88).  
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 The high modularity of microservices enables their composability, allowing the flexible 

modification of applications as required (Newman 2015, p. 7). This provides for good 

extensibility (Dragoni et al. 2017, p. 202). 

 In a similar way, the independency and individual deployment of small microservices 

allow for their replaceability. This provides for good maintainability, preventing the 

“erosion” of the architecture (Dragoni et al. 2017, p. 202; Wolff 2018, pp. 60‑61). 

 The independency of microservices also allows for the use of a bulkhead pattern to 

increase resilience. As failures do not cascade, they can be isolated and the rest of the 

system can continue working (Newman 2015, p. 5; Dragoni et al. 2017, p. 204). 

 As long as the microservices are able to communicate with each other, the technology 

applied can be chosen freely. This allows selecting the right tools for the desired 

functionality – instead of one-size-fits-all approach. The architecture also allows 

testing new technologies with limited risks (Newman 2015, p. 4; Wolff 2018, p. 66). 

 Microservices – usually implemented as a distributed system – allow for high 

scalability, even better than in traditional SOA, due to the separation of processes in 

small and properly isolated components (Dragoni et al. 2017, p. 201; Wolff 2018, 

pp. 64‑65). 

 As with SOA, microservices are easily integrable with existing systems of the IT 

landscape, requiring only the use of the right communication protocol. Thus, the 

functionality of a system can be extended without extensive modifications to its 

program code (Wolff 2018, p. 61). Dowalil (2018, pp. 135‑136) refers to the way 

microservices can complement and extend monolithic systems. 

 Microservices constitute small and isolated units which are independently deployable. 

In this way, modifications to microservices can be brought rapidly into production 

(Newman 2015, p. 6). This is considered one of the sources of the flexibility of 

microservices (Wolff 2018, p. 94). The small size of the deployment units is a good 

complement for continuous delivery, which promotes bringing software into 

production in short and regular cycles, in a process which is ideally automatized. 

Managing small units, the process can deliver fast feedback. Besides, the risk is 
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minimized, as changes are small and isolated, being easy to undo (Wolff 2018, 

pp. 63‑64). 

 Small independent development teams can be organized around the microservices 

they are responsible for. This increases their productivity and allows for a better 

utilization of resources (Newman 2015, p. 7; Wolff 2018, pp. 67‑69). 

Microservices have a focus on functionality, emphasizing the support of business 

capabilities. Their maintainability and extensibility allows them to constantly evolve 

(Dragoni et al. 2017, p. 202), following the development of the business. 

As microservices are thought to be continuously changing, they require to overcome the 

problems presented by orchestration in SOA solutions in order to enhance their flexibility 

(Wolff 2018, p. 89). For this reason, services are normally based on event-based 

choreographies, which allow to truly decouple the components (Newman 2015, 

pp. 43‑46; Dragoni et al. 2017, pp. 203‑204). All intelligence is concentrated in 

autonomously and asynchronously executable services and not some central coordinating 

instance. Each instance understands its role and communicates with the others (Wolff 

2018, p. 89). This also contributes to increasing resilience, as microservices are decoupled 

and therefore a single point of failure, which is characteristic of orchestration, does not 

exist. 

Elements and Integration 

The architecture of microservices is fairly simple and does not differ a lot from the one of 

standard applications. Each microservice consists of three main elements: (1) the frontend, 

constituted in this case by the API of the microservice which is in charge of handling the 

interactions; (2) the backend, containing the code to fulfil the functionality of the 

microservice; and (3) a way to retrieve data, which is either stored in memory or in a 

database (Fowler 2017, pp. 9‑11). Each microservice has its own user interface, unlike 

SOA, where this is managed by a portal (Wolff 2018, p. 92). 
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A usual method for integrating services with each other and with applications is the 

utilization of a shared database (Newman 2015, p. 41). Though common, this method 

presents several challenges for its use with microservices: 

 As the internal structure of the database is utilized by several applications, it cannot 

be easily changed; each change must be coordinated with other applications. This can 

also affect the speed by which changes to the related microservices can be 

implemented (Wolff 2018, pp. 187‑188). 

 Microservices which make use of the database are limited to the technology utilized 

by it (Newman 2015, p. 41). 

However, measures can be applied to minimize these problems. For example, it is possible 

to separate the data sets used by each microservice, allowing them to use their own 

schema (Wolff 2018, p. 188). 

An important alternative is the use of replication techniques. These allow copying the data 

into the desired schema. The trade-off is the generated inconsistency of the data, as it 

takes time until changes are replicated (Wolff 2018, pp. 188‑189). 

Another way of integration is the utilization of messages to share data. As with SOA, 

microservices utilize messages as their main way of communication. However, 

microservices emphasize the utilization of simple communication systems without own 

intelligence (Wolff 2018, p. 91). This is in contrast to SOA, where complex applications 

can be used to manage messages, such as, for example, an Enterprise Service Bus (ESB) 

(Dowalil 2018, pp. 77‑78). 

In the microservices context, standards are used for developing APIs. That can 

comprehend, for example, the technology they utilize for messaging or the way they are 

designed (Nadareishvili 2016, p. 32). 

The Inverse Conway’s Law 

The relation between the structure of an enterprise and the systems it employs was 

established in section 4.2.4 using Conway’s law. Based on the restrictions established by 

it, ThoughtWorks (2015) proposes – following an article by Leroy et al. (2011) – the 
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utilization of the so-called Inverse Conway Maneuver, which consists of “evolving your 

team and organizational structure to promote your desired architecture”.  

Bloomberg (2015) recommends further developing this concept by reversing the Inverse 

Conway Maneuver, affirming that the real discussion is “how companies can best 

leverage changing technology in order to transform their organizations”. Fowler (2017, 

pp. 21‑22) refers to this idea as the Inverse Conway’s Law, stating that “the 

organizational structure of a company is determined by the architecture of its product”, 

being the “product” the system the organization produces and utilizes. She also affirms 

that, in consequence, the utilization of microservices will lead to an organization that is 

modularly structured with a high granularity. As the microservices they utilize, the 

components of the organization are autonomous and require building the necessary 

communication in order to cooperate and avoid problems. 

The Bounded Context 

Within Domain-Driven Design (DDD), Evans (2015, p. 2) recognizes the problems that can 

arise from combining contextual models into a larger application, causing for software to 

“become[s] buggy, unreliable, and difficult to understand”. This causes confusion in the 

communication among team members (developers). This issue is rooted in the fact that 

“It is often unclear in what context a model should not be applied”. Microservices, in their 

attempt to “break large components (models) into smaller ones in order to reduce the 

confusion and bring more clarity to each element of the system”, follow a style compatible 

with DDD (Nadareishvili 2016, p. 64). 

To address the issues, Evans (2015, p. X) introduced the concept of bounded context, 

which is a “description of a boundary (typically a subsystem, or the work of a particular 

team) within which a particular model is defined and applicable”. Newman (2015, 

pp. 31‑33) describes a domain (a business) as consisting of multiple bounded contexts 

where models “reside” which can either communicate with the outside of the bounded 

context (through its interface) or not. Following this contextual separation allows for the 

creation of microservices that are loosely coupled and strongly cohesive. 
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Because of their circumscription to a contextual boundary, microservices are considered 

as being non-agnostic. This is the cause for an important characteristic of microservices: 

their reusability is limited. Although the logic could be reused, this is restricted to the 

parent business process. Reusability, on the other hand, must be possible across business 

processes (Erl et al. 2017, pp. 113‑114). Microservices are focused on business capabilities 

and not on code reutilization (Shadija et al. 2017, p. 2). 

Challenges of Microservices 

In spite of all the described benefits of microservices, this approach also presents 

challenges that have to be considered: 

 As with SOA, microservices architectures can become fairly complex and unclear. This 

is due to the great number of independently acting components (Daya 2015, p. 27) 

and is worsened by the utilization of choreographies, which only model implicit 

relationships. The complexity of the solution also represents a factor influenced by the 

size of microservices, as it increases with the size reduction (Newman 2015, p. 3). 

 Also as with SOA, the debugging in microservices architectures is difficult (Dragoni et 

al. 2017, p. 210; Zhou et al. 2019, p. 1). 

 Finally, like SOA, microservices architectures are – being a type of distributed 

systems – vulnerable to network problems, such as breakdowns and latency issues 

(Takai 2017, p. 22). 

4.2.8 Microservices in the SOA Approach 

Although microservices and SOA are both based on service-oriented approaches, they 

differ in several aspects. Additionally to the already described dissimilarities, it should be 

taken into account that the objective behind the utilization of microservices is to “partition 

the components of a distributed application into independent entities, each addressing 

one of its concerns” (Dragoni et al. 2017, p. 197). Wolff (2018, pp. 90‑94) considers 

microservices as being an architecture for individual projects, while SOA is an enterprise-
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wide architecture. This allows for microservices to provide service-oriented solutions for 

single systems, which are light-weighted and cost-effective (by using less services). 

However, many authors and researchers see beyond these differences, focusing on how 

microservices integrate with SOA in order to extend its functionality. Newman (2015, p. 9) 

refers to microservices as a technique emerging from the real world that can help 

implement SOA correctly, even considering it as a specific approach for SOA. In the same 

line of thought, Dowalil (2018, pp. 134‑135) refers to typical SOA applications as SOA 

1.0 and to the ones enhanced through the application of microservices as SOA 2.0. Erl et 

al. (2017, p. 113) views the SOA architecture as composed of a mix of agnostic (reusable) 

services and non-agnostic microservices.  

Hybrid Approaches 

As SOA should profit from the flexibility gained through microservices – addressing its 

main disadvantage – it is advisable to think beyond the hard division in orchestration for 

SOA and choreography (reactive approach) for microservices. Bonham (2017) considers 

cases where combining both approaches makes sense, for example, with a solution 

composed of synchronous blocks (coordinated through orchestration) of asynchronous 

activities, or vice versa. To address such cases, he describes two hybrid approaches. 

The first hybrid approach considers using choreographies between services, which in 

turn coordinate (orchestrate) subordinated microservices. The approach depicted in Figure 

4-3 presents the benefits of using decoupled services which are asynchronously 

executable (through the events), each containing its own logic (distributing the processing 

flow). On the downside, the approach creates coupling between the orchestrated 

microservices. 

Reasons for using this approach include:  

 if most of the processing is (or can be) done asynchronously 

 if speed to market is a priority 

 if decentralizing the flow into each service is manageable  

 if there are sequential steps that only apply within the orchestrating services 
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Figure 4-3: First hybrid approach (Bonham 2017) 

This work will refer to the orchestrating entity as “service”, as it does not fulfil the 

characteristic of a microservice. 

The second hybrid approach utilizes choreography between microservices and a central 

coordinator managing the flow. The latter acts similar to an orchestrator, producing 

events for what needs to be done (commands) and consuming events representing what 

has been done. This operation is depicted in Figure 4-4. 

This approach provides the benefits of using decoupled microservices, enabling 

asynchronous processing (through the events), and being able to find the overall flow in 

the reactive coordinator. The trade-offs are, however, that a sort of coupling does exist 

between the coordinator and the microservices – as it needs to know the events for 

emitting commands and reacting – and the possibly serious impact of a failure in the 

coordinator.  
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Figure 4-4: Second hybrid approach (Bonham 2017) 

 

Reasons for using this approach include:  

 if synchronous blocks of asynchronous processing are used (in the example, 

microservices A and C start at the same time) 

 if the flow could change depending on the data being processed 

 if it is desirable to see the end-to-end flow at design time and runtime 

 if there is a need to decouple the microservices as much as possible 

4.2.9 Software Architectures in Throughput Time Prediction 
Example 

Software solutions for implementing the analytical example for throughput time 

prediction presented in section 3.3.2 could be designed using the reviewed architectures. 

The particularities of each architectural approach applied to the example are illustrated in 

Figure 4-5. 

The monolithic approach with some modularization elements (modular monolith) 

provides, as expected, the most simple and least dynamic configuration. In the blocks 
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representing the corresponding throughput time prediction modules (for either training 

and testing or applying the model), the analytical approaches are contained within 

procedures called following a hard-coded logic. In order to apply an SVR model with a 

specific kernel, the user must choose the corresponding application module. In the  

best-case scenario, this can be done by means of parameters in the main system utilizing 

the prediction module. In the worst-case scenario, it would require changes to the logic 

of the main system.  

 

 

Figure 4-5: Architectural designs for throughput time prediction example 
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In the monolithic approach, changes to the model can only being done by specialists. This 

would require programming effort for the corresponding application module to use the 

new model. Furthermore, changes to the logic (e.g. adding a new analytical functionality) 

would require adapting the programming of all related modules. 

The approach utilizing the service-oriented architecture (SOA) provides the analytical 

functionalities as services. The invoking system can decide which kernel to utilize by 

selecting the corresponding service when the process requires it. Furthermore, each 

service contains the possibility to train, test, or apply the SVR model depending on how it 

is invoked. 

The approach decreases the amount of hard-coding, enhancing the software modularity 

(particularly when it comes to adding new services). However, it conserves problems of 

the monolithic approach by creating services with a great amount of internal logic. 

The microservices approach achieves a great degree of flexibility by providing each 

microservice with the minimal functionality possible while remaining autonomous. The 

loose coupling between the microservices allows combining them in any manner required 

(or even adding more analytical functionalities without effort). Furthermore, the SVR 

microservices can be easily replicated and reused by other applications. 

The trade-off of the approach is the resulting complexity. Pure microservices act 

autonomously according to events detected in the event stream. The SVR microservices, 

for example, need to react (subscribe) to events specifically calling them or indicating the 

end of the previous analytical step (in this case, clustering). Each event can also carry data 

(for example, indicating if the execution is for training, testing, or application purposes). 

The more microservices there are in a process, the less understandable it becomes. 

The approach combining the SOA and microservices architectures attempts to reduce the 

complexity of the latter. A coordinating service containing the steps required for each 

execution type (training, testing, or application) manages the events in the correct order. 

Each process is clearly mapped within the coordinating service. This also allows reducing 

the number of events and providing a simpler interface to the invoking system. 
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It is worth mentioning that Colangelo et al. (2018, pp. 191‑196) proposed a  

services-based concept similar to the ones depicted in the same area of application. 

4.3 Summary 

As stated at the beginning of the chapter, the presented architectures are divided into 

two areas.  

The pertinent architectures considered in the area of data analytics are data warehouse, 

Lambda, and (to some extent) Kappa. These present elements and concepts – such as the 

ETL process and the asynchronous precomputing of data in batches – that are of relevance 

for the development of the solution. Their main focus is, however, the provision of 

preprocessed data to support the execution of data analytics. 

The reviewed different software architectures – which can be used to implement data 

analytics solutions – show a development path. Although there is a clear evolution from 

monoliths to microservices (over modularization and SOA), all the covered architectural 

styles present advantages and disadvantages that cause for the former still to be in use. 

When comparing software architectures, the criteria utilized are usually considered as 

context-dependent and related to the background of the stakeholders involved 

(Svahnberg et al. 2002, pp. 436‑439). The criteria used for the comparison in this section 

reflect the lifecycle of solutions using the architectural approaches covered. They 

summarize the relevant aspects utilized when describing the characteristics of each 

software architecture (in particular the advantages and disadvantages) in the 

corresponding sections in this chapter. These are: 

 Design criteria cover the conception of the solution and its structure. This considers 

the granularity of the modules – directly dependent on their size and modularity (as 

defined in section 4.2.2) – as well as the resulting complexity of the solution (given 

the number of interconnected elements) and its robustness (e.g. against network 

failures). 
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 The implementation criteria refer, as the name states, to the factors involved in 

developing and implementing the solution. This includes the variety of technologies 

usable, how the solution integrates with other ones in the IT landscape, how 

independent the development teams are (a factor also influenced by the freedom of 

choice regarding technologies), and how easy it is to debug the solution. Because of 

the constant changes during the lifetime of the solution, these factors will also be 

relevant during the utilization phase. 

 Utilization criteria refer not only to how the solution is utilized but also to how the 

system is to be maintained and extended. This includes the scope (typical scale of 

solutions using the architecture), the maintainability and extensibility (which determine 

the flexibility of the systems, i.e. how easily can functionalities be replaced or added), 

and the scalability of the solution, as well as the reusability of the composing modules. 

 The cost criteria can be considered parallel to all lifecycle phases, with implementation 

costs – which are relevant mostly at beginning and during big changes – and 

constantly incurring operational costs. 

The criteria categories cover the phases of the waterfall model, a commonly used 

approach in software development, as described by Adenowo et al. (2020, 

p. 429) – based on Pfleeger et al. (2010, p. 52). 

The resulting comparison of the software architectures covered in this chapter is 

performed in Table 4-1. 

While services have been conceived to be reusable, microservices focus on functionality, 

limiting their reusability. The combination of SOA and microservices allows for the 

utilization of agnostic services, improving the reusability in the resulting architecture. 

Service-oriented solutions offer a good integration with existing systems in the IT 

landscape. This is improved by the small size of microservices, which allow complementing 

business process with individual functionalities. 

Complexity is a significant problem in service-oriented approaches. This can be addressed 

using technological solutions and techniques, one of which being the addition of 

monitoring systems (Hayashi et al. 2012, pp. 732‑737; Daya 2015, p. 28). The 
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combination of SOA and microservices also improves this issue through the use of hybrid 

choreography/orchestration approaches. 

 

Table 4-1: Comparison of software architectures 

  IT architectures 

  Modular  
monoliths 

SOA Microservices 
SOA 

+ 
Microservices  Criteria 

D
e

si
g

n
 Granularity Low High Very high Very high 

Complexity Low High Very High High 

Robustness High Low Medium Medium 

Im
p

le
m

e
n

ta
ti

o
n

 Technology Limited Variated Variated Variated 

Integratability Low High Very high Very high 

Development 
Bounded 

teams 

Independent 

teams 

Independent 

teams 

Independent 

teams 

Debugging Simple Difficult Very Difficult Very Difficult 

U
ti

li
z
a

ti
o

n
 

Scope 
Enterprise /  

System 

Enterprise /  

System 

Project / 

System 

Enterprise /  

System 

Maintainability 

/ Extensibility 
Difficult Good Very good Very good 

Scalability Medium-Low High Very high Very high 

Reusability Difficult Very good Good Very good  

C
o

st
 Investment High Medium Medium Medium 

Operational 

cost 
High Medium Low Low 

 

As consequence of their complexity, service-oriented solutions are more difficult to debug 

as monolithic ones. Technological methods for improving debugging are in 

development – for example, Arora et al. (2018) and Zhou et al. (2019). 
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Furthermore, microservices are able to isolate failures, increasing the robustness of the 

system. This feature is, however, at the same time negatively affected in service-oriented 

solutions by the possible network problems characteristic of distributed systems 

(breakdowns and high latency). The situation is worsened in typical SOA systems, where 

the orchestrator represents a single point of failure. 

Maintainability and extensibility are clearly an advantage in service-oriented solutions. 

These – together with the reusability of the components – also reduce the related 

operational costs. This is also positively affected by the vendor-neutrality, allowing to 

freely choose the technology, enabling not only more control over the costs but also 

increasing the effectiveness of the solution. A trade-off is, however, that the runtime 

environment (e.g. the Operational and IT Systems Layer) must be able to support the 

different languages and libraries used (Fowler 2017, pp. 22‑23). 

While development teams working on monolithic software solutions have to deal with 

the issue of being bounded by the internal functionality and technology of each module, 

service-oriented approaches allow developers to work on each service independently, 

even regarding the choice of technology.  

Although the migration of whole systems to a service-oriented configuration can be 

costly, the investment can be reduced by migrating only some processes, thus extending 

the remaining monoliths. Monoliths, on the other hand, present the problem of being 

unable to evolve, causing considerable investments that are necessary in order to upgrade 

such systems. 

Cloud computing is also an option to reduce investments, replacing them by running 

costs. Although this technology is in principle available for all approaches, it is more 

suitable for those based on distributed systems and service orientation (Newman 2015, 

p. 6).  

This cloud-based provision of resources also aids scalability, another great advantage of 

service-oriented solutions. Although monoliths gain scalability through modularity, this is 

highly limited in comparison to that of their service-oriented counterparts. 
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Finally, while monoliths and SOA have in common that they were developed to 

comprehend whole enterprises – or at least one or several systems – microservices focus 

on individual projects. They can, however, be extended through the combination of SOA 

and microservices. 

Figure 4-6 provides an overview of the advantages and disadvantages as well as an 

application example of the reviewed software architectures. 

 

 

Figure 4-6: Summary of reviewed software architectures 



 

 

5 Proposed Solution: Analytical 
Microservices 

This chapter considers the concepts introduced in chapters 2 and 3 – namely the 

requirements on a production management software and the features of a possible data 

analytics-based solution – and proposes a solution combining approaches of SOA and 

microservices, the so-called “analytical microservices”. 

Firstly, the idea of quadruple mirroring is introduced as a way to understand the vision 

pursued by the proposed solution. Subsequently, the implementation aspects of a data 

analytics-based solution using SOA and microservices are analyzed and the constituting 

elements of analytical microservices are introduced.  

Finally, a comparison of the proposed solution with existing approaches is performed. 

5.1 The Quadruple Mirroring Idea 

Throughout the previous chapters it was emphasized how vital the capability to adapt is 

for the concepts introduced: 

 An organization must be able to adapt its business processes, matching its internal 

complexity to the external one in order to manage the latter (law of requisite 

variety – Ashby’s law). 

 Data analytics solutions must adapt to the domain and context where they are applied 

in order to deliver useful knowledge, as stated by their working principle (especially in 

the cases of data mining and machine learning). 

 The software architecture must be able to evolve with the development of the 

organization in order to remain effective. Furthermore, the structure of the generated 

software is not only a mirror image of the organization (Conway’s law), but likewise a 
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flexible software architecture can influence the structure of the organization, allowing 

it to be equally flexible (Inverse Conway’s Law). 

The necessary and continuous adaptation can be looked upon as if the pertained elements 

were constantly acting as mirrors. Thus, the idea of “quadruple 

mirroring” – encompassing all three elements simultaneously – came into being. It is 

depicted in Figure 5-1. 

 

 

Figure 5-1: The Quadruple Mirroring Idea 
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The IT architecture, the employed data analytics, and the business processes each have a 

mirror. The processes, in their position as the interface to the market, also have an 

additional mirror pointing to the external environment (market). 

Although the “reflections” are numbered, the process should take place continuously and 

simultaneously. Each reflection has the following meaning: 

(1) The external complexity is reflected into the business processes, which then have to 

react. 

(2) The constitution of the business process is influenced by the IT architecture: the more 

flexible the IT architecture, the more flexible the business processes. 

(3) The constitution of the IT solutions – based on the employed architecture – is 

influenced by the structure of the organization. 

(4) Similar as in (2), the structure of the analytical solutions will depend on the IT 

architecture employed. This involves both, the way these solutions are implemented 

(as software-based applications) and their integration with the other IT solutions. 

(5) Analytical solutions are implemented in accordance with the existing IT architecture. 

This concerns the analytical software and the integration of the corresponding 

solutions in the IT landscape. 

(6) The constitution of the data analytics-based solutions adapts to the domain and the 

steadily changing context of the business processes. 

(7) The constitution of the business processes is affected by the analytical capabilities 

available. For example, good predictive capabilities allow for reducing the dimensions 

of buffers. 

(8) The business processes respond to the requirements of the external environment 

(market) with products and services containing the characteristics enabled by the 

constitution of said processes. 

A key role is played by the IT architecture. It determines not only the flexibility of the 

business processes. It also defines how the analytical solutions can be implemented and 

integrated into the IT landscape, greatly affecting their functionality and effectiveness. 
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Furthermore, an evolvable IT architecture will allow the applications based on it – in this 

case, the analytical solutions – to be equally adaptable to changes. 

5.2 A Service-oriented Solution 

This section will describe the implementation aspects of the proposed solution as a 

microservices/SOA hybrid and ponder upon the IT efficiency of the emerging approach. 

5.2.1 Implementation Aspects as a Microservices/SOA Hybrid 

Based on the advantages presented by the service-oriented design of software solutions, 

this is used as a basis for the proposed solution. In particular, the approach using a 

combination of microservices and SOA was chosen. This work will refer from now on to 

this combination as microservices/SOA hybrid. 

To address the features of a possible data analytics-based solution described in section 

3.3.3 – which, in turn, addressed the requirements on a production management 

software summarized in section 2.4.4 – a set of implementation aspects is derived. Using 

the quadruple mirroring idea as a basis, these aspects adapt the characteristics of the 

microservices architecture (summarized in section 4.3) in a way that takes into account 

the advantages and structural requirements of data analytics as well as the needs of 

production management processes under the challenge of Personalized Production. 

The resulting implementation aspects of a data analytics-based solution to support 

production management software under the challenges of Personalized Production by 

means of a microservices/SOA hybrid are represented in Table 5-1. These are: 

 algorithms as agnostic (reusable) and modular microservices 

 models as non-agnostic (specific) and modular microservices 

 dynamic generation (training) and performance-based regeneration (retraining) of 

analytical microservices (models) 
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 analytical processes as composition of microservices 

 flexible selection and exchange of algorithms and analytical models as microservices 

 combination of orchestration and choreography to enable synchronous and 

asynchronous processing 

 enhanced performance through usage of microservice scalability 

 transfer and distribution of domain knowledge through algorithms and  

pre-trained models 

 transfer and distribution of domain knowledge through pre-built processes 

 usage of analytical microservices to support the input phase 

 integration in IT landscape through methods of service-oriented architecture 

The high granularity and focus on functional capabilities of microservices enable the 

construction of autonomous components representing the parts of analytical processes, 

allowing to decompose the latter into as many pieces as functionally required. 

Furthermore, the possibility to use different technologies in each microservice enables the 

utilization of a wide range of data analytics.  

The emerging analytical microservices can be divided into two main categories (following 

the constitution of data analytics introduced in section 3.1.1):  

 the algorithms (the base for the analytical models), which are agnostic and as such 

highly reusable 

 the models, which are generated based on the algorithms and are non-agnostic, as 

they are created within a specific context, limiting their reusability 

The approach allows exploiting the reusability of analytical microservices by means of 

agnostic algorithms and some generic models (e.g. visualizations). How agnostic an 

algorithm is – and how reusable – will depend on how specific its development was in 

regard to domain and context. 
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Table 5-1: Implementation aspects using a microservices/SOA hybrid approach 

 Implementation aspects using a  
microservices/SOA hybrid approach 
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Features of a possible  

data analytics-based solution  

(see section 3.3.3) 

Possibility to utilize different data 

analytics techniques 
X    X       

Dynamic data-driven generation of 

specific and accurate  

analytical models 

 X X         

Flexible construction of flows of 

analytical algorithms/models 
   X        

Transfer of domain knowledge 

through pre-trained models 
       X    

Transfer of domain knowledge 

through pre-built flows 
        X   

Ability to select the most adequate 

available solution, considering 

different levels of detail and response 

X X  X X X X     

Ability to integrate with existing 

production management  

systems to enable data analytics, 

continuous learning, and create 

intelligent processes 

         X X 

Use of data analytics synchronously 

and asynchronously 
     X X     
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The proposed solution presents a particularity, as it is partly based on the dynamic 

generation of microservices through the training of models. This allows not only to create 

models that adapt to specific context but also to regenerate these models through 

retraining, changing jointly with the evolution of the manufacturing environment. This 

continuous adaptation is also supported by the high deployment speed of microservices. 

The flows of analytical algorithms/models are built by combining analytical microservices 

into analytical processes. These are flexible, as they allow adding and replacing analytical 

microservices, if needed. They enable building complex analytical solutions through the 

combination of different analytical microservices. Especially relevant is the possibility to 

build iterative processes, aiding the execution of KDD steps and the realization of special 

data analytics – for example, reinforcement learning. 

Many instances of a process utilizing different forms of the same base model can be 

created depending on the characteristics of the data – e.g. different product families, 

production lines, etc. This is possible through the utilization of a service (coordinator) that 

orchestrates the process and is also reusable. 

All of these measures enable the constitution of analytical processes with high accuracy, 

as they are greatly adaptable to the particular context. 

The dynamic generation of analytics, the possibility to freely chose and utilize different 

technologies, and the flexible modification of analytical processes allow for the selection 

of the most adequate analytical solution. 

The combination of orchestration and choreography enables the execution of 

synchronous – such as aiding a business process – and asynchronous tasks. The latter can 

be due to the performance of training processes or simply due to the execution of costly 

tasks – for example, for lazy learning. The flexibility loss because of orchestration is 

outweighed by the advantages of explicitly defined processes, such as clarity and 

reusability. Furthermore, it is always possible to use the analytical microservices reactively 

(in choreographies), if necessary. 
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Also reducing the elevated computational costs of analytical tasks is the fact that 

microservices are naturally scalable. This allows not only choosing the most appropriate 

execution environment for each analytical function dynamically. It also enables 

distributing the load through techniques such as partitioning and replication, matching 

approaches of distributed parallel mining. 

One important advantage is the possibility to transfer and distribute domain knowledge. 

This is achieved by means of the analytical microservices using pre-trained models and 

algorithms with different degrees of agnosticism (expressed through their structure and 

parameters), and orchestrating services, which allow transferring the information of 

processes. 

The service-oriented approach allows for a simple integration into the IT landscape. This 

is enhanced by the utilization of small autonomous analytical functionalities as 

microservices, which can be used to perform localized extension of business 

processes – for example, adding a predictive function adapted to the context in order to 

replace a generic one in the original software. The broad reach of the SOA design allows 

for a simple enterprise-wide or system-wide integration into the IT landscape. 

The bidirectional communication with the manufacturing environment enables the 

creation of intelligent processes assisted by data analytics. Furthermore, the possibility to 

receive feedback allows for the utilization of continuous learning and special 

techniques – for example, instance-based learning. 

The integration with other systems enables the utilization of prescriptive analytics to 

support operative tasks, either by providing a direct and synchronous connection to the 

process where a “decision” is necessary, or by connecting to other functionalities involved 

in the decision-making process – e.g. an optimizer.  

It is also possible to employ the analytical microservices to support the input phase of the 

KDD process by assisting in the selection, preprocessing, and transformation of 

data – tasks also found in the ETL process. 
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A broad spectrum of analytics is then covered, including all four types of data 

analytics – descriptive, diagnostic, predictive, and prescriptive. This allows aiding the 

production management systems in the reviewed aspects (forecasting and decision-

making) and supporting analysis. 

As explained in chapter 4, the utilization of service-oriented solutions is not without 

difficulties. These are, however, outweighed by the functional benefits. Furthermore, 

technical and methodical approaches exist and are being developed to address the 

network problems, the complexity, and the difficulty to debug present in distributed 

systems. 

Also, building a complex system is not necessarily a problem. Following Ashby’s law, a 

respective internal complexity is required to address the external one. 

Completeness of the Implementation Aspects 

It is necessary to confirm that the derived implementation aspects consider all relevant 

areas to create a working data analytics solution before continuing with the design. 

The first completeness criterion is fulfilled by addressing the derived features of a possible 

data analytic solution which, in turn, correspond to the requirements on a production 

management software in order to deal with Personalized Production (as shown in Table 

5-1). A further analysis can be made by utilizing sets of criteria to check that the main 

concepts reviewed in chapters 3 and 4 are being taken in account. 

The analytics design criteria fulfill a triple purpose. They first address the structural 

elements of a data analytics solution, either as a single functionality (with all its 

requirements) or as a process of connected individual functionalities. Secondly, they 

represent the design pursued in modular software architectures (e.g. microservices), with 

interconnected functionalities. Lastly, they address the flexibility required to adapt to the 

changes in business processes (through the use of flexible processes of modular 

functionalities). 
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The analytics modelling criteria represent the algorithm/model dynamic present in 

analytical solutions. This is also essential for the creation of analytical functionalities that 

are able to adapt to the requirements and changes of the underlying business processes. 

The knowledge discovery criteria address, as the name states, the phases of the 

knowledge discovery process (as simplified in Figure 3-5). This is not only relevant from 

the analytical point of view but also for the modular architecture using services and 

microservices, which are to use the same structure in their own design (with an 

encapsulated logic doing the analysis and an interface to receive inputs and send outputs 

to other functionalities). 

 

 

Figure 5-2: Completeness criteria for implementation aspects 

 

As shown in Figure 5-2, the implementation aspects may fulfill several criteria at the same 

time. The correspondence between the aspects and the criteria are shown in Table 5-2, 

Table 5-3, and Table 5-4. 

Chapter 6 will describe how the components derived from these implementation aspects 

address the also relevant areas of the SOA Reference Architecture and the data mining 

phases. 
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Table 5-2: Aspects for analytical design and knowledge discovery 

  Analytics Design 

  Single Functionality Process 

K
n

o
w

le
d

g
e
 D

is
co

v
e
ry

 

In
p

u
t 

• Integration in IT landscape through 
methods of service-oriented architecture 

• Usage of analytical microservices to 
support the input phase 

Other aspects are the same as by "Data 

Analysis" in “Single Functionality” 

(because of possible utilization of data 

analytics in the input phase) 

• Integration in IT landscape through 

methods of service-oriented architecture 

• Usage of analytical microservices to 
support the input phase 

Other aspects are the same as by "Data 

Analysis" in “Process” (because of 

possible utilization of data analytics in 

the input phase) 

D
a
ta

 A
n

a
ly

si
s 

• Algorithms as agnostic (reusable) and 
modular microservices 

• Models as non-agnostic (specific) and 

modular microservices 

• Dynamic generation (training) and 
performance-based regeneration 

(retraining) of analytical microservices 

(models) 

• Flexible selection and exchange of 

algorithms and analytical models as 

microservices 

• Enhanced performance through usage 
of microservice scalability 

• Transfer and distribution of domain 
knowledge through algorithms and  

pre-trained models 

• Analytical processes as composition of 

microservices 

• Combination of orchestration and 
choreography to enable synchronous 

and asynchronous processing 

• Flexible selection and exchange of 
algorithms and analytical models as 

microservices 

• Enhanced performance through usage 
of microservice scalability 

• Transfer and distribution of domain 
knowledge through pre-built processes 

O
u

tp
u

t 

• Integration in IT landscape through 
methods of service-oriented architecture 

• Integration in IT landscape through 
methods of service-oriented architecture 

• Analytical processes as composition of 
microservices 
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Table 5-3: Aspects for analytical modelling and knowledge discovery 

  Analytics Modelling 

  Algorithm Model 

K
n

o
w

le
d

g
e
 D

is
co

v
e
ry

 

In
p

u
t 

• Integration in IT landscape through 

methods of service-oriented architecture 

• Usage of analytical microservices to 
support the input phase 

Other aspects are the same as by "Data 

Analysis" in “Algorithm” (because of 

possible utilization of data analytics in 

the input phase) 

• Integration in IT landscape through 
methods of service-oriented architecture 

• Usage of analytical microservices to 
support the input phase 

Other aspects are the same as by "Data 

Analysis" in “Model” (because of 

possible utilization of data analytics in 

the input phase) 

D
a
ta

 A
n

a
ly

si
s 

• Algorithms as agnostic (reusable) and 
modular microservices 

• Dynamic generation (training) and 
performance-based regeneration 

(retraining) of analytical microservices 

(models) 

• Flexible selection and exchange of 

algorithms and analytical models as 

microservices 

• Enhanced performance through usage 
of microservice scalability 

• Transfer and distribution of domain 
knowledge through algorithms and  

pre-trained models 

• Transfer and distribution of domain 
knowledge through pre-built processes 

• Analytical processes as composition of 
microservices 

• Combination of orchestration and 
choreography to enable synchronous 

and asynchronous processing 

• Models as non-agnostic (specific) and 

modular microservices 

• Flexible selection and exchange of 

algorithms and analytical models as 

microservices 

• Enhanced performance through usage 
of microservice scalability 

• Transfer and distribution of domain 
knowledge through algorithms and  

pre-trained models 

• Transfer and distribution of domain 

knowledge through pre-built processes 

• Analytical processes as composition of 
microservices 

• Combination of orchestration and 
choreography to enable synchronous 

and asynchronous processing 

O
u

tp
u

t 

• Integration in IT landscape through 

methods of service-oriented architecture 

• Analytical processes as composition of 
microservices 

• Integration in IT landscape through 
methods of service-oriented architecture 

• Analytical processes as composition of 
microservices 
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Table 5-4: Aspects for analytical modelling and analytics design 

  Analytics Design 

  Single Functionality Process 

A
n

a
ly

ti
cs

 M
o

d
e
ll
in

g
 

M
o

d
e
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• Integration in IT landscape through 
methods of service-oriented architecture 

• Usage of analytical microservices to 
support the input phase 

• Models as non-agnostic (specific) and 

modular microservices 

• Flexible selection and exchange of 
algorithms and analytical models as 

microservices 

• Enhanced performance through usage 

of microservice scalability 

• Transfer and distribution of domain 
knowledge through algorithms and  

pre-trained models 

• Integration in IT landscape through 
methods of service-oriented architecture 

• Usage of analytical microservices to 
support the input phase 

• Analytical processes as composition of 
microservices 

• Combination of orchestration and 
choreography to enable synchronous 

and asynchronous processing 

• Flexible selection and exchange of 
algorithms and analytical models as 

microservices 

• Enhanced performance through usage 

of microservice scalability 

• Transfer and distribution of domain 
knowledge through pre-built processes 

A
lg

o
ri

th
m

 

• Integration in IT landscape through 
methods of service-oriented architecture 

• Usage of analytical microservices to 

support the input phase 

• Algorithms as agnostic (reusable) and 
modular microservices 

• Dynamic generation (training) and 
performance-based regeneration 

(retraining) of analytical microservices 

(models) 

• Flexible selection and exchange of 
algorithms and analytical models as 

microservices 

• Enhanced performance through usage 
of microservice scalability 

• Transfer and distribution of domain 
knowledge through algorithms and pre-

trained models 

• Integration in IT landscape through 
methods of service-oriented architecture 

• Usage of analytical microservices to 
support the input phase 

• Analytical processes as composition of 
microservices 

• Combination of orchestration and 
choreography to enable synchronous 

and asynchronous processing 

• Flexible selection and exchange of 

algorithms and analytical models as 

microservices 

• Enhanced performance through usage 
of microservice scalability 

• Transfer and distribution of domain 
knowledge through pre-built processes 
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5.2.2 IT Efficiency of the Approach 

It is important to consider how the requirements on a production management software 

are affected by IT efficiency. This is improved in the solution through  

 the flexibility of the analytical processes, reducing maintenance and extension costs, 

and improving the efficacy through adaptation of the solution; 

 the dynamic generation and regeneration of models, reducing the continuous 

adaptation efforts and increasing the effectiveness of models; 

 the reutilization of analytical microservices and processes, increasing their  

cost-effectiveness; 

 the possibility to build complex analytics through the simple composition of 

microservices (analytical processes), increasing the range of possible solutions (and, as 

a consequence, their effectiveness), enabling the reutilization of existing analytical 

microservices; 

 the reduction of development efforts and the need for expensive specialized resources 

through the possibility of applying pre-developed analytical microservices and 

processes with different degrees of domain knowledge (knowledge transfer); 

 the utilization of only the required functionalities as microservices, reducing the 

implementation costs of the service-oriented system; 

 the extension of existing system, increasing their maintainability – reducing the related 

costs – and increasing their effectiveness; and 

 the constitution and scalability of the service-oriented solution, which allows 

employing cloud approaches to reduce investment costs – using an external platform 

(PaaS) or simply renting the necessary infrastructure (IaaS). 

The acquisition of individual functionalities leads on its own to a price advantage, as it 

allows purchasing only what is required – installing it in an existing platform – avoiding 

voluminous solutions. The commercialization of microservices and processes (as services) 

motivates the creation of innovative business and revenue models (e.g. pay-per-use), 

which can improve the cost-effectiveness of the acquisition of algorithms and models 

(Bauernhansl et al. 2014a, pp. 27‑30; Schatz et al. 2015, pp. 1‑15). Although this work 
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will not perform a deep analysis of commercialization options, it is assumed that these 

will positively affect the IT efficiency. 

Although the application of analytical microservices and processes during the  

resource-intensive data input phase – selection, preprocesing, and transformation – could 

increase its effectiveness, such an assessment would be complex, as it is affected by a 

large number of factors (types of origin systems, data quality, technologies applied, etc.). 

As a deep analysis is not within the scope of this work, it will be assumed that the 

performance of such functionalities at least equals that of available tools.  

5.3 Elements of the Solution 

Based on the architectural characteristics of microservices and SOA, on the constitution 

of analytical solutions, and on the interaction with existing systems, a structure for the 

proposed solution is conceived. 

The structure illustrating the main elements and relationships is shown in Figure 5-3 – a 

more detailed explanation will be performed in chapter 6. 

The following elements can be identified: 

 External data sources provide the system with the required raw data to perform the 

analytical tasks (training, testing, execution). 

 External systems, extended by the analytical microservices, are able to invoke the 

required functionality using known protocols. Although individual microservices can 

be invoked, the request is normally handled by the process representing the required 

functionality. 

 Internal data represents the storage of extracted data corresponding to replications 

of the external data sources (if necessary), of operational data required for the internal 

working of the components (e.g. repositories of analytical microservices and 

processes), and of execution results of analytical microservices. Storing intermediate 

results allows it to function as an integration database for sharing data between the 
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analytical microservices. The database design should be flexible – for example, 

allowing the dynamic creation of tables or using non structured approaches – but the 

data format must be standardized to an extend to allow the interoperability between 

the analytical microservices (e.g. standardizing the denomination of different types of 

fields). 

 

 

Figure 5-3: Structure of the proposed solution 

 

 The Integration Layer handles the interaction with external elements – data sources, 

systems, user interface – and the internal data flows (including the storage).  

 The Process Layer contains the services coordinating the analytical processes. The 

coordination is done via events (messages) used to trigger the execution of analytical 

microservices – the “trigger event” – and to signalize the finalization of the 

execution – the “finish event”. This approach – based on the second hybrid solution 
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in section 4.2.8 – allows extending processes by simply subscribing microservices to 

the event or adding a new event to the process (in the correct place), indicating in 

each case the information relevant for the execution (data source, parameters). In this 

way, a relatively loose coupling with the coordinator is achieved. Furthermore, the 

coordinating service presents an additional advantage, as it allows choosing the right 

instance of the process depending on the input data – for example, the same process 

can use two different models depending on the material type. 

 The Management and Operations Layer has the functionalities to monitor the 

technical (e.g. runtime) and functional (e.g. accuracy) performance of the analytical 

microservices and processes. This allows triggering the retraining (retrain message) of 

analytical microservices – with the necessary modifications to the corresponding 

process (e.g. division in new instances) – either manually or automatically. The 

evaluation can be performed on the results of continuous testing – to verify the validity 

of the model – or the comparison with feedback from the systems involved. 

 The Analytical Microservice (aM) represents the autonomous analytical 

functionality used. Its autonomy allows it to implement different analytical 

technologies, as long as they are supported by the runtime environment. The 

standardized interface enables the interoperability with other analytical microservices, 

forming analytical processes. Input for analytical microservices consists of data from 

external sources and the results of other analytical microservices (provided through the 

shared database), parameters (contained in the trigger event), and settings (used 

during the training phase). The output consists of the results and the performance of 

the execution. 

This structure explains the design of the solution, its components, their functionalities, 

and the way they are related to each other. It is viewed as an extension of the underlying 

service-oriented system – for example, extending and complementing the functionalities 

in a platform. This system will probably take a form based on the SOA Reference 

Architecture.  
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The proposed structure presents only relevant and simplified elements, requiring the 

functionalities of the underlying service-oriented system to function. For example, the 

information of the Management and Operations Layer can be used to aid in the 

management of computing resources performed by the Management and Security Aspect 

of the SOA Reference Architecture. 

The relation between the proposed structure and the SOA Reference Architecture will be 

explained in detail in chapter 6. 

5.4 Comparison with Existing Approaches 

There are a number of analytical software solutions available on the market that can be 

compared to the proposed solution. The criteria used for the comparison need to be able 

to provide an overview relevant to the requirements reviewed and derived in the previous 

chapters. As a result, three sets of criteria must be taken into account. 

The analytical solution criteria consider the analytical functionalities and capabilities of 

the solutions to be compared. This pertains the types of analytics that can be used 

(including the possibility to create complex analytical solutions and utilize processes of 

analytical functions). Also the adaptability, a main characteristic of solutions based on data 

mining and machine learning, is considered. 

The IT implementation criteria, on the other hand, review the aspects regarding the 

implementation of the analytical approaches as IT solutions. They consider the point of 

view of resources utilization (including execution and infrastructure requirements) and the 

integration in the IT landscape. 

This costs criteria consider the one-time and the continuously accruing costs resulting 

from implementing and using the solutions compared. It should be taken into account 

that the costs evaluation can be directly related to criteria in other sets (e.g. maintenance 

costs can be reduced thanks to good maintainability and extensibility of the solution). 

Furthermore, costs related to development are organized under one-time accruing costs 
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although they can appear several times during the life of the solution if new developments 

are necessary (their effect is, however, not continuous). 

The point of view of the PPC software, which is also of relevance for the comparison, can 

be considered as directly dependent on the above presented three sets of criteria. The 

types of analytics and their adaptability will determine how flexible the related PPC 

software is and its ability to address specific situations. The IT implementation is critical 

for executing the necessary analytical functions with an appropriate performance 

(influencing the response time) and for the integration of the analytical solution with the 

IT landscape, including the PPC software (taking into account, in this way, a requirement 

of smart data). The costs criteria are related to the IT efficiency of the solution (alongside 

the factors described in section 5.2.2). 

In this way, the effectiveness and efficiency criteria mentioned in the research question in 

section 1.3 are addressed. 

The comparison criteria derived from the main relevant aspects reviewed in the previous 

chapters is shown in Table 5-5 (with the corresponding section in parenthesis). Although 

some could be considered under different categories, the current representation aids the 

simplicity of the comparison with the avoidance of duplicated criteria. It is, for example, 

the case of “possible reduction of infrastructure costs through cloud computing”, which 

could also be considered under the category “resources”.  

The comparison is performed in Table 5-6, based on scientific literature, documentation 

from the providers, and own experience of the author. 

The myriad of solutions are organized into categories in order to be manageable. Based 

on the  work of Mikut et al. (2011, pp. 436‑441), three categories can be derived: business 

intelligence solutions, data mining suites, and tailored solutions. A fourth category 

emerged in the last years to make use of cloud computing and serviced-oriented design: 

Analytics as a Service (AaaS). 
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Table 5-5: Comparison criteria for approaches 

Analytical 
solution 

Types of analytics Adaptability 

• Support of four types of analytics 

(3.1.1) 

• Support of complex analytics 

(3.1.1) 

• Selection of different approaches 

and technologies (3.1.1, 3.2.1) 

• Construction of analytical 

solutions through composition of 

analytical functions (3.1.1, 3.1.3) 

• Equal coverage of entire analytical 

process (3.1.3) 

• Maintainability and extensibility 

(3.2.3, 4.3) 

• Continuous adaptation to changes 

and to the resulting requirements of 

business processes (3.2.3) 

• Modularity of analytical functions 

(3.1.1, 3.1.3, 4.2.2) 

• Specificity of analytical solution 

(3.2.1) 

   

IT 
implementation 

Resources Integration 

• Synchronous and asynchronous 

execution (3.2.1) 

• Scalability (4.1.2, 4.3) 

• Extension of existing systems in IT 

landscape (3.2.3) 

   

Costs 

One-time accruing costs Continuously accruing costs 

• Knowledge transfer (3.2.2) 

• Reusability of analytical functions 

(3.2.2) 

• Possible reduction of 

infrastructure costs through cloud 

computing (4.2.3) 

• Implementation costs (3.2.1) 

• Maintenance costs (3.2.1) 
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Table 5-6: Comparison with existing approaches 

 Approaches 
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Comparison criteria 

Support of four types of analytics      

Support of complex analytics      

Selection of different approaches and  

technologies      

Construction of analytical solutions through 

composition of analytical functions      

Equal coverage of entire analytical process      

Maintainability and extensibility      

Continuous adaptation to changes and to the 

resulting requirements of business processes      

Modularity of analytical functions      

Specificity of analytical solution      

Synchronous and asynchronous execution      

Scalability      

Extension of existing systems in IT landscape      

Knowledge transfer      

Reusability of analytical functions      

Possible reduction of infrastructure costs 
through cloud computing      

Implementation costs (relative amount)      

Maintenance costs (relative amount)      



166 5.4 Comparison with Existing Approaches 

 

 

The trade-off of BI solutions – such as Power BI (from Microsoft) or Qlik Sense (from 

QlikTech) – is that the analytical capabilities offered are limited. The focus of such systems 

is generally on descriptive and diagnostic analytics – heavily depending on 

visualizations – and simple predictions, usually excluding the utilization of more complex 

analytics (Kehal 2020, p. 34). The simplicity of the analytics offered allow them to be 

reusable through easy configuration. However, it highly restricts their capabilities and 

adaptation possibilities (Bartschat et al. 2019, p. 10). 

Though many BI providers offer to extend their software solutions through modularly 

addable functionalities, such extensions are usually limited to new forms of data 

presentation. Deeper changes are possible through coding, at the cost of considerable 

efforts and the need of expert knowledge (van der Lans 2012, p. 55). Even so, this is 

limited, since the software tool is normally not naturally prepared for such applications. 

Data mining suites offer the user a wide range of analytics. Common commercial 

examples include RapidMiner (from the homonymous company), SAS Enterprise Miner 

(from SAS Institute), and SPSS Modeler (from IBM). They allow using and reusing modules 

which are combined in order to build analytical solutions (Chahal et al. 2016, pp. 16‑17; 

Chertchom 2018, p. 49). It also possible, as with the BI solutions, to utilize client/server 

architectures to manage the processing of analytics, and to use systems that support the 

data provision, such as data warehouse or implementations of the Lambda architecture 

(Bartschat et al. 2019, p. 10; Borse et al. 2019, p. 197). 

Despite their many capabilities, this type of solutions also presents difficulties. Although 

many analytical solutions can be built by means of combining functions, this is limited to 

relatively simple applications. More complex analytical solutions require dealing with 

intricate configuration and even coding (Bartschat et al. 2019, p. 8). Furthermore, the 

functions are not independent, as the combination can only be deployed as a whole. As 

a consequence, the modularity of the functions is impaired. The “flow” of functions can 

be then thought of as a means to assist in programming the analytical solutions, enabling 

an easier construction of the basis and a better understanding of the resulting structure. 
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Depending on the complexity of the analytical solutions, maintaining and extending them 

can become costly (Malkawi et al. 2020, p. 13883). 

Similar to BI solutions, many providers offer the possibility to download new functions to 

extend the capabilities of the suites. These are, however, usually generic operators, 

limiting as a consequence the possible transfer of knowledge. 

Furthermore, although data mining suites allow combining different technologies – for 

example, R or Python-based applications – this also presents limitations (Walia et al. 2020, 

pp. 90‑92). The suite must provide the required compatibility to use and adapt the 

components involved. 

Both, the business intelligence solutions and the data mining suites, usually offer the 

possibility to facilitate the access to and the use of their functionalities – for example, by 

means of interactive and web-based interfaces. Moreover, both of them can be 

considered as means to create and use monolithic and (to some extent) modular analytical 

solutions. 

The development of tailored solutions is considered as a means to create analytical 

solutions specially adapted to the requirements of the users. They allow applying the 

technologies and approaches required – for example, R, Python, Java, C++; using the 

corresponding libraries – creating an analytical solution that can be as complex as needed 

and well integrated with the existing systems (Bartschat et al. 2019, pp. 8‑10). Given the 

high complexity of knowledge transfer techniques (Mishra et al. 2021, p. 1), tailored 

solution are very suitable for utilizing them. 

Such analytical solutions are normally created as monoliths serving a specific purpose, 

disregarding aspects of modularity. The trade-off of such solutions is then clear, as their 

development and maintenance is expensive (Malkawi et al. 2020, p. 13883). 

Business intelligence solutions, data mining suites, and tailored solutions can increase their 

scalability through the use of a solution for distributed processing – for example, 

MapReduce and Hadoop, among many others (Stahl et al. 2013, pp. 243‑257; Fernández 

et al. 2014, pp. 380‑404). This, however, involves costs associated with the corresponding 



168 5.4 Comparison with Existing Approaches 

 

 

effort, which will depend on how well the tool used is prepared to implement such 

approaches. 

Analytics as a Service (AaaS) comprise most analytical software solutions making use of 

service-oriented and cloud computing approaches. They focus on improving the scalability 

of analytical solutions as well as the way they are provided to the user (Guedes et al. 2006, 

pp. 36‑43; Talia 2013, pp. 98‑101). As such, they can actually be considered as a provision 

of an appropriate execution environment for data analytics. For this reason, Janeczko et 

al. (2013, p. 9) refers to them as a form of specialized PaaS. Examples of such platforms 

are Azure (from Microsoft), Einstein Analytics (from Salesforce), and the internal data 

analytics platform developed and used by Bosch (Gröger 2018, pp. 5‑14). Woo et al. 

(2018, pp. 2193‑2217) proposes using a services-based platform for data analytics, even 

recognizing the importance of automatically adapting models. However, the analytical 

models are utilized in a traditional manner (not as services), with the services in the 

platform performing mainly management tasks (e.g. data collection and performance 

control), and the approach does not consider the utilization of complex analytical 

processes. These software solutions can then be regarded as cloud-based forms of data 

mining suites, sharing many of their characteristics, such as the provision of a wide range 

of analytics. 

AaaS approaches present several limitations. As they prioritize reusability, they are usually 

forced to standardize the analytical services used (Gröger 2018, pp. 9‑10). Furthermore, 

although the modularity is improved – compared to the data mining suites – this is usually 

achieved through the utilization of relatively big analytical modules, with the 

corresponding functional and technical limitations (e.g. scalability). The composition of 

analytics is frequently limited to the combination of data preprocessing services (ETL) with 

the analytical services. The usage of these standardized and coarse-grained analytical 

solutions reduces the specificity and adaptability of the solutions employed. 

The capability to extend existing systems in the IT landscape is a problem shared, to 

different degrees, by all solutions. Business intelligences solutions, data mining suites, and 

even many Analytics as a Services software solutions focus on providing unidirectional 
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analysis, prioritizing the connection to the data sources, but not the integration of the 

results in other systems – usually not considering the bidirectional communication in the 

selection criteria, e.g. Bartschat et al. (2019, pp. 1‑14), Walia et al. (2020, pp. 89‑94), and 

Malkawi et al. (2020, pp. 13867‑13890). Tailored solutions – which are habitually 

conceived to extend existing applications – usually require effort to either implement the 

specific API or to embed the solution in the current system. Gröger (2018, pp. 8‑9) 

proposes using the AaaS platform to aid in the automatization of decision processes, 

although only expressing it as a necessity, not explicitly explaining how to realize it, nor 

recommending the integration through service messaging. Extending existing systems 

with AaaS presents further challenges, as the coarse-grained characteristic and the still 

limited specificity of the services hampers assisting the underlying system to deal with 

specific issues and building analytical processes specifically adapted to the problem at 

hand (e.g. depending on the entry data). 

The range of analytics offered is also limited, as the lack of integration with decision 

processes in the underlying landscape greatly hinders the utilization of prescriptive 

analytics. 

Another issue is the lack of the possibility to continuously adapt to changes and their 

corresponding effects on the business processes. Additionally to their limited specificity, 

and although they are able to regenerate the analytical solutions used, data mining suites 

and AaaS require additional effort to perform deeper structural changes in the analytical 

solutions. As expressed before, tailored solutions, in spite of their excellent adaptation to 

specific requirements, are especially costly to adapt or modify. The adaptation capability 

of BI solutions is lowly graded in comparison to other approaches due to the limitations 

in the offer of analytical solutions and their generalization – despite being, in many 

aspects, as configurable as required. This aspect is also negatively affected by the lack of 

functional integration with the underlying systems, as it hinders comparing the results of 

the analysis performed to those of the business process assisted (van der Lans 2012, 

pp. 54‑56). Available solutions will then have to rely mainly on manually (re)testing and 

regenerating models. 
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Although the utilization of cloud computing offers in all alternatives the possibility to 

reduce the infrastructure costs, the granularity of service-oriented solutions allows them 

to make a better use of it. 

There are several examples of the utilization of microservices in analytical software – for 

instance, the ones proposed by Stein et al. (2019, pp. 1‑3), Jarwar et al. (2018, 

pp. 112‑117), Mouy et al. (2015, pp. 773‑779), and Lu et al. (2020, pp. 1‑22). These are, 

however, simply ways to build tailored solutions, which make use of microservices in order 

to increase the scalability of the solution or facilitate the development of functionalities in 

independent teams. The microservices provide a certain degree of modularity and improve 

the maintainability and integration capabilities of the solutions. Nevertheless, this is 

limited, as they are still dedicated solutions, constructed as an application to address a 

specific problem, being constituted by non-agnostic microservices thus hindering aspects 

such as flexibility and reusability. No system for managing the microservices, the 

processes, and their enterprise-wide (or at least system-wide) integration is created, 

thereby differing from to the proposed analytical microservices approach. 

Furthermore, some providers of production management software offer data analytics 

solutions to complement their products (Hamedtavasoli et al. 2021, p. 33). These are 

usually realized as business intelligence solutions – for example, SAP Business Warehouse 

or abas BI. In recent time, they have also started initiatives to incorporate more complex 

analytics, such as data mining and machine learning. An example is the SAP Leonardo 

Machine Learning Foundation. Currently, these approaches take the form of data mining 

suites or AaaS platforms with limited functionalities. The advantage lies in the good 

integration with the pairing product, but the offer of data analytics functionalities is 

restricted (and these often only provide a unidirectional integration with the underlying 

system). 
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5.5 Summary 

A key aspect for the solution described is the proposition of the quadruple mirror idea it 

intends to implement. The novelty of this approach relies in that it addresses the concepts 

of adaptability of the business process in an organization, the flexibility provided by the 

utilized IT architecture, and the adaptability of data analytics-based solutions in a joint 

manner. This brings the elements reviewed in the previous chapters together instead of 

considering each one separately, allowing them to profit from each other. The synergy 

between these concepts provides the organization with the capability to match its internal 

complexity to the external one, a requirement to deal with the challenges of Personalized 

Production. 

The proposed analytical microservices solution uses its structure to maximize the benefits 

of data analytics by supporting analytical approaches of all four types, enabling high 

complexity techniques (including the creation of analytical processes) and promoting their 

learning capabilities. Knowledge transfer is supported by the possibility to utilize  

pre-trained models and pre-built analytical processes.  

At the same time, several challenges of data analytics are addressed (enumerated in 

section 3.2). The microservices architecture allows for an easy replacement of analytical 

functionalities und thus for a selection of the best solution for each case. Furthermore, 

the flexibility of the solution is a key factor in reducing the costs associated with utilizing 

data analytics. Moreover, the integration capabilities of the microservices approach 

enables an easy and close integration with other systems and the business processes 

requiring the analytical support. In this way, the basis for smart data is provided. 

These characteristics separate the solution from other approaches available in the market. 

Existing solutions usually implement aspects of data analytics only partially (as detailed in 

section 5.4), depending on their intended utilization. Furthermore, the effort and costs 

associated with adapting such solutions (if the required adaption is even possible) are 

generally high.    
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From an architectural point of view, the proposed solution makes full use of the 

capabilities of microservices described in chapter 4. The approach even extends the 

flexibility provided by the architecture by allowing the dynamic generation of 

microservices in a simple manner (without having to program them). This is done through 

the creation of analytical models as the result of the training of algorithms, exploiting in 

this way the learning capabilities of data analytics. Furthermore, the combination of SOA 

and microsevices allows for the creation of understandable analytical processes, 

addressing the complexity problem associated with pure microservices. The functionalities 

of the services acting as coordinators (as described in section 4.2.8) are extended, enabling 

the asynchronous execution of steps in the analytical process (a requirement of many 

analytical techniques) and the transfer of pre-built analytical processes. 

 

 

 

 

 



 

 

6 Constitution of Analytical Microservices 
and Their Environment 

An introduction to the concepts of the proposed solution was performed in chapter 5. 

Chapter 6 will focus on extending the description of the solution by explaining the 

mechanics behind it. 

As mentioned in chapter 1, the construction of a reference model was chosen as the IT 

artefact to serve as the basis for the explanation of the proposed approach. Such models 

can also be considered as the first step in order to develop future IT implementations of 

the solution (Becker et al. 2009, pp. 181‑183), allowing to gather and address the 

requirements (Becker 2004, p. 74) and thus reduce the associated risks (Becker 2004, 

p. 83). 

6.1 The Modelling Language 

The modelling language chosen for illustrating the key elements of the reference model 

is the Unified Modelling Language (UML). This not only provides the possibility to model 

the required elements – through the use of components and sequence diagrams (Miles et 

al. 2006, pp. 11‑12) – it is also the de facto standard in the software industry (Nugroho 

et al. 2008, p. 90). This status ensures the interpretability and usability of the reference 

model. Furthermore, other languages seen as alternatives to UML (e.g. SysML) are often 

actually extensions of it (García-Borgoñón et al. 2014, pp. 110‑111). 

It was decided to use the current version of UML: UML 2.0. Among the advantages of 

extending and improving the base language, it is worth mentioning that version 2.0 was 

created with the design of Platform Independent Models (PIMs) in mind, which allows for 

“models that capture the system in a generic manner that is divorced from concerns such 

as implementation language and platform” (Miles et al. 2006, p. 10). 
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6.2 Structure of the Proposed Solution 

This section will describe the structure of the proposed solution. The description will be 

divided in two: the analytical microservice and the analytical environment in which the 

former is to be used. 

6.2.1 Analytical Microservices 

The constitutive elements of the proposed solution were introduced in section 5.3. The 

suggested layers serve the purpose of supporting the main elements: analytical 

microservices (aMs) – including their utilization and lifecycle – and the processes resulting 

of their composition. 

Based on the concepts reviewed in the chapters 3 and 4, and on those described in the 

ISO/IEC 13249-6:2006 (pp. 11–17), it is possible to derive the required inputs and outputs 

of the designed analytical microservice. The resulting data flows – depicted in Figure 

6-1 – are 

 the settings (input) used during the training phase of the aM; 

 the parameters (input) used during the application of the aM; 

 the input data (input), consisting of external data (from external data sources and 

systems) and, if necessary, data originated in the previous aM in the analytical process 

(aM upstream) stored internally (internal data); 

 the results produced (output), which can either be stored internally to be used by the 

following aM (aM downstream) or be communicated to the invoking system; and 

 the performance (output) evaluating the results of the training, test, and application 

phases. 
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Figure 6-1: Data flows and elements of an analytical microservice 

 

The settings and parameters allow the reutilization of one aM for diverse purposes in 

different contexts and situations.  

It is possible to distinguish between three types of aMs: 

 trainable algorithms, which provide the basis for the creation of data mining models 

 applicable models, utilized when running the intended analysis 

 pre-trained models, which must be adjusted in order to be applicable 

As explained in chapter 3, algorithms in data mining approaches are trained in order to 

generate models. This is, however, only one way to create models. The applicable models 

in the intended solution cover a wide range of logics: from simple mathematical formulas, 
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through statistical constructs, to full data mining models; being as specific and complex 

as necessary and possible. This allows covering an ample number of different use cases.   

The pre-trained models follow the idea of using previously created models, which are to 

be adapted to be utilized in the intended context and purpose. The concept is based on 

the transfer learning approach, allowing the transfer and reutilization of domain 

knowledge, with the benefits enumerated in the previous chapters. The adaptation is 

performed by means of the settings of the corresponding aMs. 

Both the proposed interface for the aMs and the flexibility of their internal logic are 

intended to cover a wide range of applications in a standardized manner. The following 

characteristics also support this purpose: 

 Both algorithms and models can be used to conform analytical processes by 

composing the respective aMs. This allows the creation of complex structures for 

advanced analytics. 

 In contrast to standard microservices-based solutions, the proposed approach supports 

the dynamic instantiation of aMs. This enables offering analytical solutions highly 

adapted to each problem and able to evolve with the changes in the context. Different 

models can be instantiated, for example, through training with diverse data sets and 

settings (e.g. to adapt to various products or machines with significantly dissimilar 

production conditions). 

 The flexibility to build analytical processes – comprised of dynamically instantiable 

aMs – as required by each scenario constitutes the basis for one of the main 

advantages of the solution: the ability to easily select and utilize the algorithm or 

model that best suits each situation. 

Not only the pre-trained models, but also the distribution of algorithms – and even of  

pre-built analytical processes – allow for an easy transference of domain knowledge. 
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6.2.2 The Analytical Environment 

As stated before, analytical microservices and processes exist und run within an 

environment that allows their correct execution and integration with the user systems. 

This analytical environment consist of the three layers introduced in section 5.3: 

 Integration Layer 

 Process Layer 

 Management and Operations Layer 

These layers, together with the analytical microservices, fulfil the requirements of both 

aspects of the solution: the utilization for analytical purposes and its microservices-based 

character. As such, a relation can be found between the proposed elements and the 

reference architectures that were used as a basis. An example of how the elements can 

be linked to the SOA Reference Architecture (SOA RA) (described in section 4.2.6) is 

shown in Figure 6-2. 

The Integration Layer, as its name indicates, is responsible for managing the integration 

of the proposed solution, allowing the interaction and data exchange both internally 

(between the components of the solution) and externally (with external actors). As such, 

it encompasses the Information Aspect, the Integration Aspect, the Consumer Layer, and 

parts of the Operational and IT Systems Layer – those referring to the underlying 

communication infrastructure – of the SOA RA. 

The internal data can be considered under the influence of the Integration Layer. This 

allows the intermediate storage of data that, among other functions, enable the 

communication between aMs in analytical processes (by storing the results to be passed 

to next step). It also supports the data storage needs of the other layers and can, if 

necessary, act as part of the ETL process. 
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Figure 6-2: Relation with the SOA Reference Architecture 

(based on ISO/IEC 18384-2:2016) 

 

The external communication functions have two main objectives: the connection with 

external data sources and the communication with external systems. The difference 

between them is however minor, as external systems may also be, depending on the 

circumstances, data sources, and a bidirectional communication with external data 

sources may be necessary in order to report results. 

The act of connecting with the data sources can be limited to simply mapping fields or be 

more complex, involving ETL functions. The integration with an existing data warehouse 

should be possible – and even advisable if the data volumes require it. 

The term external systems not only refers to legacy systems making use of the analytical 

environment but also to all forms of interaction with users (e.g. the control interface). 
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The Management and Operations Layer embodies the administrator of the analytical 

environment. With this function it encompasses the Governance Aspect, the 

Management and Security Aspect, and the remaining parts of the Operational and IT 

Systems Layer of the SOA RA. 

From a technical point of view, it manages the execution and resources utilization. As a 

result, an important task is governing the scalability of the system, which involves 

replicating and distributing instances of analytical microservices and handling the 

asynchronous execution of aMs. 

A task specific to the proposed solution is the monitoring of the functional performance 

of the analytical microservices and processes. The components of the layer can decide on 

the adequacy of the analytical approach based on the reported performance of the 

running phases – training, test, and application – and/or via the comparison with the 

reality provided by the external systems and data sources (e.g. accuracy of predictions). 

As a result, it can trigger actions such as the retraining of models (which can include a 

change in the settings), changing the conditions governing the circumstances under which 

each analytical microservice and process is to be used (e.g. assigning analytical approaches 

to material types depending on which is a better fit), or swapping and adding new 

analytical microservices and processes to replace or extend the existing ones. A continuous 

monitoring is necessary in order to keep up with changes in the manufacturing 

environment. 

A control interface must be provided on the external side of the environment in order to 

allow monitoring by users (the communication is provided through the Integration Layer). 

The Process Layer is responsible for managing the analytical process created through the 

composition of the analytical microservices. As such, it encompasses the Process Layer and 

parts of the Integration Aspect – those responsible for the administration of events – of 

the SOA RA. 

A main component of the layer is the Process Engine. On the operative level, it contains 

and instantiates the coordinating services responsible for controlling the execution of the 

corresponding analytical process via events. On a management level, it decides, based on 
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the parameters passed by the invoking system, which analytical processes should be 

executed. 

The instantiation of the coordinating services is made based on the process description. 

This can be found in the Process Repository, which is responsible for storing and managing 

the analytical processes. 

The event-based management is supported by the Message Broker, which enables the 

subscription of analytical microservices and processes to events, being also responsible for 

communicating the occurrence of such events (thus starting the actions of the subscribed 

microservices and processes). 

Analytical microservices encompass the Service Layer and the Service Component Layer 

of the SOA RA. 

Important components of the analytical microservices area are: the Analytical 

Microservices Operation, responsible for the execution of the aMs (acting as a container); 

the Algorithms Repository, used for the storing and management of algorithms; and the 

Models Repository, used for the storing and management of models. 

6.3 Analytical Processes 

This section will explain the main aspects of the analytical processes to be built within the 

proposed solution. Additionally, usual and particular cases are addressed. 

6.3.1 Fundaments of Analytical Processes 

Analytical processes are a crucial element of the proposed solution. Analytical 

microservices must, in order to be executed, be contained within a process. This is due to 

the Process Layer coordinating the execution, making decisions based on the parameters, 

and balancing the utilization of resources. Even the utilization of only one analytical 

microservice requires the creation of a trivial process with only one step. 
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Such trivial case is depicted in Figure 6-3. The intended standard way of utilization is also 

shown: supporting a business process running in an external IT system. A step of the 

process requiring the assistance of a data analytics-based function proceeds to invoke the 

analytical process by means of the corresponding protocol – e.g. SOAP or REST (Dowalil 

2018, pp. 109‑112) – transmitting the corresponding parameters.  

After the end of the analytical process the results are communicated to the invoking step 

in order to proceed with the business process.  

 

 

Figure 6-3: Trivial analytical process 

 

It is also possible to invoke an analytical process outside of a business process – the most 

common example would be the ad hoc utilization by users. However, the procedure 

described differs very little: mainly the invoking agent must be replaced. As stated before, 

the external invoking agents will be generally referred to as external systems within this 

chapter. 
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A more detailed view of how an analytical process is invoked and executed is provided in 

Figure 6-4. In order to provide a detailed description, the specific object representing the 

composition of analytical microservices will be referred to as Process of Analytical 

Microservices (PAM). Analytical process is considered a comprehensive term referring to 

the whole procedure (managing the invocation, selecting a PAM, etc.), of which the 

executable PAM is a part. 

 

 

Figure 6-4: Detailed execution of an analytical process 

 

The invocation of the process begins with a request placed through the Integration Layer 

calling for the execution of a PAM. This request is received and managed by the Process 

Layer, more specifically by the Process Engine. In order to fulfil the request, a coordinating 

service responsible for managing the execution is instantiated – this service will be referred 

to as Process Coordinating Service (PCS). The service is based on the process description 

contained in the Process Repository, which stores the steps of the PAM together with the 
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corresponding events and parameters. Additional information about the PAMs to be used 

in the decision-making process of the Process Engine – such as area of validity of each 

PAM – can also be stored in the Process Repository. 

After instantiating the PCS, and prior to starting the execution of each aM, the Process 

Engine communicates with the Management and Operations Layer in order to coordinate 

(balance) the utilization of resources – thus managing the scalability of the solution. This 

balancing can result, for example, in a replication and distribution of the instances of the 

aM (controlled by the Management and Operations Layer) or in the asynchronous 

execution of the aM (controlled by the Process Engine). 

The PCS then proceeds with the execution of the PAM. The events representing the 

different steps of the PAM are triggered and communicated to the Message Broker. It is 

possible to transfer parameters – such as the ID of the calling PAM – within the event. 

Another possibility is to use the internal data to pass parameters. 

Upon receiving the messages of the events, the Message Broker communicates their 

occurrence to the subscribed aMs, triggering their execution. It is even possible for a PAM 

to subscribe to an event, thus triggering a sub-PAM within the main PAM. 

For its execution, each analytical microservice will make use of the transferred parameters 

and the required data (from external systems/sources or from the previous aM), which are 

requested through the integration layer. After the execution, the aM proceeds to 

communicate  

 the finalization to the Process Layer (finish event),  

 the performance of its execution to the Management and Operations Layer, and  

 the results of its execution to the Integration Layer (in order to be passed to the 

corresponding consumer). 

The utilization of the PCS enables a loose coupling between the analytical microservices 

while providing a clear overview over the process, allowing its easy management 

(following the concepts in section 4.2.8). It is only necessary for the aMs – and eventually 

the PAMs – to subscribe to the corresponding event in the Message Broker. This 
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component also supports the loose coupling by enabling the asynchronous 

communication between the PCS and the aMs. 

6.3.2 Possible Configurations of Analytical Processes 

As stated before, the process in Figure 6-3 represents the simplest form of a PAM 

constituted by a singular analytical microservice. This is, however, usually not the case. 

As explained in chapter 3, data analytics techniques are to be viewed as processes 

composed by several analytical functions which, in the proposed solution, take form 

through analytical microservices and processes. This form of constitution serves the 

following purposes: 

 the coverage of the different steps of the KDD process, with aMs supporting, for 

example, the data selection and preprocessing steps 

 the creation of complex analytical solutions composed by aMs representing different 

analytical approaches building upon one another (e.g. elimination of outliers followed 

by clustering), also fulfilling the requirements of special analytical solutions (e.g. 

hierarchical learning and reinforcement learning) 

Furthermore, an analytical process may require the utilization of diverse aMs depending 

on the application context in order to increase its accuracy or ensure its usability. Such is 

the case, for example, when the material disposition presents different behaviors 

depending on the type of article considered or when machines perform differently based 

on their make, age, the raw materials employed, etc. The association between the 

application context and the corresponding analytical approaches can be determined using 

the parameters provided by the former (usually the IT system supporting the business 

process). When selecting the appropriate analytical approaches, the Process Engine could 

work in two ways: 

 a PAM exactly corresponding the context parameters is chosen 

 a PAM covering the specified context parameters (among others) is chosen 
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In the second alternative, the ultimate decision regarding which aMs to use will be 

managed by the PCS. This approach allows ensuring the clarity of the analytical processes, 

being able to either create PAMs for each individual situation, or to create different PAMs 

to cover generic situations within an analytical process, being able to extend them to 

consider particular cases. Based on the second alternative, several configurations of 

analytical processes can be considered, as depicted in Figure 6-5. 

 

 

Figure 6-5: Overview of possible configurations of analytical processes 
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An analytical process with multiple versions of the aMs can be used when the same 

fundamental approach is to be used but with small changes based on the particular 

situation. It is, for example, the case of aMs employed to predict the yield of a machine 

used in different lines: although the algorithms may be the same, they are trained using 

distinct data sets for every line – as each can behave differently based on factors such as 

the other machines used, the operators, the materials, the age of the machines, etc. How 

such configuration could look like is illustrated in Figure 6-6, with the PCS deciding which 

branch of the PAM to use depending on the process parameters (e.g. the ID of the work 

station or the line). 

 

 

Figure 6-6: Analytical process with multiple versions of aMs 

 

When the discrepancy between the foreseen situations is too great, it is necessary to use 

an analytical process with different aMs according to the application context. It is, for 
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example, the case of several lines fulfilling the same purpose but using machines from 

different manufacturers: because of the difference in the internal working of the machines 

they may require different analytical approaches to predict the behavior of the lines. A 

model of this configuration is illustrated in Figure 6-7. 

 

 

Figure 6-7: Analytical process with different aMs 

 

However, it is not always necessary to create processes with completely different branches 

for each situation. It is possible to create analytical processes with a limited variation 

of the aMs, subjecting the utilization of only one or several aMs to the parameters 

considered. It is the case, for example, when materials differ in the way they are procured. 

For the purpose of calculating the throughput time of a product, each material type may 

require a different analytical approach in order to calculate the corresponding 

procurement time. However, as the subsequent manufacturing process may be the same, 
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all materials may share one analytical approach for calculating the corresponding time. 

Although in Figure 6-8 a simple example is illustrated in which another version of the aM 

is utilized, it would also be possible to use completely different aMs. In order to execute 

the divergent aM, it is only necessary for the PCS to use the corresponding event, which 

will be different for each aM in the PAM. 

 

 

Figure 6-8: Analytical process with a limited variation of aMs 

 

If the analytical approach for each situation needs a different number of analytical 

functions, the utilization of an analytical process with a varying number of steps is 

required. It is the case, for example, when the data quality in different production lines 

differ: while the input data may be directly usable in some lines, that from other ones may 

require the application of data preparation aMs. A model of this configuration is illustrated 

in Figure 6-9. 
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Figure 6-9: Analytical process with varying number of steps 

 

A step of an analytical process is not composed necessarily by only one aM running at a 

time. It is possible to build analytical process with parallel execution of aMs. Such is 

the case, for example, when the estimation of the throughput time requires the separate 

calculation of the operation and the inter-operation times, which are then utilized in a 

subsequent aM. A model of this configuration is illustrated in Figure 6-10. In order to 

execute the parallel aMs, it is only necessary for the PCS to use the one event to which 

the aMs are associated. 
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Figure 6-10: Analytical process with parallel execution of aMs 

6.3.3 Further Considerations and Particular Cases 

As explained in chapter 3, one important part of data analytics as processes is the 

possibility to perform iterations. This is feasible in the solution by means of the 

Management and Operations Layer, which is able to trigger iterations on its own or on 

request by the aMs. One important application of this capability is the possibility to retrain 

models in order to fine-tune them or to adapt to changing conditions. 

A particular case of the retraining process is constituted by the iterative procedure 

required by a reinforcement learning approach. How such a process could be modelled in 

the proposed solution is illustrated in Figure 6-11. The Management and Operations Layer 

would have, aside from the initial run, the important function of triggering the execution 

(retraining) of the PAM based on the performance reported by the corresponding 
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analytical microservice/process, which would contain the result of the evaluation of the 

reward. This second function, however, is only necessary if the aM/PAM is not capable of 

triggering its own execution based on the reward assessment itself.  

 

 

Figure 6-11: Iterative process for reinforcement learning 

 

As stated in the previous chapters, the capability to run the analytical microservices 

synchronously and asynchronously is necessary to enable scalability and to use particular 

analytical approaches (e.g. instance-based learning). PAMs in the solution are capable to 

do this by managing the scheduling of the triggering events (in coordination with the 

Management and Operations Layers).  

Also relevant for the scalability is the possibility to replicate and distribute the instances of 

the aMs. This would mean that the PCS must be aware of the different instances while 

managing the execution of the PAM. This is possible through the coordination with the 

Management and Operations Layer. 
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6.4 Components and Interfaces 

In this section, a comprehensive description of the main interactions between the 

components introduced will be given. Within the UML language, these interactions are 

known as interfaces. 

A component diagram allows (within the UML language) the representation of the 

components and their interfaces. A simplified version of these diagram applied to the 

solution can be seen in Figure 6-12. A detailed diagram illustrating each interface can be 

found in Appendix A. It is important to take into account that many acts of internal 

communication normally managed by the Integration Layer are not represented even in 

the detailed diagram in order to support readability. 

 

 

Figure 6-12: Simplified component diagram of the solution 
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Additionally to the already mentioned components, the external sources where aMs and 

PAMs can originate are introduced in Figure 6-12: a marketplace, from where they can 

be acquired and downloaded; and the development, representing the corresponding 

programming environment and tools. An external repository fulfils the function of 

intermediate storage before importing the elements. 

The interfaces to be considered are (detailed in Appendix A, with their technical names in 

parenthesis): 

 Request Configuration of PAM (RConfigurePAM) refers to the request from the 

control interface to the Management and Operations Layer (over the Integration Layer) 

to configure a PAM (which can refer to the PAM itself or its composition). 

 Configure PAM (ConfigurePAM) continues the above-described request. It enables 

the Management and Operations Layer to manage the configuration of the PAMs and 

aMs through the Process Engine. Changes to the composition of the PAM may trigger 

the necessity to change the association of aMs to events. 

 Publish aM (PublishAM) triggers, on request by the Management and Operations 

Layer, the publishing of analytical microservices – the association to the corresponding 

events – in the Message Broker. 

 Publish PAM (PublishPAM) triggers, on request by the Management and Operations 

Layer, the publishing of a PAM in the Message Broker (allowing a PAM to invoke 

another). 

 Search PAM (SearchPAM) allows the Process Engine to look up PAMs and their 

characteristics in the Process Repository. 

 Request Run PAM (RRunPAM) refers to the request by an external system (users or 

IT systems) or the control interface to the Management and Operations Layers (over 

the Integration Layer) to run a PAM. To run a PAM may refer to the following actions: 

train, test or apply. It may involve the PAM as a whole or specific aMs contained within 

it. 

 Run PAM (RunPAM) allows the Management and Operations Layer to request the 

Process Engine to run (train, test or apply) a PAM. The request may also originate in 

the Message Broker if a PAM is associated to an event. 
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 Balance Resources (BalResources) enables the Process Engine to coordinate the 

resources utilization with the Management and Operations Layer. This allows 

managing the scalability of the systems and scheduling the execution events in the 

most convenient manner. 

 Trigger Event (TriggerEvent) enables the Process Coordinating Services (contained in 

the Process Engine) to communicate the triggering events of the PAM to the Message 

Broker. 

 Run aM (RunAM) allows the Message Broker to communicate the Analytical 

Microservices Operation component the occurrence of a triggering event, prompting 

it to run the corresponding aM. 

 Search Algorithm (SearchAlgorithm) allows the Analytical Microservices Operation 

component to look up aMs constituted by trainable algorithms in the Algorithms 

Repository, in order to run them or access information about them. 

 Search Model (SearchModel) allows the Analytical Microservices Operation 

component to look up aMs constituted by models in the Models Repository, in order 

to run them or access information about them. 

 Request Data (RData) allows the Analytical Microservices Operation component to 

request the Integration Layer for the data (from external or internal sources) required 

for the execution of the aMs. It can also be used by the Management and Operations 

Layer in order to assess the accuracy of the current PAMs by comparison with the 

results contained in the systems involved (feedback). 

 Access External Data (AccessDataE) is utilized by the Integration Layer in order to 

access and transfer the data required from external data sources. 

 Access Internal Data (AccessDataI) is utilized by the Integration Layer in order to 

access and transfer the data required from internal data sources. 

 Report Performance (RepPerform) allows the Analytical Microservices Operation 

component to report the performance measured during the execution of an aM. 

 Report Finalization (RepFinish) allows the Analytical Microservices Operation 

component to send the finish event to the Process Engine, marking the end of the run 

of an aM. 
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 Report Results (RepResults) allows the Analytical Microservices Operation component 

to communicate the results of the run of an aM to the Integration Layer which then 

sends them to the corresponding consumer. 

 Communicate Results (ComResults) is used by the Integration Layer in order to 

communicate results to the external systems – by either transferring them to the 

invoking system or by means of storing them in the corresponding data sources. 

 Save Results (SaveResults) is used by the Integration Layer in order to store 

intermediate results in the internal data component. 

 Save Model (SaveModel) is used by the Management and Operations Layer to trigger 

the storing of a trained model with acceptable accuracy in the Models Repository (after 

being temporarily stored in the Analytical Microservices Operation component). 

 Request Status (RStatus) allows the control interface to request information about 

the working status of the solution (e.g. performance of the PAMs) from the 

Management and Operations Layer (over the Integration Layer). 

 Request Information about aM (RInfoAM) enables the Integration Layer to request 

information about the interface of an aM in order to manage its integration (e.g. for 

the connection to the data sources). 

 Download aM (DownloadAM) represents the process of downloading an aM from 

the marketplace and adding it to the external repository. 

 Download PAM (DownloadPAM) represents the process of downloading a PAM from 

the marketplace and adding it to the external repository. 

 Save Developed aM (SaveDevAM) represents the process of saving a developed aM 

into the external repository. 

 Save Developed PAM (SaveDevPAM) represents the process of saving a developed 

PAM into the external repository. 

 Import aM (ImportAM) allows importing an aM from the external repository (using 

the Integration Layer to manage the request). This interface can be triggered by the 

configuration of a PAM. 
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 Import PAM (ImportPAM) allows importing a PAM from the external repository (using 

the Integration Layer to manage the request). This interface can be triggered by 

configuration of a PAM. 

6.5 Description of the Main Utilization Forms 

In this section the main utilization forms of the proposed solution will be described. The 

representation form chosen is the sequence diagram (provided by the UML language), 

which shows the participants, the way they interact as messages (with arrows), the main 

parameters of such messages (within parenthesis in their description), and the processes 

(with activation bars). 

First of all, it is important to consider the configuration sequence, depicted in Figure 

6-13. This sequence allows tasks such as changing the composition of the PAMs (aMs 

involved and their order) and the settings and parameters utilized (e.g. for the area of 

application). These changes may lead to a publish message to accommodate the aMs to 

the corresponding events in order to match the intended execution order in the PAM. 

The configuration sequence is intimately related to those for training and testing as, 

depending on the changes, it may be necessary to trigger a training process and/or test 

the accuracy of the models. 

The configuration will normally be started as a request to the Management and 

Operations Layer (M & O Layer in the diagram), although it is conceivable for this layer to 

start it itself as part of continuous improvement processes. 

Within the parameters, PAMid refers to the identifier of the PAMs and aMid to that of 

the analytical microservices. 
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Figure 6-13: Configuration sequence 
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The training sequence, illustrated in Figure 6-14, is the obliged step before applying 

many – albeit not all – of the aMs.  

Once the Process Engine is done selecting and instantiating the Process Coordinating 

Service (using the internal message InstantiateCoordinatingService), the latter initiates the 

process of training each of the affected algorithms into models (represented as a loop in 

the diagram). During the execution, the required data is acquired through the Integration 

Layer, which manages the connection – not illustrated – to the internal and external data 

sources. 

The diagram also represents the test sequence as sub-process within the 

training – although it is possible to invoke it separately, which is not depicted in order to 

avoid redundancy. If the training process deems it necessary, the test sequence can be 

invoked in order to provide further information about the performance of a model – for 

example, utilizing a different data set as the one used for training. 

Based on the observed performance, the Management and Operations Layer can decide 

if the trained model is acceptable. In the affirmative case, the model is stored. Should the 

model not fulfil the expected performance, the training process can be restarted with 

difference parameters (using the internal message ChangeParameters) or using a different 

algorithm/aM (using the internal message ChangeaM). 

The objective of the training sequence is not only to generate models. It can also – in 

collaboration with the configuration sequence – contribute to changing PAMs, creating 

new branches, determining the best area of application, or changing the aMs utilized in 

order to improve the accuracy of the process. 
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Figure 6-14: Training sequence 
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The messages are represented as synchronous (arrow with full line). Nevertheless, the 

invoking process of the PAMs and the aMs may as well function asynchronously. This can 

be specified by the external actor or be the result of the coordination between the Process 

Engine and the Management and Operations Layer in order to balance the resources. 

The application sequence, depicted in Figure 6-15, allows the utilization of the models 

at the request of an external system (users or IT systems) or through internal 

triggering – for example, regular executions scheduled as jobs in the Management and 

Operations Layer. 

The structure is similar to that already explained in the training sequence: a Process 

Coordinating Service and the involved aMs are executed until the PAM is complete. A key 

difference resides in the handling of the results of the analytical microservices. These are 

conveyed, after the execution, to the Integration Layer, which then proceeds to store them 

internally – for later usage or in order to be used by the following aM – and, at the 

finalization of the PAM, to communicate them to the calling external system. 

Also of importance is the retraining sequence. This allows the adaptation of the PAMs 

and aMs to changes in the application environment. It can be triggered by a specific 

request or by Management and Operations Layer as part of a continuous improvement 

process. This could consist of regular retesting, comparisons of the results with the data 

about the actual occurrences in the external system (feedback), and monitoring. When 

the performance is detected to fall below acceptable levels, the retraining is deemed 

necessary.  

The sequence is illustrated in Figure 6-16. It also contains an optional test sequence (in 

case of regular retesting) and the optional triggering of a training sequence. 

As with the training sequence, the application and retraining sequences also allow the 

asynchronous execution of the aMs if required. 
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Figure 6-15: Application sequence 
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Figure 6-16: Retraining sequence 
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The depiction of the sequences has been simplified in order to aid their comprehensibility, 

showing only the main aspects. Additional actions of lesser relevance (e.g. storage of the 

performance data) have been omitted. 

Furthermore, these sequences represent the main utilization forms of the solution. 

Additional utilization forms for side activities (e.g. importing an aM) are also possible. 

6.6 Summary 

The proposed solution consists of several components. The analytical microservices (aMs) 

encapsulate the functionalities of trainable algorithms as well as pre-trained or directly 

applicable models. This allows using a wide range of analytical approaches, from simple 

mathematical models to data mining, even facilitating the utilization of knowledge 

transfer. Along with enabling the bidirectional data communication, the interfaces of the 

aMs can receive parameters and settings as input. 

Main characteristics of aMs are: 

 their ability to be dynamically instantiated 

 the possibility to easily select the algorithm and model best suitable for each situation 

 the possibility to compose aMs into analytical processes 

This allows providing analytical functionalities adapted to the needs of the underlying 

business processes. 

The described analytical environment is composed of three layers assisting the utilization 

of aMs: 

 The Integration Layer handles all communication within the solution and with the 

external environment (even covering ETL functions if needed). 

 The Process Layer handles the analytical processes. It contains the Process Engine, 

which is responsible for managing the coordinating services controlling the execution 

of the corresponding analytical process and deciding which Process of Analytical 
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Microservices (PAM) to execute based on the available parameters. The execution of 

PAMs and aMs is handled using events to which they subscribe. 

 The Management and Operations Layer is responsible for administrating the system, 

managing the execution of the functionalities and the corresponding resources. 

Furthermore, it monitors the performance of PAMs and aMs, triggering the required 

change processes (e.g. retraining of aMs) should it fall below acceptable levels. It also 

handles the scalability of the solution through the asynchronous execution, replication, 

and distribution of the aMs. 

The correspondence of these components with those of the SOA Reference Architecture 

was analyzed in order to prove their completeness. 

The analytical processes allow creating complex analytics and covering different steps of 

the KDD process. In the proposed solution, an aM must be contained in a process in order 

to be executed (even if it is only one). Analytical processes are to be invoked from the step 

of a business process (in an external IT system) in order to fulfill an analytical request. A 

Process Coordinating Service (PCS) will be instantiated in order to manage the execution 

of the aMs – with the corresponding analytical steps contained within each PAM – by 

triggering the events when needed. This combination of orchestration (performed by the 

PCS) and choreography (through the asynchronous communication via events) enables a 

loose coupling between the aMs while providing a clear overview over each process, 

allowing their easy management. 

When selecting a PAM, it can either match the parameters of the context or just cover 

them (among others). The second case leads to PAMs where further decisions can be 

made during its execution as to which aMs should be utilized. As a result, different types 

of configurations of analytical processes emerge which, depending on the level of 

variations between the cases covered, could allow choosing between different versions of 

the aMs, totally different aMs, or even different process branches (which could also have 

a divergent number of steps). Furthermore, the parallel execution of aMs and branches 

within a process is also covered. The utilization of iterations within processes (e.g. for 

reinforcement learning) is also possible. 
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The structure of the solution can be illustrated with a component diagram, with interfaces 

representing the interactions between the components. Apart from those for execution 

and data communication, a number of additional interfaces are required, for example, for 

searching for PAMs, balancing the resources, publishing an aM in order to associate it to 

an event, etc. 

Of the several possible utilization forms of the solution, five were detailed because of their 

importance to perform the main functionalities: 

 Configuration allows changing the composition of PAMs and the settings. 

 Training is used, as its name states, for training algorithms into models, as well as 

changing PAMs (in collaboration with configuration). 

 Testing is used for measuring the performance of models. 

 Application covers the utilization of a PAM (and the corresponding aMs) to fulfill a 

request. 

 Retraining allows triggering the adaptation to changes in the environment. 

 



 

 

 

 

 



 

 

7 Application Examples and Critical 
Evaluation 

The validation of the proposed solution is challenging, as it needs to consider the current 

situation of the enterprise and the manufacturing environment in which it is applied, as 

well as how they evolve over time. Furthermore, there are crucial hidden benefits 

originating in the avoided losses and the efficiency gains. Likewise important is the 

consideration of different production contexts, as the complexity involved may influence 

the benefits of the solution in comparison to other alternatives. For this purpose, two 

validation methods are elaborated in this chapter. 

The first validation procedure builds upon the evaluation of different scenarios in order to 

analyze a wide spectrum of situations. The assessment is based on a utility analysis of the 

solution alternatives in the proposed scenarios. 

The second validation procedure attempts to make an economic analysis in order to 

complement and extend the findings of the first procedure. Additionally, data of an 

exemplary industrial enterprise are utilized.  

7.1 Analysis of Application Scenarios 

This section provides an evaluation of the proposed solution in different scenarios and a 

comparison with other approaches. The setting of the scenarios and the utilized formula 

are also described. 
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7.1.1 Formula for Multi Criteria Analysis 

The intention is to evaluate the convenience of the proposed solution in a number of 

different scenarios, while analyzing at the same time the behavior in relation to 

influencing parameters. 

For the evaluation it is necessary to recall the hypothesis of the work: 

»The construction and usage of production logistics analytics as microservices improves 

the former’s benefit-cost ratio under the requirements of Personalized Production« 

The benefit-cost ratio is used to evaluate the solution and to compare it to alternative 

approaches: the higher the ratio, the better the approach. 

With the objective of the evaluation being known (to determine the value of the benefit-

cost ratio) the next step is to choose a method to perform the evaluation. As the scenarios 

to be proposed only intend to represent the main aspects of different situations, no deep 

level of detail is to be provided. This excludes the utilization of exact quantitative methods. 

Furthermore, the employed method should be able to consider different factors with 

varying importance depending on the specific context. 

The decision theory provides a great of number of possibilities to support the decision 

making process. Based on the mentioned conditions, the evaluation method should 

belong to the area of Multi(ple) Criteria Decision Making (MCDM) – because of the 

consideration of different factors – specifically to those for Multi(ple) Attribute Decision 

Making (MADM), as only one main objective is to be evaluated (Götze 2008, p. 173). 

Of the methods considered within MADM, the one chosen is the Utility Analysis.  

Zangemeister (2014, p. 45) defines this approach – known as Nutzwertanalyse in 

German – as  an “analysis of a set of complex action alternatives with the purpose of 

ordering the elements of this set according to the decision maker's preferences regarding 

a multidimensional target system”. This allows considering several factors of different 

nature (quantitative, qualitative, assumptions, etc.) without requiring an elevated level of 

detail (Kühnapfel 2019, pp. 2‑3). Other MADM methods, such as the Analytic Hierarchy 
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Process (AHP), the Multi Attribute Utility Theory (MAUT), and the Preference Ranking 

Organization Method for Enrichment Evaluations (PROMETHEE), require a level of detail 

that is not provided by the scenarios to be considered and a level of complexity 

unnecessary for the intended application – as such methods were developed to analyze 

thoroughly defined alternatives (Götze 2008, pp. 188‑229). 

As expressed throughout this work, the flexibility of the solution plays in important role 

in its utility. The evaluation considers flexibility as consisting of four elements (Slack 1983, 

p. 7, 1987, p. 39; Koste et al. 1999, pp. 78‑79; Koste et al. 2004, p. 172): 

 The range-number expresses “the number of possible options that a system or 

resource can achieve”. 

 The range-heterogeneity “addresses the degree of difference between different 

options”. 

 The mobility represents how easily it is to move from one state to another. 

 The uniformity refers to “any alteration or deterioration of the system associated 

with invoking a flexible response”. 

To analyze the utility of each scenario, it is necessary to create a formula considering the 

influencing factors (including those required for measuring flexibility). The aim is to 

evaluate the ability of each solution to apply analytical approaches to address the 

information requirements of enterprises with a specific context and needs, and the 

associated costs/effort. 

The formula consists of the following components: 

The direct utilization (DU) represents to which degree each solution is able to solve the 

analytical problems it is faced with. This will not only depend on the number of analytical 

approaches allowed by the solution (range-number), but also on its ability to use different 

techniques (range-heterogeneity) – e.g. Is it able to only use visual analytics or can more 

advanced data mining and machine learning approaches be utilized? An analytical 

solution being specifically developed for the intended purpose will also provide a higher 

direct utilization than the use of generic applications. 
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Possible values for this factor range between 1 (low ability to solve the analytical problems) 

and 5 (high ability to solve the analytical problems). 

The further use (FU) represents the capability of each solution to adapt to changes in 

the manufacturing environment in which they are applied. As such, it covers the ease with 

which analytical functionalities can be update or replaced by new ones (mobility). It also 

considers if the adaptation causes any loss in the functionality (performance, accuracy, 

etc.) of the analytical functionalities (uniformity).  

It is important to bear in mind that the further use will also contemplate the development 

efforts associated with adapting the solution. Although these could also be considered by 

the costs factor, this way of working avoids evaluating the same flexibility components 

twice. The analysis of the industrial use case (section 7.2) will, on the other hand, consider 

the emerging costs of the adaptations because of the characteristics of the cash flow 

analysis employed.   

Possible values for this factor range between 1 (low mobility and uniformity) and 5 (high 

mobility and uniformity). 

The benefit is composed of an addition of the direct utilization and the further use. 

Possible values range therefore between 0 (no benefit) and 10 (high benefit). 

The general investments (GI) represent costs of discrete occurrence. This category 

covers the investment in infrastructure, the acquisition and development of the solution 

and analytical functionalities (with the above mentioned exception of adaptation costs), 

and other costs aspects related to the implementation of the solution (e.g. integration 

with other systems).  

Possible values for this factor range between 1 (low investments required) and 5 (high 

investments required). 

The running costs (RC) represent costs of continued occurrence. This category includes 

elements such as license costs, monthly fees, etc. Through approaches such as  

pay-per-use models, running costs can reduce the implementation costs – the resulting 

influence of time will be regarded in the cash flow analysis in section 7.2. From a flexibility 
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point of view, the pay-per-use models can aid the mobility of the solution. There is, 

however, no duplication by the evaluation of the related flexibility component, as the 

emerging costs are the counterpart of the mobility already considered under further use.  

Possible values for this factor range between 1 (low running costs) and 5 (high running 

costs). 

The cost is composed of an addition of the general investments and the running 

costs – thus covering the main categories of IT costs (Dürr 2013, p. 98). Possible values 

range therefore between 0 (low costs) and 10 (high costs) – the value 0 is, however, only 

indicative, as it must be avoided in order to be able to calculate the ratio.  

As a result, the utility represents the benefit-costs ratio. The higher the value, the greater 

the utility provided by the solution in the analyzed scenario. 

Furthermore, the formula will also employ weighting factors (w1, w2, w3, and w4). They 

allow adjusting the influence of a factor depending on the context, with values ranging 

between 0 (no importance) and 1 (full consideration). They are necessary in order to better 

represent the reality of each enterprise type. For example, should an enterprise consider 

the burden (costs) of implementing an analytical solution more important than the benefit 

of being able to adapt the analytical functionalities (a usual situation in small enterprises), 

the weight of the further use factor will be below 1. 

The resulting formula for the assessment of the benefit-cost ratio – which will be referred 

to as utility – is shown in Equation 1. 

 

7.1.2 Setting of the Scenarios 

The objective of the scenarios is to analyze how the utility of the proposed solution 

behaves under different conditions and how this behavior compares to those of the 

alternative approaches mentioned in section 5.4. The scenarios will therefore be 

(1) 
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composed of the intersection of two determining elements: the enterprise type and the 

considered function group. 

The enterprise types (E) describe organizations with products and manufacturing systems 

of different complexity. The main condition is that a degree of personalization of the 

products must be possible.  

As stated in section 2.1.2, the complexity in an enterprise consists of four dimensions: 

variety, heterogeneity, dynamic, and opacity. To establish the relation between each 

enterprise type and their corresponding complexity according to these dimensions, it is 

first necessary to characterize them. For these purpose, the following parameters are to 

be used: 

 The intricacy of their products (product intricacy). This depends on factors such as 

the number of elements in each product and how intricate their composition is. This 

parameter is equivalent to the product complexity mentioned in section 2.1.2 (the 

term intricacy is used to avoid confusions with the complexity of the enterprise types). 

 The number of basic product types offered (basic types). 

 The number of possible product variants offered (variants). These are a result of 

configuring/personalizing the basic types (being influenced by the product intricacy). 

 The number of different raw material employed (raw materials). This parameter is 

also directly influenced by the product intricacy. 

 The number of work stations necessary to manufacture the products (work stations). 

 The typical yearly sales of an enterprise within the enterprise type (yearly sales), 

expressed in euros. 

The variety dimension is influenced by the number of basic product types offered. The 

heterogeneity dimension contemplates the number of possible variants.  

The dynamic dimension is determined by how sensitive the enterprise type is to changing 

conditions in: 

 The source market, influenced by the number of raw materials. Many raw materials 

mean a high dependency on different vendors. 
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 The manufacturing environment, influenced by the number of work stations. It will 

reflect, for example, the possible effects of a change in the manufacturing technology. 

 The sales market, influenced by the number of possible variants. The more customer 

requirements addressed, the more sensitive the enterprise becomes to changes in the 

market. 

Lastly, the opacity dimension will consider the product intricacy as well as the number of 

work stations, raw materials and variants. The more elements involved and the more 

intricate they are integrated with each other, the higher the possibility that the enterprise 

loses the capability to understand the situations in the supply chain and in the own 

manufacturing processes. 

The yearly sales are used mainly to provide an idea of the size of a typical example 

enterprise within the enterprise type (which is also reflected in the number of work 

stations). 

Enterprise types and Function Groups 

The three enterprise types to be considered are: 

 E1 represents a company with relatively simple products and reduced personalization 

possibilities (e.g. electronic control units where the adaptation to the main product 

types is done through changes to the embedded software). This type can be 

exemplified by an enterprise characterized by the following parameters: 

o product intricacy: low 

o basic types: 10 

o variants: 1,000+ 

o raw materials: 100 

o work stations: 20 

o yearly sales: less than 100 million euro 

Enterprises in this type will possess a low heterogeneity and a low to medium variety. 

A high variety would be possible, it would however imply diversifying the business. 

They will also typically have a low dynamic (because of their low exposure) and a low 
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to medium opacity (which could be high if, for example, they have little visibility over 

their supply chain or processes). 

 E2 represents providers of consumer products with several degrees of personalization 

(e.g. the provision of furniture and construction elements such as windows, which 

allow configuring the size, material, frame, etc.). This type can be exemplified by an 

enterprise characterized by the following parameters: 

o product intricacy: medium 

o basic types: 70 

o variants: 50,000+ 

o raw materials: 350 

o work stations: 50 

o yearly sales: between 100 and 1,000 million euro 

Enterprises in this type will possess a medium heterogeneity and a medium to high 

variety. A low variety would also be possible, it would however represent small 

producing enterprises with a limited number a products. They will typically have a 

medium opacity (which could be low with a good control over the supply chain and 

manufacturing processes) and a medium dynamic (which could be high if they are in 

a rapidly changing environment).    

 E3 represents providers of industrial products. They normally offer a limited number 

of basic types which are highly personalizable (e.g. machine tools). This type can be 

exemplified by an enterprise characterized by the following parameters: 

o product intricacy: high 

o basic types: 35 

o variants: 100,000+ 

o raw materials: 1,500 

o work stations: 145 

o yearly sales: greater than 1,000 million euro 

Enterprises in this type will possess a high heterogeneity and a medium to high variety. 

A low variety would also be possible, it would however represent the production of a 

limited number of highly personalizable products. Giving the high number of elements 
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and the corresponding exposure, both the opacity and the dynamic will be medium 

to high. 

The enterprise types and parameters were modelled after real enterprises. Their relations 

to the complexity dimensions are illustrated in Figure 7-1. 

 

 

Figure 7-1: Relations between complexity dimensions and enterprise types 

 

The function groups (F) refer to different production management functions that need to 

be supported by the analytical solution. These are based on the PPC function assignment 

presented in Figure 2-4 and are as follows: 

 F1: Program planning 

 F2: Material requirements planning + F1 

 F3: Capacity requirements planning + F2 

 F4: Production control + F3 

Furthermore, the functions within the function groups are additive. This means that every 

function group considers not only the corresponding PPC functions – as illustrated in 

Figure 2-4 – but also the ones of the previous function groups (in the above presented 

order). For example, F2 will include, in addition to the functions for material requirements 

planning, those for program planning in F1. 
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This supports simplicity, as the main objective is to analyze the increment in the number 

and intricacy of functions. 

Quantification of Scenarios 

Before performing the evaluation of the scenarios, it is necessary to take several conditions 

into account: 

 The considered scenarios are subject to the challenges presented by Personalized 

Production, originating – as stated in chapter 2 – in the deliver phase (e.g. expectancy 

of delivery times close to mass production) and the disposition phase (e.g. increasingly 

turbulent production environment, unknown demand of raw and semi-finished 

goods, etc.). 

 The assignment of values to the factors for each approach is not absolute but 

performed in a relative manner to the valuation of the other approaches. 

 

 

Figure 7-2: Requirements of scenarios 
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The scenarios are to be quantified using the components of the utility evaluation formula 

taking into account the attributes of each enterprise type, the characteristics of each 

function group, and the above explained conditions. In Figure 7-2 it is described how a 

scenario is created by combining an enterprise type and a function group. Furthermore, 

it shows how the main characteristics of the scenarios change with an increase in 

complexity from top to bottom (mainly driven by the enterprise type) and a rise in the 

need for accuracy and integration from left to right (stipulated by the needs of the 

function groups, which become increasingly intricate and sophisticated). 

 

Table 7-1: Quantification of scenario E1 – F1 

   Benefit Cost  

Scenario Solution W1 DU W2 FU W3 GI W4 RC Utility 

E1 

F1 
Business Intelligence 

Solutions 
0.7 4 0.5 2 1 2 1 1 1.27 

F1 Data Mining Suites 0.7 4 0.5 4 1 3 1 1 1.20 

F1 Tailored Solutions 0.7 5 0.5 1 1 2 1 1 1.33 

F1 Analytics as a Service 0.7 4 0.5 4 1 2 1 2 1.20 

F1 Analytical Microservices 0.7 5 0.5 5 1 3 1 2 1.20 

DU: Direct Utilization; FU: Further Use; GI: General Investments; RC: Running Costs; W1: Weight Direct  
Utilization; W2: Weight Further Use; W3: Weight General Investments; W4: Weight Running Costs 

 

As an example, in Table 7-1 the quantification of the scenario E1 – F1 is shown. The 

combination of the simplest enterprise type with the least intricate function group allows 

for a high direct utilization of all solutions, although this is slightly better in the cases of 

the tailored solutions and the analytical microservices, as they have the highest accuracy. 

The further use of the business intelligence solutions and the tailored solutions is impaired 

by the high efforts necessary to adapt the solutions to changes; the analytical 

microservices, on the other hand, enjoy a good rating thanks to their high flexibility. The 

weight affecting the direct utilization (W1) has a value lower than 1 to consider the fact 

that enterprises of type E1, which usually are small, place more importance on cost factors 

than on benefit. This weight can, however, increase in the more sophisticated function 

groups, as a low accuracy of the solution could have a more detrimental effect. The weight 
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affecting further use (W2) is also lower than 1 because of the low dynamic of E1 

enterprises. 

Intricate solutions – data mining suites and analytical microservices – require higher 

general investments than their counterparts, though the final rating will also depend on 

the enterprise complexity (e.g. the bigger the enterprise, the higher the implementation 

costs). Highly flexible software solutions – Analytics as a Service and analytical 

microservices – will probably also have higher running costs, especially as they are prone 

to be used within pay-per-use models. 

The example in Table 7-2 shows the quantification of scenario E2 – F2. The direct 

utilization of solutions that do not allow for a specific adaptation to the production 

requirements – a fact that becomes more important with increasing complexity and 

sophistication of enterprise type and function group – is reduced in comparison to the 

previous scenario. The further use of solutions less flexible than the analytical 

microservices is also reduced due to the higher dynamic of E2 enterprises (with more 

materials and variants). Accordingly, W1 and W2 are also adjusted upwards.  

 

Table 7-2: Quantification of scenario E2 – F2 

   Benefit Cost  

Scenario Solution W1 DU W2 FU W3 GI W4 RC Utility 

E2 

F2 
Business Intelligence 

Solutions 
0.8 2 0.8 1 1 3 1 2 0.48 

F2 Data Mining Suites 0.8 3 0.8 3 1 3 1 2 0.96 

F2 Tailored Solutions 0.8 5 0.8 1 1 4 1 1 0.96 

F2 Analytics as a Service 0.8 3 0.8 3 1 2 1 2 1.20 

F2 Analytical Microservices 0.8 5 0.8 5 1 3 1 3 1.33 

DU: Direct Utilization; FU: Further Use; GI: General Investments; RC: Running Costs; W1: Weight Direct  
Utilization; W2: Weight Further Use; W3: Weight General Investments; W4: Weight Running Costs 

 

Due to the higher analytical requirements of the function groups, the general investments 

needed by the tailored solutions increases, representing the development effort involved. 

Likewise, the costs of business intelligence solutions and data mining suites increase in 
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order to represent the need for solutions with more features (and therefore more 

expensive). 

The example in Table 7-3 shows the quantification for the same enterprise type as before 

(E2) but with a more sophisticated function group (F3). One resulting effect is that W1 

increases its value to 1. This is due, as explained before, to the higher importance of 

accuracy in more sophisticated function groups. Also, demand-focused function groups 

such as F1 and F2 could profit in E2 from Assemble-to-Order approaches, allowing to  

pre-plan several modules and components, reducing the stress on the demand forecast 

functions. F3 and F4 are, on the other hand, more affected by the intricacy of the 

production (more raw materials and work stations), hence increasing the need for 

accuracy. 

 

Table 7-3: Quantification of scenario E2 – F3 

   Benefit Cost  

Scenario Solution W1 DU W2 FU W3 GI W4 RC Utility 

E2 

F3 
Business Intelligence 

Solutions 
1 2 0.8 1 1 3 1 2 0.56 

F3 Data Mining Suites 1 3 0.8 2 1 3 1 2 0.92 

F3 Tailored Solutions 1 5 0.8 1 1 4 1 1 1.16 

F3 Analytics as a Service 1 3 0.8 3 1 3 1 2 1.08 

F3 Analytical Microservices 1 5 0.8 5 1 3 1 3 1.5 

DU: Direct Utilization; FU: Further Use; GI: General Investments; RC: Running Costs; W1: Weight Direct  
Utilization; W2: Weight Further Use; W3: Weight General Investments; W4: Weight Running Costs 

 

Another effect is the increase in general investments for Analytics as a Service. This is due 

to the additional effort required to integrate the solution in the manufacturing 

environment – a requirement that increases in manufacturing-based function groups (F3 

and F4). 

The quantification of scenario E3 – F4 is shown in Table 7-4. As to be expected, less 

capable and less flexible solutions see their direct utilization and further use reduced. It 

must also be mentioned that, in order to balance the inadequacy of an approach (e.g. 
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business intelligence solutions for functions in F4), the cost factor is increased. This 

represents, for example, additional development efforts. However, it does not guarantee 

a good benefit (direct utilization and further use) but rather the provision of minimal 

required usability, as the solution will still be technologically constrained. 

 

Table 7-4: Quantification of scenario E3 – F4 

   Benefit Cost  

Scenario Solution W1 DU W2 FU W3 GI W4 RC Utility 

E3 

F4 
Business Intelligence 

Solutions 
1 1 1 1 1 5 1 2 0.29 

F4 Data Mining Suites 1 2 1 2 1 4 1 2 0.67 

F4 Tailored Solutions 1 5 1 1 1 5 1 1 1.00 

F4 Analytics as a Service 1 2 1 2 1 3 1 2 0.80 

F4 Analytical Microservices 1 5 1 5 1 3 1 3 1.67 

DU: Direct Utilization; FU: Further Use; GI: General Investments; RC: Running Costs; W1: Weight Direct  
Utilization; W2: Weight Further Use; W3: Weight General Investments; W4: Weight Running Costs 

 

7.1.3 Evaluation of Scenarios 

The results of the evaluation of the proposed analytical microservices solution in the 

twelve scenarios created by combining enterprise types and function groups are shown in 

Table 7-5. 

While the production management functions considered in function groups F1 and F2 are 

mainly affected by the material intricacy (product intricacy and raw materials), function 

groups F3 and F4 are more sensitive to structural intricacy. The latter is not only dependent 

on the number of work stations but also on product intricacy, as this will influence the 

configuration of the associated manufacturing processes. 

Two clear patterns can be recognized in Table 7-5:  

1. The more complex the production of the enterprise type, the greater the utility of the 

proposed solution 
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2. The more production management functions supported by the proposed solution and 

the more sophisticated their nature, the greater its utility 

Complex production environments (e.g. materials with many personalizable features) and 

demanding production management systems (e.g. requiring predictive capabilities for a 

large number of different materials) increase the necessity for more and accurate 

analytical algorithms and models – in many cases, for different versions of the same 

analytical approach. 

 

Table 7-5: Utility of the microservices-based solution in the evaluated scenarios 

  Function Group 

  F1 F2 F3 F4 

  
Program 
Planning 

Material  
Requirements 

Planning 

Capacity  
Requirements 

Planning 

Production 
Control 

Enterprise Type 

E1 

Product intricacy: low 
Basic types: 10 
Variants: 1,000+ 
Raw materials: 100 
Work stations: 20 
Yearly sales: LT 100 MM € 
Variety: low to medium 
Heterogeneity: low 
Dynamic: low 
Opacity: low to medium 

1.20 1.20 1.30 1.30 

E2 

Product intricacy: medium 
Basic types: 70 
Variants: 50,000+ 
Raw materials: 350 
Work stations: 50 
Yearly sales: BT 100 & 1,000 MM € 
Variety: medium to high 
Heterogeneity: medium 
Dynamic: medium 
Opacity: medium 

1.33 1.33 1.50 1.50 

E3 

Product intricacy: high 
Basic types: 35 
Variants: 100,000+ 
Raw materials: 1500 
Work stations: 145 
Yearly sales: GT 1,000 MM € 
Variety: medium to high 
Heterogeneity: high 
Dynamic: medium to high 
Opacity: medium to high 

1.67 1.67 1.67 1.67 
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This also means that the inverse proposition has to be examined: for environments of low 

complexity and requirements, the utility of the solution may be lower than that of other 

approaches. The evaluation of the alternative approaches described in section 5.4 is 

presented in Table 7-6 in order to perform this comparison (a table with a detailed 

valuation of factors and weights is given in Appendix B).  

 

Table 7-6: Utility comparison of the different approaches 

  Solution 

  

Business Intelligence 
Solutions 

Data  
Mining 
Suites 

Tailored 
Solutions 

Analytics as a 
Service 

Analytical 
Microservices 

Scenario 

E1 

F1 1.27 1.20 1.33 1.20 1.20 
F2 1.03 1.20 1.33 1.20 1.20 
F3 0.65 0.98 1.13 1.10 1.30 
F4 0.65 0.98 0.90 1.10 1.30 

E2 

F1 0.80 1.28 1.20 1.60 1.33 
F2 0.48 0.96 0.96 1.20 1.33 
F3 0.56 0.92 1.16 1.08 1.50 
F4 0.30 0.92 1.16 0.92 1.50 

E3 

F1 0.80 1.40 1.20 1.40 1.67 
F2 0.60 1.20 1.20 1.20 1.67 
F3 0.29 0.67 1.00 0.80 1.67 
F4 0.29 0.67 1.00 0.80 1.67 

 

As stated when comparing the approaches, they differ in the range of analytical 

capabilities offered. This is especially true for the business intelligence solutions, which 

have a reduced area of application, and to some degree for the data mining suites and 

Analytics as a Service. For instance, the business intelligence solution in scenario E3 – F3 

becomes overly expensive when trying to address the complexity requirements and even 

then it is only able to deliver a low benefit (as explained in the section on quantification 

of scenarios). 

Analytics as a Service can be considered as similar to data mining suites, with enhanced 

modularity. A disadvantage presented by these approaches – apart from the above 

mentioned limitation in their capabilities – is the lack of integration with the IT landscape, 
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reducing their benefit in function groups depending on the creation of feedback loops 

(F3 and F4). 

Tailored solutions present the best utility for both, simple and very complex situations. 

They offer a specifically created, adapted, and integrated solution, though not without 

drawbacks. Their main disadvantages are the high development costs (which increase with 

the amount of algorithms and models required) and their inability to flexibly adapt, 

requiring new development efforts (reflected in the low further use). 

The utilization of tailored solutions in simple scenarios is favored by the fact that little 

development effort is required. In very complex scenarios, on the other hand, the benefit 

of tailored solutions manages to outweigh the costs. These solutions are, however, 

outperformed by the flexibility of analytical microservices. In scenarios in-between, a 

relatively inexpensive solution with some modularity (e.g. data mining solutions) can 

achieve a greater utility than tailored solutions. 

As conjectured, the utility of analytical microservices exceeds that of other solutions in 

complex situations, but falls short in scenarios with low requirements. Analytical 

microservices profit mainly from their flexibility and their capability to provide accurate 

solutions in each situation. Their cost structure is relatively good, although in many cases 

worse than that of other approaches. However, competing approaches will also see their 

costs increase in order to address complex situations. Especially important are the running 

costs, as analytical microservices would probably be marketed on a pay-per-use model. 

These are thus valuated higher than in the other approaches in order to represent the 

additional load. 

7.2 Analysis of an Industrial Use Case 

Within this section, an industrial use case will be described and the application of the 

proposed solution to it will be evaluated. Additionally, a comparison with the tailored 

solutions approach will be performed. 
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7.2.1 Description of the Industrial Use Case 

To further validate the results of the scenario evaluation, this section will focus on the 

analysis of an industrial use case.  

The chosen industrial use case represents a manufacturer of consumers electronics located 

in Germany. The data was acquired as part of a research project with a focus on the 

development of a software prototype based on the approach presented in this work. 

The analyzed production site concentrates on the fabrication and commercialization of 

around 80 basic product types, composed by workstations, servers, thin clients, and 

storage systems. The production has a combined daily capacity of 13,000 units (12,000 

workstations and thin clients, 1,000 servers and storage systems) and requires the 

utilization of several hundred types of raw materials. 

Theoretically, the production site should be able to manufacture more than 900,000 

product variants. This variety, however, is highly influenced by two main features with a 

great number of options: the processor (up to 20 alternatives) and the hard disc drive 

(more than 100 alternatives).  

The use case concentrates on the manufacturing of motherboards to be later employed 

in other products. The production lines combine SMD (surface-mounted device) and THT 

(through-hole technology) processes in about 110 work stations (distributed among 10 

lines). Approximately 340 different types of motherboards are produced (with continuous 

changes). An analysis of the data showed that, in average, an annual 23% of the 

motherboard types to enter production have never been produced before and that 15% 

are new to the line they are being produced in.  

The analytical approach is intended to support production planning by predicting the 

processing times of the different motherboard types. 

Comparing the use case to the scenarios analyzed in the previous section, the most similar 

enterprise type would be E2, particularly in regard to product and manufacturing intricacy. 

This requires to some extent to disregard the features causing the elevated number of 
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product variants. This is possible given that these features (the processors and the hard 

disc drives) are not directly produced by the enterprise and are just added during final 

assembly. Furthermore, the different lines share the same models of several machines. 

The intended utilization – planning optimization through predictive capabilities – can be 

considered as concerning the functions within group F3 (capacity requirements planning). 

As part of the already mentioned research project, the business models possibly used for 

the approach were discussed with the partners, integrated by providers of production 

software and data analytics. It was decided to focus on a pay-per-use business model for 

the analytical microservices – paying a monthly fee for each algorithm and basic 

model – and on a subscription-based business model for the corresponding 

platform – paying a monthly fee that additionally covers services such as updates and 

support. Each algorithm and basic model can be instantiated as often as desired (e.g. 

training a different model for each material type) without having to pay an additional fee. 

The business model also allows for charging a one-time price for the microservices if the 

user wants to purchase them. 

7.2.2 Evaluation of the Industrial Use Case 

The chosen evaluation methodology is a cash flow analysis, which provides a quantitative 

comparison of the costs behavior of the considered approaches. A reduction in the cost 

factor by the proposed approach will – provided the benefit is at least the same as in the 

competing approach – validate the hypothesis. 

The analytical microservices will be compared with the tailored solutions. This has two 

reasons: 

 The tailored solutions delivered the best results (except for the analytical microservices) 

in scenario E2 – F3, which is comparable to the current use case. 

 The approach considered by the enterprise at the time of the research project was a 

tailored solution. 
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The parameters used for the cash flow analysis of the use case are shown in Table 7-7. 

The monetary values – rates, efforts, and monthly fee – originate from the discussion with 

the mentioned research project partners and an investigation of the data analytics market. 

 

Table 7-7: Parameters of the industrial use case 

 Parameter Value 

 Daily rate 1,500 €/person-day 

T
a

il
o

re
d

  

S
o

lu
ti

o
n

 

Basic development project (base cost) 16,500 € – 11 person days 

Monthly fee (platform, licenses, etc.) 1,500 € 

Factor of base cost for an  

additional algorithm 
60% 

Effort for addition of a model 4 person days 

A
n

a
ly

ti
ca

l 
 

M
ic

ro
se

rv
ic

e
s Implementation costs 6,000 € – 4 person days 

Monthly fee – platform 800 € 

Monthly fee – analytical microservice 1,500 € 

 

Additionally, the use case analysis assumes that eight analytical models are required in 

order to cover the specific behavior of each material type and line – a plausible number 

based on an evaluation of the manufacturing data (e.g. through clustering to visualize the 

relations between attributes), the amount of material types (motherboards), the number 

of lines (with dissimilarities between them), and the manufacturing dynamic (introduction 

of new materials or assignment to another line). It is worth mentioning that every time an 

algorithm is generated, the creation of one model is already considered in the effort. Only 

the remaining seven models will then represent an additional effort. 

As addressed in previous chapters, the analytical microservices could offer several 

advantages in the support of the data preparation process. However, the corresponding 

costs in the use case analysis are considered, for the purpose of simplification, to be equal 

in both approaches. 
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In Figure 7-3 a comparison between the analysis alternatives 1 to 3 is shown. In each 

alternative, the term algorithms refers to the number of different algorithms 

employed – paying, in the case of analytical microservices, a monthly fee for each one of 

them. The term model correction refers to re-generation of the models in order to adapt 

to the changing manufacturing environment (caused, for example, by the influx of new 

materials). The term algorithm change refers to the utilization – including selection and, 

in the case of tailored solutions, development – of a new algorithm in order to adapt to 

changes. The analyzed cash flow corresponds to a five years period. 

 

 

Figure 7-3: Comparison of cash flows of alternatives 1 to 3 

 

The evaluation of alternatives 1 to 3 seems to confirm and extend the findings of the 

scenario evaluation. In alternative 3, with its high dynamic characterized by constant 

model correction, analytical microservices are able to take advantage of the burden bore 

by the tailored solutions because of the continuously incurring development costs. In 

contrast, the flexibility of the analytical microservices allows an almost seamless 
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adaptation without a considerable extra effort. On the other hand, static alternatives, like 

1 and 2, with infrequent to no model corrections, present the best conditions for tailored 

solutions. In these cases, the constantly incurring monthly fee becomes a burden for 

analytical microservices. However, the first two alternatives will probably not meet the 

criteria of Personalized Production, as such static situations are hardly possible. 

 

 

Figure 7-4: Comparison of cash flows of alternatives 4 to 6 

 

Alternatives 4 to 6 – shown in Figure 7-4 – add more dynamic to the previous alternatives 

through the introduction of an algorithm change. The comparative position of analytical 

microservices is improved by this factor, being slightly disadvantageous only in alternative 

4. The repeatedly incurring costs of the new algorithm burden the tailored solution. 

Analytical microservices, on the other hand, benefit from their interchangeability: once an 

algorithm is replaced, it is no longer necessary to pay the monthly fee for it. It is important 

to consider that this advantage may be reduced when compared to other solutions using 

a pay-per-use model (e.g. Analytics as a Service). 
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Alternative 6 is characterized by a great dynamic, with yearly changes in models and 

algorithms. Thus, it might be regarded as the one to better represent the conditions of 

Personalized Production. It is also the alternative which shows the biggest financial 

advantage of analytical microservices. 

 

 

Figure 7-5: Comparison of cash flows of alternatives 7 to 9 

 

Alternatives 7 to 12 – shown in Figure 7-5 and Figure 7-6 – furnish the already analyzed 

alternatives with an additional algorithm (three instead of two). Being burdened by the 

monthly fee of the extra algorithm, the cost of the analytical microservices increase more 

than those of the tailored solutions. This reduces the advantage of analytical 

microservices, worsening their comparative position in the more static alternatives. The 

cost difference in alternative 7, for example, is greater to the one in alternative 1 (the 

corresponding alternative with two algorithms). Analytical microservices remain the best 

option for most dynamic alternatives (e.g. alternatives 9 and 12), being favored by the 

need for continuous changes. 
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Figure 7-6: Comparison of cash flows of alternatives 10 to 12 

 

The advantage of analytical microservices can be increased by utilizing them in a more 

complex environment. It is even conceivable that such a situation would accompany the 

necessity of a new algorithm. 

One way to represent the increase in complexity is the need for additional models. The 

behavior of the use case under such conditions is shown in Appendix C. 

Furthermore, it would also be possible to reduce the negative effects of the monthly fees 

for analytical microservices by making a purchase with a one-time payment. As stated 

before, such a methodology was not ruled out by the research project partners. The 

expected price would, however, represent between three and five years of utilization with 

the pay-per-use model. The downside of this method would, therefore, be that the 

utilization of the analytical function should be foreseeable in the long term. This would 

be possible for some special cases – e.g. an analytical microservice for a machine with a 

lifespan of several years to a decade. 
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As stated at the beginning, the cash flow analysis concentrates on costs, assuming that 

the benefit remains constant. One way in which the situation in reality may differ is 

through the consideration of the adaptation time. While analytical microservices were 

conceived to rapidly adapt to changes in the manufacturing environment – even being 

able to detect the need to do so – tailored solutions would require considerably longer. 

This may generate several losses, for example, because of lack of efficiency or wrongly 

predicted procurement and delivery times. 

7.3 Critical Evaluation 

The adequacy of an analytical microservices solution to address problems in production 

logistics, in particular in the context of Personalized Production, can be assessed from 

different points of view. 

From the perspective of production logistics, analytical approaches provide a way for 

software-based functions to deal with increasingly difficult issues containing a great 

number of influencing factors and unknown elements. It should, however, be considered 

that not always highly accurate analytical solutions are needed but rather those that fit 

the requirements of an enterprise and its manufacturing context. This allows savings in 

time, money, and effort. Regarding the application area proposed for the solution, two 

factors need to be taken into account: 

 Personalized Production, combining an increasing complexity with the requirements 

of mass production, will require some level of data analytics-based approaches in order 

to fulfil the logistic objectives. 

 The dynamic character of Personalized Production makes the utilization of an 

adaptable solution a necessity. Furthermore, a flexible solution is necessary in order to 

address heterogeneity, enabling the provision of specific approaches for each 

situation. Analytical microservices fulfil both of these requirements. 

From a technical perspective, the main asset of the solution is its flexibility, which allows 

not only to adapt to the requirements of the manufacturing environment but also to those 
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of the analytical approaches. This also has a disadvantage, as flexible software approaches 

like microservices-based solutions can become very complex, affecting their usability. In 

order to create a solution that can be used in the real world, the proposed concept 

relinquishes a certain amount of flexibility by using a hybrid approach combining 

microservices and SOA. However, through the correct utilization and administration of 

Process Coordinating Services, there are no hurdles for the constitution of flexible 

analytical processes. The result is the creation of a solution that is easy to comprehend, 

implement, and maintain. 

Nevertheless, the constitution of a flexible solution still has a drawback: its cost structure. 

This is clearly reflected in the third perspective: the utility. 

 

 

Figure 7-7: Utility comparison of analytical microservices and tailored solutions 

 

The utilities of analytical microservices and of tailored solutions (represented by the 

diameter of overlapping bubbles) in different scenarios are depicted in Figure 7-7. The 

tailored solutions were chosen for comparison as they provide the same capability to 
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develop highly accurate analytical approaches. It becomes clear that the utility of analytical 

microservices is different from that of tailored solutions in enterprise types with high 

complexity and a high number of variants. Furthermore, the more sophisticated the 

function group, the greater the advantage of the analytical microservices solution. These 

are cases where the flexibility of analytical microservices gives them an edge. As scenarios 

such as E3 – F3 and E3 – F4 can be considered as representative for Personalized 

Production, the convenience of the proposed solution in this manufacturing context is 

visible. 

On the other hand, the opposite argument should also be taken into account. As the 

reviewed trend in utility is replicated when comparing analytical microservices against 

other approaches, this means that the proposed solution is inadequate for application in 

simple scenarios. In such cases, the capabilities and flexibility of the approach are excessive 

and the resulting costs become a burden, in particular when using pay-per-use models.  

When considering the economic benefit, two additional aspects are worth considering: 

 In some situations, the possession of extra flexibility makes sense for enterprises, even 

at the expense of higher costs. It is, for example, the case of organizations that have 

a clear development roadmap according to which flexibility will be required in the 

future. In this scenario, the savings of using a cheaper system at the beginning will be 

offset by the costs of implementing a new one. 

 The examples presented in this work are based on simplifications. For instance, data 

preparation costs are considered equal in the industrial example, although complex 

methods may profit from analytical microservices. Furthermore, the avoidance of 

losses thanks to the utilization of adequate solutions to support the production 

logistics functions, which would increase the benefit of accurate approaches, is not 

quantified in the industrial example. 

 



 

 

 

 

 

 



 

 

8 Summary and Outlook 

In chapter 8 the presented work is summarized. It does not only cover the proposed 

solution but also the context and factors that justify its creation. An outlook describing 

possible further activities to extend the applicability of the elaborated approach is also 

included.  

8.1 Summary 

In order to remain competitive, many manufacturers will have to migrate towards 

Personalized Production. Therefore, they have to manage an ever more complex 

production environment. As an answer to this problem, enterprises strive for flexibility. 

This, however, should not only make them technically capable of producing a wide range 

of products with varying features. It should also provide for an approach that is 

economically viable and satisfies the requirements of both, customers and manufacturing 

organization. 

At the physical level, enterprises focus on the development and employment of 

technologies – machines, materials, and processes – that allow for a seamless 

adaptability. This is translated into product design, which pursues the twofold objective 

of appealing to customers while facilitating the manufacturing of products.  

At the organizational level, upon which this work focuses, the components and processes 

of production logistics and order management are responsible for administrating and 

optimizing the manufacturing system. The underlying theory and techniques provide two 

important elements for enabling Personalized Production: a description of the functions 

involved (and their connection) and the key figures used for both, defining the objectives 

originating in the requirements of Personalized Production (e.g. delivery times comparable 

to the mass production) and measuring the performance of the system towards the 
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achievement of these objectives. To face the increasing complexity of organizational 

functions, the support of software tools is necessary. This is the task of production 

planning and control software and related applications. 

The turbulence generated by Personalized Production, in addition to the existing 

difficulties in dynamic manufacturing systems, contributes to taking production logistics 

functions and their corresponding software implementations to their limit. Data analytics 

present a way to extend current functions beyond the existing deterministic approaches. 

This idea, however, gives rise to the following question: How can these analytical 

capabilities be applied and integrated into existing systems and business processes in an 

efficient and effective manner? 

The proposed approach of analytical microservices presents an innovative solution. This 

does not only relate to the novelty of the IT architecture employed. Based on the core 

concept of flexibility, the idea combines the structural advantages of the  

microservices-based approach with the requirements and characteristics of data analytics 

and production logistics functions. All of this is done to achieve the creation of smart 

manufacturing systems, characterized by an integration of IT-based intelligence and 

business processes, a continuous adaptation, and the employment of domain knowledge. 

The proposed solution tries to overcome in this way the frequent dissociation found 

between the development of IT approaches and their application environment. 

With software solutions, it should always be taken into account that the most complex 

tool is not necessarily the most adequate one for all cases. The validation shows that the 

utility of the approach rises with an increase in the complexity of the considered 

application scenario. However, as stated before, such a level of complexity is the 

trademark characteristic of Personalized Production. Furthermore, the real advantages of 

the solution are difficult to measure, as there are many benefits to a constantly adapting 

system which are mainly based on the avoidance of losses. 
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8.2 Outlook 

This work presents an overview of the fundamentals of the proposed analytical 

microservices approach and its application to the challenge of Personalized Production. 

As such, several activities can be performed to deepen and extend the formulated idea. 

First of all, the current work focuses mainly on the effectiveness and efficiency of the 

proposed solution under the conditions presented by Personalized Production. However, 

as briefly addressed, manufacturing systems today suffer from turbulences and 

disturbances. It would therefore be of interest to examine the suitability of analytical 

microservices under circumstances more ordinary than Personalized Production. 

The scope of this work does not cover specific requirements of relevant operations 

research approaches – for example, the Simplex Method. Since such techniques suit 

current production optimization activities, it would be interesting to test the applicability 

of the designed solution and to eventually extend it as a result. 

Another area of research could be the application of the solution to the process of data 

preparation. This offers a considerable potential, not only because of the effort employed 

in such activities, but also because of the possibilities to flexibly construct data cleansing 

processes and to reuse functionalities – thus reducing the costs incurred. 

Within a research project called AppAlytics – financed by the German Bundesministerium 

für Bildung und Forschung (BMBF) – a prototype very similar to the proposed idea was 

developed. Not only the technical characteristics and challenges of the solution were 

analyzed, but also feedback from the different possible stakeholders – users and providers 

of production management software and data analytics – was gathered. More research 

should be done in order to develop a market-ready solution. It is advisable to perform 

such activities in collaboration with industrial partners from the possible stakeholder 

groups. 

In the area of research, several activities towards the employment of artificial intelligence 

in production can benefit from the proposed approach. This would enable the creation of 
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cognitive manufacturing systems (Colangelo et al. 2019) where the application of this 

kind of intelligence should become ubiquitous. 
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10 Appendix 

10.1 Appendix A 

Complete component diagram of the proposed solution illustrating the main interfaces. 
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Figure 10-1: Detailed component diagram of the solution 
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10.2 Appendix B 

Detailed description of factors and weights for the evaluation of application scenarios of 

the proposed solution (and comparison with alternative approaches). 

 

Table 10-1: Factors and weights for the evaluation of application scenarios 

Scenario Solution W1 DU W2 FU W3 GI W4 RC 
Total 

Benefit 
Total 
Cost 

Utility 

E1 – F1 
Business 

Intelligence 
Solutions 

0.7 4 0.5 2 1 2 1 1 3.80 3.00 1.27 

E1 – F1 
Data Mining 

Suites 
0.7 4 0.5 4 1 3 1 1 4.80 4.00 1.20 

E1 – F1 
Tailored 
Solutions 

0.7 5 0.5 1 1 2 1 1 4.00 3.00 1.33 

E1 – F1 
Analytics 

as a Service 
0.7 4 0.5 4 1 2 1 2 4.80 4.00 1.20 

E1 – F1 
Analytical 

Microservices 
0.7 5 0.5 5 1 3 1 2 6.00 5.00 1.20 

E1 – F2 
Business 

Intelligence 
Solutions 

0.7 3 0.5 2 1 2 1 1 3.10 3.00 1.03 

E1 – F2 
Data Mining 

Suites 
0.7 4 0.5 4 1 3 1 1 4.80 4.00 1.20 

E1 – F2 
Tailored 
Solutions 

0.7 5 0.5 1 1 2 1 1 4.00 3.00 1.33 

E1 – F2 
Analytics  

as a Service 
0.7 4 0.5 4 1 2 1 2 4.80 4.00 1.20 

E1 – F2 
Analytical 

Microservices 
0.7 5 0.5 5 1 3 1 2 6.00 5.00 1.20 

E1 – F3 
Business 

Intelligence 
Solutions 

0.8 2 0.5 2 1 3 1 1 2.60 4.00 0.65 

E1 – F3 
Data Mining 

Suites 
0.8 3 0.5 3 1 3 1 1 3.90 4.00 0.98 

E1 – F3 
Tailored 
Solutions 

0.8 5 0.5 1 1 3 1 1 4.50 4.00 1.13 

E1 – F3 
Analytics 

 as a Service 
0.8 3 0.5 4 1 2 1 2 4.40 4.00 1.10 

E1 – F3 
Analytical 

Microservices 
0.8 5 0.5 5 1 3 1 2 6.50 5.00 1.30 

E1 – F4 
Business 

Intelligence 
Solutions 

0.8 2 0.5 2 1 3 1 1 2.60 4.00 0.65 

E1 – F4 
Data Mining 

Suites 
0.8 3 0.5 3 1 3 1 1 3.90 4.00 0.98 

E1 – F4 
Tailored 
Solutions 

0.8 5 0.5 1 1 4 1 1 4.50 5.00 0.90 

E1 – F4 
Analytics  

as a Service 
0.8 3 0.5 4 1 2 1 2 4.40 4.00 1.10 

E1 – F4 
Analytical 

Microservices 
0.8 5 0.5 5 1 3 1 2 6.50 5.00 1.30 
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Scenario Solution W1 DU W2 FU W3 GI W4 RC 
Total 

Benefit 
Total 
Cost 

Utility 

E2 – F1 
Business 

Intelligence 
Solutions 

0.8 3 0.8 2 1 3 1 2 4.00 5.00 0.80 

E2 – F1 
Data Mining 

Suites 
0.8 4 0.8 4 1 3 1 2 6.40 5.00 1.28 

E2 – F1 
Tailored 
Solutions 

0.8 5 0.8 1 1 3 1 1 4.80 4.00 1.20 

E2 – F1 
Analytics  

as a Service 
0.8 4 0.8 4 1 2 1 2 6.40 4.00 1.60 

E2 – F1 
Analytical 

Microservices 
0.8 5 0.8 5 1 3 1 3 8.00 6.00 1.33 

E2 – F2 
Business 

Intelligence 
Solutions 

0.8 2 0.8 1 1 3 1 2 2.40 5.00 0.48 

E2 – F2 
Data Mining 

Suites 
0.8 3 0.8 3 1 3 1 2 4.80 5.00 0.96 

E2 – F2 
Tailored 
Solutions 

0.8 5 0.8 1 1 4 1 1 4.80 5.00 0.96 

E2 – F2 
Analytics  

as a Service 
0.8 3 0.8 3 1 2 1 2 4.80 4.00 1.20 

E2 – F2 
Analytical 

Microservices 
0.8 5 0.8 5 1 3 1 3 8.00 6.00 1.33 

E2 – F3 
Business 

Intelligence 
Solutions 

1 2 0.8 1 1 3 1 2 2.80 5.00 0.56 

E2 – F3 
Data Mining 

Suites 
1 3 0.8 2 1 3 1 2 4.60 5.00 0.92 

E2 – F3 
Tailored 
Solutions 

1 5 0.8 1 1 4 1 1 5.80 5.00 1.16 

E2 – F3 
Analytics  

as a Service 
1 3 0.8 3 1 3 1 2 5.40 5.00 1.08 

E2 – F3 
Analytical 

Microservices 
1 5 0.8 5 1 3 1 3 9.00 6.00 1.50 

E2 – F4 
Business 

Intelligence 
Solutions 

1 1 0.8 1 1 3 1 3 1.80 6.00 0.30 

E2 – F4 
Data Mining 

Suites 
1 3 0.8 2 1 3 1 2 4.60 5.00 0.92 

E2 – F4 
Tailored 
Solutions 

1 5 0.8 1 1 4 1 1 5.80 5.00 1.16 

E2 – F4 
Analytics  

as a Service 
1 3 0.8 2 1 3 1 2 4.60 5.00 0.92 

E2 – F4 
Analytical 

Microservices 
1 5 0.8 5 1 3 1 3 9.00 6.00 1.50 

E3 – F1 
Business 

Intelligence 
Solutions 

1 2 1 2 1 3 1 2 4.00 5.00 0.80 

E3 – F1 
Data Mining 

Suites 
1 4 1 3 1 3 1 2 7.00 5.00 1.40 

E3 – F1 
Tailored 
Solutions 

1 5 1 1 1 4 1 1 6.00 5.00 1.20 

E3 – F1 
Analytics  

as a Service 
1 4 1 3 1 3 1 2 7.00 5.00 1.40 

E3 – F1 
Analytical 

Microservices 
1 5 1 5 1 3 1 3 10.00 6.00 1.67 
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Scenario Solution W1 DU W2 FU W3 GI W4 RC 
Total 

Benefit 
Total 
Cost 

Utility 

E3 – F2 
Business 

Intelligence 
Solutions 

1 2 1 1 1 3 1 2 3.00 5.00 0.60 

E3 – F2 
Data Mining 

Suites 
1 3 1 3 1 3 1 2 6.00 5.00 1.20 

E3 – F2 
Tailored 
Solutions 

1 5 1 1 1 4 1 1 6.00 5.00 1.20 

E3 – F2 
Analytics  

as a Service 
1 3 1 3 1 3 1 2 6.00 5.00 1.20 

E3 – F2 
Analytical 

Microservices 
1 5 1 5 1 3 1 3 10.00 6.00 1.67 

E3 – F3 
Business 

Intelligence 
Solutions 

1 1 1 1 1 5 1 2 2.00 7.00 0.29 

E3 – F3 
Data Mining 

Suites 
1 2 1 2 1 4 1 2 4.00 6.00 0.67 

E3 – F3 
Tailored 
Solutions 

1 5 1 1 1 5 1 1 6.00 6.00 1.00 

E3 – F3 
Analytics  

as a Service 
1 2 1 2 1 3 1 2 4.00 5.00 0.80 

E3 – F3 
Analytical 

Microservices 
1 5 1 5 1 3 1 3 10.00 6.00 1.67 

E3 – F4 
Business 

Intelligence 
Solutions 

1 1 1 1 1 5 1 2 2.00 7.00 0.29 

E3 – F4 
Data Mining 

Suites 
1 2 1 2 1 4 1 2 4.00 6.00 0.67 

E3 – F4 
Tailored 
Solutions 

1 5 1 1 1 5 1 1 6.00 6.00 1.00 

E3 – F4 
Analytics  

as a Service 
1 2 1 2 1 3 1 2 4.00 5.00 0.80 

E3 – F4 
Analytical 

Microservices 
1 5 1 5 1 3 1 3 10.00 6.00 1.67 

DU: Direct Utilization; FU: Further Use; GI: General Investments; RC: Running Costs; W1: Weight Direct  
Utilization; W2: Weight Further Use; W3: Weight General Investments; W4: Weight Running Costs 

10.3 Appendix C 

Evaluation of alternatives 1 to 12 of the industrial use case with ten additional models 

instead of seven. 



288 10.3 Appendix C 

 

 

 

Figure 10-2: Comparison of cash flows of alternatives 1 to 3 (ten models) 
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Figure 10-3: Comparison of cash flows of alternatives 4 to 6 (ten models) 
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Figure 10-4: Comparison of cash flows of alternatives 7 to 9 (ten models) 
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Figure 10-5: Comparison of cash flows of alternatives 10 to 12 (ten models) 

 

 



 

 

 






