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Abstract: The mechanical properties of parts produced by laser-based powder bed fusion (LPBF)
are mainly determined by the grain structure in the material, which is governed by the cooling rate
during solidification. This cooling rate strongly depends on the scan velocity and the absorbed
laser power. Experiments with varying process parameters were performed to develop and validate
an analytical model that predicts the hardness of printed AlSi10Mg parts. It was found that it is
possible to tune the hardness of additively manufactured parts of AlSi10Mg in a range between
60 ± 9 HV0.5 and 100 ± 10 HV0.5 by adjusting the cooling rate during solidification with adapted
process parameters.
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1. Introduction

The large variety of process parameters used for laser-based powder bed fusion (LPBF)
allows for the individual production of parts with a wide range of specific properties. How-
ever, the parameters are commonly optimized to only achieve parts with high density and
usually not with respect to mechanical properties. Strategies to enhance the quality of the
manufactured parts have been summarized by Ravalji and Raval [1]. Investigations of the
influence of curved surfaces of additively manufactured parts have shown that geometry
has a significant influence on high-cycle fatigue properties [2]. Geometrical optimization [3]
and multi-material approaches [4] have been presented to yield tailored, lightweight and
mechanical properties of components produced by LPBF. Since the mechanical properties of
the produced parts are only insufficiently predictable with the present state of knowledge,
the majority of additively manufactured parts are post-processed by heat treatment [5,6].

The mechanical properties of the parts printed by LPBF are largely determined by the
cooling rate during solidification, which influences the grain structure of the material [7,8].
High cooling rates lead to smaller grain sizes [7,8]. The influence of the grain size on
mechanical properties is described by the Hall-Petch relationship, which states that a
decrease of grain size leads to an increased yield strength of the material [9], which in turn
is proportional to the hardness [10–13]. The application of the Hall-Petch relationship has
been shown for LPBF-manufactured stainless steel 316L, high nitrogen steel, maraging
steel 300, and CuNiSi [14]. The influence of the process parameters on the grain size has
not been investigated. Esmaeilizadeh et al. [15] presented an investigation of the influence
of the scan velocity of the laser beam on the mechanical properties of Hastelloy X with
otherwise constant parameters. It was found that the mechanical properties were improved
with increasing scan velocity. The investigation of the mechanical properties as a function
of grain size showed a good agreement with the Hall-Petch relationship.
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The influence of the process parameters on absorptance plays a major role in the
interaction between the laser beam and the processed material, and has already been
investigated for AlSi10Mg and other materials suitable for LPBF [16–21].

The influence of the incident laser power PL and the scan velocity v of the laser beam
on the resulting mechanical properties of parts made of AlSi10Mg remains the subject of
investigations.

Therefore, the present study reports on the determination of the influence of PL and v on the
cooling rate, and hence, the resulting hardness. The process parameters used in the experiments
covered the full optimum process window given by 2000 W/mm < PL/db < 5200 W/mm,
where PL is the incident laser power and db is the diameter of the laser beam on the surface of
the workpiece, and were limited to dimensionless Péclet numbers of Pe = (db·v)/κ ≤ 16/π
to match the case of three-dimensional heat flow [22–24]; where κ = λth/(ρ·cP) is the
temperature conductivity, λth is the thermal conductivity, ρ is the density, and cP is the
specific heat capacity of the material. Within these constraints, the cooling rate of the
processed bead of AlSi10Mg-parts generated by LPBF and the resulting hardness is tunable
by varying PL and v.

In the following sections, we first introduce the theory and then describe the exper-
imental setup, as well as the generation, preparation, and analysis of the samples, after
which the influence of the process parameters on the cooling rate and the hardness of the
parts is presented. Finally, a discussion of the results extrapolates how the hardness of
additively manufactured AlSi10Mg parts can be tuned by adjusting the cooling rate with
properly adapted process parameters.

2. Theory

The Vickers hardness
HV = k·σy (1)

of aluminium and aluminium alloys is proportional to the yield strength σy, with the
proportionality factor k ranging between 2.49−1 and 2.74−1 [10,11]. According to the
Hall-Petch-Relationship [9], the yield strength is given by

σy = σ0 +
C√
dc

, (2)

where σ0 ≈ 35 N/mm2 is the yield strength of the single crystal of aluminium, C is the
resistance of the grain boundary ranging between 60 and 280 N·√µm

mm2 [25–28], which will be
used as a fit-factor C f it in the following, and dc is the diameter of the grain size [9]. The
grain size

dc = dSDAS = KHP·
(
−

.
T
)−n

(3)

can be expressed by the secondary dendrite arm spacing dSDAS [7,29,30] and is a function
of the cooling rate −

.
T, where KHP = 165 µm s−n

K−n and n = 0.4 for the used aluminium
alloy AlSi10Mg [8].

Inserting Equations (3) and (2) with C = C f it in Equation (1) yields the Vickers hardness

HV
( .

T
)
= k·

σ0 +
C f it√

KHP·
(
−

.
T
)−n

 (4)

as a function of the cooling rate −
.
T.

The diameter of the moving laser beam used in LPBF typically ranges between 25
and 200 µm. Taking this, the spatial extent of the considered volume, and the low Péclet
numbers into account, the heat flow during the LPBF process may be modeled by solving
the three-dimensional heat-conduction equation for a point source moving in positive
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x-direction on the surface of a semi-infinite body [31,32]. With the origin of the coordinate
system at the location of the point source, the resulting temperature

T(z = y = 0, x < 0) = − ηAbs·PL
2·π·λth·x

+ Tamb (5)

on the irradiated surface (z = 0) along the beam path (y = 0) behind the moving point
source (x < 0) is a function of the absorbed laser power ηAbs·PL, the thermal conductivity
λth, and the distance x from the point source [31,32], where ηAbs is the absorptance in
the interaction zone and Tamb is the ambient temperature as given by the pre-heating of
the substrate.

Therefore, the location of solidification behind the heat source is given by

xsol = −
ηAbs·PL

2·π·λth·(Tsol − Tamb)
, (6)

where Tsol is the solidification temperature of the processed material.
The differentiation of Equation (5) yields the temperature gradient

∂T
∂x

= G(x, ηAbs, PL) =
ηAbs·PL

2·π·λth·x2 (7)

at the distance x behind the point source in the scan direction (positive x-direction).
Inserting Equation (6) in Equation (7), this temperature gradient is found to be

Gxsol (ηAbs, PL) =
ηAbs·PL

2·π·λth·
(
− ηAbs ·PL

2·π·λth ·(Tsol − Tamb)

)2 = 2·π·λth·(Tsol − Tamb)
2· 1

ηAbs·PL
(8)

at the position of solidification xsol .
Multiplication of Equation (8) with the scan velocity v results in the cooling rate

−
.
Tsol(v, ηAbs, PL) = Gxsol (ηAbs, PL)·v = 2·π·λth·(Tsol − Tamb)

2· v
ηAbs·PL

(9)

at the position of solidification xsol in the centre of the bead. Hence, the cooling rate −
.
Tsol

during solidification is proportional to the scan velocity v and the inverse of the absorbed
laser power ηAbs·PL.

By inserting Equation (9) in Equation (4), it follows that the Vickers hardness

HV(v, ηAbs, PL) = k

·

σ0 +
C f it√

KHP ·
(

2·π·λth ·(Tsol − Tamb)
2· v

ηAbs ·PL

)−n

 (10)

can be expressed as a function of the process parameters scan velocity v and absorbed laser
power ηAbs·PL.

3. Materials and Methods

AlSi10Mg, with a distribution of the size of the powder particles between 20 and
56 µm [33], was used for the experiments. The material properties are listed in Table 1.

Table 1. Material properties used for AlSi10Mg [34,35].

cP in J
kg·K ρ in kg

m3 λth in W
m·K κ= λth

ρ·cP
in m2

s Tsol in ◦C

910 2680 140–170 5.74–6.97·10−5 550–600
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The samples used for the analysis of the hardness were generated with an industrial
LPBF-machine TruPrint3000 from TRUMPF Laser- und Systemtechnik GmbH (Johann-
Maus-Straße 2, Ditzingen, Germany). A modified substrate plate was used providing
multiple boreholes for screws. The screws were used to fix aluminum sheets, which served
as the substrates, on which the samples were generated. This allowed for simple and
quick removal of the produced samples. Figure 1 illustrates the generation of the samples,
with the first layer on a support structure (left) and with n layers after the processing time
t (right). The support structure was implemented to ensure commonly used conditions
as the majority of the manufactured parts are built on top of support structures. The
processing space in the closed machine was continuously flushed with nitrogen as a
shielding gas with a maximum of 0.3% oxygen [33,36]. The substrate temperature was set to
Tamb = 200 ◦C. The parts were generated on top of standardized support structures of the
type “block” supplied by TRUMPF with a height of 5 mm and a line distance of the supports
of 1 mm.
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Figure 1. Illustration of the samples produced on removable substrate sheets.

Cubes with an edge length of 10 mm were generated for the present investigation. The
height of the applied powder layers was set to 60 µm. The layers were molten, using the
chess hatch with zig-zag vectors with a hatch distance of 210 µm for all experiments. The
chess pattern was shifted by 4.02 mm in the x-direction and by 5.44 mm in the y-direction
for each new layer to reduce the directionality of the sample. The vectors inside the pattern
were either parallel or perpendicular to the contour of the cube, as shown in Figure 2.

Table 2 lists the applied parameters. The values of the absorptance ηAbs were taken
from Leis et al. [21], as the absorptance is influenced by the incident laser power PL and
the diameter db of the beam on the surface of the sample. The experiments were per-
formed within the optimum process window 2000 W/mm < PL

db
< 5200 W/mm for

AlSi10Mg [24] and with Péclet numbers smaller than Pe = (db·v)/κ ≤ 16/π to match
the case of three-dimensional heat flow [22–24], ensuring that the temperature distribu-
tion could be approximated by Equation (5). The parameters were selected in such a
way that the aforementioned requirements were met and the parts could be produced
using TruPrint3000.
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Figure 2. A single layer during the generation of the cube. The beam path vectors inside of the
patterns are either perpendicular or parallel to the contour.

Table 2. Process parameters used to generate the cubic samples. The values of the absorptance ηAbs
were taken from [21].

ηAbs in 1 [21] ±5 % PL in W db in µm PL/db in W/mm v in mm/s Pe in 1 (λth=150 W
m·K )

0.46 250 100 2500 1000 1.63
0.46 450 200 2250 1500 4.88
0.46 450 200 2250 750 2.44
0.46 450 200 2250 1000 3.25
0.46 250 100 2500 600 0.98
0.53 420 100 4200 1300 2.11
0.46 450 200 2250 500 1.63
0.46 250 100 2500 200 0.33
0.54 450 100 4500 750 1.22
0.46 450 200 2250 250 0.81
0.54 450 100 4500 500 0.81
0.51 350 100 3500 200 0.33
0.54 450 100 4500 200 0.33

The hardness values of the generated samples were determined according to Vickers
in the small force range of HV0.5 in N/mm2.

The hardness of the generated samples was measured with a Carat 930 from ATM
GmbH. The samples were ground to the center and then stepwise polished down to
a diamond suspension of 3 µm before the hardness was measured. The hardness was
measured at 30 different positions, as shown in Figure 3. This allowed the investigation of
the influence of building height (sections 1, 2, and 3). Three samples were produced and
characterized for each set of parameters.



Metals 2022, 12, 2000 6 of 10

Metals 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

Table 2 lists the applied parameters. The values of the absorptance 𝜂  were taken 
from Leis et al. [21], as the absorptance is influenced by the incident laser power 𝑃  and 
the diameter 𝑑  of the beam on the surface of the sample. The experiments were per-
formed within the optimum process window 2000 W/mm < < 5200 W/mm  for 
AlSi10Mg [24] and with Péclet numbers smaller than 𝑃𝑒 = (𝑑 ∙ 𝑣)/𝜅 ≤ 16/𝜋 to match the 
case of three-dimensional heat flow [22–24], ensuring that the temperature distribution 
could be approximated by Equation (5). The parameters were selected in such a way that 
the aforementioned requirements were met and the parts could be produced using 
TruPrint3000. 

Table 2. Process parameters used to generate the cubic samples. The values of the absorptance 𝜂  
were taken from [21]. 𝜼𝑨𝒃𝒔 in 1 [21] ±𝟓 % 𝑷𝑳 in W 𝒅𝒃 in µm 𝑷𝑳/𝒅𝒃 in W/mm 𝒗 in mm/s 

𝑷𝒆 in 1 (𝝀𝒕𝒉  = 𝟏𝟓𝟎 W
m·K

) 
0.46 250 100 2500 1000 1.63 
0.46 450 200 2250 1500 4.88 
0.46 450 200 2250 750 2.44 
0.46 450 200 2250 1000 3.25 
0.46 250 100 2500 600 0.98 
0.53 420 100 4200 1300 2.11 
0.46 450 200 2250 500 1.63 
0.46 250 100 2500 200 0.33 
0.54 450 100 4500 750 1.22 
0.46 450 200 2250 250 0.81 
0.54 450 100 4500 500 0.81 
0.51 350 100 3500 200 0.33 
0.54 450 100 4500 200 0.33 

The hardness values of the generated samples were determined according to Vickers 
in the small force range of HV0.5 in N/mm2.  

The hardness of the generated samples was measured with a Carat 930 from ATM 
GmbH. The samples were ground to the center and then stepwise polished down to a 
diamond suspension of 3 µm before the hardness was measured. The hardness was meas-
ured at 30 different positions, as shown in Figure 3. This allowed the investigation of the 
influence of building height (sections 1, 2, and 3). Three samples were produced and char-
acterized for each set of parameters.  

 
Figure 3. Illustration of the measurement positions to determine the hardness at different locations 
in the samples. 

Figure 3. Illustration of the measurement positions to determine the hardness at different locations in
the samples.

4. Results and Discussion

Figure 4 shows the cooling rates −
.
Tsol as a function of the process parameters,

according to Equation (9). The green dashed line represents the cooling rates assum-
ing λth = 150 W

m·K and Tsol = 585 ◦C. The upper dotted line results when assuming
λth = 170 W

m·K and Tsol = 600 ◦C, and the lower dotted line corresponds to λth = 140 W
m·K

and Tsol = 550 ◦C. Therefore, the green shaded area represents the uncertainty on the
cooling rates

.
Tsol due to the variable material properties of AlSi10Mg, which are shown

in Table 1. This variation in material properties may be due to batch-dependent varying
contents of alloying elements, even when they are still within the standardized material
definition. For example, the silicon content may vary between 9 and 11 wt.%, which influ-
ences melting temperatures [37]. The same ranges will also be considered in the following
discussion. The red dots mark the calculated cooling rates resulting from the applied
process parameters listed in Table 2, assuming λth = 150 W

m·K and Tsol = 585 ◦C. The
horizontal error bars stem from the possible variation of the absorptance ηAbs ± 5 %.
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Figure 4. Cooling rate according to Equation (9). The green shaded area illustrates the uncertainty
due to variations of the material (see text). The dots show the parameters used to prepare the samples.

The blue dashed line in Figure 5 shows the hardness according to Equation (4) using
the quantities mentioned above, C f it = 170 N·√µm

mm2 , λth = 150 W
m·K , Tsol = 585 ◦C, and

k = 2.615−1. The dots show the hardness values measured in the different sections (cf.
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Figure 4), where the cooling rate was calculated with Equation (9) using the same values
as for the blue dashed line. The light blue shaded area represents the uncertainty result-
ing from the variable material properties of AlSi10Mg listed in Table 1, an uncertainty of
C f it = 170 ± 10 N·√µm

mm2 , and the range of k = (2.615± 0.125)−1. The vertical error bars
of the measurements show the standard deviation of the 30 hardness values measured
in the same section on three samples. The horizontal error bars of the measurements
show the uncertainty resulting from the variable material properties of AlSi10Mg listed in
Table 1, an uncertainty of C f it = 170 ± 10 N·√µm

mm2 , and the range of k = (2.615± 0.125)−1.
Notably, the hardness of the upper section 3 (further away from the support structure)
is higher than the one of the lower sections (closer to the support structure). This influ-
ence is diminishing with increasing distance from the support structure (the difference
between section 2 and section 3 is smaller than the difference between section 1 and section
2). Due to the proximity of section 1 to the support structures, lower cooling rates are
expected compared to the ones assumed in the model, which is also reflected by the lower
hardness in the experimental results. Despite this low dependence, the majority of the
measured hardness values are within the blue shaded band predicted by the proposed
theoretical model.
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Figure 5. Hardness in HV0.5 as a function of the calculated cooling rate. The blue dashed line
corresponds to Equation (4). The uncertainty due to the variable material properties is represented
by the blue shaded area. The points show the experimentally measured hardness averaged over
30 measurements, where the cooling rate was calculated using Equation (9). The height of the error
bars shows the standard deviation of the measurements; the length of the error bars in horizontal
direction shows the uncertainty due to the variable material properties.

The orange dashed line in Figure 6 corresponds to the proposed model given by
Equation (10) with λth = 150 W

m·K , Tsol = 585 ◦C, C f it = 170 N·√µm
mm2 , and k = 2.615. The

light orange shaded area indicates the same material-related uncertainty as mentioned
above. The red dots show the hardness as an average across all measurements in the three
sections, and over the three samples produced with the same process parameters. The error
bars of the hardness are again given by the standard deviation. The horizontal error bars
take into account the possible variation of the absorptance ηAbs ± 5 %. The results show an
excellent agreement between the proposed model and the experimental findings.
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Figure 6. Hardness in HV0.5 as a function of the process parameters. The yellow dashed line
corresponds to the proposed model given by Equation (10). The uncertainty due to the variable
material properties is represented by the light orange shaded area. The points show the experimentally
measured hardness averaged over 90 measurements in the three sections. The height of the vertical
error bars shows the minimum and maximum values of the standard deviation, which are shown in
Figure 5. The error bars in x-direction show the possible variation of the absorptance ηAbs ± 5% as
shown in Table 2.

5. Conclusions

This study demonstrates that the hardness of LPBF parts of AlSi10Mg can be tuned by
adjusting the scan velocity v and absorbed laser power ηAbs·PL. The agreement between
the derived model and the experimental results is very high, which eliminates the need
for elaborate material analyses, such as electron backscatter diffraction (EBSD) and other
characterizations, to predict the mechanical properties. This confirms that the approach
of modeling the LPBF process based on the three-dimensional heat-conduction equation
with a moving point source is viable. Within the optimum process window, this knowledge
makes it possible to tune the hardness of additively manufactured parts of AlSi10Mg in a
range between 60 HV0.5 and 100 HV0.5 for Tamb = 200 ◦C simply by adjusting the cooling
rate during solidification with an appropriate choice of the processing parameters.

Future work will be devoted to the application of the derived model on complex parts
and other materials suitable for LPBF.
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