
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelor Thesis

Generalizable Encoding for
Keyboard and Mouse Data

Manuel Schwartz

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Andreas Bulling

Supervisor: M.Sc. Guanhua Zhang

Commenced: November 28, 2022

Completed: May 28, 2023





Abstract

Applying machine learning to keyboard and mouse data is an important topic in human-computer
interaction since gained knowledge from analyzing user interaction behaviour allows to improve
system attributes such as interactivity and user experience. For this purpose, an expressive data
representation is crucial for achieving meaningful predictive power. In contrast to previous works
which mostly rely on handcrafted features, this work explores generalizable encodings in order to
supply the machine learning model with less prefiltered inputs.

Results on two datasets show that the proposed encodings can improve performance of interactive task
recognition, since a time series representation, keeping track of mouse pointer coordinates and mouse
button states in fixed time intervals, significantly outperformed the baseline of using handcrafted
features in case of mouse data. Regarding keyboard data, applying a similar representation which
tracks the key states also resulted in better predictive power than using manually extracted features.
In addition, approaches based on techniques from natural language processing were competitive to
the time series representation. This indicates that multiple encodings need to be considered when
assessing how to encode keyboard data.

Overall, our work shows that applications based on machine learning on keyboard and mouse
data can benefit from selecting a less prefiltering encoding technique over handcrafted feature
extraction.

3





Contents

1 Introduction 13

2 Related Work 15
2.1 Applying Keyboard and Mouse Behaviour Analysis . . . . . . . . . . . . . . . 15
2.2 Encoding Keyboard and Mouse Data . . . . . . . . . . . . . . . . . . . . . . . 16

3 Approach 19
3.1 Datasets and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Experiments 31
4.1 Task Recognition Based on Mouse Data . . . . . . . . . . . . . . . . . . . . . 31
4.2 Task Recognition Based on Keyboard Data . . . . . . . . . . . . . . . . . . . . 32

5 Discussion 35
5.1 Influence of the Number of Trainable Encoding Parameters . . . . . . . . . . . 36
5.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 39

Bibliography 41

A Results of All Hyperparameter Configurations 45

5





List of Figures

3.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Example for mouse encoding Trajectories . . . . . . . . . . . . . . . . . . . . . 21
3.3 Example for mouse encoding Sequence of Sub-Trajectories . . . . . . . . . . . . 22
3.4 Example for keyboard encoding Keystroke Timeline Diagram . . . . . . . . . . . 25

5.1 Performance comparison with different number of trainable parameters . . . . . 36

7





List of Tables

3.1 Example for mouse encoding Time Series . . . . . . . . . . . . . . . . . . . . . 22
3.2 Example for keyboard encoding Time Series . . . . . . . . . . . . . . . . . . . . 25

4.1 Results of task recognition on EMAKI mouse data . . . . . . . . . . . . . . . . 31
4.2 Results of task recognition on Buffalo mouse data . . . . . . . . . . . . . . . . . 32
4.3 Results of task recognition on EMAKI keyboard data . . . . . . . . . . . . . . . 33
4.4 Results of task recognition on Buffalo keyboard data . . . . . . . . . . . . . . . 33

A.1 Detailed results of task recognition on EMAKI mouse data . . . . . . . . . . . . 45
A.2 Detailed results of task recognition on Buffalo mouse data . . . . . . . . . . . . 46
A.3 Detailed results of task recognition on EMAKI keyboard data . . . . . . . . . . . 47
A.4 Detailed results of task recognition on Buffalo keyboard data . . . . . . . . . . . 48

9





Acronyms

CNN convolutional neural network. 16

GRU gated recurrent unit. 17

HCI human-computer interaction. 13

ML machine learning. 13

MLP multilayer perceptron. 29

NLP natural language processing. 16

RNN recurrent neural network. 16

SERP search engine results page. 16

UI user interface. 13

ViT Vision Transformer. 27

11





1 Introduction

Recently, machine learning (ML) on keyboard and mouse interactions has gained importance due
to the availability of this type of data on many devices [XSB16; ZBH+23] as well as the interesting
applications of modelling interactive behaviour [AFB21]. For example, knowing which task the
user currently works on is beneficial for interactive systems and therefore crucial for adaptive user
interfaces (UIs) [FKW+17; HBLW21; ZBH+23].

Currently, predictions based on these modalities are usually performed by traditional ML models
on tabular data after manually extracting features like duration of or latency between keystrokes for
keyboard data and click duration or speed of movement for mouse data as well as more sophisticated
ones [AL20; SBSB18]. However, given the feasibility of encoding for example text and image data
such that it can be used as input to classifiers without the need for manual feature extraction [CGJ18;
KRS21], it is promising to adapt such encoding methods to keyboard and mouse data, especially
because of their similarities with natural language and images respectively.

Using a generalizable encoding as an alternative to manual feature extraction offers huge possibilities
such as saving development time as well as making ML on keyboard and mouse data more accessible
to data scientists being less experienced in the domain of human-computer interaction (HCI) [AL20].
Further, outsourcing feature extraction from the data scientist to the ML model itself could improve
performance since important information might not be considered and therefore be dropped in
the process of manual feature selection [NCZC21]. While it is also not guaranteed that the model
extracts all the relevant features, it is not deprived of potentially useful ones a priori and can access
the data in a less prefiltered manner instead of a perhaps less meaningful representation.

Thus, the contribution of our work is three-fold: (1) We propose different encoding strategies for
keyboard and mouse data which are designed to maintain a high level of rawness in contrast to heavily
preprocessing and prefiltering the data. (2) We compare their expressiveness and generalizability by
examining their abilities to produce an output suitable as input to a classifier such that it can achieve
robust performance across different datasets. (3) We provide future research with the opportunity to
assess how keyboard and mouse data can be expressively encoded.

13





2 Related Work

Our work is related to previous works on (1) analysis of keyboard and mouse behaviour as well as
(2) encoding keyboard and mouse data.

2.1 Applying Keyboard and Mouse Behaviour Analysis

A large degree of data availability makes building applications based on analyzing keyboard and
mouse behaviour attractive [XSB16; ZBH+23]. Thus, there is a lot of ongoing research in this area.
For example, Epp et al. [ELM11] pointed out the benefits of emotion-aware systems, being able to
adapt their responses and interactions to the current needs of the user. They considered previous
methods of emotion recognition like analysis of voice and facial expressions too intrusive and also
impractical as special equipment is required. Thus, they developed decision trees to process features
being extracted from keystroke dynamics and found that typing behaviour is also related to emotions.
Based on their research, Shi et al. [SM16] conducted a study on mood-aware recommender systems.
In the first stage, they developed a mood recognition tool capable of distinguishing between stressed
and relaxed moods. In the second stage, they used this tool in an experiment in which the participants
were shopping online in order to gain useful insights for e-commerce platforms. They found that it
is worth using a mood-aware recommender system to optimize the timing for recommendations
as well as to derive insights from the reaction of a user’s mood to recommendations. Another
application is the emotion-aware music recommender system by Jazi et al. [YKF21]. They used the
relation between interaction behaviour and emotions to recommend music based on keystrokes and
mouse clicks patterns. The authors reported a higher accuracy than for other music recommender
systems as well as a high level of user experience.

Analyzing keyboard and mouse behaviour can also be used to identify users, which is subject to a
lot of research [AFB21; LCS22; TWO+12; XSS19]. Authenticating users based on their behaviour
adds another layer of security. While passwords might be guessed or get stolen and biometrics like
fingerprints or facial recognition require suitable equipment and also do not prevent from someone
getting access to an already logged in session, it is hard to imitate someone’s interaction behaviour
and it can be confirmed continuously without additional hardware [LCS22; XSS19]. Similarly, Niu
et al. also successfully distinguished bots from real users by applying machine learning methods to
mouse dynamics [NCZC21].

Another downstream task when analyzing keyboard and mouse behaviour is interactive task recogni-
tion. Knowing which task the user is working on is crucial for intelligent interactive systems in order
to adapt to the user’s intents and interaction goals [FKW+17; HBLW21; ZBH+23]. While previous
research mostly relies on eye movements [HBLW21], leveraging predictions based on keyboard
and mouse interactions is beneficial in terms of data availability [ZBH+23] without the need for
additional hardware. Not only did Fu et al. show that this is feasible [FKW+17], but Zhang et al.

15



2 Related Work

even found that this can increase predictive power [ZHL+22]. Based on this, Zhang et al. explored
the similarities of interaction behaviour and natural language, both having sequential as well as
hierarchical structure, and successfully predicted interactive tasks by encoding mouse and keyboard
data with methods originally known from natural language processing (NLP) [ZBH+23].

2.2 Encoding Keyboard and Mouse Data

While previous work on processing keyboard and mouse data mainly focused on extracting hand-
crafted features like duration of or latency between keystrokes for keyboard data and click duration
or speed of movement for mouse data as well as more sophisticated ones [AL20; SBSB18], there is
also existing research on encoding mouse and keyboard data in a different way.

To investigate replacing the common but time-consuming and expertise-requiring process of manual
feature extraction for tracking mouse cursor movements, Arapakis et al. tested and compared
different encodings for predicting user attention [AL20]. They captured the mouse movements of
users interacting with a search engine results page (SERP) to predict whether the user paid attention
to a displayed ad. It has been shown that convolutional neural networks (CNNs) receiving heatmaps
or various visualizations of trajectories outperform recurrent neural networks (RNNs) given as input
a time series representation of the x and y coordinates of the mouse pointer. Though their work
provides useful insights into this research area, their results are limited in terms of comparability
and generalizability. Neither did they use a setting in which they could have compared with results
from the literature as they collected and used their own dataset, nor did they test the performance
of using handcrafted features on it themselves. Further, the encodings were evaluated in just a
single dataset, containing data of always the same laboratory task of relatively short duration. Their
encoding method also does not consider mouse clicks but just mouse movements.

Concerning keyboard data, Wampfler et al. pursued a similar idea by predicting affective states
based on the typing behaviour of smartphone users, as they used a CNN architecture that received
heatmaps of keystrokes as input [WKS+22]. A single input instance consisted of three heatmaps,
each representing a differently measured time interval between two consecutive keystrokes. For
each combination of two consecutive keys, there was an entry in the two-dimensional heatmap being
darker the longer the average time interval between these keys was. They compared this approach to
a slightly worse performing one receiving heatmaps of smartphone sensor data and a slightly better
performing one receiving both input types. Although the results were quite reasonable, they lack
comparability with conventional approaches as well as generalizability to other use cases. Just like
Arapakis et al. [AL20], they collected and used their own dataset without any state of the art results
in literature. They also did not compare to common methods for processing keyboard data, but to
predictions based on sensor data, a different modality for affective state prediction. Further, data
preprocessing already preselected certain features by considering only three types of averaged time
intervals for two consecutive keystrokes instead of encoding the data in a less prefiltered manner.
Moreover, even though their encoding method should be applicable to conventional computer
keyboards as well, they only evaluated its expressiveness on data collected on touch keyboards of
smartphones.

Xiaofeng et al. also worked on representations of keyboard data [XSS19]. They encoded a keystroke
sequence as a sequence of vectors where each vector covers the keys, dwell times and release-press
as well as press-press flight times of each pair of two consecutive keystrokes in the sequence. The

16



2.2 Encoding Keyboard and Mouse Data

output was processed by an architecture combining a CNN with a gated recurrent unit (GRU)
network suitable for sequential data. In contrast to the aforementioned research, they evaluated their
approach on a well-known dataset and also compared to results from the literature. However, only
one single data representation was assessed which did not manage to outperform the baseline of
using even relatively simple handcrafted features.

Thus, the main novelty of this work is to compare various encoding strategies in a broad and
standardized benchmark. Also, unlike heavily preprocessing the data, the proposed techniques are
designed to maintain a high level of rawness, allowing the ML model to extract meaningful features
autonomously instead of receiving a potentially less meaningful representation.

17





3 Approach

Figure 3.1 shows the pipeline of our method. The data is processed by the encoding steps marked in
blue such that it can be passed to a classifier outputting the prediction. The encoding procedure is
the focus of this work and is split up into two parts.

While first level encoding converts the raw data to the actual input data by applying a fixed algorithm,
second level encoding, which is part of the model and consists of trainable parameters, receives
this interim result and further encodes it to an input being compatible to the classifier. This is
necessary because the same classifier is used for all encoding methods in order to have a meaningful
comparison. Since a Transformer-based classifier is used (see Section 3.3) which expects its inputs
to be sequences of tokens, second level encoding can be regarded a tokenizer.

3.1 Datasets and Preprocessing

In order to evaluate the encoding strategies, task recognition is chosen as an exemplary application
area since it is of interest due to its contribution to the improvement of adaptive UIs of interactive
systems [FKW+17; HBLW21; ZBH+23]. The downstream task is performed on two different
datasets.

Figure 3.1: From raw data to prediction – the pipeline used in this work.

19



3 Approach

3.1.1 Buffalo Dataset

The “Shared keystroke dataset for continuous authentication” by Sun et al. [SCU16], also referred to
as “Buffalo dataset”, offers about 5.5 M mouse actions and 2.5 M keystrokes from 148 participants
collected in a laboratory setting. Besides transcription of a pre-defined text, the participants also
performed the task of free text routine work like replying to emails or answering questions.

A window size of 10 seconds with an overlap of 5 seconds is used to split the data into individual
instances. For mouse data, this results in 42, 902 instances of 156 actions each and a class distribution
of 54 % to 46 %. For keyboard data, following the work of others [SCU16; XSS19; ZBH+23], only
the so-called baseline data of 75 user was used, resulting in 91, 143 instances of 54 actions each and
a class distribution of 60 % to 40 %.

3.1.2 EMAKI Dataset

The “Everyday Mouse And Keyboard Interactions” (EMAKI) dataset by Zhang et al. [ZBH+23]
contains about 1.2 M mouse actions and 210 K keystrokes from 39 participants collected in an in-the-
wild online study, meaning that the participants were using their own computers. They performed
three different tasks which were text entry and editing, image editing as well as questionnaire
completion.

Due to the smaller amount of data, a window size of 5 seconds with an overlap of 4 seconds is used.
For mouse data, this results in 42, 410 instances of 116 actions each and a class distribution of 45 %
to 31 % to 24 %. For keyboard data, this leads to 28, 420 instances of 25 actions each and a class
distribution of 88 % to 6 % to 5 %.

3.2 Encodings

Mouse and keyboard data are treated separately, meaning that predictions are made considering only
one of both modalities. This is due to their different characteristics, keyboard data being discrete
and mouse movements being continuous. According to that, the proposed encoding techniques
are designed to encode only one modality and can therefore be grouped into mouse encodings and
keyboard encodings. However, there are similarities between the two groups. Moreover, second
level encoding does not depend on the modality but on the structure of the output of the selected first
level encoding. Therefore, most of the second level encodings are relevant for both modalities.

Every encoding method which produces classifier inputs of variable size also pads or truncates
the data to the same length. This is done by setting the sequence length to the third quartile of
the individual sequence lengths occurring in the training data, resulting in 75 % of the instances
being padded and 25 % being truncated. Hence, a compromise between losing a lot of data due to
truncation and ending up with padding-dominated data due to outliers with a high sequence length
was made.

20



3.2 Encodings

Figure 3.2: Example for mouse encoding Trajectories. Red (first color channel active) lines capture
mouse movements in general, yellow (first and second channel active) dots correspond
to clicks and yellow lines indicate drag-and-drop events. In this example, there are
no purple (first and third channel active) and white (all three channels active) pixels
because the right mouse button was neither pressed alone nor together with the left one.

3.2.1 First Level Encoding for Mouse Data

Due to the similarity of mouse motion data and images, the approach of Arapakis et al. [AL20]
of representing mouse data as images in order to apply an image recognition model is picked
up. However, mouse trajectories usually differ more from each other than in their work, since
all users had to perform the same quite precisely defined task there. With the goal of increasing
generalizability, this representation is adapted in how it encodes time information and is extended
to additionally encode information about click events in order to cover all the data produced by
logging mouse usage. Using just a single image for each data instance is also compared to using a
sequence of images since this injects time information on a different level. As mouse data inherently
is of sequential character, treating it as a time series in order to perform multivariate time series
classification is also compared to generating images and applying image recognition. Additionally,
an encoding strategy which follows the common approach of manual feature extraction is used as a
baseline.

Trajectories An image representation of the mouse motion based on “Trajectories with variable
line thickness” as proposed by Arapakis et al. [AL20] in section 4.2 (4). The mouse movement is
encoded into an image by tracing the mouse trajectory and coloring the pixels passed while setting
all other pixels to black. In contrast to their work, instead of varying line thickness to encode time
information, pixel brightness is increased linearly from 0 % to 100 % as time progresses. Further,
the usual three channels of an RGB image are used to encode click information by capturing all kinds
of mouse movements in the first channel and activating the second or third channel additionally
while the left or right mouse button is pressed, respectively. Hyperparameters are image resolution
which was fixed to 128 × 128 pixels and if to apply linear increase or if to use constant brightness for
which we compare both. A visualization of an example instance with activated change of brightness
can be seen in Figure 3.2.

21



3 Approach

Figure 3.3: Example for mouse encoding Sequence of Sub-Trajectories with 4 images. Note how
the darkest (earliest) pixel’s position corresponds to the brightest (latest) pixel’s position
of the previous image since at this time the transition from one image to the next takes
place.

Δt (ms) x y left button right button
... ... ... ... ...
8 0.3242 0.5649 0 0
8 0.3260 0.5649 0 0

231 0.3260 0.5649 1 0
143 0.3260 0.5649 1 0
1 0.3260 0.5649 0 0
88 0.3260 0.5667 0 0
... ... ... ... ...

Table 3.1: Excerpt of an example for mouse encoding Time Series. Note that Δt (ms) denotes the
time difference to the previous row, also referred to as interaction gap, and is standard-
ized based on the training data. However, non-standardized values are shown in this
visualization to highlight the underlying meaning.

Sequence of Sub-Trajectories Analogous to the previous encoding, but one single data instance
consists of a sequence of images instead of just a single image in order to inject time information on
a different level as well as to avoid too much fading of movements at the beginning of the interaction
window. For this, the interaction window is split into several sub-windows of equal duration and
the Trajectories encoding is applied to each sub-window individually. In addition to the prior
hyperparameters, which were fixed to an image resolution of still 128 × 128 pixels and to apply
linear change of brightness, the number of images has to be chosen as well. For the experiments
within the scope of this work, it was fixed to 5 since it divides both window sizes used. Figure 3.3
shows a visualization of the previous example instance for a number of images of 4.

Time Series A multivariate time series where each row representing a time step created by a user
interaction contains the following values:

• The standardized time difference to the previous event, meaning that a value of 0 represents
the average gap between two interactions based on the training data,

• The current x-coordinate of the mouse pointer,

22



3.2 Encodings

• The current y-coordinate of the mouse pointer,

• A boolean value representing the current state of the left mouse button,

• A boolean value representing the current state of the right mouse button.

Coordinates are scaled to a range of [−1, 1] such that a value of 0 corresponds to the middle of
the screen while −1 and 1 refer to the left and right (x-coordinate) as well as the upper and lower
(y-coordinate) edge. There are no hyperparameters related to this encoding. An excerpt of an
example for this encoding is given in Table 3.1.

Synchronized Time Series Analogous to the previous encoding but without the first column,
since instead of using time difference to the previous event as an additional feature, the mouse state
is resampled at a fixed frequency. Therefore, unlike the once event-driven time series, there is a
fixed time step between each row and its subsequent one. This encoding introduces resampling
frequency as a hyperparameter, for which we compare 20 Hz and 50 Hz.

Handcrafted Features In order to compare the different encoding methods to the common
approach of manual feature extraction, representing a data instance by a vector of handcrafted
features is used as a baseline. For this purpose, we extract the features used by Traore et al.
[TWO+12] to process mouse data, most of which can also be found in the overview of commonly
used features collected by Salmeron-Majadas et al. [SBSB18]. As in their work, the direction of a
movement is mapped onto one out of eight areas of equal size. Concretely, we use:

• Average click time: The average duration from pressing to releasing the mouse button,

• Silence ratio: The percentage of mouse events without a change of cursor position,

• Percentage of mouse action per mouse movement direction (8 features): The percentage of
mouse events representing a cursor movement in the corresponding direction,

• Percentage of distance per mouse movement direction (8 features): The percentage of distance
travelled with the cursor in the corresponding direction,

• Percentage of mouse move time per mouse movement direction (8 features): The time propor-
tion the cursor was moved in the corresponding direction,

• Average distance per mouse movement direction (8 features): The average change of cursor
position per mouse event for each direction,

• Average velocity per mouse movement direction (8 features): The average velocity of cursor
movements in the corresponding direction,

• Average velocity in x-axis per mouse movement direction (8 features): The average velocity
along the x-component of the decomposed velocity of cursor movements in the corresponding
direction,

• Average velocity in y-axis per mouse movement direction (8 features): The average velocity
along the y-component of the decomposed velocity of cursor movements in the corresponding
direction,

23



3 Approach

• Equally weighted average velocity per mouse movement direction (8 features): The average
velocity of cursor movements in the corresponding direction, but equally weighted after
measuring it for each move event individually instead of calculating the overall average
velocity by dividing total distance by total time.

Note that the last 8 features are constructed as a replacement for the original features “Average
tangential velocity per mouse movement direction” used in the paper [TWO+12] because the latter
cannot be used in general. Tangential velocity describes the component along the actual path the
user plans to perform of the decomposed velocity of a cursor movement, but this path is usually
unknown. This encoding does not introduce any hyperparameters.

3.2.2 First Level Encoding for Keyboard Data

Unlike mouse data, keyboard data is more similar to natural language than images. Therefore, this
work follows up on the approach of Zhang et al. [ZBH+23] of treating keyboard data as natural
language by processing it with different NLP tokenizers. However, an image representation is also
part of the comparison as other researchers like Wampfler et al. already achieved reasonable results
in previous work by generating images from keyboard data [WKS+22]. In contrast to their work,
in which heatmaps of keystroke patterns were used, considering consecutive pairs of keystrokes
only and already averaging over multiple time periods is avoided in the scope of this work. Instead,
the data is captured in a less preprocessed way in order to minimize prefiltering of features. Since
keyboard data is also sequential in nature, a time series approach, similar to the one used for mouse
data, is also applied. Finally, the common approach of manual feature extraction is employed as
well, serving as a baseline again.

NLP Tokens The sequence of keyboard events is considered as text (for example “keydown Shift
keydown E keyup E keyup Shift keydown Space keyup Space”) which is then tokenized using an
NLP tokenizer. Hyperparameters are token dimension as well as the type of tokenizer. We compare
tokens of size 16 and 64 generated by BPE [SHB15] and WordPiece [WSC+16]. More precisely,
CharBPETokenizer and BertWordPieceTokenizer of Hugging Face’s tokenizers implementation
[Hug] are used, realizing the original BPE and the version of WordPiece used in Google’s language
model BERT [DCLT18].

Keystroke Timeline Diagram In order to obtain an image representation of keyboard data, a
diagram is created showing the state of each key over time. While elapsed time is on the x-axis, all
keys occurring at least three times in the training data are arranged on the y-axis, plus an additional
special row accumulating all other keys occurring less than three times as well as keys only occurring
in the validation set. Horizontal bars at the height of the corresponding key indicate time windows
in which the key is pressed. Since patch size of the corresponding second level encoding Image
Encoder (see Section 3.2.3) needs to divide both width and height of the image, the smallest possible
padding such that this requirement is fulfilled is added to the bottom and right edge. This results in
an image dimension of ⌈ # keys+1

patch_size⌉⋅patch_size×⌈# time_steps
patch_size ⌉⋅patch_size pixels. A hyperparameter

is the sampling rate for the x-axis, being set to 20 Hz and 50 Hz, which together with the window
size (see Section 3.1) determines the number of time steps. An example visualization is given in
Figure 3.4.

24



3.2 Encodings

Figure 3.4: Example for keyboard encoding Keystroke Timeline Diagram. Each row represents
the state of one key. While the beginning of a white line corresponds to the key being
pressed and the end of the line to the key being released, completely black rows indicate
that the key was never pressed during the encoded time window.

Δt (ms) ... Shift ... E ... Space ...
... ... ... ... ... ... ... ...

212 ... 1 ... 0 ... 0 ...
117 ... 1 ... 1 ... 0 ...
32 ... 1 ... 0 ... 0 ...
56 ... 0 ... 0 ... 0 ...
343 ... 0 ... 0 ... 1 ...
29 ... 0 ... 0 ... 0 ...
... ... ... ... ... ... ... ...

Table 3.2: Excerpt of an example for keyboard encoding Time Series. Note that Δt (ms) denotes
the time difference to the previous row, also referred to as interaction gap, and is stan-
dardized based on the training data. However, non-standardized values are shown in this
visualization to highlight the underlying meaning. Further, many columns are omitted
in this example for a more compact visualization.

Time Series Similar to the Time Series encoding for mouse data outlined in Section 3.2.1, a
multivariate time series is generated. Again, each row represents one time step created by a user
interaction and contains the following values:

• The standardized time difference to the previous event, meaning that a value of 0 represents
the average gap between two interactions based on the training data,

• One column for each key, representing the current state of the key with a boolean value. Just
like for the Keystroke Timeline Diagram, a key needs to occur at least three times in the
training data in order to get an own column. An additional column captures the accumulation
of keys being pressed less often.

Also for this encoding, there are no hyperparameters. An excerpt of an example for this encoding is
given in Table 3.2.

25



3 Approach

Synchronized Time Series Analogous to the mouse encoding Synchronized Time Series building
upon the Time Series representation (see Section 3.2.1), using time difference to the previous event
as an additional column is replaced by resampling the key states with a fixed frequency. Again, this
converts the once event-driven series into a series with a fixed time step between each row and its
subsequent one. Resampling frequency arises as a hyperparameter, for which we compare 20 Hz
and 50 Hz.

Handcrafted Features Just like for mouse data, representing a data instance by a vector of
handcrafted features is used as a baseline in order to compare the other encoding strategies to the
common approach of manual feature extraction. Again, we extract the features used by Traore
et al. [TWO+12] to process keyboard data, as most of them can also be found in the collection
of commonly used features published by Salmeron-Majadas et al. [SBSB18]. Specifically, we
extract:

• Mean of dwell time: The average duration from pressing to releasing a key,

• Mean of release-press flight time: The average duration from releasing a key to pressing the
next one,

• Mean of press-press flight time: The average duration from pressing a key to pressing the
next one,

• Mean of trigraph time: The average duration for completing three subsequent keystrokes,
measured from pressing the first key to releasing the third one,

• Standard deviation of dwell time: The standard deviation of the duration from pressing to
releasing a key,

• Standard deviation of release-press flight time: The standard deviation of the duration from
releasing a key to pressing the next one,

• Standard deviation of press-press flight time: The standard deviation of the duration from
pressing a key to pressing the next one,

• Standard deviation of trigraph time: The standard deviation of the duration for completing
three subsequent keystrokes, measured from pressing the first key to releasing the third one,

• Mean of dwell time per category (2 features): The average duration from pressing to releasing
a key, measured for the categories “letter” and “other” (like “Shift”, “Space” or “Esc”)
separately,

• Percentage of occurrences per category (2 features): The proportion of completed keystrokes
for the categories “letter” and “other”,

• Percentage of occurrences of holding multiple keys: The percentage of keyboard states in
which several keys are pressed simultaneously,

• Average typing speed: The number of completed keystrokes per second.

26



3.2 Encodings

In the original paper [TWO+12] they used 4 categories being “Upper Case Keystrokes”,“Lower
Case Keystrokes”, “Control Keystrokes” and “Other Keystrokes”, where “Upper Case Keystrokes”
also cover symbols which require “Shift” to be pressed simultaneously or “Caps lock” to be pressed
ahead. However, we only distinguished between the categories “letter” and “other”, since usually,
pressing “Shift” is considered a different keystroke instead of merging these events. As a direct
consequence, the two features “Mean of flight times per type of user behaviour” mentioned in the
paper [TWO+12] are also dropped since these flight times refer to scenarios where exactly one of
two consecutive keys belongs to the category “Upper Case Keytrokes” and where both or neither
belong to this category respectively. There are no hyperparameters related to this encoding.

3.2.3 Second Level Encoding

As the outputs of the previously described encodings are quite different in terms of their structural
and dimensional properties, the interim results are further encoded such that all types of data are
compatible with the classifier. In particular, the data can be images, sequences of images, time
series as well as sequences of NLP tokens. For each type, there exists a corresponding second level
encoder designed to transform the input into a sequence of tokens since this is the structure the
Transformer-based classifier expects. Although second level encoding is part of the encoding, it is
also part of the model itself as it has trainable parameters being trained together with the classifier.

Sequence of Tokens Encoder This encoder is applied to sequences of NLP tokens produced by
the keyboard encoding NLP Tokens. Only a small conversion is necessary since the data is already
a sequence of tokens. However, as usual for Transformers, the NLP tokens are embedded using a
PyTorch Embedding layer [PyTa] and positional encodings are added [VSP+17]. There are also no
hyperparameters since the vocab size as well as the token dimension result from the settings of the
NLP tokenizer itself.

Image Encoder This architecture is used for images generated by the mouse encoding Trajectories
and the keyboard encoding Keystroke Timeline Diagram. Just like in the Vision Transformer (ViT)
[DBK+20], each image is divided into patches which are then flattened, transformed linearly and
appended to a learnable class token. Since positions of the patches in the image are not absolute,
learnable positional encodings are added to the resulting sequence of vectors. Patch size is a
hyperparameter and besides the value of 16 Dosovitskiy et al. used in the ViT for images of size
256 × 256, we also try patches of size 8 since the authors recommend a smaller value for a lower
image resolution [DBK+20].

Video Encoder Sequences of images, occurring in the context of the mouse encoding Sequence of
Sub-Trajectories, are processed using the Video Encoder. While the Image Encoder transformed an
image into a sequence of tokens, each image has to be converted to only one token when dealing with
sequences of images. In order to obtain a compact vector representation of an image, the common
approach is to use a CNN architecture [CGJ18]. Concretely, a two-dimensional convolution followed
by a two-dimensional max pooling is applied two times before flattening the matrix to a vector
and applying a linear transformation. Both convolutions as well as the linear transformation are
followed by a ReLU activation. After encoding each image of the sequence, just as for the last step

27



3 Approach

of the Sequence of Tokens Encoder, fixed positional encodings [VSP+17] are added to the resulting
sequence of vectors since the order of images in a sequence of image is well-defined. Besides the
token dimension specified by the amount of neurons in the linear transformation, kernel size of the
convolution layers as well as the pooling layers are also hyperparameters. We chose 64 for the first
one while 3 and 2 are used for the other two since these are common values in literature [CGJ18].

Multivariate Time Series Encoder This second level encoding is designed to handle multivariate
time series produced by the keyboard and mouse encodings Time Series and Synchronized Time
Series. As time series is already a sequence, the set of variables of each time step is transformed
into one token. Instead of directly using each row of the series as one token as is, a row-wise linear
transformation followed by a ReLU activation is applied in order to inject spatial dependencies
between the features. Fixed positional encodings [VSP+17] are added to the resulting sequence of
vectors. The number of output features produced by the linear transformation is a hyperparameter.
For mouse data, using the number of incoming features (5 for Time Series and 4 for Synchronized
Time Series) is compared to using a larger size of 32 to have more room to combine features. For
keyboard data where the number of features is way larger and also depends on the training data
(number of unique keys in the training set plus one for the accumulation of unknown keys plus one
for the time difference in case of Time Series), we use 16 and 64.

Handcrafted Features Encoder This encoder is used along with manually extracted features
generated by the Handcrafted Features encodings of both mouse and keyboard data. The feature
vector to be processed has no sequential characteristics. Hence, yet a sequence is expected by the
classifier, it is interpreted as a sequence of length 1. Just as in the Multivariate Time Series Encoder,
instead of directly using the feature vector as the token, a linear transformation followed by a ReLU
activation is applied in order to inject spatial dependencies between the features. Again, the number
of output features produced by the linear transformation is a hyperparameter. For mouse data, using
the number of incoming features (66) is compared to using a smaller size of 16. For keyboard data,
using the number of incoming features (14) is compared to using a larger size of 64.

3.3 Classifier

In order to obtain a meaningful comparison, the same classifier is used for all encoding methods.
Transformers were originally introduced in the field of NLP [VSP+17], but also show impressive
results in other areas [XPS+22]. Especially, they are also applicable to all types of data produced
by the first level encoding methods including not only NLP tokens [VSP+17], but also images
[DBK+20], videos [ADH+21] and time series [LRM+21]. Besides the fact that Transformers are
powerful ML models for sequential data [VSP+17], which keyboard and mouse data inherently are,
these were the reasons for using a Transformer-based architecture.

In detail, the TransformerEncoder [PyTb] implementation of PyTorch is used, consisting of two
TransformerEncoderLayers [PyTc]. In comparison to the default parameters of 2, 048 and 0.1, both
layers use a rather small feedforward network model of size 128 and a relatively high dropout value
of 0.2. This decision was made to fight overfitting since the the data amount is significantly smaller
than in usual NLP tasks Transformers were originally designed for. Mean pooling is applied to the

28



3.4 Training and Evaluation

output of the TransformerEncoder to hand it to a multilayer perceptron (MLP). The MLP consists
of a 32 neuron input layer with a dropout rate of 0.4, whereas the dimension of the output layer
depends on the task and corresponds to the number of classes as usual. ReLU is used as activation
function for both the TransformerEncoder as well as the MLP.

There would also be the option to tune the mentioned hyperparameters. However, as the focus of
this work is on the encoding procedure, a reasonable comparison of performance should be possible
without exhaustively optimizing the classifier itself. Since there are already a lot of encoding-related
hyperparameters, the classifier-related ones are therefore kept constant.

Nevertheless, model dimension as well as the number of heads in the multi-head attention model,
both hyperparameters of the TransformerEncoderLayers, depend on the selected encoding method,
since, due to the way a Transformer-based architecture works, the former needs to correspond to the
token dimension and must also be divisible by the latter. While token dimension is given by the
first and second level encoding and their settings, a suitable value for the number of heads needs
to be found. As Vaswani et al. employed 8 heads [VSP+17] and most of the token dimensions
are a multiple of 8, this value is used as long as applicable as well. For token dimensions not
being divisible by 8, the nearest possible value to 8 is used. In detail, this concerns the mouse
encodings Time Series and Synchronized Time Series along with the number of output features
of the Multivariate Time Series Encoder being set to the number of input features, which results
in token dimensions and therefore also the number of heads of 5 and 4 respectively. In addition,
the Handcrafted Features encodings of both keyboard and mouse data used in combination with
the number of output features of the Extracted Features Encoder being set to the number of input
features are also affected, leading to token dimensions of 14 and 66 and therefore a number of heads
of 7 and 6 respectively.

3.4 Training and Evaluation

To train the model, which consists of second level encoding as well as the TransformerEncoder

and MLP that form the classifier, 5-fold cross validation is used. The split is done between users,
meaning that each fold contains all the data of one fifth of the participants.

Adam Optimizer with a weight decay of 10−4 to add L2 regularization is used to adjust the model
parameters based on Cross-Entropy loss. This is done for 100 epochs with a batch size of 128, using
a learning rate of 10−3 in one run and 10−4 in a second run. The comparison between the encoding
methods is based on the better performance of the two runs.

Performance is measured by validation accuracy since it is very intuitive and also expressive when
dealing with balanced datasets. However, expressiveness decreases with increasing class imbalance.
Hence, macro 𝐹1 score on the validation set is used in this case. Specifically, this applies to task
recognition on the EMAKI keyboard dataset with 3 classes and a proportion of the majority class of
88 %.

29





4 Experiments

As outlined in Section 3.2, the encoding techniques presented therein encode either mouse or
keyboard data due to the different characteristics of both. Hence, evaluation of the experiments
described in Section 3.1 is also done separately. The significance of differences in performance
was tested using a one-tailed Wilcoxon signed-rank test [SBH21]. A significance level of 𝛼 = 0.05
was chosen, while using 𝛼 = 0.01 would always result in a negative test due to the relatively small
sample size of 5 when comparing two results of a 5-fold cross validation. Specifically, this results
in a critical value of 𝑊𝑐 = 0, meaning that each fold of the assumed better configuration has to
show a higher validation metric than the according fold of the assumed worse configuration such
that the difference is accepted to be significant.

4.1 Task Recognition Based on Mouse Data

The best performing hyperparameter configuration for each mouse encoding is illustrated in Table 4.1
for the EMAKI dataset and in Table 4.2 for the Buffalo dataset. Results of all hyperparameter
configurations can be found in the appendix in Table A.1 and Table A.2, respectively. While
Synchronized Time Series encoding performs best, reaching a validation accuracy of 0.7448 for

Encoding Hyperparameters # Params Val. Accuracy

Synchronized Time Series
Resampling frequency: 50 Hz

Output features: 32
Learning rate: 10−4

26, 723 0.7448 ± 0.0309

Sequence of Sub-Trajectories Learning rate: 10−3 242, 071 0.6489 ± 0.0171

Trajectories
Change brightness: False

Patch size: 8
Learning rate: 10−3

97, 954 0.6483 ± 0.0224

Handcrafted Features Output features: 66
Learning rate: 10−3 76, 749 0.5959 ± 0.0234

Time Series Output features: 5
Learning rate: 10−3 3, 427 0.3746 ± 0.0589

Table 4.1: Mean and standard deviation (separated by ±) of accuracy for task recognition on EMAKI
mouse data. Results are sorted by performance and only the best set of hyperparameters
is shown for each encoding. There are three classes and the portion of the majority class
is 44.52 %.

31



4 Experiments

Encoding Hyperparameters # Params Val. Accuracy

Synchronized Time Series
Resampling frequency: 50 Hz

Output features: 32
Learning rate: 10−4

26, 690 0.6397 ± 0.0158

Handcrafted Features Output features: 16
Learning rate: 10−3 12, 466 0.6078 ± 0.0111

Trajectories
Change brightness: False

Patch size: 8
Learning rate: 10−4

97, 954 0.5757 ± 0.0230

Sequence of Sub-Trajectories Learning rate: 10−4 242, 038 0.5431 ± 0.0439

Time Series Output features: 5
Learning rate: 10−4 3, 394 0.4888 ± 0.0547

Table 4.2: Mean and standard deviation (separated by ±) of accuracy for task recognition on Buffalo
mouse data. Results are sorted by performance and only the best set of hyperparameters
is shown for each encoding. There are two classes and the portion of the majority class
is 54.02 %.

EMAKI and 0.6397 for Buffalo dataset, Time Series encoding achieves by far the worst results, even
worse than always predicting the majority class, for both datasets. Analyzing the outperformance of
Synchronized Time Series encoding shows that it is significant, since comparing it to the second
best encoding, being Sequence of Sub-Trajectories in case of EMAKI and Handcrafted Features
encoding in case of Buffalo dataset, yields a calculated test statistic of 𝑊 = 0 ≤ 𝑊𝑐 both times.
Further, the same result is obtained when comparing it to Handcrafted Features encoding on EMAKI,
confirming that it beats the baseline significantly on both datasets. Using Synchronized Time Series
encoding with a resampling frequency of 50 Hz and 32 output features in the linear layer of the
associated second level encoding Multivariate Time Series Encoder seems to be the best setting in
both cases. However, this observation is not statistically significant. Comparing this configuration to
20 Hz and 32 output features, which achieved the second highest accuracy on both datasets, results
in 𝑊 = 2 for EMAKI and 𝑊 = 7 for Buffalo, both exceeding the critical value of 𝑊𝑐 = 0. Whereas
for EMAKI, all encodings except Time Series beat the baseline of applying Handcrafted Features
encoding, for Buffalo, only Synchronized Time Series encoding outperforms the baseline.

4.2 Task Recognition Based on Keyboard Data

The best performing hyperparameter configuration for each keyboard encoding is presented in
Table 4.3 for the EMAKI dataset and in Table 4.4 for the Buffalo dataset. Results of all hyperparam-
eter configurations can be found in the appendix in Table A.3 and Table A.4, respectively. Every
encoding outperforms the baseline of applying Handcrafted Features encoding significantly. This is
shown by performing a Wilcoxon test for each encoding strategy but Handcrafted Features encoding
between this strategy and the baseline for both datasets, resulting in a calculated test statistic of
𝑊 = 0 ≤ 𝑊𝑐 in all 8 cases. While encoding the instances as a Keystroke Timeline Diagram seems

32



4.2 Task Recognition Based on Keyboard Data

Encoding Hyperparameters # Params Val. Macro 𝐹1

Synchronized Time Series
Resampling frequency: 20 Hz

Output features: 64
Learning rate: 10−4

74, 499 0.5302 ± 0.0559

NLP Tokens
Tokenizer: BertWordPiece

Output features: 16
Learning rate: 10−3

12, 563 0.5246 ± 0.0661

Time Series Output features: 64
Learning rate: 10−4 74, 563 0.5219 ± 0.0272

Keystroke Timeline Diagram
Resampling frequency: 50 Hz

Patch size: 8
Learning rate: 10−4

94, 531 0.4968 ± 0.0525

Handcrafted Features Output features: 64
Learning rate: 10−3 70, 083 0.4213 ± 0.0336

Table 4.3: Mean and standard deviation (separated by ±) of macro 𝐹1 score for task recognition
on EMAKI keyboard data. Results are sorted by performance and only the best set of
hyperparameters is shown for each encoding. There are three classes and the portion
of the majority class is 88.31 %. Always predicting it would yield a macro 𝐹1 score of
0.3126, whereas answering at random would result in 0.3333.

Encoding Hyperparameters # Params Val. Accuracy

NLP Tokens
Tokenizer: BertWordPiece

Output features: 64
Learning rate: 10−3

73, 954 0.8301 ± 0.0167

Time Series Output features: 64
Learning rate: 10−3 74, 978 0.7826 ± 0.0178

Synchronized Time Series
Resampling frequency: 50 Hz

Output features: 64
Learning rate: 10−4

74, 914 0.7511 ± 0.0201

Keystroke Timeline Diagram
Resampling frequency: 20 Hz

Patch size: 8
Learning rate: 10−4

92, 578 0.7226 ± 0.0074

Handcrafted Features Output features: 14
Learning rate: 10−3 10, 000 0.6699 ± 0.0170

Table 4.4: Mean and standard deviation (separated by ±) of accuracy for task recognition on Buffalo
keyboard data. Results are sorted by performance and only the best set of hyperparameters
is shown for each encoding. There are two classes and the portion of the majority class
is 60.11 %.

33



4 Experiments

to result in the smallest improvement for both datasets, this presumption is not of significance. In
case of EMAKI, comparison to Time Series encoding yields a test statistic of 𝑊 = 2 while a value
of 𝑊 = 1 is obtained when comparing to Synchronize Time Series on Buffalo. The ranking of the
other techniques depends on the dataset. For EMAKI, Synchronized Time Series encoding achieves
the best macro 𝐹1 score of 0.5302 followed by NLP Tokens (0.5246) and Time Series (0.5219)
encoding. However, this slight outperformance is not significant either since comparison to the NLP
Tokens encoding results in a calculated test statistic of 𝑊 = 6, clearly exceeding the critical value of
𝑊𝑐 = 0. For Buffalo, the highest accuracy of 0.8301 is accomplished by NLP Tokens, followed by
Time Series (0.7826) and Synchronized Time Series (0.7511). For every other encoding strategy,
performing the Wilcoxon test between this strategy and the NLP Tokens encoding yields a value of
𝑊 = 0 ≤ 𝑊𝑐, showing that the outperformance is significant.

There is also no clear trend for which set of hyperparameters performs best. While using 64 output
features instead of 16 in the linear layer of the associated second level encoding Multivariate
Time Series Encoder seems to be beneficial for both Time Series and Synchronized Time Series
on both datasets, this presumption is not of significance. When comparing each hyperparameter
configuration which uses 64 features to the same but using 16 features, Wilcoxon test was positive
in only half of the cases for Synchronized Time Series and in none of the cases for Time Series.
Moreover, BertWordPiece seems to be the better choice for the NLP tokenizer in case of NLP Tokens
encoding for both datasets. However, the slight outperformance in comparison to the CharBPE

tokenizer is also not significant, which is shown by 𝑊 = 4 (EMAKI) and 𝑊 = 6 (Buffalo) for a
token dimension of 16 as well as 𝑊 = 3 (EMAKI) and 𝑊 = 5 (Buffalo) for a token dimension of
64, all of which exceed the critical value of 𝑊𝑐 = 0.

34



5 Discussion

From what we found in our experiments, Synchronized Time Series as outlined in Section 3.2 is
an expressive encoding strategy in order to encode both keyboard and mouse data. It achieves
robust performance and outperforms the baseline of using handcrafted features for both modalities
significantly. This applies to both datasets despite their different settings. Specifically, the encoding
could not only perform well on the Buffalo dataset which was collected in a laboratory setting
where every participant of the baseline subset (see Section 3.1.1) used the same keyboard, but
also expressively represented the instances of the in-the-wild EMAKI dataset where participants
used their own hardware. As outlined in Section 3.1, they also differ in the interactive tasks the
participants had to perform. Thus, the findings are consistent not only across different participants,
but also across different data collection environments, interactive tasks and devices. The robust
performance can be explained by the sequential structure of the behavioural data, which suggests a
time series representation.

However, while Synchronized Time Series encoding achieves reasonable results for both modalities,
it is very interesting that Time Series encoding is competitive for keyboard data but by far the worst
in our experiments on mouse data. On the one hand, Time Series for mouse data as described
in Section 3.2.1 and Time Series for keyboard data as outlined in Section 3.2.2 are two different
encoding strategies, being a possible explanation for this performance gap. On the other hand, the
underlying idea and structure is very similar. While Synchronized Time Series encoding addresses
the downside of unequal time steps between user interactions in Time Series encoding, it introduces
a considerable number of redundant observations during time periods of user inactivity. This
compensation was necessary and also very effective for mouse data in our experiments since the
synchronized implementation performed significantly better. However, the drawback of unequal time
steps was no problem for keyboard data. A possible explanation for this is the discrete characteristics
of keyboard data in contrast to the continuous ones of mouse movements, presumably requiring
the interactions to be resampled at a fixed frequency only in the case of mouse data. The other
potential drawback of redundant observations seemed to be no issue since Synchronized Time Series
encoding performed well in both modalities.

Even though the outperformance is not statistically significant, a resampling frequency of 50 Hz
when using Synchronized Time Series encoding seems to be slightly better than the lower rate of
20 Hz. A possible reason that this does not also apply to keyboard data, where sometimes 50 Hz
and sometimes 20 Hz performed better, could be that using a higher frequency is particularly useful
for capturing fine-grained details of mouse movements, which can thus be represented even more
continuously, which they inherently are. However, as the outperformance in case of mouse data is
not of significance and none of both values turned out to be better in case of keyboard data, our
suggestion is to experiment with this hyperparameter when applying Synchronized Time Series
encoding to specific use cases. This also applies to the tokenizer used in the NLP Tokens encoding

35



5 Discussion

Figure 5.1: Performance comparison with different number of trainable parameters. On the left,
Synchronized Time Series encoding with the usual second level encoding Multivariate
Time Series Encoder, using 4 output features in its linear layer, resulting in 2, 783
trainable parameters. On the right, an adapted version of the second level encoding,
consisting of two linear layers of size 256, resulting in 735, 619 trainable parameters.
The colored area around the line denotes addition and subtraction of one standard
deviation.

for keyboard data, where the slight outperformance of the BertWordPiece tokenizer, probably due to
the generated subwords achieving a more appropriate level of granularity and contextual information,
was also not significant.

Finally, we draw the conclusion that Synchronized Time Series encoding is clearly the best choice
for encoding mouse data. While its counterpart for processing keyboard data also achieves a robust
performance, comparing it to NLP Tokens and Time Series encoding might be beneficial for this
modality since none of the encodings was clearly the best in this case. Our experiments have
shown that using a generalizable encoding can improve predictive power over the usual approach of
extracting handcrafted features and should be considered when processing keyboard and mouse
data.

5.1 Influence of the Number of Trainable Encoding Parameters

Due to the different second level encodings and their output dimensions, the number of trainable
parameters of the model depends on the encoding. A large number of parameters can cause
overfitting which might result in a poor ability of generalization and therefore a low validation
performance. Thus, the influence of this value on the performance was also inspected. For this
purpose, Synchronized Time Series encoding with a resampling frequency of 20 Hz and 4 output
features in the linear layer of the associated second level encoding Multivariate Time Series Encoder
was referred to as a baseline. Its performance on the EMAKI dataset was compared to the same first
level encoding but using two linear layers of size 256 in the second level encoding. This increases
the number of trainable parameters from 2, 783 to 735, 619.

36



5.2 Limitations and Future Work

Figure 5.1 shows loss and accuracy during training and that the model with a larger number of
parameters clearly suffers from overfitting. Training loss and accuracy are much better in comparison
to the smaller model and validation loss increases after only a few epochs. However, validation
accuracy decreases just slightly and ends up to be 0.7176 ± 0.0298. Compared to the smaller
model’s final validation accuracy of 0.7103 ± 0.0314, this indicates that the much larger number of
trainable parameters did not have a negative influence on the performance. This is also consistent
with the findings of Götz et al. who observed that an oversized number of trainable parameters does
not significantly reduce classification performance [GGS+22]. The high validation loss but still
high validation accuracy can be explained by a relatively small portion of wrong predictions being
misclassified with a high level of confidence.

5.2 Limitations and Future Work

While this work provides valuable insights into encoding keyboard and mouse data for interactive
task recognition, from a technical perspective, applicability of the proposed encoding methods is
not limited to this downstream task only. Therefore, an interesting future work is to evaluate the
encoding strategies for other tasks also. For example, transferability would offer huge chances in the
field of user authentication, where users are recognized and authenticated based on their behaviour
in order to achieve a higher level of security compared to using passwords only [MHHS17; SCU16;
TWO+12]. In addition, if gaining user knowledge from behaviour benefits from a more expressive
data representation, emotion-aware UIs to improve user-system interaction as well as mood-aware
recommender systems for targeted marketing [SM16] and better user experience [YKF21] could
also be improved. Since we have shown that using a generalizable encoding can outperform the
usual approach of extracting handcrafted features, we invite to implement this kind of approach in
real-world applications.

Future work can also explore the limits of the promising encoding techniques when further optimizing
and tuning hyperparameters, especially the ones related to the classifier as well as the training routine,
since these were not the focus of our experiments. Evaluating if combining keyboard and mouse
data further improves performance would also be interesting. In case of applying Synchronized
Time Series encoding to both modalities, the resulting matrices could just be concatenated such that
each time step covers both sets of features. Another approach would be to process both types of data
in separate networks and to connect the last hidden layers of both networks to a single final output
layer. This would also enable to use encoding strategies where keyboard and mouse interactions are
asynchronous and therefore unaligned as well as to even use two encodings with different types of
output structures listed in Section 3.2.3.

Overall, our work offers valuable insights into encoding keyboard and mouse data for interactive
task recognition and provides a solid foundation for further exploration in the context of other
downstream tasks.

37





6 Conclusion

We explored different ways to encode keyboard and mouse data as an alternative to extract hand-
crafted features. Evaluated on two datasets, encoding mouse interactions as a time series of
coordinates and button states with a fixed sampling rate significantly outperformed the other meth-
ods as well as the baseline in the context of task recognition. Regarding keyboard data, a similar
representation of tracking the key states in a time series with fixed sampling rate was also among the
best encoding methods. In contrast to mouse data, where an event-driven time series with unequal
time steps between user interactions performed by far the worst, encoding keyboard data this way
achieved comparable results and outperformed the baseline as well. Additionally, keyboard data
was successfully treated as text describing the interaction which was then processed with NLP
tokenizers. While the the ranking of these three techniques depended on the dataset, an image
representation of the key states over time performed worse in both scenarios, but still outperformed
the baseline of using handcrafted features.

39





Bibliography

[ADH+21] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid. “Vivit: A video
vision transformer”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021, pp. 6836–6846 (cit. on p. 28).

[AFB21] M. Antal, N. Fejér, K. Buza. “SapiMouse: Mouse dynamics-based user authentication
using deep feature learning”. In: 2021 IEEE 15th International Symposium on Applied
Computational Intelligence and Informatics (SACI). IEEE. 2021, pp. 61–66 (cit. on
pp. 13, 15).

[AL20] I. Arapakis, L. A. Leiva. “Learning efficient representations of mouse movements
to predict user attention”. In: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2020, pp. 1309–
1318 (cit. on pp. 13, 16, 21).

[CGJ18] R. Chauhan, K. K. Ghanshala, R. Joshi. “Convolutional neural network (CNN) for
image detection and recognition”. In: 2018 First International Conference on Secure
Cyber Computing and Communication (ICSCCC). IEEE. 2018, pp. 278–282 (cit. on
pp. 13, 27, 28).

[DBK+20] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. “An image is worth
16x16 words: Transformers for image recognition at scale”. In: arXiv preprint
arXiv:2010.11929 (2020) (cit. on pp. 27, 28).

[DCLT18] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova. “Bert: Pre-training of deep bidirec-
tional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805
(2018) (cit. on p. 24).

[ELM11] C. Epp, M. Lippold, R. L. Mandryk. “Identifying emotional states using keystroke
dynamics”. In: Proceedings of the sigchi conference on human factors in computing
systems. 2011, pp. 715–724 (cit. on p. 15).

[FKW+17] E. Y. Fu, T. C. Kwok, E. Y. Wu, H. V. Leong, G. Ngai, S. C. Chan. “Your mouse reveals
your next activity: towards predicting user intention from mouse interaction”. In: 2017
IEEE 41st Annual Computer Software and Applications Conference (COMPSAC).
Vol. 1. IEEE. 2017, pp. 869–874 (cit. on pp. 13, 15, 19).

[GGS+22] T. I. Götz, S. Göb, S. Sawant, X. Erick, T. Wittenberg, C. Schmidkonz, A. Tomé,
E. Lang, A. Ramming. “Number of necessary training examples for Neural Networks
with different number of trainable parameters”. In: Journal of Pathology Informatics
13 (2022), p. 100114 (cit. on p. 37).

[HBLW21] Z. Hu, A. Bulling, S. Li, G. Wang. “Ehtask: Recognizing user tasks from eye and head
movements in immersive virtual reality”. In: IEEE Transactions on Visualization and
Computer Graphics (2021) (cit. on pp. 13, 15, 19).

41



Bibliography

[Hug] HuggingFace. Tokenizers. url: https://huggingface.co/docs/tokenizers/index
(visited on 05/07/2023) (cit. on p. 24).

[KRS21] K. S. Kalyan, A. Rajasekharan, S. Sangeetha. “Ammus: A survey of transformer-
based pretrained models in natural language processing”. In: arXiv preprint
arXiv:2108.05542 (2021) (cit. on p. 13).

[LCS22] J. Li, H.-C. Chang, M. Stamp. “Free-text keystroke dynamics for user authentication”.
In: Cybersecurity for Artificial Intelligence. Springer, 2022, pp. 357–380 (cit. on
p. 15).

[LRM+21] M. Liu, S. Ren, S. Ma, J. Jiao, Y. Chen, Z. Wang, W. Song. “Gated transformer net-
works for multivariate time series classification”. In: arXiv preprint arXiv:2103.14438
(2021) (cit. on p. 28).

[MHHS17] C. Murphy, J. Huang, D. Hou, S. Schuckers. “Shared dataset on natural human-
computer interaction to support continuous authentication research”. In: 2017 IEEE
International Joint Conference on Biometrics (IJCB). IEEE. 2017, pp. 525–530 (cit.
on p. 37).

[NCZC21] H. Niu, J. Chen, Z. Zhang, Z. Cai. “Mouse Dynamics Based Bot Detection Using
Sequence Learning”. In: Biometric Recognition: 15th Chinese Conference, CCBR
2021, Shanghai, China, September 10–12, 2021, Proceedings 15. Springer. 2021,
pp. 49–56 (cit. on pp. 13, 15).

[PyTa] PyTorch. EMBEDDING. url: https://pytorch.org/docs/stable/generated/torch.
nn.Embedding.html (visited on 05/08/2023) (cit. on p. 27).

[PyTb] PyTorch. TRANSFORMERENCODER. url: https://pytorch.org/docs/stable/
generated/torch.nn.TransformerEncoder.html (visited on 05/07/2023) (cit. on
p. 28).

[PyTc] PyTorch. TRANSFORMERENCODERLAYER. url: https://pytorch.org/docs/
stable/generated/torch.nn.TransformerEncoderLayer.html (visited on 05/07/2023)
(cit. on p. 28).

[SBH21] B. R. Sziklai, M. Baranyi, K. Héberger. “Testing Rankings with Cross-Validation”. In:
arXiv preprint arXiv:2105.11939 (2021) (cit. on p. 31).

[SBSB18] S. Salmeron-Majadas, R. S. Baker, O. C. Santos, J. G. Boticario. “A machine learning
approach to leverage individual keyboard and mouse interaction behavior from mul-
tiple users in real-world learning scenarios”. In: IEEE Access 6 (2018), pp. 39154–
39179 (cit. on pp. 13, 16, 23, 26).

[SCU16] Y. Sun, H. Ceker, S. Upadhyaya. “Shared keystroke dataset for continuous authentica-
tion”. In: 2016 IEEE International Workshop on Information Forensics and Security
(WIFS). IEEE. 2016, pp. 1–6 (cit. on pp. 20, 37).

[SHB15] R. Sennrich, B. Haddow, A. Birch. “Neural machine translation of rare words with
subword units”. In: arXiv preprint arXiv:1508.07909 (2015) (cit. on p. 24).

[SM16] F. Shi, J.-L. Marini. “Can e-Commerce Recommender Systems be More Popular
with Online Shoppers if they are Mood-aware?” In: International Conference on Web
Information Systems and Technologies. Vol. 3. SCITEPRESS. 2016, pp. 173–180
(cit. on pp. 15, 37).

42

https://huggingface.co/docs/tokenizers/index
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html


Bibliography

[TWO+12] I. Traore, I. Woungang, M. S. Obaidat, Y. Nakkabi, I. Lai. “Combining mouse and
keystroke dynamics biometrics for risk-based authentication in web environments”.
In: 2012 fourth international conference on digital home. IEEE. 2012, pp. 138–145
(cit. on pp. 15, 23, 24, 26, 27, 37).

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin. “Attention is all you need”. In: Advances in neural information pro-
cessing systems 30 (2017) (cit. on pp. 27–29).

[WKS+22] R. Wampfler, S. Klingler, B. Solenthaler, V. R. Schinazi, M. Gross, C. Holz. “Affective
State Prediction from Smartphone Touch and Sensor Data in the Wild”. In: CHI
Conference on Human Factors in Computing Systems. 2022, pp. 1–14 (cit. on pp. 16,
24).

[WSC+16] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al. “Google’s neural machine translation system: Bridging the
gap between human and machine translation”. In: arXiv preprint arXiv:1609.08144
(2016) (cit. on p. 24).

[XPS+22] Z. Xia, X. Pan, S. Song, L. E. Li, G. Huang. “Vision transformer with deformable
attention”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2022, pp. 4794–4803 (cit. on p. 28).

[XSB16] P. Xu, Y. Sugano, A. Bulling. “Spatio-temporal modeling and prediction of visual
attention in graphical user interfaces”. In: Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. 2016, pp. 3299–3310 (cit. on pp. 13, 15).

[XSS19] L. Xiaofeng, Z. Shengfei, Y. Shengwei. “Continuous authentication by free-text
keystroke based on CNN plus RNN”. In: Procedia computer science 147 (2019),
pp. 314–318 (cit. on pp. 15, 16, 20).

[YKF21] S. Yousefian Jazi, M. Kaedi, A. Fatemi. “An emotion-aware music recommender
system: bridging the user’s interaction and music recommendation”. In: Multimedia
Tools and Applications 80.9 (2021), pp. 13559–13574 (cit. on pp. 15, 37).

[ZBH+23] G. Zhang, M. Bortoletto, Z. Hu, L. Shi, M. Bâce, A. Bulling. “Exploring Natural Lan-
guage Processing Methods for Interactive Behaviour Modelling”. In: arXiv preprint
arXiv:2303.16039 (2023) (cit. on pp. 13, 15, 16, 19, 20, 24).

[ZHL+22] G. Zhang, S. Hindennach, J. Leusmann, F. Bühler, B. Steuerlein, S. Mayer, M. Bâce,
A. Bulling. “Predicting Next Actions and Latent Intents during Text Formatting”. In:
(2022) (cit. on p. 16).

43





A Results of All Hyperparameter Configurations

Encoding
(Hyperparameters) Hyperparameters # Params Val. Accuracy Rank

Trajectories

(change brightness,
patch size, learning rate)

False, 8, 10−3 97, 987 0.6483 ± 0.0224 10
False, 8, 10−4 97, 987 0.6449 ± 0.0192 11
False, 16, 10−3 882, 307 0.6251 ± 0.0196 15
False, 16, 10−4 882, 307 0.6317 ± 0.0254 14
True, 8, 10−3 97, 987 0.6339 ± 0.0118 13
True, 8, 10−4 97, 987 0.6347 ± 0.0182 12
True, 16, 10−3 882, 307 0.6229 ± 0.0204 16
True, 16, 10−4 882, 307 0.6222 ± 0.0154 17

Sequence of Sub-Trajectories
(learning rate)

10−3 242, 071 0.6489 ± 0.0171 9
10−4 242, 071 0.5896 ± 0.1191 20

Time Series
(output features, learning rate)

5, 10−3 3, 427 0.3746 ± 0.0589 23
5, 10−4 3, 427 0.2974 ± 0.0649 26
32, 10−3 26, 755 0.3666 ± 0.0716 24
32, 10−4 26, 755 0.3218 ± 0.0934 25

Synchronized Time Series

(resampling frequency,
output features, learning rate)

20 Hz, 4, 10−3 2, 783 0.7103 ± 0.0314 4
20 Hz, 4, 10−4 2, 783 0.6763 ± 0.0106 8
20 Hz, 32, 10−3 26, 723 0.7029 ± 0.0379 6
20 Hz, 32, 10−4 26, 723 0.7360 ± 0.0291 2
50 Hz, 4, 10−3 2, 783 0.7085 ± 0.0279 5
50 Hz, 4, 10−4 2, 783 0.6914 ± 0.0318 7
50 Hz, 32, 10−3 26, 723 0.7130 ± 0.0270 3
50 Hz, 32, 10−4 26, 723 0.7448 ± 0.0309 1

Handcrafted Features
(output features, learning rate)

16, 10−3 12, 499 0.5901 ± 0.0155 19
16, 10−4 12, 499 0.5830 ± 0.0093 22
66, 10−3 76, 749 0.5830 ± 0.0252 21
66, 10−4 76, 749 0.5959 ± 0.0234 18

Table A.1: Mean and standard deviation (separated by ±) of accuracy for task recognition on
EMAKI mouse data. Results are sorted by the encoding method and the last column
indicates the ranking of the configuration relative to the others. There are two classes
and the portion of the majority class is 44.52 %.



Encoding
(Hyperparameters) Hyperparameters # Params Val. Accuracy Rank

Trajectories

(change brightness,
patch size, learning rate)

False, 8, 10−3 97, 954 0.5382 ± 0.0406 20
False, 8, 10−4 97, 954 0.5757 ± 0.0230 13
False, 16, 10−3 882, 274 0.5702 ± 0.0116 14
False, 16, 10−4 882, 274 0.5558 ± 0.0051 15
True, 8, 10−3 97, 954 0.5382 ± 0.0406 21
True, 8, 10−4 97, 954 0.5474 ± 0.0503 18
True, 16, 10−3 882, 274 0.5478 ± 0.0358 17
True, 16, 10−4 882, 274 0.5535 ± 0.0194 16

Sequence of Sub-Trajectories
(learning rate)

10−3 242, 038 0.5382 ± 0.0406 22
10−4 242, 038 0.5431 ± 0.0439 19

Time Series
(output features, learning rate)

5, 10−3 3, 394 0.4719 ± 0.0461 24
5, 10−4 3, 394 0.4888 ± 0.0547 23
32, 10−3 26, 722 0.4680 ± 0.0464 25
32, 10−4 26, 722 0.4621 ± 0.0427 26

Synchronized Time Series

(resampling frequency,
output features, learning rate)

20 Hz, 4, 10−3 2, 750 0.6171 ± 0.0142 5
20 Hz, 4, 10−4 2, 750 0.6067 ± 0.0208 8
20 Hz, 32, 10−3 26, 690 0.6231 ± 0.0098 4
20 Hz, 32, 10−4 26, 690 0.6388 ± 0.0140 2
50 Hz, 4, 10−3 2, 750 0.6108 ± 0.0160 6
50 Hz, 4, 10−4 2, 750 0.5987 ± 0.0187 11
50 Hz, 32, 10−3 26, 690 0.6281 ± 0.0167 3
50 Hz, 32, 10−4 26, 690 0.6397 ± 0.0158 1

Handcrafted Features
(output features, learning rate)

16, 10−3 12, 466 0.6016 ± 0.0137 10
16, 10−4 12, 466 0.6078 ± 0.0111 7
66, 10−3 76, 716 0.5946 ± 0.0122 12
66, 10−4 76, 716 0.6051 ± 0.0090 9

Table A.2: Mean and standard deviation (separated by ±) of accuracy for task recognition on Buffalo
mouse data. Results are sorted by the encoding method and the last column indicates
the ranking of the configuration relative to the others. There are two classes and the
portion of the majority class is 54.02 %.



Encoding
(Hyperparameters) Hyperparameters # Params Val. Macro 𝐹1 Rank

NLP Tokens

(tokenizer,
output features,
learning rate)

CharBPE, 16, 10−3 12, 563 0.4929 ± 0.0456 11
CharBPE, 16, 10−4 12, 563 0.4419 ± 0.0323 27
CharBPE, 64, 10−3 73, 667 0.4651 ± 0.0430 22
CharBPE, 64, 10−4 73, 667 0.4916 ± 0.0321 12

BertWordPiece, 16, 10−3 12, 563 0.5246 ± 0.0661 2
BertWordPiece, 16, 10−4 12, 563 0.4534 ± 0.0362 25
BertWordPiece, 64, 10−3 73, 667 0.5001 ± 0.0463 7
BertWordPiece, 64, 10−4 73, 667 0.5032 ± 0.0496 6

Keystroke Timeline
Diagram

(resampling frequency,
patch size, learning rate)

20 Hz, 8, 10−3 81, 859 0.4824 ± 0.0325 19
20 Hz, 8, 10−4 81, 859 0.4872 ± 0.0562 16
20 Hz, 16, 10−3 742, 531 0.4914 ± 0.0407 13
20 Hz, 16, 10−4 742, 531 0.4892 ± 0.0392 14
50 Hz, 8, 10−3 94, 531 0.4744 ± 0.0406 21
50 Hz, 8, 10−4 94, 531 0.4968 ± 0.0525 9
50 Hz, 16, 10−3 754, 051 0.4865 ± 0.0459 17
50 Hz, 16, 10−4 754, 051 0.4930 ± 0.0621 10

Time Series

(output features,
learning rate)

16, 10−3 12, 787 0.4985 ± 0.0617 8
16, 10−4 12, 787 0.4622 ± 0.0516 23
64, 10−3 74, 563 0.5138 ± 0.0486 5
64, 10−4 74, 563 0.5219 ± 0.0272 3

Synchronized Time Series

(resampling frequency,
output features,
learning rate)

20 Hz, 16, 10−3 12, 771 0.4815 ± 0.0384 20
20 Hz, 16, 10−4 12, 771 0.4409 ± 0.0360 28
20 Hz, 64, 10−3 74, 499 0.4886 ± 0.0401 15
20 Hz, 64, 10−4 74, 499 0.5302 ± 0.0559 1
50 Hz, 16, 10−3 12, 771 0.4578 ± 0.0548 24
50 Hz, 16, 10−4 12, 771 0.4423 ± 0.0303 26
50 Hz, 64, 10−3 74, 499 0.4824 ± 0.0449 18
50 Hz, 64, 10−4 74, 499 0.5175 ± 0.0434 4

Handcrafted Features

(output features,
learning rate)

14, 10−3 10, 033 0.3975 ± 0.0444 31
14, 10−4 10, 033 0.3867 ± 0.0338 32
64, 10−3 70, 083 0.4213 ± 0.0336 29
64, 10−4 70, 083 0.4174 ± 0.0352 30

Table A.3: Mean and standard deviation (separated by ±) of macro 𝐹1 score for task recognition on
EMAKI keyboard data. Results are sorted by the encoding method and the last column
indicates the ranking of the configuration relative to the others. There are three classes
and the portion of the majority class is 88.31 %. Always predicting it would yield a
macro 𝐹1 score of 0.3126, whereas answering at random would result in 0.3333.



Encoding
(Hyperparameters) Hyperparameters # Params Val. Accuracy Rank

NLP Tokens

(tokenizer,
output features,
learning rate)

CharBPE, 16, 10−3 12, 610 0.7907 ± 0.0113 6
CharBPE, 16, 10−4 12, 610 0.7509 ± 0.0050 11
CharBPE, 64, 10−3 73, 954 0.8289 ± 0.0042 2
CharBPE, 64, 10−4 73, 954 0.8097 ± 0.0057 3

BertWordPiece, 16, 10−3 12, 610 0.7986 ± 0.0161 5
BertWordPiece, 16, 10−4 12, 610 0.7441 ± 0.0170 15
BertWordPiece, 64, 10−3 73, 954 0.8301 ± 0.0167 1
BertWordPiece, 64, 10−4 73, 954 0.8047 ± 0.0150 4

Keystroke Timeline
Diagram

(resampling frequency,
patch size, learning rate)

20 Hz, 8, 10−3 92, 578 0.7078 ± 0.0036 22
20 Hz, 8, 10−4 92, 578 0.7226 ± 0.0074 19
20 Hz, 16, 10−3 753, 250 0.7150 ± 0.0083 21
20 Hz, 16, 10−4 753, 250 0.6805 ± 0.0079 28

50 Hz, 8, 10−3 (*) 120, 994 0.6956 ± 0.0093 23
50 Hz, 8, 10−4 (*) 120, 994 0.6856 ± 0.0132 27
50 Hz, 16, 10−3 782, 434 0.7201 ± 0.0084 20
50 Hz, 16, 10−4 782, 434 0.6942 ± 0.0074 24

Time Series

(output features,
learning rate)

16, 10−3 12, 866 0.7548 ± 0.0130 9
16, 10−4 12, 866 0.7327 ± 0.0307 17
64, 10−3 74, 978 0.7826 ± 0.0178 7
64, 10−4 74, 978 0.7597 ± 0.0143 8

Synchronized Time Series

(resampling frequency,
output features,
learning rate)

20 Hz, 16, 10−3 12, 850 0.7343 ± 0.0194 16
20 Hz, 16, 10−4 12, 850 0.6941 ± 0.0248 25
20 Hz, 64, 10−3 74, 914 0.7509 ± 0.0123 12
20 Hz, 64, 10−4 74, 914 0.7466 ± 0.0166 14
50 Hz, 16, 10−3 12, 850 0.7247 ± 0.0110 18
50 Hz, 16, 10−4 12, 850 0.6860 ± 0.0113 26
50 Hz, 64, 10−3 74, 914 0.7486 ± 0.0211 13
50 Hz, 64, 10−4 74, 914 0.7511 ± 0.0201 10

Handcrafted Features

(output features,
learning rate)

14, 10−3 10, 000 0.6699 ± 0.0170 29
14, 10−4 10, 000 0.6672 ± 0.0185 32
64, 10−3 70, 050 0.6683 ± 0.0151 31
64, 10−4 70, 050 0.6693 ± 0.0181 30

Table A.4: Mean and standard deviation (separated by ±) of accuracy for task recognition on
Buffalo keyboard data. Results are sorted by the encoding method and the last column
indicates the ranking of the configuration relative to the others. There are three classes
and the portion of the majority class is 60.11 %. Batch size was reduced from 128 to
64 for configurations annotated with (*) since they allocated too much GPU memory
(> 10 GB) otherwise.



Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature


	1 Introduction
	2 Related Work
	2.1 Applying Keyboard and Mouse Behaviour Analysis
	2.2 Encoding Keyboard and Mouse Data

	3 Approach
	3.1 Datasets and Preprocessing
	3.2 Encodings
	3.3 Classifier
	3.4 Training and Evaluation

	4 Experiments
	4.1 Task Recognition Based on Mouse Data
	4.2 Task Recognition Based on Keyboard Data

	5 Discussion
	5.1 Influence of the Number of Trainable Encoding Parameters
	5.2 Limitations and Future Work

	6 Conclusion
	Bibliography
	A Results of All Hyperparameter Configurations

