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Abstract

The ability to infer the believes, desires and preferences of other humans around us -
referred to Theory of Mind - is crucial for effective human cooperation. In this work we
investigate how this ability can facilitate cooperation among artificial agents, particularly
in zero-shot cooperation scenarios where the partner might be human. While previous
works had access to ground truth belief states of the other agents during training, we
study Theory of Mind based collaboration in a multi-agent collaborative environment
where no ground-truth belief states exists, namely Overcooked. We propose three
auxiliary tasks that agents are trained with which in turn are inspired by Theory of Mind:
Predicting (i) partner’s next action, (ii) partner’s next strategic goal and (iii) partner’s
neural state. Our research demonstrates that self-play agents trained with these auxiliary
tasks exhibit improved competence in playing the game but tend to underperform when
interacting with others, suggesting a tendency towards overspecialisation on oneself.
To address this challenge, we add our auxiliary tasks to population based methods
for training against diverse populations and show increased performance on several
benchmarks, especially on the layout Asymmetric Advantages. Overall, our work shows
the importance of explicitly modelling Theory of Mind for multi-agent cooperation.
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1 Introduction

During collaboration humans naturally perceive the current intentions, beliefs and
desires of those surrounding them and react to them accordingly even from a young
age. This ability of inferring others’ mental states is referred to as Theory of Mind (ToM)
[BJST17; BLF85; PW78; YDF08]. Imagine a couple is doing the dishes after dinner. If
one partner takes a plate, cleans it in the sink, dries it off and hands it to the other, what
were they thinking? And what do they expect of them? Clearly, they want them to put
the plate away, an intention one can naturally infer from observing them alone. We
humans draw this inference as we are able to reason not only about the raw motions
this person is going through but instead, we are reasoning about their behaviour as a
whole, including their current mental states. Moreover, this mostly occurs with little or
incomplete verbal interaction. There is usually no explicit agreement in them putting
the dish in the correct cabin and not in a drawer, the trash or back in the sink. Clearly,
one is able to deduct these goals from non-verbal cues alone.

We infer others’ mental states subconsciously, even without actively thinking about it
[SC13]. Think about all the small daily coordination tasks you are going through with
complete strangers, i.e. how you are deciding who exits the subway train first during
rush hour, whether you move to the right or left when you and someone else are on a
collision path or who moves through a door first when you and someone else want to
pass through it at the same time from opposite sides. Moreover, realise how awkward it
is if this kind of coordination fails and you have misread your opposite. Recall, the times
where you and someone else try to pass each other on the same site and both of you
come to an unexpected hold.

ToM is clearly crucial for human-human coordination (also see Langley et al. [LCCS22]).
Naturally, we are therefore interested in investigating how ToM affects other agent
to agent coordination. While studying ToM only recently became a focus in studying
artificial agents in general [RPS+18], recent work also starts to focus on collaborative
settings [FWCL21], as-well as AI-AI [SNB22; YFZ+21] and human-AI cooperation
[CSHD20; KCD+21].

Human-AI collaboration is non-trivial to achieve and is considered a long-standing
challenge for AI [AZI+18; DHB+20; KWB+04]. Approaches for human-AI coordination
can be separated by whether human data is used to build an effective model of human
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1 Introduction

Figure 1.1: Common-Payoff games pose a special challenge for self-play based methods.
Graphic taken from: [CSH+19].

behaviour [BSF+20; CSH+19; She16] or not [SMB+21; YGL+23]. Since human data
is often hard to come by at appropriate scale, collaboration often needs to be achieved
without making use of it. In these settings, artificial agents need to learn to cooperate
with a novel human partner – known a zero-shot coordination [HLPF20; KZGR23].

While reinforcement learning (RL) and self-play (SP) [Tes94] have been at the core of
many recent successes in the advancement of AI [HDG+19; SSS+17] – including playing
Go [SHM+16; SSS+17], chess [SHS+17] or even many games at once [RZP+22] at
the super-human level – these techniques fail to train policies that solve the zero-shot
coordination problem in cooperative environments. SP agents often only learn to
cooperate with themselves, producing policies that are not capable of cooperating well
with novel partners, especially not with humans. This is mostly due to the nature of
cooperative environments, as illustrated in Figure 1.1. Cooperative games belong to
the class of common-payoff games in which both agents observe a shared reward that is
based on a common objective. In such games, SP agents are biased to learn max-max
policies, i.e. to learn which is the best move to make given that the other agent will also
pick the best move. Note that this assumption does not always hold true for humans.
Therefore, a more sound approach to human-AI interaction would be to find the best
move given the move your partner is likely to play. This motivates building agents that
are robust under zero-shot cooperation.

Given the non-trivial nature of human-AI cooperation, the role of Theory of Mind in
human cooperation and the recent of emergence of Machine Theory of Mind, we propose
the use of MToM to improve cooperation.
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1 Introduction

Figure 1.2: Overcooked-AI [CSH+19] is a challenging two-agent cooperation bench-
mark designed to study human-AI cooperation specifically. Graphic taken
from: [CSH+19].

Our contributions are the following: (i) We design a self-supervised Theory of Mind
mechanism in the popular human-AI cooperation environment Overcooked-AI [CSH+19]
(see Figure 1.2), (ii) we propose three different belief supervision targets based on
the abstractness of the belief representation, denoted low-level, high-level and neural
representation, (iii) we add this mechanism to multiple state-of-the-art (SOTA) algorithms
and baselines, provide detailed ablations studies into their performance and while doing
so propose or review multiple evaluation methods that do not depend on human
input. With our contributions we aim to answer four research questions to examine the
capabilities of cooperative ToM agents with their non-ToM counterparts:

H1 ToM-versions of agents have higher average validation reward when playing with
different partners compared to their non-ToM counter parts.

H2 ToM-versions of agents have higher average validation reward when playing with
strongly biased policies compared to their non-ToM counter parts.

H3 ToM-versions of agents have higher unit test success rate compared to their non-ToM
counter parts.

H4 ToM-versions of agents achieve highest evaluation reward when playing with other ToM
agents.

Our work shows the importance of modelling Theory of Mind in multi-agent, collabora-
tive settings. Specifically, we show that our Theory of Mind agents outperform strong
baselines on several evaluation metrics, for instance when playing with each other or
playing with scripted (i.e. strongly biased) policies. We additionally also show that
our agents are able to perform well with models of human behaviour and generally in
challenging scenarios as established through unit testing for robustness. Lastly, we pro-
vide evidence that our agents are capable of correctly modelling the type of cooperation
partner they encounter.
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2 A Motivating Example

Figure 2.1: Robustness failure in the wild on Asymetric Advantages.

As a motivating example the kinds of problems our work aims to solve, we present an
example that displays agents’ failure to cooperate in the wild, see Figure 2.1. When
training a self-play agent in Asymmetric Advantages layout, the agent learns a different
policy depending on position that it will stubbornly stick to it. Since the right agent
can access onions easier, it learns to only place onions into pots. Consequently, the left
agent only learns to pick a plate and deliver the soup since the grey serving location
is easier to access for it. This is highlighted in the Figure by the circling arrows. Both
agents will never leave the middle of the layout (crossed-out arrows). Importantly, this
behaviour achieves good performance if two self-play agent are paired. Conversely, if
the right self-play agent is paired with a left agent that does not deliver soups, it fails
to do so itself which results in a combined score of zero. The reason being that the
self-play agent expects the other agent to deliver the soup as it has only encountered
this behaviour during training. Thereby the self-play agent fails to solve the zero-shot
coordination problem as it can not adapt to the behaviour of others. This is exactly the
kind of robustness failures we address in this work.
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3 Related Work

Our work connects the domains of human-AI collaboration, Machine Theory of Mind,
AI robustness and safety, and multi-agent reinforcement learning through its unique
approach of studying Theory of Mind as a robustness measure in a collaborative envi-
ronment, namely Overcooked-AI.

3.1 Human-AI Collaboration

With the increasing deployment of AI systems in the real world, making sure that these
systems are capable of collaboration has garnered increasing attention. This is especially
true for settings in which the future cooperation partner is novel and of unknown
nature as these most accurately resemble many real world scenarios such as autonomous
driving or communication [KHA+16; LPB17; RKCW18; SSF16]. In the literature, these
settings are discussed under two separate problem formulations depending on whether
the agent is allowed to learn the policies of the other agent(s) or not during interaction.
If so, it is referred to as the ad-hoc coordination and if not as the zero shot coordination
problem [HLPF20; SKKR10; SR13]. In the latter case, one is challenged to create a fixed
policy which then must be able to interact with new agents that were not encountered
during training. Being able of only interacting with oneself and failing to interact with
other novel partners motivates the study of this topic under the lens of AI robustness
[KCD+21] and out-of-distribution generalization [KZGR23]. Under this view, failing to
cooperate is a form of over-fitting.

A common approach in reinforcement learning is to train agents via self-play [Tes94].
While self-play can produce agents capable of achieving high scores with themselves,
these agents typically rely on highly specialized conventions that do not work for agents
they have not been trained with [BFC+20; CSH+19; KCD+21]. Taking this and the
sub-optimal nature of human behaviour into account, Hu et al. [HLPF20] proposed
Other Play as a method for zero-shot collaboration with sub-optimal partners in Hanabi
[BFC+20]. This is one of a few works that explicitly take into account human properties
[CSH+19; YGL+23] to improve human-AI coordination [SR13]. Human-AI coordination
poses a challenge since humans can act sub-optimally according to their beliefs and
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3 Related Work

Figure 3.1: Overview over methods in the literature for achieving zero-shot cooperation
with humans in Overcooked-AI, namely Fictitious Co-Play [SMB+21], Max-
imum Entropy Population Based Training [ZSY+23], and Hidden Utility
Self-Play [YGL+23]. Note that they all follow a two stage approach where
first a population of diverse agents is obtained and then a best response to
that is trained thereby capturing a diverse set of behaviours in its resulting
policy.

biases [TK74]. Moreover, the conventions self-play and other naive algorithms develop
often are unintelligible for human players and thus alternative methods need to be
developed that deal with this issue.

Overcooked-AI [CSH+19] has been proposed as a challenging benchmark to study
human-AI coordination, attracting a wealth of new research and publications [CMD20;
FHZ+21; KCD+21; NGS+21; RMSM23; SMB+21; STSD22; YGL+23; ZSY+23]. In
Overcooked-AI, agents are tasked with cooking a soup together, while making use of
ingredient dispenser, pots, dishes and serving locations. The environment presents
different layouts. Figure 1.2 shows a layout with only onions as the soup ingredient but
other layouts support different ingredients and recipes. Upon the delivery of a finished
soup both agents receive a shared reward, which makes Overcooked a common-payoff
game.

Three approaches evaluated on Overcooked that are relevant to this work are Fictitious
Co-Play [SMB+21], Maximum Entropy Population Based Training [ZSY+23], and
Hidden Utility Self-Play [YGL+23] which we will describe in more detail below. An
overview over these methods is presented in Figure 3.1.
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3 Related Work

3.1.1 Fictitious Co-Play

Fictitious Co-Play (FCP) [SMB+21] follows the insight that to cooperate well with a
diverse set of others of differing skill level, agents should encounter diverse behaviour
via a population of diverse agents with different skill levels. The approach is simple
and can be summarized into two main stages. In the first step, a population of self-play
agents initialised with varying random seeds is trained. Varying the random seeds is
supposed to help generate different agents in the population. During training, three
checkpoints are saved for each trained agent to simulate different skill level from the
start, middle and end of training. These represent agents that are not or only slightly,
somewhat and fully capable at the task. A best response agent is trained against the
population, leading to an agent capable of adapting to agents with previously unseen
behaviour.

This approach is simple but it has a few drawbacks. First, different random seeds do
not guarantee substantially different behaviour in the trained policies. Second, since
all policies in the population are trained via self-play they will likely result in agents
with similar biases and assumptions that are specific to self-play. Thus, the best response
agent will pick up on these behaviours even though they are likely harmful in zero-shot
cooperation settings. Third, even if the population happens to include diverse behaviour
it might still not cover human behaviour well thus having our agent learn to play against
policies that are irrelevant at testing time.

3.1.2 Maximum Entropy Population Based Training

One approach that specifically addresses the first FCP drawback is Maximum Entropy
Population Based Training (MEP) [ZSY+23]. MEP follows a similar two-step procedure
for arriving at its final agent where first a population and then second a best response
are trained. It differs from FCP in two important ways. MEP starts from the observation
that the training population should be as diverse as possible. This is achieved by adding
a entropy term to the policy objective, which encourages agents to take very different
actions that still lead to (near) optimal results. Moreover, MEP introduces the idea of
prioritized sampling for best response training. The best response agent is paired with
an agent from the population based on how hard it is to collaborate with that specific
agent, i.e. via prioritized sampling. This is dynamically adjusted during training. While
addressing the first weakness of FCP, the last two still remain. The population is based
on self-play agents alone and the behaviour of the agents in the population is unrelated
to human behaviour.
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3 Related Work

3.1.3 Hidden Utility Self-Play

The core drawback of the previous approaches is that the behaviour of the agents
in the population is only weakly related to human behaviour. Humans seldomly act
as a reinforcement learning agent would. Humans pause and think, and tend to act
according to their own preferences and biases (which are different between any two
humans), often sub-optimally [CSH+19]. Ideally, we would like the population to reflect
this. Following this line of thinking Yu et al. [YGL+23] studied human behaviour in
Overcooked and realised that humans have event-based preferences that are unrelated
to the game state. They for instance might prefer picking up a tomato over picking
up an onion even though the onion would have higher expected reward. Based on
this they introduced the Hidden-Utility Self-Play (HSP), which is also based on a two
step training regime. To account for human preferences they constructed a population
of biased self-play agents through giving additional reward to the agents for a special
subset of game interactions. These subsets are different between agent pairs, leading to
the agent having different preferences towards certain game mechanics. Since the pool
of policies trained this way still will contain similar policies they furthermore filter their
pool of policies down to the half that omits the most diverse behaviour through a simple
greedy search. They fill the missing half with MEP agents which requires the training of
both an MEP as well as an HSP population, thereby significantly increasing performance
requirements.

With this setup HSP holds the current state-of-the-art performance in Overcooked for
human-AI collaboration. Still, there are several drawbacks with this approach. First
and foremost, HSP depends on creating biased SP agents via manually picked reward
functions based on game events. While this might be possible for simple enviorments, it
is unclear how such an approach could scale towards more complex scenario’s. Secondly,
HSP requires a lot of compute to train. The authors needed to train 36 biased self-play
policies and 18 MEP policies for each of the 5 layouts they evaluated (for a total of
54 ∗ 5 = 270 agents) before then training one adaptive agent for each layout.

Our approach extends the ideas present in playing against diverse populations realized
in FCP, MEP and HSP with training a best response Theory of Mind agent instead of
standard best response training.

3.2 Machine Theory of Mind

We have already alluded to the importance of Theory of Mind for human collaboration.
To recap, ToM refers to the ability of an agent to reason about the preferences, mental
states and goals of other agents in a system [BJST17; BLF85; HS44; PW78; YDF08].

19



3 Related Work

As this ability is innate to humans and their behavior, an increasing effort has recently
also been placed into studying Theory of Mind with and in machines, in order to give
them similar capabilities. [RPS+18] took a deep learning perspective and formulated
Machine Theory of Mind (MToM) as a meta-learning task in which an observer is tasked
with reasoning about the actions of agents in a grid-world setting. To do so, they design
a ToM neural network, ToMnet, which has inspired others to include ToM modelling
in their deep learning network architectures [BCC21; FWCL21; LZL+23; NNL+22;
NNL+23; SNB22; YSP+22; ZZH+23]. Except for modelling ToM via deep learning
other works take a Bayesian perspective [BJST17; KHA+16] or base their approach on
partially observable Markov decision processes (POMDP) [DQGY10; HG18].

More specific to this work, MToM was also used to improve human-AI coordination,
most notably in Hanabi [FWCL21]. Within Overcooked MToM was explored as an
inductive biases for improving a human model [KCD+21] to be used during training.
Their modeling of ToM essentially boils town to a handcrafted rule-based scripted agent
that tries to act more human-like by for instance having some chance of stopping to
simulate a "thinking" human in the environment etc.

While not in Overcooked, Yuan et al. [YFZ+21] developed and studied a Q-learning
algorithm that proposes to learn to solve auxiliary ToM tasks during training for im-
proving cooperation across two environments. Their algorithm took had both agents
estimate belief and belief over belief over each other during training. To have the labels
be stationary, they updated their agents in turn where switching was defined via a small
probability. This alleviates the problem of non-stationary which is a common assumption
in algorithms [PJB20].

3.3 Auxiliary Tasks in Reinforcement Learning

In auxiliary tasks are sometimes used to support the agents training and can be viewed
as a special variant of adding supplementary cost functions [SMD+11]. The idea often
being that the learning should be additionally guided through introducing additional
objective. These objectives are often based on the environment. As an example Lample
and Chaplot [LC17] tasked agents in first-person shooter games to detect whether and
enemy was in sight and found this to increase game performance and Mirowski et al.
[MPV+17] had agents perform depth prediction during maze solving. Clearly, detecting
enemies makes the task of winning such a game much easier which is why this was
introduced to guide training. Other examples include reward-prediction and pixel- and
feature-control all proposed by Jaderberg et al. [JMC+17]. Note that these two, along
with terminal prediction [KHT19], are notable examples of auxiliary tasks that are
independent of the environment and thus do not need to be hand designed.

20



3 Related Work

During collaboration we would guide our agents to pay attention to the mental states
of those surrounding them. Thus, core to our idea is that our agents solves auxiliary
Theory of Mind tasks during play such as predicting the other agents next action. We
model this and the corresponding update on the literature from auxiliary task RL that is,
we add these tasks as supplementary cost functions.

3.4 AI Robustness & Safety

Research in machine learning should not only care about developing agents that can
achieve the highest score in some cooperation task with a human but we would also
like these agents to be safe. Thus we should give serious consideration towards risks,
especially such related to accidents [AOS+16; Bos14]. Since humans are not idealized
rational agents [TK74] any cooperation agent must specifically also account for unex-
pected behaviour, thus requiring them to be robust under a wide distribution of human
actions and policies. One strategy is value alignment [FGH+20], a technique that hopes
to ensure that the artificial agents perspective match these of their human counterpart.
Such an agent would then be denoted as being aligned. Some misalignment’s have
already been observed in research, for instance goal misgeneralization [LKS+22]. In
this regard, ToM is a crucial capability to have in cooperation since it allows an agent to
take into account the preferences, goals and desires of their partner before making a
decision. Our work builds on this view as we propose and evaluate ToM as a robustness
measure in Overcooked.
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4.1 Preliminaries

Following Sclar, Neubig, and Bisk [SNB22] we define the Theory of Mind Multi Agent
Reinforcement Learning (ToM-MARL) paradigm as an extension to the usual multi agent
setting in which actions are picked by each agent conditioned on their belief of the mental
state of the other agents. We start by defining a N -player Markov Decision Process (MDP)
as a tuple M = ⟨S, A(i), T , P , γ, R⟩ where S is a set of states in the environment, A(i)

the set of possible actions for any given player i ∈ N where N is the number of players
in the set of players N , T is the transition function T : S × A(1) × ... × A(n) → ∆(S)
which represents the distribution over next states, P the initial state distribution, γ the
discount factor and R the reward function producing a joint reward for all players in
N , specifically R : S × A(1) × ... × A(n) → R. In this setting, agents pick an action
according to their policy πi, i ∈ N where πi : S → ∆(A(i)). Additionally, we define
the history as the past interactions of all agents with the environment, captured by
(S × A(1) × ... × A(n))t.

We define an agent with no ToM capabilities as one that simply acts based on their
policy and their current observation. That is, given their policy πi they choose the next
action at timestep t as πi(a(i,t)|st). Agents that can reason over their own knowledge
and thus are stateful are denoted as zeroth order ToM agents [FVHK08; HZ02]. These
agents pick an action given their policy πi and their hidden state h

(i)
t accumulated over

the episode, i.e. via πi(a(i,t)|h(i)
t ) where h

(i)
t also includes a representation of the current

state st. Since both are not reasoning about mental states of others, we will refer to both
kinds of agent as having no ToM. ToM agents are defined as agents capable of estimating
h

(j)
t , j ̸= i. We believe this definition to be to restrictive and instead define a ToM agent

as any agent that reasons over (future) actions, goals or mental states of others. Our
definition is more general than the one of Sclar, Neubig, and Bisk [SNB22]. Especially
since ours also allows reasoning over the mental states of others implicitly, for instance
as was done by Rabinowitz et al. [RPS+18].

Notice that if all other policies except for the i-th are fixed, we can reduce this paradigm
to a single-agent partially observable Markov Decision Process (POMDP), treating all
other agents as part of the environment. In this setting, the task reduces to finding one
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optimal policy π(i) in this Partially observable Markov Decision Process (POMDP) as all
others {π(j)|i ̸= j} are given.

4.2 Assigning Mental States to Artificial Agents in
Overcooked

SP

Figure 4.1: What is the mental
state of this yellow
agent given the trajec-
tory outlined by the
arrow? We propose
three options: (i) Its
next action (right),
(ii) its strategic goal
(interact(tomato)) or
(iii) some activation
vector in its policy net-
work.

In order to predict mental states of other artificial
agents in Overcooked one has to define the notion
of mental state of an artificial agent, as there is
no ground truth available. Consider the example
in Figure 4.1, where a yellow agent approaches a
tomato. Suppose that we have the full trajectory of
the agent given as:

τ = [right, right, right, interact(tomato)].

What is the mental state of the agent given τ and
how can we represent it such that other agents can
predict it? We propose three ways of representing
mental states in Overcooked.

First, we pose that the mental state of the artificial
agent corresponds to the low-level action it is about
to perform. To this end recall that at each step the
agent picks an action to perform, thereby reveal-
ing their preference about what to do given their
current evaluation of the environment state. Conse-
quently, we name this representation the low-level
representation. Note, that this is akin to the theory
of revealed preferences [Var06] in economics. Sec-
ond, we propose that on a more abstract level the
mental state of the agent is to pickup the tomato.
We will from now on refer to as the strategic repre-
sentation. This is inspired by the fact that humans
seldomly reason about minute details of their motions but rather think about the goal
they want to reach next. Since reasoning about the goals others is a classical ToM capa-
bility, we are interested in specifically testing this higher-level representation. Thirdly, we
note that the actual state of the agent is captured in the activation’s of its policy network,
to which we have full access to during training. We thus suggest a neural representation
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of mental states where we task the agent with predicting the activations in a layer of the
policy network of the other agent. This is different from how humans reason about each
others’ mental state as we never predict how the neurons of those around you will fire.
This third approach resembles more closely the original formulation of ToM agents given
by [SNB22]. Note that we do not argue that one of these representations is necessarily
correct but instead we hypothesize that having an artificial agent reason about these
will be helpful during cooperation.

4.3 Self-Supervised Belief Prediction in Overcooked

In this section we illustrate how mental state labels are computed during training. Rein-
forcement learning is often split into two stages (i) rollout and (ii) agent updating. Dur-
ing rollout, samples are collected into a dataset D = {τ 1, τ 2 . . . , τD} = {(sk

t , ak
t , rk

t )T
t=0}D

k=1
of length D which is then used to perform learning with. Note that it is trivial to expand
this dataset after each episode, post-hoc, before any learning occurs. This makes it possi-
ble to compute the belief labels after each episode and obtain: D = (ā, ḡ, n̄, sk

t , ak
t , rk

t )T
t=0

where ā, ḡ and n̄ are belief labels at timestep t for other agents next action ā, their
strategic goal ḡ and their neural representation n̄. For the low-level representation
collecting the actions taken during the episode is sufficient to compute ā, the same
holds for storing activation vectors from both policy networks for n̄. When it comes
to the strategic goal ḡ, we are inspired by the work of Yu et al. [YGL+23] and use
environment events as our basis for strategic goal labels. Examples of these events
include picking up an onion, picking up a tomato, delivering a soup etc. At any
time step t the belief label then is the next game event triggered by the other agent.
For example, the belief labels for the scene discussed above and shown in Figure
4.1 are: {(r, i(t), αh

t=0), (r, i(t), αh
t=1), (r, i(t), αh

t=2), (i, i(t), αh
t=3)} with r = right,

i(t) = interact(tomato) (a game event), and αh
t=0 an activation vector from the yellow

agent’s policy network.

4.4 Theory of Mind Agent Training

Because of its simplicity and recent successes we base our objective function on the
Principal Policy Optimisation (PPO) [SWD+17] objective. Because solving ToM tasks
during collaboration can be viewed through the lens of auxiliary task reinforcement
learning, we are inspired by their methods for finding a joint objective function. In
auxiliary task reinforcement learning, additional cost functions are often added to
the reinforcement learning objective via a weighted sum of additional cost functions
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Figure 4.2: Overview over our Theory of Mind agent training variants.

[SMD+11]. In this work we take the same approach. Assuming a suitable loss function
for partner’s next action prediction Lā, partner’s next strategic goal Lḡ and partner’s
neural state prediction Ln̄ we define the total loss as a weighted sum, given weights λā,
λḡ, λn̄:

LToMPPO = LPPO + λāLā + λḡLḡ + λn̄Ln̄. (4.1)

As other next action and other next strategic goal prediction are classification tasks, the
respective natural choice for the loss function is cross-entropy

H(p, q) = −
∑

p(x)logq(x) (4.2)

whereas for neural state prediction we choose Mean Squared Error (MSE) as it is
formulated as a regression task, i.e.:

MSE(y, ŷ) = (y − ŷ)2. (4.3)

Given that we base our implementation for theory of mind agent training on PPO, we
combine the auxiliary losses with the outlined PPO objective. We first compute the losses
for all the auxiliary objectives for mental state training, as introduced above. Given the
parameters of the actor network θaj

for agent j we first compute the individual losses:
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Lḡj
= 1

|D|T
∑
τ∈D

T∑
t=0

H(gθaj
(st), (ḡj)t), (4.4)

Lāj
= 1

|D|T
∑
τ∈D

T∑
t=0

H(aθaj
(st), (āj)t), (4.5)

Ln̄j
= 1

|D|T
∑
τ∈D

T∑
t=0

MSE(nθaj
(st), (n̄j)t). (4.6)

In this formulation we assume D to be the dataset of trajectories where T is the time-
steps per trajectory (in Overcooked T = 400 commonly). Additionally, we assume three
functions that are additional heads of the policy network for computing the mental states
of the other agent(s). Thereby at time-step t agent j computes ĝj = gθaj

(st), âj = aθaj
(st)

and n̂j = nθaj
(st). Given the auxiliary losses Lḡ, Lā and Ln̄, we then compute the clipped

loss for PPO:

LCLIPj
(θajk

) = − 1
|D|T

∑
τ∈D

T∑
t=0

min
(
rt(θaj

)Ât, clip(rt(θaj
), 1 − ϵ, 1 + ϵ)Ât)

)
(4.7)

where rt(·) is the ratio of the probability under the new and old policy, ϵ a hyper-
parameter and Ât is the estimation of the advantage function, i.e as described by
Schulman et al. [SWD+17]:

Ât = δt + (γλ)δt+1 + · · · + · · · + (γλ)T −t+1δT −1, (4.8)

where δt = rt + γV (st+1)V (st), (4.9)

In total we thus compute the update to obtain θajk+1
as:

LToMPPO = LCLIP + λāLā + λḡLḡ + λn̄Ln̄ (4.10)

θajk+1
= arg minθajk

LToMPPO. (4.11)

Conversely, we do not change the update to the value function update and stick to the
original [SWD+17]. That is given the value function parameters θvjk

we use:

θvjk+1
= arg minθvjk

1
|D|T

∑
τ∈D

T∑
t=0

(Vθvjk
(st) − R̂t)2 (4.12)
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Given this combined loss function we adopt two algorithms for training our ToM agent.
The first algorithm is inspired by Yuan et al. [YFZ+21]. In their work they amended
standard self-play with ToM auxiliary tasks. This showed better performance on several
multi-agent benchmarks than other self-play techniques. Their work is different from
ours in two important ways: (i) they are only interested in self-play performance and
not zero-shot performance and (ii) they only evaluate on environments where ground
truth beliefs exist and therefore do not need to compute labels from the dataset alone.
Still, our resulting algorithm is consequently denoted Self-Supervised Self-Play Theory of
Mind Training or ToM Self-Play for short. Recall that self-play fails to solve the zero-shot
coordination problem due to its implicit assumption of playing with a partner that
is similar to oneself. Therefore, while we would expect ToM Self-Play to outperform
standard self-play we have to assume that it will also fail the zero-shot coordination
problem for the same reasons. Thus, we further take inspiration from previous research
on zero-shot coordination in Overcooked. Most successful methods, i.e. FCP, MEP and
HSP, train an adaptive best response agent against a population of diverse agents to
prepare their final agent for diverse behaviour. Consequently, we denote our algorithm
as Self-Supervised Adaptive Best Response Theory of Mind Training or Best Response ToM
for short.

4.4.1 Self-Supervised Self-Play Theory of Mind Training

We outline our Self-Play ToM training in Algorithm 4.1. In short, our algorithm trains
two separate policies using PPO in self-play while both agents solve the auxiliary tasks
of predicting the other agent’s next action, strategic goal and neural representation.

This algorithm differs from standard self-play in three important ways. First, we intro-
duce auxiliary losses that produce predictions about mental states of the other agents.
The labels for these losses are computed on the fly in a self-supervised manner from the
collected trajectories before adding it to the dataset D. Second, note that we always
only update one of the two agents at any given time. This is to avoid the problem of
non-stationary as is also done by Yuan et al. [YFZ+21]. Essentially, if we were to update
both agents at the same time the mental states labels would resemble a moving target
which makes convergence for most learning algorithms impossible. We switch the agent
being updated at random given the probability r (also inspired by [YFZ+21]). This way
both agents predict the mental states of each other. Third, we set λā, λḡ, λn̄ to 0 for the
first ten epochs since it is not useful to predict the mental state of an agent that is not
capable.
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Algorithm 4.1 PPO Self-Supervised Self-Play Theory of Mind Training.

Require: pre-trained population P, initial actor function parameters θa0 , initial value
function parameters θv0 , other neural state head n(·), other next action head a(·), other
strategic goal head g(·), loss balancing factors λā, λḡ, λn̄, agent indices N = {i|i ∈ 0, 1},
initial agent to update index j ∈ N , probability to switch updating ps, number of
iterations i, number of PPO epochs k, minibatch size M , ϵ

for 1, 2, ... in i do
D = {}
repeat

repeat
Agents sample actions al according to their policy πkl

= π(θakl
)

Agents observe the next state st+1 and the reward rt

Agents add these to the trajectory τ

until game ends
Compute {ḡl}0:T , {āl}0:T and {n̄l}0:T as labels for agent l from τ

Update D with new trajectory τ ′: {st, at, rt, (ḡl)t, (āl)t, (n̄l)t}0:T
until number of games reached per epoch
Switch agent index j with probability ps

Optimize surrogate LToMPPO w.r.t. θajk
with k epochs and minibatch size M

end for

4.4.2 General Self-Supervised Adaptive Best Response Theory of Mind
Training

To solve the known issues with self-play, we introduce our second and ultimately final
Algorithm 4.2. The algorithm takes as input a population of pre-trained agents and
produces a best response ToM agent trained on this population. Our ToM agent predicts
the same mental states as the self-play variant but importantly the population does not
posses any explicitly modeled theory of mind capabilities. This gives the best response
theory of mind training the interesting property of being usable with many previously
introduced SOTA method as they mostly differ in their way of generating and sampling
from the pre-trained population. We thus can freely choose how to collect a diverse
population of agents and also how to sample agents from it. In particular, we train
our population using Hidden-Utility Self-Play and Maximum Entropy Population Based
Training, which we will detail in the following. Note that we do not experiment with
FCP as MEP is an improved version of FCP.
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Algorithm 4.2 PPO Self-Supervised Adaptive Best Response Theory of Mind Training.

Require: pre-trained population P, initial actor function parameters θa0 , initial value
function parameters θv0 , other neural state head n(·), other next action head a(·), other
strategic goal head g(·), loss balancing factors λā, λḡ, λn̄, agent indices N = {i|i ∈ 0, 1},
number of iterations i, number of PPO epochs k, minibatch size M , ϵ

for 1, 2, ... in i do
D = {}
repeat

for πp ... in P do // Pre-trained agents
repeat

Agents (πp, πk = π(θak
)) sample actions at according to their policy

Agents observe the next state st+1 and the reward rt

Agents add these to the trajectory τ

until game ends
Compute {ḡl}0:T , {āl}0:T and {n̄l}0:T as labels for agent πk from τ

Update D with new trajectory τ ′: {st, at, rt, ḡt, āt, n̄t}0:T
end for

until number of games reached per epoch
Obtain θa(k+1) by optimizing Eq. 4.10 w.r.t. θak

with k epochs and minibatch size
M using D
end for

4.4.3 Best Response ToM with Maximum Entropy Population Based
Training

MEP trains a population of diverse agents based on a maximum-entropy objective
[HZAL18]. The idea is to find a population of agents that are encouraged to take
different actions from each other while still performing well. This is achieved by an
additional entropy term in the objective. Following Zhao et al. [ZSY+23]:

J(π̄) =
∑

t

E(st,at)∼π̄ [R(st, at) + αHMEP(π̄(·|st))] (4.13)

Here, HMEP(π̄(·|st)) refers to the population entropy (PE). Specifically,

PE({π(1), π(2), ..., π(n)}) := HMEP(π̄(·|st)), where π̄(at|st) = 1
n

:=
n∑

i=1
π(i)(at|st). (4.14)
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Within J(π̄) the parameter α balances the task reward with the population entropy term.
To optimise J(π̄) agents are sampled uniformly from the population and tasked with
self-play. Given a trained population Zhao et al. [ZSY+23] in turn then trains a best
response agent by sampling the hardest to play against agents first using a process called
Prioritized Sampling. This allegedly makes sure that the agent does not exploit weaker
members of the population for high reward while not learning to play against harder
opponents. For details please refer to the original work of Zhao et al. [ZSY+23]. We use
the MEP implementation of Yu et al. [YGL+23] which performs no prioritized sampling
as their results show that it is not necessary. This method will be referred to as MEP
ToM.

4.4.4 Best Response ToM with Hidden-Utility Self-Play

While MEP is based on the observation that a population needs to be diverse and capable
for obtaining a best response agent capable of zero-shot cooperation, Yu et al. [YGL+23]
makes the important observation that for zero-shot human-AI cooperation the population
should reflect human traits. In their work they make the observation that humans are
acting non-optimally and are biased. They for instance might have a preference for
tomatoes over onions. So, assuming humans are biased, they instead set out to optimize
a hidden utility Markov game in which next to the task reward Rt an additional hidden
reward Rω exists. Based on this Yu et al. [YGL+23] introduce HSP by having to
agents (πa, πω) maximize the different rewards Rt and Rω respectively where Rω is only
observable to πω. Yu et al. [YGL+23] argue that, in Overcooked, human preferences
are event-centric and they thus design their reward function as linear functions over
Overcooked game events. Specifically, R = {Rω : Rω(s, a1, a2) = ϕ(s, a1, a2)T , ||ω||∞ ≤
Cmax} where Cmax is an upper bound on the weight ω, ϕ : S × A × A → Rm is a function
specifying occurrences of game events and ω is drawn randomly for N agents {ω

(i)
i∈N}

based on a set of predefined values Cj. Essentially, ϕ specifies the game events happening
while taking a joint action (a1, a2) in state s and ω describes the reward that is given
to the agent for triggering the game event. As ω is drawn randomly, it is ensured that
different agents receive different rewards for game events, thus biasing them differently.
In practice this leads to a set of N hidden reward functions used to train a population
of self-play agents in which one of the two agents receives task and hidden rewards.
This population of hidden reward agents is then used to train a best response agent. For
details see Yu et al. [YGL+23]. In the rest of this work, we will refer to this method as
HSP ToM.
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4.5 Theory of Mind Agent Implementation
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Figure 4.3: Overview over our actor neural network architecture. The actor encodes the
state of the environment using a convolutional neural network as a feature
encoder. These features are then aggregated across time via a recurrent
neural network before being used to choose a next action and possibly
perform ToM tasks.

We train our agents using an actor-critic reinforcement learning approach [KT99]. Our
base actor consists of an feature extractor that encodes the state via a Convolutional
Neural Network (CNN) based feature extractor which then adds temporal information
before passing the final hidden state to the heads, see Figure 4.3. More specifically our
actor picks an action at at time step t given a representation of the current state of the
environment st by encoding the state into a state embedding xe

t :

xe
t = LN(GRU(FCCNN(CNN(s)))). (4.15)

Here FCCNN is a stack of three blocks of a single Fully Connected (FC) layer followed by
Layer Normalisation (LN) [BKH16] each. Temporal information is also added, up to 100
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previous steps in the episode via a Gated Recurrent Unit (GRU) [CMBB14]. at is then
picked from a final head given xe

t according to

P (at|s) ∝ exp(FC(xe
t )). (4.16)

This process is depicted in the ‘Action Layer’ section in Figure 4.3.

To implement the previously described approaches of encoding mental states in Over-
cooked, we add up to three additional prediction heads for explicitly adding ToM to
our model. Moreover, since we want the reasoning about the mental state to affect
the choice of action, we also alter the architecture of picking an action. To be exact
instead of predicting P (at|s), we now estimate P (at|st, me

t ) where me
t is a mental state

embedding. Given xe
t , our actor computes

P (at|st, me
t ) ∝ exp(FC(xe

t ||me
t )) (4.17)

where || represents concatenation and me
t is the embedding before the ToM heads

me
t = FC(LN(FC(xe

t )) (4.18)

The partner’s next action āt is computed as

P (āt|me
t ) ∝ exp(FCā(me

t )). (4.19)

Analogously, the agent also estimates the partner’s strategic goal ḡt using FCḡ and its
neural state n̄t as FCn̄. A visual representation of this process is also depicted in the
‘Action Layer + ToM Module’ in Figure 4.3.

4.5.1 Implementation & Training Details

The implementation accompanying this work is an extension of the publicly available im-
plementation of HSP from Yu et al. [YGL+23]. We specifically base our implementation
on their work as they hold the current state-of-the-art results on which we built ours.

Our CNN-based feature encoder compromises three convolutional blocks with 16 5×5, 32
3 × 3, and 16 3 × 3 filters, respectively. The output of this encoder is flattened and passed
to a stack of fully connected layers, finally resulting in an 64 dimensional vector which is
then passed into a GRU. We use ReLU [Aga18] as the activation function. The networks
are optimised using the Adam [KB14] optimizer using hyper-parameters β1 = 0.9,
β2 = 0.999 and ϵAdam = 0.00001. For balancing the losses we choose λā = λḡ = λn̄ = 0.1.
For self-play based training for the populations we run a variation of PPO that is
optimised for multi-agent systems, named multi-agent PPO [YSP+22] in which the
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value function is shared between agents during training. While training our agents
retrieve shaped reward for certain game events that linearly decreases as training
progresses, exactly as done by Yu et al. [YGL+23]. In terms of PPO hyper-parameters
we use k = 15 PPO epochs, ϵ = 0.2 and mini-batch size M = 120000 for adaptive best
response training and M = 40000 for self-play ToM. Additionally, we set γ = 0.99 and
λ = 0.95. For self-play ToM training we use ps = 0.2, i.e. we switch the agent being
updated 20 percent of the time. For all details, see the implementation.
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Figure 5.1: Overview over the proposed four step evaluation pipeline. Cross-play
[HLPF20; SMB+21], strongly biased policies [YGL+23], unit testing for
evaluating robustness [KCD+21], models of human behaviour [CSH+19;
KCD+21].

Typically, reinforcement learning agents are evaluated on the environment they have
been trained with (i.e. the training distribution) using the average validation reward.
This is not a good signal of future performance with other agents as their behaviour
often substantially differs from the agents encountered during training. Thus testing
and evaluating the performance of an agent that is supposed to collaborate well with
novel agents is non-trivial. This is due to the fact that at train time we have no access
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to the agents we want to cooperate with in the future as they are unknown. In the
special case of human-AI cooperation, evaluating with humans is especially expensive
and cumbersome. Even if one is willing to evaluate with humans, one typically is still
very interested in checking whether their method has a chance of performing well
before conducting a user study. As an alternative or to mitigate this issue, we propose
to combine evaluation ideas from literature, especially Cross-Play with diverse agents
[HLPF20; SMB+21], pairing with biased policies [YGL+23], unit testing for robustness
[KCD+21] and evaluating against human models [CSH+19; KCD+21]. We give an
overview over our evaluation approach in Figure 5.1.

We pick these because we think that they together form a complete and human-free
evaluation suite for robust cooperation. Hu et al. [HLPF20] notes that Cross-Play with
diverse agents is a necessary condition for zero-shot cooperation with humans which
makes it an obvious first candidate for tracking the performance of our agent. Biased
policies moreover test whether an agent can cooperate with extreme forms of human
behaviour which as Yu et al. [YGL+23] notes is also biased. Unit testing tests states
and agent behaviour that is unlikely to be encountered even when trained with diverse
agents and makes sure that any agent can also deal with situations unfamiliar to them.
Such states might be encountered when playing with a human that is still figuring out
the environment, unsure about the objective or exploring. Lastly, some works have build
models of human behavior with [CSH+19] and without human data [KCD+21] which
tests our agent against a human proxy.

5.1 Evaluation Layouts

We evaluate our approach on two Overcooked layouts: Asymmetric Advantages and
Many Orders, see Figure 5.2. Asymmetric Advantages is a relative simple onion-only
layout that has some easily noticeable failure cases that are interesting for analysis. We
have presented this layout earlier also. Note that Asymmetric Advantages gives the
left agent an advantage to deliver cooked soups as the soup serving location is closer
to the pots and the right agent an advantage in putting onions into pots. This both
tests whether agents can choose a strategy fitting their strategic advantage as well as if
they can divert from it and still play a sub-optimal one given a partner does not play a
suitable strategy.

Many Orders on the other hand allows many possible near-optimal strategies in a tight
layout with onions and tomatoes and several possible soup recipes with different cooking
times. Here, agents need to be careful to be cooking the same recipes and to not block
each other during gameplay. It thus tests whether two agents can agree on any particular
strategy to achieve the highest reward.
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Figure 5.2: Our approach is evaluated on two Overcooked layouts: Asymmetric Advan-
tages and Many Orders.

5.2 Cross-Play Evaluation

Firstly, an agent that is supposed to cooperate well with others should in general perform
well with as many different agents as possible. In many works in the literature thus
but especially in [HLPF20; SMB+21], agents are evaluated by pairing them with other
agents either from the literature or that have been differently trained. Such agents form
a natural evaluation population as they likely behave differently to test agent being
tested. The approach is denoted cross-play, contrary to self-play. In previous work such
as [HLPF20], the best performing cross-play agent also achieved the highest score with
humans in a user study. While [HLPF20] only evaluates cross-play between agents
trained with the same method but different random seeds we instead evaluate cross-play
between different training methods. Since different training methods produce agents
far more different from one-another we see this as the more realistic and challenging
evaluation. During cross-play we also keep track of the other-play score which is
simply the average reward being observed when being paired with all other agents, i.e.
excluding playing with yourself. A perfectly generalized agent should show similar levels
of self-play and other-play performance.

There are several reasons why while this form of testing is informative, it is not sufficient.
In general the available population is small and the members are often quite capable as it
is built from published methods in the literature. Playing well with this population thus
gives no insight into how it will perform with less capable or even adversarial agents.
Additionally, humans tend to be biased in the way they play [YGL+23], requiring special
attention at evaluation time.
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5.3 Strongly Biased Policies

Thus, secondly as in the work of [YGL+23] we also evaluate our agent against strongly
biased policies. In our case these policies are scripted and stubbornly execute the same
behavior regardless of their cooperation partner and thus require the partner to adapt
to their behavior. The two policies being evaluated on Asymmetric Advantages are: (i)
‘Pickup Onion’ and (ii) ‘Pickup Onion and Deliver Soup’. (i) only takes onions from its
dispenser and places them in the soup and (ii) will additionally deliver soup when the
cooking has finished. As one of these biased policies does not deliver soups, failures
to adopt will result in significantly lower or zero reward, signaling cooperation failure.
Still, as these policies omit very predictable behaviour, the agent being evaluated is
rarely placed in unexpected scenarios or edge-cases. These situations though might be
more common when playing with less capable agents or agents that omit more erratic
behaviour. In such cases an agent would need to recover from the situation and continue
gameplay.

5.4 Unit Testing for Robustness

Consequently, thirdly we test an agent against a suite of unit tests for robustness as
argued for by [KCD+21]. The idea of unit tests come from software engineering where
parts of a program are tested in isolation for correctness. For creating such unit tests
a software engineer is often tasked with coming up with edge cases a program might
need to deal with to find flaws in their work. Similarly, we might think of all situations
that are challenging for an agent to deal in cooperation. These usually represent cases
an agent usually does not encounter during training, thus testing their ability to adopt
on the fly. [KCD+21] came up with three testing categories which we give an overview
of in Figure 5.3. From left to right they are (a) state robustness, (b) agent robustness
and (c) agent and memory robustness tests. To form some intuition around these we
describe examples in Figure 5.3. All tests are tested for with a fixed time limit and
with several permutation with regards to starting positions and object locations. As
[KCD+21] did not create unit tests for the layout Asymmetric Advantages nor Many
Orders, we adopted their tests for our layouts. We detail the exact tests performed in
the Appendix A.1. In total we perform 15 tests with 54 (Asymmetric Advantages) and
58 (Many Orders) for a total of 112 variants.

37



5 Experiments

Figure 5.3: Unit testing for robustness. Content adapted from Knott et al. [KCD+21].
In the example for category (a) the green agent is tasked with realizing that
their blue partner already holds a plate, thus the only optimal action is to
finish cooking the soup. Note that the green agent could expect the blue
agent to already have collected an onion given the state of the world and
thus fail to adopt to the current state. Other state robustness tests may of
instance include objects in unexpected locations or in unusual amounts. In
(b) the blue agent carries a finished soup and has its mind set on delivering
it to the serving location. Our green agent thus needs to move out of the way,
adapting to the policy of the other agent. Note that since blue is stubborn
about delivering their soup, our green agent needs to move out of the way
regardless of what the optimal move might be in this situation. Lastly in the
example for category (c) our green agent needs to realise that the blue agent
is sleeping (not acting) even though it is in an optimal position to pickup the
soup. This is usually not encountered during training and thus challenging
to adapt to fast. Since the sleeping behaviour can only be noticed if the
green agent reasons about several time steps this represents an agent and
memory robustness test.

5.5 Pairing with Human Models

Models with human behaviour exist in Overcooked. The original work by Carroll et al.
[CSH+19] learned a human model via imitation learning [AN04; HE16] - specifically
behaviour-cloning (BC) [Pom91] - to obtain a human proxy model for evaluation
purposes. This model depends on the availability of human-human game-play data
which is an obvious disadvantage. First, game-play data needs to be separately collected
for each layout one is interested in, thereby increasing costs with every layout. Second,
the already collected data from [CSH+19] is only partially useful as it is only available
for layouts they have evaluated in their work. Since current work also focuses on new
layouts a human proxy model cannot be obtained through their method. This affects
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layouts on which current SOTA methods were evaluated and which we would like to
evaluate our work on also. Examples for methods that were evaluated on (at least
partially) different layouts are HSP and MEP.

Consequently, we have decided against human-data based methods and instead turned
to a method that does not require it: the scripted Theory of Mind agent of [KCD+21].
Motivated by the fact that BC only produces human like behaviour on states the BC
agent is trained on, they built a ToM inspired planning model capable of operating in
the entire state space. This ToM model keeps a list of higher-level tasks to be completed
and decides on one at every timestep t which in turn then is the goal for choosing lower
level motion actions. The ToM model is parameterized in terms of how many tasks in its
look-a-head list, whether to take the other agent into account for planning, how likely
the agent takes a stay-action at every step etc. (for the full details see [KCD+21]).

Importantly these parameters model human behaviour and biases. The probability of
taking a stay action for instance mimic the stopping and thinking that is sometimes
observed in human play. Since this agent is planning based it behaves sensibly on the
entire state space and also in layouts not originally designed for. We took the effort to
port this agent to the layouts we here consider as they were not originally considered in
the work of [KCD+21]. Additionally, we detail the exact parameters used in Appendix
A.2.
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In this chapter, we present results for our new methods and give insight into how
additional ToM auxiliary tasks can help agents during cooperation in Overcooked. The
agents we evaluate are denoted by their basic training methodology and the ToM
modelling employed during training, i.e. MEPg would denote and MEP based adaptive
best response training with strategic goal prediction. Our evaluation focuses on three
combinations of ToM auxiliary tasks, (g), (g, a) and (g, a, n). We do so as strategic goal
prediction in itself is the core of what we believe most closely resembles the kind of
Theory of Mind innate in human cooperation while action prediction and neural state
prediction seem to be more pragmatic to us. Additionally, we previously did exploratory
analysis on other combinations of auxiliary tasks - especially (a) and (n) - but found
these three to be more promising. In total we evaluate SP, MEP and HSP variants based
on the evaluation description above. As baselines to compare against, we train agents
without auxiliary ToM tasks or use ones provided by the literature. In the following we
will evaluate our method in (i) cross- and other-play, (ii) play against strongly scripted
policies, (iii) unit testing for robustness and (iv) human models.

6.1 Cross- and Other-Play

Asymmetric Advantages Many Orders

Model SP SPg SPg,a SPg,a,n SP SPg SPg,a SPg,a,n

SP 187.7 164.6 215.7 165.7 105.5 104.1 13.4 32.6
SPg 159.8 192.9 107.8 280.9 100.0 109.6 14.2 31.1

SPg,a 214.8 215.1 224.3 85.2 4.9 115.8 115.8 112.5
SPg,a,n 305.9 118.4 107.8 308.3 150.9 35.8 88.2 129.6

Table 6.1: Exploratory self-play study showing cross-play results. Results on the diagonal
are self-play. The metric measured is average validation reward averaged
across 100 games. The best results are in bold, the worst ones underlined
separated by layout.
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Asymmetric Advantages Many Orders

Model OP SP OP - SP OP SP OP - SP

SP 204.4 187.7 16.6 86.7 105.5 −18.8
SPg 174.4 192.9 −18.5 48.3 109.6 −61.3
SPg,a 157.7 224.3 −66.5 58.7 115.8 −57.0
SPg,a,n 177.3 308.3 −130.9 75.2 129.6 −54.4

Table 6.2: Exploratory other-play study across 100 games measured by average vali-
dation reward with agents from Table 6.1. The results highlight the need
for additional techniques to incorporate play with diverse training partners.
Here, OP = other-play and SP = self-play.

Since we assume our self-play variants to be inferior due to them not training against a
population with diverse behaviour, we analyze them first also as a proof of concept that
auxiliary ToM tasks are effective and a useful signal during training. In Table 6.1 we
summarize our results. Note that since in self-play two policies are trained for any run,
we average their results in the Table.

Clearly, in both layouts the self-play baseline (SP) is outperformed by its ToM variants
when playing with itself (note the diagonal). In fact in both layouts additional ToM
auxiliary tasks improve the self-play and results are strictly ordered, where the following
relation holds: SP < SPg < SPg,a < SPg,a,n. We especially note that modeling all three
auxiliary ToM tasks SPg,a,n yields the highest overall return of 308.3 in Asymmetric
Advantages. While the highest value 150.9 in Many Orders comes from the pair (SPg,a,n,
SP), the highest reward from the diagonal also comes from SPg,a,n with a value of 129.6.
On first inspection this comes at a cost: SPg,a,n performs noticeably worse with other
agents. For instance together with SPg,a for a total reward of 85.2. We observe a similar
pattern in Many Orders where both SPg,a and SPg,a,n produce worse average reward on
the non-diagonal.

To analyze the play with others systematically, we calculated the other-play score and
present it in Table 6.2. The other-play score for any policy is the mean over all rewards
obtained from games that it played one rule in, i.e. all associated table cells excluding
the diagonal. In Asymmetric Advantages we can observe that policies that were trained
with ToM auxiliary tasks perform noticeably worse. This observation is reinforced by
the fact that if you consider the difference between the other-play and self-play scores,
one can see that additional ToM modelling increases the gap between self- and other-
play and the relation between the performance of the policies reverses in this regard,
i.e. SPg,a,n < SPg,a < SPg < SP. This suggests that policies with ToM modelling are
increasingly competent at the game but at the cost of also being overly specialized
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Asymmetric Advantages

Model HSP* HSPg HSPg,a HSPg,a,n MEP MEPg MEPg,a MEPg,a,n

HSP* 377.4
HSPg 385.3 387.0

HSPg,a 406.1 403.6 442.8
HSPg,a,n 376.5 386.6 407.9 391.4

MEP 401.9 418.5 441.8 421.8 422.8
MEPg 400.1 394.5 442.3 418.3 426.6 435.0

MEPg,a 416.0 412.7 440.9 422.5 435.0 447.8 454.8
MEPg,a,n 415.5 420.1 448.3 435.1 425.5 436.1 453.8 448.4

Table 6.3: Cross-play results in the layout Asymmetric Advantages where results are
averaged across positions. The metric measured is average validation reward
averaged across 100 games. HSP* refers to the trained model released by
Yu et al. [YGL+23]. The five best results are in bold, the five worst ones
underlined.

towards themselves. Moreover, we observe the same effect in Many Orders where every
additional ToM tasks increases the self-play performance but fail to meet the other-play
performance of the SP baseline. This confirms our assumption that self-play based theory
of mind modelling alone is not capable to increasing performance with other-agents.
Given this and the observation of Hu et al. [HLPF20] that good cross-play results are a
necessary condition for human-AI cooperation, we reason that these agents likely will
not perform well during zero-shot human-AI cooperation and move on to evaluating
population-based methods with ToM auxiliary tasks.

The analysis of self-play variants above indicates that auxiliary ToM tasks produce more
capable models when it comes to self-play but not capable of zero-shot cooperation. This
motivates taking these results and combining them with specific techniques build for
collaboration in Overcooked, as introduced in Chapter 4.

We present results for both layouts in two separate tables, i.e. Table 6.3 for Asymmetric
Advantages and Table 6.4 for Many Orders. In these tables we average results across
positions to help with readability. Full results can be found in Appendix A.3. For
Asymmetric Advantages we can again clearly establish that ToM auxiliary tasks improve
competency, i.e. that they result in higher self-play performance. The results are less
clear for the Many Orders layout, some MEP variants specifically seem to perform
surprisingly bad during self-play, while MEPg,a,n at least contributes to two of the five
best results and three of the five best results are better than the baseline HSP* in self-play.
Overall, the results suggest that the trained models are not capable of cooperation with
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Many Orders

Model HSP* HSPg HSPg,a HSPg,a,n MEP MEPg MEPg,a MEPg,a,n

HSP* 375.9
HSPg 389.0 199.4
HSPg,a 343.2 202.6 209.0
HSPg,a,n 376.2 342.8 352.1 168.9
MEP 347.9 187.4 202.3 221.0 0.0
MEPg 331.3 199.1 199.3 205.0 0.0 0.0
MEPg,a 343.7 347.3 358.5 173.1 190.0 193.9 187.1
MEPg,a,n 373.6 361.4 362.6 200.2 238.4 234.4 207.4 227.6

Table 6.4: Cross-play results in the layout Many Orders where results are averaged
across positions. The metric measured is average validation reward averaged
across 100 games. HSP* refers to the trained model released by Yu et al.
[YGL+23]. The five best results are in bold, the five worst ones underlined.

themselves. Instead, they seem to be only capable of cooperating with others. We will try
to account for this observation later on.

While these results are interesting, overall we care about how well agents can cooperate
with others. Therefore, we present other-play statistics in Table 6.5. Let us elaborate
on why these other-play tables are interesting to begin with. We believe that there are
two important aspects to look for when evaluating other-play: (i) we are interested in
finding agents with high other-play score and (ii) we would like to have the difference
in other-play and self-play performance be quite close to zero as this indicates good
generalization capability. Intuitively one might suspect that a large positive difference
indicates better other-play capabilities than self-play, but note that any stationary policy
then would clearly win when paired with the most capable policy.

Within Asymmetric Advantages the model with the best other-play score, HSPg,a, also
has the second lowest difference in other-play and self-play scores. This suggests that the
agent is not only most capable but also generalizes nicely. In terms of other-play scores
HSP* performs worst by a comfortable margin while standard MEP achieves surprisingly
good performance, placing it third-to-last and with the lowest difference between self-
and other-play. Generally, all our methods are capable of zero-shot cooperation as
the scores are significantly higher than the scores produced by self-play, as shown in
Table 6.2. Similarly, all methods perform better than self-play based approaches in
Many Orders. Still, the analysis from before is no longer valid here. This is to say,
that HSP* - previously the worst method - achieves the highest results in Many Orders
and with a significant difference, the second being HSPg,a which previously was the
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Asymmetric Advantages Many Orders

Model OP SP OP - SP OP SP OP - SP

HSP* 389.2 377.4 11.8 356.6 375.9 −19.0
HSPg 415.7 387.0 28.7 250.3 199.4 50.9
HSPg,a 438.0 442.8 −4.8 283.3 209.0 74.3
HSPg,a,n 415.0 391.4 23.6 260.6 168.9 91.7
MEP 426.4 422.8 3.6 185.0 0.0 185.0
MEPg 415.5 435.0 −19.5 254.2 0.0 254.2
MEPg,a 422.1 454.8 −32.7 181.7 187.1 −5.4
MEPg,a,n 432.4 448.4 −16.0 271.5 227.6 43.9

Table 6.5: Other-play results across 100 games measured by average validation reward
with agents from Table 6.3 and 6.4. As other-play score we again compute
the mean over the row and column for any relevant policy, excluding the
diagonal. In terms of notation OP is other-play and SP is self-play. The best
results are in bold, the worst ones underlined.

best one. Recall, that HSP* is provided by Yu et al. [YGL+23] and trained by them
with a population they trained. While Yu et al. [YGL+23] provided us with their HSP*
agent, they did not provide us their exact training population. This means that the exact
population they have used is not available to use and our methods thus were trained
with a different population that was obtained the same way. Reinforcement Learning
generally is sensitive to randomness and so we wonder whether a difference in training
populations might account for the difference observed in performance? We will return
to this question at the end of the chapter and discuss implications later.

6.2 Play with Strongly Biased Policies

To evaluate the performance of agents with (extreme) forms of human behaviour we
evaluate our agents against the biased policies of [YGL+23]. We show results for
both layouts in Table 6.6. We find three results specifically noticeable: (i) Average
performance seems to be mostly determined by the training methodology where HSP
based methods outperform others, (ii) MEP benefits the most from the additional ToM
auxiliary tasks (MEPg,a and MEPg,a,n roughly achieve 50% higher scores compared to the
baseline MEP), and (iii) the best and worst performing agents were trained with ToM
auxiliary tasks (HSPg and SPg,a). We additionally observe that ToM auxiliary tasks only
results in higher or roughly equal performance, except for in self-play.
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Asymmetric Advantages Many Orders

Script O. Plc. O. Plc. & Dlv. T. Plc. T. Plc. & Dlv.

At Pos. 1 2 1 2 1 2 1 2 Avg

SP 0.6 169.0 258.9 178.5 77.0 78.3 204.2 201.6 146.0
SPg 4.6 173.7 215.9 177.9 36.7 37.8 198.8 197.9 130.4

SPg,a 0.0 99.5 231.8 175.6 9.7 10.1 175.2 177.0 109.8
SPg,a,n 0.0 327.1 293.5 178.9 13.0 13.7 188.2 183.4 149.7
HSP* 352.5 381.6 357.8 244.6 327.0 304.4 254.4 257.3 309.9
HSPg 372.8 419.4 361.2 234.6 307.7 307.5 250.4 238.8 311.5

HSPg,a 352.8 396.4 357.2 249.2 296.1 301.1 259.4 259.9 309.0
HSPg,a,n 319.8 414.8 364.6 239.4 301.8 304.4 254.4 257.3 307.0

MEP 313.8 362.2 325.6 218.0 31.4 24.8 182.9 179.3 204.7
MEPg 330.2 362.2 325.6 218.0 39.4 24.8 181.7 176.3 207.2

MEPg,a 301.0 378.6 355.0 235.6 266.8 264.8 280.7 281.7 295.5
MEPg,a,n 330.4 359.2 352.6 244.8 289.6 297.8 291.0 292.4 307.2

Table 6.6: ‘O. Plc.’ (i.e. ‘Onion Placement’) refers a policy that only places onions in
pots, ‘O. Plc. & Deliv’ (i.e. ‘Onion Placement & Delivery’) also delivers soups
if they have finished cooking. The same is true for ‘T. Plc.’ (i.e. ‘Tomato
Placement’) and ‘T. Plc. & Deliv’ (i.e. ‘Tomato Placement & Delivery’) but
with tomatoes instead. ‘At Pos.’ refers to the position the scripted agent takes.
Note that some versions of self-play achieve a score of 0.0 (or close to 0.0)
with the onion placement policy, essentially failing the game. We investigated
the behaviour and discovered the motivating example explained in Figure
2.1, further highlighting the importance of evaluating with strongly biased
policies. HSP* refers to the trained model released by Yu et al. [YGL+23].
The best results are in bold, the worst ones underlined.

That average performance is mostly dictated by the training methodology is not surpris-
ing to us. First note, that HSP is trained to perform well with biased agents. Therefore,
we expect a method that sits on top of HSP based training to perform similarly well.
Additionally, it is known that self-play overspecialises with itself and therefore performs
especially bad with agents that behave very different. MEP performs better than SP since
it is trained to perform well with a diverse range of policies but not with any special
focus on biased behaviour which places it below HSP based policies. Observation (i)
clearly is explained by these differences in training. With regards to (ii), we can only
speculate why MEP benefits so much from ToM auxiliary tasks. Clearly, ToM auxiliary
tasks biases the trained agent towards the behaviour of its partner. This might also be
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the reason why ToM increases performance: biasing might be especially beneficial to
MEP as it is trained with a diverse population as measured by a population entropy term
with no emphasis on creating very biased policies. The benefit MEP receives from ToM
modelling is high enough to nearly compensate for the missing training with biased
policies, i.e. the difference between HSP* and MEPg,a,n on average only is 2.7 points
where the difference between the baselines MEP and HSP* is 105.2. Auxiliary ToM tasks
apparently bridge most of this gap. When it comes to the fact that we observed the best
and worst performing agent was trained with ToM auxiliary tasks in (iii), we remind the
reader that previously we observed that SP based policies are increasingly competent at
the game during self-play but at the cost of other-play performance. This is reflected
when playing with biased policies as SP performs better or at least nearly as good as
its ToM counterparts with biased policies. Excluding the SP policies in determining the
worst performer, MEP would achieve the lowest scores in five out of the eight evaluation
runs against biased policies, followed by MEPg. Overall, this evidence suggests that
self-play is not capable of zero-shot cooperation no matter additional ToM auxiliary tasks
for structural reasons. Without self-play these auxiliary tasks improve results in both
state-of-the-art methods.

6.3 Unit Testing for Robustness

To establish whether ToM auxiliary tasks improve performance, we evaluate our agents
against a suite of different unit tests provided by Knott et al. [KCD+21]. We outline the
results in Table 6.7 for Asymmetric Advantages and in Table 6.8 for Many Orders. These
tests are challenging as established by the baseline of a random agent which will not get
a single test correct for most categories. Moreover, these tests are also challenging for
more capable self-play based methods as all best results are achieved by methods who
were trained against a diverse population. Between these population based methods
though, four of the six best results come from HSP variants, two from HSP* and two
from HSPg, while the other two were obtained by MEP and MEPg,a. This gives a mixed
impression on whether ToM modelling actually improves the unit test scores of agents.
It seems much more the case that any additional percentage points obtained might be
due to the fact that the agent is more capable at the task. In Knott et al. [KCD+21] work
simple tricks and methods - like randomly having agents start from all possible game
positions - improved the success rate reliably and we do not observe a similarly strong
effect.

In the best cases ToM auxiliary tasks significantly improve results. For instance for
HSP-based methods in state robustness tests HSPg,a improves the performance of HSP*
from 44.9% by 8.2 points to 53.1% on Asymmetric Advantages, or HSPg add 6.7 points
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Asymmetric Advantages

State Agent Agent & Memory

(Random) 0 ± 0.0 0 ± 0.0 0 ± 0.0
SP 26.7 ± 7.9 35.3 ± 8.2 34.0 ± 5.1
SPg 26.4 ± 8.2 28.7 ± 9.4 31.3 ± 7.8
SPg,a 29.6 ± 9.7 9.0 ± 3.2 29.7 ± 3.8
SPg,a,n 27.4 ± 4.5 22.9 ± 6.9 40.5 ± 6.2
HSP* 44.9 ± 8.4 76.2 ± 11.1 77.1 ± 4.6
HSPg 42.5 ± 13.8 71.2 ± 8.3 83.8 ± 8.0
HSPg,a 53.1 ± 3.0 76.2 ± 5.2 73.6 ± 6.7
HSPg,a,n 50.6 ± 12.8 61.2 ± 8.1 71.6 ± 7.1
MEP 52.0 ± 11.9 81.2 ± 6.2 67.4 ± 6.4
MEPg 54.1 ± 3.7 67.5 ± 9.2 81.9 ± 6.8
MEPg,a 60.8 ± 5.8 65.0 ± 18.0 82.4 ± 7.1
MEPg,a,n 48.1 ± 6.1 62.5 ± 9.8 76.9 ± 5.3

Table 6.7: Unit testing results for the Asymmetric Advantages layout. Results are given
in percentages out of 100%. Results are averaged across five random seeds.
We additionally show the variance. Two out of the three best performing
models have received ToM auxiliary task training. The best results are in
bold, the worst ones underlined.

in agent & memory tests also in Asymmetric Advantages. But these results do not
generalize across layouts and both HSPg and HSPg,a perform worse in Many Orders.
Similarly, for SP where the worst performing methods overall are usually some version
of SP with ToM auxiliary tasks but some SP ToM versions improve the results of SP in a
few categories. Note here, for instance SP versus SPg,a,n on Asymmetric Advantages, as
shown in Table 6.7. Again, these results does not generalize well to the other layout,
Many Orders. MEP most often benefits from ToM auxiliary tasks. Take MEPg,a,n as an
example which usually performs better than MEP on both layouts.

6.4 Performance with a Human Model

We present the results for comparing our model against the Human Theory of Mind
model of Knott et al. [KCD+21] in Table 6.9. The human model is planning-based - like
the biased policies - and thus also biased in its behaviour. It is thus no surprise that
HSP* performs well with this model and in fact outperforms all other models and, in the
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Many Orders

State Agent Agent & Memory

(Random) 0.0 ± 0.0 53.3 ± 1.2 0.0 ± 0.0
SP 10.8 ± 7.3 57.0 ± 5.1 39.9 ± 6.5
SPg 12.2 ± 5.5 51.0 ± 8.5 20.9 ± 22.2
SPg,a 16.4 ± 5.3 51.0 ± 5.5 9.5 ± 8.1
SPg,a,n 7.4 ± 0.8 44.9 ± 3.7 0.0 ± 0.0
HSP* 53.2 ± 7.6 76.5 ± 4.8 73.8 ± 7.2
HSPg 37.4 ± 7.4 84.2 ± 4.3 34.1 ± 8.4
HSPg,a 42.4 ± 4.7 75.9 ± 2.0 59.1 ± 6.1
HSPg,a,n 29.9 ± 8.1 53.1 ± 24.2 22.4 ± 8.0
MEP 6.2 ± 4.1 53.1 ± 7.2 0.0 ± 0.0
MEPg 10.4 ± 5.3 55.6 ± 5.4 2.4 ± 3.7
MEPg,a 30.4 ± 5.8 72.9 ± 6.0 53.8 ± 9.0
MEPg,a,n 25.3 ± 2.6 61.1 ± 3.2 44.4 ± 2.9

Table 6.8: Unit testing results for the Many Orders layout. Results are given in per-
centages out of 100%. Results are averaged across five random seeds. We
additionally show the variance. One out of the three best performing models
has received ToM auxiliary task training. The best results are in bold, the
worst ones underlined.

case of Many Orders, does so with a huge margin. This also includes ToM variants of
HSP. While their performance generally remains competitive on Asymmetric Advantages,
it does not do so on Many Orders. In fact, HSP* performs more than twice as good
as other models. Still, this does not make ToM modelling useless. MEP for instance
readily benefits from ToM modelling and all MEP variants that include ToM auxiliary
task training are performing better than the MEP baseline, excluding MEPg on Many
Orders which still shows competitive performance. In the case of SP based methods
results are more mixed. While SPg,a,n outperforms all other forms of SP on Asymmetric
Advantages, ToM versions of SP show large variance in Many Orders when it comes to
performance. Specifically, over the five random seeds, the best SP runs showed better
performance than any other SP-based runs but the same was true for the worst ones. It
seems that ToM versions of SP only performed well in certain cases. This also might be
due to the already discussed effect of overspecialisation with oneself which is especially
prominent in ToM self-play. Overall, this leaves HSP* as the best model to cooperate
with the Human Theory of Mind model.
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Asymmetric Advantages Many Orders

(Random) 38.2 ± 3.2 3.3 ± 1.7
SP 188.3 ± 5.2 171.8 ± 8.8
SPg 183.3 ± 18.8 87.4 ± 79.8
SPg,a 143.1 ± 11.4 87.0 ± 87.5
SPg,a,n 210.2 ± 14.2 76.6 ± 77.9
HSP* 276.8 ± 2.9 333.4 ± 3.8
HSPg 270.4 ± 4.1 116.4 ± 12.3
HSPg,a 273.6 ± 3.0 120.8 ± 11.2
HSPg,a,n 271.8 ± 2.4 185.0 ± 9.5
MEP 257.6 ± 8.3 15.5 ± 2.1
MEPg 270.8 ± 6.3 14.8 ± 1.7
MEPg,a 273.8 ± 2.2 185.4 ± 8.7
MEPg,a,n 273.4 ± 4.7 195.8 ± 3.5

Table 6.9: Performance with the Human Theory of Mind model of Knott et al. [KCD+21].
We show the rewards for 2 * 20 = 40 runs, where we alternate the two
starting positions for all 20 possible Human Theory of Mind model variants
we test. The best results are in bold, the worst ones underlined.

6.5 Observations regarding Many Orders and HSP

One might find our results to be quite mixed at first glance. If so, we want to point out
the difference in results across layouts. On Asymmetric Advantages, ToM versions have
the (i) highest other-play and self-play score (Table 6.3 & 6.5), (ii) are the best with
strongly biased policies in all positions with both the ‘Onion Placement’ and the ‘Onion
Placement & Delivery’ policies (Table 6.6), (iii) achieve the highest unit test success rate
in two out of the three categories (Table 6.7) and (iv) only barely do not manage to get
the highest mean reward with human models (Table 6.9). In fact, closely reconsidering
the results presented in Table 6.9 regarding point (iv), one notices that several ToM
policies are within the range of variation to HSP*, especially MEPg,a,n and MEPg which
improve considerably over MEP, a pattern we could already observe when comparing
our methods against strongly biased policies in Table 6.6.

Interestingly, this effect reverses on Many Orders where HSP* (i) has the highest other-
play and self-play score (Table 6.4 & 6.5), (ii) wins one out of the four comparisons with
strongly biased policies (Table 6.6), (iii) achieves the highest unit test success rate in
two out of three cases (Table 6.8) and (iv) wins the evaluation against human models
easily (Table 6.9). HSP* thus clearly is the best model on Many Orders. Since we base

49



6 Results

our implementation of HSP on the one provided by Yu et al. [YGL+23] and use the HSP*
model provided by them, this is likely not due to our implementation. Since there is a
lot of variance in training reinforcement learning policies, especially if large populations
of agents are involved, we wondered whether this might be due to random chance in
the training.

Before we have already wondered whether this difference might be due to the training
population we have generated. To test our hypothesis, we train our own HSP model from
scratch and observe that - while it behaves similarly well on Asymmetric Advantages -
it performs considerably worse on Many Orders also. This is in line with all our other
training results. Our retrained version of HSP achieves a self-play score of 376.1, a other-
play score of 267.1 with a OP - SP score of −100.0 (HSP* achieves scores of 375.9, 356.6
and −19.0 here respectively). This places it below our best performing ToM variant (that
was trained with the exact same setup) in terms of other-play score: HSPg,a achieves
an other-play score of 283.3, compare Table 6.5. When it comes to playing with biased
policies this HSP model actually performs slightly better than the HSP* variant, winning
two out of the four categories. In unit testing HSP performs significantly worse, loosing
many percentage points in both the state robustness tests (from 53.2 ± 7.6 to 38.3 ± 8.6)
and agent & memory robustness tests (from 73.8 ± 7.6 to 63.7 ± 8.7). This would place
it second in terms of state robustness tests and only barely above our HSPg,a model in
the agent & memory robustness tests. Lastly, in terms of performing with a scripted
human model HSP greatly losses performance from 333.4 ± 3.8 to 116.4 ± 5.2 points of
reward which would comfortably places it below four of our models HSPg,a, HSPg,a,n,
MEPg,a and MEPg,a,n. While we believe this comparison to be more fair as these results
were obtained from the same training population and training these populations comes
with a lot of randomness, we also believe in comparing ourselves against the best model
form the literature which is why we have decided to compare ourselves against HSP*
here. Time constraints do not allow us the costly operation of retraining an entire HSP
population but this analysis highlights the brittleness of this approach and puts our
results into a better perspective.
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Given the previously presented results, we now want to go back and try to finalise an
answer to the research questions we posed in the Introduction:

H1 ToM-versions of agents have higher average validation reward when playing with
different partners compared to their non-ToM counter parts

H2 ToM-versions of agents have higher average validation reward when playing with
strongly biased policies compared to their non-ToM counter parts

H3 ToM-versions of agents have higher unit test success rate compared to their non-ToM
counter parts

H4 ToM-versions of agents achieve highest evaluation reward when playing with other ToM
agents

We will address these questions first, before moving on with additional analysis and
discussion where we will also point out any limitations.

7.1 ToM agents can have higher average validation reward
when playing with different partners

To answer the research questions we need to recall the cross- and other-play results
as well as the results obtained when playing with the Human Theory of Mind model.
For this first recall our discussion on the SP model results. Here we observed that ToM
auxiliary task modelling increases self-play performance (see Table 6.1). Additionally,
we also observed in Table 6.2 that our ToM models had a lower other-play score and
showed increasingly growing gaps between other-play and self-play scores. We therefore
conclude that ToM auxiliary tasks do not by themselves help an agent to play well with
others. In fact, we reason that the increased competency makes these SP ToM versions
more capable of collaborating with themselves at the cost of other-play performance
(see the discussion in Section 6.1). To us, this does not come as a surprise as higher
validation reward during self-play is not correlated with performing better with other
partners. In fact quite the contrary is likely true due to overspecialisation with oneself,
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as we have already hinted at in the introduction. SP, as well as SP with ToM auxiliary
tasks, clearly fail the zero-shot cooperation problem, no matter how competent they are
at the game in self-play.

As we have assumed so from the start, we also evaluate our method in combination with
techniques for best response training against a diverse population, i.e. MEP and HSP.
On the one hand, for Asymmetric Advantages the results are clear: ToM auxiliary tasks
improve other-play performance over the baselines. Specifically we find that for HSP
all versions involving auxiliary tasks are better than the baseline HSP* and we find that
in the case of MEP, the version with all three auxiliary tasks performs better than the
baseline. Since HSP* to our knowledge is the current SOTA in human-AI cooperation in
Overcooked, this makes it a very hard benchmark to beat. On the other hand, results for
Many Orders are less easy to interpret. Compared to HSP* our models perform worse in
other-play. Above we have argued that this is likely due to differences in the training
population which we suspect might be due to randomness in arriving at this population
in the first place. If we retrain our own HSP baseline with their implementation and
our population from scratch, the tables turn and ToM auxiliary modelling also improves
results on Many Orders. This is also the case for playing with a human model where
then our models outperform the baseline.

Clearly, ToM auxiliary tasks can improve both MEP and HSP but without either MEP or
HSP, ToM auxiliary task training is not enough to guarantee good zero-shot cooperation
performance which is what we can observe in the SP analysis. In fact, given this evidence
we reason that ToM auxiliary tasks biases the agent towards its training partner(s) which
in turn elevates performance on the training distribution. If this training distribution is
diverse enough this carries over to the problem of zero-shot cooperation and together
produces very capable policies.

We conclude that ToM agents have higher average validation reward when playing with
different partners, if they are trained using a method that provides diversity in training
partners. We thereby argue that this hypothesis is true conditionally.

7.2 ToM-versions of agents have higher average validation
reward when playing with strongly biased policies

Our experimental results presented in Table 6.6 showed that ToM auxiliary tasks help
with performing well with strongly biased policies. In fact HSPg has the highest average
reward over both layouts, obtaining the new SOTA results compared to the work of Yu
et al. [YGL+23] on Asymmetric Advantages (see Table 23 in [YGL+23]). On Many
Orders, we can not replicates the results of Yu et al. [YGL+23] even when using the
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model they provided and consequently do not reach their numbers: not with their
provided model and not with ours. Next we can see that MEP especially is greatly
improved through ToM auxiliary task training as both MEPg,a and MEPg,a,n improve
the baseline by roughly 50%. Only SP agents do not benefit from ToM auxiliary task
modelling when it comes to performing with strongly biased policies. We suspect that
this is also due to overspecialisation.

In conclusion, our method achieves the SOTA in one of the layouts, achieves the highest
average reward and greatly improves another well established method from the literature
by up to 50%. We thereby conclude that in fact ToM-versions of agents have higher
average validation reward when playing with strongly biased policies.

7.3 ToM-versions of agents can have better unit test success
rate compared to their baselines

Looking at the unit testing results we find that a pattern emerges. In two out of the tree
categories a ToM model achieves the highest score on Asymmetric Advantages while
the opposite is true on Many Orders as long as we compare our models to HSP*. If we
train our own HSP agent, this effect vanishes on both layouts. In this case HSPa,g would
replace HSP* as the best unit test model on Many Orders.

Currently, HSPg performs best at unit testing from the family of ToM models. Additionally,
if we exclude HSP* and instead compare to HSP, HSPg performs best overall. We find
this to be noteworthy as HSPg also is the best performer on playing with strongly
biased policies. It therefore seems that these two problems either are related or HSPg

implements a policy that is useful in both evaluation settings. Still, we do not feel
confident in claiming that ToM auxiliary task modelling strictly improves unit test results.
Some success rates of ToM variants significantly drop below their baseline and sometimes
even under the random baseline, which is especially puzzling. We therefore do not feel
confident in asserting that we can positively resolve this research question.

7.4 ToM-versions of agents achieve highest evaluation
reward when playing with other ToM agents on
Asymmetric Advantages

Table 6.3 clearly shows how ToM variants perform the best when playing with other
ToM variants and Table 6.4 shows the exact opposite. As already stated in Section 6.5
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the results observed in Table 6.4 are likely due to some random variation in the training
population to which reinforcement learning is very sensitive. We can therefore only
answer this research question when separating out these cases. ToM-versions of agents
achieve highest evaluation reward when playing with other ToM agents on Asymmetric
Advantages but also achieve lowest evaluation reward when playing together on Many
Orders. Additional research must be carried out to evaluate how this translates to other
environments. For now, we resolve hypothesis H4 as being only partly true.

7.5 Do Agents Represent Different Types of Collaborators
Differently?

As last part of our analysis, we investigated whether our agents represent different
collaborators differently. This is partly inspired form the original work on Machine
Theory of Mind in which Rabinowitz et al. [RPS+18] investigated the 2D embedding
space of their observer when observing agents with different goals to determine whether
their ToMNet was able to distinguish between these in the embedding space. Since
our agents do not have different goals but are trained differently we were curious
whether these differences are encoded in the embeddings of our agents. However, we
expect this task to be noticeably harder than the analysis performed by Rabinowitz et al.
[RPS+18] as in our case the goal remains the same and the only difference comes in
the observed behaviour. Since differently trained policies might converge on the same
optimal collaboration behaviour, we guess that obtaining disentangled representations
of different collaboration partners with same behaviour might be impossible.

We collected the embeddings produced by the agents’ LSTM at every timestep of the
gameplay over N = 100 games and calculated the element-wise mean over the vectors
of every single game, obtaining 100 total gameplay embeddings for all cooperation
partners. We used Principal Component Analysis [FRS01] to calculate a 2D embedding
space from these and show them in Figure 7.1. In the figure, columns denote the layout
and rows the kind of agent. The colored points represent different training partners.

We would expect that partners that behave similarly are clustered in this embedding
space if our agents are able represent their behaviour adequately. This is best highlighted
by exploring the 2D embeddings produced when playing with strongly biased policies as
these show the most extreme form of behaviour. In the figure, strongly biased policies
are represented by different shades of blue. Since one of the biased policies is delivering
soups and the other is not, we would expect that the models represent them separately.
For most agents this is the case. The 2D embeddings generated from HSPg,a,n or MEPg

for instance are especially clearly clustered. Less clear examples include both HSP and
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Figure 7.1: Principal Component Analysis with n = 2 components computed from the
policies network during play with different cooperation partners on both
layouts. For this analysis we extracted the embedding produced directly
after the LSTM in the actor network as it is common to all architectures.

HSPg which form no clear clusters on Many Orders. A special case might be HSPg,a

which seemingly forms no clear cluster on Asymmetric Advantages. This might be due
to the scale of the chart.

Next, we studied whether these agents are able to distinguish between HSP- and MEP-
based cooperation partners. We suspect that, due to the differences in training popu-

55



7 Analysis, Discussion, & Limitations

lation, these behave differently. To make a visual examination easier we colored HSP
variants in shades of orange and MEP ones in shades of green. Since we suspect this kind
of analysis to be prone to confirmation bias, we fit a logistic regression classifier on the
data instead of performing visual analysis. We train it on 70% of the 2D embedding data
and evaluate whether it is able to correctly identify the other player on the other 30%.
Our classifier is trained with default parameters, for 500 iterations. On Many Orders, this
classifier reaches the highest classification testing accuracy on HSPg,a,n and the lowest
on HSPg (roughly 70% and 12% respectively). Note that for this task, guessing randomly
results in a performance of 10%. HSPg,a,n also has the highest testing classification
rate of roughly 50% on Asymmetric Advantages while the classifier achieves the lowest
accuracy when working with MEP with roughly 50%.

We repeated this experiment but this time only ask our classifier to predict whether the
embedding belongs to a biased, MEP- or HSP-based policy (random baseline performing
at 36%). The results stay the same on Many Orders but rise significantly: from 70 to
92% for HSPg,a,n and from 12 to 50% for HSPg. On Asymmetric Advantages the classifier
performs the second best with HSPg,a,n resulting in a new score of 85.9% whereas the
classifier now works the best on MEPg,a with 88.8%. The classifier still performs the
worst on MEP, with 50% testing accuracy. On average, we observed that in the harder
task the classifier has a higher testing accuracy on ToM agents with 37% versus 34%
when averaged across layouts. The same holds on the task of predicting agent type 67.9
versus 54.4%. We report raw results in the Appendix A.4.

7.6 Summarizing the Analysis

While trying to answer our four research questions, we repeatedly stumble over the
surprising difference in performance of our methods between Asymmetric Advantages
and Many Orders. With the additional analysis performed in Section 6.5, we established
that our methods would also perform great in comparison to an HSP baseline trained by
us, from scratch, given the resources available to us and the original implementation.
We can therefore not be certain that the blame for failing to achieve SOTA performance
on Many Orders is due to the variation in training populations or some other difference
in setup. Since reinforcement learning is especially sensitive to randomness, one can
never rule out that the differences observed are due to randomness. Throughout the
literature we have not observed a method performing great on one and badly on a
different layout. This is likely the case as game mechanics do not greatly differ between
the layouts. This being said, overall, we believe our results support the hypothesis that
ToM auxiliary task modelling is beneficial and useful.
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7.7 Limitations

Our method comes with certain limitations one should consider. First, since our approach
sits on top of other methods and is dependent on a diverse population of training
partners it also inherits many of their limitations. Obtaining a diverse population of
agents is computationally expensive and time consuming. Training a population of
diverse agents requires running the same training algorithm multiple times. This effect
is especially prominent in environments where evaluation is performed on many layouts,
like Overcooked, as one final agent needs to be trained for every layout. In this work, we
trained 12 MEP agents for a population of 36 total agents and additional HSP agents for
both layouts, before training all the best response agents we have presented above.

In terms of our own method we want to highlight two especially prominent limitations:
(i) the need for strategic goals and (ii) the fact that auxiliary ToM tasks alone may
not be sufficient for state-of-the-art performance. Starting with the latter, as our own
analysis shows without diverse populations our method does not improve other-play
performance, the contrary is the case. Our approach can thus only improve results given
a population. Regarding (i) the limitation is clear: one needs enough domain expertise to
be able to find suitable goals for strategic goal predictions. The environment furthermore
needs to allow the user of our methods to access gameplay state to determine goals as
play occurs for expanding the dataset D. Additionally, these goals have to meaningfully
correspond to the goals, desires and preferences our agent might have and thus need to
be well designed. While this seems to be quite challenging, recall that access to certain
parts of the game events is often the case in reinforcement learning. Specifically, in
many settings agent get shaped reward during training that alters the reward structure
of the environment to improve learning. These also are often directly based on game
events and usually a similar level of access is needed for both. Thereby, as the use of
shaped reward is ubiquitous in RL, one could use similar events to design strategic goals.
In fact in Overcooked, the same events that make goal prediction possible are also used
to perform reward shaping.

Currently, all state-of-the-art approaches share the need for training a population of
diverse agents. As this requires a lot of additional compute, future work should focus on
methods that are capable of training agents capable of zero-shot coordination without
the need of training a big population. Additionally, as currently one agent needs to
be trained for each layout separately, we suggest that future work should also tackle
zero-shot coordination in unknown layouts. This closely resembles human capabilities
which are also not limited to cooking in a single kitchen only.
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This work started with the intention of evaluating whether Theory of Mind modelling
could be used to improve the performance of agents during zero-shot coordination,
thereby improving robustness. To do so we have introduced a novel mechanism of
belief supervision in Overcooked from game interactions alone and no need for ground
truth mental states. We augmented popular training algorithms with this technique and
evaluated and characterized their behaviour in a combination of evaluation suits, all
designed to evaluate the performance of agents in Overcooked. Our approach proofed
powerful in aiding the training of self-play agents and significantly raised their self-play
performance. Conversely this increase in self-play performance came with a decrease
in other-play performance, showing that self-play alone can not be a good zero-shot
cooperation partner regardless of competency. This is in line with previous research.
We thus amended current state-of-the-art techniques with our method and showed that
this further increased their capabilities also in zero-shot cooperation, especially on the
Asymmetric Advantages layout. On the Many Orders layout, we observed that our
technique was not competitive to the current stat-of-the-art technique Hidden Utility
Self-Play (HSP), as provided by the authors. However, after training our own HSP model,
we found it to be competitive again. This suggests that another issue may have been
responsible for the poorer results on the Many Orders layout. While our results suggest
that ToM auxiliary task training is a powerful mechanism for increasing performance,
we do not see the same improvements in unit testing for robustness. This suggests that
good performance and good unit testing results might not necessarily be linked. Overall
our technique proofs to be a useful way to increase performance from simple dataset
augmentations alone.
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A.1 Unittesting for Robustness: A List

Table A.1 gives a complete overview over all tests being performed during unittesting for
robustness. Note that the number of variations differ based on the layouts as variations
also include different starting positions for each test which reasonably differ between
layouts. If a test has zero variations it is not applicable to this layout. Test1ai is a special
case since in both layouts blocking a dispenser is not feasible either because more are
close by (in Many Orders) or because two agents never directly interact (in Asymmetric
Advantages).

A.2 Human Theory of Mind Model Parameters

We keep the original parameterization as the original work of [KCD+21]. In total we use
two versions of the model, one optimized for collaboration and one that is completely
rational and greedy for being the partner in many unittests (i.e. Section 5.4)) and build
a population of 20 agents for the validation runs (i.e. Section 5.5). The parameters are
consistent between layouts and are presented in Table A.2.

A.3 Cross-Play Matrices

We present full cross-play results in Table A.3 and A.4.

A.4 PCA Logistic Regression Results

We present results on the the predicting the cooperation partner and partner type from
2D PCA embeddings tasks in Table A.5.
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# Variations
Test C Short Test Description Asym. Many

Test1ai a Pick up a dish from a counter: H blocks dispenser 0 0
Test1aii a Pick up an object from a counter: dispenser is available

but counter object is much closer than dispenser
8 4

Test1aiii a Pick up a soup from a counter: Soup on the counter 8 4
Test1bi a R is holding the wrong object, and must drop it. Vari-

ants: 1) R has D when O needed (both pots empty) 2)
R has O when two Ds needed (both pots cooked)

4 4

Test1bii a Drop objects onto counter: R holding the same object
as H, but H is closer to using it

8 8

Test2a b Getting out the way of H: R in the way of H, where H
has the right object. Variants: 1) H has onion, onion
needed in pot, 2) H has dish, dish needed for pot

0 12

Test2b b Getting out the way of H: H is holding a soup, and R
is on the shortest path for H to deliver soup

Test3ai c H is holding nothing or an object that can’t currently
be used (H is stationary)

6 6

Test3aii c H is holding a dish or onion, which can currently be
used (H is stationary)

4 4

Test3aiii c H is holding a soup (H is stationary) 2 2
Test3bi c H is holding nothing (H is random) 2 2
Test3bii c H is holding a dish or onion, which can currently be

used (H is random)
4 4

Test3biii c H is holding a soup (H is random) 2 2
Test4a a R has onion, pot needs onion. (H is stationary) 2 2
Test4b a R has dish. (H is stationary) 2 2
Test4c a R has onion, pot needs onion, and there are onions all

over the counters (H is stationary).
2 2

54 58

Table A.1: A description of the unittests employed for our agent evaluation. R refers to
the agent being tested and H to the model that R has to work with (often
planning based, can also be stay, random or a neural one). For the exact
details please refer to the implementation. Column C with (a), (b) and (c)
refer to the taxonomy outlined in section 5.4.
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Unittesting Play w/ Human Model
Parameter Teamwork Greedy Validation Population (20)

compliance 0.5 0.0 [0.1,0.5,0.9]
retain goals 0.0 0.0 [0.0,0.8]
probability thinking not moving 0.0 0.0 [0.0,0.2,0.4,0.7]
path teamwork 1.0 0.0 [0.1,0.5,0.9]
rationality coefficient 20.0 20.0 [1.0,3.0,5.0,10.0,20.0]
probability greedy 0.2 1.0 [0.0,0.3,0.7,1.0]
probability to observe other 0.0 0.0 [0.0,0.3,0.7,1.0]
look ahead steps 4.0 4.0 4.0
prob pausing 0.0 0.0 [0.3,0.4,0.5,0.6]

Table A.2: Values for Theory of Mind human model parameters by [KCD+21] for both
the partners in unittesting and the validation runs against a human model.
Note that for the latter we only give the values being picked from and
otherwise point the reader to our implementation.

Asymmetric Advantages

Model HSP* HSPg HSPg,a HSPg,a,n MEP MEPg MEPg,a MEPg,a,n

HSP* 377,4 371,6 382,2 366,2 386,8 384,6 419,2 413,8
HSPg 399,0 387,0 405,6 397,6 416,0 414,6 447,6 429,8
HSPg,a 430,0 401,6 442,8 423,8 443,0 455,4 459,6 453,4
HSPg,a,n 386,8 375,6 392,0 391,4 421,0 432,4 450,2 447,4
MEP 417,0 421,0 440,6 422,6 422,8 440,8 428,0 414,8
MEPg 415,6 374,4 429,2 404,2 412,4 435,0 443,0 430,2
MEPg,a 412,8 377,8 422,2 394,8 442,0 452,6 454,8 452,6
MEPg,a,n 417,2 410,4 443,2 422,8 436,2 442,0 455,0 448,4

Table A.3: Cross-Play results in the layout Asymmetric Advantages. The metric measured
is average validation reward averaged across 100 games. HSP* refers to the
trained model released by [YGL+23]. The five best results are in bold, the
five worst ones underlined.
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Many Orders

Model HSP* HSPg HSPg,a HSPg,a,n MEP MEPg MEPg,a MEPg,a,n

HSP* 375,9 383,9 342,0 372,1 344,2 326,0 346,6 366,8
HSPg 394,2 199,4 202,8 341,2 188,4 199,0 344,7 363,6
HSPg,a 344,5 202,4 209,0 351,0 203,2 199,0 357,8 362,6
HSPg,a,n 380,3 344,5 353,2 168,9 220,5 204,4 173,6 200,6
MEP 351,6 186,4 201,4 221,6 0,0 0,0 190,0 238,0
MEPg 336,6 199,2 199,6 205,6 0,0 0,0 193,6 234,4
MEPg,a 340,8 347,0 359,3 172,6 190,0 194,2 187,1 210,2
MEPg,a,n 380,4 359,2 362,6 199,6 238,8 234,4 204,6 227,6

Table A.4: Cross-Play Results in the layout Asymmetric Advantages. The metric mea-
sured is average validation reward averaged across 100 games. HSP* refers
to the trained model released by [YGL+23]. The five best results are in bold,
the five worst ones underlined.

Predicting Cooperation Agent Predicting Cooperation Agent Type

Model Many Orders Asymm. Adv Many Orders Asymm. Adv

HSP* 31,1 30,3 50,3 61,8
HSPg 12,2 25,9 50,0 58,5
HSPg,a 45,9 14,0 55,5 50,0
HSPg,a,n 70,3 49,6 92,2 85,9
MEP 57,0 20,0 59,2 46,2
MEPg 45,1 31,8 50,7 68,1
MEPg,a 29,2 41,1 52,5 88,8
MEPg,a,n 47,0 42,9 81,4 81,4

Table A.5: Logistic regression classifier results measured by accuracy in percent on a
30% hold-out-set of the 2D embedding to cooperation partner task. We test
two versions of this task in the first the exact agent needs to be predicted, i.e.
HSP, HSPg, HSPg,a, HSPg,a,n, MEP, MEPg, MEPg,a, MEPg,a,n and the resptice
biased policies for the layout. In the second task only the type of agent needs
to be predicted, i.e. HSP, MEP or biased policy.
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