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Abstract: The excellent π-accepting azodicarboxylic esters adcOR (R = Et, iPr, tBu, Bn (CH2-C6H5)
and Ph) and the piperidinyl amide derivative adcpip were used as bridging chelate ligands in
dinuclear Re(CO)3 complexes [{Re(CO)3Cl}2(µ-adcOR)] and [{Re(CO)3Cl}2(µ-adcpip)]. From the
adcpip ligand the mononuclear derivatives [Re(CO)3Cl(adcpip)] and [Re(CO)3(PPh3)(µ-adcpip)]Cl
were also obtained. Optimised geometries from density functional theory (DFT) calculations show
syn and anti isomers for the dinuclear fac-Re(CO)3 complexes at slightly different energies but
they were not distinguishable from experimental IR or UV–Vis absorption spectroscopy. The elec-
trochemistry of the adc complexes showed reduction potentials slightly below 0.0 V vs. the fer-
rocene/ferrocenium couple. Attempts to generate the radicals [{Re(CO)3Cl}2(µ-adcOR)]•− failed as
they are inherently unstable, losing very probably first the Cl− coligand and then rapidly cleaving
one [Re(CO)3] fragment. Consequently, we found signals in EPR very probably due to mononuclear
radical complexes [Re(CO)3(solv)(adc)]•. The underlying Cl−→solvent exchange was modelled for
the mononuclear [Re(CO)3Cl(adcpip)] using DFT calculations and showed a markedly enhanced
Re-Cl labilisation for the reduced compared with the neutral complex. Both the easy reduction
with potentials ranging roughly from −0.2 to −0.1 V for the adc ligands and the low-energy NIR
absorptions in the 700 to 850 nm range place the adc ligands with their lowest-lying π* orbital
being localised on the azo function, amongst comparable bridging chelate NˆN coordinating ligands
with low-lying π* orbitals of central azo, tetrazine or pyrazine functions. Comparative (TD)DFT-
calculations on the Re(CO)3Cl complexes of the adcpip ligand using the quite established basis set
and functionals M06-2X/def2TZVP/LANL2DZ/CPCM(THF) and the more advanced TPSSh/def2-
TZVP(+def2-ECP for Re)/CPCMC(THF) for single-point calculations with BP86/def2-TZVP(+def2-
ECP for Re)/CPCMC(THF) optimised geometries showed a markedly better agreement of the latter
with the experimental XRD, IR and UV–Vis absorption data.

Keywords: carbonylrhenium(I); azodicarboxylate ligand; NIR absorption; electrochemistry; DFT

1. Introduction

The main application of azo dicarboxylic esters or amides (adcOR or adcNR, Scheme 1)
lies in their use as catalysts in the versatile Mitsunobu reaction which allows conversion of
alcohols into a variety of functional groups, such as esters [1–4], and in a number of further
organic reactions in which they act as (co)catalyst [5–10], or were used as reactive building
blocks [11–14]. At the same time, they are also interesting ligands forming one or two five-
ring NˆO chelates (Scheme 1) [15–42]. In dinuclear complexes, these coplanar edge-sharing
five-membered chelate rings allow very close M . . . M contacts (<500 pm). Their very low-
lying π* orbitals are not only responsible for intense and low-energy metal-to-ligand charge
transfer bands in corresponding complexes [17,18,22,23,25–29,32,34–37] but also for very
high reduction potentials of such complexes often around 0 V (vs. NHE), allowing the facile
preparation of radical complexes [22,23,26,27,29,32–36,41] and in total they are able to store
up to two electrons [22,26,27,29,32–36]. In this way, the adc ligands are prototypical redox-
active/non-innocent ligands [15,21,23,29] and can be viewed together with further bridging
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µ-κ2,κ2 chelate ligands with very low-lying π* orbitals such as apy = 2,2′-azobipyridine;
bptz = 2,5-bis(2-pyridyl)-1,3,4,6-tetrazine, bpip = 2,5-bis(1-phenyliminoethyl)pyrazine and
bpym = 2,2′-bipyrimidine (Scheme 2) [43–53]. Dinuclear complexes of such ligands have
been studied as low-energy electron transfer or low-energy absorbing materials for potential
multi-electron catalysis or optoelectronic applications [21,27–29]. Moreover, the R groups
of the esters or amides can be easily introduced and allow various steric and electronic
tunings of the complexes [32–35]. Very recently, azo dicarboxylate ligands have also been
used to synthesise transition metal complexes with cytotoxic properties [17,18].
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Scheme 1. Azo dicarboxylate derivatives (esters = adcOR, amides = adcNR, left) (A), their double
metal coordination enforcing electron delocalisation in the OCNNCO unit (B), and the monodentate
phenylcarboxylic ethyl ester ligand (pacOEt) (C).
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Scheme 2. µ-κ2,κ2-N,N-bridging ligands with low-lying π* orbitals.

Herein, we report on the reactions of five azo dicarboxylate ester ligands adcOR (R =
Et, iPr, tBu, Ph, Bn, Scheme 1) and an amide derivative (adcpip, Scheme 3) with [Re(CO)5Cl]
that we carried out in order to obtain mono- and dinuclear Re(CO)3Cl complexes (Scheme 3).
For the sake of comparison, we also synthesized the phenylazocarboxylic ethyl ester
(pacOEt) [54] model ligand which exclusively forms mononuclear complexes (Scheme 1,
right). We geometry-optimised the structures using density functional theory (DFT). The
fit with the experimental XRD and IR data was used for benchmarking of functionals and
basis sets.
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We also studied the electrochemical properties, EPR spectroscopy and UV–Vis–NIR
absorption spectroscopy and combined the experiments with DFT and TD-DFT calculations
to probe for the electronic properties of the complexes. Comparison will be drawn between
the Re(CO)3Cl complexes of these adc ligands with those of the similar bridging µ-κ2,κ2

chelate ligands with very low-lying π* orbitals apy, bptz, bpip and bpym (Scheme 2) [43–53].

2. Results and Discussion
2.1. Syntheses

When stirring the adc ligands with [Re(CO)5Cl] in toluene/CH2Cl2 mixtures at ambi-
ent T, no reaction occurred. At higher T, starting from 60 ◦C, the reaction mixture turned
reddish, indicating the formation of complexes. For the dinuclear complexes, the reaction
mixtures then gradually turned dark and after a few hours dark-coloured reaction mix-
tures were obtained. After evaporation, the resulting dark materials were recrystallised
from CH2Cl2/n-hexane and the resulting material extracted with toluene (for details, see
Section 4).

This procedure allowed us to obtain dark green to black dinuclear complexes [{Re(CO)3
Cl}2(µ-L)] from reactions using 1:2 (ligand:Re) ratios for the ligands containing low yields
for R = Et (20%) and iPr (26%) complexes and a moderate yield of 54% for the pip derivative
(Scheme 4). For R = tBu, Ph, Bn, the dark materials could not be analysed satisfactorily. The
residual material from these reactions contained large amounts of the previously reported
dinuclear complex [Re2(µ-Cl)2(CO)8] [55–58] and non-defined organic material, presumably
from thermal decompositions of the adc ligands. The formation of [Re2(µ-Cl)2(CO)8] is
not a dead-end as this dinuclear complex is also a reasonable Re(CO)3Cl precursor [55,56].
However, as [Re(CO)5Cl], it requires thermal activation.
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From this, we conclude that the adc-OR ligands with the bulky tBu, Ph and Bn
substituents coordinated to slow due to their steric strain and decomposition of the ligands
and their complexes is fast under the thermal activation conditions. For R = Et and iPr and
even more so the adcpip ligand, the complex formation is fast enough to compete with the
decomposition. This means that this thermal synthesis method is on a razor’s edge between
the necessary thermal activation of the Re precursors and the thermal decomposition of the
azo-dicarboxylates. We also tried microwave and sonochemical activation, but the results
were similar in that sizeable amounts of [Re2(µ-Cl)2(CO)8] were formed and yields of the
complexes remained low.

When using 1:1 ligand to Re ratios, for R = Et or iPr the dinuclear complexes [{Re(CO)3
Cl}2(µ-L)] were also obtained. In contrast to this, for the adcpip derivative, the mononuclear
dark violet complex [Re(CO)3Cl(adcpip)] was obtained in 88% yield from such a reaction
solution. Under the same condition, we also obtained the dark red [Re(CO)3Cl(pacOEt)]
(Scheme 1) in 75% yield.

The reactions were monitored by IR spectroscopy, showing the typical pattern (Supple-
mentary Figure S1) for [Re(CO)3] fragments in their facial configuration [47,49–51,53,59–63].
IR also allowed the discrimination between mono- and dinuclear reaction products.

Based on previous experiences with the similar complex [{Re(CO)3Cl}2(µ-apy)] [47],
we recorded EPR spectra during the reaction of [Re(CO)5Cl] and adcpip (2:1) and observed
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an 11-line EPR pattern in keeping with two Re centres of nuclear spin I = 5/2 (185,187Re;
Supplementary Figure S2) in the assumed radical complex [{Re(CO)3Cl}2(adcpip)]•−. The
observation of these radicals already in the reaction mixtures is in agreement with the very
low-lying π* LUMOs of the ligand [22,23,25–29] allowing reduction during the synthesis
procedure (although the reductant is not clear). However, this seems to occur only to a small
part of the material as we obtained the binuclear complexes in their neutral, diamagnetic
form after recrystallisation of the reaction product.

2.2. Exchange Reactions for the Chlorido Coligand

When trying to exchange the chlorido coligands in [{Re(CO)3Cl}2(µ-adcpip)] through
PPh3, we recorded an IR spectrum after a few minutes’ reaction time, that clearly showed the
three resonances for the [Re(CO)3] fragment markedly shifted to lower energy and two bands
in the range 1700 to 1800 cm−1, indicating one coordinated and one uncoordinated C=O
function of the adcpip ligand (Supplementary Figure S3A). The EPR spectrum of the reaction
solution did not show the 11-line pattern typical for a dinuclear Re complex but a 9-line
pattern representing presumably the mononuclear [Re(CO)3(PPh3)(adcpip)]• radical com-
plex (Supplementary Figure S3B). From this solution, we isolated [Re(CO)3(PPh3)(adcpip)]Cl
through crystallisation. Thus, the dinuclear Re complex [{Re(CO)3Cl}2(µ-adcpip)] is very
substitution labile and the resulting dinuclear PPh3 complex is not stable and decomposed
to a mononuclear species (Scheme 5). The same formation of a mononuclear complex
was observed when adding MeCN to a solution of [{Re(CO)3Cl}2(µ-adcpip)] (Supple-
mentary Figure S4). Thus, the obtained dinuclear complexes can only be handled in
non-coordinating solvent. At the same time, they are only sparsely soluble in aromatic
solvent and not soluble in aliphatic hydrocarbons.
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The IR spectra of the mononuclear and the dinuclear complexes are markedly different
(Table 1 and Table S4 and Figures S1 and S7). The expected three CO stretching vibrations
for the mononuclear [Re(CO)3Cl(adcpip)] are markedly higher in energy than those for the
dinuclear [{Re(CO)3Cl}2(µ-adcpip)]. This shift is in keeping with the enhanced π backbond-
ing in the dinuclear complex [27,29,32,44,53]. For the mononuclear [Re(CO)3Cl(adcpip)], a
further band at 1704 cm−1 represents the uncoordinated adcpip CO group. Generally, the IR
spectra of the Re(CO)3Cl complexes agree with those of previously reported fac-[Re(CO)3X]
(X = any ligand) complexes showing three CO stretching resonances [47,49–53,59–63], the
two at lower energy are sometimes merged into one broad band (Table 1).

When comparing different bridging ligands in dinuclear Re(CO)3Cl complexes, the
CO stretching energies of the adc complexes do not differ markedly from those of related
NˆN bridging ligands, only the merging of bands II and III is more pronounced (Table 1).

Within our study, we made comparative DFT calculations on the Re(CO)3Cl com-
plexes of the adcpip ligand using the quite established basis set and functionals M06-
2X/def2TZVP/LANL2DZ/CPCM(THF), and the more advanced TPSSh/def2-TZVP(+def2-
ECP for Re)/CPCMC(THF) for single-point calculations with BP86/def2-TZVP(+def2-ECP
for Re)/CPCMC(THF) optimised geometries (see later, Table 2 and Table S2) and IR spectra
(Figures S8 and S9, Table 1, Tables S3 and S4). The latter method gave markedly better agree-
ment of calculated data with experimentally observed spectra. The CO stretching bands
of the mononuclear [Re(CO)3Cl(adcpip)] ([Re]) complex are predicted at slightly lower
energies than observed experimentally, with a systematic shift to lower wave numbers
by about 30 cm−1. In contrast, the M06-2X/def2TZVP/LANL2DZ/CPCM(THF) method
predicts vastly higher energies above 2100 cm−1 for these vibrations. For the dinuclear
complexes ([Re]2), the situation is less simple, as a higher number of distinct vibrational
modes were predicted, especially in the lower wavenumber range around 1900 cm−1 where
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one merged band is observed experimentally. While the assignment of individual predicted
vibrations to the observed maxima is difficult, a slight redshift of all predicted modes
compared to the experimental data is observed. Importantly, although we are sure that
the sample contains both syn and anti isomers of [Re]2, the IR spectra gave no evidence for
two species.

Table 1. Characteristic experimental IR frequencies of Re complexes and calculated data a.

Compound
Exp.

Calc. (THF)
νCO (cm−1) Solvent

Band I II III I II III
[Re(CO)3Cl(adcpip)] 2040 1960 1920 DCE 2007 b 1927 b 1894 b

[Re(CO)3(PPh3)(adcpip)]Cl 2010 1910 1876 DCE
[Re(CO)3Cl(pacOEt)] 2022 1962 1928 DCE

syn-[{Re(CO)3Cl}2(µ-adcpip)]
2015 1913 c,d DCE

1978 b 1932, 1929 b 1903, 1895 b

anti-[{Re(CO)3Cl}2(µ-adcpip)] 1981 b 1938, 1927 b 1908, 1895 b

[{Re(CO)3Cl}2(µ-adcOEt)] 2019 1916 DCE
[{Re(CO)3Cl}2(µ-adcOiPr)] 2021 1919 DCE

[Re(CO)3Cl(bpy)] e 2024 1917 1900 MeCN
[Re(CO)3Cl(bpip)] f 2027 1934 1905 THF

[{Re(CO)3Cl}2(µ-apy)] g 2005 1952 1938 THF
[{Re(CO)3Cl}2(µ-bptz)] h 2010 1950 1921 Acetone
[{Re(CO)3Cl}2(µ-bpip)] f 2020 1940 1910 THF

[{Re(CO)3Cl}2(µ-bpym)] i 2025 1938 1900 Acetone
a DCE = 1,2-dichloroethane. From calculations using BP86/def2-TZVP(+def2-ECP for Re)/CPCMC(THF). b All
bands shifted by about 35 cm−1 compared with the experimental data. c A closer inspection showed several
maxima and shoulder at: 2036sh, 2015, 1970sh, 1930sh, 1913, 1872sh in line with the five calculated maxima. d Three
resonances were observed in toluene/CH2Cl2: 2015, 1939, 1912 cm−1. e bpy = 2,2′-bipyridine, from Ref. [59].
f bpip = 2,5-bis(1-phenyliminoethyl)pyrazine, from Ref. [50]. g apy = 2,2′-azobipyridine, from Refs. [49,52,53].
h bptz = 2,5-bis(2-pyridyl)-1,3,4,6-tetrazine, from Ref. [53]. i bpym = 2,2′-bipyrimidine, from Refs. [52,53].

Table 2. Selected metrics from the crystal structure of [Re(CO)3Cl(adcpip)] (exp.) compared to
DFT-calculated data (calc.) a.

Bond Lengths (Å) Angles (◦)

Exp. Calc. Exp. Calc.

Re1–Cl1 2.457(1) 2.473 Cl1–Re1–C1 174.5(1) 177.4
Re1–C1 1.924(2) 1.933 Cl1–Re1–C2 95.6(1) 93.6
Re1–C2 1.897(2) 1.912 Cl1–Re1–C3 87.0(1) 88.6
Re1–C3 1.942(2) 1.969 Cl1–Re1–O4 81.6(1) 81.9
Re1–O4 2.151(1) 2.169 Cl1–Re1–N1 89.6(1) 90.0
Re1–N1 2.117(2) 2.078 O4-Re1-N1 71.6(1) 72.1
N1–N2 1.261(2) 1.283 O4–Re1–C1 95.2(1) 96.9

C1C–O4 1.257(3) 1.275 O4–Re1–C2 170.2(1) 169.4
C2C–O5 1.211(3) 1.227 O4–Re1–C3 100.9(1) 98.5
N1–C2C 1.489(2) 1.484 C1–Re1–C2 88.3(1) 87.9
N2–C1C 1.443(2) 1.414 C1–Re1–C3 89.2(1) 89.3
C1–O1 1.148(3) 1.164 C1–Re1–N1 93.7(1) 91.8
C2–O2 1.156(3) 1.167 C2–Re1–C3 88.3(1) 91.0
C3–O3 1.145(3) 1.157 C2–Re1–N1 99.0(1) 98.3

C3–Re1–N1 172.2(1) 170.7
N2–N1–Re1 123.1(1) 122.7

Dihedral angles (◦)

Re1–N1–N2–C1C 0.9(2) 2.9 N1–N2–C1C–N3 176.5(2) 173.5

C2C–N1–N2–C1C 172.9(2) 168.2 N2–N1–C2C–N4 99.8(2) 102.8
a At BP86/def2-TZVP(+def2-ECP for Re)/CPCMC(THF) level of theory.
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No NMR data of the binuclear complexes and [Re(CO)3Cl(pacOEt)] were obtained due
to paramagnetic species impairing the measurements. From the mononuclear [Re(CO)3Cl
(adcpip)], 1H NMR spectra showed the protons in the 1,5 positions of the piperidyl groups
split into six components in agreement with the nuclear spin of 185,187Re of 5/2 (Figure S5).
The 13C spectrum confirms the two non-equivalent piperidine groups (Figure S6).

2.3. Structures from X-ray Diffraction and DFT Calculations

By diffusion of n-heptane into a dilute solution of the mononuclear complex [Re(CO)3Cl
(adcpip)] in EtOAc, we obtained single crystals of suitable quality and were able to solve
the crystal structure in the monoclinic space group P 21/n (see Figure 1A, crystal data in
Table S1, metrics in Tables 2 and S2). In contrast to this, crystallisation of the dinuclear
adcpip compound failed.
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Figure 1. Experimental molecular structure of [Re(CO)3Cl(adcpip)] from single crystal X-ray diffrac-
tion (A), DFT-optimised structures in the S0 ground state for the mononuclear [Re(CO)3Cl(adcpip)]
([Re]) (B) and dinuclear [{Re(CO)3Cl}2(µ-adcpip)] in anti (anti-[Re]2) and syn (syn-[Re]2) configuration
(C); H atoms omitted for clarity; BP86/def2-TZVP(+def2-ECP for Re)/CPCMC(THF) level of theory.

Thus, we embarked on quantum chemical calculations using density functional the-
ory (DFT) to model the dinuclear structures for the adcpip derivatives using two differ-
ent methods as mentioned above. The experimental molecular structure parameters of
[Re(CO)3Cl(adcpip)] (Table 2), the IR data (Table 1) as well as the UV/Vis absorption spectra
(to be presented later) allowed unequivocal benchmarking in favour of BP86 optimised
geometries and frequency calculations including TPSSh single-point property calculations
and triple zeta basis sets for all elements (Figure 1). We thus present in the following only
the results from this type of calculation. The key data from both the calculations using
BP86/def2-TZVP(+def2-ECP for Re)/CPCMC(THF) or TPSSh/def2-TZVP(+def2-ECP for
Re)/CPCMC(THF), and M06-2X/def2TZVP/LANL2DZ/CPCM(THF) are listed in the
Supplementary Table S3.
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Both the mononuclear [Re(CO)3Cl(adcpip)] and the dinuclear [{Re(CO)3Cl}2(µ-adcpip)]
complex show the expected facial (fac) configuration of the three CO ligands (Figure 1). The
geometry of the dinuclear [{Re(CO)3Cl}2(µ-adcpip)] is quite unsymmetric in both anti and
syn forms. No centre of inversion was found for the anti isomer and the Cl–Re ... Re–Cl
dihedral angles were 157◦ (anti) and 42◦ (syn), respectively. The calculated total energies say
that the syn isomer is slightly more stable by 0.2 eV. The Re ... Re distance was calculated at
4.81 Å (anti) and 4.77 Å (syn), respectively.

The essential metrics of the [Re(CO)3Cl(NˆO)] entities around the Re centres (Table S3A)
were very similar to reported [Re(CO)3X(NˆN)] structures with the exception that the NˆO
chelate bite with about 72◦ is markedly smaller than NˆN chelate bites with values ranging
from 80 to 83◦ [43,44,47,49,61–65].

2.4. Electrochemistry, EPR and DFT-Calculated Frontier Orbitals

Electrochemistry: Both mononuclear and dinuclear complexes show a first one-
electron reversible reduction and a second irreversible reduction (Figure 2, data in Table 3).
The irreversible character has been identified as being due to rapid cleavage of chloride
after electrochemical reduction in comparable [Re(CO)3Cl(NˆN)] (NˆN = diimines) deriva-
tives [46–50,59,61,64–69]. The dinuclear complexes exhibit very high reduction potential,
for the adcpip complexes the potential of the mononuclear species lies lower by 0.3 V.
For the uncoordinated adc ligands, we found two reduction processes at around −1 V
and −1.9 V vs. the ferrocene/ferrocenium couple (Table S5). Assuming ligand-centred
processes for these reductions, the coordination of Re(CO)3Cl causes massive anionic shifts,
e.g., of more than 1 V upon coordination of one Re fragment to adcpip and more than 1.3 V
when two Re fragments are coordinated.
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0.1 M n-Bu4NPF6/DCE.

For the complex [{Re(CO)3Cl}2(µ-adcOEt)], we found evidence for a split-wave for the
first reduction (Figure S12) that we attributed to the syn and anti isomers based on the very
similar behaviour of the complex [{Re(CO)3Cl}2(µ-apy)] (Table 3). For the other derivatives,
we did not observe a splitting of the reduction waves. Interestingly, this phenomenon
was first overseen for the Cl complex of the apy ligand [53], but was later found very
pronounced for the F derivative and essentially absent for the Br and I congeners [44].

Irreversible oxidation waves were observed for all complexes slightly above 1.1 V
and the dimeric [Re2(µ-Cl)2(CO)8] was oxidised reversibly at 1.32 V by two electrons
(Figure S16).

When comparing the complex [{Re(CO)3Cl}2(µ-adcOEt)] with other dinuclear com-
plexes of this ligand with the d6 systems [Ru(bpy)2]4+ (0.40 V) [32,36], and [Os(bpy)2]4+

(0.08 V) [32], and the d10 system [Cu(PPh3)2]2+ (0.42 V) [35], the Re(I) system has the lowest
reduction potential which is probably due to the zero charge of the [Re(CO)3Cl] fragment.
When comparing dinuclear Re(CO)3Cl complexes of different bringing ligands with very
low-lying π* orbitals, the ease of reduction increases along the series bpip < adcpip < bptz
< adcOiPr < adcOEt < bpym < apy places the adc ligands between the pyrazine-pyridine
acceptor of bpip (bpip = 2,5-bis(1-phenyliminoethyl)pyrazine) [50] and the azo-pyridine
ligand apy (2,2′-azobipyridine) [49,52,53].
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Table 3. Electrochemical data of adc ligands and Re complexes a.

Compound E1/2 Red1 Epc Red2 Epa Ox1 Ref.

[Re(CO)3Cl(adcpip)] −0.50 −1.18 >1.2 this work
[{Re(CO)3Cl}2(µ-adcpip)] −0.20 −1.48 1.12 this work

syn-[{Re(CO)3Cl}2(µ-adcOEt)] b −0.05 −0.94 1.17 this work
anti-[{Re(CO)3Cl}2(µ-adcOEt)] b −0.16 −0.95 1.17 this work

[{Re(CO)3Cl}2(µ-adcOiPr)] −0.17 −0.99 1.13 this work
[Re(CO)3Cl(pacOEt)] −0.77 −1.58 1.11 this work

[Re2(µ-Cl)2(CO)8] −2.31 −2.68 1.32 this work
[Re(CO)3Cl(bpy)] b −1.74 −2.20 [59]
[Re(CO)3Cl(bpip)] c −1.17 −1.89 [50]
[Re(CO)3Cl(apy)] d −0.78 −1.54 [47]

anti-[{Re(CO)3Cl}2(µ-apy)] d 0.00 −0.81 [44]
syn-[{Re(CO)3Cl}2(µ-apy)] d 0.53 −0.63 [44]

[{Re(CO)3Cl}2(µ-bptz)] −0.16 −1.49 [53]
[{Re(CO)3Cl}2(µ-bpip)] −0.54 −1.30 0.76 [50]

[{Re(CO)3Cl}2(µ-bpym)] d 0.02. −0.71 0.73 [53]
a Potentials in V vs. ferrocene/ferrocenium, recorded in 0.1 M n-Bu4NPF6/DCE, half-wave potentials E1/2
for reversible waves, Epc = cathodic peak potential and Epa anodic peak potential for irreversible waves, scan
rate = 100 mV/s. Conversion of SCE values to ferrocene/ferrocenium = −0.49 V in n-Bu4NPF6/DCE. b Recorded
in DMF. c In THF. d In CH2Cl2.

EPR spectroscopy: A detailed EPR study of the radical anions [{Re(CO)3Cl}2(µ-
adc)]•− was prevented by their inherent instability. Attempts to reduce the dinuclear
complexes [{Re(CO)3Cl}2(adc)] resulted in the formation of mononuclear radical complexes
of the assumed composition [Re(CO)3(solv)(adc)]• which could be seen from six-line pat-
terns (185,187Re, I = 5/2, Figures S4 and S17) with the exception of the adcpip derivative
where we observed 11 lines indicating two Re centres (Figure S2). A similar reactivity was
observed for related [Re(CO)3Cl(NˆN)] complexes containing diimines [47–50,53,59,66–69].
We recorded EPR spectra of these radical Re(adc) species in the X-band at 298 K in fluid
solution and at high frequencies at 4 K in glassy frozen matrices (see spectra and data in
the Supplementary Materials). However, since the underlying species were not clear we
refrain from discussing the results here.

DFT-calculated frontier orbitals: The DFT-calculated highest occupied molecular
orbitals (HOMOs) of the adcpip complexes are localised on the Re centers and exhibit
strong d character (Figure 3).

Energetically below for [Re(CO)3Cl(adcpip)] ([Re]), occupied orbitals centered on the
non-coordinating regions of the adcpip ligand as well as on the chlorido ligand are found.
Generally for the dinuclear complexes [{Re(CO)3Cl}2(µ-adcpip)] (anti-[Re]2 and syn-[Re]2),
pairs of orbitals which are similar in character but localised on opposite Re centres are
observed. Relatedly, the density of energy levels is higher in the dinuclear complexes. The
lowest unoccupied molecular orbitals (LUMOs) for both mononuclear [Re(CO)3Cl(adcpip)]
([Re]) and dinuclear [{Re(CO)3Cl}2(µ-adcpip)] (anti-[Re]2 and syn-[Re]2) are mostly localised
on the NC(O)N=NC(O)N frame of the adcpip ligands with the largest contribution from the
azo N=N groups (Figure 3). They also feature significant contributions from the CO ligand
in trans position to the azo group. At significantly higher energies by about 2.5 eV ([Re])
to 3.0 eV (anti-[Re]2), multiple unoccupied orbitals localised on the CO ligands are found
for all complexes. At even higher energies of −0.17 eV for [Re] and −0.52/−0.54 eV for
syn-[Re]2 and anti-[Re]2, antibonding orbitals with dx2-y2 and dz2 character begin to appear.
Overall, all unoccupied, antibonding levels are predicted at lower energies in the dinuclear
complexes compared to the mononuclear derivative. This is in line with the experimentally
observed lower stability and more facile first reduction of the dinuclear complexes. The
HOMO–LUMO gap of the mononuclear [Re] is predicted at 2.1 eV, whereas that of the
[Re]2 isomers is calculated to be around 1.3 to 1.5 eV. This is in excellent agreement with
the experimentally observed electrochemical HOMO–LUMO gaps of >1.7 V for [Re] and
about 1.3 V for the dinuclear complex, when considering that the calculated values can
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be expected to be slightly larger as geometry relaxation effects upon oxidation/reduction
are neglected.
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Figure 3. DFT-calculated energies of occupied MOs (red) and unoccupied MOs (blue) with isosurfaces
(isovalue 0.04) for complexes [Re(CO)3Cl(adcpip)] ([Re]), syn-[{Re(CO)3Cl}2(µ-adcpip)] (syn-[Re]2)
and anti-[{Re(CO)3Cl}2(µ-adcpip)] (anti-[Re]2); TPSSh/def2-TZVP(+def2-ECP for Re)/CPCMC(THF)
level of theory.

The calculated LUMO energies for the syn and anti isomers of [Re]2 differ by 0.13 V in
favour of the anti isomer, but the electrochemical measurements (see above) did not show a
splitting of the first reduction wave.

2.5. UV–Vis–NIR Absorption Spectroscopy

The UV–Vis–NIR absorption spectra of the three dinuclear [{Re(CO)3Cl}2(µ-adc)]
complexes all show quite intense long-wavelength bands in the range 720 to 850 nm
(Figures 4 and S22, data in Table 4), which show pronounced negative solvatochromic
behaviour (Table S7). The mononuclear [Re(CO)3Cl(µ-adcpip)] shows an intense band
centred at 538 nm in keeping with the violet colour, while [Re(CO)3Cl(pacOEt)] shows a
slightly red-shifted maximum at 502 nm.
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Figure 4. UV–Vis–NIR absorption spectrum of [Re(CO)3Cl(µ-adcpip)] (A) and [{Re(CO)3Cl}2(µ-
adcpip)] (B) in CH2Cl2.

Table 4. Selected long-wavelength UV–Vis absorption maxima of Re complexes a.

Compound λ1 λ2 λ3 Eopt Max Solvent Ref.

[Re(CO)3Cl(adcpip)] 538 2.30 CH2Cl2
[Re(CO)3Cl(pacOEt)] 502 2.47 CH2Cl2

[{Re(CO)3Cl}2(µ-adcpip)] 452 510 718 1.73 CH2Cl2
[{Re(CO)3Cl}2(µ-adcOEt)] 853 1.45 CH2Cl2
[{Re(CO)3Cl}2(µ-adcOiPr)] 690 837 1.48 CH2Cl2

[{Re(CO)3Cl}2(µ-apy)] 705 784 1.58 CH2Cl2 [44]
[{Re(CO)3Cl}2(µ-apy)] 588 747 1.66 DMF [44]
[{Re(CO)3Cl}2(µ-bptz)] 510 697 1.78 acetone [53]
[{Re(CO)3Cl}2(µ-bptz)] 550 732 1.69 DCE [53]
[{Re(CO)3Cl}2(µ-bpip)] 366 584 2.12 acetone
[{Re(CO)3Cl}2(µ-bpip)] 378 636 1.95 DCE [50]
[{Re(CO)3Cl}2(µ-bpym) 357 469 2.64 acetone [53]

a Absorption maxima λ in nm, Eopt = optical band gap in eV.

This places the adc complexes at the “red end” of the series of dinuclear Re(CO)3Cl
complexes with bridging diimine ligands (Table 4). The long wavelength bands of the
azopyridine (apy), the tetrazine bptz and the pyrazine (bpip) derivatives lie in the
same range. Their optical band gaps are all below 2 eV and increase along the series
adcOEt < adcOiPr < apy < bptz < adcpip, while the complexes of the established bpip and
bpym lie markedly over 2 eV.

The TD-DFT-calculated long-wavelength absorption bands of the dinuclear anti-[Re]2
and syn-[Re]2 were found at 585 and 754 nm (anti) and 642 nm (syn), respectively (Figure 5,
data in Tables S8 and S9). Combining the individual spectra of the two syn and anti isomers
gives a broad band with maxima around 700 nm and extending beyond 1000 nm in the NIR
range. This prediction is in good agreement with the experimentally observed data, which
show a broad band in this region with the maximum at about 730 nm. A second intense
band was calculated at around 420 nm, while the experimental spectrum shows this band
at about 450 nm. Thus, the calculated spectrum is overall in very good agreement with the
experimental data and systematically blue-shifted by only a small offset of ~30 nm.

For the mononuclear [Re], the calculated long-wavelength band lies at 501 nm, while
the experimental value was found at 538 nm, which is again a small blue-shift for the
calculated data. Further absorption maxima are predicted at 317 and 379 nm, which are
visible as shoulders in the experimental data. Overall, the calculated spectrum is also
in very good qualitative agreement for [Re]. In addition, both calculated spectra show
resolved bands in the UV range, while in the experimental spectra bands in the UV are not
resolved and were merged into the solvent UV cutoff.

Trials to monitor the UV–Vis absorption spectra while changing the electrochemical
potentials (spectroelectrochemistry) allowed us to confirm for [Re]2 that we have indeed
isolated the neutral complex and the spectrum in Figure 4 represents [Re]2 and not the
reduced form. Unfortunately, further efforts to generate the radical anionic complexes
(mono- or dinuclear) failed and we observed rapid decomposition for all examples.
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[{Re(CO)3Cl}2(µ-adcpip)] (syn-[Re]2) and anti-[{Re(CO)3Cl}2(µ-adcpip)] (anti-[Re]2); TPSSh/def2-
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In order to obtain an idea why the reduced complexes are so labile, we embarked on
calculating the optimised geometries of [Re]•−, anti-[Re]2

•− and syn-[Re]2
•−.

DFT potential energy surface scans along the Re-Cl vector (Figure 6) reveal a markedly
labilised Re–Cl bond in [Re(CO)3Cl(adcpip)]n upon one-electron reduction from n = 0 to
n = −1.
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Complex fragmentation along the Re-Cl bond is thus much more favourable in the
one-electron reduced anionic state. This redox-dependent weakening of the Re-Cl bond
in [Re]•− and the dinuclear [Re]2

•− complexes is in line with the observed rapid ligand
exchange (Cl vs. N donors) observed for these radicals and the irreversible character of
the first reduction in the CV. This is also in agreement with the frequent experimental
observations of halide loss after reduction in [Re(CO)3X] complexes [44,47–50,59,61,64–69].

We further assume that the cleavage of the Re-Cl bond and replacement by solvent
molecules obviously trigger the following loss of one [Re(CO)3(solv)]+ fragment from the
reduced dinuclear complexes [Re]2

•−.
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3. Conclusions

Reactions of [Re(CO)5Cl] with the azodicarboxylic esters adcOR (R = Et, iPr, tBu,
Bn (CH2-C6H5) and Ph) and the piperidinyl amide derivative adcpip were attempted
and led to successful isolation of dinuclear Re(CO)3 complexes [{Re(CO)3Cl}2(µ-adcOR)]
(R = Et or iPr) and [{Re(CO)3Cl}2(µ-adcpip)] in low yields. From the adcpip ligand, the
mononuclear, thermally more stable derivative [Re(CO)3Cl(adcpip)] was obtained in very
good yields. Reacting the dinuclear [{Re(CO)3Cl}2(µ-adcpip)] with PPh3 led to the isolation
of the mononuclear [Re(CO)3(PPh3)(adcpip)]Cl, indicating that the assumedly initially
formed dinuclear species [{Re(CO)3(PPh3)2]}2(µ-adcpip)]2+ is very reactive.

The solid state molecular structure of [Re(CO)3Cl(adcpip)] from SC-XRD as well
as experimental IR spectra of the mono- and dinuclear adcpip complexes allowed for
benchmarking of DFT calculations. Excellent alignment of experimental and calculated
results was observed when using def2-TZVP basis sets for all atoms as well as def2-ECP
for Re, the BP86 functional for geometry optimisations and the TPSSh hybrid functional
for single-point and TD-DFT calculations. Geometry optimisations of the syn and anti
derivatives of the dinuclear [{Re(CO)3Cl}2(µ-adcpip)] complex predict symmetries and non-
planar Re-N=N-Re moieties consistent with steric strain imposed by the two Re(CO)3Cl
fragments opposing each other on the very small ligand scaffold and with literature reports
of similar [Re(CO3)Cl(NˆN)] fragments.

The expected excellent π-accepting properties are mirrored in the easy reduction of
the complexes with redox potentials slightly lower than 0 V vs. ferrocene/ferrocenium,
which means that they are positive on the SCE and NHE scales. This is reflected in
the observation that solutions of [{Re(CO)3Cl}2(µ-adcpip)] contain already measurable
amounts of a dinuclear radical anionic complex as observed via EPR spectroscopy. The
observed potentials agree quite well with the calculated HOMO–LUMO gaps for the adcpip
complexes. As expected, the LUMO is centred on the adcpip ligand with large coefficients
at the azo group, showing π* character. The low-lying π* orbitals are also responsible for
the very long-wavelength transitions observed in the NIR range (700 to 1100 nm).

Trials to record EPR spectra of the reduced complexes failed due to their inherent
instability. Only for the dinuclear adcpip complex did we observe an 11-line signal upon
electrochemical or chemical reduction in agreement with ligand-based radical with two
Re centres of nuclear spin I = 5/2 (185,187Re). All other attempts led to six-line spectra in
agreement with the loss of one Re(CO)3 fragment from the dinuclear radical complexes.
Assuming Cl- cleavage as the first (rapid) decomposition reaction after reduction, DFT
calculations showed that Cl− cleavage is faster for the reduced complexes. DFT potential
energy surface scans for the Re-Cl bond in [Re(CO)3Cl(adcpip)] and [Re(CO)3Cl(adcpip)]•−

show a marked labilisation of the Re-Cl bond in line with this assumption.
In the context of possible applications in low-energy electron transfer materials in

catalysis or low-energy absorbing materials in optoelectronics, the herein studied adcpip
complexes [{Re(CO)3Cl}2(µ-adc)] are promising with regard to their properties, but not
their stability. In future studies, we will thus re-consider the [{Re(CO)3Cl}2(apy)] com-
plex and investigate its substitution stability and general stability under excitation and
electrochemical reduction.

4. Experimental Section

General: The dialkyl azodicarboxylate ligands adcOEt, adcOiPr, adcOtBu, adcOBn
and 1,1′-azodicarbonyl-dipiperidine (adcpip) were supplied from Sigma-Aldrich (Merck,
Darmstadt, Germany) and were used without further purification. All syntheses were
performed under an inert atmosphere of Ar using standard Schlenk techniques.

Syntheses

Starting materials: [Re(CO)5Cl] [70–72] and phenylazocarboxylic ethylester (pac-
OEt) [54] were synthesised according to established procedures. The complex [{Re(CO)3Cl}2
(µ-apy)] was prepared as previously described [53].
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Syntheses of the dinuclear complexes [{Re(CO3)Cl}2(µ-adc)]—general description.
First, 0.5 mmol of the adc ligands was heated with 1.1 mmol (398 mg) [Re(CO)5Cl] in

a mixture of toluene and CH2Cl2 (3:1 v:v) under an Ar atmosphere to 70 ◦C. After about
30 min, the product formation leads to dark blue-green solutions and after 6 h the reaction
was stopped. Further reaction times lead to formation of increasing amounts of the side
product [Re2(CO)8Cl2]. After evaporation of the solvents, the dark black materials were
re-crystallised from CH2Cl2/hexane (1:1) and the residue was extracted using toluene and
the extracts dried in vacuo.

[{Re(CO)3Cl}2(adcOEt)]: Yield: 78 mg (0.1 mmol, 20%), green-black. C12H10Cl2N2O10Re2
(785.54): calcd. C 18.35, H 1.28, N 3.57; found C 18.32, H 1.24, N 3.55%. NMR spectra
could not be recorded due to paramagnetic species (see EPR spectroscopy). IR (CH2Cl2):
2020, 1917 cm−1. EI-MS(+): m/z = 787 [M+H]+, 751 [M-Cl]+, 481 [M-(Re(CO)3Cl)+H]+, 445
[M-(Re(CO)3Cl)-Cl]+, 175 [adcOEt+H]+.

[{Re(CO)3Cl}2(adcOiPr)]: Yield: 106 mg (0.13 mmol, 26%), green-black. C14H14Cl2N2
O10Re2 (813.59): calcd. C 20.67, H 1.73, N 3.44; found C 20.66, H 1.74, N 3.46%. NMR spectra
could not be recorded due to paramagnetic species (see EPR spectroscopy). IR (toluene):
2022, 1920 cm−1. EI-MS(+): m/z = 815 [M+H]+, 766 [M-Cl]+, 473 [M-(Re(CO)3Cl)-Cl]+ 203
[adcOiPr+H]+.

[{Re(CO)3Cl}2(adcpip)]: For this reaction, a violet intermediate colour was observed
in the reaction solution. Yield: 235 mg (0.27 mmol, 54%), green-black. C18H20Cl2N4O8Re2
(863.69): calcd. C 25.03, H 2.33, N 6.49; found C 25.01, H 2.34, N 6.51%. NMR spectra
could not be recorded due to paramagnetic species (see EPR spectroscopy). IR (DCE):
2020, 1917 cm−1. EI-MS(+): m/z = 864 [M]+, 829 [M-Cl]+, 523 [M-(Re(CO)3Cl)-Cl]+, 253
[adcpip+H]+.

Synthesis of [Re(CO)3Cl(adcpip)]: 180 mg [Re(CO)5Cl] (0.5 mmol) and 126 mg adcpip
(0.5 mmol) were dissolved in 30 mL toluene and 10 mL CH2Cl2 and heated to 90 ◦C. The
yellow solution turned violet within 10 min and the reaction was stopped after 6 h upon
which a dark violet precipitate had formed. The material was filtered off and recrystallised
from CH2Cl2/n-heptane (2:1) to yield deep purple microcrystalline materials which were
dried in vacuo. Yield: 245 mg (0.44 mmol, 88%), dark violet. C15H20ClN4O8Re (558.03):
calcd. C 32.29, H 3.61, N 10.04; found C 32.30, H 3.63, N 10.01%.1H NMR (300 MHz, CDCl3):
δ = 4.34–3-13 (m, 8H, H1,H5), 2.00–1.50 (m, 12H, H2,H3,H4). 13C NMR (75 MHz, CDCl3): δ
= 47.0, 46.9 (pip1,5), 25.8, 25.5, 24.0, 23.8 (pip2,3,4), the carbonyl C were not detected. IR
(DCE): 2040, 1960, 1920 cm−1. EI-MS(+): m/z = 559 [M+H]+, 523 [M-Cl]+, 253 [adcpip+H]+.

Attempted synthesis of [(Re(CO)3(PPh3)}2(µ-adcpip)]Cl2: 87 mg (0.1 mmol) of
[{Re(CO)3Cl}2(adcpip)] was dissolved 20 mL 1,2-dichloroethane and 52 mg (0.2 mmol)
of PPh3 was added and the reaction mixture turned brown. EPR spectroscopy of this solu-
tion gave strong indication of a mononuclear radical complex. The mixture was stirred for
another 30 min, and then all volatiles were evaporated. Dissolving the material in CH2Cl2
and careful precipitation using about 5× the volume of n-hexane gave 26 mg of brown
material. Elemental analyses for the assumed mononuclear [Re(CO)3(PPh3)(adcpip)]Cl
C33H35N4O5PRe (784.84): calcd. C 50.50, H 4.50, N 7.14; found C 50.45, H 4.54, N 7.11%.
IR (CH2Cl2): 2010s, 1910vs, 1876vs 1778vs, 1720vs. EI-MS(+): m/z = 785 [M]+, 253
[adcpip+H]+.

Synthesis of [Re(CO)3Cl(pacOEt)]: 70 mg (0.39 mmol) phenylazocarboxylic ethylester
(pacOEt) was heated with 142 mg (0.39 mmol) [Re(CO)5Cl] in 25 mL of toluene and CH2Cl2
(3:1 v:v) under an inert atmosphere of argon to 80 to 90 ◦C for 13 h, yielding a red so-
lution. After evaporation of the solvents, the resulting dark red material was extracted
using toluene and the extracts dried in vacuo. Yield: 142 mg (0.29 mmol, 75%), red-violet.
C12H10ClN2O5Re (483.88): calcd. C 29.79, H 2.08, N 5.79; found C 29.75, H 2.06, N 5.74%. IR
(DCE): 2022, 1962, 1928 cm−1. EI-MS(+): m/z = 485 [M+H]+, 449 [M-Cl]+, 179 [pacOEt+H]+.

Characterisation of [(CO)4Re(µ-Cl2)Re(CO)4]: The colourless material was obtained
from several reaction mixtures of [Re(CO)5Cl] and the adc ligands and was isolated from
the grey residues after extraction with toluene. Careful recrystallisation from CH2Cl2
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yielded colourless crystals. Yields ranged from 42 to 100% of the original Re contents.
C8Cl2O8Re2 (667.39): calcd. C 14.40, Cl 10.62; found C 14.40, Cl 10.61%. IR (solid): 2118,
2019, 1995, 1928 cm−1.

Instrumentation: NMR spectra were recorded with a Bruker Avance II 300 MHz
spectrometer (1H: 300.13 MHz) equipped with a BBO ATM 5 mm probe head with z-
gradient (Bruker, Rheinhausen, Germany). Chemical shifts were relative to TMS. The
spectral analyses were performed by the BrukerTopSpin 2 software. Elemental analyses
were carried out using a Hekatech CHNS EuroEA 3000 Analyzer (Hekatech, Wegberg,
Germany). The Cl contents of [(CO)4Re(µ-Cl2)Re(CO)4] were obtained through dissolution
using HNO3 and aqueous determination of Cl−. IR spectra were measured in ATR mode
using a Perkin Elmer 400 or a Thermo Avatar 370 DTGS FT-IR spectrometer (Perkin Elmer,
Rodgau, Germany). UV–Vis absorption spectra were recorded on a Varian Cary50 Scan
spectrophotometer (Varian, Darmstadt, Germany). EPR spectra were recorded in the X-
band with a Bruker System ESP300 or ELEXSYS 500E, equipped with a Bruker Variable
Temperature Unit ER 4131VT (Bruker, Rheinhausen, Germany). g values were calibrated
using a dpph sample. Spectral simulation was performed using Bruker SimFonia V1.26.
Electrochemical experiments were carried out in 0.1 M n-Bu4NPF6 solutions using a three-
electrode configuration (glassy carbon working electrode, Pt counter electrode, Ag/AgCl
pseudo reference) and an EG&G Parc model 175 (EG&G, Gaithersburg, MD, USA), a
Metrohm Autolab PGSTAT30 or a Metrohm µStat400 potentiostat (Metrohm, Filderstadt,
Germany). Experiments were run at a scan rate of 100 mV/s at ambient temperature, the
ferrocene/ferrocenium couple served as internal reference. UV–Vis–spectroelectrochemical
measurements in 0.1 M nBu4NPF6/CH2Cl2 solution were performed using an optically
transparent thin-layer electrode (OTTLE) cell [73,74] at room temperature.

Computational details: Calculations were performed using the software package
ORCA 5.0.2 [75]. Geometry optimisations and subsequent numerical frequency calcula-
tions were performed using the BP86 functional [76,77], Grimme’s D3 dispersion cor-
rection [78,79], def2-TZVP basis sets for all elements with def2-ECP for Re [80] and
CPCMC(THF) as an approximate solvent model [81]. On the optimised geometries,
single-point and TD-DFT/TDA [82,83] calculations were performed using the TPSSh func-
tional [84], Grimme’s D3 dispersion correction, def2-TZVP basis sets for all elements with
def2-ECP for Re and CPCMC(THF) like before. The output concerning geometries, IR
frequencies, molecular orbitals and electronic transitions was analysed and visualised using
the built-in ORCA modules orca_plot and orca_mapspc in combination with the software
packages Chemcraft [85] and Origin 2021 [86].

The same properties were also calculated using the M06-2X functional [87], LANL2DZ
with the corresponding Los Alamos ECP for Re [88–90] and def2-TZVP basis sets for all
other atoms [80] and CPCM(THF) within the Gaussian program package [91].

Single crystal X-ray diffraction: SC-XRD measurements were performed at 170(2)
K, employing a Bruker D8 Venture diffractometer including a Bruker Photon 100 CMOS
detector using Mo Kα radiation (λ = 0.71073 Å). The crystal data were collected using APEX4
v2021.10-0 [92]. The structure was solved by dual space methods using SHELXT, and the
refinement was carried out with SHELXL employing the full-matrix least-squares methods
on FO

2 < 2σ(FO
2) as implemented in ShelXle [93–95]. The non-hydrogen atoms were refined

with anisotropic displacement parameters without any constraints. The hydrogen atoms
were included by using appropriate riding models. Data of the structure solutions and
refinement of [Re(CO)3Cl(adcpip)] can be obtained free of charge at https://www.ccdc.cam.
ac.uk/structures/ (accessed on 3 November 2022) under the deposition number 2194078, or
from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ
UK (Fax: +44-1223-336-033 or e-mail: deposit@ccdc.cam.ac.uk).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27238159/s1, Figure S1: Part of the IR spectrum recorded on
the reaction mixture of [Re(CO)5Cl] and adcpip; Figure S2: X-band EPR spectrum of the assumed
[{Re(CO)3Cl}2(µ-adcpip)]•− in toluene/CH2Cl2; Figure S3: IR spectrum and X-band (9.862 GHz)

https://www.ccdc.cam.ac.uk/structures/
https://www.ccdc.cam.ac.uk/structures/
https://www.mdpi.com/article/10.3390/molecules27238159/s1
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EPR spectrum of the reaction mixture of [{Re(CO)3Cl}2(µ-adcpip)] with 2 equivalents of PPh3 in
THF; Figure S4: X-band EPR spectrum of the assumed [{Re(CO)3Cl}2(µ-adcpip)]•− in toluene be-
fore and after addition of a small amount of MeCN; Figure S5: 300 MHz 1H NMR spectra of adcpip
and [Re(CO)3Cl(adcpip)]; Figure S6: 75 MHz 13C DEPTQ NMR spectrum of [Re(CO)3Cl(adcpip)];
Figure S7: IR spectra of [Re(CO)3Cl(adcpip)], [Re(CO)3(PPh3)(adcpip)]Cl, and [Re(CO)4(µ-Cl)2Re(CO)4];
Figure S8: DFT-calculated IR spectra of [Re(CO)3Cl(adcpip)] [Re], and [{Re(CO)3Cl}2(µ-adcpip)]
(anti-[Re]2, and syn-[Re]2); at TPSSh(def2-TZVP(+def2-ECP for Re)/(CPC MC(THF))) level of theory;
Figure S9: DFT-calculated IR spectra of [Re(CO)3Cl(adcpip)] [Re], and [{Re(CO)3Cl}2(µ-adcpip)] (anti-
[Re]2, and syn-[Re]2); at M06-2X/def2TZVP/LANL2DZ/CPCM(THF) level of theory; Figure S10: Views
on the crystal structure of [Re(CO)3Cl(adcpip)]; Figure S11: Views on the DFT-optimised structures in
the S0 ground state for [{Re(CO)3Cl}2(µ-adcpip)]; M06-2X/def2TZVP/LANL2DZ/CPCM(THF) level
of theory; Figure S12: Cyclic voltammograms of [{Re(CO)3Cl}2(adc-OEt)]; Figure S13: Cyclic voltam-
mogram of [{Re(CO)3Cl}2(µ-adcpip)]; Figure S14: Cyclic voltammogram of [Re(CO)3(PPh3)(adcpip)]Cl;
Figure S15: Cyclic voltammograms of [Re(CO)3Cl(pacOEt)]; Figure S16: Cyclic voltammograms of
[Re2(µ-Cl)2(CO)8]; Figure S17: X-band EPR spectra of the assumed [Re(CO)3(CH2Cl2)(adcpip)]•

and [Re(CO3)(NEt3)(adcpip)]• at 298 K; Figure S18: X-band EPR spectra of the assumed [Re(CO)3Cl
(adcpip)]•− in glassy frozen acetone matrix at 4 K. Figure S19: X-band EPR spectra of the assumed
[Re(CO)3Cl(adcOEt)]•− (A) and [Re(CO)3Cl(adcOiPr)]•− (B) in glassy frozen acetone matrix 4 K.
Figure S20: DFT-calculated energies of occupied MOs and unoccupied MOs for the Re complexes
[Re], anti-[Re]2, and syn-[Re]2; M06-2X/def2TZVP/LANL2DZ for Re/CPCM(THF) level of theory;
Figure S21: DFT-calculated frontier orbital landscape in the ground state (S0) for [Re], anti-[Re]2,
and syn-[Re]2; M062X/def2TZVP/LANL2DZ/CPCM(THF) level of theory; Figure S22: UV–Vis–NIR
absorption spectrum of [{Re(CO)3Cl}2(µ-adcOiPr)] and [{Re(CO)3Cl}2(µ-adcOEt)]; Figure S23: TD-
DFT-calculated UV–Vis absorption spectra (A): overlay spectra of [Re], anti-[Re]2 and syn-[Re]2;
(B): [Re]; (C): anti-[Re]2; (D): syn-[Re]2; M06-2X/def2TZVP/LANL2DZ for Re/CPCM(THF) level
of theory; Figure S24: Views on the DFT-optimised structures in the D0 ground state for [Re]•−,
anti-[Re]2

•− and syn-[Re]2
•−; at BP86/def2-TZVP(+def2-ECP for Re)/CPCMC(THF) level of the-

ory; Figure S25: DFT-calculated frontier orbital landscape in the ground state (D0) for [Re]•− and
anti-[Re]2

•−; TPSSh/def2-TZVP(+def2-ECP for Re)/CPCMC(THF) level of theory; Table S1: Crys-
tal structure and solution data of [Re(CO)3Cl(adcpip)]; Table S2: Selected metrics from the crystal
structure of [Re(CO)3Cl(adcpip)]; Table S3A: Selected DFT-calculated metrics of [Re], anti-[Re]2 and
syn-[Re]2, compared with [Re]•−, anti-[Re]2

•− and syn-[Re]2
•−; at BP86/def2-TZVP(+def2-ECP for

Re)/CPCMC(THF) level of theory; Table S3B: Selected DFT-calculated metrics of [Re], anti-[Re]2 and
syn-[Re]2; at M06-2X/ def2TZVP/LANL2DZ/CPCM(THF) level of theory; Table S4: Experimental IR
data of adc ligands and Re complexes; Table S5: Electrochemical data of adc ligands; Table S6: Selected
X-band EPR data of reduced Re complexes; Table S7: UV–Vis long-wavelength absorption maxima
of [{Re(CO)3Cl}2(µ-adcpip)] in different solvents; Table S8: DFT-calculated electronic transitions
and character thereof for [Re]; TPSSh/def2-TZVP(+def2-ECP for Re)/CPCMC(THF) level of theory;
Table S9: DFT-calculated electronic transitions and character thereof for anti-[Re]2; TPSSh/def2-
TZVP(+def2-ECP for Re)/CPCMC(THF) level of theory; Table S10: DFT-calculated electronic tran-
sitions and character thereof for syn-[Re]2; TPSSh/def2-TZVP(+def2-ECP for Re)/CPCMC(THF)
level of theory; Table S11: DFT-calculated absorptions and character of calculated transitions for
[Re]; M06-2X/def2TZVP/LANL2DZ for Re/CPCM(THF) level of theory; Table S12: DFT-calculated
absorptions and character of calculated transitions for anti-[Re]2; M06-2X/def2TZVP/LANL2DZ for
Re/CPCM(THF) level of theory. Table S13: DFT-calculated absorptions and character of calculated
transitions for syn-[Re]2; M06-2X/def2TZVP/LANL2DZ for Re/CPCM(THF) level of theory.
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