
University of Stuttgart
Institute of Architecture of Application Systems (IAAS)

Chair of Service Computing

Master Thesis

Evaluation and Integration of DDS Middleware for Interconnection
between Android Automotive and AUTOSAR

Chandan Girish

Course of Study: M.Sc. Information Technology
Specialization Embedded Systems

Examiner: Prof. Dr. Marco Aiello

Supervisors: Andreas Schnell (M.Sc), ITK Engineering GmbH
Steffen Rentz (M.Sc), ITK Engineering GmbH

Commenced: 01.07.2023
Completed: 02.01.2024

Acknowledgement

I extend my sincere gratitude and appreciation to all those who have contributed to the
completion of my master’s thesis.

First and foremost, I would like to thank the University of Stuttgart and ITK Engineering
GmbH for giving me the opportunity to pursue my thesis.

I would like to thank my supervisors, Andreas Schnell and Steffen Rentz at ITK En-
gineering GmbH for their continuous valuable guidance, advice, and encouragement
throughout the thesis work. I would like to also thank the colleagues and mentors from
Real-time architecture team for their support and encouragement.

My sincere and grateful acknowledgment to Prof. Dr. Marco Aiello for examining my
thesis work and reviewing all my steps during this process.

Finally, I would like to thank my family and friends for their constant moral support
and encouragement for the entire duration of my master’s thesis.

Abstract

Modern day vehicles are transforming into software-defined vehicles, where the functions
and features are primarily enabled through software services. The increasing addition of
functionalities has led to a rise in system complexity. The automotive system consists of
different domains and components, developed simultaneously by different vendors, each
serving different purposes and complying with different requirements and technologies.
It is essential to establish effective interconnection between these domains for enhanced
feature diversity and overall system performance. Advanced Driver Assistance Systems
(ADAS) and In-Vehicle Infotainment (IVI) are the two major domains that are rapidly
expanding and driven by increasing customer demands. Android Automotive has estab-
lished itself as a major player in the car IVI landscape due to its extensive features and
intuitive user interface. The difference in standards used by the two domains, i.e AU-
Tomotive Open System ARchitecture (AUTOSAR) in ADAS and Android Automotive
in IVI, leads to the necessity of a common interface and communication protocol which
is supported by both domains.

This thesis presents the solution for intercommunication between AUTOSAR and An-
droid platforms using Data Distribution Service (DDS) middleware. Additionally, the
various features and service-oriented communication patterns offered by DDS in auto-
motive applications are discussed along with its distinctive features compared to cur-
rent protocol such as Scalable Service-Oriented MiddlewarE over IP (SOME/IP). The
identification of key components and integration of DDS middleware approaches are
central aspects of this thesis. As a proof of concept, the design was implemented with
minor modifications, and successfully demonstrated on a hardware setup, exhibiting
inter-domain communication using DDS middleware.

3

Contents

1 Introduction 11
1.1 Problem Statement . 12
1.2 Research Methodology . 13
1.3 Document Structure . 13

2 Preliminaries 15
2.1 DDS . 15

2.1.1 DDS Architecture and Features . 15
2.1.2 DDS Communication Model . 18
2.1.3 DDS RPC . 22

2.2 Android . 23
2.2.1 Android Platform Architecture . 23
2.2.2 Android IPC . 25
2.2.3 Android Interface Definition Language (AIDL) 26

2.3 Android Automotive . 27
2.4 AUTOSAR Adaptive . 29

2.4.1 Adaptive AUTOSAR Architecture 30
2.4.2 Communication Management . 31
2.4.3 Communication Paradigms . 31

3 State of the art 35
3.1 DDS Middleware in Automotive Systems 35

3.1.1 Android Automotive and AUTOSAR platforms 36
3.1.2 Integration of Middleware in Automotive Systems 38
3.1.3 Research Questions . 39

4 Concept 40
4.1 Data Distribution Service (DDS) and its Key Features 40
4.2 Context . 44
4.3 Integration of DDS Middleware . 44

4.3.1 Approach 1: Application level . 45
4.3.2 Approach 2: System level . 47

4

4.3.3 Approach 3: Middleware level . 49
4.4 ISO 25010 based Analysis . 51

4.4.1 Weighting of the Quality characteristics 51
4.4.2 Analysis . 53

5 Implementation 58
5.1 Design Modification . 58
5.2 DDS Application . 61

5.2.1 Initializing the Participant . 61
5.2.2 Registering the Data Type and Creating a Topic 62
5.2.3 Creating Publisher and DataWriter 63
5.2.4 Creating Subscriber and DataReader 64

5.3 Configuration . 66
5.4 OpenDDS in Android application . 66

5.4.1 Cross-Compiling Interface Definition Language (IDL) Libraries . . 67
5.4.2 Android App . 68

5.5 Linux Application . 72
5.6 Hardware Setup . 73

6 Evaluation 74
6.1 Issues and Challenges . 74
6.2 Observations and Results . 75
6.3 Performance Test . 76

7 Conclusion 80
7.1 Summary . 80
7.2 Future Work . 81

Bibliography 85

5

List of Figures

2.1 DDS Architecture . 16
2.2 DDS domain diagram . 16
2.3 Data-Centric Publish Subscribe (DCPS) Conceptual Model 20
2.4 Remote Procedure Call (RPC) over DDS [1] 22
2.5 The Android Software Stack [2] . 24
2.6 The Binder Inter Process Communication (IPC) Communication [3] . . . 26
2.7 Android Automotive Architecture [4] . 28
2.8 Vehicle Data Flow [4] . 28
2.9 Android Automotive Architecture [4] . 30
2.10 Service-Oriented Communication . 32
2.11 Proxy Skeleton Pattern [5] . 32
2.12 Communication Services . 34

4.1 Simplified Sequence Diagram of DDS . 41
4.2 Integration of DDS library at application level 45
4.3 Integration of DDS library at system level 48
4.4 Integration of DDS library on Vehicle Hardware Abstraction Layer (HAL) 50
4.5 Sequence of get() operation from Android app 51

5.1 Modified design . 59
5.2 Class diagram of the DemoApp . 69
5.3 DDS domain diagram of the application 70
5.4 DemoApp login screen . 70
5.5 DemoApp main User Interface (UI) screen 71
5.6 Hardware setup . 73

6.1 Message packets in Wireshark . 76
6.2 DDS messages from Linux machine to Android application 77
6.3 Latency measurements for various data sizes 79

6

List of Tables

2.1 DDS Quality of Service (QoS) Policy description [6] 20

4.1 Weighting of the Quality Criteria . 53
4.2 ISO 25010 Analysis . 57

6.1 Latency metrics L-L : C++ applications on Linux VM L-A: C++ appli-
cation on Linux VM & Java application on Android 13 79

7

Acronyms

AA Adaptive Application.

AAOS Android Automotive Operating System.

ACC Adaptive Cruise Control.

ACK Android Common Kernel.

ADAS Advanced Driver Assistance Systems.

ADB Android Debug Bridge.

AIDL Android Interface Definition Language.

AOSP Android Open Source Project.

AP Adaptive Platform.

API Application Programming Interface.

APK Android Application Package.

ARA AUTOSAR Runtime for Adaptive Applications.

ART Android RunTime.

ARXML AUTOSAR XML.

AUTOSAR AUTomotive Open System ARchitecture.

AVD Android Virtual Device.

BSD Berkeley Software Distribution.

BSP Board Support Package.

CM Communication Management.

DCPS Data-Centric Publish Subscribe.

8

DDS Data Distribution Service.

DDSI DDS Interoperability Wire Protocol.

DEX Dalvik EXecutable format.

DTLS Datagram Transport Layer Security.

ECU Electronic Control Unit.

HAL Hardware Abstraction Layer.

HIDL Hardware Interface Definition Language.

IDL Interface Definition Language.

IoT Internet of Things.

IP Internet Protocol.

IPC Inter Process Communication.

IVI In-Vehicle Infotainment.

JNI Java Native Interface.

LTS Linux Long Term Supported.

MPC The Make, Project, and Workspace Creator.

NDK Native Development kit.

OEM Original Equipment Manufacturer.

OMG Object Management Group.

OS Operating System.

OSI Operating System Interface.

OTA Over The Air.

QoS Quality of Service.

ROS2 Robot Operating System 2.

RPC Remote Procedure Call.

9

RTPS Real Time Publish and Subscribe Protocol.

SDK Software Development kit.

SHM SHared Memory.

SOA Service-Oriented Architecture.

SOC Service-Oriented Communication.

SOME/IP Scalable Service-Oriented MiddlewarE over IP.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UDP User Datagram Protocol.

UI User Interface.

UML Unified Modeling Language.

VHAL Vehicle Hardware Abstraction Layer.

XML Extensible Markup Language.

10

Chapter 1

Introduction

The automotive industry is undergoing a significant shift towards software-defined plat-
forms, where software plays a central role in driving innovations [7], such as autonomous
driving, in-car infotainment, and vehicle integration via cloud and internet platforms.
The development of software-defined and the digitization of automotive systems have led
to an increased consumer desire for improved interaction and connected experiences in
modern vehicles. Modern day vehicles are capable of providing a wide range of software
services to the customer requirements. Vehicle infotainment systems have evolved from
a basic audio-based configuration to more complex, customer demanding touchscreen-
based intuitive user interfaces and displays in head units offering various user interactive
services such as navigation, voice assistance, media, and many more.

Android, a predominant Operating System (OS) in the smartphone sector has entered
the IVI domain, with Android Automotive becoming a standard feature in many vehicles
in recent years. It has found its place in the automotive industry due to its better user
experience and feature diversity. Although the primary focus of Android Automotive
is only infotainment and not functional safety, the interaction of Android Automotive
with other vehicle domains and functions, including ADAS has its benefits. The ADAS
domain is responsible for safety-critical features using various sensors to ensure a safe and
comfortable driving experience. On the other hand, IVI domain is focuses on passenger
entertainment and provides useful information about the driving conditions and the
vehicle’s state. Although these two domains perform different tasks, there is a set of
features that are commonly required in both. This creates an implementation overhead,
as similar functionalities need to be implemented in both domains. The exchange of
data and resources reduces this redundancy in both domains [8].

For example, a navigation module, which is used by the Android system can also share
its data with the ADAS domain. Similarly, Android can directly utilize the data from
route planning or traffic signal detection algorithms within ADAS domain to enhance
the overall user experience.

11

AUTomotive Open System ARchitecture (AUTOSAR) is a widely adopted standard in
software development for most of the applications in the automotive industry. Within the
context of this thesis, we refer to Adaptive AUTOSAR, which follows Service-Oriented
Architecture (SOA) as its foundation framework for software architecture. This Service-
Oriented Architecture (SOA) approach enables the dynamic integration and execution
of software services and components. In the automotive industry, various domains, such
as ADAS follow AUTOSAR standards, whereas Android Automotive has a different
architecture developed by Google. Although both the domains follow different archi-
tectures, we can exchange the data using a suitable middleware protocol such as Data
Distribution Service (DDS). Through a communication interface, the data unavailable
in one domain can be transferred to the other.

DDS is a middleware protocol and technology specifically designed for real-time and
data-centric communication between distributed applications and systems. DDS offers
communication Application Programming Interfaces (APIs) and communication seman-
tics that enable interaction between data providers and data consumers. In the latest
versions of Adaptive AUTOSAR, DDS is integrated as a network binding within the
ara::com module [5], which offers the communication interfaces between different do-
mains using DDS. [7] discusses the comparative analysis of the communication mech-
anisms adopted for software components in upcoming vehicles, with focus on service-
oriented architectures. Several studies have been carried out in the field of inter-domain
communication, specifically focusing on two major automotive domains: ADAS and An-
droid Automotive. One such study detailed in [9], discusses the service-oriented commu-
nication between ADAS and Android based IVI. Another approach, as detailed in [10],
suggests the implementation of an Android native service with the extension of a mid-
dleware API. In this context, the Android-based IVI system receives vehicle information
from a different domain. Furthermore, [8] explores the development of an inter-domain
communication mechanism between ADAS and IVI systems, utilizing model-to-model
translation between AUTOSAR XML (ARXML) and Android Interface Definition Lan-
guage (AIDL) with automated code generation over SOME/IP. However, other than the
previously mentioned studies of inter-domain communication between ADAS and IVI,
literature explaining a complete solution to the question of inter-domain communication
between Adaptive AUTOSAR and Android Automotive using DDS middleware was not
available.

1.1 Problem Statement

In the context of this thesis, the IVI domain is based on Android Automotive Operating
System (AAOS). Android Automotive, primarily designed for in-vehicle infotainment,
poses challenges in intercommunication with other automotive domains such as ADAS
due to its distinct standards and focus on user experience rather than functional safety.
The Android Automotive standard is defined and developed by Google. The ADAS
domain functionality is implemented using the Adaptive AUTOSAR standard. The

12

divergence in standards, with Android Automotive commonly used for user interaction
and infotainment and ADAS adhering to the AUTOSAR framework with its proprietary
platform, presents a challenge to establish a seamless communication between these two
domains.

These two standards were formulated by separate entities with different goals and back-
grounds. AUTOSAR concentrates on standardizing software architecture and commu-
nication within vehicles, with a focus on functional safety, reliability, and scalability
for automotive applications. Its strict safety regulations notably address the demanding
needs of the automotive sector, setting it apart from Google’s more generalized approach
to consumer technology that lacks automotive safety standards. There is a need for a
common interface that bridges the communication between the two domains. There are
various automotive standard protocols, but in this thesis, we focus on service-oriented
communication using DDS middleware protocol. The communication mechanisms avail-
able on both platforms differ from one another. Due to the different standards used by
Android in IVI and AUTOSAR in ADAS, a common interface that is supported by both
domains is necessary for inter-domain communication. The primary objective of this
thesis is to propose a solution to address this specific challenge in achieving seamless
communication between ADAS and IVI domains.

1.2 Research Methodology

To begin, a systematic study in the field of inter-domain communication between AU-
TOSAR and IVI domains was conducted. The challenges in the interconnection be-
tween different standards, each with different communication mechanisms were exam-
ined. A service-oriented approach for data exchange between Android automotive and
AUTOSAR platforms using Data Distribution Service (DDS) middleware protocol was
conducted. A study of the complete DDS middleware framework was conducted with
respect to support the AUTOSAR and Android platforms. Adaptive AUTOSAR already
has DDS as its network bindings, providing an inter-domain communication mechanism.
Then various approaches in which DDS middleware can be integrated into the Android
system were discussed and compared. Further, the appropriate approach suitable for our
application was implemented in the Android Automotive environment to demonstrate
the communication using DDS middleware. A simple android demo application was im-
plemented incorporating DDS and communication with the remote application running
DDS service was demonstrated.

1.3 Document Structure

The content in this thesis is structured into various chapters as follows:

• Chapter 2 provides the basic knowledge needed to understand the necessary terms
and topics covered in this thesis.

13

• Chapter 3 discusses the state-of-the-art technologies and existing work related to
this thesis. Additionally, based on the literature research four specific research
questions are formulated, focusing on the integration of DDS middleware for inter-
domain communication between Android Automotive and other automotive do-
mains.

• Chapter 4 mainly describes the concepts and context of DDS middleware in auto-
motive application. Different approaches to integrate DDS in Android architecture
were explained and compared based on ISO25010 analysis to get the pros and cons
of the different approaches.

• Chapter 5 This chapter details the implementation of one of the approaches from
the previous chapter. The development of the Android app and including DDS
library is explained and the key decision points and modifications are discussed.

• Chapter 6 evaluates the implementation of the solution and also discusses the
timing measurements obtained between the Android application and DDS service
on PC.

• Chapter 7 provides the conclusion of the thesis and a list of possible future works.

14

Chapter 2

Preliminaries

2.1 DDS

DDS is a middleware protocol and technology defined by the Object Management Group
(OMG) as a standard. It is specifically designed for real-time and data-centric commu-
nication between distributed applications and systems. DDS offers communication APIs
and communication semantics that enable interaction between data providers and data
consumers. It provides a high-performance, real-time, interoperable, reliable and scal-
able framework for sharing data among devices and applications in an efficient manner.
It exhibits its importance in various domains such as Internet of Things (IoT), mission-
critical applications, defense, air traffic control, robotics, and many more.

2.1.1 DDS Architecture and Features

DDS is a data-centric publish-subscribe communication model, renowned for its numer-
ous advantages including real-time capabilities, dynamic adaptability, reliability, scala-
bility, and flexibility [11]. DDS is well suited for highly dynamic distributed systems,
the network topology is dynamically discovered, the connections between nodes are es-
tablished point-to-point, and there is no central broker as a single point of failure. DDS
offers a rich set of QoS policies, making it more suitable for distributed system.

The OMG DDS standard architecture primarily consists of two layers as seen in Fig-
ure 2.1, the DDS Interoperability Wire Protocol (DDS) layer, which sits above the
network transport layer. And the DDS layer, which defines the DCPS mechanism and
the DDS API used by the application [12].

The DCPS layer serves as the fundamental and core component of DDS protocol [13].
This layer provides the basic services of communication and defines how DDS sends
data from the publisher to the subscriber. Applications interact in a global data space,
which is the top-level abstraction of DDS and contains all the data published within the

15

Application

Ownership Durability Content-Subscription

Data Centric Publish Subscribe (DCPS)

Real-Time Publish Subscribe (RTPS)

DDS Interoperability Wire Protocol

UDP,TCP,SHM

DDS API

Messages

DDS
Configuration

IDL

Figure 2.1: DDS Architecture

DDS Domain Global Data Space

DataReader

Subscriber

DataWriter DataWriter

Publisher

DataReader DataReader

Subscriber

DomainParticipant

DataWriter

Publisher

Topic Topic

Topic

QoS QoS QoS

QoS QoS QoS QoS QoS QoS

QoS QoS QoS QoS

DomainParticipant DomainParticipant

Figure 2.2: DDS domain diagram

16

domain as depicted in Figure 2.2. The domain is a virtual data space in which DDS
client applications publish and subscribe to information given by a topic.

The main entities of DCPS are DomainParticipant, Publisher, DataWriter, Subscriber,
DataReader and Topic. These entities work together to accomplish the publish-subscribe
mechanism, which will be discussed in Section 2.1.2. Additionally, DCPS also defines
QoS policies that specify minimum service levels necessary for communication between
DCPS entities. For instance, ownership policy specifies whether multiple entities can
simultaneously publish data (shared ownership), or if only one entity can publish data at
a time (exclusive ownership). Some other policies that could be included are durability,
history, resource limits, liveliness and many more. In Section 2.1.2 QoS policies are
explained in detail.

Real Time Publish and Subscribe Protocol (RTPS) is the wire protocol, that enables
compatibility between various DDS vendors and thus, helps in interoperability. It can be
deployed over multi-cast communication and best-effort transport layer protocols, such
as User Datagram Protocol (UDP)/IP [14]. RTPS is specifically designed to meet real-
time publish subscribe requirements essential for DCPS application by incorporating
timing parameters and properties [15].

DDS offers dynamic discovery of DataWriters and DataReaders, which improves the
extensibility of DDS applications. With dynamic discovery, applications don’t need
to know about communication endpoints. The discovery process occurs at run-time
enabling real “plug-and-play” for DDS applications [16]. The discovery mechanism is
performed in two phases. First, there’s the participant discovery phase, where each
DomainParticipant acknowledges the existence of each other by sending announcement
messages via multicasting periodically, including Internet Protocol (IP) address and
port information. Two DomainParticipants will match when they are in the same DDS
Domain. In the subsequent phase, DataWriters and DataReaders acknowledge each other
using the communication channel established during the first phase. They exchange data
if the topic, data type, and QoS parameters are same.

The Transport layer manages the actual sending and receiving of messages over a physical
network and offers communication services for both data and discovery traffic communi-
cation between DDS entities. However, the DDS layer itself is independent of transport
layer that allows for the customization of transport plugin based on the specific ap-
plication requirements. Different DDS vendors provide various discovery settings and
pluggable transport options like UDP, Transmission Control Protocol (TCP) and SHared
Memory (SHM). These settings can be done through a configuration file. Since DDS
API makes these features simpler for the application, we do not delve deeply into the
transport layer and discovery mechanism.

An essential component of DDS middleware is its code generation capability. This pro-
duces source code based on the IDL, which can be utilized by DDS application to publish
or subscribe the data. DDS IDL is the key part of DDS as it defines the data structures,
topics, interfaces and other elements used to describe the data exchanged between dif-

17

ferent components of a DDS based system. IDL is a language-neutral specification stan-
dardized according to OMG specifications [17], which promotes interoperability across
various DDS vendors and enables DDS applications developed in distinct programming
languages like C, C++ and Java to collaborate seamlessly.

To build an application, the topic must be defined by means of an IDL file. The data
type of a topic is defined in the IDL file.

module Temperature {
@topic
struct Message

{
long value;
@key string name;

};
};

Listing 2.1: DDS IDL code example for temperature application [6]

The data type for a topic is described using two classes TopicDataType and TypeSup-
port [18]. TopicDataType describes the data type exchanged between DataWriter and
DataReader, that is data corresponding to a Topic. While TypeSupport encapsulates
an instance of TopicDataType providing the functions needed to register the type and
facilitate interactions with both the publisher and subscriber components. For example,
simple IDL file for Temperature application is explained in Listing 2.1. A data type
that can be used as a topic’s type is indicated by the @topic annotation. This must be
a structure or a union. The structure or union may contain basic types, enumerations,
strings, sequence, arrays, structures and unions [6]. Here, the IDL defines a structure
Message in the Temperature module. The @key annotation identifies a field that is used
as a key for this topic type. A topic may have zero or many key fields. These keys are
used to distinguish various DDS instances within a topic. Each sample published with
a unique @key name will be defined as belonging to a different DDS instance within the
same topic. For instance, we can publish temperature value in Celsius and Fahrenheit
just by creating two different topic instances.

2.1.2 DDS Communication Model

DDS middleware is a Data-Centric Publish Subscribe (DCPS) model. The key entities
in its implementation are Publisher, Subscriber, DomainParticipant and configuration
entities. Data domain consists of domain participants, Publisher and DataWriter for
sending the data, Subscriber and DataReader for receiving the data as seen in Figure 2.2.
The basic elements of the DCPS model are [18]:

• Publisher: Publishers are responsible for the creation and configuration of the
DataWriters it implements. The objects that actually publish data are known as

18

DataWriters. DataWriters are associated with a single Topic object under which
the messages are published.

• Subscriber: These are in charge of receiving the data published under the topics to
which it subscribes. It serves one or more DataReader objects, which subscribes to
the data under specific topic name and are responsible for communicating the avail-
ability of new data to the application. An application typically has a combination
of DataWriters and DataReaders.

• Topic: It is the binding entity between publications and subscriptions. It is unique
within a DDS Domain. With specific topic name, data type, and QoS policies,
Publishers and Subscribers can exchange data unambiguously.

• Domain: DDS Domains provide a logical separation of communication. This con-
cept is used to link all Publishers, Subscribers belonging to one or more applica-
tions, which exchange data under different topics. These individual applications
that participate in a domain are called DomainParticipant. The DDS Domain is
identified by a domain ID.
An application becomes part of a DDS domain by creating a DomainParticipant
associated with a specific domain ID. It is important to note that DomainPartic-
ipants in different DDS domains each with a distinct domain ID, do not commu-
nicate or exchange messages with one another. However, a single application can
engage in multiple DDS domains by creating multiple DomainParticipants, each
associated with a different domain ID. Different DDS domain can exist within a
system, each isolated from the others. This allows for the creation of multiple
independent communication spaces within a larger system.

• Quality of Service (QoS): It is a generic mechanism for the application to control
the behavior of the service, such as resource consumption, fault tolerance, com-
munication reliability and thus allowing the user to define how each entity will
behave. Each entity (Topic, DataReader, DataWriter, Publisher, Subscriber, and
DomainParticipant) has associated QoS that is comprised of individual QoS poli-
cies each one configuring different aspects of the entity behavior. DDS specification
defines several QoS policies that applications use to specify their requirements to
the service. Participants specify the behavior that they require from the service,
the service decides how to achieve these behaviors. These policies can be applied
to the various DCPS entities. Some of the basic QoS policies are described in
Table 2.1.
For instance, the Reliability QoS policy is used to configure the reliability of the
communication between DataWriters and DataReaders. If a DataReader desire to
receive data reliably by configuring the Reliability QoS policy, the corresponding
DataWriter must be capable of delivering that level of reliability for communica-
tion to occur. If the DataWriter only offers a best-effort reliability, then there
will be no communication. A detailed explanation of each QoS policy and their
compatibility are detailed in [19] [20].

19

QoS Policies Description

Liveliness Controls liveliness checks, to make sure expected entities
in the system are still alive

Reliability Determines whether the service is allowed to drop sam-
ples

History Controls what happens to an instance whose value
changes before it is communicated to all Subscribers

Resource Limits Controls resources that the service can use to meet other
QoS requirements

Table 2.1: DDS QoS Policy description [6]

8 Data Distribution Service, v1.4

Figure 2.2 - DCPS conceptual model

At the DCPS level, data types represent information that is sent atomically7.

By default, each data modification is propagated individually, independently, and uncorrelated with other modifications.
However, an application may request that several modifications be sent as a whole and interpreted as such at the recipient side.
This functionality is offered on a Publisher/Subscriber basis. That is, these relationships can only be specified among
DataWriter objects attached to the same Publisher and retrieved among DataReader objects attached to the same Subscriber.

By definition, a Topic corresponds to a single data type. However, several topics may refer to the same data type. Therefore, a
Topic identifies data of a single type, ranging from one single instance to a whole collection of instances of that given type.
This is shown in Figure 2.3 for the hypothetical data-type “Foo.”

7. Note that the optional DLRL layer provides the means to break data-objects into separate elements, each sent atomically.

Topic

QosPolicy

Publisher S ubscriber

<<interface>>

Listener

DataReader

Entity

DataWriter

DomainParticipant

Data

DomainEntity

WaitS et

S tatusCondition

Condition

<<summary>>

A DomainParticipant is the entry -point
for the service and isolates a set on
applications that share a physical
network.

<<interface>>

TypeSupport

*

*

1

* 0..1

*

0..1

1

listener

statuscondition

qos

*

**

1

*

1

1 *

<<implicit>>
* 1

Figure 2.3: DCPS Conceptual Model

20

DCPS model represented in UML diagram is shown in Figure 2.3, all the main communi-
cation objects are attached to a single entity. Entity is the abstract base class for all the
DDS entities, it is an object that has a communication status which can be configured by
QoS policies. There are common features shared among all types of entities: QoS Policy,
Listener and Status. The behavior of each entity can be configured with a set of QoS
policies. Each entity is associated with a specific QoS class that groups all the policies
customized to meet its requirements. Complete list of QoS policies are described in sec-
tion 2.2.3 of DDS specification document from OMG organization [20]. Listeners offers a
mechanism for the middleware to notify the application about the various asynchronous
events such as the arrival of subscription data. Each entity creates an abstract listener
interface with function callbacks, such as DataReaderListener, DataWriterListener, Do-
mainParticipantListener, etc. The entity notifies the application of status changes using
these callbacks. Listeners are closely connected to changes in status conditions. Each
entity has a StatusCondition that acts as an interface with the Wait-set. When the
Wait-set is used with conditions, it is possible for the middleware and the application
to communicate differently based on Wait-set conditions rather than just notification
based. In this process, the application uses Condition objects that are attached to
Wait-set to specify the exact data it intends to receive. Once these conditions have
been met, the requested information is retrieved. For example, when we subscribe to
a topic, DataReaderListener interface has a function on data available(), which notifies
DataReader on new data available. Once the new data is available, the StatusCondition
flag is set to true, which in turn satisfies the Wait-set condition and DataReader can
access this new data. All the DCPS entities are attached to a DomainParticipant. The
DomainParticipant serves as the entry point and is linked to a single domain from its
creation, all the entities are associated to that specific domain. A domain is a collection
of entities that share a same communication infrastructure with similar communication
objective. The publisher and subscribers may interact with each other, isolating them
from entities on different domain. This allows to multiple distributed applications to
coexist in the same physical network without causing interference. DomainEntity is an
intermediate object whose solely purpose is to specify that a DomainParticipant cannot
contain other domain participants.

In Data-centric communication, a unique Topic name is employed to establish the con-
nection. Each Topic corresponds to a single data type. However, several topics may
refer to the same data type. The DataWriters and DataReaders interact with the help
of topic name. When the application decides to transmit data, a new DataWriter is
created in a Publisher. This DataWriter is then associated with the Topic that describes
the data type that is being transmitted. To start receiving the transmitted data, ap-
plication creates a new DataReader in a Subscriber. This DataReader will then start
receiving data values that matches the corresponding Topic and QoS policies.

21

7.2.2 Language Binding Styles for RPC over DDS

Language binding style determines how the client API is exposed to the programmer and how the service
implementation receives notification of the arriving requests. This specification includes a higher-level language binding
with function-call style and a lower-level language binding with request/reply style.

7.2.2.1 Function-call Style

The function-call style is conceptually analogous to Java RMI, .NET WFC Service Contracts, or CORBA. To provide
function-call style, a common approach is to generate stubs that serve as client-side proxies for remote operations and
skeletons to support service-side implementations. The look-and-feel is like a local function invocation. A code generator
generates stub and skeleton classes from an interface specification. The generated code is used by the client and service
implementation. An advantage of such a mapping is that the look and feel of the client-side program and the service
implementation is just like a native method call.

7.2.2.2 Request/Reply Style

The request/reply style makes no effort to make the remote invocation look like a function call. Instead, it provides a
general-purpose API to send and receive messages. The programmer is responsible for populating the request messages
(a.k.a. samples) at the client side and the reply messages on the service side. In that sense it is lower-level language
binding compared to the function-call semantics.

The request/reply style provides a flat interface, such as send_request, receive_request, and send_reply, receive_reply,
which substantially simplifies language binding as no code generation is necessary beyond the request/reply types.
However, remote procedure call does not appear first-class to the programmer.

14 Remote Procedure Call over DDS, v1.0

Figure 7.1 - Conceptual View of Remote Procedure Call over DDS

Figure 2.4: RPC over DDS [1]

2.1.3 DDS RPC

DDS emphasizes on data-centric and asynchronous publish-subscribe operations. DDS
RPC is a high-performance remote procedure call framework that aims to specify higher-
level abstractions built on top of DDS to achieve request-reply communication, promot-
ing portability, interoperability, and a data-centric view for request-reply communication
[1]. This enables the architectural benefits of DDS to be leveraged in request-reply com-
munication. It uses the request-reply pattern as its core and main pattern, with the
client sending a request message and the server sending a reply message. The frame-
work can be implemented using two publisher-subscriber pairs, handling the request and
reply using respective Request and Reply DDS Topics [21].

Remote Procedure Calls involve two participants: a client and a service. The client uses
a datawriter to publish a sample representing the remote procedure call, while the service
implementation has a datareader to read the method name and parameters. Figure 2.4
shows the high-level architecture of the Remote Procedure Call over DDS. The service
computes the return values and sends them back to the client. A content-based filter
is used to ensure that the client receives a response to a previous call made by itself.
It is crucial to correlate requests with responses, especially when using asynchronous
invocations. Requests are identified using a unique SampleIdentity, which is a struct
composed of GUID t and SequenceNumber t. When a service implementation sends a
reply to a specific remote invocation, it is necessary to identify the original request by
providing the sample-identity of the request. Refer to the DDS RPC specifications [1]
for more information on RPC over and IDL files.

22

2.2 Android

The Android OS is a popular and open-source mobile operating system developed by
Google, primarily designed for touchscreen smartphones and tablets. It is based on a
modified version of Linux kernel for its optimized power and process management for
mobile devices. Android offers a flexible platform for app development with its extensive
ecosystem of apps and service through the Google Play store. It is well known for its
user friendly interface and regular updates, making it a dominant player in the mobile
device market [22].

2.2.1 Android Platform Architecture

Android adopts a layered architecture based on modified Linux kernel, Figure 2.5 shows
the android software stack. In this section we explain the different layers of android
architecture.

• Linux Kernel: The Linux kernel, which manages low-level hardware interactions,
form the core of the android platform. It is constructed on top of an upstream
Linux Long Term Supported (LTS) kernel and is modified for special needs in
power management, memory management and the run-time environment to create
what’s known as Android Common Kernels (ACKs) [23]. Android features a dis-
tinct driver known as Binder for facilitating IPC mechanism and remote method
invocation system.

• HAL: The HAL serves as a bridge between the Linux kernel and the upper layers. It
offers standardized interfaces that expose device hardware capabilities to the higher
level Java API framework. It consists of multiple libraries and drivers tailored
for specific hardware components such as camera, sensors, and audio. Starting
from android 8, the Hardware Interface Definition Language (HIDL) serves as an
interface description language used to define the communication interface between
a HAL and its users. HALs created with HIDL are reffered to as binerized HALs
becuase they can communicate with other architecture layers using binder IPC
calls.

• Android RunTime (ART) and Core Libraries: ART is responsible for executing
android applications, it compiles byte-code into native machine code. Android ap-
plications are written in Java and run in Dalvik virtual machine, a virtual machine
featured in android. Each app has its own instance of ART running under its own
process. ART is written to run multiple virtual machines on low-memory devices
by executing Dalvik EXecutable format (DEX) files, which is a byte-code format
developed particularly to run on android and optimized for a minimal memory
footprint [2]
Android core libraries are composed of Java libraries that support application
development. These libraries provide functions for creating user interfaces, data
storage, and interactions with the android framework

23

Linux Kernel...

Drivers...

Android Runtime...

Native C/C++ Libraries AndroidRuntime

Java API Framework

Java API Framework...Java API Framework...

Managers

System Apps...
Dialer Email Calender Camera . . .

Content Providers

View System

Activity Location Package Notification

Resource WindowTelephony

OpenMAX ALWebkit Libc

OpenGL ESMedia Framework . . . Core Libraries

Android Runtime (ART)

Hardware Abstraction Layer (HAL)

Linux Kernel

Drivers

Audio Bluetooth Camera Sensors . . .

Audio DisplayBinder (IPC)

Keypad CameraBluetooth

Shared Memory WiFiUSB

Power Management

LibcOpenMAX AL

Audio Bluetooth Camera

System Apps

Figure 2.5: The Android Software Stack [2]

24

• Native C/C++ Libraries: The core system components and services in android,
such as ART and HAL, are built using native code, that requires native libraries
written in C and C++. Applications can access the services and functionality of
these native libraries using Java framework APIs. For example, ’Media Frame-
work’ is a multimedia library that supports recording and playback of various
commonly used audio and video formats. ’Libc’ is a standard C system function
library inherited from Berkeley Software Distribution (BSD), specially customized
for embedded Linux-based devices. If an app development requires C or C++
code, we can use the Android Native Development kit (NDK) to directly access
the native platform libraries [2].

• Java API Framework: The Application framework offers a set of standardized
services and API for app development. These APIs simplify the reuse of core,
system components and services for app development. It includes components like
content providers, view system and managers. For instance manager component
consists of activity, that manages the life cycle of each application and notification,
which allows the application to display custom prompt information in the status
bar and many more.

• Applications: Applications constitute the topmost layer. This layer includes sys-
tem apps which are preinstalled applications on android devices, such as dialer,
mail and calendar. System apps serve as user apps and offer key developer ca-
pabilities, for example, if an app needs to send SMS messages, it can leverage
existing SMS apps rather than building that functionality from scratch. Appli-
cations are typically developed in Java or Kotlin and can include an UI and/or
background services. Apps receive software updates without requiring a system
restart. Additionally, users can install other third party apps from the Google play
store.

2.2.2 Android IPC

Unlike the Linux OS, which employs various techniques for achieving IPC, Android’s
modified Linux kernel comes with a binder framework which enables RPC mechanism
between the client and server processes. Android Binder IPC is a robust, efficient, and
secure mechanism used for IPC in the android ecosystem. It allows different processes to
communicate with each other, often used for communication between applications and
system services.

The Binder IPC follows a client-server model. When a client initiates communication, the
Binder takes charge of locating the target service, verifying caller privileges, managing
the communication, and message delivery. The service location phase is managed by
the service manager, which serves as the endpoint mapper. Service manager maintains
a service directory that maps interface names to binder handles. Consequently, when
the binder receives a request for a specific service, it queries the servicemanager, which,
after permission checks, returns a handle as demonstarted in Figure 2.6. If the client has

25

- Serialize the parcel with Interface name,
method number & parameters
- ioctl () call the Binder
- Wait for Binder service resposne

Client

Binder

- Receive the request from client
- Get the handle from servicemanager
- Intercat with service & return the result

P
ar

ce
l (

In
te

rf
ac

e
na

m
e

+
 p

ar
am

et
er

s)
ServiceManager

- Search the Interface name in its directory
and return the handle
- Check for caller process rights

P
ar

ce
l (

In
te

rf
ac

e
na

m
e

+
 p

ar
am

et
er

s)

R
eq

ue
st

 h
an

dl
e

(I
nt

er
fa

ce
 n

am
e)

- Deserialize the parcel
- Permission check, process the request
- Serialize the parcel with return result
and send back to Binder

Service

R
et

ur
n

th
e

ha
nd

le

P
ar

ce
l (

In
te

rf
ac

e
na

m
e

+
 r

es
ul

t)

P
ar

ce
l (

In
te

rf
ac

e
na

m
e

+
 r

es
ul

t)

5 4
3 261

Android Application

Android Platform

Figure 2.6: The Binder IPC Communication [3]

permission to interact with the requested service, the Binder handles communication on
the client side by creating a proxy and forwards the message to the server. The server
processes the request and sends back the result to the binder. The binder, in turn,
delivers it to the client as a ’message’, technically referred to as ’Parcels’. These Parcels
serve as containers for data, enabling both client and server to communicate through
serialization and deserialization.

2.2.3 Android Interface Definition Language (AIDL)

Android OS uses the AIDL to define and communicate interfaces across various processes
within an android application. AIDL functions similar to other Interface Definition
Language. It allows us to define the programming interface that both the client and
service must adhere to when communicating with each other through IPC. AIDL is a
tool that simplifies IPC by abstracting the process. By providing an interface definition
through a .aidl file, different build systems can use the AIDL binary to generate C++
or Java bindings. This enables the use of the specified interface across processes or
components, such as activities, services, or other apps.
AIDL uses the binder kernel driver for Inter Process Communication (IPC). When a
method call is made, a method identifier and all related objects are packaged into a
buffer and copied to the target process. A binder thread will be awaiting to receive and
read this data in the remote process. The binder thread looks for a native stub object in
the local process as soon as it receives the data for a transaction. This native stub class
opens the data and calls a method on an object that represents a local interface. The

26

server process creates and registers the local interface object. When a calls are made
within the same process the same backend, there is no need for proxy objects, and hence
calls are direct without any packaging or unpacking [23].

package my.package;

import my.package.Baz; // defined elsewhere

interface IFoo {
void doFoo(Baz baz);

}

Listing 2.2: An example of AIDL interface [23]

Listing 2.2 shows simple AIDL interface example. The object ’Baz’ is a parcelable object
specified within the AIDL interface. Through AIDl, parcelable objects make it possible
to serialize and deserialize of complex custom objects. In order for the ’Baz’ object
definition to be utilized and referenced within the AIDL definition, it should be created
separatly. This separation allows for better organisation and reuse of complex data
structures in AIDL interfaces.

2.3 Android Automotive

Android Automotive is an Operating System platform developed by Google for IVI
and telematics systems that runs directly on the hardware within the vehicle. It is
based on Android, full-stack, open source, highly customizable platform that supports
both second and third-party android applications in addition to the pre-installed IVI
system applications. Here’s an overview of the key components and concepts of Android
Automotive architecture.

The Android Automotive is an extension of the Android Open Source Project (AOSP)
system architecture. The additional components such as Vehicle Hardware Abstraction
Layer (VHAL), Car Service, Car Manager are added to provide functionality that are
relevant to an automotive context. Figure 2.7 shows an abstarct layer architecture with
division in four layers, namely the Board Support Package (BSP), HAL, Service layer
and Application Framework.

• Board Support Package (BSP) is a Linux kernel image with HAL implementation
for hardware, part of the ’vendor’ partition. It allows Original Equipment Manu-
facturers (OEMs) to extend source code with self-developed applications and sys-
tem services, such as head-up display management and tire pressure monitoring.
Project Treble from Android 8.0 aims to simplify this process by separating the
Android OS framework from device-specific drivers and low-level software, allow-
ing manufacturers to update devices quickly without constant changes to low-level
software [24].

27

AOSP Apps 3rd Party AppsOEM Apps

Android
Managers

Android System
Services

Car Managers

Car Services

Traditional Android Vehicle

Linux Kernel

A
pp

lic
at

io
n

F
ra

m
ew

or
k

AIDL

AIDL

HIDL

S
er

vi
ce

 L
ay

er
H

A
L

B
S

P

Provided by Google OEM 3rd Party

Figure 2.7: Android Automotive Architecture [4]

Car Apps

Car Manager

Car Service

Vehicle HAL

Vehicle ECUs

android.car.jar
java library

ICar* AIDL
Interfaces

com.android.car
(persistent application)

IVehicle HIDL
Interface

Vehicle Bus
(eg, CAN)

HAL service

Figure 2.8: Vehicle Data Flow [4]

28

• Vehicle Hardware Abstraction Layer provides a standard interface to the android
framework, regardless of the underlying physical transport layer. It stores the data
in the form of vehicle properties. Numerous of these properties are linked to signals
that are present on the communication bus of the vehicle, such as the speed of the
car or the air conditioner’s temperature. Through the VHAL, the data from these
signals is obtained from a transport layer (like CAN) and then made accessible
to higher layers, in particular the Service Layer and the Application Framework.
Figure 2.8 shows the data flow from VHAL to applications. Properties can be
changed either automatically, if the signal on the bus changes or programmatically,
by an android application, allowing for dynamic control and interaction with the
vehicle’s data [25].

• Car Service is a part of the Service layer started by the SystemServer. These ser-
vice run as a system process, providing additional privileges that normal android
services do not. The Car Service incorporates vehicle properties and offers a num-
ber of useful APIs for applications. The ’com.android.car’ persistent system app
contains this service as a system service. When the first app tries to connect to
the Car Manager, it becomes operational as a service.

• Car Manager facilitates accessing services from car service layer to application
layer. Pre-installed on the device, Car Manager is a platform library that contains
the android.car.* classes, which together make up the API for interacting with car-
related services. To access these services, applications must be given the necessary
permissions [26].

• Application Framework contains the system and user applications. OEMs can
have their own system specific applications pre installed, that are tailored for
in-car use. These apps cover functions like navigation, media playback, phone
integration, settings, and more. Just like standard android, android automotive
allows developers to create apps specifically designed for in-car use. These apps
can interact with vehicle features, access sensors, and provide a more personalized
experience for drivers and passengers.

2.4 AUTOSAR Adaptive

Adaptive AUTOSAR is an evolution of the AUTOSAR standard, developed to address
the complexity of automotive software systems and the need for advanced, connected,
and autonomous capabilities in modern vehicles. It is more adaptable and dynamic than
classic AUTOSAR, enabling the development of more complex and adaptive software
systems. It focuses on connectivity and communication within the car, enabling features
like over-the-air updates, vehicle-to-vehicle and vehicle-to-infrastructure communication.
It is compatible with multi-core CPUs and offers real-time capabilities for ADAS and au-
tonomous driving. The platform supports over-the-air software updates, particularly for
microprocessor-based Electronic Control Units (ECUs), ensuring reliability and security

29

Adaptive
Application

Adaptive
Application

Adaptive
Application

Non-Platform
Service

Non-Platform
Service

Adaptive Application (AA)

ara::com

Communication
Management

ara::rest

RESTful

ara::tsynch
Time

Synchronization

ara::diag

Diagnostics

ara::sm service

State Management

S
O

M
E

/IP

D
D

S

IP
C

(lo
ca

l) ara::per

Persistency

ara::phm

Platform Health
Management

ara::log

Log and Trace

ara::ucm service

Update and Config
Management

ara::core

Core Types

ara::exec

Execution
Management

ara::iam
Identity and Access

Management

ara::crypto

Cryptography

ara::nm service

Network Man-
agement

POSIX PSE51 / C++ STL

Operating System Interface

(Virtual) Machine / Container / Hardware

AUTOSAR Runtime for Adaptive Applications (ARA)

SERVICE

Non-Platform Service

SERVICE

Platform Service
Functional Clusters

API

Platform Foundation
Functional Clusters

Key

Figure 2.9: Android Automotive Architecture [4]

in the development of advanced vehicle functions [27]. A Service-Oriented Architecture
(SOA) serves as the foundation for the software architecture, enabling the dynamic in-
tegration and execution of software services and components.

2.4.1 Adaptive AUTOSAR Architecture

The top layer of the AUTOSAR Adaptive Platform (AP) is the AAs, which can be single
or multi-threaded processes. Figure 2.9 shows the architecture of adaptive platform. The
Adaptive Application (AA) run on top of ARA, which consists of application interfaces
provided by functional clusters, either belonging to the Adaptive Platform Foundation
or Adaptive Platform Services. The Adaptive Platform Foundation offers the core and
essential functionalities of the AUTOSAR AP, and Adaptive Platform Services provide
standarized platform services that are part of AP. Any AA can provide services to other
AAs, illustrated as Non-Platform Service [27] in Figure 2.9.
Some of the key terms that are necessary to understand the thesis are defined below.

30

• Machine: The hardware on which the AUTOSAR Adaptive Platform runs is re-
ferred to as the ’Machine’. This hardware may be implemented as a physical
machine, a fully virtualized machine, an OS-level-virtualized container, a para-
virtualized OS, or in any other virtualized environment [27].

• Operating System Interface (OSI): The OSI is compliant with POSIX PSE51 [28].
By providing a standardized architecture for communication between the program
and the underlying operating system, it provides the interfaces required for the
creation of multi-threaded real-time embedded applications.

• Functional Clusters: The Adaptive Foundation and Adaptive Services software is
presented as functional clusters, similar to the classic Platform’s basic software
(BSW). These clusters offer functionalities as services to the application, but are
now processes that can be single-threaded or multi-threaded. To name a few
functional clusters in AP are Persistency, Diagnostic Management, Communication
Management, Execution Management. In this thesis, we provide a brief overview
of the communication management module (ara::com). This module mainly serves
as connectivity within the AP components as-well as with external machine.

2.4.2 Communication Management

Communication Management (CM) in adaptive AUTOSAR is a functional cluster within
the AUTOSAR Runtime for Adaptive Applications that manages communication chan-
nels between local and remote applications. It adheres to a Service-Oriented Architecture
approach and facilitates communication between Adaptive AUTOSAR applications and
software entities on other machines, including classic AUTOSAR software components
and non-AUTOSAR domain. CM includes generic parts for brokering and configuration,
as well as specific parts for service providers and service consumers [5].

2.4.3 Communication Paradigms

Service-Oriented Communication (SOC) is the primary communication pattern for adap-
tive AUTOSAR applications, enabling the establishment of communication paths even
at run-time. It is suitable for building dynamic communication networks with unknown
participants. The fundamental principle of SOC is depicted in Figure 2.10.
Service Discovery plays a crucial role in deciding whether external and internal service-
oriented communication should be established. Communication Management software
should offer optimized implementation for both service discovery and communication
connection, depending on the service provider’s location. The service class is the central
element of the service-oriented communication pattern, representing the methods and
events provided by applications that implement specific service functionality.

The ara::com API uses the Proxy-Skeleton pattern [5] to generate two distinct code
artifacts based on a formal service definition as shown in Figure 2.11.

31

Application 1
Service provider

Application 2
Service requester

Service Registry

offer

find

call

Figure 2.10: Service-Oriented Communication
Explanation of ara::com API

AUTOSAR AP R22-11

4 Fundamentals

4.1 Proxy/Skeleton Architecture

If you’ve ever had contact with middleware technology from a programmer’s perspec-
tive, then the approach of a Proxy/Skeleton architecture might be well known to you.

Looking at the number of middleware technologies using the Proxy/Skeleton (some-
times even called Stub/Skeleton) paradigm, it is reasonable to call it the "classic ap-
proach".

So with ara::com we also decided to use this classical Proxy/Skeleton architectural
pattern and also name it accordingly.

Middleware Transport Layer

Service Interface
Definition

Service Consumer
Implementation

Service Proxy

Service
Implementation

Service Skeleton

generated from generated from

Client Application Service Application

Figure 4.1: Proxy Skeleton Pattern

The basic idea of this pattern is, that from a formal service definition two code artifacts
are generated:

• Service Proxy: This code is - from the perspective of the service consumer, which
wants to use a possibly remote service - the facade that represents this service
on code level.

In an object-oriented language binding, this typically is an instance of a generated
class, which provides methods for all functionalities the service provides. So the
service consumer side application code interacts with this local facade, which
then knows how to propagate these calls to the remote service implementation
and back.

• Service Skeleton: This code is - from the perspective of the service implementa-
tion, which provides functionalities according to the service definition - the code,
which allows to connect the service implementation to the Communication Man-

17 of 145 Document ID 846: AUTOSAR_EXP_ARAComAPI

Figure 2.11: Proxy Skeleton Pattern [5]

32

• Proxy: A proxy acts as a local representation of the service for the consumer at
the code level when seen from the perspective of the service consumer attempting
to use a remote service. It appears as a C++ class instance that resides inside
the program or client utilizing the service. The Proxy class allows the consumer’s
code to interact with the service as if it were a local component, even though the
service might be physically located remotely.

• Skeleton: A Skeleton is a component of a service implementation that connects a
user-provided service implementation to the middleware’s transport infrastructure.
This enables access to and interaction with the user-provided service implemen-
tation through the middleware’s communication and transport layer, facilitating
communication between service functionality and users.
A service is defined in a service interface description file, where the ServiceInter-
face is structured with Fields, Methods, or Events. This structure is intended
to facilitate communication between the inter- or intra-ECU communication be-
tween applications. Further, the various communication patterns used to model a
ServiceInterface are presented.

Having discussed the proxy-skeleton pattern. Let us dive into how communication oc-
curs between proxies and skeletons within ara::com framework. Adaptive AUTOSAR
follows SOC paradigms to establish communication channels between server and a client,
ara::com defines four distinct mechanisms to communicate [5] as shown in Figure 2.12.
To use communication mechanisms, a service must be instantiated, defined, and offered
to the system through an ’OfferService()’ method. The client then connects to the service
instance using the Proxy, acting as an intermediary for client-server communication.

• Methods: This mechanism involves method calls to carry out particular tasks
or obtain data from the server. For instance, Request-Response methods, where
clients send requests to servers, and servers respond to those requests by sending
responses back to clients.

• Events: Events are a one-way channel of communication between the server and
the client that let the server alert the client to certain occurrences or changes.
The server sends interested clients an event message. The client which needs these
events are determined via service discovery.

• Fields: clients can read or modify particular data properties by using Fields to
access data attributes within the service. A Field can have an optional getter (a
request/response method to read out the field’s current value), optional setter (a
request/response method to update the field), and optional notifier (an event to
be dispatched cyclically or on-change).

• Triggers: Triggers are used to start actions or events based on predefined conditions
or events in the system. It is used to notify when a specific condition occurs, and
it does not transfer any data

33

Methods

C S

reply

request

Events

C S

event subscription

Fields

C S

Triggers

C S

field get/set

notify

predefined-condition

notifications

Figure 2.12: Communication Services

34

Chapter 3

State of the art

This chapter discusses the findings from a literature review focused on the current state of
technology for inter-domain communication between Android Automotive and Adaptive
AUTOSAR. As software-defined vehicles become more popular, the complexity of vehicle
networks rises due to the interaction of several domains, requiring the use of multiple
technologies. OEMs are particularly interested in the problem of connecting domains
between Adaptive AUTOSAR and Android Automotive. However, many of the most
recent developments in this field remain confidential due to the competitive nature of
the industry. As a result, the available literature as part of open research is quite
limited. Nevertheless, the resources that are openly published and open-source examples
were analyzed. Section 3.1 describes the adaptation and use cases of DDS middleware
protocol in automotive application. Section 3.1.1 covers the interface definition language
of both Android and Adaptive platforms. In Section 3.1.2, the related work that has
been carried out on middleware integration for inter domain communication. Finally, in
Section 3.1.3 we derived four research objectives that will guide this thesis work based
on the overall problem statement discussed in Section TODO«add intro and problem
statement section».

3.1 DDS Middleware in Automotive Systems

Modern vehicles are increasingly transforming into software-defined platforms, increasing
system complexity [29]. The automotive field has transitioned from signal-based commu-
nication to service-oriented communication, where vehicle components are clustered into
domains based on specific functions, leading to decoupling of the system [30]. Service-
Oriented Architecture (SOA) in automotive software architectures describes functional-
ity through software component interaction.
DDS is a standardized, middleware protocol that is widely used in distributed systems
for data-centric communication. It provides a framework for sending and receiving data
between different software components. DDS is built on a publish-subscribe commu-

35

nication model, ensuring efficient data distribution between data producers (publisher)
and data consumers (subscriber). DDS implements real-time data sharing, QoS con-
figurability, and support for various data types, ensuring efficient data sharing between
publishers and subscribers.

DDS middleware has showcased its effectiveness and capabilities in facilitating real-time
communication within a complex distributed network [31]. The significance of DDS
middleware in the automotive sector has grown as a result of the complexity of modern
vehicles and the demand for sophisticated communication systems. As vehicles evolved
into highly advanced and autonomous systems, the need for efficient and reliable data
exchange is crucial. DDS middleware is finding its place in automotive systems, as
a solution for inter-ECU communication, infotainment systems, Over The Air (OTA)
updates, and Advanced Driver Assistance Systems. In [32], authors described how the
automotive industry is moving towards Service-Oriented Architecture and benefit from
the features offered by DDS middleware.

Due to its capability for real-time communication, event-driven architecture and con-
figurable QoS, DDS was particularly suited for automotive applications. This made it
possible for exchange of crucial information between various components in a vehicle.
The theoretical basis for DDS functionalities and their key role in future inter-vehicle
communication systems are provided in [31], along with simulation results. In [33],
the feasibility of DDS for automotive SOA concepts with performance benchmark ex-
periments to assess the benefits and drawbacks of DDS is discussed. DDS also finds
application in ADAS components because of its real-time capabilities. By configuring
suitable QoS policies that can effectively improve the performance of Adaptive Cruise
Control (ACC) systems, article [34] has demonstarted the effectiveness of introducing
DDS middleware into ACC systems.

Integration with adaptive AUTOSAR as a network binding in ara::com [5], cloud inte-
gration for connected vehicles, and OTA updates are recent developments and trends in
the use of DDS middleware in the automotive industry [32].

3.1.1 Android Automotive and AUTOSAR platforms

AAOS is designed specifically for use in vehicles, offering in-vehicle infotainment, connec-
tivity and interaction with external services such as weather updates, traffic information,
sunroof control, etc. It allows vehicles to provide functions like navigation, multimedia,
and communication tools, similar to those found on smartphones. The AAOS was intro-
duced in March 2017 [35], and runs directly on the car’s hardware (head unit) creating
a dedicated android environment.

Android Automotive is a variation of the Android Open Source Project (AOSP) that is
tailored to the unique requirements of the automotive industry. This benefits OEMs to

36

build their own custom IVI systems from AOSP source-code. Google also offers bundled
services that include Google assistant, Play store, and Google maps. Its user-friendly
interface, simplified development, and app ecosystem have made it popular in modern
vehicles. Through collaborations with third parties, it keeps evolving, adding new apps
and services for better in-car experience for both drivers and passengers. Automotive
infotainment architecture based on google android is discussed in [36]. Different layers
on android automotive architecture are covered in detail in Section 2.3.

AUTomotive Open System ARchitecture (AUTOSAR) is a standardized software archi-
tecture and development framework for the automotive components. Traditional classic
AUTOSAR was evolved into adaptive AUTOSAR in order to handle the complexities of
modern, highly connected vehicles. It provides a structured method for developing and
managing complex software components in modern vehicles and focuses on flexible, high-
performance computing platforms like domain controllers and central processing units
[37]. Section 2.4 provides a detailed explanation of the adaptive AUTOSAR architecture.

An Interface Definition Language (IDL) is a descriptive language used to describe the
data types and interfaces of software components in a language-independent and platform-
independent manner [17]. IDLs are commonly used in distributed computing and RPC
systems to define how different software components or systems can interact with each
other.Each of these domains has a unique set of definition languages designed for their
particular use. The AUTOSAR framework uses a definition language known as ARXML,
which is a file format derived from Extensible Markup Language (XML), a widely used
modeling and markup language for automotive application [38]. It is used to build
models by defining software components, port interfaces, and data elements. It repre-
sents various aspects of an automotive software system, including software components,
communication interfaces, and system descriptions. In AUTOSAR development, soft-
ware components and their interfaces are configured, exchanged, and integrated using
ARXML files. For instance, ARXML file format is used to generate proxy and skeleton
as shown in Figure 2.11. DDS uses Interface Definition Language as specified by OMG
group. DDS is a part of ara::com network binding in latest adaptive AUTOSAR version.
DDS types are defined according to OMG IDL version 4.2. AUTOSAR uses equivalent
XML syntax for code generation and service interface definition [39].
Android supports its own interface definition language known as Android Interface Def-
inition Language (AIDL) for facilitating Inter Process Communication (IPC) between
different android components, such as between applications and services running in sepa-
rate processes. Compared to ARXML it is a much simpler interface definition language,
covering only the communication interfaces [40]. In android, AIDL is mainly used to de-
fine a remote service interface. This allows processes to communicate and exchange data
through predefined interfaces in a client-server manner. The communication mechanism
in android is supported by Binder, and Section 2.2.2 provides a detailed explanation of
the IPC Binder mechanism in android. Figure 2.6 illustrates the communication between
generated client and server components.

37

3.1.2 Integration of Middleware in Automotive Systems

Service-Oriented Architecture-based architectures, originating from web technologies, of-
fer low complexity and integration effort, dynamic component addition, and network con-
nectivity, making them ideal for automotive software development due to their reusability
and decoupled components [41]. AUTOSAR has successfully integrated SOA into their
platform standards. To accommodate future needs and new features AUTOSAR has
restructured its portfolio and introduced AUTOSAR Adaptive platform with Ethernet
capability and Service-Oriented Communication [42]. In order to facilitate inter- applica-
tion communication between software components within Service-Oriented Architecture
framework, it is essential to employ a Service-Oriented Communication middleware. Al-
though there are a number of middleware solutions available, each designed for specific
applications, it is crucial to adopt the necessary middleware according to the automotive
domain requirements. DDS is one such middleware protocol that fits in the automotive
context with real-time capabilities and configurable QoS [29] [33] [41] [7].

Advanced Driver Assistance Systems (ADAS) and In-Vehicle Infotainment (IVI) systems
are two rapidly evolving automotive domains. The fundamental objective of ADAS is to
enhance driving safety and experience by providing assistance to drivers in multiple ways.
IVI, on the other hand, focuses mostly on providing entertainment and information to
passengers in a vehicle. Connecting these systems has many benifits, such as enhanced
safety: ADAS system can make use of navigation data from IVI, user experience can be
improved by sharing various sensors data readily available from ADAS and also we can
make use of surrounding camera sensors from ADAS which will be cost effective.

The main objective of this thesis is to establish a communication between two major do-
mains in automotive system, Adaptive AUTOSAR and Android Automotive using DDS.
[9] is one such work, which proposes a service-oriented communication between ADAS
and IVI. Implementing an Android native service with the extension of a middleware
API is another method suggested in [10]. In this way, the Android-based IVI system
receives vehicle information from a different domain. And [8] explores the development
of an inter-domain communication mechanism between ADAS and IVI systems, utilizing
model-to-model translation between ARXML and AIDL with automated code genera-
tion over SOME/IP. All of the mentioned works were implemented using SOME/IP
protocol, which is specifically created for automotive applications. Despite theoreti-
cal consideration of DDS protocol for serivce-oriented communication between ADAS
and IVI systems, it was not practically implemented due to its limited acceptance in
the automotive industry, likely due to challenges in aligning with existing automotive
standardization efforts. Although the DDS middleware is not yet well suited for the
automotive domain, this creates a space for it to apply some of its distinctive features
in automotive communication.

38

3.1.3 Research Questions

It is vital to study on concepts of middleware and inter-process communications in order
to facilitate communication between two different automotive domains with different
architectures. Based on the understanding of inter-domain connectivity gained in the
earlier sections, we have formulated specific research objectives that need to be explored
and analyzed in the context of this thesis work.

[Q1.] What is the impact or expressive power of DDS based middleware on the la-
tency, scalability, security, interoperability and reliability for service-oriented approach
for interconnection of ADAS and IVI system, and how does it compare to alternative
communication frameworks such as SOME/IP?

[Q2.] What are the key challenges and communication requirements when integrating
systems with different communication paradigms like adaptive AUTOSAR and android
automotive, and how can DDS middleware be effectively utilized to address these chal-
lenges?

[Q3.] How can the integration of DDS services in android automotive be achieved, what
are the different concepts to integrate DDS protocol considering the software architec-
ture and communication requirements of the system (IPC mechanisms)?

[Q4.] What are the advantages and limitations of using DDS middleware as the com-
munication interface between AUTOSAR and android automotive systems and what is
the round-trip time between two systems?

39

Chapter 4

Concept

This chapter mainly addresses the first and second research questions [Q1,Q2] mentioned
in previous section. In Section 4.1, we discuss the key features of DDS in the context
of automotive application and also comparing it with SOME/IP protocol, which is well
established automotive middleware protocol. Section 4.3, explores the integration of
DDS middleware in Android system and the concepts of different approaches for DDS
integration. And finally, in Section 4.4 we evaluate the advantages and disadvantages of
different approaches using ISO25010 standard.

4.1 Data Distribution Service (DDS) and its Key Features

DDS is a publish-subscribe standardized middleware protocol based on a data-centric
approach. Its main purpose is to enable communication among distributed applications.
DDS is widely used in high-performance, real-time applications such as aerospace and
defense systems, distributed systems, medical and Internet of Things (IoT) applications,
as well as in industrial automation.

The foundation of DDS is a ‘global data space’, a databus responsible for the data
exchange between publishers and subscribers. The DDS middleware notifies all the sub-
scribers that are interested in a specific data (Topic), whenever a publisher publishes new
data to this global data space. This data-centric communication approach provides the
advantage of decoupling publishers and subscribers, which leads to an architecture that
is highly scalable and flexible. Section 2.1 explains the DDS architecture and commu-
nication model. Figure 4.1 illustrates a simplified representation of the communication
between sender and recipient applications operating in the same domain. The sender
must first initialize DomainParticipant, Topic, Publisher, and DataWriter, while the re-
ceiver must instantiate DomainParticipant, Subscriber, and DataReader respectively, in
order to exchange data. The DDS middleware is then in charge of enabling communi-
cation between these two endpoints and ensuring the successful delivery of transmitted
messages. The Real Time Publish and Subscribe Protocol (RTPS) is the underlying

40

Figure 4.1: Simplified Sequence Diagram of DDS

transport protocol used by DDS. RTPS is specifically designed to meet the demands of
data-distribution services. It plays a crucial role in making DDS interoperable across
various vendors and additionally provides seamless plug-and-play connectivity for appli-
cations [14].

Some of the key features of DDS are,

• data-centric communication - DDS abstracts the complexity of low-level commu-
nication protocols (such as TCP/IP or UDP) and network details. It offers a
high-level data-centric interface, allowing developers to focus on what data to send
or receive, rather than how to send it. This abstraction enables more reliable and
efficient data exchange and simplifies software development [16].

• Publish-subscribe model - In this model, data producers (publishers) are decoupled
from data consumers (subscribers). Publishers produce data with a specific topic
and distribute over a network, and Subscribers interested in that topic subscribes
for the data. This allows Publishers and Subscribers to work independently, with-
out direct knowledge of each other. This model is well suited for event driven and
asynchronous communication, which promotes flexible and scalable architecture
[16].

• Quality of Service (QoS) Configurability - DDS offers a range of Quality of Service
(QoS) settings that are configurable to meet specific requirements. QoS parameters
include settings for data reliability, delivery timeliness, resource usage, and more.
This configurability allows the system to adapt to diverse demands and eventually
improving data reliability and delivery.

41

• Real-time Capabilities - DDS guarantees that data is delivered within specified
timeframes and that delivery is predictable and reliable. This determinism is vital
for safety-critical applications. DDS is designed to meet real-time requirements by
ensuring low-latency communication and deterministic data exchange [43].

Some of the features in the context of automotive applications, which are important
requirements in enabling flexible vehicle architectures [44] are:

• Modularity and Reusability - DDS facilitates the creation of modular and reusable
software components by abstracting data-sharing and communication features, en-
abling developers to focus on specific functions or services. This modularity allows
for efficient system adaptation, reduced development time, and support for new
features integration across various automotive applications.

• Interoperability and Standardization - DDS provides a standardized communica-
tion framework, simplifying communication between components and promoting
interoperability. Its support for standardized wire protocols, software APIs, and
QoS policies, reduces integration complexities and ensures interoperability in the
diverse automotive domain. Some commercial DDS support, like RTI-Connext,
supports DDS in Robot Operating System 2 (ROS2), AUTOSAR classic, and
AUTOSAR adaptive platforms, ensuring seamless data exchange in automotive
network [19].

• Flexibility and Scalability - DDS has significance in the automobile industry be-
cause of its data-centric and decoupling mechanism, which makes it easier to inte-
grate new services or applications without significant system modifications. DDS’s
scalability ensures that it can handle the growing number of software components
and data sources within vehicles.

• Security and Safety - Security is crucial in the automotive industry, especially
for safety-critical functions. DDS offers security features like authentication and
authorization, ensuring only authorized services can access critical data, protecting
against unauthorized access. DDS standard APIs and wire protocol comply with
ISO-26262 automotive functional safety standard [19].

To asses the applicability of the DDS middleware protocol in the automotive context,
we compare its features with Scalable Service-Oriented MiddlewarE over IP (SOME/IP)
protocol, which is designed specifically for automotive applications. SOME/IP pro-
tocol was developed specifically for Ethernet-based communication in the automotive
industry. This standard defines the serialization mechanism, service discovery, and in-
tegration with the AUTOSAR stack [45]. In contrast, DDS is a full-fledged middleware
protocol standardized by the OMG group. DDS is often used as a cross-domain connec-
tivity framework, and finds application not only in aerospace, robotics, and industrial
automation but also in automotive.

SOME/IP is a object-based service oriented communication, where a services are mapped
to a specific ports on UDP/TCP and specified service IDs during design time. DDS, on

42

the other hand is more dynamic, and does not require an application to bind to partic-
ular service implementations. For example, a subscriber only subscribes to a particular
topic, which means there is no static link to server. Service IDs are invoked during
dynamic discovery, which is handled automatically by DDS [7].
SOME/IP does not define standard API and is commonly used as a part of AUTOSAR
standard API. However, DDS offers standard APIs for multiple programming languages,
including C, C++, and Java, enhancing its portability across diverse platforms. SOME/IP
provides support for both UDP and TCP for data transmission, but relies on TCP as
a fallback in case of reliable communication for larger payloads. In contrast, DDS uses
the RTPS wire protocol, which is platform-independent and can be adapted to various
network protocols. RTPS supports UDP, TCP and shared memory, which provides re-
liability and fragmentation capabilities, thus enabling large and reliable data transfer
over (multicast) UDP [32].
SOME/IP generally relies on the underlying transport for security, often utilizing Trans-
port Layer Security (TLS) or Datagram Transport Layer Security (DTLS) for secure
communication. Instead, DDS defines an additional security standard, offering a more
complete solution with finer control, access management, and transport-agnostic ca-
pabilities. This makes DDS suitable for deployment with various transport methods,
including shared memory, multicast, and custom application-defined transports [7].

The most significant advantage of DDS is its support for wide range of QoS policies.
SOME/IP provides a very limited QoS support relying on the capabilities of the under-
lying transport. DDS, on the other hand, offers a extensive array of QoS policies that
are independent of transport method. These policies allow users to specify explicitly
how the data is exchanged between publishers and subscribers. Further QoS policies
cover various aspects, including the performance, transmission priority, data reliability,
resource limits, persistence, latency/deadline monitoring, and many more. Refer [46] for
the complete list of QoS policies and their implication.
DDS also introduces several standard built-in features, including content and time-based
filtering of data on both publisher and subscriber side. This feature helps to exchange
data under specific conditions with a required frequency. But, SOME/IP lacks content
and time-based filtering, significantly impacting the automotive domain where data ex-
change occurs at various frequencies across different applications. As a result, DDS is
prepared to can meet complex and flexible data flow requirements.

In Summary, the integration of DDS features into applications can significantly increase
efficiency, reliability and real-time performance in the automotive industry. However,
customization and modifications may be necessary to align DDS with the specific needs
and constraints of the industry [47]. DDS has gained interest in the automotive sector,
and its support has been included in adaptive AUTOSAR, and there are developments
to incorporate it into AUTOSAR classic [32]. Furthermore, DDS is the middleware
adopted in ROS2, which is again a widely used in automotive applications in recent
years [48].

43

4.2 Context

The Adaptive AUTOSAR architecture is based on Service-Oriented Architecture (SOA).
A service is defined using a Service Definition, defining events, methods, and fields as
discussed in Section 2.4. The service is then modeled using a Service Interface, and both
the Service Provider and Service Consumer implement this interface. A code generator
utilizes the modeled Service Interface to create boilerplate code for the Skeleton (Service
Provider) and Proxy (Service Consumer). The Server application uses the Skeleton
to implement the interface and the Client application uses the Proxy as counterpart,
effectively transferring communication responsibilities from applications to the ara::com
middleware. The Adaptive applications can request data from within the same ECU
(intra-domain) or from external components (inter-domain). This configuration can be
done through a Service Instance deployment model during system integration, directing
ara::com to select a protocol on which it routes traffic through the network protocol.
Therefore on Adaptive AUTOSAR we have well defined structure for both intra-domain
and inter-domain communication.
In the Android context, inter-process communication is handled by Binder. which is
specifically designed for and within Android systems. Binder also provides Service-
Oriented Architecture (SOA), but it is confined within Android device. AIDL is used
to define a service interface and subsequent code generation is done for Stub (Service
Provider) and Proxy (Service Consumer) parts as explained in Section 2.2.2. Apps then
use the APIs provided by the generated code to exchange data.
Android adopts a different approach for inter-domain communication, which doesn’t
match to the service-oriented implementation in Adaptive domain. Google recommends
the use of gRPC in Android for inter-domain communication, which is based on HTTP
protocol [49]. However, in this context we focus on DDS middleware for inter-domain
communication between Adaptive AUTOSAR and Android. Given that the Adaptive
platform already incorporates DDS implementation, we focus mainly on integrating DDS
into android domain.

4.3 Integration of DDS Middleware

In this section, we address the third research question [Q3] and explore potential ap-
proaches for cross-domain interaction between Adaptive AUTOSAR and Android Auto-
motive platforms using DDS middleware. The main objective of this thesis is to establish
connectivity without compromising functionalities in both domains. The adaptive plat-
form can access data from the Android domain, such as Google navigation and in-car
temperature, while Android Automotive can use engine-related values, tire pressure, and
ADAS sensor data. This enhances the overall user experience by leveraging data from
AUTOSAR.

The interconnection of Android Automotive and Adaptive AUTOSAR faces challenges
due to their different architecture pattern and safety-critical features on AUTOSAR,
such as ADAS and autonomous driving which require real-time and reliability data

44

Publisher
(Demo)

Subscriber
(Demo)

Socket

MainActivity

System level

Android App

App

DDS Java library

DDS API

generated code

lib.so & lib.jar IDL

RTPS

Transport : UDP,
TCP,SHM

Figure 4.2: Integration of DDS library at application level

transmission. Android Automotive, on the other hand, may not guarantee real-time
performance due to its design for general purpose nature and non-deterministic behaviour
mainly focusing on better user experience rather than safety critical systems. However,
data transfer from AUTOSAR to Android is technically feasible, but limited due to
potential safety issues. This thesis, however, emphasizes the functional feasibility of data
transfer between Android Automotive and AUTOSAR, rather than addressing safety and
security concerns.

4.3.1 Approach 1: Application level

In this section, we explain the concept of integrating DDS middleware in Android at Ap-
plication level. At this level, DDS library can be integrated as part of individual Android
application. It involves incorporating DDS functionality within specific applications to
enable data distribution and communication. Android follows a layered architecture
where applications run in their own process. The integration of DDS at the application
level allows for encapsulating DDS functionality within a specific application, ensuring

45

non-interfere with other applications or the core system. Additionally, It provides more
flexibility to choose different DDS implementations. Most of the Android applications
are developed in Java or Kotlin, depending on DDS vendors we can get DDS for java
applications. The DDS code generator allows us to utilize specific language binding
for DDS library. The Java wrapper or API library uses Java Native Interface (JNI)
to invoke corresponding C++ API calls. The integration of DDS at application level
is illustrated in Figure 4.2. Here the Publisher and Subscriber generated by DDS API
interact directly with the main Android UI. DDS library with Java bindings makes it
easier for Android development.

We can configure the DDS build for specific language binding and IDL file, which defines
the communication interface and also we can configure the transport layer which we want
to use, since DDS allows pluggable transport layer.

Configuration options for DDS builds include specifying language bindings and defin-
ing the transport layer. Since Android targets multiple architectures and has various
versions, we can define the target android API version at the build stage. DDS at it’s
core, is a C++ library. It uses Android NDK to build for Android systems. Android
NDK is a tool-set that allows to cross-compile native C/C++ code for Android sys-
tems. As we buildDDS library for Java, the creation of a JNI interface, which acts as a
bridge between Java and native C++, is not necessary. DDS library with Java wrapper
creates JNI through which Java function calls invokes corresponding C++ API calls.
This JNI interface allows us to access the C++ code from our Java Application. To
achieve this, cross compile the DDS core libraries for the Android platform, by config-
uring at the build time. Then the generated shared library (.so files) and corresponding
java library (.jar files) are used to build Android application. [50] discuses about port-
ing RTPS middleware to Android using Android Software Development kit (SDK) and
NDK. The system consists of mainly two modules, the App module and the DDS Java
library module. Within the App module, there are three components, The MainAc-
tivity is used to display the UI to the user. And the two components, Publisher and
Subscriber are the demo applications relevant for communication functionality utiliz-
ing DDS API. These components initialize the DDS middleware, creates DDS entities
(DomainParticipant,Publishers,Subscribers), and handles data publication and subscrip-
tion. [50] discusses about porting RTPS to Android and Android application for robot
control. Additionally, there are few open-source DDS implementations that support
cross-platform builds for Android applications [6].

Typically, Android uses Intents, method calls or Binder mechanism for communication.
However, at application level DDS uses its own mechanism of data-centric to share data
between participants using Topic. We need to ensure that the application has necessary
network permission, since DDS relies on network communication to distribute data.
Integrating at application level challenges interoperability between different applications
and limits system-wide data sharing. It leads to multiple applications incorporating
multiple DDS instances leading to data redundancy.

46

4.3.2 Approach 2: System level

In the previous approach, we discussed the implementation of DDS middleware as a part
of Android application. However, we did not explain about the mapping of services in
AUTOSAR (events, methods and fields) to DDS. In this section, we look into implement-
ing DDS at system level and integrate the concept of service-oriented communication
with AUTOSAR domain using DDS. DDS can be integrated into the Android system
level, providing DDS functionality as a system-level service. This involves extending the
Android system service to include DDS capabilities, allowing standardized DDS service
that is readily available to all applications and system components and seamless data
sharing between applications.

To establish connectivity between two different domains using DDS middleware,it is
essential to examine the communication patterns in each architecture. As we discussed
earlier, Adaptive AUTOSAR follows a service-oriented approach, defining services in the
form of events, methods and fields. Whereas, DDS middleware is a data-centric primarily
designed for publish/subscribe model. And Android follows server-client architecture for
its IPC mechanism within the system. Therefore, it is necessary to map services from
AUTOSAR domain to Android domain for seamless interaction. To map events, methods
and fields to DDS concepts, we make use of mechanisms outlined in the OMG dds and
RPC over dds specification. DDS RPC has service mechanism for remote method calls
with pair of request topic and reply topic as discussed in Section 2.1.3. Events can be
mapped to regular Topics in DDS, simply subscribing to the corresponding DDS Topics.
Methods map to DDS Service provided by DDS RPC. Similarly, fields can be mapped
to combination of DDS service and topic [51]. Fields like getter and setter methods are
mapped to DDS service, and field notifications map to regular DDS Topics that provide
current field value. DDS offers disticnt APIs for publish/subscribe model and for RPC. In
Adaptive AUTOSAR ara::com specification, mapping of services in AUTOSAR domain
to DDS services using DDS RPC is explained in section 7.5.3 [39]. In Android domain,
IPC mechanism are handled by the Binder. Android system services are native services
running at system level in the background, facilitating applications to access these service
functionality using AIDL. Here native service acts as DDS DomainParticipants, enabling
DDS functionality as Android system service.AIDL is then used for IPC communication
between apps and the native service.

The implementation of methods and events in android are done differently. The method
implementation is comparable to AIDL method call and it is more straight forward.
The native service does the DDS method call using DDS RPC mechanism and returns
the result obtained back to the app. However, handling events, and notifiers in An-
droid services involves two AIDL methods [8]. The first AIDL method is called from
the user application and its argument must be the Binder object of the second AIDL
method interface, indicated in TODO:fig as ’subscriber(AidlInterfaceListener)’. This
registers the interface of the second AIDL method in our Android service. The second
AIDL method is invoked when an event or notifier is captured within the subscribed
’EventCallbackFunction(Data)’ function from the DDS Participant. The AIDL method

47

Socket

DDS-RPC

AIDL
method call

Android system level

Android App

subscriber(AidlInterfaceListener)
{
dds_susbscriber(EventClbkFunction)
}

EventClbkFunction(data)
{
AidlInterfaceListener.NOTIFY(data)
}

Android App

Broadcast: Intents

Android App

Events EventCallback

System Service

Android App

Methods

method call()
{
DdsRpc_methodcall()
}

AIDL
method call

DDS Library

DDS API

generated code

lib.so IDL

RTPS

Transport : UDP,
TCP,SHM

DDS
Subscriber

DDS
SubscriberListener

DDS
method call

Android app level

Figure 4.3: Integration of DDS library at system level

48

of the registered interface can be called during this process, depicted as ’AidlIFaceLis-
tener.NOTIFY(Data)’ to notify the user application. A Java Helper service can be uti-
lized to broadcast an intent to multiple apps. We need to modify the DDS API according
to our requirements and support for both publish/subscribe and RPC communication
mechanism.[8] proposes a solution with model-based code generation approach, to gen-
erate Stub and Proxy components in Android. This can be employed in the future to
simplify the usage of DDS middleware for app developers.

4.3.3 Approach 3: Middleware level

In this section we discuss about the integration of DDS as a separate middleware layer
within the android architecture. As discussed earlier in Section 2.3, Android Automotive
is an extension of Android system architecture with additional components like VHAL,
Car Service and Car Manager that are specific to automotive application. Similarly we
can adopt or integrate DDS as a middleware alongside of other component in VHAL. This
level of integration allows for a modular and scalable architecture, where DDS can be
used in conjunction with other components to meet the specific communication require-
ments of the Android system. Unlike system level integration, DDS can be integrated in
vendor service rather than Android system service, which will again be challenging for
supporting android updates and future releases. Instead, by integrating as a separate
middleware layer allows us to update our library independent of android versions. In this
concept we propose implementing DDS in VHAL layer, which can be exposed to appli-
cation level through service layer or directly using AIDL. Applications can use data from
AUTOSAR/ADAS domain by simply using the HAL modules. In Android Automotive
the VHAL layer must be implemented by the OEMs to fetch the data or car properties
from an available vehicle bus (typically CAN bus). We can implement DDS middleware
and its RTPS protocol similar to VHAL implementation. This allows to fetch data from
the DDS layer. To achieve this, we need to modify VHAL to fetch data from DDS in
vendor service and applications can then use this data by simply using the HAL modules
in the higher layers. We can make use of DDS API with the modification to our require-
ments so that it won’t be overhead in communication. Additionally, we can also combine
with the previous approach and implement DDS functionalities in both Android system
service as well as vendor service. This allows the service to communicate with both
applications and the VHAL modules directly [8]. [10] also discusses the implementation
of middleware services in vendor service and distributing data from ADAS to android
apps. In this approach we implement DDS as part of VHAL as shown in Figure 4.4.
This approach provides as integration into the existing Android Automotive Car API
based architecture. The VHAL stores the data in the form of vehicle properties which
can be used by app developers as part of car API to extract information about the car
to use in their apps. Figure 4.5 shows the sequence of operations for the get operation
from an Android app. vehicle properties can be vehicle speed, engine temperature, etc.
When a getProperty() is invoked, VHAL module request for the value from DDS service.

Vendor specific apps can also access the DDS data using Java SDK, which provides

49

DDS API

generated code

lib.so IDL

RTPS

Transport : UDP,
TCP,SHM

Car Services

AOSP / 3rd PartyApps

Socket

VHAL

DDS component

Vendor Apps

DDS component

<native>
Interface

<java>
Interface

JNI

Java binding
(.jar)

Car API

DDS Library

Android system level

Android app level

Figure 4.4: Integration of DDS library on Vehicle HAL

50

App Car Service Vehicle HAL VHAL Implementation
DDSClient

getProperty()
(property,zone)

getValue
(requestedPropValue)

propValue

propValue

propValue

getProperty()
(property,zone)

ara::com
DDS Server

property_get()

property_value

property_get()

Android Automotive Adaptive AUTOSAR

Figure 4.5: Sequence of get() operation from Android app

Java interfaces to Android vendor apps to communicate with their Adaptive platform
counterparts.This allows OEMs to have access to privileged data from DDS to vendor
specific apps. The DDS middleware would handle the data distribution aspects within
the Android system, providing a standardized interface for applications to publish and
subscribe to data. Integrating and managing an additional middleware layer requires
additional development effort and expertise. Adding a middleware layer introduces ad-
ditional complexity to the system architecture, requiring careful design and integration.

4.4 ISO 25010 based Analysis

4.4.1 Weighting of the Quality characteristics

All the quality criteria do not have same level of importance. A weightage of each quality
criteria was considered based on the relevance and maturity of the solution.

Quality char-
acteristics

Sub-
characteristics

Comments Weight

51

Compatibility - Co-existence
- Interoperabi-

lity

The system should perform its nec-
essary functions and be compat-
ible with both the existing An-
droid framework and future An-
droid versions. Furthermore, it
should be compatible with Adaptive
AUTOSAR standards to exchange
information.

5

Maintainability - Modularity
- Reusability
- Modifiability
- Testability

The system should be discreet, en-
suring minimal impact on modifica-
tions for ease of maintenance with
updates. It should also be modifi-
able without affecting functionality
and easily testable.

5

Functional Suit-
ability

- Functional com-
pleteness

- Functional cor-
rectness

- Functional ap-
propriateness

The system should provide basic
functions that meet stated require-
ments

4

Performance Ef-
ficiency

- Time behavior
- Resource utiliza-

tion
- Capacity

The system should have good timing
behavior and throughput rates with
less resource utilization

4

Usability - Operability
- Learnability
- User error pro-

tection

The system should be easily adapt-
able on evolving hardware or soft-
ware and should be easy to install

3

Portability - Adaptability
- Installability

The system should be easy to oper-
ate. It should provide a good usabil-
ity to the system integrator as well
as the app developer with minimal
effort.

3

52

Reliability - Maturity
- Availability
- Fault tolerance
- Recoverability

Although system should be reliable,
functional safety is not considered to
be relevant criteria.

3

Security - Authentication
- Confidentiality
- Integrity
- Accountability

The system is security relevant, but
this is not the main priority initially.

2

Table 4.1: Weighting of the Quality Criteria

4.4.2 Analysis

Compatibility:

Approach 1: Application level Approach 3: Middleware level

+ DDS protocol remains compatible

– DDS API should be modified to sup-
port DDS RPC required to communi-
cate with AUTOSAR

– On AAOS side, proper handling of data
must be implemented for fields and
methods, without which it would remain
incompatible

+ However, if the ara::com component or
modified DDS API is used, then com-
patibility issues could be resolved.

– The DDS API would result in compat-
ibility issues. The complete feature set
needs to be aligned with AUTOSAR

– From the System integrator perspective,
the two models must be maintained.
The services from Adaptive side should
be properly mapped to DDS and DDS
API (Including DDS RPC) to support
request-response mechanism

Score 2 3

Weighted Score 10 15

Maintainability:

Approach 1: Application level Approach 3: Middleware level

53

+ Software updates are easier to support
on app level and can be modified easily

+ Apps uses JNI APIs, which are mostly
backward compatible, meaning the
code written using an older version
should continue to function properly
with newer versions of the JDK

+ All components, including the DDS
API and transport layer, are bundled
within the app. Tools like Android
Studio makes development, debugging,
and testing processes easier

– The creation of a new app necessitates
the packaging of the DDS API and
transport layer once again

+ However, if the ara::com component or
modified DDS API is used, then com-
patibility issues could be resolved.

– The DDS API would result in compat-
ibility issues. The complete feature set
needs to be aligned with AUTOSAR

– From the System integrator perspective,
the two models must be maintained.
The services from Adaptive side should
be properly mapped to DDS and DDS
API (Including DDS RPC) to support
request-response mechanism

Score 4 3

Weighted Score 20 15

Functional Suitability:

Approach 1: Application level Approach 3: Middleware level

– The app has limited access to SOA func-
tionality, and developers need to imple-
ment it specifically within the app

– The application is confined to certain
system-level permissions, potentially af-
fecting the functionality

+ The complete SOA functionality to
support communication with AU-
TOSAR can be implemented and
directly available to apps

+ The customized DDS API to support
service-oriented communication is more
suitable

– There might be unused features of DDS
API

Score 3 4

Weighted Score 12 16

Performance Efficiency:

Approach 1: Application level Approach 3: Middleware level

54

+ Startup time is minimized as all the
components are integrated within the
apps

+ The run-time behavior is faster due to
the absence of any middleware layers,
allowing direct communication from
the app using the protocol layer

+ Less resources are required because
there are no middleware layers and less
boilerplate code

– Multiple apps each with its own DDS
implementation could lead to overhead

+ Multiple apps can access the DDS Ser-
vice at the system level

– During startup phase, system compo-
nents are initiated earlier, followed by
app components. This implies that
overall time taken for the entire startup
process would be extended

– Runtime: Since there are multiple layers
(App → AIDL → SystemService →
DDSAPI → RTPStransport), the
data must traverse through all the layers
resulting in higher timing

– RAM usage will be higher due to pres-
ence of separate middleware service

Score 4 3

Weighted Score 16 12

Usability:

Approach 1: Application level Approach 3: Middleware level

+ System integrator is not necessary, and
all the responsibilities are transferred to
the App developer. It requires exper-
tise in Android app development

– Expertise knowledge in service-oriented
communication and DDS middleware

+ From an app developer’s standpoint,
operability is simplified because of the
availability of readily accessible APIs

– System complexity and needs careful de-
sign and integration

– Expertise in Android architecture and
system level knowledge

Score 3 2

Weighted Score 12 8

Portability:

Approach 1: Application level Approach 3: Middleware level

55

+ Developing and adapting an Android
app to different API versions is made
easy by specifying the minimum API
and target versions during the build
process in Android Studio

+ The installation of the APK build file
on Android system is straightforward

– Expertise knowledge in service-oriented
communication and DDS middleware

– At system level we need to comply with
evolving Android standards.

– Building an AOSP project and debug-
ging errors during the build process can
be challenging

Score 3 2

Weighted Score 9 6

Reliability:

Approach 1: Application level Approach 3: Middleware level

+ The failure of an app component does
not impact the functionality of the An-
droid OS, making the recovery from
such failures easier

+ The possibility of errors is lesser due to
simple app level implementation

– The failure of a system component can
impact functionality and may be chal-
lenging to recover, often requiring a
restart of the entire operating system

– A larger code stack and dependencies
may introduce more sources of errors

Score 3 2

Weighted Score 9 6

Security:

Approach 1: Application level Approach 3: Middleware level

56

+ Android apps make use of the built-in
security features of the Android oper-
ating system, such as process isolation,
sandboxing, and permission-based ac-
cess controls

– An authenticating mechanism for an
app that can communicate over a net-
work does not exist within the Android
system, instead must use DDS’s inbuilt
security feature.

+ An App component’s authenticity can
be verified by the System Service com-
ponent before allowing it to communi-
cate over the network

– A system component having privileged
authentication may result in data ma-
nipulation of other components

Score 3 2

Weighted Score 6 4

Overall Score 25 21

Overall Weighted Score 94 82

Table 4.2: ISO 25010 Analysis

In summary, both the approaches have their advantages and disadvantages. It is impor-
tant to analyze our specific requirements, system architecture, use cases and trade-offs
to determine the most suitable approach. Application-level integration offers flexibility
and simplicity, while system-level integration is initially more complex but provides a
standardized approach for easier future development.

57

Chapter 5

Implementation

This chapter explains the implementation of our solution. Approach 1 explained in
Section 4.3 is implemented. We focus on a publish-subscribe model of the standard
DDS API in this solution. OpenDDS is utilized in our implementation, which is open-
source and offers build support for Android systems as well as Java language bindings.
This helps with Android application development. DDS RPC will not be part of the
implementation, since currently there are no open-source DDS API libraries for RPC
that provides build support for Android. Nevertheless, we also demonstrate a simple
method using publish-subscribe model later in this chapter. While other approaches
such as system-level integration can also be implemented, but that would require proper
designing of API and requires larger efforts. The app level approach was implemented
as a proof of concept to demonstrate the feasibility of our solution. The first section
of this chapter discusses the design modifications made to our solution. We then give
an overview of the DDS application, covering about the domain participants creation,
followed by the configuration and build process of openDDS for Android architecture.
Later, the implementation of Android DemoAPP is explained, and finally development
of openDDS application in a Linux environment.

5.1 Design Modification

In the previous sections, we explained various approaches and also their architectural
impact on various characteristics according to the ISO 25010 standard. We are making
some decisions and modifications to our approaches to implement the solution.

Despite the advantages of the system-level approach, which offers a standardized archi-
tecture for future development and integration, we decided not to adopt this approach
due to various reasons. Different vendors offer DDS middleware solutions that support
various Operating System and offer capabilities with different language bindings. We
used an open-source DDS in our thesis implementation. Currently, Android does not
rely on a single, but rather a combination of multiple stages of building and file gener-

58

Publisher
(Demo)

Subscriber
(Demo)

Socket

MainActivity

System level

Android App

DemoApp

DDS Java library

DDS API

generated code

lib.so & lib.jar IDL

RTPS

Transport : UDP

DDS Java library

DDS API

generated code

lib.so & lib.jar

RTPS

Transport : UDP

Socket

Publisher
(Demo)

Subscriber
(Demo)

Java applicat...

Linux VM

Figure 5.1: Modified design

59

ation. Android consists of modules, a component of AOSP that can be independently
built and compiled. At its core, Android relies on the Ninja build system. However,
we won’t get into the details of the Android build system. Integrating the DDS library
at the Android system level would require configuring and modifying DDS library and
building with the Android build system, requiring larger efforts and in-depth knowledge
of both DDS and the Android system.

And the middleware-level approach also provides a better integration for automotive
applications. Integrating DDS as part of VHAL implementations allows easy access to
current HAL modules in AAOS and vendor-specific applications using the Java SDK li-
brary by defining interfaces. However, as previously mentioned, creating a module at the
system level involves significant development effort in addition to in-depth understanding
of both systems. The OEMs are responsible for developing the VHAL implementation
so that it interacts with kernel modules and device drivers sufficiently. An actual VHAL
implementation would require additional development efforts and proprietary source
code from chip vendors based on the underlying hardware that is used. As a result, the
implementation of DDS at the VHAL layer, with Car API integration is excluded.

To develop and implement the proof of concept we follow the application level approach
described in Section 4.3.1, where we implement the DDS library at application level with
Java bindings. DDS with JNI bindings enables the interaction with the C++ based DDS
libraries. As a result, we don’t need to focus on the Android build system, instead, we
cross-compile the required DDS libraries for the Android platform and use them for our
application development.

The initial idea was to run the demo application in AAOS and a remote application in an
Adaptive AUTOSAR environment. The fundamental concept was to establish communi-
cation between Android Automotive and Adaptive AUTOSAR using DDS middleware.
However, developing applications in the Adaptive environment would demand additional
efforts, as it requires configuring the entire machine, setting up service interfaces, and
subsequently developing and deploying the application. Additionally, this would also
require access to a proprietary source code of an Adaptive AUTOSAR stack. Since the
development in Adaptive Platform is not a primary focus of the thesis, the Adaptive
AUTOSAR part will not be presented and implemented.

The design modification we implemented in this thesis shows the communication be-
tween two applications running on separate machines. The Android Automotive OS on
a Raspberry Pi provides the demo application and the Linux virtual machine executes
the remote application. The design modification involves the implementation of a remote
DDS application on Linux machines, utilizing the standard DDS API, thereby simplify-
ing the demonstration process. Adaptive AUTOSAR incorporates DDS as its network
binding within ara::com module. Due to DDS’s wire protocol RTPS, it is possible to
interact with any other DDS systems. So, the implementation of Adaptive application
with DDS as network binding is similar to standard DDS API with few modifications
to support client-server communication patterns with service interfaces between appli-

60

cations. Figure 5.1 shows the modifications to our approach.

There are two modules in the Android app. One is the App module which has the Main
Activity for UI related tasks, and Demo publisher and subscriber application. These
publisher and subscriber applications interact with DDS API to publish and subscribe
the data from a remote application.

5.2 DDS Application

In this section, we explain the simple DDS application with the publishing and subscrib-
ing process. Given the various DDS vendors available in the market, we chose openDDS
for our implementation since it is an open-source that offers Java bindings for the DDS
library and also provides support for Android. We explain the code in subsections for
better understanding.

5.2.1 Initializing the Participant

The first part of DDS application is initializing and creating the Domain Participant.
DDS applications begin initialization with the initial reference to the Participant Fac-
tory. The Participant Factory is a fundamental element that manages the creation
and configuration of Domain Participants within the DDS system. TheParticipantFac-
tory.WithArgs() returns a Factory reference, we can then create Participants for specific
domains. To configure the application, a configuration file must be provided as an ar-
gument, allowing developers to define and configure various parameters related to the
transport protocol, service discovery, and other settings. DDS API offers flexibility
in selecting the transport protocol like TCP, UDP or shared memory. The Domian-
Participant is created using the create participant(), where we can pass DomaiID as a
parameter, which is unique and separates different domains in the network.

public static void main(String[] args) {

//Get DomainParticipant Factory
DomainParticipantFactory dpf =

TheParticipantFactory.WithArgs(new StringSeqHolder(args));
if (dpf == null) {

System.err.println ("Domain Participant Factory not found");
return;

}
//Domain ID
final int DOMAIN_ID = 4;

//Create DomainParticipant
DomainParticipant dp = dpf.create_participant(DOMAIN_ID,

61

PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);
if (dp == null) {

System.err.println ("Domain Participant creation failed");
return;

}

5.2.2 Registering the Data Type and Creating a Topic

In the next step, we register our data type with the DomainParticipant, which defines the
structure of the data and data type to be exchanged between Publisher and Subscriber.
We need to specify the data structure by defining a data type in IDL file, this data type
is then registered with the DDS middleware. register type() operation is used to create a
data type, we can explicitly specify a type name or pass an empty string as shown here.
If an empty string is passed, then the middleware uses the identifier generated by the
IDL compile for the type. The process involves defining the data type in an IDL file and
then registering this data type with the DomainParticipant. In our implementation, we
have created an IDL file for our demo application, which will be explained later in the
next sections. In this IDL file we have defined a structure PubMessage with one string
type and three long types.

//Create Datatype, type support
PubMessageTypeSupportImpl ts = new PubMessageTypeSupportImpl();
if (ts.register_type(dp, "") != RETCODE_OK.value) {

System.err.println("ERROR: register_type failed");
return;

}

Now, we create a topic using the type support. The topic name is ’Topic’, with the
registered data type PubMessage and default QoS policy is created and associated with
the DomainParticipant (dp). While defining data types in IDL file we annotate with
@topic, which defines the data type for creating topic as explained in Section 2.1.1.

//Create Topic
Topic top = dp.create_topic("Topic",

ts.get_type_name(),
TOPIC_QOS_DEFAULT.get(), null,
DEFAULT_STATUS_MASK.value);

if (top == null) {
System.err.println("ERROR: Topic creation failed");
return;

}

62

5.2.3 Creating Publisher and DataWriter

The Publisher and DatWriter are responsible for publishing the data to DDS domain.
We create Publisher using create publisher() operation associated with the DomainPar-
ticipant. In our demo application, we create Publisher pub with default QoS. As we can
see, we pass null as an argument, typically refers to a listener that can be attached to
the Publisher for monitoring various events.

//Create Publisher
Publisher pub = dp.create_publisher(

PUBLISHER_QOS_DEFAULT.get(),
null,
DEFAULT_STATUS_MASK.value);

if (pub == null) {
System.err.println("ERROR: Publisher creation failed");
return;

}

Following the creation of the publisher, we create DataWriter. The DataWriter is for
a specific topic. In our demo application, we use the default QoS policies and a null
DataWriterListener. While it is also possible to specify the QoS like Reliability, and
durability for DataWriter, but the DataReaders must also match and be compatible
with the corresponding DataWriter’s QoS policy. Next, we should narrow the generic
DataWriter to a type-specific DataWriter and register the instance we want to publish.
As explained earlier in Section 2.1.1, the use of the @key annotation allows us to specify
the instance. In our demo application, we did not set the key. If the key field is
specified then the respective data should be specified. The example code for a simple
Java application can be found in java/tests/messenger in [52]. After narrowing down
the DatWriter, we can load the data to the message and write() operation is used to
write to specific DataWriter with message data and handle instance as arguments.

//create DataWriter specific to topic
DataWriter dw = pub.create_datawriter(

top, DATAWRITER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

PubMessageDataWriter mdw = PubMessageDataWriterHelper.narrow(dw);

//create message
PubMessage msg= new PubMessage();
msg.text= "Hello";

63

//write message to DataWriter
int ret = mdw.write(msg, HANDLE_NIL.value);

/** To register instace**/
// @key annotated in IDl
// msg.<@keyfield> = value;
// int handle = mdw.register(msg);
// int ret = mwd.write(msg, handle);
/** To register instance**/

5.2.4 Creating Subscriber and DataReader

In this section, we explain the Subscriber part of the DDS application. We create a
Subscriber similar to a Publisher associated with DomainParticipant(dp). Since we do
not use SubscriberListener, we pass null and we use default QoS policy. Status mask
can be used to check the status condition, but it’s not in the scope of this thesis.

//Create Subscriber
Subscriber sub = dp.create_subscriber(

SUBSCRIBER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

Once the Subscriber is created, we create DataReader to subscribe the data. Within
DataReader, we implement a DataReaderListener, a component responsible for notifying
the middleware upon reception of data and providing access to the received data. To
achieve this, an instance of a Listener is created using DataReaderListnerImpl(). This
is then as a parameter to create DataReader.

//Create Listener for DataReader
DataReaderListenerImpl listener = new DataReaderListenerImpl();

//Create DataReader with specific Topic
DataReader dr = sub.create_datareader(

top, DATAREADER_QOS_DEFAULT.get(), listener,
DEFAULT_STATUS_MASK.value);

The incoming messages will be received by the Listener in the middleware’s thread. when
new data arrives Listener’s methods, such as ’on data available()’, ’on subscription matched()’,
etc., are invoked within the context of the middleware’s thread. Meanwhile, the appli-
cation thread performs other tasks.

DataReaderListener class is implemented by extending ’DDS. DataReaderListenerLocalBase’,
which is an abstract class provided by the DDS library. This abstract class serves as a

64

base for creating custom DataReaderListener in our application. In our application, we
only use on data available method callback from the middleware.

public class DataReaderListenerImpl extends DDS._DataReaderListenerLocalBase {

//on_data_available callback
public synchronized void on_data_available(DDS.DataReader reader) {

//narrow down the generic DataReader to type specific
PubMessageDataReader mdr = PubMessageDataReaderHelper.narrow(reader);
if (mdr == null) {

System.err.println ("read: narrow failed.");
return;

}

Further, we create a MessageHolder object for actual Message and SampleInfoHolder to
manage the incoming messages. SampleInfo includes meta information about the mes-
sage such as the message validity, instance state, source timestamp, etc. Subsequently,
we take the next sample, which is then removed from the DataReader’s available sample
pool.

//Message Holder
PubMessageHolder mh = new PubMessageHolder(new PubMessage());
//SampleInfo Holder
SampleInfoHolder sih = new SampleInfoHolder(new SampleInfo());
//source timestamp
sih.value.source_timestamp = new DDS.Time_t();
//take next sample
int status = mdr.take_next_sample(mh, sih);

After successfully retrieving the next sample, if the data is valid in SampleInfoHolder,
then it prints the details from the PubMessage. Depending on the instance state, error
messages are printed. If status is false, it indicates that take next sample() resulted in
an error.

if (status == RETCODE_OK.value) {
if (sih.value.valid_data) {
//print the message details

System.out.println("Received: " + mh.value.text + " " + mh.value.num1);
}

} else if (status == RETCODE_NO_DATA.value) {

65

System.err.println ("ERROR: reader received DDS::RETCODE_NO_DATA!");

} else {

System.err.println("ERROR: take_next_sample_: " + status);

}

5.3 Configuration

The essential library for the project is openDDS library. The first step is to clone the
openDDS master repository [52]. We used the openDDS 3.26 release for this project.
After cloning, the next steps include configuring the build and building for the Android
target. OpenDDS developer’s guide provides the details of the configuration steps to
build on the Android architecture. In our case, we built openDDS for Android by utiliz-
ing the Android NDK, which is bundled with Android Studio. It is necessary to specify
the minimum API version and target API version for Android during the configura-
tion process. For this particular project, the configuration of the build is illustrated as
follows:

OpenDDS configure script (in root directory):
./configure --doc-group3 --target=android --macros=android_abi=arm64-v8a --macros=

android_api=28 --macros=android_ndk=/home/user/Android/Sdk/ndk/25.1.8937393 --
macros=android_sdk=/home/user/Android/Sdk --macros=android_target_api=32 --java

We built openDDS specifically for Raspberry Pi running on the arm64-v8a architecture.
Additionally, openDDS provides the option to build with Java bindings during configu-
ration. OpenDDS library was cross-compiled on a Ubuntu 22.04 LTS virtual machine.
Once the openDDS is cross-compiled, it generates two copies of openDDS, one for the
Android target in ’build/target’ directory and ’build/host’ directory. The host directory
holds the static library built for the host platform and used to build the target directory.
All the Java examples can be found in ’java/tests’ directory, which serves as the basis
for our project.

5.4 OpenDDS in Android application

In this section, we explain the cross-compiling IDL libraries and developing the Android
application.

66

5.4.1 Cross-Compiling IDL Libraries

After cross-compiling the openDDS library for the Android target, all the required li-
braries can be found in ’/lib’ directory. This directory also contains the required jar files
for the Java application development. The initial step for openDDS Android application
development is defining IDL file. In this IDL file we define the structure and the data
types that will be used to communicate between the publisher and the subscriber. For
our demo application, we defined IDL file as follows:

//module name
module Demo {

@topic // type support for simple publish-susbscribe
struct PubMessage {

string text;
long num1;
long num2;
long num3;

};

@topic // type support for method call
struct PubMessage1 {

string text;
long num1;
long num2;
long num3;

};

@topic // type support for acknowledge message
struct AckMessage {

long num;
string text;

};
};

For our Android application, we created a Demo.idl file with the module name ’Demo’.
Within this module, we define three data types or type support PubMessage, PubMes-
sage1, and AckMessage. PubMessage consists of one string and three long values and is
used for simple publish-subscribe application. And the other PubMessage1 is similar to
PubMessage, used to demonstrate the method call using two topics- ’RequestTopic’ and
’ReplyTopic’, which will be discussed in later sections.

67

OpenDDS uses The Make, Project, and Workspace Creator (MPC) build system. Next,
we need to define Demo.mpc project file to cross-compile the IDL file created earlier. In
this file, Java support for IDL can be incorporated by inheriting ’dcps java’ (assuming
that the OpenDDS library was initially built with Java). The necessary examples for
IDL and code generation for java IDL can be found in the ’/java’ sub-directory. The in-
clusion of Java support for IDL in the Demo.mpc project ensures that it is built alongside
the native IDL libraries.

source $DDS_ROOT/setenv.sh

opendds_mwc.pl && PATH=$PATH:$TOOLCHAIN/bin make

once the IDL MPC project is ready, it can be cross-compiled using the above command.
It is crucial to set the proper environment variables before building the project. All
the necessary variables are configured using ’setenv.sh’ script. During cross-compiling
the IDL, we need to specify the compiler path for the target architecture. Given that
’build/target’ has already been built for the Android architecture, ’setenv.sh’ script sets
all the required environment variables. If we would like to cross-compile independently,
then we have to make sure the appropriate environment variables are set. After the
compilation of java IDL, two components are generated - a Java .jar file and a supporting
native shared library .so file. These files are then included in the Android application
development.

5.4.2 Android App

In this section, we discuss the development of an Android demo application. To make
use of the openDDS library in an Android application, it is essential to include all
the dependent native libraries and the java .jar files of the app’s build.gradle file. In
Android.Manifest.xml file, it is necessary to add network permissions for DDS to access
WiFi. See [53] in the openDDS developer’s guide for detailed instructions on integrating
openDDS libraries into an Android app. OpenDDS uses a configuration file, where the
transport protocol and openDDS service-discovery related configurations are defined.
This configuration file is included under resource or assets files so that the Android app
can access the file stream.

Figure 5.2 shows the detailed class diagram of the demo application. Within the App
module, the components include LoginActivity, MainActivity, and DemoApplication.
Each of these components runs in separate threads. OpenDDS is implemented in De-
moApplication, LoginActivity, and Mainactivity constituting the user interface and user
interaction that runs in a separate thread.

In Android development, an Activity serves as the entry point for user interaction in
an application. Every activity is associated with a layout, which represents the UI for
interacting with the user. This layout is typically designed using XML file format. in

68

 AppCompatActivity

LoginActivity

- buttonNext : Button

onCreate(Bundle) : void

 Exception

InitOpenDDSException

+ InitOpenDDSException(String)
+ InitOpenDDSException(String, Throwable)

<<interface>>
DemoApplication::
MainActivityCallback

+ publishedText(String) : void
+ subscribedText(String) : void
+ sumText(String) : void

 AppCompatActivity

MainActivity

- demoApplication : DemoApplication = null
- networkLost: boolean = false
- selectedNumber : int
- userInputMessage : EditText
- userInputValue1 : EditText
- userInputValue2 : EditText

+ onBackPressed() : void
onCreate(Bundle): void
+ onDestroy() : void
onStart() : void
onStop() : void
+ publishedText(String) : void
+ subscribedText(String) : void
+ sumText(String) : void

 Thread

DemoApplication

- activity : MainActivity {readOnly}
- callback : MainActivityCallback
- context : Context {readOnly}
- dp : DomainParticipant = null
- dpf : DomainParticipantFactory
- dw : DataWriter
- dw_request : DataWriter

- copyAsset(String) : String
+ Data_Writer(String, int) : void
+ DemoApplication(MainActivity)
+ get_sum(int, int) : void
- initParticipantFactory() : void
+ setMainActivityCallback(MainActivityCallback) : void
+ shutdown() : void
+ start() : void

 DDS._DataReaderListenerLocalBase
<<static>>

DemoApplication::DataReaderReplyListenerImpl

+ on_data_available(DDS.DataReader) : void

 DDS._DataReaderListenerLocalBase
<<static>>

DemoApplication::DataReaderListenerImpl

+ on_data_available(DDS.DataReader) : void

1
- callback

 1
- activity

Class DemoApp

- demoApplication
 1

Figure 5.2: Class diagram of the DemoApp

69

DDS Domain Global Data Space

DataReader

Subscriber

DataWriter DataWriter

Publisher

DomainParticipant
Domain_ID : 4

Android

DataReader DataReader

Subscriber

DataWriter DataWriter

Publisher

Linux VM

DataReader

Topic name : TOPIC
Type support : PubMessage

Topic name : Request Topic
Type support : PubMessage1

Topic name : Reply Topic
Type support : AckMessage

Method_call

DomainParticipant
Domain_ID : 4

Figure 5.3: DDS domain diagram of the application

Figure 5.4: DemoApp login screen

70

Figure 5.5: DemoApp main UI screen

our app, the LoginActivity is the initial activity that starts up when the application is
launched. The LoginActivity is the first screen or interface a user sees when the app
opens. On startup, as shown in Figure 5.4, the user has the option to initiate the demo
application by clicking ’Get Started’ button. This triggers the MainActivity class, where
an instance of DemoApplication is created and OpenDDS participants are initialized.

Figure 5.5 shows the main UI screen of the App. The upper part allows the user to
input a string or message intended for publishing on DDS domain. Additionally, the
user can also specify the message count using seek bar to determine the number of mes-
sages to publish. Once the user inputs the message and message count, the message gets
published by clicking the ’Publish button’. In the DemoApplication class, the configu-
ration files are read and all the DomainParticipants are initialized accordingly. Upon
clicking ’Publish’ button, the Data writer operation is invoked. this operation takes
the user input and writes them to the DataWriter. During OpenDDS initialization,
the DataReaderListnerImpl class is initialized for DataReader. If data is available, the
listener notifies the middleware. OpenDDS has a separate worker thread for handling
these listener callbacks. However, once the data is available these callbacks can’t di-
rectly make changes to the Android UI as it’s not the main thread. To achieve this,
the MainActivityCallback interface is utilized. When the data is received in the listener
class, the MainActivityCallback is invoked to notify the user about the subscribed data
on UI text view.

This thesis focused on using the standard open-source DDS API from openDDS to

71

integrate the middleware into the Android architecture. Since there are no open-source
DDS RPC implementations on Android at the moment, we decided not to implement the
DDS RPC. But as a workaround, we implemented a simple method call using two pairs
of Topics, one for the Request topic and another for the reply topic. Since RPC requires
a synchronization process, we need a modified DDS API for server-client communication
with Adaptive AUTOSAR counterpart.

The lower section of the main user screen as shown in Figure 5.5, illustrates a simple
method call for calculating the sum of two values. To facilitate this method call process,
we use the PubMessage1 data type which was defined in Demo.idl file. AckMessage data
type is used as type support for the reply of a method call. Users can input integer
values in the text box and click ’Get Sum’ button. This triggers the ’get sum’ operation
in the DemoApplication, which writes the input values to a new DataWriter associated
with the ’RequestTopic’ similar to explained earlier. A separate DataReader is created
with ’RequestTopic’ and a listener ’DataReaderReplyListenerImpl’ class, which notifies
when data is received. The server-side implementation of this method call is executed
in a virtual Linux machine. The DDS domain diagram for our implementation is as
depicted in Figure 5.3.

5.5 Linux Application

As motioned earlier in the design modification, we are not implementing the Adaptive
AUTOSAR application. Instead, we are implementing an openDDS application in a
Linux virtual machine. In this section, we discuss how to build an openDDS library and
implement an openDDS Java application to communicate with the Android application
implemented in the previous section.

The first is to clone the master branch of openDDS git repository [52]. Following,
we configure the project for Java bindings using ’./configure –java’, and then ’make -
j$(nproc)’ to build the openDDS Java library. Once the library is successfully built, all
the shared library files (.so) and .jar files will be in ’/lib’ subdirectory. The next step is
to define an IDL file and a MPC project file to compile the IDL file and generate the
required code for application development. We use the same IDL file used before in the
Android application. In the project MPC file, we include ’opendds java’ project to build
IDL libraries for the Java application. A simple example of a Message.idl file and the
process of building a simple Java application is outlined in [54].

Once the IDL libraries and .jar files are generated, we include them in our application.
We create DemoPublisher class, with participant initialization, Topic and Publisher
creation, and finally, DataWriter creation as discussed in Section 5.2. Similarly, we
establish a DemoSubscriber class with a DataReaderListener class. After implementing
these Java classes we proceed to build them using openJDK, specifically using Java 11
for our project. It is crucial to ensure that the DomainID and Topic name matches with
the Android application. Additionally, it is also necessary to match the DataWriter and

72

Raspberry Pi

Linux VM
Ubuntu 22.04 LTS

Windows 11 PC WiFi Router AAOS

Bridged Adapter

Figure 5.6: Hardware setup

DataReader QoS. Most often the default QoS is used. Although we can modify them
according to the application’s requirements and resource availability.

5.6 Hardware Setup

Figure 5.6 depicts the hardware setup used for our project. The Windows PC serves as
the Android app’s development environment and is then used to deploy the app to the
AAOS running on a Raspberry Pi 4 model B with 2GB RAM. The AAOS image for the
Raspberry Pi is based on Android 13 [55]. In Windows PC, a virtual machine running
Ubuntu 22.04 LTS with bridge adapter network configuration is used for the openDDS
application. In this way, we can assign a unique IP address in the network for the virtual
machine.

The AAOS on the Raspberry PI boots up via an SD card that has the AAOS image
flashed onto it. Once the Android app is developed on the Windows PC, it can deployed
to the Raspberry Pi over WiFi using the Android Debug Bridge (ADB). Alternatively, we
can build the Android Application Package (APK) file for our Android app in Android
studio and copy the APK file in USB and then install on AAOS. All the components are
connected through a WiFi router.

73

Chapter 6

Evaluation

In this chapter, we evaluate the approach designed in Chapter 4 and implemented in
Chapter 5. This chapter also addresses our last research question [Q4] defined in Sec-
tion 3.1.3. In section Section 6.1, we address the issues and challenges faced during
our implementation, and DDS as a middleware package. Followed by observations of
data communication between DDS applications using Wireshark. In the last section
Section 6.3, the latency performance test was conducted.

6.1 Issues and Challenges

During the implementation phase, we faced various issues and challenges. Initially, the
goal was to deploy an Android app using Android Virtual Device (AVD) in Android
Studio as a proof of concept. However, we found out that the android emulator or AVD
runs behind a virtual router or firewall service, that isolates it from the network interfaces
of the development machine. Each emulator instance runs behind a virtual router or
firewall service and lacks support for multicast traffic [56]. Due to these limitations,
the openDDS service participants were unable to discover each other, as it relies on
multicast messages by default for participant discovery. Therefore, to overcome these
limitations in the Android virtual emulator, the development was shifted to physical
hardware, particularly the Android Automotive Operating System image running on a
Raspberry Pi.

The Android Automotive Operating System Raspberry Pi image was based on AOSP
13 [55]. This image was initially selected as a proof of concept demonstration and it
was successfully installed and the Demo APP was tested. However, it was unstable
and had issues such as random reboots and crashes, making it unsuitable for evaluating
the latency performance tests. To address this, testing was performed on an Android
smartphone running the standard Android 13. The main difference between the stan-
dard Android and AAOS image is that the Android Automotive extensions specified
in Section 2.3 are not available in standard Android. However, this will not affect the

74

scope of our implementation and evaluation, since our proposed solution operates at the
application level, and the required components from the operating system remain the
same for both the standard Android and AAOS.

6.2 Observations and Results

After development, the Demo app was deployed to an Android smartphone using Android
Studio. For the observation, we published a message from a virtual Linux machine
and subscribed to this message in Android application. We used Wireshark to capture
the packets from the network connection between the publisher application (in Linux
VM) and the subscriber application (Android smartphone). The Android application is
started as detailed in Section 5.4.2, which initializes the Subscriber and the DataReader.
Once the Android application is running, we start the Linux virtual machine. After
setting the required environmental variables, the publisher application is executed. This
initializes the Publisher and the DataWriter.

Participant announcements are the initial phase of the DDS. All the participants, which
transmit the user data using the RTPS are announced in the network using a built-in
writer identified by DATA(p) in the packet list as shown in Figure 6.1. This participant
writer records all the essential information about the participant it belongs to. We can
also observe that the destination IP address is different from the source address. This
destination is a multicast address, because RTPS discovery uses multicast to automat-
ically discover other participants on the network. We can also configure this to use
unicast.

The next packet is for Writer announcement, this is also announced using a built-in RTPS
writer called the publication writer, which is indicated by DATA(w). The publication
writer has the information about the actual DataWriters so that DataReaders can get
ready to receive messages if they match. This information includes the topic name, topic
type name, QoS policy, etc. In our application, we configured our DataWriter with the
Reliability QoS policy. As you can see once the DataWriter announcement is made, it
periodically sends the HEARTBEAT sub-message. As seen in Figure 6.1 if the matching
reader is in the network, then it will respond with an ACKNACK sub-message.

Following the DataWriter announcement, the DDS topic instance is registered, refer to
the topic instance explained in Section 2.1.1. The serialized data-carrying samples or
RTPS messages, are then written to each matching reader. The serialized message can
be seen in the highlighted area on the right side of Figure 6.1. It shows two ”Hello from
Ubuntu!” string messages that are sent every second. Figure 6.2 shows the messages
that are published from a Linux virtual machine and subscribed by the DemoApp on
an Android device. Participants are periodically announced to the network to let know
about their existence until they are destroyed. The frequency of announcing participants
can be configured, in our case, we set this Resendperiod = 1 in the configuration file
Listing 6.1.

75

. . .

Figure 6.1: Message packets in Wireshark

[common]
DCPSGlobalTransportConfig=$file
DCPSDefaultDiscovery=fast_rtps

[transport/the_rtps_transport]
transport_type=rtps_udp

[rtps_discovery/fast_rtps]
ResendPeriod=1;
};

Listing 6.1: DDS configuration file for the demo application

6.3 Performance Test

In this section, we perform the latency test for the openDDS Android application. The
objective is to measure the end-to-end time between the data being written and the
acknowledgment being received. To achieve this, we use two pairs of DDS topics, similar
to the implementation of method call in Section 5.4.2 and in Section 2.1.3. The ’pubmes-
sage topic’ is used to publish the specified size of test data and the ’ackmessage topic’
is to receive the acknowledgment. This performance test involves a synchronous hand-
shake operation, where a publisher sends test data of specified size with a sequence num-

76

Figure 6.2: DDS messages from Linux machine to Android application

ber and a subscriber responds with the same sequence number as an acknowledgment.
The time measurements are obtained using the monotonic clock offered by openDDS, it
has a separate class for handling time measurements ’ACE Time Value’ with a resolu-
tion of one nanosecond.
Test Setup
As shown in Listing 6.2, we created a new IDL file to perform the latency test. The
latency test was performed on the data sizes ranging from 64 bytes to 512 bytes. For our
message, we used the primitive long data type, and the module ’DDSPerfTest’ includes
four respective topic types to publish data of various sizes, along with one ’AckMes-
sage’ type for acknowledgment. The IDL file is compiled for both Linux machines and
cross-compiled for Android architecture. For the test, we developed a simple Android
application similar to Section 5.4.2, where on button click, it initializes all the partic-
ipants and waits for ’pubmessage topic’. Once the data is received on this topic, it
publishes the data to ’ackmessage topic’ as an acknowledgment. The total duration is
then calculated on the Linux machine upon receiving the data on ’ackmessage topic’.
On Linux application, We start the timer once the message is being written on ’pub-
message topic’ and stop it once the acknowledge message is received. The end-to-end
latency is then calculated by subtracting the start time from the stop time. We evaluate
the performance with 5000 data samples. We calculate the mean latency, minimum and
maximum latency in the test duration, and also the jitter is calculated as the standard
deviation from the expected or mean latency.

Results
Figure 6.3 shows the mean latency across various data sizes ranging from 64 bytes to

77

512 bytes. For latency comparison, we also tested end-to-end latency on openDDS
C++ applications running on the same machine. Table 6.1 shows the latency metric
comparison between openDDS C++ applications running on a Linux virtual machine
and communication between Linux to Android applications, with Android app utilizing
the openDDS Java library. From the results, it is observable that the latency between
Linux to Android app is higher compared to C++ applications running on a virtual
machine. The reason for the higher latency in Android app is due to its Java application
that runs on a virtual Java machine, which can introduce some overhead compared to
native C++ applications. Also, the network capability of hardware drivers in Android
devices is lower compared to PC hardware, which again limits the bandwidth. And it is
important to note that the tests were performed on wireless connections or WiFi on the
Android device.

module DDSPerfTest {
@topic
struct Pt64 {

long seqnum;
long value1;

...
long value15;

};
@topic
struct Pt128 {

long seqnum;
...

};
@topic
struct Pt256 {

long seqnum;
...

};
@topic
struct Pt512 {

long seqnum;
...

};
@topic
struct AckMessage {

long seqnum;
};

};

Listing 6.2: DDSPerfTest.idl for latency test

78

9488

0

10000

20000

30000

40000

50000

1 1001 2001 3001 4001 5001

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

Number of samples

Message size 64 bytes

Latency mean Latency

9790

0

10000

20000

30000

40000

50000

60000

70000

1 1001 2001 3001 4001 5001

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

Number of samples

Message size 128 bytes

Latency mean Latency

10092

0
5000

10000

15000
20000
25000
30000

35000
40000
45000

50000

1 1001 2001 3001 4001 5001

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

Number of sample

Message size 256 bytes

Latency mean Latency

11410

0

10000

20000

30000

40000

50000

60000

1 1001 2001 3001 4001 5001

La
te

n
cy

 (
m

ic
ro

se
co

n
d

s)

Number of samples

Message size 512 bytes

Latency mean Latency

Figure 6.3: Latency measurements for various data sizes

Latency
Metric
(ms)

64 bytes 128 bytes 256 bytes 512 bytes

L-L L-A L-L L-A L-L L-A L-L L-A

Mean 0.276 9.488 0.282 9.790 0.287 10.092 0.288 11.410

Min 0.259 3.669 0.263 3.734 0.262 4.226 0.261 3.466

Max 10.752 51.000 12.000 62.470 8.584 47.903 11.868 49.709

Std dev
(Jitter)

0.423 8.829 0.520 9.039 0.593 9.096 0.526 9.603

Table 6.1: Latency metrics
L-L : C++ applications on Linux VM

L-A: C++ application on Linux VM & Java application on Android 13

79

Chapter 7

Conclusion

This chapter provides a summary of the contributions and conclusions from the thesis
work. It also suggests ideas for future work.

7.1 Summary

This thesis examined the possibility of establishing the inter-domain communication be-
tween Android Automotive and Adaptive AUTOSAR domains using DDS middleware
protocol. DDS functionalities were analyzed to achieve service-oriented communication
between these two domains. In this thesis work, we formulated the four research ques-
tions, which mainly addressed the capabilities of DDS as a middleware, and the concepts
of integrating DDS library at different architecture levels for inter-domain communica-
tion.

The first research question [Q1] addresses the key features offered by DDS for service-
oriented communication and its significance in automotive applications. In the second
research question [Q2], the key challenges and communication requirements between dif-
ferent architectures such as Android Automotive and Adaptive platforms are discussed.
This also addresses how these communication requirements can be established using
DDS. In the third question [Q3], communication patterns and requirements in the An-
droid system are examined and different approaches for integrating DDS library into
the Android architecture are discussed. These approaches were further analyzed using
the ISO 25010 standard. OpenDDS library was implemented with Java bindings. The
choice of DDS vendor is more up to the solution provider and system requirements.
The RTPS protocol makes it easier for intercommunication between different DDS ven-
dors and applications with different language bindings. As a proof of concept openDDS
was implemented at the Android application level, where the cross-compiled openDDS
Java library is included in the Android app. Some modifications were made to the
implemented solution and testing was performed on physical hardware, with Android

80

Automotive running on Raspberry Pi as the client and the Server application running
on a Ubuntu virtual machine. It was observed that the openDDS Android application
successfully discovers the service from the virtual machine. Both the publish-subscribe
communication pattern and a simple method call pattern using DDS API were success-
fully demonstrated between the server and client applications.

Finally, in the fourth question [Q4], timing measurements were conducted to calculate
end-to-end latency between DDS applications. Latency measurements between DDS
applications for various data sizes were measured. From the results, it was observed
that the processing time in the Android system is higher compared to applications on
the Ubuntu virtual machine on a PC.

7.2 Future Work

Modified DDS API
As discussed in Section 4.3 we used opensource standard DDS API for our Android app
development. To have seamless integration of DDS middleware for inter-domain commu-
nication it is necessary to have a modified DDS API that supports the communications
patterns and service features in Adaptive AUTOSAR. Current open-source DDS follow
OMG standard for distributed systems. Therefore, we need a modified API specifically
designed for automotive In-vehicle communication, so that we can get rid of unnecessary
features and reduce the overhead.

VHAL and system level integration
Integrating DDS middleware at a system level and VHAL layer provides a more standard-
ized approach for future development. The AOSP source code allows implementation
of custom native system services, by which we can implement DDS library as a system
service and offer various services to the applications. Additionally,AOSP has an emu-
lated VHAL layer used for building the AAOS emulator image, providing a reference
for VHAL implementation. This solution can be extended to include the integration of
DDS library to incorporate service-oriented communication from the Adaptive domain
into the existing AAOS-Car API based architecture, as explained in Section 4.3.3.

Model-based code generation
The Adaptive platform incorporates model-based code generation for generating all the
components necessary for data exchange between applications based on a ARXML file.
Similarly, a software tool can be developed that generates all the components required
for communication between AAOS and the Adaptive platform from a DDS IDL file. This
tool would allow developers to model the service interface and automate all the steps on
the Android side. As a result, app developers would only need to use the APIs provided
by the code generator in the apps, reducing the development process.

81

Bibliography

[1] Object Management Group (OMG). Data distribution service for real-time systems
(dds) - rpc over dds version 1.0. Online, 2017.

[2] Android Developers. Android platform guide. Online, 2023.

[3] Author’s Name. Android binder framework. Online, 2019.

[4] Peter Gessler. Android automotive embedded os whitepaper. Online, 2020.

[5] AUTOSAR. Autosar ara comapi. Online, 2022.

[6] OpenDDS. Introduction to opendds. Online, Year.

[7] Marcel Rumez, Daniel Grimm, Reiner Kriesten, and Eric Sax. An overview of auto-
motive service-oriented architectures and implications for security countermeasures.
IEEE Access, 8:221852–221870, 2020.

[8] Dušan Kenjić, Dušan Živkov, and Marija Antić. Automated data transfer from
adas to android-based ivi domain over some/ip. IEEE Transactions on Intelligent
Vehicles, 8(4):3166–3177, 2023.

[9] Dušan Kenjić, Marija Antić, and Dušan Živkov. Service-oriented communication
between adas and ivi domains in automotive solutions. 2022.

[10] Luka Bilac, Dusan Stanisic, Dusan Kenjic, and Marija Antic. One solution of an
android in-vehicle infotainment service for communication with advanced driver
assistance system. In 2022 45th Jubilee International Convention on Information,
Communication and Electronic Technology (MIPRO), pages 1420–1425, 2022.

[11] Wan-Hua Cao, Bei Me, Hai-Xin Wu, and Xiong Cheng. Design of publish/subscribe
middleware based on dds. Jisuanji Gongcheng/ Computer Engineering, 33(18):78–
80, 2007.

[12] Michael James Michaud, Thomas R. Dean, and Sylvain P. Leblanc. Attacking omg
data distribution service (dds) based real-time mission critical distributed systems.
2018 13th International Conference on Malicious and Unwanted Software (MAL-
WARE), pages 68–77, 2018.

82

[13] Paulo Neves, Rodrigo Santos, and Hugo Oliveira. Towards real-time big data stream
analytics. Future Internet, 15:24, 2021.

[14] Object Management Group (OMG). Data distribution service for real-time systems
(dds) - interoperability wire protocol specification (rtps) version 2.3. Online, Year.

[15] Nanbor Wang, Douglas C. Schmidt, Hans van’t Hag, and Angelo Corsaro. To-
ward an adaptive data distribution service for dynamic large-scale network-centric
operation and warfare (ncow) systems. In MILCOM 2008 - 2008 IEEE Military
Communications Conference, pages 1–7, 2008.

[16] The DDS Foundation. What is dds? Online, Year.

[17] Object Management Group (OMG). Corba interface definition language (idl) ver-
sion 4.2. Online, Year.

[18] eProsima. Fast dds documentation. Online, 2019.

[19] RTI Real-Time Innovations. Getting started with rti connext dds. Online, 2020.

[20] Object Management Group (OMG). Dds-dlrl version 1.4. Online, 2015.

[21] eProsima. eprosima fast rtps user manual. Online, 2014.

[22] Wikipedia. Android (operating system). Online, 2023.

[23] Android Open Source Project. Android source code documentation: Kernel. Online,
2023.

[24] google blog. Treble plus one equals four. Online, 2020.

[25] Android Open Source Project. Android source code documentation: Vehicle system
isolation. Online, 2023.

[26] Chris Simmonds. Introduction to aaos. Online, 2021.

[27] AUTOSAR. Autosar platform design. Online, 2022.

[28] AUTOSAR. Autosar software architecture. Online, 2022.

[29] Mehmet Çakir, Timo Häckel, Sandra Reider, Philipp Meyer, Franz Korf, and
Thomas C. Schmidt. A qos aware approach to service-oriented communication
in future automotive networks. CoRR, abs/1911.01805, 2019.

[30] Philipp Obergfell, Stefan Kugele, and Eric Sax. Model-based resource analysis and
synthesis of service-oriented automotive software architectures. In 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS), pages 128–138, 2019.

83

[31] Fetiha Ben Cheikh, Mohamed Anis Mastouri, and Salem Hasnaoui. Implement-
ing a real-time middleware based on dds for the cooperative vehicle infrastructure
systems. In 2010 6th International Conference on Wireless and Mobile Communi-
cations, pages 492–497, 2010.

[32] Claudio Scordino, Angela Gonzalez Mariño, and Francesc Fons. Hardware acceler-
ation of data distribution service (dds) for automotive communication and comput-
ing. IEEE Access, 10:109626–109651, 2022.

[33] Stefan Kugele, David Hettler, and Jan Peter. Data-centric communication and
containerization for future automotive software architectures. In 2018 IEEE Inter-
national Conference on Software Architecture (ICSA), pages 65–6509, 2018.

[34] Basem Almadani, Najood Alshammari, and Anas Al-Roubaiey. Adaptive cruise
control based on real-time dds middleware. IEEE Access, 11:75407–75423, 2023.

[35] Wikipedia. Android automotive. Online, 2023. 10.26.2023.

[36] Gianpaolo Macario, Marco Torchiano, and Massimo Violante. An in-vehicle info-
tainment software architecture based on google android. In 2009 IEEE International
Symposium on Industrial Embedded Systems, pages 257–260, 2009.

[37] Simon Fürst and Markus Bechter. Autosar for connected and autonomous vehicles:
The autosar adaptive platform. In 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshop (DSN-W), pages 215–
217, 2016.

[38] Dušan Kenjić, Marija Antić, and Tihomir Andelić. Theoretical aspects of auto-
matically generated service-oriented communication between adas and ivi domains.
In 2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC),
pages 87–92, 2022.

[39] AUTOSAR. Autosar software specification communication management. Online,
2022.

[40] Dušan Kenjić, Dušan Živkov, and Marija Antić. Automated data transfer from
adas to android-based ivi domain over some/ip. IEEE Transactions on Intelligent
Vehicles, 8(4):3166–3177, 2023.

[41] Author’s Name (if available). Title of the document. Online, Year.

[42] AUTOSAR. Autosar adaptive platform standards. Online, 2023.

[43] eProsima. Fast dds real-time use cases. Online, 2023. 11/23.

[44] RTI ITK Engineering GmbH. Enabling flexible vehicle architectures with autosar
and dds. Online, Year. 10/23.

[45] AUTOSAR. Autosar prs: Some/ip protocol. Online, 2017. 11/2023.

84

[46] Object Management Group (OMG). Data distribution service (dds) version 1.4.
Online, 2015. 11/2023.

[47] Markus Helmling Alexander Mayr. Middleware protocols in the automobile:
Service-oriented, data-centric or restful? Online, 2020. 11/2023.

[48] Michael Pöhnl, Alban Tamisier, and Tobias Blass. A middleware journey from
microcontrollers to microprocessors. In 2022 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 282–286, 2022.

[49] gRPC. grpc: A high-performance, open-source universal rpc framework. Online,
Year. 11/23.

[50] Pavel P´ıˇsa Martin Vajnar, Michal Sojka. Porting of real-time publish-subscribe
middleware to android. Online, Year. 11/23.

[51] Fernando Garcia-Aranda. Integrating dds into the autosar adaptive platform. Blog
Post, 2023. 11/23.

[52] OpenDDS. Opendds github repository. Online, 2023. 06/23.

[53] OpenDDS. Opendds android build guide. Online, 2023. 11/23.

[54] Adam Mitz. Opendds java example github repository. Online, 2023. 08/23.

[55] Damian Petrecki. Android automotive os 13 on raspberry pi 4b. Online, 2023.
10/23.

[56] Android Developers. Emulator networking. Online, 2023. 11/23.

85

	Introduction
	Problem Statement
	Research Methodology
	Document Structure

	Preliminaries
	dds
	dds Architecture and Features
	dds Communication Model
	DDS RPC

	Android
	Android Platform Architecture
	Android IPC
	Android Interface Definition Language (AIDL)

	Android Automotive
	autosar Adaptive
	Adaptive autosar Architecture
	Communication Management
	Communication Paradigms

	State of the art
	dds Middleware in Automotive Systems
	Android Automotive and AUTOSAR platforms
	Integration of Middleware in Automotive Systems
	Research Questions

	Concept
	dds and its Key Features
	Context
	Integration of dds Middleware
	 Approach 1: Application level
	 Approach 2: System level
	 Approach 3: Middleware level

	ISO 25010 based Analysis
	Weighting of the Quality characteristics
	Analysis

	Implementation
	Design Modification
	dds Application
	Initializing the Participant
	Registering the Data Type and Creating a Topic
	Creating Publisher and DataWriter
	Creating Subscriber and DataReader

	Configuration
	OpenDDS in Android application
	Cross-Compiling idl Libraries
	Android App

	Linux Application
	Hardware Setup

	Evaluation
	Issues and Challenges
	Observations and Results
	Performance Test

	Conclusion
	Summary
	Future Work

	Bibliography

