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Abstract

Emotion recognition is a critical aspect of human-computer interaction, with numerous
applications in fields such as psychology, social robotics, and affective computing. Recent
advances in deep learning have significantly improved the performance of emotion
recognition models, particularly when integrating multimodal data sources such as
audio and video. Despite these advancements, the potential of gaze information as an
auxiliary modality in emotion recognition has been relatively underexplored, leaving
room for further innovation. Additionally, there is a growing interest in pre-training
feature extractors to enhance the performance of emotion recognition models, includ-
ing gaze encoders, which have also been understudied. This thesis presents a novel
approach to emotion recognition by incorporating gaze as the additional modality into
a multimodal architecture with pre-trained audio, video, and gaze feature extractors
on Voxcelebl [NCZ17], specifically focusing on the Gaze-enhanced L3-Net and AVE-Net
architectures.

In addition to the exploration of gaze as an auxiliary modality and the pre-training of
feature extractors, it is crucial to investigate the performance of emotion recognition
models under single modality conditions. Real-world applications often face challenges
in obtaining multimodal data due to factors such as limited resources, privacy concerns,
and environmental constraints. By evaluating the effectiveness of our proposed models
in single modality settings, we aim to provide a comprehensive understanding of their
potential applicability and robustness in diverse scenarios. This aspect of our study high-
lights the importance of developing high-performing single modality models alongside
multimodal approaches for emotion recognition.

In this study, we provide compelling evidence that leveraging pre-trained feature extrac-
tors with gaze-enhanced visual and audio embeddings leads to substantial performance
gains in emotion recognition models on the OMG Emotion dataset [BCL+18]. Our
results show that the pre-trained Gaze-enhanced L3-Net outperforms both the original
L3-Net and the AVE-Net, achieving F1 micro scores of 49.28 and 45.94 for the video and
audio channels, respectively. Furthermore, our model also surpasses the performance of
Abdou et al. [ASMB22]’s model-level fusion and early fusion techniques and achieves
state-of-the-art performance on the OMG Emotion dataset [BCL+18] in both video
channel and audio channel. Notably, our model’s architecture does not outperform
Abdou et al. [ASMB22]’s architecture, and the improvements we observe can be largely
attributed to the pre-training process.

Ultimately, this study sheds light on the significant potential of incorporating pre-training
and gaze information in emotion recognition tasks, paving the way for more accurate
and robust models in real-world applications. By thoroughly investigating these aspects,
we aim to motivate further research in the field and encourage the development of



innovative approaches that capitalize on the unique advantages of gaze information and
pre-training techniques for improved performance in emotion recognition tasks.
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1 Introduction

Emotion recognition plays a vital role in human communication and interaction. Emo-
tions are inherently multimodal human behaviors, expressed through a combination
of facial expressions, body language, and speech [[MAV+15][PSCHO5][ZPRHO07]]. By
recognizing these multiple channels of communication, we can gain a more comprehen-
sive understanding of a person’s emotional state. In the context of machine learning,
leveraging this comprehensive understanding is crucial for developing more accurate
and effective emotion recognition models. Consequently, it is natural to consider using
multimodal data when designing emotion recognition models to enhance their accuracy.
However, while the integration of multiple modalities can improve model performance,
obtaining multimodal data in real-world applications can be challenging due to factors
such as the need for specialized equipment, complexities in integrating and synchroniz-
ing data from different sources, and privacy or ethical concerns. This makes developing
robust emotion recognition models for single modality data a valuable pursuit.

Various studies have investigated the relationship between gaze and emotion,
which serves as the foundation for incorporating gaze information in our model
[[IBO9][AKO3][MHLB11][BMLO8][Kel95]]. Numerous researchers have also fo-
cused on emotion recognition using both single and multimodal approaches
[[SOA21][CCCF14][CJZW17][RSSL13][HZRS19][ASMB22][HZRS19]]. However,
there has been relatively less development in incorporating gaze as one of the modali-
ties for multimodal emotion recognition. Notably, based on the EmoBed architecture
proposed by Han et al. [HZRS19], Abdou et al. [ASMB22] added gaze as an additional
modality, resulting in a multi-modal emotion recognition framework that includes gaze
information. Abdou et al. [ASMB22]’s work is one of the few examples of such architec-
tures that consider gaze as an important aspect of emotion recognition, and they also
achieved the previous state-of-the-art result on the OMG Emotional challenge dataset
[BCL+18]. In this thesis, we build upon Abdou et al. [ASMB22]’s architecture as the
foundation for our study, aiming to further explore the potential of gaze-based emotion
recognition frameworks.

Recently, pre-trained feature extractors have emerged as a popular technique that has
significantly boosted performance in many tasks, including emotion recognition. Pre-
trained encoders are useful across tasks due to their ability to capture higher-level,
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abstract representations, and generalize well to different domains. However, there has
been limited research on pre-training architectures that involve gaze information. We
believe that pre-training can not only provide substantial gains for common models,
such as image-based or video-based networks but also yield considerable improvements
in processing gaze information, thus extending the benefits of pre-training to this crucial
modality. By incorporating pre-training in our multimodal emotion recognition model,
we aim to leverage this powerful approach to enhance the model’s accuracy under single
modality conditions.

In this thesis, our objective is to investigate the impact of pre-training on the accuracy of a
multimodal emotion recognition model that utilizes audio, video, and gaze as input. We
chose Abdou et al. [ASMB22]’s gaze-enhanced EmoBed architecture as our base model
and defined the pre-training tasks according to our objective [SRS22]: detecting whether
video frames and audio information originate from the same video. Furthermore, we
replaced the audio and video feature extractors in the gaze-enhanced EmoBed [ASMB22]
architecture with those from Arandjelovic and Zisserman [AZ18]’s L3-Net and AVE-Net,
which are video-based pre-training models, to ensure the effectiveness of pre-training.
Considering the importance of data commonality between the pre-training and fine-
tuning datasets, we chose VoxCeleb1 [NCZ17] as the pre-training dataset for this study.
Both pre-trained architectures achieved over 80% accuracy in pre-training tasks.

Upon completion of the training, we performed single modality tests (i.e., using only
audio or video embeddings for prediction) on both architectures on the OMG Emotion
Challenge dataset [BCL+18], and the results showed significant improvements in both
video and audio channels for the pre-trained models. As an additional test, we also used
full modality for prediction, that is combining the information of audio, video, and gaze
together to perform the prediction, and the results were considerably higher than the
single modality results. In terms of comparison, the pre-trained models outperformed
Abdou et al. [ASMB22]’s results in both video and audio channels, while the non-pre-
trained models did not. This indicates that in terms of architecture selection, i.e. the
selection of the feature extractors, the architecture used in this thesis may not have been
superior to Abdou et al. [ASMB22]’s architecture, this suggests that the improvement in
performance can be largely attributed to the pre-training process rather than the model
architecture itself.
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2 Related Work

Video-based emotion recognition is an active area of research in the domains of computer
vision and machine learning. Various approaches have been proposed to address the
challenges of recognizing human emotions from videos, including single-modal and
multi-modal methods. Single-modal methods use only one type of feature, such as facial
expression or voice, while multi-modal methods combine multiple types of features
to improve recognition accuracy. These approaches have shown promising results in
emotion recognition tasks.

In the single-modal emotion recognition category, researchers have explored different
techniques such as facial expression analysis, speech analysis, and gaze analysis. These
methods have achieved good performance in recognizing emotions from individual
modalities. However, they may not capture the full spectrum of human emotions since
emotions are often expressed through multiple modalities.

Although pre-training techniques have been widely used in natural language processing
and computer vision, there have been few studies on pre-training in the context of
video-based emotion recognition. Transfer learning and self-supervised learning have
been used to pre-train video models in the related task of action recognition. However,
the application of pre-training techniques in video-based emotion recognition is still
relatively unexplored.

In this section, we provide a comprehensive review of the latest developments in
video-based emotion recognition with a particular focus on four main areas: Gaze and
Emotions, Gaze-based Emotion Recognition, Multimodal Emotion Recognition, and
Video-based Pre-training. We aim to identify the research gaps and challenges in each
of these areas and highlight potential research directions to improve the performance
of video-based emotion recognition models. By providing an overview of the related
work in these areas, this section seeks to establish a solid foundation for our research
approach and contribute to the advancement of the field.
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2.1 Gaze and Emotions

In this section, we review the literature focusing on the relationship between gaze and
emotions, emphasizing the critical role gaze plays in recognizing and distinguishing
various emotional states.

Itier and Batty [IBO9] laid the foundation by highlighting the central role of eyes and
gaze in social cognition. Gaze can reveal information about a person’s attention and
intentions, which is crucial for successful social interaction. Building on this idea, several
studies have identified specific gaze patterns corresponding to different emotions.

One of the key findings is that gaze direction can facilitate the processing of certain emo-
tions. Adams Jr and Kleck [AKO3] suggested that direct gaze facilitates the processing
of approach-oriented emotions (e.g., anger and joy), while averted gaze facilitates the
processing of avoidance-oriented emotions (e.g., fear and sadness). This relationship
between gaze direction and emotional expression can help individuals recognize and
differentiate emotions.

Consistent with this idea, Milders et al. [MHLB11] found that fearful faces with averted
gaze were detected more frequently than those with direct gaze, while angry and happy
faces were detected more frequently with direct gaze. These findings further support
the notion that gaze direction is associated with specific emotional expressions.

Expanding on these findings, Bindemann, Mike Burton, and Langton [BML08] reex-
amined the interaction between eye gaze and selected facial emotional expressions,
revealing that the perception of happy, sad, angry, and fearful expressions was impaired
when eye gaze was averted compared to direct gaze conditions.

In addition to emotion recognition, gaze also plays a role in communicating emotions.
Keltner [Kel95] indicated that gaze is the first aspect to change when individuals
experience embarrassment. This finding highlights the importance of gaze in social
communication.

Lastly, Emery [Eme00] discussed the evolutionary role of gaze in primates, empha-
sizing its importance in distinguishing emotions and its adaptive function in social
interactions.

In conclusion, these studies underline the significant relationship between gaze and
emotions. They demonstrate that gaze direction not only corresponds to specific emo-
tional states but also assists in recognizing and distinguishing emotions, facilitating
successful social interaction.
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2.2 Gaze-based Emotion Recognition

In this section, we discuss the role of gaze-based features in emotion recognition and
the various methodologies employed in recent studies to leverage these features for
improved emotion recognition performance.

The shared signal hypothesis (SSH) serves as a foundation for understanding the
relationship between gaze and emotions, Liang et al. [LZL+21] explored. According
to SSH, direct gaze shares an approach-oriented signal with the emotions of anger and
joy, whereas averted gaze shares an avoidance-oriented signal with fear and sadness.
This hypothesis has been verified using different materials and participant populations,
highlighting the importance of gaze direction in emotion perception.

O’Dwyer, Murray, and Flynn [OMF19] has made significant contributions to the field of
gaze-based emotion recognition by proposing feature engineering methods that have
been widely adopted in other studies. The authors’ work focused on the development of
gaze features using various statistics such as mean, interquartile range, and standard
deviation based on the features generated from Openface [BZLM18]. Utilizing these fea-
tures, the authors trained an LSTM network for the task of continuous affect prediction
on the RECOLA [RSSL13] dataset. They found that their model performed better for
arousal prediction when trained on gaze features. In another study, O’'Dwyer, Murray,
and Flynn [OMF18] assessed the effectiveness of eye gaze as a supportive modality in a
bimodal continuous affect prediction system, demonstrating improvements in prediction
performance when combining eye gaze with speech features. The addition of eye gaze
features to speech yielded an improvement of 19.5% for valence prediction and 3.5%
for arousal prediction.

Several studies have investigated the use of gaze-based features in emotion recognition
systems, such as Aracena et al. [ABSV15] and Van Huynh et al. [VYL+19]. Aracena
et al. [ABSV15] trained a shallow feed-forward neural network using pupil size and gaze
position information to classify emotions into positive, negative, and neutral categories.
The study also suggested that incorporating additional modalities and gaze features
could enhance recognition performance.

Van Huynh et al. [VYL+19] presented an emotion recognition method that combines
facial and eye movement information to improve system accuracy. the authors employed
a deep learning model, specifically a CNN, to process facial information. Then, eye
movement features were extracted from Openface [BZLM18]. A new set of 51 features
were used to obtain related information about each emotion for the corresponding
sample, and the emotion for a sample was recognized based on the combination of the
knowledge from the two previous stages. The study demonstrated a 2.87% improvement
in accuracy for the face model when incorporating eye movement features. As a strategy
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for feature engineering, the authors also employed various statistical values calculated
from the Openface [BZLM18] output but differed from the feature set of O’'Dwyer,
Murray, and Flynn [OMF19]. Van Huynh et al. [VYL+19] also used the statistics of
facial landmark coordinates, while in the work of O’'Dwyer, Murray, and Flynn [OMF19],
coordinates were only used for pupil size calculation. Additionally, O’'Dwyer, Murray,
and Flynn [OMF19] calculated features such as eye blink intensity, gaze approach, pupil
dilation, and pupil constriction, which were not included in Van Huynh et al. [VYL+19]’s
method.

Overall, these studies demonstrate the potential of gaze-based features for improving
emotion recognition performance. By leveraging the relationship between gaze and
emotions, researchers have been able to develop more accurate and effective emotion
recognition systems.

2.3 Multimodal Emotion Recognition

In this section, we delve into the domain of Multimodal Emotion Recognition, exploring
the diverse approaches and techniques that researchers have adopted to harness the
power of multiple modalities, such as facial expressions, speech, and gestures, in order
to enhance emotion recognition performance and accuracy.

Emotion recognition is often associated with visual and auditory modalities, focusing
on facial expressions and speech, respectively. Numerous studies have explored these
modalities in developing effective emotion recognition models.

Schoneveld, Othmani, and Abdelkawy [SOA21] proposed a deep learning-based ap-
proach for audio-visual emotion recognition. For facial feature extraction, they employed
a CNN, while for speech, they used a CNN to process raw Mel spectrograms. The embed-
dings were concatenated using a linear layer, followed by an LSTM and another linear
layer to predict arousal and valence. Their results outperformed the state-of-the-art
methods in predicting valence on the RECOLA [RSSL13] dataset.

Chen et al. [CCCF14] also focused on visual and audio modalities in their emotion
recognition framework. However, their approach differed in the processing of visual
features and the fusion of modalities. They introduced a feature descriptor called
Histogram of Oriented Gradients from Three Orthogonal Planes (HOG_TOP) for facial
expression representation and utilized Multiple Kernel Learning (MKL) for optimal
feature fusion.

Chen et al. [CJZW17] went beyond visual and audio modalities by also considering
text generated from audio in their emotion recognition study. The authors primarily
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discussed feature extraction and fusion across these modalities and investigated the
effectiveness of non-temporal support vector regression (SVR) and temporal LSTM-RNN
models. Their results demonstrated that LSTM-RNNSs significantly improved recognition
performance.

However, in real-world scenarios, it may not always be possible to obtain ideal data from
multiple modalities. Thus, it becomes crucial to develop models that can still deliver high-
accuracy results based on single modality inputs. This is where the work in [HZRS19]
becomes particularly relevant. Han et al. [HZRS19] proposes an emotion recognition
framework EmoBed, that, while trained using both audio and visual modalities, can
perform emotion recognition using only one modality during inference. The framework
leverages a VGG face CNN [PVZ15] as the feature extractor for video frames and an
openSMILE [EWS10] toolkit for audio. The main focus of this work is the joint Triplet
training loss, which encourages the generation of similar embeddings for different
modalities when dealing with the same source information.

Building upon Han et al. [HZRS19], Abdou et al. [ASMB22] presents a novel approach
that incorporates gaze information as an additional modality, enhancing facial feature
information. In [ASMB22] the author utilizes the same joint Triplet training loss but with
the addition of gaze-enhanced features and voice features. This updated architecture
outperforms the original EmoBed [HZRS19] framework proposed by Han on the One-
Minute Gradual Emotion Recognition dataset and reached the state-of-the-art on OMG
[BCL+18] datasets on single modality test.

In summary, while substantial progress has been made in the field of multimodal
emotion recognition, it is important to recognize the practical need for models that
can perform well using single modality inputs. Han et al. [HZRS19] and Abdou et al.
[ASMB22] provide valuable insights and advancements in this direction, demonstrating
the potential for high-performing emotion recognition models even in situations where
only limited data is available.

2.4 Video-based Pre-training

In this section, we discuss video-based pre-training architectures and their applications
in the domain of emotion recognition. Pre-training, particularly self-supervised learning,
has demonstrated significant performance improvements in numerous computer vision
and natural language processing tasks. By conducting self-supervised training on large
amounts of unlabeled data, pre-trained models can learn rich feature representations,
providing a more robust starting point for downstream tasks. This strategy has achieved
remarkable success in various tasks, including emotion recognition. Notably, in Han et al.
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[HZRS19]’s architecture, which serves as the foundation for this research, the author
also suggests that large-scale pre-training could potentially lead to further enhancements
in emotion recognition performance.

In video, self-supervised learning can improve the performance of video understanding
and analysis tasks by learning useful feature representations. In recent years, numerous
researchers have proposed a variety of self-supervised learning methods, which can be
categorized into four different types: Pretext tasks, Generative learning, Contrastive
learning, and Cross-modal agreement [SRS22]. Pretext tasks aim to learn useful feature
representations by solving a prediction problem unrelated to the actual task, such as pre-
dicting the order of frames in a video or colorizing grayscale images. Generative learning
seeks to learn useful feature representations by generating data, for instance, using
autoencoders or GANs to generate video frames or images. Contrastive learning strives
to learn useful feature representations by comparing differences between similar and
dissimilar samples, like comparing video clips with other clips from different timepoints
or videos. Cross-modal agreement focuses on learning useful feature representations by
matching information between multiple modalities, such as visual and audio data.

As the ultimate objective of this thesis is to perform emotion recognition based on multi-
ple modalities, and the subsequent tests will mainly involve single modality tests, it is
crucial for each modality in the architecture to have independent predictive capabilities.
Therefore, Cross-modal agreement was chosen as the pre-training task category. In the
following, architectures based on this training method will be introduced.

Rouditchenko et al. [RBH+20], proposed an audio-visual learning network called AVL-
net that learns shared audio-visual embeddings directly from raw video input. The
authors used a large-scale pre-training task, conducting self-supervised learning on
the HowTo100M [MZA+19] dataset. Specifically, they trained AVLnet with randomly
segmented video clips and their original audio waveforms to learn audio-visual repre-
sentations. As an instantiation of Cross-modal agreement, the authors maximized the
difference between audio and video embeddings with the different label while minimiz-
ing the difference for same labels as a pre-training task, allowing AVLnet to learn better
audio-visual representations. Furthermore, they employed random data augmentation
techniques during training to increase data diversity and reduce overfitting risk. This
architecture achieved state-of-the-art performance in multiple benchmark tests and was
applicable to various image retrieval and video retrieval tasks.

For Cross-modal agreement, Arandjelovic and Zisserman [AZ17] introduced a different
implementation using a three-part network structure called L3-Net, composed of visual,
audio, and fusion subnetworks. The visual subnetwork employed a convolutional neural
network (CNN), the audio subnetwork used a combination of CNN and LSTM layers,
and the fusion network utilized a multi-layer perceptron (MLP). Instead of calculating
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differences between embeddings, the authors proposed a pre-training method for audio-
visual correspondence learning (AVC) that aimed to train visual and audio networks
by learning the correspondence between video frames and audio clips using unlabeled
video data. Specifically, the task required the model to determine whether a given video
frame and audio clip came from the same video (binary classification). This pre-training
objective could be performed in a completely unsupervised manner, as it did not require
any labeled data. Experimental results showed that this method effectively learned the
correspondence between visual and audio features, achieving excellent performance in
multiple audio-visual tasks.

Using a similar pre-training method, Arandjelovic and Zisserman [AZ18] improved upon
the previous architecture, introducing a new one called AVE-Net. In contrast to the
previous embedding concatenation-classification method, AVE-Net first calculated the
MSE loss between the two embeddings and passed this loss value into the MLP for binary
classification. Additionally, AVE-Net and L3-Net did not differ in their subnetworks, i.e.,
the audio and video subnets. As a result, AVE-Net outperformed other baseline methods
in cross-modal retrieval tasks and achieved impressive results in localizing objects that
emit sounds in images. Specifically, in cross-modal retrieval tasks, the performance of
this architecture was more than 10% higher than other baseline methods.

In the experiment of this thesis, to ensure the effectiveness of pre-training, we adapted
the audio and video subnets from AVE-Net and L.3-Net and also employed the audio-video
correspondence (AVC) as the pre-training objective.
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3 Method

In this chapter, we will 1) introduce the datasets used for pre-training and fine-tuning,
as well as the methods employed for gaze feature extraction; 2) describe the feature
extractors for each of the three modalities: audio, video, and gaze; 3) introduce the two
pre-training architectures, AVE-Net and L3-Net, which are based on these modalities;
4) delve into the fine-tuning architecture utilized in the later stages of the model
development; 5) outline the training strategies implemented during the fine-tuning
phase of our model.

3.1 Datasets

In this chapter, we introduce two datasets, VoxCeleb1l, and OMG Emotion Challenge
dataset. VoxCeleb1 is used as the pre-training dataset for training the feature extractor,
while OMG is used as the fine-tuning dataset in the next stage. Furthermore, OMG
dataset will be used for both single modality tests and joint tests.

3.1.1 Dataset for pre-training

In this thesis, the VoxCeleb1l [NCZ17] dataset serves as our pre-training dataset on
gaze-enhanced AVE-Net and Gaze-enhanced L3-Net. VoxCeleb is a large-scale voice
dataset that includes video clips of celebrities from various fields, designed for training
and testing Automatic Speech Recognition (ASR) and speaker recognition systems. The
dataset encompasses a wide range of natural and diverse speaking scenarios, covering
various languages, accents, and environmental noises. In our thesis, this dataset is
primarily used for training feature extractors for different modalities, allowing them to
learn how to process video frames, audio, and gaze. After filtering, we have a total of
897,739 video data, which we split into training and testing sets in an 8:2 ratio. Upon
examining the actual videos, we found that the face positions in VoxCeleb videos are
relatively stable, and the size of the faces is also appropriate for gaze feature extraction
(see Figure 3.1). Moreover, the video resolution is already 224 x 224, which is convenient
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Figure 3.1: Sample frames from Voxceleb dataset. In this dataset, the position and size
of the head are relatively stable, which also facilitates the extraction of gaze
data. [NCZ17]

for the model to process. These factors make VoxCeleb an excellent choice for a pre-
training dataset. The only known drawback is that the dataset is multilingual, while
our final fine-tuning task is entirely based on English. The multilingual audio may have
a slight negative impact on the final training results because different languages may
express the same emotions in different ways. For example, the expression of happiness
in English may differ from that in another language, and this could introduce noise into
the training data, potentially reducing the model’s accuracy.

3.1.2 Dataset for Finetuning

The fine-tuning dataset used in this thesis is the OMG Emotion Challenge dataset
[BCL+18]. Sample frames can be seen in Figure 3.2. From the OMG dataset, we can
observe that the proportion of the face area is relatively small. If we directly use the
resized frames as input, the facial patterns learned by the visual modality may not be
very effective. Furthermore, due to the smaller faces, gaze extraction could be less
accurate. Based on these two reasons, we first performed face cropping on the OMG
dataset and included a portion of the background surrounding the face to make the
proportion of the face area as close as possible to that in the VoxCeleb dataset. We then
performed gaze extraction based on these cropped faces, making the gaze features more
accurate.

Consistent with the prior work of this thesis [ASMB22], we used the training set and
validation set of the OMG dataset. In total, we utilized 3,055 data samples. For the
distribution of classifications, please refer to Table 3.1.

Upon examining the actual videos, we found that the OMG dataset is not as clean as the
VoxCeleb dataset. First, not every frame in the dataset contains a person; sometimes,
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Figure 3.2: Sample frames from OMG emotion challenge dataset. In this dataset, the
emotions displayed are acted by the performers, and due to the smaller and
less stable head position, the accuracy of the gaze data is somewhat reduced
compared to that in the Voxcelebl dataset.[BCL+18]

there are frames with only the background. Additionally, the OMG dataset is not a
true emotion dataset; The videos feature actors performing scripted lines, and their
task is to express the emotions in the lines. This sometimes leads to overly dramatic
performances and exaggerated body movements, causing challenges in face recognition
and gaze extraction. We believe this is a reason for reducing the accuracy of the system.
However, on the other hand, this also presents an opportunity to test the robustness of
the system.

Table 3.1: The data distribution of OMG emotion challenge datasets.[BCL+18]

Neutral ‘ Happy ‘ Sad ‘ Anger ‘ Disgust ‘ Fear ‘ Surprise
1084 | 920 [425| 354 | 160 | 78 | 34

3.1.3 Gaze data

In this thesis, all gaze features were extracted using the OpenFace toolkit [BZLM18].
Given a video as input, OpenFace outputs eye gaze direction vectors in world coordinates
for both eyes, as well as 2D and 3D eye region landmarks. Additionally, it provides
Action Unit Presence and Action Unit Intensity to describe eye movement patterns.
Building upon these features, Barreto, Zhai, and Adjouadi [BZAO7] further refined the
features by calculating various statistics to enhance their representational capabilities.
The author also conducted a correlation analysis between the refined features and
arousal and valence. Based on this analysis, Abdou et al. [ASMB22] selected a subset of
these features as gaze features for the OMG Emotion Challenge dataset. In this thesis,
we also adopted the same feature set, calculating the features for both the VoxCeleb1
and OMG datasets. The gaze feature set used in this thesis is presented in the table
3.2.
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Table 3.2: Base features from OpenFace output and the corresponding statistical fea-
tures. These 103 features are subset of the feature set in [OMF19]. LR refers
to a linear regression fitted to the time series of feature values in the window.
The time ratio is the proportion of time during which a binary feature is
detected in the analysis window. IQR denotes the interquartile range, i.e. IQR
2-3 refers to the difference between third and second. quartile. [ASMB22]

Base feature

‘ Statistical functionals

‘ # Statistical functionals

gaze angle x, gaze angle y, | min, max, mean, median, quar- 60
A gaze angle x, A gaze an- | tile 1, quartile 3, std, IQR 1-2,
gle y, pupil diameter mm IQR 2-3, IQR 1-3, LR intercept,
LR slope
A pupil diameter mm min, max, mean, quartile 1, quar- 11
tile 3, std, IQR 1-2, IQR 2-3, IQR
1-3, LR intercept, LR slope
eye blink intensity max, mean, median, quartile 3, 10
std, IQR 1-2, IQR 2-3, IQR 1-3,
LR intercept, LR slope
pupil dilation, pupil con- | time ratio, mean time, max time, 8
striction total time
gaze approach time ratio, mean time, max time, 4
median time
eyes closed, gaze fixation time ratio, min time, max time, 10

mean time, median time

3.2 Multi-modal Subnetworks for Emotion Recognition

3.2.1 Audio Subnetwork

As illustrated in Figure 3.3, the audio subnetwork in our experiment takes log Mel
spectrograms as inputs instead of raw audio sequences.

Log Mel Spectrogram is a widely used feature representation in audio processing tasks,
which combines the principles of both the Mel scale and the Short-Time Fourier Trans-
form (STFT). The STFT is applied to the audio signal to obtain the time-frequency
representation, providing insight into the spectral content of the signal. However, the
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Figure 3.3: The feature extractor of the Figure 3.4: The feature extractor of the

audio input. As with most
audio pre-training architec-
tures, we use the log mel
spectrogram of the audio as
input and employ 2D CNN
layers to extract informa-
tion. After every two 2D
CNN layers, a pooling layer
is utilized, resulting in a
final 512-dimensional em-
bedding vector.

video input, which takes
224x224  three-channel
frames as input. To capture
the temporal informa-
tion between frames, we
employ 3D CNN layers,
with a pooling layer after
every two 3D CNN layers.
The final output is a 512-
dimensional embedding
vector.
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standard linearly spaced frequency bins of the STFT do not accurately reflect human
perception of sound, which is more sensitive to lower frequencies than higher ones.

The Mel scale is a perceptual scale of pitches, designed to better align with human
auditory perception. By converting the frequency axis of the STFT into the Mel scale, we
obtain a more meaningful representation of the audio signal, known as the Mel Spec-
trogram. To further improve the representation, the logarithm of the Mel Spectrogram
is computed, resulting in the Log Mel Spectrogram. This logarithmic transformation
emphasizes the more relevant and perceptually important components of the audio
signal.

In summary, the Log Mel Spectrogram is chosen as the input to our audio subnet due to
its ability to capture the spectral content of audio signals in a perceptually meaningful
way. The combination of the Mel scale and logarithmic transformation results in a
feature representation that emphasizes the most relevant and perceptually important
components of the audio signal, which is crucial for tasks such as emotion recognition.
By employing Log Mel Spectrogram, we aim to extract meaningful information from
audio signals, allowing our model to better understand the nuances of speech and
ultimately enhancing the overall performance of our emotion recognition system. Due
to the 2D nature of the Log Mel Spectrogram, we use CNN as the feature extractor for
audio.

Although the original paper by Abdou et al. [ASMB22], which is the foundation of this
thesis, uses OpenSMILE [BZLM18] as a feature extractor, we decided against it for two
main reasons. First, OpenSMILE outputs an 88-dimensional vector containing domain-
specific attributes, such as Critical Band spectra, Loudness, Zero and Mean Crossing
rate, etc. 1 However, these outputs do not contain rich continuous information, making
it less suitable as a feature extractor compared to pattern-capturing CNNs. Second, the
CNN-based structure is more in line with the pre-training architectures found in the
literature. In our audio subnetwork, each CNN layer is followed by a batch normalization
layer to increase the model’s generalization capabilities and avoid overfitting. In the
end, the Audio Subnetwork outputs a 512-dimensional vector.

3.2.2 Video Subnetwork

The video subnetwork is as shown in Figure 3.4. As the input for the video subnetwork,
we use 224x224 3-channel frames. In the work of Abdou et al. [ASMB22], the feature
extractor for the video part is 2D VGG face CNN [PVZ15], which means that for each
video, the feature extractor generates an embedding with an output shape of (N, 4096),

Thttps://audeering.github.io/opensmile/about.html%audio-features-low-level
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where N represents the number of frames, and 4096 is the dimension of the embedding.
Based on this output, Ahmed feeds it into a single-layer GRU layer to extract continuous
information between different frames. In contrast, Arandjelovic and Zisserman [AZ18]
extracts features using 3D CNN, which establishes relationships between adjacent frames
through its three-dimensional convolutional kernels. We believe that a multi-layer 3D
CNN is more capable of recognizing human facial patterns than a single-layer GRU layer
based on embeddings. Furthermore, to ensure the pre-training performance, we use
the same video feature extraction network as in the AVE-net and L3-net mentioned by
Arandjelovic and Zisserman [AZ18]. Besides, similar to the audio feature extraction
network, a batch normalization layer follows each CNN layer to improve the model’s
generalization ability and prevent overfitting. In the end, the Video Subnetwork also
outputs a 512-dimensional vector.

3.2.3 Gaze Subnetwork

The Gaze subnetwork in our model consists of two MLP (Multilayer Perceptron) layers.
The base gaze features are extracted on a per-frame basis using OpenFace [BZLM18],
and we further refine these features by calculating various statistics, the same as the
methods used by Abdou et al. [ASMB22] and O’Dwyer, Murray, and Flynn [OMF19].
After refining, each video has a 103-dimensional vector as its gaze feature, containing
statistical parameters such as mean, max, interquartile range (IQA), and standard
deviation (STD). Since this vector is unordered and each video has only one gaze
feature vector, there are no dynamic patterns to recognize. Therefore, the advantages
of traditional CNN and LSTM modules may not be well-expressed on gaze features.
Based on these reasons, we chose to use MLP layers as the feature extractor for the
gaze modality. The defined MLP layers map the 103-dimensional gaze feature to a
128-dimensional representation, with ReLU activation functions between the layers and
BatchNorm layers following each layer.

3.3 Pretrain Architecture

In this section, we will delve into the pre-training architectures utilized in our study,
which serve as the foundation for extracting features from different modalities, as
introduced in the previous chapter. It is essential to emphasize that the primary purpose
of pre-training is to effectively train feature extractors for audio, video, and gaze,
ensuring that they can capture rich representations from their respective data sources
before being integrated into the emotion recognition framework. Specifically, we will
discuss two pre-training architectures, Gaze-enhanced AVE-Net and L3-Net, both of
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Figure 3.5: The structure of the Gaze-enhanced AVE-Net. The audio and video feature
extractors are as depicted in Figure 3.3 and 3.4. Based on the output
of feature extractors, the Euclidean distance is calculated to measure the
differences between embeddings, and then the Euclidean distance is used
for the binary classification.

which were previously employed by Arandjelovic and Zisserman [AZ18]. The original
architecture of AVE-Net and L3-Net only used audio and video as input modalities, in this
thesis, gaze was added as a new modality with its own feature extractor. Based on the
audio, video, and gaze channels, we used the same pre-training task as in Arandjelovic
and Zisserman [AZ18]’s work: detecting whether audio and video frames come from the
same video. As for the gaze channel, because the gaze information is directly extracted
from the video frames, we can ensure that the video frames and gaze information are
always from the same source. With the pretrain method, we aim to enable the feature
extractors of audio, video, and gaze to understand and utilize the information from
videos. These architectures have been proven to effectively train feature extractors
[AZ18], leading to improved performance during the pre-training process.
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Figure 3.6: The structure of the Gaze-enhanced L3-Net. Compared to Gaze-enhanced
AVE-Net the structure is simpler, with the output of the same feature ex-
tractors, Gaze-enhanced L3-Net concatenates all embeddings together and
feeds them into MLP layers to perform classification.

3.3.1 Gaze-Enhanced AVE-Net

The architecture of the Gaze-Enhanced AVE-Net is as shown in Figure 3.5. In this thesis,
the Gaze-Enhanced AVE-Net architecture is adapted from the paper Arandjelovic and
Zisserman [AZ18]. The original AVE-Net in that paper only has two modalities as input:
audio and video frames. The authors made the assumption that if audio and video
frames are from the same source (i.e., the same video), different feature extractors
should produce similar embeddings. Based on this assumption, the distance between the
two embeddings should be smaller when the audio and video are from the same source,
and larger when they are from different sources. To measure this distance, the authors
calculated the mean square error between the outputs of the two feature extractors and
used it for subsequent binary classification.

In the Gaze-Enhanced AVE-Net architecture employed in this thesis, the same concept is
extended to the gaze modality as well, We believe that the commonality of embeddings
for homologous information exists not only in audio and video but also in gaze. Hence,
we decided to include gaze embeddings in the difference calculation. The mean square
error between the embeddings of all three modalities (audio, video, and gaze) is
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calculated and used as the basis for subsequent classification. Additionally, in the
original AVE-Net, the audio and video feature extractors were followed by MLP layers
that transformed the 512-dimensional embeddings into 128-dimensional ones. In
this thesis, the gaze feature extractor is composed of MLP layers, which transform a
103-dimensional gaze statistical feature set into a 128-dimensional embedding vector.
Therefore, we have audio embedding, video embedding, and gaze embedding with the
same dimensions, ensuring compatibility with the mean square error calculation process
in the AVE-Net architecture.

3.3.2 Gaze-Enhanced L3-Net

The L3-Net architecture, initially introduced by Arandjelovic and Zisserman [AZ17] and
later used as a baseline by Arandjelovic and Zisserman [AZ18], is depicted in Figure
3.6. Compared to the AVE-Net architecture, L3-Net is relatively simple with respect to
the complexity of the architecture. It concatenates the embeddings generated by the
different feature extractors horizontally, resulting in a single vector. This concatenated
vector is then passed through multiple MLP layers and a softmax layer for classification.
It is worth mentioning that the performance of L3-Net and AVE-Net in pre-training
tasks is not significantly different; however, AVE-Net shows better results in downstream
tasks.

3.4 Fine-tuning Architecture

The fine-tuning architecture is as shown in 3.7. In this thesis, the fine-tuning architecture
is largely consistent with the structure presented by Abdou et al. [ASMB22]. According
to the classification in the paper, the implemented architecture belongs to the model-
level fusion structure, which achieved the previous state-of-the-art results in the video
channel of the single modality test. Building upon method Abdou et al. [ASMB22]
proposed, we replaced the original audio feature extractor, OpenSMILE, with a 2D CNN
structure based on log mel spectrograms 3.2.1 and replaced the original video feature
extractor, 2D VGG Face CNN, with a 3D CNN architecture. The gaze feature extractor
remained unchanged, utilizing MLP layers. The substituted feature extractors have been
pre-trained on the VoxCeleb1 [NCZ17] dataset.

On top of the feature extractors for each modality, the authors also combined the video
and gaze portions using MLP layers to form a more informative visual embedding,
which has been preserved in the implemented architecture. Therefore, before the
classifier, we still have two different embeddings: audio embedding and gaze-enhanced
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visual embedding. It is worth noting that the classifier in the fine-tuning architecture
is modality-agnostic, meaning that both audio embedding and gaze-enhanced visual
embedding can serve as inputs to the classifier for single modality inference. As an
additional experiment, we also attempted to concatenate the embeddings, allowing for
joint prediction using all modalities as input. The results are presented in Chapter 4.

Emotion prediction
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Figure 3.7: The fine-tuning structure used in this thesis. The audio, video, and gaze
modalities are each fed into their own pre-trained feature extractors. On the
basis of the feature embeddings, the video channel and gaze channel are
fused by an MLP block to form the gaze-enhanced visual embedding. The
audio embedding and gaze-enhanced visual embedding are then separately
fed into a classifier for single-modality testing. In addition, we perform
cross-modal triplet loss calculations based on these two embeddings to aid
in training.

31



3.5 Triplet-training

In this section, we will focus on the loss function used during the fine-tuning stage of
our model, which plays a crucial role in the training process and the model’s overall
performance.

During the fine-tuning stage, the objective is single modality inference, meaning that
only audio embedding or gaze-enhanced visual embedding can be used. Consequently,
treating the problem as a standard classification task and merely using cross-entropy
loss could lead to confusion in the model, as gradients beneficial for the audio channel
might not be beneficial for the visual channel. To address this issue, Han et al. [HZRS19]
proposed the cross-model triplet loss, which allows the two channels to learn from each
other, and this approach was also implemented in Abdou et al. [ASMB22]’s work.

The core concept of this loss function involves the following: within a single batch of
instances, if the labels are the same, the audio embeddings generated during the forward
pass should be close in distance. Conversely, if the labels are different, the distance
should be greater. The same principle applies to gaze embeddings, which constitutes the
intra-modality loss. Additionally, within the same batch of instances, if the labels are
the same, the audio and visual embeddings of different instances should also be close
in distance, while they should be far apart if the labels are different. This establishes a
connection between the audio and visual channels, referred to as the inter-modality loss.
As the distance between two embeddings e; and e, is defined as d(e;, ¢;) = ||e; — €;|2-
Detailed information on the loss terms is introduced in this section.

3.5.1 Intra-modality loss

In a batch with n instances, when considering one of the embeddings A, the intra-
modality loss calculation begins with computing an n x n pairwise distance matrix,
where the diagonal elements represent the distance between an embedding and itself,
which is 0. The intra-modality loss is defined as the difference between the hardest
positive and hardest negative. The hardest positive refers to the maximum distance
between instances with the same label, while the hardest negative denotes the minimum
distance between instances with different labels. The formula of Intra-modality loss is
as shown in 3.1.

n

Llntm(A) = Z(d<€aﬂe;) - d(eme;)) (31)
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3.5.2 Inter-modality loss

Given a batch of n examples with both embeddings e, of modality A and corresponding
embeddings e, of modality B. First, we still need to compute an n x n pairwise distance
matrix. This matrix contains the distances d(e;, e;) for all e, € A and e, € B, Then, with
the same strategy for searching for the hardest positives and negatives, the inter-modality
loss is calculated by

n

Linter(A, B) = Y (d(ea, ef) — d(€a, €y )) (3.2)

3.5.3 Full loss term

After the explanations provided above, the complete triplet loss can be defined as the
formula 3.4. In addition to the triplet loss, the conventional Cross entropy loss is also
indispensable. It is defined as the sum of the Cross entropy of the classification results
from the two modalities.

LTriplet = Llnter(Aa V) + Llntra(A) + Llntra<v) (33)

Lyt = o % Lypipier + Crossentropy(A, label) + Crossentropy(V, label) (3.4)

A refers to the audio embedding, V' denotes the gaze-enhanced visual embedding, and
« is a parameter that controls the influence of the triplet term. In the actual training
process, the value of triplet loss usually ranges from several tens to 220, while the
maximum value of cross entropy is only 1.95 (when the answers follow a uniform
distribution). The disparity in loss values causes the impact of cross entropy to be
diminished. Hence, we added the alpha parameter to control the influence of triplet
loss. Through experimentation, it has been found that the best training performance is
achieved when « is set to 0.1.
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4 Results

In this section, we present and discuss the results obtained from our experiments,
highlighting the effectiveness of the proposed methodologies and architectures. We will
begin by presenting the pre-training results for both AVE-Net and L3-Net architectures,
followed by a comparison of single modality test results for models with and without pre-
training. Then, we will compare our findings with the results from the previous research,
showcasing the improvements achieved through our approach in gaze-enhanced visual
and audio embeddings. As a performance metric, we utilized F1 micro score, which is
also the evaluation metric used in the upstream literature [ASMB22][HZRS19]. The
objective of this section is to demonstrate the impact of incorporating gaze information
and pre-training strategies on emotion recognition tasks and provide insights into the
performance enhancements achieved with our methods.

4.1 Pre-training Results

In this section, we will present the results obtained during the pre-training phase of our
multimodal emotion recognition model. The pre-training process plays a crucial role
in preparing the model to effectively learn from the fine-tuning dataset. Here, we will
discuss the performance of the two pre-training architectures, AVE-Net and L3-Net, in
terms of their accuracy on the VoxCeleb1 dataset. This will provide a solid foundation
for understanding the model’s subsequent performance in single modality tests.

Table 4.1: The pre-training result of Gaze-enhanced L3-Net and AVE-Net. As the baseline
performance for the pre-training task, we use random probability, that is,

50%.
Model ‘ F1 micro score
Baseline (random) ‘ 50.00
L3-Net | 84.62
AVE-Net | 85.11
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We would like to first reiterate that the pre-training task involves determining whether
audio and video frames come from the same video, which is a binary classification prob-
lem. The baseline F1 micro score for this task is 50, achieved by random classification.
Additionally, the pre-training dataset contains an equal number of negative and positive
samples.

As shown in Table 4.1, both AVE-Net and L3-Net exhibit comparable performance on the
pre-training task, with only a 0.49 difference in their respective results. This indicates
that both models are capable of effectively processing different modalities of input and
achieving satisfactory outcomes. However, it is crucial to emphasize that the pre-training
results do not definitively establish the superiority of either model, as the primary focus
of pre-training is binary classification. The subsequent fine-tuning stage, which involves
a multi-classification task, will provide further insight into the performance of the two
models in the context of emotion recognition.

4.2 Fine-tuning Results

In this section, we aim to assess the effectiveness of our pre-trained models in the
fine-tuning phase on the OMG Emotion Challenge dataset. We will first examine the
performance of single modality tests, where the gaze-enhanced video embedding and
audio embedding are evaluated separately, following the testing approach adopted by
the previous study that serves as the foundation of this work. Subsequently, we will
explore the results of a more comprehensive approach, in which both modalities are
combined to leverage all available information for emotion recognition. This analysis
will provide valuable insights into the overall performance and potential improvements
offered by our pre-training strategy.

As shown in Table 4.2, we can observe the performance of the different models on the
OMG Emotion Challenge dataset. The results are presented in terms of F1 micro scores
for each modality (video and audio) and their combination.

For the pre-trained Gaze-enhanced L3-Net, the F1 micro scores for the video and
audio channels are 49.28 and 45.94, respectively. In comparison, the pre-trained gaze-
enhanced AVE-Net yields F1 micro scores of 42.94 and 45.42 for the video and audio
channels, respectively. These results indicate that the pre-trained Gaze-enhanced L3-Net
outperforms the pre-trained gaze-enhanced AVE-Net in both modalities, particularly in
the video channel.

When considering the models without pre-training, the Gaze-enhanced 1.3-Net achieves
F1 micro scores of 42.37 and 38.65 for the video and audio channels, respectively, while
the gaze-enhanced AVE-Net attains scores of 40.27 and 41.79 for the video and audio
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Table 4.2: The single modality test result of Gaze-enhanced L3-Net and gaze-enhanced
AVE-Net. The metric of evaluation is F1 micro score.

Model ‘ Audio ‘ Video ‘
pre-trained Gaze-enhanced L3-Net ‘ 45.94 ‘ 49.28 ‘
pre-trained gaze-enhanced AVE-Net ‘ 45.42 ‘ 42.94 ‘

Gaze-enhanced L3-Net ‘ 38.65 ‘ 42.37 ‘
gaze-enhanced AVE-Net ‘ 41.79 ‘ 40.27 ‘
pre-trained Gaze-enhanced L3-Net ‘ 57.82
pre-trained gaze-enhanced AVE-Net ‘ 52.35

channels, respectively. These results demonstrate the importance of pre-training, as the
pre-trained models consistently outperform their non-pre-trained counterparts in both
modalities.

When combining all modalities for prediction, the pre-trained Gaze-enhanced L3-Net
reaches an F1 micro score of 57.82, significantly outperforming the pre-trained gaze-
enhanced AVE-Net, which achieves a score of 52.35. This indicates that the pre-trained
Gaze-enhanced L3-Net is more effective at leveraging multimodal information to make
predictions.

It is important to note that the results presented above are based on the average of three
runs, due to computational resource constraints. However, the trends observed in the
results provide valuable insights into the performance of the different models and the
impact of pre-training on their effectiveness.

4.3 Benchmarking Against Prior Work

In this final section of the results chapter, we will benchmark the performance of our best-
performing model, the pre-trained Gaze-enhanced L3-Net, against prior work conducted
on the OMG Emotion Challenge dataset [BCL+18] as well as the provided baseline.
This comparison will help us understand the effectiveness of our proposed model in
relation to existing approaches.

As shown in Table 4.3, our model, the pre-trained Gaze-enhanced L3-Net, achieves
F1 micro scores of 49.28 and 45.94 for the video and audio channels, respectively,
outperforming other existing models on the OMG dataset.
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Table 4.3: Comparison of pre-trained Gaze-enhanced L3-Net and results published in
other works. The metric of evaluation is F1 micro score.

Model ‘ Audio ‘ Video
pre-trained Gaze-enhanced L3-Net ‘ 45.94 ‘ 49.28
Abdou et al. [ASMB22], model-level fusion ‘ 42.6 ‘ 45.0
Abdou et al. [ASMB22], early fusion ‘ 43.4 ‘ 43.7
Han et al. [HZRS19] | 41.7 | 439
OMG baseline [BCL+18] | 33.0 | 37.0

For Abdou et al. [ASMB22]’s model-level fusion, our model outperforms their results
by 4.28 points on the video channel (49.28 vs. 45.0) and by 3.34 points on the audio
channel (45.94 vs. 42.60). In the case of Abdou et al. [ASMB22]’s early fusion, our
model shows an improvement of 5.58 points for the video channel (49.28 vs. 43.7) and
2.54 points for the audio channel (45.94 vs. 43.40).

Comparing our model to EmoBed [HZRS19] architecture, our pre-trained Gaze-enhanced
L3-Net outperforms their model by 5.38 points on the video channel (49.28 vs. 43.9)
and 4.24 points on the audio channel (45.94 vs. 41.70).

Lastly, when considering the OMG baseline [BCL+ 18] results, our model demonstrates
a significant improvement, outperforming the baseline by 12.28 points for the video
channel (49.28 vs. 37.0) and 12.94 points for the audio channel (45.94 vs. 33.0). This
clearly indicates that our pre-trained Gaze-enhanced L3-Net model outperforms the
baseline and other existing models in emotion recognition on the OMG dataset.

An essential aspect to highlight is the significance of pre-training in our model’s perfor-
mance. By referring back to the previous Table 4.2, we can see that the models without
pre-training did not perform as well as the models presented in Table 4.3. For instance,
the non-pre-trained Gaze-enhanced L3-Net and AVE-Net lagged behind Abdou et al.
[ASMB22]’s model-level fusion by 2.63 and 4.73 points in the video channel, and by
3.95 and 1.61 points in the audio channel, respectively.

This observation suggests that the improvement in our model’s performance can be
largely attributed to the pre-training process rather than the model architecture itself.
Despite our model’s architecture not being inherently superior to the other models,
the substantial performance gains achieved by our pre-trained Gaze-enhanced L3-Net
(with an increase of 6.91 in video and 7.29 in audio compared to non-pre-trained Gaze-
enhanced L3-Net) demonstrate the effectiveness of pre-training in emotion recognition
tasks, specifically on the OMG dataset.
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4.4 Discussion

As shown in previous sections, the pre-trained Gaze-enhanced L3-net and gaze-enhanced
AVE-Net both show significant improvements in the video and audio channels com-
pared to their non-pre-trained counterparts. The pre-trained Gaze-enhanced L3-net
achieves state-of-the-art performance, surpassing the results of previous research in both
channels. This showcases the benefits of pre-training and supports our hypothesis that
our architecture and objective can benefit from external information, specifically the
VoxCelebl [NCZ17] dataset in this case.

It is important to note that the choice of external information is crucial for the success
of our architecture. As our final objective is video-based emotion recognition, we
selected the video-based interview dataset VoxCeleb1 to ensure that our architecture
can effectively understand and utilize video frame information, audio information, and
gaze information.

Although Abdou et al. [ASMB22]’s work also utilizes a pre-trained video frame feature
extractor, VGG Face CNN [PVZ15], it is based on single-image pre-training and their
gaze feature extractor is not pre-trained. Consequently, their results are not as strong as
those presented in our study.

However, it is worth mentioning that the untrained Gaze-enhanced L3-net and gaze-
enhanced AVE-Net do not outperform Abdou et al. [ASMB22]’s structure in both chan-
nels. This suggests that our choice of model architecture may not be more advantageous.
It is possible that the use of 2D CNNs combined with GRU layers for video processing
could be more effective than 3D CNNs, and the global domain-specific attributes output
by OpenSMILE [EWS10] might have more robust performance than 2D CNNs on log
mel spectrograms 3.2.1.

Lastly, it is also possible that we have not fully understood the details of Abdou et
al. [ASMB22]’s architecture and may have missed some structural components when
building the baseline architecture. To further investigate this, we plan to obtain the
relevant code permissions and repeat the experiments for validation purposes.
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5 Conclusion and Future Work

In conclusion, this study has presented a comprehensive examination of the benefits of
pre-training on emotion recognition performance using gaze-enhanced visual and audio
embeddings in the context of the OMG dataset. Our findings indicate that pre-training is
a crucial factor in improving the performance of models for emotion recognition tasks,
regardless of their architecture.

We have introduced the Gaze-enhanced L3-Net and AVE-Net models and demonstrated
their effectiveness in pre-training tasks, achieving an accuracy of over 80%. Moreover, we
have shown that the pre-trained Gaze-enhanced L3-Net outperforms the existing models
on the OMG dataset, as well as the non-pre-trained versions of the same architectures,
illustrating the potential of pre-training in enhancing emotion recognition capabilities.

Furthermore, our study highlights the importance of considering both single modality
and multimodal approaches when evaluating the performance of emotion recognition
models. The results indicate that combining information from both video and au-
dio channels can lead to improved performance compared to using single modalities
independently.

Despite the limitations of the study, such as the limited number of runs due to computa-
tional resource constraints, our findings underscore the potential of pre-training as a
valuable tool for improving emotion recognition performance.

Overall, this research contributes to a deeper understanding of the role of pre-training
in emotion recognition and provides a foundation for future work aimed at developing
more accurate and efficient models in this domain.

In this study, as presented in the results section, the chosen model architecture did not
outperform that of Abdou et al. [ASMB22]. The primary contribution of this research is
to demonstrate the positive impact of pre-training on emotion recognition tasks. In the
early stages of the project, Abdou et al. [ASMB22]’s code was not available, which leads
us to the following future work directions.

Firstly, we plan to adapt the original architecture of Abdou et al. [ASMB22] by incor-
porating pre-training and conducting single modality tests under the same training
settings. This will further verify that pre-training can indeed improve the performance
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of the current state-of-the-art architectures, even though, as discussed in the results
section, the Gaze-enhanced L3-Net and AVE-Net do not show inherent superiority in
their structures. We also expect that the outcomes of this future work will surpass the
results obtained in this study.

Furthermore, in both Abdou et al. [ASMB22]’s architecture and our own, the gaze
data is processed using statistics as input for MLP layers, which prevents the model
from capturing patterns representing eye movements. As an optimization, frame-
based transformer architectures [VSP+17] have been proven effective in various tasks.
Therefore, replacing the MLP layers with transformers is a feasible future direction.

Additionally, we will continue to explore replacing the feature extractors in Abdou et al.
[ASMB22]’s original architecture with those used in this study to further validate the
superiority of their approach. All these future experiments will be strictly based on
Abdou et al. [ASMB22]’s architecture to ensure the comparability of the results.
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