Synthesis and Biological Evaluation of a Library of AGE-Related Amino Acid Triazole Crosslinkers

Esra Icik, ${ }^{[a]}$ Anthony Jolly, ${ }^{[a]}$ Paul Löffler, ${ }^{[a]}$ Nektarios Agelidis, ${ }^{[a]}$ Bakiye Bugdayci, ${ }^{[a]}$ Luca Altevogt, ${ }^{[\mathrm{a}, \mathrm{b}]}$ Ursula Bilitewski, ${ }^{[b]}$ Angelika Baro, ${ }^{[a]}$ and Sabine Laschat ${ }^{*[a]}$

Abstract

Three N-Boc-protected amino acids, L-serine, L-aspartic, and L-glutamic acid, were either converted into their methyl azidoalkanoates or various alkynes via Bestmann-Ohira strategy or via reaction with propargylamine and propargyl bromide, respectively. The Cu-catalyzed click reaction provided a library of amino acid based triazoles, which were further N -methylated to triazolium iodides or deprotected and precipitated as free

amino acid triazole dihydrochlorides. The biological properties of all derivatives were investigated by cytotoxicity assay (against L929 mouse fibroblasts) and broth microdilution method (E. coli Δ ToIC and S. aureus). First results reveal complete inactivity for triazolium iodides with cell viabilities and microbial growths nearly 100%, indicating them as possible analogs of advanced glycation endproducts (AGEs).

Introduction

Triazoles and in particular 1,2,3-triazoles are privileged scaffolds in both organic synthesis, material science, catalysis, chemical biology, and medicinal chemistry. ${ }^{[1 a-1 i]}$ This is due to their convenient and convergent synthetic access from azides and alkynes via Cu-catalyzed 1,3-dipolar cycloaddition (i.e. click reaction) and Cu- or azide-free alternatives. ${ }^{[1 e, 1 f]}$ Furthermore, their possibility to form $\mathrm{CH}-\pi$ interactions to generate mesoionic carbenes makes them attractive as ligands to coordinate both metal ions as well as biological matter such as enzymes. In addition, the use of triazoles for the isosteric replacement of amides allows their use as pharmacophoric subunits in biologically active compounds and drugs. ${ }^{[1]}$ The corresponding triazolium cations were employed as functional ionic liquids, precursors of mesoionic carbenes, and building blocks of supramolecular assemblies. ${ }^{[2]}$ While various triazole containing amino acids and amino acid hybrid compounds 1, $\mathbf{2}$ have been developed, e.g. for peptide drug conjugates, glycopeptides, peptide fluorescence labeling, and enzyme inhibitors, ${ }^{[3]}$ dating back to 1996, ${ }^{[4]}$

[^0]the crosslinking of peptides and proteins by bisamino acid triazoles has more recently received growing attention for tailored protein modifications, e.g. as β-turn mimetics and histidine isosters. ${ }^{[5]}$ Moreover, the synthetic precursors of amino acid triazoles, i.e. the alkynylamino acids $\mathbf{3}$ are highly interesting compounds themselves, because they are not only building blocks for click chemistry ${ }^{[3,5,6,7]}$ and Sonogashira cross-coupling for the synthesis of desmosine, isodesmosine and related heterocyclic cationic crosslinkers of connective tissue proteins, but also biosynthetic intermediates. ${ }^{[8]}$ Very recently, the biosynthetic pathway of amino acids containing terminal alkynes, e.g. L-ethynylserine 4, propargylglycine 5, and ethynylglycine $\mathbf{6}$ were discovered in the bacterium Streptomyces cattleya (Scheme 1). ${ }^{[9]}$ Besides the many histidine-containing peptides, crosslinking amino acids and peptides carrying imidazole and imidazolium units have also received much interest. For example, glyoxallysine dimer (GOLD) 8, methylglyoxal-lysine dimer (MOLD) 9, glyoxal- and methylglyoxal-derived imidazolium crosslinks (GODIC, MODIC) 10, 11 and other more complex structures have been extensively investigated. ${ }^{[10-14]}$ These compounds are members of a large class of advanced glycation endproducts (AGEs) 7, which are biosynthetically formed by the Maillard reaction of proteins and carbohydrates that result in protein crosslinking. From a biological point of view, AGEs play an important role in such diverse areas as browning and processing of food ${ }^{[11]}$ as well as aging of tissue and protein-degenerative diseases, associated with diabetes. ${ }^{[15]}$

Natural imidazolium-based AGEs are useful medical markers but often difficult to synthesize. ${ }^{[13]}$ Therefore, we anticipated that synthetic AGEs carrying a triazolium core instead of the imidazolium unit might be a promising alternative, because they should be readily available by Cu-catalyzed click reaction of amino acid-derived alkynes and azides, respectively. ${ }^{[\mathrm{h}]}$ It was therefore our aim to provide a library of AGE analogs, carrying a central triazole $\mathbf{1 2}$ or triazolium unit 12-MeX rather than an

7 natural AGEs

$8 \mathrm{R}=\mathrm{H} \quad$ GOLD
$9 \mathrm{R}=\mathrm{Me}$ MOLD

$\begin{array}{lll}10 & \mathrm{R}=\mathrm{H} & \text { GODIC } \\ 11 \mathrm{R}=\mathrm{Me} & \text { MODIC }\end{array}$

Scheme 1.
imidazolium unit. Moreover, the possibility for N-alkylation enables the comparison of charged and neutral crosslinkers and broadens the scope regarding structure-activity relationship (SAR) studies. The realization of these "click AGEs" and their preliminary biological investigation are discussed in the current manuscript.

Results and Discussion

The synthesis of azides $\mathbf{2 1}$ and $\mathbf{2 2}$ derived from l-aspartic acid and L-glutamic acid is shown in Scheme 2. The starting aldehydes 13 and 14 were accessible in three steps from the respective amino acids. ${ }^{[16]}$ When aldehyde 13 was treated with NaBH_{4} according to the method by Adamczyk, ${ }^{[17]}$ alcohol 15 was isolated in only 24% besides 52% of the undesired δ-lactone 16. Fortunately, the latter could be converted to alcohol 15 by treatment with CsOH in MeOH followed by reaction with Mel
in DMF in $72 \%{ }^{[18]}$ Subsequent iodination under Appel conditions ${ }^{[17,19]}$ and nucleophilic displacement with NaN_{3} in $\mathrm{DMF}^{[20]}$ yielded azide $\mathbf{2 1}$ in 81 \% over two steps.

Scheme 2.
In a similar fashion NaBH_{4} reduction of aldehyde $\mathbf{1 4}$ gave alcohol 18 in 84% yield and was accompanied by lactone 19 formation (4 \%). Lactone 19 could be recycled to 18 in 63%. Alcohol 18 was then converted in two steps into azide 22 in 72 \% (over two steps). 18 was also converted into a mesylate and treated with $\mathrm{NaN}_{3}{ }^{[21]}$ to obtain azide 22 (Scheme S2).

The synthesis of L -serine-derived azide $\mathbf{2 5}$ commenced with N -Boc-serine methyl ester 24a, which was available in two steps from L-serine via N -Boc-serine $\mathbf{2 3}$ in 97% (Scheme 3). ${ }^{[22]}$ Methyl ester 24a was converted into the mesylate $\mathbf{2 4 b}^{[23]}$ in 89% followed by treatment with NaN_{3} according to a method by Shetty. ${ }^{[23]}$ In agreement with previous work by Meffre ${ }^{[24]}$ under these conditions the desired azide $\mathbf{2 5}$ was obtained in 13% yield together with 21% of alkene $\mathbf{2 6}$, which resulted from an elimination reaction. The alternative route via Appel reaction according to a method by Fenster ${ }^{[17,25]}$ gave the respective iodide in a disappointingly low yield of 26% and was accompanied by alkene 26 (4 \%) (Scheme S3). When the iodide was submitted to the $\mathrm{S}_{\mathrm{N}} 2$ reaction with NaN_{3} following a method by Roth, ${ }^{[20]}$ the elimination by-product dominated, giving a crude mixture of azide 25/alkene 26 (12:88, by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, Scheme S3).

Scheme 3.
The syntheses of amino acid alkynes are summarized in Scheme 4 and Scheme 5. Aspartate-derived propargylglycine $\mathbf{2 8}$ was prepared from aldehyde 13 in 21% yield via the Best-
mann-Ohira strategy ${ }^{[24,26]}$ utilizing β-keto-diazophosphonate $27^{[24,27]}$ for one-carbon homologation and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base ${ }^{[23]}$ (Scheme 4).

method A: DCC
method B: DCC, NEt_{3}, NHS

Scheme 4.

Scheme 5.
The synthesis of amino acid alkynes 31 commenced with saponification of known dimethyl esters $29{ }^{[16,28]}$ with KOH in MeOH to the respective monomethyl esters 30. The reaction of 30 with propargylamine was performed using method A or B (Scheme 4). Alkyne 31a was isolated by both methods in comparable yields of 62 and 63%. When mono ester 30b was treated with propargylamine in the presence of DCC and N hydroxysuccinimide (NHS) ${ }^{[29]}$ (method B, Scheme 4), ω-propargylamide 31b was obtained in 63% together with 4% of the α-propargylamide 32b. In the case of monoester 30c, however, the yield of ω-propargylamide 31c could be significantly improved from $42 \%(\operatorname{method} A, \text { Scheme } 4)^{[30]}$ to 82% by addition of NEt_{3} and NHS .

As shown in Scheme 5, serine propargyl ether 35 was synthesized starting from N-Boc serine 33 by Williamson etherification with propargyl bromide and $\mathrm{NaH}^{[31]}$ to give acid 34 quanti-
tatively. The latter was then esterified yielding the desired alkyne $\mathbf{3 5}$ in $87 \%{ }^{[22]}$ When the intermediate free acid $\mathbf{3 4}$ was not isolated and the two-step reaction was carried out in one pot, ${ }^{[32]}$ the yield of 35 decreased to 30%. However, by switching the sequence of Williamson etherification and esterification, no trace of propargyl ether 35 was detected.

With the azides 21, 22, 25 and alkynes 28, 31, 35 in hand, the Cu-catalyzed 1,3-dipolar cycloaddition was investigated (Scheme 6). ${ }^{[33,34]}$ After some optimization (for details see Table S1, Supporting Information), azides 21, 22, 25 and alkynes 28, 31, 35 were treated with $2 \mathrm{~mol}-\% \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, 20 \mathrm{~mol}-\%$ sodium ascorbate in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ (1:1) for 2-5 days at room temperature to obtain a library of triazoles 36-39 (Scheme 6).

Under these conditions, the aspartic acid-derived azide 21 and the alkyne 31a reacted to triazole 37a in 56%. Click reaction of 21 and 31b gave the di- N-Boc-protected counterpart $\mathbf{3 7 c}$ in 45% yield. Triazoles $\mathbf{3 7 b}$ bd obtained from azide 22 and alkynes $\mathbf{3 1 a , b}$ were isolated in similar yields. Compared to the di- N-Boc triazoles $\mathbf{3 7 c}$,d based on aspartic acid derived alkyne 31b the corresponding glutamic acid derived alkyne 31c gave the triazoles $\mathbf{3 6 a} \mathbf{, b}$ in higher yields up to 85%. In the click reaction between serine-based alkyne 35 and the series of azides, the glutamic acid-derived 22 gave the highest yield of 91% for triazole 38c. The lowest yield was obtained for 38b ($9-58 \%$). Using tBuOH as a solvent for the formation of 38b resulted in low yields (Scheme S1). Yields of triazoles 39 ranged between 29% for the aspartate-serine-derived click product 39a and 78% for the glutamate-serine-derived triazole 39b. Subsequent deprotection ${ }^{[35]}$ of the triazoles 36-38 was achieved with NaOH in MeOH , followed by treatment with 6 N HCl in $\mathrm{H}_{2} \mathrm{O}$ to give the free bisamino acid triazole bishydrochlorides $36-39.2 \mathrm{HCl}$ in quantitative yield (Scheme 6). Compounds $36-39 \cdot 2 \mathrm{HCl}$ precipitated with $2-3$ equiv. of NaCl . Aqueous solutions of $36-39.2 \mathrm{HCl}$ have acidic pH -values approving the bishydrochlorides. In addition, protected triazoles 36-38 were N -alkylated with Mel in MeCN to give the N -methyl-triazolium iodides $\mathbf{3 6 - M e l} \mathbf{-} \mathbf{3 8 - M e l}$ in 70% to quantitative yield. ${ }^{[36]}$

Next, the biological properties of the click products were investigated using the single concentration of $100 \mu \mathrm{~m}$ in the primary assay. Both protected and unprotected triazole bisamino acids $\mathbf{3 6}-\mathbf{3 9}, \mathbf{3 6}-\mathbf{3 9 . 2 \mathrm { HCl }}$ as well as the protected triazolium iodides $\mathbf{3 6 - M e l}$ - 38-Mel were submitted to a standard Alamar Blue cytotoxicity assay ${ }^{[37]}$ against the L929 mouse fibroblast cell line. In addition, antimicrobial activities against the Gram-negative bacterium Escherichia coli Δ ToIC and the Grampositive bacterium Staphylococcus aureus were examined by measuring \%growth via the broth microdilution method. The results in Table S2 revealed some general trends. Irrespective of the amino acid residues the unprotected triazole bisamino acids $36-39 \cdot 2 \mathrm{HCl}$ were weakly cytotoxic, showing cell viabilities of 50-61 \%. However, no antimicrobial activities were observed. Similar results were found for the N -Boc-protected triazole bisamino acid methyl ester 36-39. In contrast, the protected triazolium iodides $\mathbf{3 6 - M e I} \mathbf{- 3 8 - M e l}$ were completely inactive in both tests. In other words, for this series the cell viabilities and antimicrobial growths were close to 100%. Presumably, the triazolium moiety seems to promote cell compatibility for both

	n	R	$\mathbf{3 8}$ yield (\%)	38-Mel yield (\%)	$\mathbf{3 8 \cdot 2} \mathbf{~ H C l}$ yield (\%)
a	1	H	63	70	quant
b	2	Boc	$9-58$	87	quant
c	3	Boc	91	90	quant

	n	R	37 yield (\%)	37-Mel yield (\%)	$\mathbf{3 7} \cdot \mathbf{2 H C l}$ yield (\%)
a	1	H	56	quant	quant
b	2	H	$60-67$	90	quant
c	1	Boc	45	96	quant
d	2	Boc	51	93	-

39	n	yield $(\%)$	$39 \cdot 2 \mathrm{HCl}$ yield $(\%)$
a	1	29	quant
b	2	78	quant

Scheme 6.
eukaryotic and prokaryotic cells. It should be emphasized that the absence of cytotoxicity for triazolium salts is in a good agreement with a recent comparative SAR study on triazoles and triazolium salts by da Silva. ${ }^{[38]}$

Conclusion

In the current work, a library of triazole bisamino acids has been synthesized via Cu-catalyzed click reaction from serine-, glutamic acid- and aspartic acid-derived azides and the corresponding alkynes. The azides based on aspartic and glutamic acid were synthesized with yields of 14-49 \% over 6 steps. Thereby lactone formations were not avoidable, but ring-opening reactions were performed. The alkynes also based on these two amino acids were obtained in 15-61 \% yields over 4-5 steps by Bestmann-Ohira strategy and amidation reactions. The serine derived azide was isolated over 3 steps in low yields of $3-11 \%$. However, the serine derived alkyne was synthesized with a high yield of 87% performing a Williamson etherification and esterification. Methylation of the N-Boc-protected triazole amino acid methyl esters provided the corresponding triazolium iodides. According to preliminary biological studies fully protected triazole bisamino acids 36-39 were weakly cytotoxic, whereas the corresponding triazolium iodides $36-\mathrm{MeI}$ - 38-Mel did not show cytotoxic or antimicrobial activity, which makes them suitable to study their potential as click AGE mimics without interfering cytotoxic or antimicrobial activity. Work towards this goal is in progress.

Experimental Section

General: NMR spectra were recorded on Bruker Avance 300, 400, 500 , and 700 MHz instruments. The chemical shifts (δ) are given in ppm and were referenced to residual solvent signal. The signals were assigned by using additional HSQC-, COSY- and HMBC experiments. For easier comparison of NMR spectra, atom numbering may deviate from the IUPAC nomenclature. IR spectra were recorded on a Bruker FT-IR spectrometer ALPHA equipped with a diamond ATR system (Platinum ATR) or a Bruker Vector 22 with MKII Golden Gate Single Reflection Diamant ATR system. HRMS spectra were measured on a Bruker micrOTOF-Q spectrometer via electrospray ionization (ESI). Melting points were measured on a Stuart SMP10 apparatus. Column chromatography was performed using silica gel 60 m (Macherey-Nagel, grain size 40-63 $\mu \mathrm{m}$). All chemicals were used as purchased unless otherwise stated. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and NEt_{3} were dried with CaH_{2} by heating at reflux and subsequent distillation, THF was dried with potassium with benzophenone as an indicator. Hexanes (b.p. $30-70^{\circ} \mathrm{C}$), EtOAc, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and MeOH for chromatography were distilled prior to use. Moisture sensitive reactions were performed in oven-dried glassware under N_{2} atmosphere. Methyl (2S)-2-[bis(tert-butoxycarbonyl)amino]-4-azidobutanoate (21), ${ }^{[20]}$ methyl (2S)-2-(tert-butoxycarbonyl)amino-3-azidopropanoate (25), ${ }^{[20]}$ methyl (2S)-2-[bis(tert-butoxycarbonyl)amino]-pent-4-ynoate (28), ${ }^{[24]}$ methyl N^{2}-(tert-butoxycarbonyl)- N^{4}-prop-2-ynyl-L- α-asparaginate (31a), ${ }^{[29,30]}$ and methyl N-(tert-butoxycarbonyl)-O-prop-2-ynyl-L-serinate (35) ${ }^{[22,32]}$ were synthesized following the literature (see SI).

Methyl (2S)-2-[Bis(tert-butoxycarbonyl)amino]-5-azidopentanoate (22): According to ref. ${ }^{[20]}$ iodide $20(2.61 \mathrm{~g}, 5.71 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(0.75 \mathrm{~g}, 11.5 \mathrm{mmol})$ were dissolved in DMF (27 mL). The reaction mixture was heated under reflux at $40^{\circ} \mathrm{C}$ for 18 h . The solvent
was removed under reduced pressure and the residue was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. After evaporation of the solvent, the crude product was purified by column chromatography on silica gel (hexanes/EtOAc, 8:1) to afford $22(2.05 \mathrm{~g}, 5.52 \mathrm{mmol}, 97 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-38.92\left(c=1.00\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.50\left[\mathrm{~s}, 18 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.60-1.75\left(\mathrm{~m}, 2 \mathrm{H} ; 3-\mathrm{H}_{\alpha}, 4-\mathrm{H}_{\alpha}\right), 1.90-2.02$ ($\mathrm{m}, 1 \mathrm{H} ; 4-\mathrm{H}_{\mathrm{\beta}}$), 2.14-2.26 (m, 1H; 3-H $)$), 3.24-3.39 (m, 2H; 5-H), 3.72 (s, 3H; 1-OMe), $4.86 \mathrm{ppm}(\mathrm{dd}, J=9.4 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H} ; 2-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.7(\mathrm{C}-4), 27.2(\mathrm{C}-3), 28.0\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 51.0$ (C-5), 52.2 ($1-\mathrm{OMe}$), 57.6 (C-2), $83.3\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 152.1(2 \times$ COOtBu), $171.0 \mathrm{ppm}(\mathrm{C}-1)$; FT-IR (ATR): \tilde{v} = 2979 (m, br), 2936 (m, br), 2096 (s), 1795 (w), 1746 (vs), 1699 (s), 1456 (w, br), 1367 (s), 1311 (m), 1250 (s, br), 1169 (s), 1144 (vs), 1012 (w, br), 900 (w), 855 (w), $812(\mathrm{w}), 782(\mathrm{w}, \mathrm{br}), 667(\mathrm{w}), 464(\mathrm{w}) \mathrm{cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z}=395[\mathrm{M}$ $+\mathrm{Na}]^{+}, 295[\mathrm{M}-\mathrm{Boc}+\mathrm{Na}]^{+}, 239\left[\mathrm{M}-\right.$ tert-butyl $+\mathrm{Na}^{+}, 195[\mathrm{M}-2 \times$ $\mathrm{Boc}+\mathrm{Na}]^{+}, 173 ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na}^{+}$: 395.1901 [$\mathrm{M}+\mathrm{Na}^{+}$, found 395.1892.

Methyl $\quad N^{2}, N^{2}$-Bis(tert-butoxycarbonyl)- ${ }^{4}$-prop-2-ynyl-L- α-asparaginate (31b): According to ref. ${ }^{[29]}$ under N_{2}-atmosphere 30b ($2.03 \mathrm{~g}, 5.84 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(203 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. NHS ($1.49 \mathrm{~g}, 12.9 \mathrm{mmol}$) and DCC ($2.70 \mathrm{~g}, 13.1 \mathrm{mmol}$) were added and stirred for $15 \mathrm{~min} . \mathrm{NEt}_{3}(1.8 \mathrm{~mL}, 1.31 \mathrm{~g}, 13.0 \mathrm{mmol})$ and propargylamine ($0.81 \mathrm{~mL}, 0.70 \mathrm{~g}, 12.6 \mathrm{mmol}$) was added and stirred for 1 d at $\mathrm{r} . \mathrm{t}$. The solution was filtered off and washed with 0.1 m $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $(4 \times 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$, and saturated NaHCO_{3} solution $(2 \times 200 \mathrm{~mL})$. The organic phase was dried with MgSO_{4} and filtered off. After evaporation of the solvent, EtOAc was added to the residue and cooled to $-15{ }^{\circ} \mathrm{C}$ and filtered off. The solvent was removed under reduced pressure and purified by column chromatography on silica gel (hexanes/EtOAc, 3:1) to afford 31b ($1.86 \mathrm{~g}, 4.84 \mathrm{mmol}, 63 \%$) as a colorless oil. $R_{\mathrm{f}}=0.25$ (hexanes/ EtOAc, 3:1); $[\alpha]_{D}^{20}=-41.8\left(c=1.47\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.50\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.22(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}$, $\left.1 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 2.62\left(\mathrm{dd}, \mathrm{J}=15.2,6.1 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}_{\mathrm{a}}\right), 3.11(\mathrm{dd}, J=15.2$, $\left.7.3 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}_{\mathrm{b}}\right), 3.72(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.02-4.08\left(\mathrm{~m}, 2 \mathrm{H} ; 1^{\prime}-\mathrm{H}\right), 5.45(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H} ; 2-\mathrm{H}), 5.93 \mathrm{ppm}($ brs, $1 \mathrm{H} ; \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.1\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.5\left(\mathrm{C}-1^{\prime}\right), 38.1(\mathrm{C}-3), 52.7$ (OMe), $55.4(\mathrm{C}-2), 71.8\left(\mathrm{C}-3^{\prime}\right), 79.6\left(\mathrm{C}-2^{\prime}\right), 83.7\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 152.0$ ($2 \times$ COOtBu), 169.4 (C-1), 170.9 ppm (C-4); FT-IR (ATR): $\tilde{v}=568(\mathrm{w})$, 666 (w), 779 (w), 852 (m), 928 (w), 10001 (w), 1059 (w), 1116.3 (s), 1143 (vs), 1231 (s), 1274 (s), 1312 (s), 1368 (vs), 1437 (m), 1457 (m), 1540 (m), 1700 (s), 1747 (vs), 1787 (m), 2853 (w), 2932 (m), 2980 (m), 3299 (br, m) cm^{-1}; MS (ESI): $\mathrm{m} / \mathrm{z}=431,407[\mathrm{M}+\mathrm{Na}]^{+}, 385$, 329, 307, 285, 251, 229, 207, 185, 125; HRMS (ESI): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}$: $407.1789\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, found 407.1777.

As a side product methyl (3S)-3-[bis(tert-butoxycarbonyl)amino]-1-prop-2'-ynylamido-butanoate 32b ($87.0 \mathrm{mg}, 0.23 \mathrm{mmol}, 4 \%$) was obtained as a white solid. M.p. $143{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.47$ (hexanes/EtOAc, $3: 1) ;[\alpha]_{D}^{20}=-42.8\left(c=1.07\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.51\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.21\left(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 2.77(\mathrm{dd}$, $\left.J=16.7,6.9 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}_{\mathrm{a}}\right), 3.33\left(\mathrm{dd}, J=16.7,6.5 \mathrm{~Hz}, 1 \mathrm{H} ; 3-\mathrm{H}_{\mathrm{b}}\right), 3.69$ $(\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.95-4.04\left(\mathrm{~m}, 1 \mathrm{H} ; 1^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 4.07-4.16\left(\mathrm{~m}, 1 \mathrm{H} ; 1^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.19$ (t, J = 6.8 Hz, 1H; 2-H), 6.09-6.16 ppm (m, 1H; NH); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.1\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.6\left(\mathrm{C}-1^{\prime}\right), 35.2(\mathrm{C}-3), 52.1$ (OMe), $56.2(\mathrm{C}-2), 72.0\left(\mathrm{C}-3^{\prime}\right), 79.4\left(\mathrm{C}-2^{\prime}\right), 84.3\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 151.9$ $(2 \times$ COOtBu), $169.0(\mathrm{C}-1), 171.8 \mathrm{ppm}(\mathrm{C}-4) ;$ FT-IR (ATR): $\tilde{v}=411(\mathrm{w})$, 659 (w), 778 (w), 813 (w), 852 (m), 931 (w), 973 (w), 1027 (w), 1117 (s), 1140 (vs), 1166 (s), 1236 (s), 1307 (s), 1369 (s), 1438 (m), 1457 (m), 1479 (m), 1521 (m), 1698 (s$), 1739$ (vs), 1790 (m), 2933 (m), $2980(\mathrm{~m}), 3279(\mathrm{br}, \mathrm{w}) \mathrm{cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z}=449,431,407[\mathrm{M}+\mathrm{Na}]^{+}$, 385, 349, 307, 285, 251, 229, 207, 185, 167, 153; HRMS (ESI): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}$: $407.1789\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, found 407.1786.

Methyl $\quad N^{2}, N^{2}$-Bis(tert-butoxycarbonyl)- N^{4}-prop-2-ynyl-L- α glutaminate (31c): Method B: According to ref. ${ }^{[29]}$ under N_{2}-atmosphere $\mathbf{3 0 c}$ ($203 \mathrm{mg}, 0.56 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (21 mL) and cooled to $0^{\circ} \mathrm{C}$. Then NHS ($157 \mathrm{mg}, 1.36 \mathrm{mmol}$) and DCC ($254 \mathrm{mg}, 1.23 \mathrm{mmol}$) were added to the cooled solution and stirred for 15 min . After adding $\mathrm{NEt}_{3}(0.18 \mathrm{~mL}, 131 \mathrm{mg}, 1.30 \mathrm{mmol})$ and propargylamine $(0.08 \mathrm{~mL}, 69 \mathrm{mg}, 1.25 \mathrm{mmol})$, the reaction was stirred for 1 d at r.t. The reaction mixture was filtered off and washed with $0.1 \mathrm{~m}_{2} \mathrm{SO}_{4}$ solution ($2 \times 40 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(2 \times 60 \mathrm{~mL})$, and saturated NaHCO_{3} solution ($2 \times 40 \mathrm{~mL}$). The organic phase was dried with MgSO_{4} and filtered off. After removing the solvent, the residue was purified by column chromatography on silica gel (hexanes/EtOAc, 3:1, phosphomolybdic acid), to afford 31c (182 mg , $0.46 \mathrm{mmol}, 82 \%$) as a white solid.

Method A: According to ref. ${ }^{[30]}$ under N_{2}-atmosphere $\mathbf{3 0 c}(118 \mathrm{mg}$, 0.33 mmol) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Then DCC ($72.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) and propargylamine (0.03 mL , $25.8 \mathrm{mg}, 0.47 \mathrm{mmol}$) were added to the cooled solution and stirred for 1 d at r.t. The reaction solution was filtered off and the solvent was removed. The residue was taken up in EtOAc and filtered off again. After evaporation of the solvent, the residue was purified by column chromatography on silica gel (hexanes/EtOAc, 3:1) to afford 31c ($54.0 \mathrm{mg}, 0.14 \mathrm{mmol}, 42 \%$) as a white solid. M.p. $119{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=$ 0.19 (hexanes/EtOAc, 3:1);] $[\alpha]_{D}^{20}=-29.0\left(c=1.00\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.50\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.13-2.21$ $\left(\mathrm{m}, 1 \mathrm{H} ; 3-\mathrm{H}_{\mathrm{a}}\right), 2.22\left(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 2.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H} ;$ 4-H), 2.44-2.56 (m, 1H; 3- H_{b}), $3.72(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.02-4.07(\mathrm{~m}, 2 \mathrm{H} ;$ $\left.1^{\prime}-\mathrm{H}\right), 4.88(\mathrm{dd}, \mathrm{J}=8.9,5.4 \mathrm{~Hz}, 1 \mathrm{H} ; 2-\mathrm{H}), 5.75-5.84 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H} ; \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.0(\mathrm{C}-3), 28.1\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.4\left(\mathrm{C}-1^{\prime}\right.$), 33.0 (C-4), 52.3 (OMe), 57.9 (C-2), 71.8 (C-3'), 79.7 (C-2'), 83.8 $\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 152.3(\mathrm{COOtBu}), 171.0(\mathrm{C}-1), 171.6 \mathrm{ppm}(\mathrm{C}-1) \text {; FT-IR (ATR): }}^{\text {(}}\right.$ $\tilde{v}=465(\mathrm{w}), 665(\mathrm{br}, \mathrm{m}), 785(\mathrm{~m}), 853(\mathrm{~m}), 1035(\mathrm{~m}), 1116$ (vs), 1140 (vs), 1168 (s), 1247 (s), 1312 (s), 1368 (vs), 1456 (m), 1535 (m), 1655 (s), 1700 (s), 1743 (vs), 1785 (m), 2980 (m), 3284 (br, m) cm ${ }^{-1}$. MS (ESI): $m / z=421[M+N a]^{+}, 399,343,321,299,266,243,221,199$, 182, 166, 144; HRMS (ESI): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Na}^{+}$: 421.1945 $[\mathrm{M}+\mathrm{Na}]^{+}$, found 421.1938.
General Procedure for the Click Reaction: According to ref. ${ }^{[33,34]}$ azides 21, 22, 25 (1.00 mmol) and alkynes 28, 31, $\mathbf{3 5}$ (1.00 mmol) were dissolved in water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}) . \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($0.01-0.02 \mathrm{mmol}$) and sodium ascorbate ($0.1-0.2 \mathrm{mmol}$) were added. After stirring the reaction for several hours, one or two more times $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.01-0.02 \mathrm{mmol})$ and sodium ascorbate ($0.1-$ 0.2 mmol) were added depending on the conversion shown on the TLC and stirred for another certain time at r.t. After adding $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL), the aqueous layer was separated from the organic layer and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (40 mL), dried with MgSO_{4}, and filtered off. After evaporation of the solvent, the residue was purified by column chromatography on silica gel. Due to the high viscosity of the clickproducts removal of the solvent by lyophilization was difficult, so spectra contain 3-29 \% of EtOAc.

5-((1-((S)-4-(Methyloxy)-3-((Bis(tert-butoxycarbonyl)amino))-4-oxobutyl)-1 H -1,2,3-triazol-4-yl)methyl)-(2S)-2-(Bis(tert-butoxy-carbonylamino))-amidopentyl-methyl Ester (36a): From the azide 21 ($46.0 \mathrm{mg}, 0.13 \mathrm{mmol}$) and alkyne 31c ($45.0 \mathrm{mg}, 0.11 \mathrm{mmol}$) in water (0.90 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.90 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.23 \mathrm{mg}$, $4.93 \mu \mathrm{~mol}$) and sodium ascorbate ($8.52 \mathrm{mg}, 43.0 \mu \mathrm{~mol}$), 22 h ; $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(2.42 \mathrm{mg}, 9.69 \mu \mathrm{~mol})$ and sodium ascorbate (8.71 mg , $44.0 \mu \mathrm{~mol}), 22 \mathrm{~h}, 36 \mathrm{a}(72.0 \mathrm{mg}, 95.1 \mu \mathrm{~mol}, 85 \%)$, colorless oil. $R_{\mathrm{f}}=$ 0.13 (hexanes/EtOAc, 1:2); $[\alpha]_{D}^{20}=-14.8\left(c=0.86\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.48\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49[\mathrm{~s}, 18 \mathrm{H} ; 2 \times$
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.12-2.24\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.28\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; 4^{\prime}-\mathrm{H}\right), 2.39-$ $2.59\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.75-2.86\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.71(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe})$, 3.73 (s, 3H; OMe), 4.37-4.60 (m, 4H; 4"-H, 6-H), 4.82-4.96 (m, 2H; $\left.2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 6.25-6.33(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NH}), 7.62 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.8\left(\mathrm{C}-3^{\prime \prime}\right), 28.1\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.0\left(\mathrm{C}-3^{\prime}\right), 32.9$ (C-4'), 34.6 (C-6), 48.3 (C-4"), 52.3, 52.6 (OMe), 55.6, 57.7 (C-2', (-2') $)$ 83.5, $84.0\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 123.4(\mathrm{C}-5), 144.2(\mathrm{C}-4), 152.1,152.2$ [$4 \times$ COOtBu], 170.3, 171.0, 172.2 ppm (C-1', C-5', C-1"); FT-IR (ATR): $\tilde{v}=413(\mathrm{w}), 461(\mathrm{w}), 647(\mathrm{w}), 665(\mathrm{w}), 731(\mathrm{~m}), 782(\mathrm{~m}), 853(\mathrm{~m})$, 913 (w), 1013 (m), 1049 (m), 1141 (vs), 1166 (s), 1232 (s), 1367 (vs), 1437 (m), 1456 (m), 1529 (m), 1700(s), 1744 (vs), 1789 (m), 2035 (w), 2054 (w), 2115 (w), 2151 (w), 2185 (w), 2201 (w), 2266 (w), 2980 (m), 3366 (br w) cm ${ }^{-1}$; MS (ESI): $m / z=795,779[M+\mathrm{Na}]^{+}, 757,695$, 679, 657, 595, 579, 557, 523, 501, 457, 439, 401, 383, 357; HRMS (ESI): m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Na}^{+}$: $779.3798\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$, found 779.3787.

5-((1-((S)-5-(Methyloxy)-4-((Bis(tert-butoxycarbonyl)amino))-5-oxopentyl)-1H-1,2,3-triazol-4-yl)methyl)-(2S)-2-(Bis(tert-butoxy-carbonylamino))-amidopentyl-methyl Ester (36b): From the azide 22 ($97.0 \mathrm{mg}, 0.26 \mathrm{mmol}$) and the alkyne $\mathbf{3 1 \mathrm { c }}$ (100 mg , $0.25 \mathrm{mmol})$ in water (1.50 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.50 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($2.00 \mathrm{mg}, 8.01 \mu \mathrm{~mol}$) and sodium ascorbate ($11.6 \mathrm{mg}, 58.6 \mu \mathrm{~mol}$), $3 \mathrm{~d}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.15 \mathrm{mg}, 4.61 \mu \mathrm{~mol})$ and sodium ascorbate $(7.07 \mathrm{mg}, 35.7 \mu \mathrm{~mol}), 6 \mathrm{~h}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.00 \mathrm{mg}, 4.00 \mu \mathrm{~mol})$ and sodium ascorbate ($5.30 \mathrm{mg}, 26.7 \mu \mathrm{~mol}$), $18 \mathrm{~h}, \mathbf{3 6 b}$ (151 mg , $0.20 \mathrm{mmol}, 80 \%$) as a colorless oil. $R_{\mathrm{f}}=0.16$ (hexanes $/ \mathrm{EtOAc}, 1: 2$); $[\alpha]_{D}^{20}=-33.1\left(c=0.71\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.48\left[\mathrm{~s}, 36 \mathrm{H} ; 4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.86-1.95\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 1.96-2.04(\mathrm{~m}$, $\left.2 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}\right), 2.09-2.23\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.26-2.31\left(\mathrm{~m}, 2 \mathrm{H} ; 4^{\prime}-\mathrm{H}\right)$, 2.45-2.52 (m, 1H; 3'- H_{b}), $3.71(\mathrm{~s}, 6 \mathrm{H} ; 2 \times \mathrm{OMe}), 4.40\left(\mathrm{t}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right)$, 4.48-4.59 (m, 2H; 6-H), 4.85-4.91 (m, 2H; 2'-H, 2"-H), 6.38 ($\mathrm{s}, 1 \mathrm{H}$; NH), $7.63 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.8$ (C-3'), 27.1 ($\left.\mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}\right), 28.1\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 32.9\left(\mathrm{C}-4^{\prime}\right), 34.8(\mathrm{C}-6), 50.4$ ($\mathrm{C}-5^{\prime \prime}$) , 52.4, $52.5(2 \times \mathrm{OMe}), 57.3,57.7$ ($\left.\mathrm{C}-2^{\prime}, \mathrm{C}-2^{\prime \prime}\right), 83.5$, $83.7\left[\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right], 123.0(\mathrm{C}-5), 144.2(\mathrm{C}-4), 152.2(4 \times \mathrm{COOtBu}), 170.9$, 171.0, $172.1 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-5^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$. FT-IR (ATR): $\tilde{v}=416$ (w), 459 (w), 784 (m), 854 (m), 1142 (vs), 1168 (s), 1250 (s), 1313 (m), 1368 (vs), 1457 (m), 1530 (m), 1702 (s), 1746 (vs), 1789 (m), 2980 (m), 3355 (br, w) $\mathrm{cm}^{-1} ; \mathrm{MS}$ (ESI): $m / z=1542,793[M+\mathrm{Na}]^{+}, 693,627,571$, 471, 415; HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Na}^{+}$: 793.3954 [$M+$ $\mathrm{Na}]^{+}$, found 793.3975.
4-((1'-((S)-1"-(Methyloxy)-2"-((tert-butoxycarbonyl)amino)-1"-oxobutyl)-1H-1', $\mathbf{2}^{\prime}, 3^{\prime}$-triazol-4'-yl)methyl)-(2S)-2-(tert-butoxy-carbonylamino)-amidobutyl-methyl Ester (37a): From the azide $21(452 \mathrm{mg}, 1.26 \mathrm{mmol})$ and alkyne 31a ($357 \mathrm{mg}, 1.26 \mathrm{mmol}$) in water (7.00 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.00 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(6.44 \mathrm{mg}$, $25.8 \mu \mathrm{~mol}$) and sodium ascorbate ($57.0 \mathrm{mg}, 0.29 \mathrm{mmol}$), 18 h , $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}(5.90 \mathrm{mg}, 23.6 \mu \mathrm{~mol})$ and sodium ascorbate (49 mg , $0.25 \mathrm{mmol}), 5 \mathrm{~h}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(6.08 \mathrm{mg}, 24.4 \mu \mathrm{~mol})$ and sodium ascorbate ($42.0 \mathrm{mg}, 0.21 \mathrm{mmol}$), $16 \mathrm{~h}, 37 \mathrm{a}$ ($447 \mathrm{mg}, 0.70 \mathrm{mmol}$, 56%) as a colorless oil. $R_{\mathrm{f}}=0.08$ (hexanes/EtOAc, 1:1); $[\alpha]_{\mathrm{D}}^{20}=+5.79$ ($c=1.07$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.43$ [s, $9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$] (alkyne), $1.49\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.36-2.54(\mathrm{~m}, 1 \mathrm{H}$; $3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}$), 2.68 (dd, J = 17.1, 5.6 Hz, 1H; $3^{\prime}-\mathrm{H}_{\mathrm{a}}$), 2.73-2.87 (m, 1H; $3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}$), 3.04 (dd, J = 17.1, $3.9 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}$), 3.68 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), 3.72 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), 4.27-4.73 (m, 5H; 4"-H, 6-H, 2-H), 4.89 (m, 1H; $2^{\prime \prime}-\mathrm{H}$), $5.52-5.72(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NHBoc}), 6.93-7.11(\mathrm{~m}, 1 \mathrm{H} ;$ CONH), $7.55 \mathrm{ppm}(\mathrm{s}$, $1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.1,28.4\left[3 \times \mathrm{C}^{2}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 31.2 (C-3"), 35.4 (C-6), 36.0 (C-3'), 47.7 (C-4'), 50.9 (C-2'), 52.2 (OMe), $52.6(\mathrm{OMe}), 55.7\left(\mathrm{C}-2^{\prime \prime}\right), 84.0\left[3 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 122.4(\mathrm{C}-5), 144.7(\mathrm{C}-4)$, 152.1 ($3 \times$ COOtBu), $170.5,170.9,172.7 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$. FT-IR (ATR): $\tilde{v}=463(\mathrm{w}), 647(\mathrm{~m}), 728(\mathrm{vs}), 781(\mathrm{~m}), 852(\mathrm{~m}), 912(\mathrm{~m}), 1049$ (m), 1131 (vs), 1233 (s), 1366 (vs), 1438 (m), 1457 (m), 1518 (m),

1699 (s), 1737 (s), 1789 (w), 2255 (w), 2980 (w), 3331 (br, w) cm ${ }^{-1}$; MS (ESI): $m / z=665[M+N a]^{+}, 643,599,565,543,509,487,443$, 431, 409, 387, 343, 313; HRMS (ESI): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{Na}^{+}$: $665.3117[M+\mathrm{Na}]^{+}$, found 665.3059 .

4-((1-((S)-5-(Methyloxy)-4-((tert-butoxycarbonyl)amino)-5-oxo-pentyl)-1H-1,2,3-triazol-4-yl)methyl)-(2S)-2-(bis(tert-butoxy-carbonylamino))-amidobutyl-methyl Ester (37b): From the azide $22(112 \mathrm{mg}, 0.30 \mathrm{mmol})$ and alkyne 31a ($114 \mathrm{mg}, 0.40 \mathrm{mmol}$) in water (1.90 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.90 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.23 \mathrm{mg}$, $4.93 \mu \mathrm{~mol})$ and sodium ascorbate ($9.23 \mathrm{mg}, 46.6 \mu \mathrm{~mol}$), 19 h , $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.80 \mathrm{mg}, 7.21 \mu \mathrm{~mol})$ and sodium ascorbate (10.8 mg , $54.6 \mu \mathrm{~mol}), 6 \mathrm{~h}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(9.00 \mathrm{mg}, 3.60 \mu \mathrm{~mol})$ and sodium ascorbate ($9.56 \mathrm{mg}, 48.2 \mu \mathrm{~mol}$), $18 \mathrm{~h}, \mathbf{3 7 b}(129 \mathrm{mg}, 0.20 \mathrm{mmol}$, 67%) as a colorless oil. $R_{\mathrm{f}}=0.14$ (hexanes/EtOAc, 1:2); $[\alpha]_{\mathrm{D}}^{20}=-11.6$ $\left(c=1.00\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44$ $\left[\mathrm{s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.86-2.03\left(\mathrm{~m}, 3 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}\right.$, $\left.3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.07-2.18\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 2.68(\mathrm{dd}, J=17.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}$; $\left.3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.05\left(\mathrm{dd}, \mathrm{J}=17.0,4.2 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.69(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.71$ ($\mathrm{s}, 3 \mathrm{H}$; OMe), 4.36 (t, J = $\left.6.9 \mathrm{~Hz}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right), 4.45-4.61(\mathrm{~m}, 3 \mathrm{H} ; 6-\mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 4.86-4.93$ ($\mathrm{m}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}$), 5.50-5.76 (m, 1H; NHBoc), 6.91-7.12 (m, 1H; NH), $7.53 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.9,27.0\left(\mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}\right), 28.1,28.4\left[3 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.5(\mathrm{C}-6), 36.1$ (C-3'), 50.8 (C-5"), 50.9 (C-2') 52.2, $52.5(2 \times \mathrm{OMe}), 57.2$ (C-2"), $83.8\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 123.6(\mathrm{C}-5), 143.8(\mathrm{C}-4), 152.3[3 \times \mathrm{COOtBu}], 170.8$, 171.4, $172.3 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=462(\mathrm{w}), 647$ (w), 732 (m), 784 (m), 853 (m), 917 (w), 1027 (m), 1051 (m), 1165 (vs), 1249 (s), 1304 (m), 1367 (vs), 1438 (m), 1456 (m), 1521 (m), 1701 (s), 1739 (s), 1789 (m), 2934 (m), 2979 (m), 3349 (w) cm^{-1}; MS (ESI): $\mathrm{m} / \mathrm{z}=695,679[\mathrm{M}+\mathrm{Na}]^{+}, 657,613,579,557,501,445,401,357$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{Na}^{+}$: $679.3273[\mathrm{M}+\mathrm{Na}]^{+}$, found 679.3272.

4-((1-((S)-4-(Methyloxy)-3-((Bis(tert-butoxycarbonyl)amino))-4-oxobutyl)-1H-1,2,3-triazol-4-yl)methyl)-(2S)-2-(Bis(tert-butoxy-carbonylamino))-amidobutyl-methyl Ester (37c): From the azide $21(609 \mathrm{mg}, 1.70 \mathrm{mmol})$ and alkyne 31b ($646 \mathrm{mg}, 1.68 \mathrm{mmol}$) in water (9.50 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.50 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4.93 \mathrm{mg}$, $19.7 \mu \mathrm{~mol}$) and sodium ascorbate ($34.0 \mathrm{mg}, 0.17 \mathrm{mmol}$), 22 h , $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.48 \mathrm{mg}, 21.9 \mu \mathrm{~mol})$ and sodium ascorbate (35.0 mg , $0.18 \mathrm{mmol}), 6 \mathrm{~h}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.35 \mathrm{mg}, 21.4 \mu \mathrm{~mol})$ and sodium ascorbate ($32.0 \mathrm{mg}, 0.16 \mathrm{mmol}$), $20 \mathrm{~h}, 37 \mathrm{c}(560 \mathrm{mg}, 0.75 \mathrm{mmol}$, 45%) as a colorless oil. $R_{f}=0.02$ (hexanes/EtOAc, 2:1); $[\alpha]_{D}^{20}=-24.1$ ($c=1.07$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.45[\mathrm{~s}, 36 \mathrm{H} ; 4 \times$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.38-2.51\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.58(\mathrm{dd}, J=15.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}$; $\left.3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.73-2.86\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 3.10(\mathrm{dd}, J=15.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}$; $\left.3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.70(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.72(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe})$, 4.31-4.66 (m, 4H; 4"-H, $6-\mathrm{H}), 4.89\left(\mathrm{dd}, J=8.0,5.8 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 5.50(\mathrm{dd}, J=7.3,5.8 \mathrm{~Hz}$, $\left.1 \mathrm{H} ; \mathrm{L}^{\prime}-\mathrm{H}\right), 6.27(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 7.60 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.1\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.2\left(\mathrm{C}-3^{\prime \prime}\right), 35.3(\mathrm{C}-6), 38.1$ (C-3'), 47.8 ($\left.\mathrm{C}-4^{\prime \prime}\right), 52.6(2 \times \mathrm{OMe}), 55.4$ (C-2'), $55.7\left(\mathrm{C}-2^{\prime \prime}\right), 83.6$, $83.9\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 122.6(\mathrm{C}-5), 144.7(\mathrm{C}-4), 151.9,152.1(4 \times \mathrm{COOtBu})$, 169.8, 170.4, $170.9 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-4^{\prime} \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=464$ (w), 647 (w), 666 (w), 732 (m), $780(\mathrm{~m}), 815(\mathrm{w}), 852(\mathrm{~m}), 916(\mathrm{~m}), 1000$ (m), 1049 (m), 1114 (vs), 1141 (vs), 1167 (s), 1230 (s), 1312 (s), 1367 (vs), 1437 (m), 1457 (m), 1536 (m), 1699 (s), 1743 (vs), 1789 (m), $2980(\mathrm{~m}), 3370(\mathrm{br}, \mathrm{w}) \mathrm{cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z}=765[\mathrm{M}+\mathrm{Na}]^{+}, 743,699$, 665, 599, 565, 543, 509, 465, 443, 409, 387, 365, 343; HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Na}^{+}: 765.3641[\mathrm{M}+\mathrm{Na}]^{+}$, found 765.3643.

4-((1-((S)-5-(Methyloxy)-4-((Bis(tert-butoxycarbonyl)amino))-5-oxopentyl)-1H-1,2,3-triazol-4-yl)methyl)-(2S)-2-(bis(tert-butoxy-carbonylamino))-amidobutyl-methyl Ester (37d): From the azide 22 ($271 \mathrm{mg}, 0.70 \mathrm{mmol}$) and alkyne 31b ($267 \mathrm{mg}, 0.72 \mathrm{mmol}$) in water (8.30 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.30 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(3.00 \mathrm{mg}$,
$12.0 \mu \mathrm{~mol})$ and sodium ascorbate ($25.0 \mathrm{mg}, 0.13 \mathrm{mmol}$), 28 h , $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(3.60 \mathrm{mg}, 14.4 \mu \mathrm{~mol})$ and sodium ascorbate $(25.0 \mathrm{mg}$, $0.13 \mathrm{mmol}), 4 \mathrm{~d}, \mathbf{3 7 d}$ ($276 \mathrm{mg}, 0.36 \mathrm{mmol}, 51 \%$) as a colorless oil. $R_{\mathrm{f}}=0.15$ (hexanes/EtOAc, 1:2); $[\alpha]_{\mathrm{D}}^{20}=-38.3\left(c=1.07\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.47\left[2 \times \mathrm{s}, 36 \mathrm{H} ; 4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.81-2.00$ (m, 3H; 4"-H, 3"- H_{a}), 2.04-2.23 (m, 1H; $3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}$), 2.58 (dd, J = 15.0, $\left.5.9 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.09\left(\mathrm{dd}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.69(2 \times \mathrm{s}$, $6 \mathrm{H} ; 2 \times \mathrm{OMe}), 4.35\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right), 4.43-4.59(\mathrm{~m}, 2 \mathrm{H} ; 6-\mathrm{H})$, 4.83-4.91 (m, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.41(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NH}), 7.57 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=27.1\left(\mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}\right), 28.1\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 35.1 (C-6), 38.1 (C-3'), 50.1 (C-5"), 52.4, $52.6(2 \times \mathrm{OMe}), 55.4\left(\mathrm{C}-2^{\prime}\right)$, $57.4\left(\mathrm{C}-2^{\prime \prime}\right), 83.6\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 122.6(\mathrm{C}-5), 144.7(\mathrm{C}-4), 151.9$, 152.3 [$2 \times$ COOtBu], 169.8, $170.9 \mathrm{ppm}\left(\mathrm{C}^{\prime} \mathbf{1}^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=431(\mathrm{w}), 468(\mathrm{w}), 491$ (w), 783 (m), 853 8m), 1003 (m), 1143 (vs), 1168 (s), 130 (s), 1251 (s), 1312 (s), 1368 (vs), 1457 (m), 1534 (m), 1701 (s), 1748 (vs), 1789 (m), 1961 (w), 2007 (w), 2153 (w), 2980 (m), 3379 (br, w) cm ${ }^{-1}$; MS (ESI): m/z = 779 [M + Na] ${ }^{+}, 757,713,679$, 613, 579, 557, 557, 501, 457, 401, 357; HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{Na}^{+}: 779.3798[M+\mathrm{Na}]^{+}$, found 779.3768.
3-((1'-((S)-3-(Methyloxy)-2-((tert-butoxycarbonyl)amino)-3-oxo-butyl)-1H-1,2,3-triazol-4-yl)methyl)-(2S)-2-(tert-butoxycarbonyl-amino)-oxopropyl-methyl Ester (38a): From the azide $\mathbf{2 5}$ (515 mg , $2.11 \mathrm{mmol})$ and alkyne $35(557 \mathrm{mg}, 2.16 \mathrm{mmol})$ in water (22.0 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22.0 \mathrm{~mL}), \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(5.8 \mathrm{mg}, 23.2 \mu \mathrm{~mol})$ and sodium ascorbate ($42.0 \mathrm{mg}, 0.21 \mathrm{mmol}$), $20 \mathrm{~h}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.54 \mathrm{mg}$, $21.6 \mu \mathrm{~mol}$) and sodium ascorbate ($44 \mathrm{mg}, 0.22 \mathrm{mmol}$), $5 \mathrm{~h}, \mathrm{Cu}-$ $\mathrm{SO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.23 \mathrm{mg}, 20.8 \mu \mathrm{~mol})$ and sodium ascorbate (40.0 mg , $0.20 \mathrm{mmol}), 21 \mathrm{~h}, 38 \mathrm{a}(660 \mathrm{mg}, 1.32 \mathrm{mmol}, 63 \%)$ as a white solid. $R_{\mathrm{f}}=0.04$ (hexanes/EtOAc, 2:1). M.p. $82^{\circ}{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=+29.6(c=1.13$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.45\left[\mathrm{~s}, 9 \mathrm{H} ; 2 \times \mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right] \text {, }}\right.$ $3.71-376\left(\mathrm{~m}, 4 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{a}}, 1-\mathrm{OMe}\right), 3.79$ (s, 3H; $1^{\prime \prime}$-OMe), 3.92 (dd, $\left.J=9.4,3.3 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.39-4.47\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.56-4.88(\mathrm{~m}, 5 \mathrm{H} ;$ $\left.2^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 6-\mathrm{H}\right), 5.26-5.59(\mathrm{~m}, 2 \mathrm{H} ; 2 \times \mathrm{NHBoc}), 7.47 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ;$ $5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.4\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 52.6(2 \times$ OMe), 53.9 (C-2'), 51.1, 53.3, 54.1, 64.8 (C-2", C-3", C-6), 70.5 (C-3'), 80.2, $80.9\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 123.9(\mathrm{C}-5), 144.7(\mathrm{C}-4), 155.3,155.6(2 \times$ COOtBu), 169.6, $171.2 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=462$ (w), 646 (w), 733 (m), $780(\mathrm{w}), 856(\mathrm{w}), 917(\mathrm{w}), 1027(\mathrm{~m}), 1050(\mathrm{~s}), 1108(\mathrm{~m})$, 1162 (vs), 1215 (s), 12498 s$), 12988 \mathrm{~m}$), 1367 (s$), 1392$ (m), 1438 (m), 1455 (m), 1506 (s), 1708 (vs), 1745 (s), 2977 (m), 3353 (br, w) cm ${ }^{-1}$; MS (ESI): $m / z=540,524[M+N a]^{+}, 502,468,424,402,368,346$, 324; HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Na}^{+}: 524.2327$ [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$, found 524.2315. The spectroscopic data are in accordance with the literature. ${ }^{[33]}$

3-((1-((S)-4-(Methyloxy)-3-((Bis(tert-butoxycarbonyl)amino))-4-oxobutyl)-1H-1,2,3-tri-azol-4-yl)methyl)-(2S)-2-(tert-butoxycarb-onylamino)-oxopropyl-methyl Ester (38b): From the azide 21 ($381 \mathrm{mg}, 1.06 \mathrm{mmol}$) and alkyne $35(264 \mathrm{mg}, 1.03 \mathrm{mmol})$ in water $(11.0 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.0 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(5.50 \mathrm{mg}, 22.0 \mu \mathrm{~mol})$ and sodium ascorbate ($40.0 \mathrm{mg}, 0.20 \mathrm{mmol}$), $1 \mathrm{~d}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(5.00 \mathrm{mg}, 20.0 \mu \mathrm{~mol})$ and sodium ascorbate ($40 \mathrm{mg}, 0.20 \mathrm{mmol}$), 3 d , $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2.90 \mathrm{mg}, 11.6 \mu \mathrm{~mol})$ and sodium ascorbate (20.0 mg , $0.10 \mathrm{mmol}), 1 \mathrm{~d}, \mathbf{3 8 b}(368 \mathrm{mg}, 0.60 \mathrm{mmol}, 58 \%$) as a colorless oil. $R_{\mathrm{f}}=0.06$ (hexanes/EtOAc, 2:1); $[\alpha]_{\mathrm{D}}^{20}=+1.68\left(c=1.07\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44\left[\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ (alkyne)], 1.50 [s, 18H; C(CH3 $)_{3}$ (azide)], 2.38-2.54 (m, 1H; 3"'- H_{a}), 2.74-2.89 (m, 1H; $\left.3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 3.70-3.78\left(\mathrm{~m}, 7 \mathrm{H} ; 2 \times \mathrm{OMe}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.89-3.96\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, 4.34-4.56 (m, 3H; 2'-H, 4"-H), 4.60-4.70 (m, 2H; 6-H), 4.85-4.95 (m, $\left.1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 5.28-5.46(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NH}), 7.57 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.1\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ (azide), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ (alkyne), 31.2 (C-3"), 47.8 (C-4"), $52.6(2 \times \mathrm{OMe}), 54.1$ (C-2'), 55.7 (C-2"), $65.0(\mathrm{C}-6), 70.6\left(\mathrm{C}-3^{\prime}\right), 84.0\left[3 \times \mathrm{C}^{\prime}\left(\mathrm{CH}_{3}\right)_{3}\right], 123.0(\mathrm{C}-5), 144.7$ (C-4), 152.2 ($3 \times \mathrm{COOtBu}$), 170.5, $171.2 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR):
$\tilde{\mathrm{v}}=416(\mathrm{w}), 463(\mathrm{w}), 575(\mathrm{w}), 647(\mathrm{w}), 733(\mathrm{~m}), 781(\mathrm{~m}), 810(\mathrm{w})$, 853 (m), 913 (w), 1047 (s), 1112 (vs), 1131 (vs), 1163 (vs), 1231 (s), 1366 (vs), 1438 (m), 1457 (m), 1502 (m), 1704 (vs), 1744 (vs), 1791 (w), 2979 (m), 3369 (br, w) cm^{-1}; MS (ESI): $\mathrm{m} / \mathrm{z}=654,638[\mathrm{M}+\mathrm{Na}]^{+}$, $616,572,554,538,516,482,464,438,416,382,360,338,316$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Na}^{+}$: $638.3008[\mathrm{M}+\mathrm{Na}]^{+}$, found 638.3031.

3-((1-((S)-5-(Methyloxy)-4-((Bis(tert-butoxycarbonyl)amino))-5-oxopentyl)-1 H-1,2,3-triazol-4-yl)methyl)-(2S)-2-(tert-butoxy-carbonylamino)-oxopropyl-methyl Ester (38c): From the azide 22 $(121 \mathrm{mg}, 0.32 \mathrm{mmol})$ and alkyne $35(92.0 \mathrm{mg}, 0.36 \mathrm{mmol})$ in water $(1.90 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.90 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{mg}, 3.2 \mu \mathrm{~mol})$ and sodium ascorbate ($6.66 \mathrm{mg}, 33.6 \mu \mathrm{~mol}), 1 \mathrm{~d}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.00 \mathrm{mg}$, $4.00 \mu \mathrm{~mol})$ and sodium ascorbate ($7.21 \mathrm{mg}, 40.4 \mathrm{mmol}$), $1 \mathrm{~d}, \mathrm{Cu}-$ $\mathrm{SO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(8.30 \mathrm{mg}, 33.2 \mu \mathrm{~mol})$ and sodium ascorbate $(7.54 \mathrm{mg}$, $38.1 \mathrm{mmol}), 1 \mathrm{~d}, \mathbf{3 8 c}(183 \mathrm{mg}, 0.29 \mathrm{mmol}, 91 \%)$ as a colorless oil. $R_{\mathrm{f}}=0.21$ (hexanes/EtOAc, 1:1); $[\alpha]_{\mathrm{D}}^{20}=-16.21\left(c=0.73\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.42\left[\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.46[\mathrm{~s}, 18 \mathrm{H} ;$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.82-2.23\left(\mathrm{~m}, 4 \mathrm{H} ; 3-\mathrm{H}^{\prime \prime}, 4-\mathrm{H}^{\prime \prime}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H} ; 1^{\prime \prime}-\mathrm{OMe}\right), 3.71(\mathrm{~s}$, $3 \mathrm{H} ; 1-\mathrm{OMe}), 3.72-3.74\left(\mathrm{~m}, 1 \mathrm{H} ; 3-\mathrm{H}_{\alpha}\right), 3.85-3.94\left(\mathrm{~m}, 1 \mathrm{H} ; 3-\mathrm{H}_{\beta}\right), 4.33-$ $4.39\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right), 4.39-4.45(\mathrm{~m}, 1 \mathrm{H} ; 2-\mathrm{H}), 4.55-4.56(\mathrm{~m}$, $\left.2 \mathrm{H} ; 6^{\prime}-\mathrm{H}\right), 4.86\left(\mathrm{dd}, \mathrm{J}=8.9 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 5.29-5.42(\mathrm{~m}, 1 \mathrm{H} ;$ NH), $7.48 \mathrm{ppm}\left(\mathrm{s}, 1 \mathrm{H} ; 5^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MH} \mathrm{z}, \mathrm{CDCl}_{3}$): $\delta=27.0$, $27.1\left(\mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}\right), 28.0\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 49.8\left(\mathrm{C}-5^{\prime \prime}\right), 52.3$ (1"-OMe), 52.5 (1-OMe), 53.9 (C-2), 57.2 (C-2"), 64.9 (C-6'), 70.3 (C3), $80.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right) 83.5\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 122.5\left(\mathrm{C}-5^{\prime}\right), 144.4\left(\mathrm{C}-4^{\prime}\right), 152.1$ ($2 \times \mathrm{COOtBu}$), 155.5 (COOtBu), 170.8, $171.0 \mathrm{ppm}\left(\mathrm{C}-1, \mathrm{C}^{\prime \prime}-1\right.$); FT-IR (ATR): $\tilde{v}=3374(\mathrm{w}, \mathrm{br}), 2979(\mathrm{~m}, \mathrm{br}), 1790$ (w), 1744 (s), 1703 (s$),$ 1502 (m, br), 1456 (m), 1438 (m), 1366 (s), 1305 (m), 1249 (s, br), 1163 (vs), 1131 (vs), 1114 (vs), 1048 (m), 915 (w), 853 (m), 783 (m), $733(\mathrm{~m}), 648(\mathrm{w}, \mathrm{br}), 465(\mathrm{w}, \mathrm{br}) \mathrm{cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z}=652[\mathrm{M}+\mathrm{Na}]^{+}$, $552\left[M\right.$-Boc + Na] ${ }^{+}, 496\left[M\right.$-Boc-tert-butyl $+\mathrm{Na}^{+}, 452[\mathrm{M}-2 \times \mathrm{Boc}+$ $\mathrm{Na}]^{+}, 396\left[\mathrm{M}-2 \times\right.$ Boc-tert-butyl + Na] ${ }^{+}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{Na}^{+}: 652.3164[\mathrm{M}+\mathrm{Na}]^{+}$, found 652.3159 .
3-(1-((S)-4-(Methyloxy)-3-((Bis(tert-butoxycarbonyl)amino))-4-oxobutyl)-1H-1,2,3-triazol-4-yl)-(2S)-2-(Bis(tert-butoxycarbonyl-amino))propyl-methyl Ester (39a): From the azide 21 (86.0 mg , $0.24 \mathrm{mmol})$ and alkyne $28(79.0 \mathrm{mg}, 0.24 \mathrm{mmol})$ in water (1.40 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.40 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.17 \mathrm{mg}, 4.69 \mu \mathrm{~mol})$ and sodium ascorbate ($7.66 \mathrm{mg}, 38.7 \mu \mathrm{~mol}$), $1 \mathrm{~d}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.17 \mathrm{mg}$, $4.69 \mu \mathrm{~mol})$ and sodium ascorbate ($11.0 \mathrm{mg}, 55.5 \mu \mathrm{~mol}$), 30 h , $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2.73 \mathrm{mg}, 10.9 \mu \mathrm{~mol})$ and sodium ascorbate (12.0 mg , $60.6 \mu \mathrm{~mol}$), $19 \mathrm{~h}, 39 \mathrm{a}(47.0 \mathrm{mg}, 0.07 \mathrm{mmol}, 29 \%$) as a colorless oil. $R_{\mathrm{f}}=0.27$ (hexanes/EtOAc, 2:1); $[\alpha]_{\mathrm{D}}^{20}=-3.50\left(c=1.00\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.42,1.47\left[2 \times \mathrm{s}, 36 \mathrm{H} ; 4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 2.33-2.48 (m, 1H; 3"- H_{a}), 2.66-2.82 (m, 1H; $\left.3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 3.23-3.34(\mathrm{~m}, 1 \mathrm{H}$; $\left.3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.50-3.61\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 4.30-4.50 (m, 2H; 4"-H), 4.82-4.92 (m, 1H; 2"-H), 5.16-5.23 (m, 1H; $\left.2^{\prime}-\mathrm{H}\right), 7.39 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.0\left(\mathrm{C}-3^{\prime}\right), 28.0,28.1\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.3\left(\mathrm{C}-3^{\prime \prime}\right), 47.5\left(\mathrm{C}-4^{\prime \prime}\right), 52.4$ (OMe), 52.5 (OMe), 55.7 ($\left.\mathrm{C}-2^{\prime \prime}\right), 58.1\left(\mathrm{C}-2^{\prime}\right), 83.4,83.8\left[4 \times \mathrm{C}^{\prime}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 122.4 (C-5), 144.0 (C-4), 151.7, 152.1 ($4 \times$ COOtBu), $170.4,170.7 \mathrm{ppm}$ (C-1', C-1"); FT-IR (ATR): $\tilde{v}=440(\mathrm{w}), 464(\mathrm{w}), 577$ (w), 647 (w), 666 (w), 730 (s), 779 (m), 812 (w), 851 (m), 913 (m), 956 (w), 996 (m), 1011 (m), 1047 (m), 1087 (s), 1110 (vs), 1133 (vs), 1166 (s$), 1226$ (s$)$, $1251 \mathrm{~s}), 1314$ (m), 1366 (vs), 1437 (m), 1457 (m), 1554 (w), 1698 (s), $1742(\mathrm{~s}), 1791(\mathrm{~m}), 2980(\mathrm{~m}) \mathrm{cm}^{-1} ; \mathrm{MS}(E S I): \mathrm{m} / \mathrm{z}=7.24,708,686$ $[M+N a]^{+}, 642,608,586,542,508,486,468,452,430,408,386$, 374, 352, 330, 308, 286; HRMS (ESI): m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{12} \mathrm{~N}_{5} \mathrm{Na}^{+}$: $686.3607[\mathrm{M}+\mathrm{Na}]^{+}$, found 686.3604.

3-(1-((S)-5-(Methyloxy)-4-((Bis(tert-butoxycarbonyl)amino))-5-oxopentyl)-1H-1,2,3-triazol-4-yl)-(2S)-2-(Bis(tert-butoxycarbon-
ylamino))propyl-methyl Ester (39b): From the azide 22 (89.0 mg , $0.27 \mathrm{mmol})$ and alkyne $28(107 \mathrm{mg}, 0.29 \mathrm{mmol})$ in water (2.85 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.85 \mathrm{~mL}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2.00 \mathrm{mg}, 8.00 \mu \mathrm{~mol})$ and sodium ascorbate ($16.6 \mathrm{mg}, 83.8 \mu \mathrm{~mol}), 28 \mathrm{~h}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(2.60 \mathrm{mg}$, $10.4 \mu \mathrm{~mol}$) and sodium ascorbate ($19.6 \mathrm{mg}, 98.9 \mathrm{mmol}$), 4 d , 39b ($149 \mathrm{mg}, 0.21 \mathrm{mmol}, 78 \%$) as a colorless oil. $R_{\mathrm{f}}=0.63$ (hexanes/ EtOAc, 1:1); $[\alpha]_{D}^{20}=-20.9 \quad\left(c=1.00\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.47[\mathrm{~s}, 18 \mathrm{H} ; 2 \times$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.83-2.01\left(\mathrm{~m}, 3 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.07-2.23\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, 3.28 (dd, $J=15.2,9.8 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{a}}$), 3.57 (dd, $J=15.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}$; $\left.3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.70(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.73(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.23-4.39\left(\mathrm{~m}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right)$, 4.83-4.92 (m, 1H; 2"'H), 5.19-5.25 (m, 1H; 2'-H), $7.35 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}$; $5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.0,28.1\left(4 \times\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]\right), 49.8$ $\left(\mathrm{C}-5^{\prime \prime}\right), 52.4(\mathrm{OMe}), 57.4\left(\mathrm{C}-2^{\prime \prime}\right), 58.1\left(\mathrm{C}-2^{\prime}\right), 83.4,83.6\left[4 \times\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]\right.$, 122.4 (C-5), 143.9 (C-4), 151.7, 152.3 ($4 \times$ COOtBu), 170.7, 170.9 ppm (C-1', C-1"); FT-IR (ATR): $\tilde{v}=416$ (w), 442 (w), 464 (w), 493 (w), 583 (w), 647 (w), 666 (w), 731 (s$), 780(\mathrm{~m}), 851(\mathrm{~m}), 913$ (m), 957 (w), 998 (m), 1048 8m), 1088 (s), 1133 (vs), 1167 (s$), 1225$ (s$), 1250$ (s$), 1313$ (m), 1366 (s), 1437 (w), 1457 (w), 1478 (w), 1555 (w), 1698 (s), 1743 (s), 1790 (w), 2937 (w), 2980 (m), 3140 (w) cm ${ }^{-1}$; MS (ESI): m/z = $722[M+\mathrm{Na}]^{+}, 700,656,622,600,556,522,500,466,422,400$, 388, 366, 344, 322, 300; HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{Na}^{+}$: $722.3583[\mathrm{M}+\mathrm{Na}]^{+}$, found 722.3583 .

General Procedure for the Deprotection of Triazoles to Acids 36-39.2HCl: Analogous to ref. ${ }^{[35]}$ a 1 m solution of $\mathrm{NaOH}(2.54 \mathrm{~mL}$, $2.54 \mathrm{mmol})$ was added to a solution of the respective triazole $\mathbf{3 6 -}$ $39(1.00 \mathrm{mmol})$ in $\mathrm{MeOH}(55 \mathrm{~mL})$, and the reaction mixture stirred at r.t. for several days. After concentration of the reaction mixture, the residue was taken up in $\mathrm{H}_{2} \mathrm{O}(18.2 \mathrm{~mL})$ and a 6 m solution of $\mathrm{HCl}(8.00 \mathrm{~mL})$ was added. The reaction mixture was stirred for several days and subsequently concentrated under reduced pressure. In the presence of the base, racemization is possible but it was not checked.
(1S)-1-Carboxy-3-\{4-[(L- γ-glutamylamino)methyl]-1H-1,2,3-tri-azol-1-yl\}propan-1-aminium Dichloride (36a.2HCI): From 36a ($16.0 \mathrm{mg}, 21.1 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(1.20 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}(0.06 \mathrm{~mL}$, $0.06 \mathrm{mmol}), 2 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.18 \mathrm{~mL}, 11.0 \mathrm{mmol}), 3 \mathrm{~d}$, $\mathbf{3 6 a} \cdot \mathbf{2 H C l}\left(17.0 \mathrm{mg}\right.$, quant.), white solid. $[\alpha]_{D}^{20}=+0.72(c=1.53$ in $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.06-2.16\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.18-$ $224\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.40-2.47\left(\mathrm{~m}, 2 \mathrm{H} ; 4^{\prime}-\mathrm{H}\right), 2.55-2.61\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}\right)$, 4.02-4.05 ($\left.\mathrm{m}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 4.39-4.43\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.70-4.74(\mathrm{~m}, 2 \mathrm{H} ;$ $\left.4^{\prime \prime}-\mathrm{H}\right), 4.81-4.83(\mathrm{~m}, 2 \mathrm{H} ; 6-\mathrm{H}), 8.09 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.6$ (C-3'), 28.6 (C-4'), $30.0\left(\mathrm{C}-3^{\prime \prime}\right), 33.1$ (C-6), 46.5 (C-4"), 50.0 (C-2"), 56.4 (C-2'), 125.4 (C-5), 158.4 (C-5)), 175.9, $176.8 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{\mathrm{v}}=535$ (w), $598(\mathrm{w}), 787$ (w), 1056 (m), 1159 (s), 1212 (s), 1349 (m), 1418 (s), 1447 (s$), 1510$ (m), 1708 (vs), 1975 (w), 2928 (s) cm^{-1}; MS (ESI): $\mathrm{m} / \mathrm{z}=397,375,367$, 353 [$M+\mathrm{Na}^{-}, 335,327,252,224,176,146,128 ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}^{-}$: $353.1544\left[\mathrm{M}+\mathrm{Na}^{-}\right.$, found 353.1525 .
(1S)-1-Carboxy-4-\{4-[(L- γ-glutamylamino)methyl]-1 H-1,2,3-tri-azol-1-yl\}butan-1-aminium Dichloride (36b-2HCI): From 36b ($18.0 \mathrm{mg}, 23.3 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(1.40 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}(0.07 \mathrm{~mL}$, $0.07 \mathrm{mmol}), 3 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(0.50 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.19 \mathrm{~mL}, 11.6 \mathrm{mmol}), 2 \mathrm{~d}$, $\mathbf{3 6 b} \cdot \mathbf{2 H C l}\left(21.0 \mathrm{mg}\right.$, quant.), white solid. $[\alpha]_{\mathrm{D}}^{20}=+0.98$ ($c=0.93$ in $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.81-2.31\left(\mathrm{~m}, 6 \mathrm{H} ; 3^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right.$, $\left.4^{\prime \prime}-\mathrm{H}\right), 2.45-2.56\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; 4^{\prime}-\mathrm{H}\right), 4.09-4.15\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right)$, 4.24-4.34 (m, 1H; 2'-H), $4.51(\mathrm{~s}, 2 \mathrm{H} ; 6-\mathrm{H}), 4.54-4.60\left(\mathrm{~m}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right)$, $8.23 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.0,25.6$, 26.5 (C-3', C-3"', C-4"), 30.2 (C-4'), 32.9 (C-6), 49.8 (C-5'), 52.2 (C-2"), 56.4 (C-2'), 124.9 (C-5), 141.9 (C-4), 158.0 (C-5'), 171.4, 176.9 ppm (C-1', C-1"); FT-IR (ATR): $\tilde{v}=413(\mathrm{w}), 460(\mathrm{w}), 527(\mathrm{w}), 596(\mathrm{w}), 784$ (w), 827 (w), 1030 (w), 1053 (w), 1155 (s), 1208 (s), 1345 (m), 1415
(m), 1446 (m), 1500 (m), 1708 (vs), 2921 (m) cm ${ }^{-1}$; MS (ESI): m/z = 391, 381, $365[\mathrm{M}+\mathrm{Na}]^{+}, 343[\mathrm{M}+\mathrm{H}]^{+}, 325,310,294,279,252$, 236, 223, 214, 181, 165, 152, 140, 122; HRMS (ESI): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}^{+}: 365.1544\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, found 365.1535 . Impurities could not be removed because of the purification problems due to the charged species.
(1S)-3-\{4-[(L- β-Aspartylamino)methyl]-1H-1,2,3-triazol-1-yl\}-1-carboxypropan-1-aminium Dichloride ($37 \mathrm{a} \cdot 2 \mathrm{HCI} / 37 \mathrm{c} \cdot 2 \mathrm{HCI}$): From 37a ($47.0 \mathrm{mg}, 63.3 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(3.60 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}$ $(0.16 \mathrm{~mL}, 0.16 \mathrm{mmol}), 6 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(1.20 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.53 \mathrm{~mL}$, $32.4 \mathrm{mmol}), 5 \mathrm{~d}, \mathbf{3 7 a} \cdot \mathbf{2 H C l}(44.0 \mathrm{mg}$, quant.), yellow solid. From 37c ($43.0 \mathrm{mg}, 66.9 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(3.80 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}(0.19 \mathrm{~mL}$, $0.19 \mathrm{mmol}), 6 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(1.25 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.55 \mathrm{~mL}, 33.6 \mathrm{mmol}), 5 \mathrm{~d}$, $37 \mathrm{c} \cdot \mathbf{2 H C l}\left(48.0 \mathrm{mg}\right.$, quant.), yellow solid. $[\alpha]_{D}^{20}=+0.75(c=1.00$ in $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.50-2.77\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}\right), 3.10$ $\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 4.12\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 4.44(\mathrm{t}, J=$ $\left.5.4 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.54(\mathrm{~s}, 2 \mathrm{H} ; 6-\mathrm{H}), 4.71-4.76\left(\mathrm{~m}, 2 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}\right), 8.08 \mathrm{ppm}$ (s, 1H; $5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.1$ (C-3"), 34.2 (C-6), 34.4 (C-3'), 46.7 (C-4"), 49.5 (C-2'), 50.1 (C-2"), 124.7 (C-5), 144.1 (C-4), 170.7, 170.8, $170.9 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}^{\prime \prime} 1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=412$ (w), 471 (w), 517 (w), 579 (w), 621 (w), 786 (w), $848(\mathrm{w}), 1017(\mathrm{~m})$, 1056 (m), 1089 (m), 1155 (s), 1226 (vs), 1373 (m), 1437 (s), 1554 (m), 1662 (s), 1717 (vs), 1741 (vs), 2929 (s) cm^{-1}; MS (ESI): $m / z=433$, 399, 377, 353, 337, $315[M-H]^{+}, 297,269,200,177,155 ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{6} \mathrm{O}_{5}^{+}$: $315.1411[\mathrm{M}-\mathrm{H}]^{+}$, found 315.1406. Impurities could not be removed because of the purification problems due to the charge species.
(1S)-3-\{4-[(L- β-Aspartylamino)methyl]-1H-1,2,3-triazol-1-yl\}-1-carboxybutan-1-aminium Dichloride ($\mathbf{3 7} \mathbf{b} \mathbf{- 2 H C l}$): From 37b ($62.0 \mathrm{mg}, 94.5 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(5.00 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}(0.24 \mathrm{~mL}$, $0.24 \mathrm{mmol}), 2 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(1.65 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.72 \mathrm{~mL}, 44.0 \mathrm{mmol}), 3 \mathrm{~d}$, $\mathbf{3 7 b} \cdot \mathbf{2 H C l}$ (70.0 mg , quant.), white solid. $[\alpha]_{D}^{20}=+1.87(c=0.87$ in $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.84-2.25\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right)$, $3.08\left(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 4.14\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 4.43(\mathrm{t}$, $\left.J=5.3 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.49-4.63\left(\mathrm{~m}, 4 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}, 6-\mathrm{H}\right), 8.18 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ;$ 5-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.9$ (C-4"), 26.6 ($\left.\mathrm{C}-3^{\prime \prime}\right), 33.7$ (C-6), 34.3 (C-3'), 49.5 (C-2'), 50.8 (C-5"), 52.2 (C-2"), 125.5 (C-5), 142.8 (C-4), 170.9, 171.4, $172.4 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=419(\mathrm{w}), 439(\mathrm{w}), 483(\mathrm{w}), 542(\mathrm{w}), 698(\mathrm{~m}), 734(\mathrm{~m}), 1118(\mathrm{~m})$, $1168(\mathrm{~m}), 1260(\mathrm{~m}), 1377$ (m), 1461 (m), 1714 (s), 1969 (w$), 1995$ (w$)$, 2014 (w), 2062 (w), 2110 (w), 2151 (w), 2181 (w), 2210 (w), 2853 (s), 2924 (vs) cm^{-1}; MS (ESI): m/z = 389, 371, 367, $353[\mathrm{M}+\mathrm{Na}]^{-}, 349$, 327, 309, 292; HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}^{-}: 353.1544$ [$\mathrm{M}+\mathrm{Na}]^{-}$, found 353.1544.
(S)-2-\{4-[((S)-2-Ammonio-2-carboxyethoxy]methyl)-1H-1,2,3-tri-azol-4-yl\}-1-carboxyethan-1-aminium Dichloride (38a.2HCI): From 38a ($43.0 \mathrm{mg}, 85.7 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(4.80 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}$ $(0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}), 6 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(1.65 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.70 \mathrm{~mL}$, $42.7 \mathrm{mmol}), 5 \mathrm{~d}, \mathbf{3 8 a} \cdot \mathbf{2 H C l}\left(54.0 \mathrm{mg}\right.$, quant.), yellow solid. $[\alpha]_{D}^{20}=$ $+0.71\left(c=1.00\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.95-4.10$ $\left(\mathrm{m}, 2 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 4.36\left(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.75-4.77(\mathrm{~m}, 3 \mathrm{H}$; $\left.2^{\prime \prime}-\mathrm{H}, 6-\mathrm{H}\right), 5.10-5.16\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}\right), 8.17 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=48.9\left(\mathrm{C}-3^{\prime \prime}\right)$, $52.6\left(\mathrm{C}-2^{\prime \prime}\right), 53.1\left(\mathrm{C}-2^{\prime}\right), 63.3(\mathrm{C}-6)$, 66.8 (C-3'), 126.4 (C-5), 143.8 (C-4), 168.7, $169.7 \mathrm{ppm}\left(\mathrm{C}-\mathbf{1}^{\prime}, \mathrm{C}^{\prime} \mathbf{1}^{\prime \prime}\right)$; FTIR (ATR): $\tilde{v}=422$ (w), 506 (w), 614 (w), 842 (w), 906 (w), 1074 (m), 1156 (m), 1215 (s), 1414 (m), 1505 (m), 1591 (m), 1736 (vs), 2833 (s) $\mathrm{cm}^{-1} ; \mathrm{MS}(E S I): \mathrm{m} / \mathrm{z}=651,607,548,498,471,439,398,340,318$, 296, $274[M-H]^{+}, 243,231,209,187,164,141 ;$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5}^{+}$: $274.1146[\mathrm{M}-\mathrm{H}]^{+}$, found 274.1144.
(S)-3-\{4-[((S)-2-Ammonio-2-carboxyethoxy]methyl)-1 H-1,2,3-tri-azol-4-yl\}-1-carboxypropan-1-aminium Dichloride ($\mathbf{3 8 b} \cdot \mathbf{2 H C l}$): From 38b ($52.0 \mathrm{mg}, 84.5 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(4.40 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}$
($0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}), 6 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(1.50 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.65 \mathrm{~mL}$, $39.7 \mathrm{mmol}), 3 \mathrm{~d}, \mathbf{3 8 b} \cdot \mathbf{2 H C l}\left(57.0 \mathrm{mg}\right.$, quant.), yellow solid. $[\alpha]_{\mathrm{D}}^{20}=$ $+0.6\left(c=1.00\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.47-2.69(\mathrm{~m}$, $\left.2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}\right), 3.90-4.04\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 4.04-4.11\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 4.30(\mathrm{t}$, $\left.J=3.6 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.65-4.71\left(\mathrm{~m}, 2 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}\right), 4.73-4.76(\mathrm{~m}, 2 \mathrm{H}$; $6-\mathrm{H}), 8.13 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.1$ (C-3"), 46.7 ($\left.\mathrm{C}-4^{\prime \prime}\right), 50.2$ ($\left.\mathrm{C}-2^{\prime \prime}\right), 53.1$ (C-2'), 63.3 (C-6), 66.8 (C-3'), 125.9 (C-5), 143.3 (C-4), 169.8, $170.8 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=522(\mathrm{~m}), 734(\mathrm{w}), 825(\mathrm{w}), 909(\mathrm{w}), 1056(\mathrm{~m}), 1097(\mathrm{~m}), 1155(\mathrm{~m})$, 1218 (m), 1344 (w), 1422 (m), 1498 (m), 1600 (m), 1734 (s), 1934 (w), 2924 (s), 3367 (m) cm^{-1}; MS (ESI): $\mathrm{m} / \mathrm{z}=458,439,413,372,350$, 326, 310, $288[M-H]^{+}, 257,239,201,149,131 ;$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{5}^{+}$: $288.1302[\mathrm{M}-\mathrm{H}]^{+}$, found 288.1284.
(S)-4-\{4-[((S)-2-Ammonio-2-carboxyethoxy]methyl)-1 H-1,2,3-tri-azol-4-yl\}-1-carboxybutan-1-aminium Dichloride (38c-2HCI): From 38c ($42.0 \mathrm{mg}, 66.7 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(3.80 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}$ ($0.18 \mathrm{~mL}, 0.18 \mathrm{mmol}), 3 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(1.30 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.55 \mathrm{~mL}$, $33.6 \mathrm{mmol}), 2 \mathrm{~d}, \mathbf{3 8 c} \cdot 2 \mathrm{HCl}\left(47.0 \mathrm{mg}\right.$, quant.), white solid. $[\alpha]_{D}^{20}=$ $+7.28\left(c=1.00\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.86-2.09$ ($\mathrm{m}, 4 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}$), 4.00-4.08 (m, 2H; $\left.3^{\prime}-\mathrm{H}\right), 4.13-4.17$ (m, 1H; 2"-H), $4.37\left(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.59\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right), 4.73-4.77$ (m, 2H; 6-H), $8.18 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.1$ (C-4"), 26.6 (C-3"), 50.0 (C-5"), 52.2 (C-2"), 53.1 (C-2'), 63.1 (C-6), 66.8 (C-3'), 125.7 (C-5), 142.9 (C-4), 169.7, $171.5 \mathrm{ppm}\left(\mathrm{C}^{\prime} 1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=530(\mathrm{~m}), 614(\mathrm{~m}), 781(\mathrm{~m}), 829(\mathrm{~m}), 1031(\mathrm{~s}), 1053$ (s), 1106 (cs), 1156 (vs), 1211 (vs), 1342 (m), 1411 (s), 1450 (m), 1501 (s), 1595 (s), 1734 (vs), 1970 (w), 2852 (vs) cm^{-1}; MS (ESI): $\mathrm{m} / \mathrm{z}=368$, 346, 340, $324[M+N a]^{+}, 302[M+H]^{+}, 279,259,253,237,229,215$, 197, 187, 169, 158, 152, 141, 124, 116; HRMS (ESI): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}^{+}: 324.1278\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, found 324.1270 .
(1S)-3-\{4-[(2S)-2-Ammonio-2-carboxyethyl]-1 H-1,2,3-triazol-1-yl\}-1-carboxypropan-1-aminium Dichloride (39a-2HCI): From 39a ($26.0 \mathrm{mg}, 37.9 \mu \mathrm{~mol}$), in $\mathrm{MeOH}(2.20 \mathrm{~mL}$), $1 \mathrm{~m} \mathrm{NaOH}(0.10 \mathrm{~mL}$, $0.10 \mathrm{mmol}), 3 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(0.75 \mathrm{~mL}), 6 \mathrm{M} \mathrm{HCl}(0.31 \mathrm{~mL}, 18.9 \mathrm{mmol}), 2 \mathrm{~d}$, $\mathbf{3 9 a} \cdot \mathbf{2 H C l}\left(26.0 \mathrm{mg}\right.$, quant.), white solid. $[\alpha]_{D}^{20}=+0.22(c=0.93 \mathrm{in}$ $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.52-2.74\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}\right), 3.49$ (d, J=6.0 Hz, 2H; $\left.3^{\prime}-\mathrm{H}\right), 4.06-4.14\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 4.48(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $\left.1 \mathrm{H} ; \mathrm{z}^{\prime}-\mathrm{H}\right), 4.74\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}\right), 8.06 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.6$ ($\mathrm{C}-3^{\prime}$), 30.2 ($\left.\mathrm{C}-3^{\prime \prime}\right), 46.4\left(\mathrm{C}-4^{\prime \prime}\right), 50.2$ (C-2"), 52.6 (C-2'), 125.4 (C-5), 141.0 (C-4), 170.9, $171.0 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}\right.$, C-1"); FT-IR (ATR): $\tilde{v}=420(\mathrm{w}), 521(\mathrm{w}), 617(\mathrm{w}), 811(\mathrm{~m}), 1057(\mathrm{~m})$, 1151 (m), 1208 (s), 120 (m), 1498 (m), 1593 (m), 1734 (vs), 2852 (m), $3373(\mathrm{~m}) \mathrm{cm}^{-1} ;$ MS (ESI): $\mathrm{m} / \mathrm{z}=324,318,308,302,296,280[\mathrm{M}+$ $\mathrm{Na}^{+}, 270,258\left[\mathrm{M}+\mathrm{H}^{+}, 253,249,237,221,212,202,197,189,181\right.$, 163, 149; HRMS (ESI): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}^{+}: 280.1016[\mathrm{M}+$ Na^{+}, found 280.1018.
(1S)-4-\{4-[(2S)-2-Ammonio-2-carboxyethyl]-1 H-1,2,3-triazol-1-yl\}-1-carboxybutan-1-aminium Dichloride (39b-2HCI): From 39b ($31.0 \mathrm{mg}, 44.3 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(2.60 \mathrm{~mL}), 1 \mathrm{~m} \mathrm{NaOH}(0.13 \mathrm{~mL}$, $0.13 \mathrm{mmol}), 3 \mathrm{~d} ; \mathrm{H}_{2} \mathrm{O}(0.85 \mathrm{~mL}), 6 \mathrm{~m} \mathrm{HCl}(0.37 \mathrm{~mL}, 22.6 \mathrm{mmol}), 2 \mathrm{~d}$, $\mathbf{3 9 b} \cdot \mathbf{2 H C l}\left(34.0 \mathrm{mg}\right.$, quant.), white solid. $[\alpha]_{\mathrm{D}}^{20}=+1.1(c=1.00 \mathrm{in}$ $\mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.83-2.24\left(\mathrm{~m}, 4 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right)$, $3.48\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 4.14\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 4.47$ (t, J = $\left.6.0 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.54\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right), 8.04 \mathrm{ppm}(\mathrm{s}$, $1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.1$ (C-4"), 25.6 (C-3'), 26.7 (C-3"), 49.6 (C-5"), 52.3 (C-2"), 52.5 (C-2'), 125.2 (C-5), 140.8 (C-4), 170.8, $171.5 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}_{1} 1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{\mathrm{v}}=427(\mathrm{w}), 518(\mathrm{~m}), 615$ (w), 670 (w), 836 (m), 1032 (m), 1056 (m), 1160 (m), 1207 (s), 1420 (m), 1498 (m), 1593 (m), 1733 (vs), 2554 (s), 2615 (s$), 2852$ (s$), 3379$ (m) $\mathrm{cm}^{-1} ;$ MS (ESI): $\mathrm{m} / \mathrm{z}=338,324,316,308,300,294\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, 286, 280, $272[\mathrm{M}+\mathrm{H}]^{+}, 258,249,237,227,216,188,171,157,130$, 116; HRMS (ESI): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}^{+}: 294.1173\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, found 294.1171.

General Procedure for the N -Alkylation of Triazoles 36-38: Analogous to ref. ${ }^{[36]} \mathrm{Mel}(32.0-33.0 \mathrm{mmol})$ was added to a solution of the respective triazole $\mathbf{3 6 - 3 8}(1.00 \mathrm{mmol})$ in $\mathrm{MeCN}(2.00 \mathrm{~mL})$, and the reaction mixture was heated at $55^{\circ} \mathrm{C}$ for $4-6 \mathrm{~d}$. After removal of the solvent, the residue was purified by chromatography on HI treated SiO_{2} with $\mathrm{EtOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (15:1).
1-((S)-3-(Bis(tert-butoxycarbonyl)amino)-4-methoxy-4-[((S)-4-(bis(tert-butoxycarbonyl)amino)-5-methoxy-5-oxopentan-amido)methyl]-3-methyl-1H-1,2,3-triazol-3-ium lodide (36aMel): From 36a ($130 \mathrm{mg}, 0.17 \mathrm{mmol}$) in MeCN (7.60 mL), Mel ($0.35 \mathrm{~mL}, 5.62 \mathrm{mmol}$), 5 d , yellow wax ($149 \mathrm{mg}, 0.17 \mathrm{mmol}$, quant.). $[\alpha]_{D}^{20}=-12.9\left(c=0.76\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.44\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.47\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.16-2.44(\mathrm{~m}$, $\left.4 \mathrm{H} ; 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right), 2.45-2.58\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.80-3.05\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right)$, $3.66(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.71(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.46\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 4.56-4.72(\mathrm{~m}$, $\left.4 \mathrm{H} ; 6-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right), 4.78-4.97\left(\mathrm{~m}, 2 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 8.80 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=24.6\left(\mathrm{C}-3^{\prime}\right), 28.1\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.1$ (C-3"), 31.9 (C-6), 32.1 (C-4'), $39.6\left(\mathrm{CH}_{3}\right), 51.7$ ($\left.\mathrm{C}-4^{\prime \prime}\right), 52.2,52.7(2 \times$ $\mathrm{OMe}), 55.1\left(\mathrm{C}-2^{\prime \prime}\right), 58.1\left(\mathrm{C}-2^{\prime}\right), 83.5,84.3\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 131.3(\mathrm{C}-5)$, 142.4 (C-4), 151.7, 152.0 [$4 \times$ COOtBu], 169.8, 170.8, 173.1 ppm (C-1', C-5', C-1"); FT-IR (ATR): $\tilde{v}=443(\mathrm{w}), 463(\mathrm{w}), 573(\mathrm{w}), 644(\mathrm{~m})$, 665 (w), 728 (vs), 783 (m), 851 (m), 916 (m), 1014 (m), 1037 (m), 1092 (s), 1139 (vs), 1231 (s), 1366 (s), 1456 (m), 1525 (m), 1696 (m), 1740 (s), 1787 (m), 2196 (w), $2980(\mathrm{~m}), 3235(\mathrm{w}) \mathrm{cm}^{-1}$; MS (ESI positive): $m / z=771[M]^{+}$, 671; HRMS (ESI positive): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{59} \mathrm{~N}_{6} \mathrm{O}_{13}{ }^{+}$: $771.4135[\mathrm{M}]^{+}$, found 771.4131; MS (ESI negative): $\mathrm{m} / \mathrm{z}=127 \mathrm{lM}^{-}$; HRMS (ESI negative): m / z calcd. for $\mathrm{I}^{-}: 126.9039$ $[M]^{-}$, found 126.9039.

4-[((S)-4-(Bis(tert-butoxycarbonyl)amino)-5-methoxy-5-oxo-pentanamido)methyl]-1-((S)-4-(bis(tert-butoxycarbonyl)amino)-5-methoxy-5-oxopentyl)-3-methyl-1H-1,2,3-triazol-3-ium lodide (36b-Mel): From 36b ($115 \mathrm{mg}, 0.15 \mathrm{mmol}$) in MeCN (6.83 mL), Mel ($0.30 \mathrm{~mL}, 4.82 \mathrm{mmol}$), 5 d , yellow solid ($115 \mathrm{mg}, 0.13 \mathrm{mmol}, 86 \%$). M.p. $57{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=-26.8 \quad\left(c=0.82\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.47\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.50[\mathrm{~s}, 18 \mathrm{H} ; 2 \times$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.88-2.02\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.08-2.51\left(\mathrm{~m}, 7 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}, 4^{\prime \prime}-\mathrm{H}\right.$, $\left.4^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 3.69(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.72(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.47\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right)$, 4.57-4.66 (m, 2H; 5"-H), 4.67-4.73 (m, 2H; 6-H), 4.81-4.90 (m, 2H; $\left.2^{\prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 8.85 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 24.7 (C-3'), 26.1 (C-4"), $26.9\left(\mathrm{C}-3^{\prime \prime}\right), 28.2\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 32.1\left(\mathrm{C}-4^{\prime}, \mathrm{C}-\right.$ 6), 52.3 (OMe), 52.6 (OMe), 53.8 (C-5'), 57.1 (C-2"), 58.2 (C-2'), 83.7, $83.9\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 131.3(\mathrm{C}-5), 142.7(\mathrm{C}-4), 151.9,152.3(4 \times \mathrm{COOtBu})$, 170.6, 170.9, $173.3 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-5^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=461$ (w), 665 (w), 733 (w), 784 (m), 853 (m), 909 (w), 1013 (w), 1119 (s), 1142 (vs), 1250 (s), 1313 (m), 1367 (vs), 1456 (m), 1529 (m), 1698 (s), 1743 (s), 1787 (m), 2979 (m), 3221 (w) cm^{-1}; MS (ESI positive): $\mathrm{m} / \mathrm{z}=$ $786[M]^{+}, 685$; HRMS (ESI positive): m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{61} \mathrm{~N}_{6} \mathrm{O}_{13}{ }^{+}$: $785.4291[\mathrm{M}+\mathrm{Na}]^{+}$, found 785.4289; MS (ESI negative): $m / z=157$, $127[M]^{-}$; HRMS (ESI negative): calcd. for $I^{-}: 126.9039[M]^{-}$, found 126.9041.

1-((S)-3-(Bis(tert-butoxycarbonyl)amino))-4-methoxy-4-oxobut-yl)-4-(((S)-3-((tert-butoxycarbonyl)amino)-4-methoxy-4-oxobut-anamido)methyl)-3-methyl-1H-1,2,3-triazol-3-ium lodide (37aMel): From 37a ($142 \mathrm{mg}, 0.22 \mathrm{mmol}$) in MeCN (4.20 mL), Mel ($0.44 \mathrm{~mL}, 7.07 \mathrm{mmol}$), 6 d , orange solid ($180 \mathrm{mg}, 0.22 \mathrm{mmol}$, quant.). M.p. $66{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}=+3.3 \quad\left(c=0.88\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.49\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 2.46-2.54 (m, 1H; 3"- H_{a}), 2.75-2.86 (m, 1H; 3'- H_{a}), 2.88-2.98 (m, 1H; $\left.3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}\right), 3.00-3.09\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.72(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.75(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe})$, $4.40\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 4.47-4.59\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.63-4.71\left(\mathrm{~m}, 2 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}\right)$, 4.77-4.84 (m, 2H; 6-H), 4.85-4.96 (m, 1H; 2"-H), 5.63-5.82 (m, 2H; $2 \times \mathrm{NH}), 8.90 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.1$,
28.4, $28.5\left[3 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.3\left(\mathrm{C}-3^{\prime \prime}\right), 32.9(\mathrm{C}-6), 36.6\left(\mathrm{C}-3^{\prime}\right), 39.3\left(\mathrm{CH}_{3}\right)$, 51.8 (C-2'), 52.2 (C-4"), 52.8 (OMe), 55.1 (C-2"), 80.8, 84.6 [$3 \times$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 131.2(\mathrm{C}-5), 142.5(\mathrm{C}-4), 152.1(3 \times \mathrm{COOtBu}), 169.9,171.9$, $172.3 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=645(\mathrm{w}), 733(\mathrm{~m}), 783$ (m), 855 (m), 917 (w), 1024 (m), 1053 (m), 1164 (vs), 1250 (s), 1367 (vs), 1392 (s), 1438 (m), 1513 (s), 1709 (vs), 1988 (w), 2040 (w), 2092 (w), 2184 (w), 2979 (m), 3341 (m) cm^{-1}; MS (ESI positive): $\mathrm{m} / \mathrm{z}=$ $657[M]^{+}, 625,601,557,525,501,469,451,413,401,369,342,310$, 286, 254; HRMS (ESI positive): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{11}{ }^{+}$: 657.3454 [M] ${ }^{+}$, found 657.3459; MS (ESI negative): $m / z=255,241,227,157$, 127 [M] ${ }^{-}$; HRMS (ESI negative): m / z calcd. for $\mathrm{I}^{-}: 126.9039[M]^{-}$, found 126.9061.

1-((S)-4-(Bis(tert-butoxycarbonyl)amino))-5-methoxy-5-oxo-pentyl)-4-(((S)-3-((tert-butoxycarbonyl)amino)-4-methoxy-4-oxobutanamido)methyl)-3-methyl-1 H -1,2,3-triazol-3-ium lodide (37b-Mel): From 37b ($146 \mathrm{mg}, 0.22 \mathrm{mmol}$) in MeCN (4.20 mL), Mel ($0.45 \mathrm{~mL}, 7.23 \mathrm{mmol}$), 5 d, yellow solid ($158 \mathrm{mg}, 0.20 \mathrm{mmol}, 90 \%$). M.p. $64{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-6.4\left(c=1.01\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.44\left[\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49\left[\mathrm{~s}, 18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.89-1.98 (m, 1H; $\left.3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.08-2.22\left(\mathrm{~m}, 3 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}, 4^{\prime \prime}-\mathrm{H}\right), 2.83$ (dd, $\left.J=16.7,4.2 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.06\left(\mathrm{dd}, J=16.7,5.5 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.65$ ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), $3.70(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.40\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 4.47-4.56(\mathrm{~m}, 1 \mathrm{H}$; $\left.2^{\prime}-\mathrm{H}\right), 4.60\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; 5^{\prime \prime}-\mathrm{H}\right), 4.77-4.83(\mathrm{~m}, 2 \mathrm{H} ; 6-\mathrm{H}), 4.83-4.88$ (m, 1H; 2"-H), 5.73 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NHBoc}), 8.57-8.72$ ($\mathrm{m}, 1 \mathrm{H}$; CONH), $8.93 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.1$ (C-4"), $26.8\left(\mathrm{C}-3^{\prime \prime}\right), 28.1,28.5\left[3 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 33.0(\mathrm{C}-6), 36.6\left(\mathrm{C}-3^{\prime}\right)$, $39.3\left(\mathrm{CH}_{3}\right), 51.1\left(\mathrm{C}-2^{\prime}\right), 52.2(\mathrm{OMe}), 52.5(\mathrm{OMe}), 53.8\left(\mathrm{C}-5^{\prime \prime}\right), 57.0$ (C-2"), 80.7, $83.9\left[3 \times C\left(\mathrm{CH}_{3}\right)_{3}\right], 131.0(\mathrm{C}-5), 142.5(\mathrm{C}-4), 152.3$ [$3 \times$ COOtBu], $170.7,171.9,172.3 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=462(\mathrm{w}), 644(\mathrm{w}), 731(\mathrm{~s}), 783(\mathrm{~m}), 852(\mathrm{~m}), 917(\mathrm{~m}), 1024(\mathrm{~m})$, 1120 (s), 1142 (vs), 1162 (s), 1251 (s), 1312 (m), 1366 (s), 1437 (m), 1455 (m), 1509 (m), 1697 (s), 2979 (m), 3368 (w) cm ${ }^{-1}$; MS (ESI positive): $m / z=671[M]^{+}, 639,615,583,571,539,515,483,465,439$, 415, 383, 310, 286, 254; HRMS (ESI positive): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{11}{ }^{+}: 671.3610[M]^{+}$, found 671.3612; MS (ESI negative): $m / z=241,227,157,127[M]^{-}$; HRMS (ESI negative): m / z calcd. for $I^{-}: 126.9039[M]^{-}$, found 126.9038 .
4-((S)-3-(Bis(tert-butoxycarbonyl)amino))-4-methoxy-4-oxo-butanamido)methyl)-1-((S)-3-(bis(tert-butoxycarbonyl)amino)-4-methoxy-4-oxobutyl)-3-methyl-1 H-1,2,3-triazol-3-ium lodide ($\mathbf{3 7 c}$-Mel): From 37c ($189 \mathrm{mg}, 0.25 \mathrm{mmol}$) in MeCN $(4.80 \mathrm{~mL})$, Mel ($0.51 \mathrm{~mL}, 8.19 \mathrm{mmol}$), 6 d, yellow solid ($211 \mathrm{mg}, 0.24 \mathrm{mmol}, 96 \%$). M.p. $62{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=-15.3 \quad\left(c=1.05\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.48\left[\mathrm{~s}, 18 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.49\left[\mathrm{~s}, 18 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 2.41-2.57 (m, 1H; $\left.3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.58-2.68\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 2.85-3.00(\mathrm{~m}, 1 \mathrm{H} ;$ $3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}$), 3.17-3.30 (m, 1H; $3^{\prime}-\mathrm{H}_{\mathrm{b}}$), 3.68 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), 3.73 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), $4.42\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 4.59-4.94\left(\mathrm{~m}, 6 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6-\mathrm{H}\right), 5.48(\mathrm{t}, \mathrm{J}=$ $\left.6.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{L}^{\prime}-\mathrm{H}\right), 8.43-8.57(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NH}), 8.81-8.84 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H} ; 5-$ H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.1\left[4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.3\left(\mathrm{C}-3^{\prime \prime}\right)$, 32.5 (C-6), 37.4 (C-3'), $39.3\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{C}-4^{\prime \prime}\right), 52.5$ (OMe), 52.8 (OMe), 55.1 (C-2', C-2"), 83.8, $84.5\left[4 \times\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 130.9(\mathrm{C}-5), 142.8(\mathrm{C}-4)\right.$, 151.5, 152.1 ($4 \times \mathrm{COOtBu}$), 169.8 ($\left.\mathrm{C}-4^{\prime}\right), 170.8,171.0 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=446(\mathrm{w}), 664(\mathrm{w}), 734(\mathrm{w}), 782(\mathrm{w}), 850(\mathrm{w}), 915(\mathrm{w})$, 1000 (w), 1119 (s), 1143 (vs), 1166 (s), 1234 (s), 1272 (s), 1315 (m), 1367 (vs), 1456 (m), 1532 (m), 1699 (s), 1744 (vs), 1787 (m), 2134 (w), $2980(\mathrm{~m}), 3226(\mathrm{w}) \mathrm{cm}^{-1}$; MS (ESI positive): $\mathrm{m} / \mathrm{z}=757[\mathrm{M}]^{+}, 725$, 657, 625, 601, 557, 525, 501, 483, 469, 451, 401, 369, 310, 286; HRMS (ESI positive): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{~N}^{+}$: $757.3978[M]^{+}$, found 757.3981; MS (ESI negative): $m / z=265,255,241,227,157,127$ [M] ; HRMS (ESI negative): m / z calcd. for $I^{-}: 126.9039[M]^{-}$, found 126.9047.

4-((S)-3-(Bis(tert-butoxycarbonyl)amino))-4-methoxy-4-oxo-butanamido)methyl)-1-((S)-4-(bis(tert-butoxycarbonyl)amino)-

5-methoxy-5-oxopentyl)-3-methyl-1H-1,2,3-triazol-3-ium lodide (37d-Mel): From 37d ($110 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{MeCN}(3.20 \mathrm{~mL})$, Mel ($0.30 \mathrm{~mL}, 4.82 \mathrm{mmol}$), 5 d , yellow solid ($124 \mathrm{mg}, 0.14 \mathrm{mmol}, 93 \%$). M.p. $59{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=-33.1^{\circ}\left(\mathrm{c}=0.99\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.48,1.49\left[2 \times \mathrm{s}, 36 \mathrm{H} ; 4 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.86-2.00$ (m, 1H; $3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}$), 2.06-2.30 (m, 3H; $\left.3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}, 4^{\prime \prime}-\mathrm{H}\right), 2.63$ (dd, J = 15.5, $\left.5.4 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.23\left(\mathrm{dd}, J=15.5,8.5 \mathrm{~Hz}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.68(\mathrm{~s}, 3 \mathrm{H} ;$ $\mathrm{OMe}), 3.71(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.41\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 4.51-4.67$ (m, 2H; $\left.5^{\prime \prime}-\mathrm{H}\right)$, 4.77 (t, J = $5.9 \mathrm{~Hz}, 2 \mathrm{H} ; 6-\mathrm{H}), 4.81-4.94\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 5.43-5.52(\mathrm{~m}$, $\left.1 \mathrm{H} ; \mathrm{L}^{\prime}-\mathrm{H}\right), 8.56(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CONH}), 8.85 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.1\left(\mathrm{C}-4^{\prime \prime}\right), 26.9\left(\mathrm{C}-3^{\prime \prime}\right), 28.2$ [$4 \times$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $32.6(\mathrm{C}-6), 37.4\left(\mathrm{C}-3^{\prime}\right), 39.2\left(\mathrm{CH}_{3}\right), 52.6(2 \times \mathrm{OMe}), 53.8$ $\left(\mathrm{C}-5^{\prime \prime}\right), 55.1\left(\mathrm{C}-2^{\prime}\right), 57.0\left(\mathrm{C}-2^{\prime \prime}\right), 83.8,83.9\left[3 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 130.8(\mathrm{C}-5)$, 142.9 (C-4), 151.6, 152.4 [$3 \times$ COOtBu], 170.6, 170.8, 171.1 ppm (C-1', C-4', C-1"); FT-IR (ATR): $\tilde{v}=443(\mathrm{w}), 464(\mathrm{w}), 645(\mathrm{w}), 732(\mathrm{~m})$, 781 (w), 851 (m), 917 (w), 1001 (w), 1119 (s), 1142 (vs), 1167 (s), 1232 (s), 1314 (m), 1367 (vs), 1456 (m), 1536 (w), 1697 (s), 1743 (vs9, $1787(\mathrm{~m}), 2980(\mathrm{~m}), 3183(\mathrm{w}) \mathrm{cm}^{-1}$; MS (ESI positive): $\mathrm{m} / \mathrm{z}=771[\mathrm{M}]^{+}$, 739, 671, 639, 571, 539, 515; HRMS (ESI positive): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{59} \mathrm{~N}_{6} \mathrm{O}_{13}{ }^{+}$: $771.4135[M]^{+}$, found 771.4139; MS (ESI negative): $m / z=227,216,181,171,157,143,127[M]^{-}, 121,113 ;$ HRMS (ESI negative): m / z calcd. for $\mathrm{I}^{-}: 126.9039\left[\mathrm{M}^{-}\right.$, found 126.9057.
4-[((S)-2-((tert-Butoxycarbonyl)amino)-3-methoxy-3-oxoprop-oxy)methyl]-1-((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-3-methyl-1H-1,2,3-triazol-3-ium lodide (38a-Mel): From 38a ($136 \mathrm{mg}, 0.27 \mathrm{mmol}$) in $\mathrm{MeCN}(5.00 \mathrm{~mL})$, $\mathrm{Mel}(0.54 \mathrm{~mL}$, 8.67 mmol), 6 d , brown solid ($119 \mathrm{mg}, 0.19 \mathrm{mmol}, 70 \%$). M.p. $63^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=-11.6\left(c=0.94\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.41\left[\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.43\left[\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.77(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.82(\mathrm{~s}$, $3 \mathrm{H} ; \mathrm{OMe}), 3.86-4.05\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 4.30\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 4.44-4.53(\mathrm{~m}$, $\left.1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 4.75-4.87\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right), 4.93(\mathrm{~s}, 2 \mathrm{H} ; 6-\mathrm{H}), 5.05-5.30(\mathrm{~m}$, $\left.2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}\right), 5.37\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NHC}-2^{\prime}\right), 6.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H} ;$ NHC-2"), $9.15 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.6\left(\mathrm{CH}_{3}\right), 52.9(2 \times \mathrm{OMe}), 53.4$ (C-2"), 53.7 ($\left.\left.\mathrm{C}-2^{\prime}\right), 53.9\left(\mathrm{C}-3^{\prime \prime}\right), 61.3(\mathrm{C}-6), 71.6\left(\mathrm{C}-3^{\prime}\right), 80.3\left[\mathrm{C}^{2} \mathrm{CH}_{3}\right)_{3}\right]$, $\left.80.8\left[\mathrm{C}_{(\mathrm{CH}}^{3}\right)_{3}\right], 131.6(\mathrm{C}-5), 139.9(\mathrm{C}-4), 155.3,155.5(2 \times \mathrm{COOtBu})$, 168.8, $170.6 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=646(\mathrm{w}), 733(\mathrm{w}), 733$ (w), 782 (w), 853 (w), 1027 (m), 10678 m$), 1111$ (m), 1163 (vs), 1251 (s), 1305 (m), 1367 (s), 1393 (m), 1438 (m), 1510 (s), 1706 (vs), 1742 (s), 2006 (w), $2165(\mathrm{w}), 2978(\mathrm{~m}), 3368(\mathrm{~m}) \mathrm{cm}^{-1}$; MS (ESI positive): $\mathrm{m} /$ $z=516[M]^{+}, 460,404,360,337,316,281,259$; HRMS (ESI positive): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{9}{ }^{+}: 516.2664[\mathrm{M}]^{+}$, found 516.2662; MS (ESI negative): $m / z=157,127[M]^{-}, 113 ;$ HRMS (ESI negative): m / z calcd. for $I^{-}: 126.9039[M]^{-}$, found 126.9054.
1-((S)-3-(Bis(tert-butoxycarbonyl)amino)-4-methoxy-4-oxobut-yl)-4-(((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxo-propoxy)methyl)-3-methyl-1 H-1,2,3-triazol-3-ium lodide (38bMel): From 38b ($189 \mathrm{mg}, 0.31 \mathrm{mmol}$) in MeCN (5.53 mL), Mel ($0.62 \mathrm{~mL}, 9.96 \mathrm{mmol}$), 6 d , orange wax ($202 \mathrm{mg}, 0.27 \mathrm{mmol}, 87 \%$). $[\alpha]_{D}^{20}=+4.9^{\circ}\left(c=1.19\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.43,1.50\left[2 \times \mathrm{s}, 27 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.44-2.58\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{a}}\right), 2.87-3.03$ ($\mathrm{m}, 1 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}_{\mathrm{b}}$), 3.73 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), 3.76 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), 3.88-3.95 (m, $\left.1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.98-4.05\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 4.31\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 4.44-4.57(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{NH}), 4.83\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}\right), 4.88\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H} ; 2^{\prime \prime}-\mathrm{H}\right)$, $5.04(\mathrm{~s}, 2 \mathrm{H} ; 6-\mathrm{H}), 5.31-5.43\left(\mathrm{~m}, 1 \mathrm{H} ; 2^{\prime}-\mathrm{H}\right), 9.26 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; 5-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.1,28.4\left[3 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.4\left(\mathrm{C}-3^{\prime \prime}\right)$, $39.5\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{C}-4^{\prime \prime}\right), 52.8(2 \times \mathrm{OMe}), 53.0\left(\mathrm{C}-2^{\prime}\right), 55.1\left(\mathrm{C}-2^{\prime \prime}\right), 61.5$ (C-6), $71.8\left(\mathrm{C}-3^{\prime}\right), 84.5\left[3 \times\left(\mathrm{CH}_{3}\right)_{3}\right], 131.3(\mathrm{C}-5), 140.3(\mathrm{C}-4), 152.1$ ($3 \times$ COOtBu), $170.7 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=578(\mathrm{w}), 783$ (w), 852 (w), 1117 (s), 1144 (vs), 1164 (vs), 1248 (s), 1367 (vs), 1456 (m), 1512 (m), 1705 (vs), 1744 (vs), 2024 (w), 2157 (w), 2979 (m), $3384(\mathrm{w}) \mathrm{cm}^{-1}$; MS (ESI positive): $\mathrm{m} / \mathrm{z}=630[\mathrm{M}]^{+}, 574,530,474,456$, 374, 315, 259; HRMS (ESI, positive): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{~N}_{5} \mathrm{O}_{11}{ }^{+}$:
$630.3345[\mathrm{M}]^{+}$, found 630.3344; MS (ESI negative): $m / z=209,157$, 141, 127 [M]; ; HRMS (ESI negative): m / z calcd. for $\mathrm{I}^{-}: 126.9039$ [M]-, found 126.9048.

1-((S)-4-(Bis(tert-butoxycarbonyl)amino)-5-methoxy-5-oxopent-yl)-4-(((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxo-propoxy)methyl)-3-methyl-1 H-1,2,3-triazol-3-ium lodide (38cMel): From 38c ($190 \mathrm{mg}, 0.30 \mathrm{mmol}$) in MeCN (5.40 mL), Mel ($0.60 \mathrm{~mL}, 1.40 \mathrm{~g}, 9.6 \mathrm{mmol}$), 5 d , yellow wax ($210 \mathrm{mg}, 0.27 \mathrm{mmol}$, $90 \%) ; R_{\mathrm{f}}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 15: 1\right) .[\alpha]_{\mathrm{D}}^{20}=-6.43(\mathrm{c}=1.00 \mathrm{in}$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.44\left[\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.50[\mathrm{~s}$, $\left.18 \mathrm{H} ; 2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.60-1.87\left(\mathrm{~m}, 2 \mathrm{H} ; 3^{\prime \prime}-\mathrm{H}\right), 1.92-2.04\left(\mathrm{~m}, 2 \mathrm{H} ; 4^{\prime \prime}-\mathrm{H}\right)$, 2.12-2.27 (m, 3H; CH3 3.72 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), 3.78 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), 3.91$3.96\left(\mathrm{~m}, 1 \mathrm{H} ; 3^{\prime}-\mathrm{H}\right), 4.37-4.55\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{2}^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 4.74-4.80(\mathrm{~m}, 2 \mathrm{H} ;$ 6-H), 4.85-4.90 (m, 1H; 2"-H), 5.31-5.38 (m, 1H; NH), $9.34 \mathrm{ppm}(\mathrm{s}$, $1 \mathrm{H} ; 4-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.1$ (C-3"), 26.5 (C-4"), $28.0\left[\left(2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 28.3\left[\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 39.6\left(\mathrm{C}-5^{\prime \prime}\right), 52.4(\mathrm{OMe}), 52.8(\mathrm{OMe})\right.\right.$, $53.7\left(\mathrm{C}-2^{\prime}\right), 57.0\left(\mathrm{C}-2^{\prime \prime}\right), 61.3(\mathrm{C}-6), 71.4\left(\mathrm{C}-3^{\prime}\right), 80.2\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)\right]$, 83.7 [(C(CH3)], $130.8(\mathrm{C}-4), 140.0(\mathrm{C}-5), 152.1(2 \times \mathrm{COOtBu}), 155.3$ (COOtBu), $170.5 \mathrm{ppm}\left(\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}\right)$; FT-IR (ATR): $\tilde{v}=2979$ (w), 2381 (w), 2175 (w), 2155 (w), 2003 (w), 1959 (w), 1742 (s), 1703 (s), 1507 $(\mathrm{m}), 1456(\mathrm{~m}), 1437(\mathrm{~m}), 1366(\mathrm{~m}), 1309(\mathrm{~m}), 1248(\mathrm{~m}), 1160(\mathrm{~s}), 1114$ (s), $919(\mathrm{w}), 850(\mathrm{~m}), 781(\mathrm{~m}), 730(\mathrm{~m}), 640(\mathrm{w}), 581(\mathrm{w}), 461(\mathrm{w}) \mathrm{cm}^{-1}$; MS (ESI): $m / z=644[M]^{+}, 588,544,488,470,388,259 ;$ HRMS (ESI): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{11}{ }^{+}$: $644.3493[M]^{+}$, found 644.3501.

Acknowledgments

Generous financial support by the Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg, the Carl-Zeiss-Stiftung (Projecthouse NanoBioMater), the Forschungsfonds der Universität Stuttgart, the Baden-WürttembergStiftung (project BioMat-S11 BiogelPlus) and the Alfred-KärcherStiftung are gratefully acknowledged. Open access funding enabled and organized by Projekt DEAL.

```
Keywords: Amino acids · Biological activity . Click
chemistry · Triazoles · Triazolium
```

[1] a) A. Rani, G. Singh, A. Singh, U. Maqbool, G. Kaur, J. Singh, RSC Adv. 2020, 10, 5610-5635; b) K. Bozorov, J. Zhao, H. A. Aisa, Bioorg. Med. Chem. 2019, 27, 3511-3531; c) N. I. Korotkikh, A. H. Cowley, J. A. C. Clyburne, K. N. Robertson, V. S. Saberov, N. V. Glinyanaya, G. F. Rayenko, O. P. Shvaika, ARKIVOC 2017, 2017, 257-355; d) G. Guisado-Barrios, M. Soleilhavoup, G. Bertrand, Acc. Chem. Res. 2018, 51, 3236-3244; e) C. G. S. Lima, A. Ali, S. S. van Berkel, B. Westermann, M. W. Paixao, Chem. Commun. 2015, 51, 10784-10796; f) J.-P. Wan, D. Hu, Y. Liu, S. Sheng, ChemCatChem 2015, 7, 901-903; g) S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. Asian J. 2011, 6, 2696-2718; h) M. Juricek, P. H. J. Kouwer, A. E. Rowan, Chem. Commun. 2011, 47, 8740-8749; i) A. Dondoni, Org. Biomol. Chem. 2010, 8, 3366-3385; j) D. Dheer, V. Singh, R. Shankar, Bioorg. Chem. 2017, 71, 30-54; k) A. Lauria, R. Delisi, F. Mingoia, A. Terenzi, A. Martorana, G. Barone, A. M. Almerico, Eur. J. Org. Chem. 2014, 2014, 32893306; I) I. E. Valverde, T. L. Mindt, Chimia 2013, 67, 262-266; m) I. Pibiri, S. Buscemi, Curr. Bioactive Compd. 2010, 6, 208-242; n) See ref. ${ }^{[1 \mathrm{~b}]}$.
[2] J. M. Aizpurua, R. M. Fratila, Z. Monasterio, N. Pérez-Esnaola, E. Andreieff, A. Irastorza, M. Sagartzazu-Aizpurua, New J. Chem. 2014, 38, 474-480.
[3] a) J. C. Slootweg, S. van der Wal, H. C. Quarles van Ufford, E. Breukink, R. M. J. Liskamp, D. T. S. Rijkers, Bioconjugate Chem. 2013, 24, 2058-2066; b) C. Li, J. Tang, J. Xie, Tetrahedron 2009, 65, 7935-7941; c) F. M. Mir, N. D. P. Atmuri, C. B. Bourguet, J. R. Fores, X. Hou, S. Chemtob, W. D. Lubell, J. Med. Chem. 2019, 62, 4500-4525; d) K. Maji, M. Abbasi, D. Podder, R. Datta, D. Haldar, ChemistrySelect 2018, 3, 10220-10225; e) G. Sil-veira-Dorta, S. Jana, L. Borkova, J. Thomas, W. Dehaen, Org. Biomol. Chem.

2018, 16, 3168-3176; f) S. Malkowski, C. Dishuck, G. Lamanilao, C. Embry, C. Grubb, M. Cafiero, L. Peterson, Molecules 2017, 22, 1682-1695; g) S. N. S. Vasconcelos, E. Fornari, I. Caracelli, H. A. Stefani, Mol. Diversity 2017, 21, 893-902; h) L. R. Yule, R. L. Bower, H. Kaur, R. Kowalczyk, D. L. Hay, M. A. Brimble, Org. Biomol. Chem. 2016, 14, 5238-5245; i) S. M. Wales, K. A. Hammer, A. M. King, A. J. Tague, D. Lyras, T. V. Riley, P. A. Keller, S. G. Pyne, Org. Biomol. Chem. 2015, 13, 5743-5756; j) J.-P. Huo, J.-C. Luo, W. Wu, J.-F. Xiong, G.-Z. Mo, Z.-Y. Wang, Ind. Eng. Chem. Res. 2013, 52, 11850-11857; k) J. Huo, M. Lü, Z. Wang, Y. Li, Chin. J. Chem. 2012, 30, 2411-2422; I) C. Proulx, W. D. Lubell, J. Org. Chem. 2010, 75, 5385-5387; m) M. Klein, K. Krainz, I. N. Redwan, P. Dinér, M. Grøtli, Molecules 2009, 14, 5124-5143; n) N. G. Angelo, P. S. Arora, J. Org. Chem. 2007, 72, 7963-7967; o) N. G. Angelo, P. S. Arora, J. Am. Chem. Soc. 2005, 127, 17134-17135; p) J. F. Billing, U. J. Nilsson, J. Org. Chem. 2005, 70, 4847-4850.
[4] G. Biagi, I. Giorgi, O. Livi, V. Scartoni, Farmaco 1996, 51, 301-303.
[5] a) S. D. Whedon, M. K. Parker, E. L. Tyson, T. Ritterhoff, P. M. M. Shelton, C. Chatterjee, Chem. Commun. 2019, 55, 2043-2045; b) M. Bauer, W. Wang, M. M. Lorion, C. Dong, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 203-207; Angew. Chem. 2018, 130, 209-213; c) A. M. Beekman, M. A. O'Connell, L. A. Howell, Angew. Chem. Int. Ed. 2017, 56, 10446-10450; Angew. Chem. 2017, 129, 10582; d) E. Oueis, M. Jaspars, N. J. Westwood, J. H. Naismith, Angew. Chem. Int. Ed. 2016, 55, 5842-5845; Angew. Chem. 2016, 128, 5936; e) W. S. Horne, C. D. Stout, M. R. Ghadiri, J. Am. Chem. Soc. 2003, 125, 9372-9376; f) C. T. Walsh, S. Garneau-Tsodikova, G. J. Gatto, Angew. Chem. Int. Ed. 2005, 44, 7342-7372; Angew. Chem. 2005, 117, 7508.
[6] a) H. Fu, P.-X. Shen, J. He, F. Zhang, S. Li, P. Wang, T. Liu, J.-Q. Yu, Angew. Chem. Int. Ed. 2017, 56, 1873-1876; Angew. Chem. 2017, 129, 1899; b) K. K. H. Vong, S. Maeda, K. Tanaka, Chem. Eur. J. 2016, 22, 18865-18872.
[7] a) Z. Benfodda, D. Benimélis, G. Reginato, P. Meffre, Amino Acids 2018, 50, 1307-1328; b) T. Boibessot, D. Bénimélis, P. Meffre, Z. Benfodda, Amino Acids 2016, 48, 2081-2101; c) Z. Benfodda, D. Bénimélis, M. Jean, J.-V. Naubron, V. Rolland, P. Meffre, Amino Acids 2015, 47, 899-907; d) Z. Benfodda, D. Bénimélis, G. Reginato, P. Meffre, Amino Acids 2015, 47, 271-279; e) G. Reginato, P. Meffre, F. Gaggini, Amino Acids 2005, 29, 8187; f) P. Meffre, S. Hermann, P. Durand, G. Reginato, A. Riu, Tetrahedron 2002, 58, 5159-5162.
[8] a) Y. Koseki, T. Sugimura, K. Ogawa, R. Suzuki, H. Yamada, N. Suzuki, Y. Masuyama, Y. Y. Lin, T. Usuki, Eur. J. Org. Chem. 2015, 2015, 4024-4032; b) Y. Murakami, R. Suzuki, H. Yanuma, J. He, S. Ma, G. M. Turino, Y. Y. Lin, T. Usuki, Org. Biomol. Chem. 2014, 12, 9887-9894.
[9] J. A. Marchand, M. E. Neugebauer, M. C. Ing, C.-I. Lin, J. G. Pelton, M. C. Y. Chang, Nature 2019, 567, 420-424.
[10] a) S. F. Yan, R. Ramasamy, A. M. Schmidt, Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 285-293; b) H. Yamada, T. Sasaki, S. Niwa, T. Oishi, M. Murata, T. Kawakami, S. Aimoto, Bioorg. Med. Chem. Lett. 2004, 14, 56775680; c) R. Singh, A. Barden, T. Mori, L. Beilin, Diabetologia 2001, 44, 129146.
[11] a) B. Sheng, L. Larsen, T. Le, D. Zhao, Molecules 2018, 23, 712-723; b) H. Kaur, M. Kamalov, M. A. Brimble, Acc. Chem. Res. 2016, 49, 2199-2208; c) Y. Nomi, H. Annaka, S. Sato, E. Ueta, T. Ohkura, K. Yamamoto, S. Homma, E. Suzuki, Y. Otsuka, J. Agric. Food Chem. 2016, 64, 8397-8405; d) M. O. Lederer, R. G. Klaiber, Bioorg. Med. Chem. 1999, 7, 2499-2507; e) U. Moeckel, A. Duerasch, A. Weiz, M. Ruck, T. Henle, J. Agric. Food Chem. 2016, 64, 2953-2961.
[12] a) K. M. Biemel, D. A. Friedl, M. O. Lederer, J. Biol. Chem. 2002, 277, 24907-24915; b) K. M. Biemel, O. Reihl, J. Conrad, M. O. Lederer, in Int. Congr. Ser., Elsevier, 2002, pp. 255-261; c) O. Reihl, K. M. Biemel, W. Eipper, M. O. Lederer, W. Schwack, J. Agric. Food Chem. 2003, 51, 4810-4818; d) S. M. Culbertson, E. I. Vassilenko, L. D. Morrison, K. U. Ingold, J. Biol. Chem. 2003, 278, 38384-38394; e) D. R. Sell, K. M. Biemel, O. Reihl, M. O. Lederer, C. M. Strauch, V. M. Monnier, J. Biol. Chem. 2005, 280, 1231012315; f) G. Ravichandran, D. K. Lakshmanan, K. Raju, A. Elangovan, G. Nambirajan, A. A. Devanesan, S. Thilagar, Environ. Int. 2019, 123, 486500.
[13] a) M. O. Lederer, F. Gerum, T. Severin, Bioorg. Med. Chem. 1998, 6, 9931002; b) M. O. Lederer, H. P. Bühler, Bioorg. Med. Chem. 1999, 7, 10811088; c) See ref. ${ }^{[11 d]}$; d) K. M. Biemel, O. Reihl, J. Conrad, M. O. Lederer, J. Biol. Chem. 2001, 276, 23405-23412; e) K. M. Biemel, J. Conrad, M. O.

Lederer, Angew. Chem. Int. Ed. 2002, 41, 801-804; Angew. Chem. 2002, 114, 826; f) O. Reihl, M. O. Lederer, W. Schwack, Carbohydr. Res. 2004, 339, 483-491.
[14] V. R. Sabbasani, K.-P. Wang, M. D. Streeter, D. A. Spiegel, Angew. Chem. Int. Ed. 2019, 58, 18913-18917; Angew. Chem. 2019, 131, 19089.
[15] a) A. Bettiga, F. Fiorio, F. Di Marco, F. Trevisani, A. Romani, E. Porrini, A. Salonia, F. Montorsi, R. Vago, Nutrients 2019, 11, 1748-1766; doi https:// doi.org/10.3390/nu11081748; b) M. Friedman, J. Agric. Food Chem. 1996, 44, 631-653; c) V. M. Monnier, G. T. Mustata, K. L. Biemel, O. Reihl, M. O. Lederer, D. Zhenyu, D. R. Sell, Ann. N. Y. Acad. Sci. 2005, 1043, 533-544; d) X. Fan, D. R. Sell, J. Zhang, I. Nemet, M. Theves, J. Lu, C. Strauch, M. K. Halushka, V. M. Monnier, Free Radical Biol. Med. 2010, 49, 847-856; e) M. W. Poulsen, R. V. Hedegaard, J. M. Andersen, B. de Courten, S. Bügel, J. Nielsen, L. H. Skibsted, L. O. Dragsted, Food Chem. Toxicol. 2013, 60, 10-37; f) V. M. Monnier, W. Sun, D. R. Sell, X. Fan, I. Nemet, S. Genuth, Clin. Chem. Lab. Med. 2014, 52, doi https://doi.org/10.1515/cclm-2013 0174; g) M. Hellwig, T. Henle, Angew. Chem. Int. Ed. 2014, 53, 1031610329; Angew. Chem. 2014, 126, 10482.
[16] J. M. Padrón, G. Kokotos, T. Martín, T. Markidis, W. A. Gibbons, V. S. Martín, Tetrahedron: Asymmetry 1998, 9, 3381-3394.
[17] M. Adamczyk, D. D. Johnson, R. E. Reddy, Tetrahedron: Asymmetry 2000, 11, 3063-3068.
[18] M. Biel, P. Deck, A. Giannis, H. Waldmann, Chem. Eur. J. 2006, 12, 41214143.
[19] Y. Koseki, H. Yamada, T. Usuki, Tetrahedron: Asymmetry 2011, 22, $580-$ 586.
[20] S. Roth, N. R. Thomas, Synlett 2010, 4, 607-609.
[21] M. S. Martini, Dissertation, Universität Stuttgart, 2015.
[22] G. Pavé, S. Usse-Versluys, M.-C. Viaud-Massuard, G. Guillaumet, Org. Lett. 2003, 5, 4253-4256.
[23] D. Shetty, J. M. Jeong, C. H. Ju, Y. J. Kim, J.-Y. Lee, Y.-S. Lee, D. S. Lee, J.K. Chung, M. C. Lee, Bioorg. Med. Chem. 2010, 18, 7338-7347.
[24] T. Boibessot, D. Bénimélis, M. Jean, Z. Benfodda, P. Meffre, Synlett 2016, 27, 2685-2688.
[25] E. Fenster, C. Fehl, J. Aubé, Org. Lett. 2011, 13, 2614-2617.
[26] L. Bondarenko, I. Dix, H. Hinrichs, H. Hopf, Synthesis 2004, 16, 2751-2759.
[27] See ref. ${ }^{[7 f]}$.
[28] M. Jiang, H. Yang, H. Fu, Org. Lett. 2016, 18, 1968-1971.
[29] V. Haridas, Y. K. Sharma, S. Sahu, R. P. Verma, S. Sadanandan, B. G. Kacheshwar, Tetrahedron 2011, 67, 1873-1884.
[30] S. Chakraborty, D. Tai, Tetrahedron Lett. 2014, 55, 2274-2276.
[31] S. Ballet, C. Betti, A. Novoa, C. Tömböly, C. Uhd Nielsen, H. C. Helms, A. Lesniak, P. Kleczkowska, N. N. Chung, A. W. Lipkowski, B. Brodin, D. Tourwe, P. W. Schiller, ACS Med. Chem. Lett. 2014, 5, 352-357.
[32] Z.-L. Wei, P. A. Petukhov, F. Bizik, J. C. Teixeira, M. Mercola, E. A. Volpe, R. I. Glazer, T. M. Willson, A. P. Kozikowski, J. Am. Chem. Soc. 2004, 126, 16714-16715.
[33] See ref. ${ }^{[3 b]}$.
[34] A. Flores, M. J. Camarasa, M. J. Pérez-Pérez, A. San-Félix, J. Balzarini, E. Quesada, Org. Biomol. Chem. 2014, 12, 5278-5294.
[35] B. Adhikari, G. Palui, A. Banerje, Soft Matter 2009, 5, 3452-3460.
[36] J. E. M. N. Klein, M. Holzwarth, S. Hohloch, B. Sarkar, B. Plietker, Eur. J. Org. Chem. 2013, 6310-6316.
[37] Bio-Rad, "alamarBlueR - Cell Viability Assay," can be found under https:// www.bio-rad-antibodies.com/alamarblue-cell-viability-assayresazurin.html, 2019.
[38] R. S. Meinel, A. das Chagas Almeida, P. H. Fazza Stoppa, N. Glanzmann, E. S. Coimbra, A. D. da Silva, Chem.-Biol. Interact. 2020, 315, 108850108856.

[^1]
[^0]: [a] E. Icik, A. Jolly, P. Löffler, N. Agelidis, B. Bugdayci, L. Altevogt, Dr. A. Baro, Prof. S. Laschat
 Institut für Organische Chemie, Universität Stuttgart,
 Pfaffenwaldring 55, 70569 Stuttgart, Germany
 E-mail: sabine.laschat@oc.uni-stuttgart.de
 https://www.ioc.uni-stuttgart.de/en/research/ak-laschat/
 [b] L. Altevogt, Prof. U. Bilitewski
 AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung,
 Inhoffenstr. 7, 38124 Braunschweig, Germany
 E-mail: ursula.bilitewski@helmholtz-hzi.de
 Supporting information and ORCID(s) from the author(s) for this article are
 (iD available on the WWW under https://doi.org/10.1002/ejoc.202000811.
 of © 2020 The Authors published by Wiley-VCH GmbH • This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

[^1]: Received: June 8, 2020

