
Institute for Visualization and Interactive Systems
Universitätsstraße 38

70569 Stuttgart

Bachelorarbeit

Biologically Plausible
Reinforcement Learning

Tobias Stegmaier

Course of Study: Informatik

Examiner: Prof. Dr. Andreas Bulling

Supervisor: Anna Penzkofer, M.Sc.

Commenced: May 4, 2023

Completed: November 4, 2023





Abstract

The fundamental idea of Reinforcement Learning (RL) is learning by interacting with an environment
through trial and error and is inspired by the way animals learn in nature. However, standard RL
approaches still struggle with seemingly simple tasks, where humans would excel after a few trials.
In detail, there is a high volatility between different runs of the RL training process, in addition to a
slow convergence rate for each trial.

Previous work has shown that using a biologically inspired approach to RL significantly improves this
learning speed and increases the robustness of training across different runs. The biologically based
approach uses a state representation, called Spatial Semantic Pointers (SSPs), where embeddings
of the state are encoded in a biologically plausible vector space representation. Experiments on
a simple two-dimensional navigation task have shown that introducing a grid-like structure into
the vector space further increases the learning speed. However, it remains unclear, whether these
findings scale to different environments with more complex inputs. Specifically, we are interested
in comparing this approach in environments with state spaces to environments with more complex
inputs, such as RGB images. Furthermore, the approach is also compared to common artificial
neural networks with the state-of-the-art Advantage Actor-Critic (A2C) agent.

Our results suggest that using biologically based state representations leads to a faster learning speed
in some environments while causing slower learning in others. Further, the state representations do
not extend very well on larger or more complex inputs like images, causing worse performance in
both learning speed and overall training time needed.

3





Kurzfassung

Die grundlegende Idee von Reinforcement Learning (RL), von lernen, indem man mit seiner
Umgebung durch Trial-and-Error (Versuch und Irrtum) interagiert, ist ähnlich zu der Art, wie Tiere
in der Natur lernen. RL Ansätze haben jedoch Probleme scheinbar einfache Aufgaben zu lösen, in
denen Menschen nach nur einigen Testläufen exzellent Leistung zeigen. In mehr Detail, der RL
Lernvorgang zeichnet sich durch eine Sprunghaftigkeit über Trainingsdurchläufe aus, zusätzlich zu
einer langsamen Konvergenz rate für jeden Trainingsdurchlauf.

Vorherige Arbeit hat gezeigt, dass die Nutzung eines durch die Biologie inspirierten Ansatz zu
RL die Lerngeschwindigkeit und die Stabilität über Trainingsdurchläufen erhöht. Die biologisch
inspirierten Ansätze nutzen eine Repräsentation für den State (Zustand), die sich Spatial Semantic
Pointer (SSP) nennt, die den State durch die Nutzung eines biologisch plausiblen Vektorraum kodiert.
Experimente mit einer zweidimensionalen Navigationsaufgabe haben gezeigt, dass das Einführen
einer rasterähnlichen Struktur in den Vektorraum die Lerngeschwindigkeit noch weiter erhöht. Es
ist jedoch nicht sicher, ob diese Ergebnisse sich auch so in anderen Umgebungen mit komplexeren
Werten ausdehnen lassen. Diese Arbeit vergleicht diesen Ansatz in Umgebungen mit komplexeren
Inputs (Werte, die in ein neuronales Netz gegeben werden) wie zum Beispiel RGB-Bilder. Des
Weiteren wird der Ansatz, mit einem regulären künstlichen neuronalen Netz (ANN), mit einem
Advantage Actor-Critic (A2C) verglichen, einem Model des aktuellen Technikstands.

Die Ergebnisse legen nahe, dass biologisch inspirierte Repräsentationen für den Zustand zu einer
höheren Lerngeschwindigkeit in einigen Umgebungen führt, aber zu langsameres Lernen in anderen
Umgebungen. Zusätzlich lassen sich die Repräsentationen für den Zustand nicht gut auf größere oder
komplexere Inputs erweitern, da sie schlechtere Ergebnisse in Lerngeschwindigkeit und benötigte
Trainingszeit haben.

5





Contents

1 Introduction 15

2 Related Work 17
2.1 Biologically Plausible State Representations . . . . . . . . . . . . . . . . . . . 17
2.2 Spiking Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Background – Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 20

3 Methods 23
3.1 Artificial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Biologically plausible Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Observation As Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Image as Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Testing Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Results 31
4.1 Observation As Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Image as Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Discussion 37

6 Conclusion 39

Bibliography 41

7





List of Figures

2.1 Receptive fields of SSPs and grid cells . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Overview of the artificial PyTorch model (Art-Critic). . . . . . . . . . . . . . . . 24
3.2 Overview of the biologically plausible model (Bio-Mod) . . . . . . . . . . . . . 25
3.3 Example image of a single frame of each tested environment. . . . . . . . . . . . 27

4.1 Results on the Cart Pole environment. . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Results on the Acrobot environment. . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Results on the Lunar Lander environment. . . . . . . . . . . . . . . . . . . . . . 34
4.4 Results on the Cart Pole environment using image inputs. . . . . . . . . . . . . . 35

9





List of Tables

3.1 Hyperparameters of Art-Critic and Bio-Mod . . . . . . . . . . . . . . . . . . . . 24
3.2 Technical details of the different testing environments. . . . . . . . . . . . . . . 28

11





Acronyms

A2C Advantage Actor-Critic. 21

A3C Asynchronous Advantage Actor-Critic. 21, 23

ANN artificial neural network. 15

LIF Leaky Integrate-And-Fire. 19

RL Reinforcement Learning. 15

SNN spiking neural network. 19

SPA Semantic Pointer Architecture. 17

Spaun Semantic Pointer Architecture Unified Network. 17

SSP Spatial Semantic Pointer. 15

TD temporal-difference. 20

13





1 Introduction

The goal of Reinforcement Learning (RL) is learning how to choose from different actions, to
maximize some reward signal [SB18]. To achieve this reward maximization, RL methods use trial
and error to determine which actions lead to a better outcome in a given situation. In that sense, RL
uses a similar approach to the way humans and animals learn. General deep learning approaches
to RL often use the state of the current system as its direct input for decision-making. In fact,
the state is usually encoded in artificial representations with no foundation in biology. However,
biological systems, as demonstrated by humans, can learn general RL tasks more quickly than
artificial neural networks (ANNs). One hypothesis of why this could be the case is that biological
systems do not have to learn a new way to represent information for novel tasks, but repurpose
learned representations [BSO22].

Recently, Komer et al. [KSVE19] proposed a way to encode continuous values in a biologically
plausible vector space called Spatial Semantic Pointers (SSPs). This work has been extended by
Dumont and Eliasmith [DE20] to construct a neural representation that mimics grid cells, a special
type of neuron in the brain. Prior work of Bartlett et al. [BSO22] and Gustafson and Daw [GD11]
have demonstrated, that using the biologically inspired grid cells to encode the state of a RL model
improves the learning speed and robustness in comparison to other representations, such as one-hot
encoding.

While the results of Bartlett et al. and Gustafson and Daw suggest that using grid cells to encode the
state leads to a faster learning speed, they only tested them in a discrete two-dimensional navigation
task. This is a type of task grid cells naturally excel at because they are optimized to encode spatial
information [BSO22]. This makes it uncertain if an increase in learning speed can also be observed
for different kinds of tasks or environments with continuous state spaces.

This work aims to test how well the biologically inspired state representations scale to different
kinds of tasks and environments with continuous state space. Further, we test, if the representations
can be extended for larger and more complex inputs like images. We test the representations in
two different RL models: An artificial model using established RL methods without biological
foundation, and a biologically inspired model that uses biologically plausible approaches. This
allows further insight, into how well biologically inspired state representations work in models
without biological plausibility.

The main novelty of this work is the testing of the biologically inspired state representation with new
kinds of tasks and the exploration of ways, to encode more complex inputs like two-dimensional
images into SSP and grid cell representation. Specifically, we propose the use of an image regressor
and the use of a custom neural network layer to encode images to SSP and grid cell representations.

The main contribution of this work is three-fold:

• Testing of biologically plausible state representations for new tasks.

15



1 Introduction

• Testing of how well biologically plausible state representations work in models without
biological foundations.

• Two novel approaches, on how to extend biologically plausible state representations for image
inputs.

First, we describe the relevant literature with a focus on the theoretical background for the following
sections. Then we explain the architecture of the models, the testing environments, and their input
modalities. Next, we present the results of the experiments conducted, followed by a discussion of
said results. Finally, we draw some conclusions from the experience of using the different models
and state representations as well as the results that were found.

16



2 Related Work

In this work, we want to test whether a biologically based approach can improve the learning speed
of reinforcement learning models. The main focus of this work is to test state representations, that
are founded in biology. Besides the state representations, other aspects of the tested models are
biologically inspired. We use temporal difference learning and the actor-critic approach, which
have similarities to learning processes in the brain. Additionally, we use a spiking and a non-
spiking model, to test if the biologically based approach of spiking neural networks can further
increase learning speed and robustness. The following section discusses these topics and gives
some background information about reinforcement learning.

2.1 Biologically Plausible State Representations

In general RL models, the state representation has no foundation in biology. This section discusses
biologically plausible state representations that are based on the Semantic Pointer Architecture
(SPA) proposed by Eliasmith [Eli13], which is founded on findings in theoretical neuroscience. The
SPA uses semantic pointers, vectors of high-dimensional vector spaces that result from compressed
information, to represent anything from low-level visual features to high-level concepts [DE20].
They are called semantic pointers, because similar to pointers in computer science they can be
dereferenced or queried to access information that they do not carry themselves directly. They
are called semantic because their vector representations show their relations to other semantic
pointers through their distances and similarities. The SPA has been used to create Semantic Pointer
Architecture Unified Network (Spaun) a large-scale brain model that can solve several different
tasks like image recognition, working memory, or motor control [ESC+12].

Figure 2.1: Receptive fields of A: Neurons with random encoders and no global order, B: Grid cell
representation with a hexagonal grid pattern. Image source: [BSO22]

17



2 Related Work

2.1.1 Spatial Semantic Pointer Representation

As described by Eliasmith [Eli13], the Semantic Pointer Architecture focuses on tasks with discrete
structure, making it difficult to use in general RL tasks with continuous state spaces. This is remedied
by the SSP representation proposed by Komer et al., which uses the SPA to create an encoding of
cognitive structures over continuous spaces [KSVE19].

To encode a natural number 𝑘 ∈ ℕ in a vector binding with d-dimensional vector 𝐵 ∈ ℝ𝑑 the vector
is bound to itself 𝑘 − 1 times, as can be seen in the following equation:

(2.1) 𝐵𝑘 = 𝐵 ⊛ 𝐵 ⊛ ... ⊛ 𝐵⏟⏟⏟⏟⏟⏟⏟
B appears k times

, 𝑘 ∈ ℕ

To allow the encoding of a real number𝑘 ∈ ℝ Komer et al. use fractional binding with circular
convolution and choose 𝐵 ∈ ℝ𝑑 as a random semantic pointer of the unit sphere resulting in the
following equation:

(2.2) 𝐵𝑘 = F−1(F(𝐵)𝑘), 𝑘 ∈ ℝ

TheF of Equation (2.2) refers to the Fourier transform andF(𝐵)𝑘 to the element-wise exponentiation.
Notable here is, that the multiplications from the exponentiation are circular convolutions because
they are done in the Fourier domain.

To extend this representation for multiple dimensions, Komer et al. repeatedly use Equation (2.2)
with different semantic pointers for each dimension. A small example of the encoding of coordinates
in a two-dimensional space can be seen in the following equation:

(2.3) S = 𝑋𝑥 ⊛ 𝑌𝑦 = F−1(F(𝑋)𝑥 ⋅ F(𝑌)𝑦), (𝑥, 𝑦) ∈ ℝ2

The encoder weights, used to transform this result from the representational space to neuron activity
can be chosen at random. The resulting encoding produces neurons with a random receptive field
with no global order, as can be seen in Figure 2.1 A [BSO22].

To summarize, the Spatial Semantic Pointer (SSP) representation allows the encoding of an arbitrary
number of real-valued variables into a single fixed-dimensional vector. This allows the use of
the SSP representation in all environments, in which the state space consists of any number of
continuous one-dimensional variables without modification.

2.1.2 Grid Cell Representation

The grid cell representation is an extension of the SSP representation. It was developed by Dumont
and Eliasmith [DE20] to mimic the functionality of the grid cells that can be found in some parts
of the brain. The encoding for grid cell representation is calculated the same way as for the SSP
representation in Equation (2.3), the only difference being the way the unitary vectors 𝑋 and 𝑌 are
chosen. Instead of choosing them randomly, they are instead calculated according to the following
equation:

(2.4) 𝑋 =
𝑁−1
∑
𝑛=0

𝑊−1
6𝑁+1𝐵̄𝑛𝑊7𝑋𝑛

18



2.2 Spiking Neural Networks

In the equation 𝑊−1
6𝑁+1 refers to the 6N + 1 × 6N + 1 inverse discrete Fourier transform matrix and

𝑊7 to the 7 × 7 discrete Fourier transform matrix. Further, 𝐵̄𝑛 and 𝑋𝑛 are a matrix and a vector
respectively that are constructed in a certain way. When using the grid cell representation, the
encoder weights used to transform from the representational space to neuron activity also have to
be chosen in a certain way. for further details refer to the original work of Dumont and Eliasmith
[DE20].

Using the grid cell representation results in neurons that are active in a hexagonal grid pattern, as
can be seen in Figure 2.1 B. Bartlett et al. [BSO22] compared the learning speed of the SSP and
grid cell representation to state representations without foundations in biology like the one-hot
representation. They found that using grid cells as state representation performed significantly better
than any other state representation in both models that were tested. The SSP representation only
performed slightly better in one model and markedly worse in the other model, compared to the
other representations without foundations in biology.

2.2 Spiking Neural Networks

Spiking neural networks (SNNs) are more similar to natural neural networks compared to ANN
because they simulate neurons in a biologically inspired way. This causes SNNs to encode values
over time rather than discrete computation steps. The reason for that is that spiking neurons do
not necessarily propagate their values through the network at every computational step. Rather, a
spiking neuron only sends an output signal when its action potential reaches a certain threshold
caused by an incoming stimulus. This signal then in turn might cause the action potential of other
connected neurons to change, causing them to also reach their threshold [GK02].

Spiking Neuron Models

Spiking neuron models can vary from very complex and computationally expensive models with a
lot of different parameters like the Hodgkin–Huxley model [HH52] to relatively simple models like
Lapicque’s Leaky Integrate-And-Fire (LIF) neuron model [BV07] that can be modeled like a simple
electrical circuit consisting of a resistor and a capacitor. Even though the LIF neuron model is not
as complex, it still allows a realistic simulation of parts of the brain. It was shown for example, that
it is possible to simulate a rat’s basal ganglia, a decision-making system of mammals, by using LIF
neurons [SBE12]. Furthermore, LIF neurons have also been used by Eliasmith et al. [ESC+12]
inside the large-scale brain model Spaun, which can solve several different tasks like motor control
and memorization of visual inputs.

Other than neuron models that are based on biology, it is also possible to convert established
activation functions of regular ANN methods like ReLU or sigmoid into a spiking variant. This
can be done using libraries like KerasSpiking1 or PyTorchSpiking2, which allow the conversion of
regular ANNs of Keras or PyTorch into a spiking model with only a little additional work.

1https://www.nengo.ai/keras-spiking/
2https://www.nengo.ai/pytorch-spiking/

19

https://www.nengo.ai/keras-spiking/
https://www.nengo.ai/pytorch-spiking/


2 Related Work

2.3 Background – Reinforcement Learning

The theoretical foundation of the following section is based on the work of Sutton and Barto [SB18].
RL is an area of machine learning, in which an agent chooses from different possible actions and is
either rewarded or penalized, depending on whether it was a good or a bad action to take, in the state
the agent was in when choosing this action. The aim of RL is to maximize the future cumulative
reward by continually refining its policy, a mapping of the current state of the RL agent, and the
action the agent should take in said state. To achieve this the agent has to balance exploration and
exploitation. The agent has to explore the environment to search for better actions to take, that
promise a higher reward and exploitation because the agent has to act on its experience and choose
the best actions that it knows. To do this the agent has to learn either the state-value function or the
action-value function, which maps either states or state-value pairs to future cumulative rewards
the agent can obtain starting from this state. The action-value function 𝑄𝜋 of given policy 𝜋 is
calculated by simulating the environment and taking actions according to 𝜋. If the agent ends
up in a goal state 𝑆𝑡 and takes action 𝑎1, it receives a reward, which leads to an increase of the
action-value function of 𝑄𝜋(𝑆𝑡, 𝑎1). If the agent reaches state 𝑆𝑡 again by taking action 𝑎2 from state
𝑆1, the value of 𝑄𝜋(𝑆1, 𝑎2) also increases. This is done until the reward has propagated through the
state and action spaces, the values of state-action pairs leading to the goal state being higher than
state-action pairs that lead away from the goal state. The action-value function can then be used to
define a new policy 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑆, 𝑎), the optimal policy that always uses the action 𝑎, which
maximizes the future cumulative reward. In more complex cases, the action-value function might
not be able to be calculated directly, rather it has to be approximated leading to a policy that gets
increasingly better with each iteration but does not necessarily reach the optimal policy [SB18].

2.3.1 Temporal Difference Learning

Sutton and Barto describe temporal-difference (TD) learning as the combination of the sampling
of experience like in Monte-Carlo methods with bootstrapping of dynamic programming, the
performing of updates of the current estimates based on other estimates. The following paragraph
shows how TD(0) is used to calculate the value function of a given policy.

(2.5) 𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)]

When calculating the value function of some policy 𝜋 with TD learning, the environment is
simulated and actions are taken according to the policy 𝜋. Then the estimated value function 𝑉 of
𝑣𝜋 is updated for each non-terminal state 𝑆𝑡 occurring during the simulation of the environment
according to Equation (2.5). The 𝛼 of the equation is the learning rate, a number between zero
and one that specifies how easy it is for a taken action to influence the value of the value function.
The 𝛾 refers to the discount value, also a number between zero and one, that specifies how much
future rewards should be reduced to prioritize more immediate rewards. The value function is then
updated until a terminal state has been reached. Then further episodes can be simulated for the
estimated value function 𝑉 to more accurately approximate the real value function 𝑣𝜋.

(2.6) 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)

20



2.3 Background – Reinforcement Learning

The last part inside of the brackets of Equation (2.5) is a value called the TD error (see Equation (2.6))
that measures the difference of the estimated value for state 𝑆𝑡 and the more accurate estimate
𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡). Important to note here is that the calculation of the TD error at time 𝑡 is
dependent on the state and the received reward at time 𝑡 + 1, meaning the TD error at time step 𝑡
can only be calculated at time step 𝑡 + 1 [SB18].

2.3.2 Actor-Critic Methods

The Fundamental concepts of the actor-critic approach were introduced by Barto et al. [BSA83].
This work introduces the idea of using two different modules, an Associative Search Element (ASE),
commonly referred to as actor today and an Adaptive Critic Element (ACE), today commonly
referred to as critic. The actor is a module, that calculates the policy, and the critic is a module,
which calculates the value function of the actor’s policy and ’criticizes’ the actions the actor takes.
The critic uses a TD algorithm to calculate the TD error and uses this error to encourage actions,
which leads to states with a higher value compared to the estimated value, and discourage actions,
which lead to states with a lower value compared to the estimated value [SB18].

The Advantage Actor-Critic (A2C) algorithm used in this work is a synchronous and deterministic
variant of the Asynchronous Advantage Actor-Critic (A3C) proposed by Mnih et al. [MBM+16].
The main difference between Advantage Actor-Critic (A2C) to the regular actor-critic approach is
to use the critic to calculate the advantage function rather than the value function. The advantage
function is defined as the difference between the action-value function and the value function:
𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠). The advantage function essentially determines how better or worse it is to
take action 𝑎 while in state 𝑠 compared to other available actions.

The actor-critic approach is especially interesting regarding biological plausibility because the two
components, the actor and the critic, work similarly to parts of the brain, the dorsal and ventral
subdivisions, which are important for reward-based learning. Sutton and Barto also describe, that
the TD error being used for the learning for both the actor and the critic is comparable to the
properties of biological neurons, where the axons of dopamine-producing neurons also target the
dorsal and ventral subdivision.

21





3 Methods

Previous work has shown that using biologically plausible state representations can increase the
learning speed of reinforcement learning models in a simple grid-based two-dimensional navigation
task [BSO22] [GD11]. In this work, we test how well this approach scales to different and more
complex tasks and compare the results to a model using standard deep learning approaches. In
detail, we use two different models for testing: An artificial model, using established reinforcement
learning methods, and a biological model, using biologically based methods like spiking neurons.
For testing, we use three different and more complex environments, with a continuous state space.
Further, we also test the models with image inputs instead of the state variables for an even more
complex and difficult to learn task. To that end, we explore different possibilities to expand the
biologically plausible state representations for use with images.

3.1 Artificial Model

The first RL model implemented to test the biologically plausible state representations in this work
is an A2C. The A2C is a synchronous version of the Asynchronous Advantage Actor-Critic (A3C)
proposed by Mnih et al. [MBM+16]. The main difference to the regular actor-critic approach is
to use the critic to calculate the advantage function rather than the value function. The advantage
function is defined as the difference between the action-value function and the value function:
𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠). The advantage function essentially determines how better or worse it is to
take action 𝑎 while in state 𝑠 compared to other available actions. The artificial model will further
be abbreviated with Art-Critic: Artificial Advantage Actor-Critic.

While Art-Critic uses an actor-critic approach, which has been hypothesized to be biologically
plausible (see Section 2.3.2), it uses different established RL methods and neural network layers
which are not biologically plausible. Some examples of this are the use of backpropagation in the
learning process, the use of batch-normalization layers, and the use of non-spiking neurons with
the ReLU activation function. Because Art-Critic works like a conventional RL model it allows
further examination, of whether the biologically plausible state representations can work well in
models without biological foundations. The basic structure of Art-Critic can be seen in Figure 3.1.
The observed state of the environment is mapped to the used state representation, which will then
be used as the input for the actor and the critic network. The actor network calculates the action
preference for each action, while the critic calculates the value function for the current state, both of
which are then used in conjunction with the observed reward for the TD update. The TD update
adjusts the weights for both networks and uses Adam as the optimizer.

23



3 Methods

Figure 3.1: Overview of the artificial PyTorch model (Art-Critic).

3.2 Biologically plausible Model

For the biologically plausible model, we use the implementation of Bartlett et al. [BSO22] as our
base and adapt it to our use case. The model will further be referred to as Bio-Mod: Biologically
plausible model. The basic overview of the model can be seen in Figure 3.2. Identical to Art-Critic,
Bio-Mod maps the observed state of the environment to a vector representation, which is then used
as input for the model. The weights 𝑤𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑠 refer to the encoders, that are used to transform the
input for the neurons from the representational space to neuron activity, while 𝑤𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑠 refers
to the learned weights, that are updated during training. Bio-Mod only consists of a single layer
of 4000 spiking LIF neurons. The learning is done by directly using the TD error to update the
weights of the only layer, allowing learning without the need for backpropagation. Bartlett et al.
implemented and tested different learning rules like TD(0) and TD(𝜆). For simplicity’s sake and to
reduce the number of training runs we only use the TD(0) learning rule. For further details regarding
the implementation of the biologically plausible model we refer the reader to the repository of the
original implementation1.

Hyperparameter 𝛼𝑎𝑐𝑡𝑜𝑟 𝛼𝑐𝑟𝑖𝑡𝑖𝑐 𝛾 Entropy

Art-Critic 0.00025 0.00025 0.98 0.1

Hyperparameter 𝛼 𝛾𝑎𝑐𝑡𝑖𝑜𝑛 𝛾𝑣𝑎𝑙𝑢𝑒 #
Neurons

Sparsity Δ𝑡

Bio-Mod 0.8 0.75 0.94 4000 0.35 0.05s

Table 3.1: Hyperparameters of the models Art-Critic and Bio-Mod and example of chosen parame-
ters for the Cart Pole environment where the state is used directly as input.

1https://github.com/maddybartlett/Bio_Based_Reps_for_RL, last accessed 14.07.2023

24

https://github.com/maddybartlett/Bio_Based_Reps_for_RL


3.3 Observation As Input

Figure 3.2: Overview of the biologically plausible Nengo model adapted from [BSO22] (Bio-Mod).

The hyperparameters for Bio-Mod consist of the learning rate 𝛼, the discount factors for the action
and the value function 𝛾𝑎𝑐𝑡𝑖𝑜𝑛, 𝛾𝑣𝑎𝑙𝑢𝑒, the number of LIF neurons in the hidden layer, the sparsity,
that determines where the activity of a neuron is zero and the length of a time step of the spiking
neural network in seconds Δ𝑡.

3.3 Observation As Input

We test our model in two different cases. In the first and the more easily learnable case, we use the
state as observed from the environment to calculate the encoding of the representation. The state
usually contains variables that are very helpful to learn the task effectively like the position of the
agent or its current velocity. In the second and more complex case, we instead use an image of the
environment to encode the state. That means the model has to learn the information it was given in
the previous case directly by itself.

Bartlett et al. [BSO22] used one-hot encoding and a tabular look-up method as a baseline in
comparison to the biologically based state representations. However, we test the representations in
environments with continuous state spaces, making discrete representations a bad fit. Instead, we
use the state observed from the environment directly and use the result as our baseline.

For observation as input, Art-Critic consists of a simple neural network of three linear layers with
ReLU activation function. The input of the first layer has the size of the state representation and
128 output channels. The second layer has 256 output channels and the third layer has either one
output, for the critic network, or an output for each action of the environment for the actor. The
actor additionally contains a (logarithmic) softmax layer, to calculate the action preference of the
agent. For Art-Critic there are a total of 34,178 learnable parameters for the Cart Pole, 34,691
for the Acrobot, and 35,204 learnable parameters for the Lunar Lander environment. The number
of learnable parameters for the critic network is slightly lower, with 33,921, 34,177, and 34,433
respectively. In comparison Bio-Mod uses only a single layer with 4000 spiking LIF neurons.

25



3 Methods

3.4 Image as Input

Using the image as the input for the model instead of the state poses various challenges. For one, the
amount of raw data increases significantly from four to eight floating point numbers to a 400 by 600
RGB image. The image is not only significantly larger but also has very low information density.
There is only a very small part of the image, which contains information relevant to learning a better
policy. To reduce the amount of raw data, we preprocess the image every frame before passing it to
the model. More specifically we use the grey-scale of the image and sample down the image size
to 84 by 84. For the downsizing of the image, we use OpenCV library’s inter-area interpolation
method to preserve structures in the image, with only a few pixels in width, like the flagpoles in the
Lunar Lander environment, that can be seen in Figure 3.3c.

Another challenge when using images as input is the missing information, that cannot be inferred
from a single image. Information, like the current speed, the trajectory of an object, or angular
velocity cannot be determined from a single static image. Because of that we instead batch the last
four frames of the environment and use the batch as input for the models, allowing the agent to learn
such information by detecting the change between frames. More specifically, we use the difference
between the previous and the current image to determine what changed between frames. Although
it is a very rudimentary approach to detect the optical flow, the motion of objects in a visual scene,
it still allows the detection of differences between frames.

Thirdly, translating a two-dimensional image into a biologically plausible state representation poses
an additional challenge. In the following we will take a look at the two main approaches tested,
none of which led to satisfactory results:

• Training an image regressor that uses the image as input and predicts the corresponding state
given from the environment. The training data for the regressor was generated by simulating
the environment and taking actions randomly. From this seeded data, only a shuffled subset
was used, to prevent the regressor from learning patterns from the sequence of the input. The
training set consisted of 25,000 images and the validation set of 5,000 images. While the
regressor was very accurate for some state variables like the current position, it had trouble
consistently predicting variables like the current speed accurately. Different architectures
for the regressor were tested using AutoKeras’s ImageRegressor2. The best performing of
120 tested regressors consists of six convolutional layers and one dense layer with a total of
1.185.988 trainable parameters. This model achieved a mean squared error of 0.0341 on the
training data and an error of 0.0386 on the validation data. This approach was tested for both
Bio-Mod and Art-Critic. While this regressor is not a SNN and therefore not biologically
plausible, it would be possible to convert the Keras into a SNN, by for example using the
NengoDL library 3. For simplicity, we use the same regressor in both cases.

• Converting the result of the convolution layers to the state representation. As converting
the flattened image directly to the state representations did not seem to work very well, a
convoluted image has the potential to lead to better results, as every pixel contains information
about other pixels around it. This can be interpreted as an increase in the size of the receptive
fields of the resulting encoding of the biologically plausible state representations, as now

2https://autokeras.com/image_regressor/
3https://www.nengo.ai/nengo-dl/examples/keras-to-snn.html

26

https://autokeras.com/image_regressor/
https://www.nengo.ai/nengo-dl/examples/keras-to-snn.html


3.5 Testing Environments

(a) Cart Pole environment (b) Acrobot environment (c) Lunar Lander environment

Figure 3.3: Example image of a single frame of each tested environment.

every semantic pointer also contains information on neighboring pixels. Because of the large
number of values produced by the convolutions, and the need to constantly calculate the
Fourier transform and inverse Fourier transform, this was one of the slowest implementations
regarding training time needed. For a training run of the Cart Pole environment with 1000
episodes, this approach needed about 27 and a half hours of training time. Considering the
model did not learn very well, this time could further be double or tripled if it learned a better
policy, because that would increase the length of each episode. This approach was only tested
for Art-Critic.

When using images as input, Art-Critic consists of three convolutional layers with batch-
normalization and ReLU activation between each layer. The layers have 32, 64, and 64 input
channels respectively. The result is flattened into a linear layer with 512 input channels and again
for the actor network followed by a (logarithmic) softmax layer.

Further, when using a biologically plausible state representation, an additional layer is used be-
tween the flattened and the linear layer, which turns the output of the convolutional layers to that
representation.

3.5 Testing Environments

The environments that were used for testing the RL models are from the Gymnasium library4. A
total of three different environments were used for testing, namely the Cart Pole-, Acrobot- and
the Lunar Lander environment. We use Cart Pole as a relatively simple environment to validate
the functionality of the models, Acrobot to test the models on an environment with sparse reward
distribution, and Lunar Lander because it is significantly more complex and difficult to learn than
the other environments. The technical details of the environments can be seen in Table 3.2

4https://gymnasium.farama.org/

27

https://gymnasium.farama.org/


3 Methods

Cart Pole Environment

As depicted in Figure 3.3a on the preceding page, the Cart Pole environment consists of a cart
represented by a black square, which is connected to a pole by a joint. The goal of the agent is to
balance the pole on top of the cart as long as possible by moving the cart either left or right on a
frictionless track. The agent is given a reward of one for every simulation step including the step
which terminates the episode. The episode is truncated after 500 simulation steps, meaning an
agent with an optimal policy achieves a total reward of 500 in every episode. The state contains four
values describing the cart’s position and velocity and the pole’s angle and angular velocity. The
Cart Pole environment’s simplicity makes it a fitting candidate to validate the correctness of a RL
model.

Acrobot Environment

Figure 3.3b on the previous page shows the Acrobot environment. The environment is comprised
of two blue links which are connected by an actuated joint. The upper-link further is connected
to a fixed joint, holding the links in place. The goal of the agent in this environment is to reach a
certain height with one of the links by applying torque to the actuated joint. The agent is allotted
a reward of minus one every simulation step, except when reaching the target height, where it is
awarded a reward of zero. The state for the Acrobot environment consists of six values describing
the Sine and Cosine of the angle of the first joint, as well as the relative angle of the first link and
their angular velocity. The sparse rewards of this environment can make it difficult to learn a good
policy effectively.

Lunar Lander Environment

Figure 3.3c on the preceding page shows the Lunar Lander environment. The environment is
composed of a mountainous terrain and two flagpoles marking the landing area for the lunar lander.
The terrain around the landing area changes every episode. The reward consists of multiple different
factors like the distance to the landing area or whether the lander is tilted, encouraging the agent to
land in the landing area as softly as possible. In Lunar Lander, the state consists of eight values:

Environment # States # Actions Termination Truncation

Cart Pole 4 2 • Pole angle greater than ± 12°
• Cart reaches screen border

500 steps

Acrobot 6 3 • The target height is reached 500 steps

Lunar Lander 8 4 • The lander crashes
• The lander is outside of the viewport
• The lander landed safely

1000 steps

Table 3.2: Technical details of the different testing environments.

28



3.5 Testing Environments

Two for the location of the lander and its linear velocity in the x- and y-axis, one for the angle and
the angular velocity of the lander, and two booleans for each of the legs, if they are in contact with
the ground. The Lunar Lander environment is the most complex of the environments tested in this
work.

29





4 Results

The result chapter is split into two sections. The first section discusses the results, where the
observation of the environment is used as the input for the model directly. The second section covers
the results, for which an image of the current state of the environment is the input for the model.
Using images as input significantly increases the difficulty of learning and training time needed,
since the model has to abstract the information that was previously given directly by itself.

The figures in this section show the running mean reward of the last 100 episodes to represent
the current performance of the model and to make changes in performance more notable. The
hyperparameters of the models were chosen by a manual search in most cases. For model and
representation configurations, where a manual search led to no good learning agent, a Bayesian
search of the parameter space was conducted, and the best performing configuration was chosen.

This section shows the results of the two tested models: Art-Critic, a model using regular approaches
to RL with no foundation in biology, and Bio-Mod, a model with biological plausibility. The models
were tested in the three different environments described in Section 3.5

4.1 Observation As Input

This section presents the results, where the observation from the environment is used as the input
for the model, either directly for the baseline or encoded in the form of SSPs or grid cells. The
observation consists of four to eight values representing different information between the three
different testing environments. The values represent information like the current position, speed,
and angular velocity in most cases. For a more detailed description of the environments and their
corresponding state space refer to Section 3.5

Cart Pole Environment

The results for the Cart Pole environment can be seen in Figure 4.1. In the Cart Pole environment,
both the SSP and grid cell representation outperform the baseline of the models. Especially so for
(b) Bio-Mod where the baseline is significantly slower than not only the biologically plausible state
representations but also the baseline of (a) Art-Critic. SSP and grid cell representation perform very
similarly, with grid cells being slightly better for Bio-Mod. That is however only the case, because
of a single badly performing run for the SSP representation, which can be seen by the significantly
bigger standard deviation. With that run omitted, the SSP representation even outperforms grid
cells slightly in the later half of the training time.

31



4 Results

(a) Art-Critic (b) Bio-Mod

Figure 4.1: Running mean reward and standard deviation of the last 100 episodes for the Cart Pole
environment with the observation of the environment used as input directly.

Except for using the observation with Bio-Mod, the training process proceeds very similarly between
Bio-Mod and Art-Critic. Bio-Mod seems to learn a bit faster at the beginning of the training period
but does not learn as good a policy in the end compared to Art-Critic. The bad performance of the
observation for Bio-Mod does not seem to be a problem of the model, as the model still worked
well in the other environments. Further, it is also unlikely a problem with the parameters of the
model, because even a Bayesian sweep over the parameter space did not reveal any better-performing
configurations. The range of tested values for each parameter are as follows: Learning rate and the
discount factors were tested in a range of 0.2 to 0.99, sparsity from 0.05 to 0.75 and the simulation
time per step was chosen discretely from 0.05, 0.075, and 0.1 seconds. The number of neurons
was set to 4000. For further details of the parameters refer to Section 3.2 The Bayesian sweep was
conducted using Weights & Biases (W&B)1 and contained a total of 560 tested configurations.

Acrobot Environment

For the Acrobot environment, using the observation directly performed surprisingly well for both
models, as can be seen in Figure 4.2. For (a) Art-Critic using direct observations is initially the
fastest but is later tied with the grid cell representation. For (b) Bio-Mod using the observation is
moderately slower than grid cells. SSP representation learned significantly slower for both models.
While Art-Critic using SSP representation learned a policy comparable to the other representations,
Bio-Mod remained worse than the other representations at the end of training. The slower learning in
both models using SSP representation suggests, that the SSP representation might not be a suitable
use case for the Acrobot environment. A reason for that might be, that the random receptive patterns

1https://wandb.ai/wandb_fc/articles/reports/Bayesian-Hyperparameter-Optimization-A-Primer--

Vmlldzo1NDQyNzcw

32

https://wandb.ai/wandb_fc/articles/reports/Bayesian-Hyperparameter-Optimization-A-Primer--Vmlldzo1NDQyNzcw
https://wandb.ai/wandb_fc/articles/reports/Bayesian-Hyperparameter-Optimization-A-Primer--Vmlldzo1NDQyNzcw


4.1 Observation As Input

(a) Art-Critic (b) Bio-Mod

Figure 4.2: Running mean reward and standard deviation of the last 100 episodes for the Acrobot
environment with the observation of the environment used as input directly.

of the SSP representation make it harder to learn the Acrobot environment. Similar to the results
for the Cart Pole environment, Bio-Mod seems to learn very fast at the beginning of training of
the training, but does not learn as good a policy as Art-Critic at the end of training. In this case, it
seems to be even more extreme, as Bio-Mod needs only very few episodes (10-20) to learn a good
policy. After the initial fast learning, Bio-Mod fluctuates around the region it reached during the
beginning. Art-Critic also learns very fast but still takes about 300-400 episodes of learning to reach
its maximum for both the SSP and grid cell representations.

Lunar Lander Environment

The training process of the Lunar Lander environment was very unstable for Art-Critic, as is shown
in Figure 4.3. While the running mean reward is trending upward during training, there are episodes
where the model drastically worsens for a while, before recovering and learning a better policy. A
reason for that might be a change in strategy of the model, that results in a temporary worsening
of the model. Another reason could be, that slight changes in the layer weights can drastically
change the reward in the Lunar Lander environment, because of the way rewards are calculated. For
example, when the lander crashes, the model is penalized with a reward of -100, while it is rewarded
with a reward of 100 if the lander lands successfully. If because of some change in strategy the
lander now crashes more often, it can lead to a sudden decrease in the total episode reward for some
time. Even though the training performance of Art-Critic was very volatile for all representations,
aggregated over the whole training process all representations performed very similarly.

Bio-Mod did not have problems with stability during training, but had problems similar to what we
observed in the other testing environments: While it had a very promising and fast initial learning
speed, it stopped improving after about 200 episodes. Because of that Art-Critic learned a better

33



4 Results

(a) Art-Critic (b) Bio-Mod

Figure 4.3: Running mean reward and standard deviation of the last 100 episodes for the Lunar
Lander environment with the observation of the environment used as input directly.

policy at the end of training, although it has to be noted, that Art-Critic was trained an additional
1000 episodes. But since Bio-Mod stopped improving after 200 episodes, it is reasonable to assume
1000 additional training episodes would not have led to a different result. The models that stop
learning, often do so because they are caught in a local maximum, where the model learned the
strategy to take no action in most cases. This causes the agent to fly in the general direction of the
goal, which allows the agent to gain a higher reward than using actions incorrectly, which could
cause the lander to crash and be penalized with a negative reward. Overall, the grid cell and SSP
representations perform slightly better than direct observation input for Bio-Mod.

Summary

The results suggest that the performance of the state representation depends on various factors.
As shown in Figures 4.1, 4.2, and 4.3, every representation sometimes performed very well and
sometimes worse than the other state representations, depending on the model architecture used
and the testing environment. Even though grid cell representation is sometimes slower than the
other representation at the start of training, it is always better or matches the performance of the
best-performing representation by the end of training. This suggests, that using grid cell state
representations is generally a good choice when training for a reasonable amount of time. The
variance between runs is generally low, implying high robustness of the approach. There are some
exceptions to this, like a run with the SSP representation with Bio-Mod or the problems of Art-Critic
with the Lunar Lander environment. The results mainly support the results of the previous work
by Bartlett et al. [BSO22] and Gustafson and Daw [GD11], where biologically inspired methods
like grid cells and temporal-difference learning have been found to increase learning speed in a
two-dimensional navigation task, but the effect does not seem to be as pronounced in the here tested
environments.

34



4.2 Image as Input

Figure 4.4: Running mean reward and standard deviation of the last 100 episodes for the Cart Pole
environment with an image of the environment used as input. Custom Layer and Image
as-is refer to Art-Critic.

Bio-Mod always learned very fast at the beginning of training but stagnated soon after. The reason
for the stagnation in learning might be, because only a single layer of neurons is used for that
model, restricting its capabilities. Another possibility is, that the use of spiking neurons leads
to the stagnation in learning. When using Bio-Mod with a non-spiking rectified linear neuron
model (comparable to using ReLU activation function), the problem of the stagnation of learning
did not occur, while still learning fast in the beginning. This was only tested for the Cart Pole
environment, meaning it is not certain it would also perform as well in other environments. A
noteworthy result from using the rectified linear neuron model is that using it in conjunction with the
grid cell representation allowed Bio-Mod to learn the optimal policy, where it reached the maximum
episode length of 500 simulation steps in the running mean of the last 100 episodes. While it was
not rare for the models to regularly reach the maximum episode length, no other model could reach
it consistently to make the running mean reward of the episode reach 500. An ideal approach would
combine both the fast learning speed at the beginning of Bio-Mod and the ability of Art-Critic to
constantly improve the performance of the model during training. While using ReLU neurons with
Bio-Mod makes the model lose biological plausibility, it combines both the mentioned properties,
i.e. learning fast and continuous improvement.

4.2 Image as Input

For image as input, we test the approaches of converting the two-dimensional image to a biologically
plausible state representation. The approaches we compare are using an image regressor, that
predicts the state from the image and using a custom neural network layer, which converts the

35



4 Results

flattened output from the convolutional layers to the state representation. The image regressor
approach was tested for both Art-Critic and Bio-Mod, while the custom layer was only tested for
Art-Critic. The results of these approaches are compared to the baseline, where the image from
the environment is used as-is as the input for Art-Critic. In this case, as described in Section 3.4
Art-Critic also uses convolutional layers. Because of time constraints, we limit our experiments to
the Cart Pole environment.

The results of the different approaches can be seen in Figure 4.4. The results suggest, that the
biologically plausible state representations do not scale very well on large or complex inputs. The
baseline, where the image is used directly in a convolutional neural network worked better than any
of the tested approaches, which convert the input to a biologically plausible state representation.
All of the tested approaches have similar performance and as training progresses even slightly trend
downwards.

For the image regressor approach, it is likely a problem with the accuracy of the regressor. As stated
in Section 3.4, the regressor has problems learning state variables, which pertain to movement,
such as speed or angular velocity. While it is quite accurate for other variables, such as the current
position, this information is not as valuable in the Cart Pole environment, as the speed and current
angle of the pole are more critical in most cases. Incidentally, the current position would only be
important in case the cart is in danger of leaving the viewport.

The bad performance when using the custom layer is likely caused by the large number of parameters
produced by the convolution. The input for the custom layer consists of 3136 values with the
configuration used described in Section 3.4. With such a large number of values, we have to choose
a very small dimensionality for the semantic pointer, to prevent running out of memory and allowing
reasonably fast calculations. The tests were made with 32-dimensional SSPs, which is significantly
less than other experiments, where 512 dimensions were used. With a small number of dimensions
and a high amount of SSPs, a lot of the semantic pointers inevitably have high cosine similarity,
making it difficult to distinguish between them. Additionally to the high memory demand, the
approach is also very computationally demanding, as the training took over 27 hours to complete a
single run, about five to six times longer than the next slowest approach. Such a long training time
for so few simulated steps makes this approach not very suitable to use unless a more efficient way of
calculating the representation is found. Even then, it could be difficult to use with higher dimensions
because of the memory demand: 3126 SSPs with 512 float or double variables with 4 or 8 Byte
would sum up to 6.4GB and 12.8GB, respectively. While there are GPUs with enough VRAM for
using 512 dimensions, this might still not be enough, considering we also use 512 dimensions for
four- to eight-dimensional inputs. Further, keeping in mind that the images used for the simple Cart
Pole environment are relatively small with a size of 84 by 84, this approach does not seem to be
scalable.

36



5 Discussion

The goal of this thesis is to test, if a biologically plausible approach to reinforcement learning,
with a main focus on biologically based state representations, leads to a faster learning speed
compared to established RL approaches. The results suggest that using biologically based state
representations, especially grid cells, generally leads to an increase in learning speed or at least
matches the performance of other tested approaches. Although there are some exceptions, where
biologically plausible representations learn at a slower rate, i.e. we found that biological-based
approaches do not always have a positive or neutral effect on learning speed. For example, the use
of spiking LIF neurons led to a decrease in learning speed.

While the use of spiking neurons does not necessarily lead to worse performance, it increases the
complexity of the model and introduces a time component into the neural network, that can make it
difficult to achieve performance similar to a model using non-spiking neurons. We therefore posit,
that if the goal is not to create a biologically realistic model but to achieve a faster learning speed, it
might be better to forgo some biological plausibility for a simpler and faster approach, e.g. by using
artificial ReLU activations. The results further show that biologically plausible state representations
do not extend very well to complex or large inputs like images, causing slower learning speed and
an overall increase in training time needed. Two main approaches for this were explored, both of
which performed worse compared to the baseline using a simple convolutional neural network.

The results presented in this work mainly support the results of Bartlett et al. [BSO22] and Gustafson
and Daw [GD11], where biologically inspired methods like grid cells and temporal-difference
learning have been found to increase learning speed in a two-dimensional navigation task. The
effect of the biologically inspired methods used in this work does not seem to be as pronounced as
in the works of Bartlett et al. and Gustafson and Daw. The reason for that difference can mainly
be attributed to the use of tasks other than a navigation task in a different environment. Evidence
suggests grid cells are well suited to encode spatial information [BSO22], which indicates that they
are a good choice as a representation to encode location data, which is useful in a navigation task.
However, in the tested environments other information was more valuable. This would also explain
the not as pronounced effect of using grid cells in our different kinds of tasks.

The approaches used to extend the biologically based state representations to image inputs explored
in this work did not work as well as expected. However, it still holds promise for future work to
explore new and extend upon the presented approaches. The custom layer approach, as tested in this
work, is not feasible to use as-is, but the image regressor could work very well with a more accurate
regressor model. Since the regressor had trouble predicting values pertaining to movement, one
extending idea would be incorporating optical flow estimation more concretely. If determining the
exact value is a problem, another possible addition could be to change the regression problem into a
classification problem, by disregarding the actual values and binning them into a discrete structure.
For the Cart Pole environment, it would for example be possible to use a variable, that determines
whether the cart is moving left or right, rather than the actual speed it is currently traveling at.

37



5 Discussion

Other information, that a regressor can learn well, like the current position or values that have to be
available as continuous values can still be determined using a regressor. Finally, adding the last
predicted state and the taken action to the input of the regressor could improve accuracy. It could
allow the model to learn the connection between a taken action and the effect it has on the state, e.g.
acceleration to the left while moving right, decreases the speed value.

While this work tested different tasks and environments with different model architectures, it is
still limited to a very small sample of tested models, configurations, and environments/tasks. The
biologically based representations performed very well with the tested environments and models
of this work but did not always perform the best. This could mean that environment and model
configuration might not be uncommon, where the biologically based state representations perform
worse than other representations, similar to the results of Figure 4.2b, where the SSP representation
performed worse than just using the state directly. This could make it more ambiguous if the
difference in performance can be traced back to the choice of the state representation.

38



6 Conclusion

In this work, the performance of biologically plausible state representations was tested in a biologi-
cally based and in an artificial RL model. We explored two ways how the biologically plausible state
representations could be extended for use with larger and more complex inputs like images. We
found, that biologically plausible representations generally lead to a faster learning speed, especially
for the grid cell representation. Further, the tested approaches to extend the representations for
use with image inputs, led to worse performance compared to using the images as input directly,
meaning further work is required to effectively use them in this use case.

Spiking neural networks (SNNs) are very interesting from a research standpoint. They can be used
to simulate biological neural circuits and build realistic brain models, to gain more insight into the
brain and how learning works. While this is very interesting to learn more about how the brain
works, it is often not necessary in standard RL tasks to simulate a brain realistically. Most people
are likely more interested in efficiently implementing a well-performing model to solve the task
they work on. While SNNs can technically be used in the same way as artificial neural networks,
it is often harder and more work necessary to achieve similar performance with SNNs compared
to ANNs. That means it is reasonable to forgo some of the biological plausibility for a simpler
and faster approach. The biologically based approaches, which have been found to increase the
performance can then still be used, like possibly the grid cell state representation.

While the biologically plausible state representations did not extend well to image inputs, they
worked well on environments, in which state space consists of a collection of floating point numbers.
Consequently, we suggest established neural network libraries like PyTorch and Tensorflow/Keras to
implement a version of SSP and grid cell representations. This could allow the use of biologically
plausible methods without the need for extensive background knowledge in neuroscience and the
math behind it, allowing a further examination of the evaluated advantages of biologically inspired
state representations.

39





Bibliography

[BSA83] A. G. Barto, R. S. Sutton, C. W. Anderson. “Neuronlike adaptive elements that can
solve difficult learning control problems”. In: IEEE transactions on systems, man, and
cybernetics 5 (1983), pp. 834–846. doi: 10.7551/mitpress/4943.003.0033 (cit. on
p. 21).

[BSO22] M. Bartlett, T. C. Stewart, J. Orchard. “Biologically-based neural representations
enable fast online shallow reinforcement learning”. In: Proceedings of the Annual
Meeting of the Cognitive Science Society. Vol. 44. 2022. url: https://escholarship.
org/content/qt49v0x3rz/qt49v0x3rz.pdf (cit. on pp. 15, 17–19, 23–25, 34, 37).

[BV07] N. Brunel, M. C. Van Rossum. “Lapicque’s 1907 paper: from frogs to integrate-and-
fire”. In: Biological cybernetics 97.5-6 (2007), pp. 337–339. url: https://www.
researchgate.net/profile/Mark-Van-Rossum/publication/5876908_Lapicque%27s_

1907_paper_From_frogs_to_integrate-and-fire/links/0fcfd50d0573111697000000/

Lapicques-1907-paper-From-frogs-to-integrate-and-fire.pdf (cit. on p. 19).
[DE20] N. Dumont, C. Eliasmith. “Accurate representation for spatial cognition using grid

cells.” In: CogSci. 2020. url: https://www.cognitivesciencesociety.org/cogsci20/
papers/0562/0562.pdf (cit. on pp. 15, 17–19).

[Eli13] C. Eliasmith. How to build a brain: A neural architecture for biological cognition.
OUP USA, 2013. doi: 10.1093/acprof:oso/9780199794546.001.0001 (cit. on pp. 17,
18).

[ESC+12] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, D. Rasmussen.
“A large-scale model of the functioning brain”. In: science 338.6111 (2012), pp. 1202–
1205. doi: 10.1126/science.1225266 (cit. on pp. 17, 19).

[GD11] N. J. Gustafson, N. D. Daw. “Grid Cells, Place Cells, and Geodesic Generalization
for Spatial Reinforcement Learning”. In: PLOS Computational Biology 7.10 (Oct.
2011), pp. 1–14. doi: 10.1371/journal.pcbi.1002235. url: https://doi.org/10.
1371/journal.pcbi.1002235 (cit. on pp. 15, 23, 34, 37).

[GK02] W. Gerstner, W. M. Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002. doi: 10.1017/CBO9780511815706. url:
https://doi.org/10.1017/CBO9780511815706 (cit. on p. 19).

[HH52] A. L. Hodgkin, A. F. Huxley. “A quantitative description of membrane current and
its application to conduction and excitation in nerve”. In: The Journal of physiology
117.4 (1952), p. 500. doi: 10.1007/BF02459568 (cit. on p. 19).

[KSVE19] B. Komer, T. C. Stewart, A. Voelker, C. Eliasmith. “A neural representation of con-
tinuous space using fractional binding.” In: CogSci. 2019, pp. 2038–2043. url:
https://www.researchgate.net/publication/337984933_A_neural_representation_

of_continuous_space_using_fractional_binding (cit. on pp. 15, 18).

41

https://doi.org/10.7551/mitpress/4943.003.0033
https://escholarship.org/content/qt49v0x3rz/qt49v0x3rz.pdf
https://escholarship.org/content/qt49v0x3rz/qt49v0x3rz.pdf
https://www.researchgate.net/profile/Mark-Van-Rossum/publication/5876908_Lapicque%27s_1907_paper_From_frogs_to_integrate-and-fire/links/0fcfd50d0573111697000000/Lapicques-1907-paper-From-frogs-to-integrate-and-fire.pdf
https://www.researchgate.net/profile/Mark-Van-Rossum/publication/5876908_Lapicque%27s_1907_paper_From_frogs_to_integrate-and-fire/links/0fcfd50d0573111697000000/Lapicques-1907-paper-From-frogs-to-integrate-and-fire.pdf
https://www.researchgate.net/profile/Mark-Van-Rossum/publication/5876908_Lapicque%27s_1907_paper_From_frogs_to_integrate-and-fire/links/0fcfd50d0573111697000000/Lapicques-1907-paper-From-frogs-to-integrate-and-fire.pdf
https://www.researchgate.net/profile/Mark-Van-Rossum/publication/5876908_Lapicque%27s_1907_paper_From_frogs_to_integrate-and-fire/links/0fcfd50d0573111697000000/Lapicques-1907-paper-From-frogs-to-integrate-and-fire.pdf
https://www.cognitivesciencesociety.org/cogsci20/papers/0562/0562.pdf
https://www.cognitivesciencesociety.org/cogsci20/papers/0562/0562.pdf
https://doi.org/10.1093/acprof:oso/9780199794546.001.0001
https://doi.org/10.1126/science.1225266
https://doi.org/10.1371/journal.pcbi.1002235
https://doi.org/10.1371/journal.pcbi.1002235
https://doi.org/10.1371/journal.pcbi.1002235
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1007/BF02459568
https://www.researchgate.net/publication/337984933_A_neural_representation_of_continuous_space_using_fractional_binding
https://www.researchgate.net/publication/337984933_A_neural_representation_of_continuous_space_using_fractional_binding


[MBM+16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
K. Kavukcuoglu. “Asynchronous methods for deep reinforcement learning”. In:
International conference on machine learning. PMLR. 2016, pp. 1928–1937. url:
https://proceedings.mlr.press/v48/mniha16.pdf (cit. on pp. 21, 23).

[SB18] R. S. Sutton, A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
doi: 10.1109/tnn.1998.712192 (cit. on pp. 15, 20, 21).

[SBE12] T. C. Stewart, T. Bekolay, C. Eliasmith. “Learning to select actions with spiking
neurons in the basal ganglia”. In: Frontiers in neuroscience 6 (2012), p. 2. url:
https://www.frontiersin.org/articles/10.3389/fnins.2012.00002/full (cit. on
p. 19).

https://proceedings.mlr.press/v48/mniha16.pdf
https://doi.org/10.1109/tnn.1998.712192
https://www.frontiersin.org/articles/10.3389/fnins.2012.00002/full


Declaration

I hereby declare that the work presented in this thesis is entirely my
own. I did not use any other sources and references than the listed
ones. I have marked all direct or indirect statements from other
sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure.
I have not published this work in whole or in part before. The
electronic copy is consistent with all submitted hard copies.

place, date, signature


	1 Introduction
	2 Related Work
	2.1 Biologically Plausible State Representations
	2.2 Spiking Neural Networks
	2.3 Background – Reinforcement Learning

	3 Methods
	3.1 Artificial Model
	3.2 Biologically plausible Model
	3.3 Observation As Input
	3.4 Image as Input
	3.5 Testing Environments

	4 Results
	4.1 Observation As Input
	4.2 Image as Input

	5 Discussion
	6 Conclusion
	Bibliography

