
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Web Interface for Interactive Face
Reconstruction

Lewin Fritzenschaft

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Andreas Bulling

Supervisor: Florian Strohm, M.Sc.

Commenced: February 1, 2023

Completed: August 1, 2023

Abstract

Facial composites have been used by law enforcement agencies to help identify criminals.
Initially, these facial composites were sketched by forensic specialists. Later, first software
systems emerged to perform this process. But on the one hand, these systems require
expert knowledge and, on the other hand, composites are created by focusing on
individual parts of the face and then only combining them together in the end. Zaltron
et al. presented CG-GAN, a new system that generates composites based on GAN models
and in an iterative manner, as recommended by the latest research. However, the system
of Zaltron et al. is still difficult to use for non-experts, so we present a new, improved
system. We implement a web application for the creation of facial composites. This web
application is easy to use and is accessible to all, users do not have to set up the system
themselves. Users can also easily edit the features of a face as we have added the ability
to adjust the features with range sliders. We also made it possible for users to undo their
changes. A user study was conducted to assess whether the usability improvements also
contributed to better facial composites.

3

Contents

1 Introduction 17

2 Related work 19
2.1 Facial composite creation . 19
2.2 CG-GAN . 20

3 Web CG-GAN 23
3.1 Architecture . 23
3.2 Back-end . 24
3.3 Front-end . 24
3.4 Deployment / Software Engineering . 25

4 New Features 27
4.1 Tags for feature locking . 27
4.2 Range slider for feature values . 28
4.3 Weighted Crossover . 29
4.4 Presets Preview . 31

5 Usability improvements 33

6 Experiments 35
6.1 User Study . 35
6.2 Procedure . 35
6.3 Results . 37

7 Discussion 43

8 Summary and Outlook 45
8.1 Summary . 45
8.2 Outlook . 45

Bibliography 47

5

List of Figures

2.1 User interface of CG-GAN . 22

3.1 Architecture of our web application . 23

4.1 Feature tags with suggestions. 27
4.2 Disturbed image . 29
4.3 Feature range slider . 29
4.4 Discarded weighted crossover . 30
4.5 Weighted crossover . 30
4.6 Preset hover . 31

6.1 Generated composites . 41

7

List of Tables

6.1 Comparison between our System and CG-GAN 37
6.2 General questionnaire . 38

9

List of Listings

11

List of Algorithms

13

List of Abbreviations

CelebA CelebFaces Attributes Dataset. 20

GAN Generative Adversarial Network. 17

NASA-TLX NASA Task Load Index. 36

pg-GAN Progressive Growing of GANs. 20

SPA Single-page application. 23

SUS System Usability Scale. 36

15

1 Introduction

Mental face reconstruction is the process of reconstructing a person’s face according
to the description of witnesses. These resulting facial composites are used by law
enforcement to identify perpetrators. [Man10][WR12][SCGC19]

In the past, these facial composites were drawn by experts according to the description of
witnesses. Later, the first software systems for creating software-based facial composites
appeared, but this early software still relied on expert knowledge and could only create
features of a face if those features were explicitly implemented. So, Zaltron et al.
[ZZR20] implement a new way by using machine learning techniques. They used a
Generative Adversarial Network (GAN) based model to create high resolution images of
person faces. Users are now less depended on expert knowledge when creating facial
composites. But there are still some major usability problems which prevent users to use
this software trouble-free and create good facial composites. For example, the software
is implemented as a jupyter notebook, so users have to set up the software on their
own. Moreover, CG-GAN does not provide a good way easily edit features of a face, or
with CG-GAN it is not possible to revert changes. With these limitations, it is difficult
for users, especially for non-experts, to create good facial composites. In this bachelor
thesis, we introduce a new web based system which solves these problems and increase
the usability of the system to enable use to create better facial composites. The new
system is improved by having a web application, so users do not have to set up the
system themselves, and by having a better way to edit features of a face, because with
our system we allow users to adjust features with range sliders. We then conduct a user
study to compare the usability of the system by Zaltron et al. [ZZR20] with the new
implemented web based system. The results show that the created facial composites
have the same quality and do not differ significantly. Users enjoyed the new features,
such as the sliders, as well as the web application itself. However, the differences in
usability between the two systems were not considered significant.

Structure

The thesis has the following structure.

17

1 Introduction

Chapter 2 – Related work: Here we lay the groundwork for this thesis.

Chapter 3 – Web CG-GAN: In this chapter, we introduce related work and the system
CG-GAN.

Chapter 4 – New Features: The new features we have implemented to improve usabil-
ity are presented.

Chapter 5 – Usability improvements: Further usability improvements are shown.

Chapter 6 – Experiments: Here our user study is presented.

Chapter 7 – Discussion: In this chapter, we discuss the results of our user study.

Chapter 8 – Summary and Outlook summarizes our results and outlines future work.

18

2 Related work

2.1 Facial composite creation

Sketches First facial composites were sketches created by forensic specialists. Forensic
specialists drew the facial composites by interviewing eyewitnesses. This procedure
focuses on creating individuals parts of a face, e.g. mouth, nose eyes. The created
parts will then be combined to form a whole face. Limitations of this method are
that the eyewitnesses need to be interviewed and that the forensic specialists need
to be trained to create facial composites. Moreover, studies showed that humans
perceive faces as a whole, so focusing on individual parts of the face is not ideal.
[Man10][WR12][SCGC19]

Feature Software Systems There are also software systems to perform this process. The
concept of these feature-based software systems is similar to drawing sketches. Software
of this kind also focuses on creating suitable parts of the faces, called features. These
features will then get combined to the result face. These tools come with a large dataset
that provides different types for each feature, for example, different hairstyles or face
shapes. It is then possible to select a suitable variation for each part of the face to
create the final composite. The software itself is still operated by experts and depends
on interviewing eyewitnesses. Some example software systems are PRO-fit and Faces
4.0. This method has the same limitations as the sketch method, only that the forensic
specialists do not need to be trained to draw facial composites but to use the software.
[FBH08] [ZZR20][SCGC19]

Evolving Software Systems As studies have shown, humans perceive faces as a whole,
so focusing on individual parts of the face when creating facial composites is not ideal.
Therefore, new software systems do not focus on individual face features. Instead,
they understand faces holistically and also mutate them in this way. While the other
software system or the sketches only select the individual part once, the new systems
use an evolutionary and iterative way. The resulting composite is created over multiple
iterations. An Example for this kind of software is EvoFIT. A drawback of these systems

19

2 Related work

is that they rely on mathematical functions to evolve and generate features of faces.
For this reason, it is difficult to create new features or adjust them according to the
requirements of the users. [FHC04] [FBH08][SCGC19]

2.2 CG-GAN

CG-GAN is a new way presented by Zaltron et al. [ZZR20], it creates machine-learning
based facial composites in an evolutionary way. CG-GAN is based on Progressive
Growing of GANs (pg-GAN), an extended way of a GAN model. The specific pg-GAN
used by CG-GAN is trained on the CelebFaces Attributes Dataset (CelebA) dataset.
[GPM+14][KALL17][LLWT15][ZZR20]

CG-GAN has two main features that distinguish it from previous systems.

1. Iteration of the generated images. The generated images evolve over several
iterations.

2. Feature Locking. CG-GAN has, like the previous systems, features to describe
individual parts of the face. But with CG-GAN you can also lock these features
so that with new generation these features are not changed. It is also possible to
manipulate individual features.

But in this thesis the focus is not on the used models but on improving the usability.

2.2.1 Installation

CG-GAN is implemented as a jupyter notebook1, so every user have to set up his own local
environment. As the generative model needs a graphics card to run at an acceptable
speed, the setup is not trivial. There are ways that supposedly reduce the effort run
CG-GAN like using an online notebook service, as Zaltron et al. did with using Google’s
kaggle to host the notebook2. But users must set up this system there anywhere. So,
with the use of a web-based system, we easily solve this problem, since every user just
needs a browser to access and use the system.

1https://jupyter.org/about
2https://www.kaggle.com/code/lulliflores/cg-gan/notebook

20

https://jupyter.org/about
https://www.kaggle.com/code/lulliflores/cg-gan/notebook

2.2 CG-GAN

2.2.2 User Interface

Before we analyze the user interface in more detail, we will give a brief description and
explanation of the user interface. The CG-GAN user interface is divided into 4 pages
(see Figure 2.1).
The first page is the starting form shown in Figure 2.1a, where the users set their session
ID, enter their name and preliminary information about the suspect. There is also a text
field to keep notes about the perpetrator. After completing the start form, the session
starts.

Users are now shown the second page, the main page (see Figure 2.1b). Here the users
have nine images which they can select or lock. Selected images are included into
generation of the next generation of images. Locked images are kept unchanged for
the next generation and are not included in the generation. A combination of both is
possible.
The user interface also allows features to be locked. This means that the locked features
are not changed for the new generation. With smart lock, not only the current feature is
locked, but also all the features that correlate with it.
Users can select the mutation type that determines how features influence the next
generations. There are three types of mutations.

1. Random changes. For the next generation, random Gaussian noise is added to the
latent vectors.

2. All unlocked features. Randomly increase or decrease a random number of features
of a latent vector.

3. One unlocked feature. Randomly increase or decrease a randomly selected single
feature of a latent vector.

Moreover, CG-GAN provides a slider to adjust the amount of changes made to the
composites as they evolve.

With the third page shown in Figure 2.1c users can edit a single person manually by
increasing or decreasing the value of the features, as well as locking the features. There
is the possibility to create presets to store intermediate results and to retrieve them later.
The edit page provides the same slider as the main page to adjust the amount of changes
made to the composites. However, the slider here determines how much a button click
changes the feature value. If the slider is set to a higher value, the feature value changes
more with each button click than if it is set to a lower value.

When finishing the processing of creating facial composites, users are shown the final
page (see Figure 2.1d), where a final animation with some variations of the result image
is shown. The final images can also be exported here.

21

2 Related work

(a) Start Page (b) Main Page (c) Edit Page (d) Final Page

Figure 2.1: User interface of CG-GAN

2.2.3 Problems

We keep the structure of nine images in a 3x3 grid, as it allows the user to keep track of
all the images at once. With this structure, the images are stacked next to each other in
a compact way, the user can easily compare the images and see the differences between
them. We also keep the positioning of the feature lock module.
But we change the placement of all the other buttons. The positions of the buttons cause
a bad visual flow, so there is no logical path through the interface. Instead, the user
interface has it all mixed up.

Jupyter notebook is mainly an environment for researchers to do scientific computing.
Jupyter notebooks are not developed to provide a good user interface for users. However,
there are libraries such as IPyWidgets 3 that provide some interactive widgets. This is
also the library used by [ZZR20], but the focus of their project was not on usability, but
on developing such a system in itself. A drawback of using this jupyter notebook is also
that the entire user interface is slow. CG-GAN is slow in terms of displaying the images,
as it does not keep the images in a buffer. So if for example the user reverts an action the
image needs to be regenerated or in the manual edit view, the presets have no preview.
So if you want to use a prior preset, you cannot see a preview of the resulting images
with the applied changes.
Moreover, CG-GAN is not responsive, if the user’s display is too small they cannot use
the system without scrolling horizontally or vertically.

The user interface also lacks physical constraints. Users are often able to perform actions
that they should not be able to perform. For example, users can hit the evolve button,
although there is no selected mutation type. The user interface then only shows a notice
that a mutation type needs to be selected, instead of disabling the button when evolving
cannot be performed.

3https://ipywidgets.readthedocs.io/en/stable/

22

https://ipywidgets.readthedocs.io/en/stable/

3 Web CG-GAN

The idea is to implement a web-based system that uses the CG-GAN model to create
facial composites. This web-based system should be easy to use and should not require
expert knowledge. A web based system can be used by any user with a web browser
and does not require any local installation. This is a big advantage compared to the
jupyter notebook implementation of CG-GAN and enables a broader user base to use the
system. The code of the web based system is available in the respective repository of
this thesis1.

3.1 Architecture

Our system is based on a client-server architecture (see Figure 3.1). The client, our
front-end, is used by the users. The server, our back-end, runs the GAN model and
generates the respective images. The client communicates with the server with a REST
API. Our back-end runs with Python and Django2 as a REST web framework. For the
front-end, we use a Single-page application (SPA) with Vue.js3 as the JS framework.

Figure 3.1: Architecture of our web application

1https://git.hcics.simtech.uni-stuttgart.de/theses/bsc2023_lewin
2https://docs.djangoproject.com/en
3https://vuejs.org/

23

https://git.hcics.simtech.uni-stuttgart.de/theses/bsc2023_lewin
https://docs.djangoproject.com/en
https://vuejs.org/

3 Web CG-GAN

3.2 Back-end

The major purpose of the back-end is to generate images and store vectors of the
respective session, so that the front-end can make request to the back-end to manipulate
the vectors and get new images.
The back-end runs with python 3.7 due to the compatibility with TensorFlow version
1.134 which is required by the model used by CG-GAN. As a web framework to build the
REST API, we use Django.

We use a SQLite5 for providing a simple database. For our prototype and our comparably
small user study, we do not need an entire database management system. For a future
deployment of the web application, a database management system should be used. The
database is needed to store the data required to use the web application and to store
the metrics collected for the user study in Chapter 6. Our back-end provides an API
endpoint to track the usage of the web app. With each call to the back-end it is possible
to track one action, and each action gets stored with a timestamp and its related session.
We track all button clicks and all slider drags performed by the users.

3.3 Front-end

The front-end is a web page build as a SPA with Vue.js as JS framework. Only the
initial page is loaded as an entire new page, later the page gets manipulated by dynamic
requests to the back-end. This enables for more fluid usage. [FN98]

Our project mainly focused on the front-end and to make it more usable. The front-end
has the same structure as the original CG-GAN implementation. First, the start page,
where the user enters his name and basic information about the suspect, our start form
is split into multiple steps. Second, the main page, where the user selects the images to
be used for the next generation. Third, the edit page, where the user can edit a single
person manually. And fourth, the final page, where the user can see the final result and
download it.

4https://github.com/tensorflow/tensorflow/releases/tag/v1.13.1
5https://www.sqlite.org/about.html

24

https://github.com/tensorflow/tensorflow/releases/tag/v1.13.1
https://www.sqlite.org/about.html

3.4 Deployment / Software Engineering

3.4 Deployment / Software Engineering

The web application can be easily deployed. It only requires a GPU for the generating
model. In addition to the improvements to the user interface, the implementation
itself has also been improved. Due to the web application’s architecture, the front-
end is independent of the back-end and can therefore be extended with additional
features without changing the back-end. The same applies for the back-end, because
the machine learning model is isolated from the back-end and can be easily replaced
with a new model. This enables a more flexible development and deployment of the
web application.

25

4 New Features

In this section, we present the new features we implemented to increase usability. Apart
from minor changes, there are four new features for the user interface. The first one is a
tag-like system for the features to review and set their lock status (see Section 4.1). The
second adds a range slider to each feature to set the value of the feature not only with
buttons, but also with sliders (see Section 4.2). As a third change, we added a weighted
crossover to enable users to merge faces with a weight (see Section 4.3). Finally, we
added a preview to the already existing previews of the presets.

4.1 Tags for feature locking

The user interface of Zaltron et al. [ZZR20] has all the features divided into five groups.
As can be seen in Figure 2.1b and Figure 2.1c.

We keep those groups, but instead of using an accordion, we use horizontal tabs (see
Figure 4.3). This makes the groups and their items better accessible, as the content of
the accordion does not move when opening an accordion tab.

Additionally, we added a tag-like system for the features, as shown in Figure 4.1. This
offers a quick overview of the locked tags and allows users to quickly lock or unlock
features. We added a search bar with suggestions to make this quick locking possible.
Suggested features can be locked by clicking on them or by pressing Enter to lock the
first suggested feature. The features can be unlocked by simply clicking on them.

Figure 4.1: Feature tags with suggestions.

27

4 New Features

4.2 Range slider for feature values

The next new feature, which we implemented, is a new way to change the value of each
feature. As the user interface of CG-GAN gives not enough control with its button for
the feature values.

The new way of controlling the features is mainly based on a range slider. Each feature
gets an additional range slider to the existing increase and decrease buttons. For one
reason, we are in line with Principle of Robustness and Principle of Learnability [Dix03],
as we provide a good way to observe the state of the feature and make it more intuitive
for first time users.

To improve usability, we avoid making too many calls to change the person. We do this
by adding a time-out for each change made by the user. Only if the timeout is reached
and no more new changes are incoming, the actual call to the back-end is made. This
applies to the increase and decrease button clicks and the slider. With this timeout,
we prevent system overload during image generation. So according to the Principle of
Robustness [Dix03], we maintain a fast response time.

We added a limit for the values of the features to prevent disturbed images. Disturbed
images occur when the feature values are set too high and the resulting vector is
distorted. See Figure 4.2 for the disturbed image. CG-GAN changes the values of the
features by having a vector for each of the features, which it describes. When users now
increase or decrease the value of the feature, they are actually changing a factor that
multiplies with the vector. The scaled vector is then added to the vector describing the
image. The sum of these vectors then describes the new person with changed feature
values. But with CG-GAN these factors are not limited, it is possible to click the increase
and decrease button an infinite number of times, which then results in a disturbed
image.

We keep the procedure by multiplying a factor with the feature vectors, but we limit the
size of the factor. Experiments showed that a factor af with −2.5 ≤ af ≤ 2.5 works best.
With this factor, it is possible to force strong changes, but it is so low that it is unlikely to
result in distorted images, so that users are no longer able to increase or decrease values
limitless.

To highlight the result of a drag operation, we have added a green or red coloring to
the slider bar, depending on the direction of the drag. When the value of a feature is
increased, then the slider is colored green from its center to the current position of the
drag point. Otherwise, it is colored red (see Figure 4.3).

28

4.3 Weighted Crossover

Figure 4.2: Disturbed image. The value of the feature that describes how much the
mouth is open is set too high.

Figure 4.3: Feature range slider. The feature age is increased and locked. The value of
the feature gender is decreased, making the person look more female. The
feature skin tone is unchanged.

4.3 Weighted Crossover

Figure 4.5 shows the weighted crossover feature. This feature should enable users
to merge composites with a weight. For example, if one person looks mostly like the
targeted persons but also has similarities with another person. Then, users can try to
combine them with a weight.

The first idea was to use a polygon with a person at each corner of it and then create
the resulting image based on the position dot and its distance to the corners. However,
this feature was only implemented as a prototype, as you can see in Figure 4.4. It is not
included in the final version due to its complexity and unclear benefit to users.

The implemented way has only two persons as input and uses a slider between them to
set the weight. The closer the slider is moved to a person, the more similar it looks to
that person.

29

4 New Features

Figure 4.4: Discarded Weighted crossover. Each corner represents a person (they are
not displayed for simplicity), but the distance to dragged person is shown.
According to the distances from the corners to the dragged persons, the
dragged person should be generated. The closer the dragged person is to
a corner (another person), the more similar the dragged person is to the
person in the corner.

Figure 4.5: Weighted crossover. The slider is moved slightly to the left, so that the
combined person looks a little more like the person on the left than the
person on the right.

30

4.4 Presets Preview

(a) (b)

Figure 4.6: Preset hover. The image changes depending on which preset the user hovers
over. When the user clicks the button, the preset is selected and the feature
settings are loaded.

4.4 Presets Preview

Zaltron et al. [ZZR20] implemented a preset-like system for the manual edit of a person.
Where you save your current version of the edited person, to retrieve it later. But with
the version of Zaltron et al. every image needs to get regenerated, which takes too
much time. We implement a new way to keep the images and the done changes. To
enable a preview image when hovering over the respective preset button, so users can
quickly check if they want to roll back to a previous edited image. Moreover, we keep
the position of the feature sliders, so in contrast to CG-GAN, users can see what changes
they have made.

31

5 Usability improvements

We not only improve usability with new features but also with further improvements.
The most obvious improvement is the web application itself because a web application
is easily accessible and does not require any technical knowledge to set up.

We improved the form at the beginning according to the rule design dialogues to yield
closure of the Eight golden Rules of Interface Design [SPC+16]. We added a better
structure and a progress bar to guide users through the process. With multiple steps, we
reduced the complexity of each step and made it easier for future extensions to add new
steps.

According to the Principles of Learnability [Dix03], we allow users to click on images
to select them, not only the small select buttons. Which is more intuitive for first-time
users.

Responsive web design Our interface uses Bootstrap, an open-source CSS framework,
to provide a responsive web page. CG-GAN, in its jupyter notebook is not responsive at
all, so we have a big advantage here. Our new interface is usable for all screen sizes.
Even tough our web application is not explicitly developed for mobile devices, using it
with mobile devices is nevertheless possible.

Reversal of Actions We follow the Eight golden Rules of Interface Design [SPC+16] by
allowing users to undo their actions at two points. First, we added an undo option to the
main page for the evolving process. Users can undo the last evolution step, the previous
image is instantly shown because the images of the previous step are saved. Only if
users go back more than one step, the images need to be generated again. CG-GAN does
not support any kind of undo while evolving.
Second, we improved the possibility to undo changes made to the person while editing
them in the manual edit page. As the feature sliders keep the adjusted value, users can
see their changes made. They know which features they changed and by what factor, so
they can reset the value of a feature to undo the changes. CG-GAN loses the history of
changes, users cannot see their changes made, as the buttons does not show how many
times they were clicked. So they cannot reset single features, they need to drop all their

33

5 Usability improvements

changes and restore the original image. The previews mentioned in Section 4.4 also
help users to undo changes with our system and CG-GAN. But with our system, they can
also undo changes made with the sliders, which is not possible with CG-GAN.

Prevent Errors According to the principles for UI Design by Shneiderman [SPC+16],
we prevent errors by limiting the range of the sliders. Sliders have an absolute minimum
and maximum position to prevent a disturbed image. Users cannot leave this range with
the buttons either. Our system has a preselected mutation type, to prevent errors. Users
do not have to select it first or deal with it, which makes it easier for first-time users.
Advanced users can then select a specific mutation type for their needs.

In order to simplify the use of our web application, especially for first time users, we
hide some non-essential information.

1. Removal of changes amount slider. As we have a slider for each feature, we
removed the general changes amount slider.

2. Export of latent vectors. CG-GAN allows its users to export the generated latent
vectors of persons. We do not implement export functions of these types. As initial
users most likely will not export those latent vectors, and it could be unclear for
users to distinguish between the normal save and this export function.

3. Hide smart lock of features and weighted crossover. As the correlation of the
features is not trivial and not clear for non-expert users, we hid it with a dropdown
behind the lock button. The weighted crossover is not a key feature, so we hid it
behind the evolve button, not to distract first-time users. Both features can be used
by frequent users, to reduce their interactions with the systems to lock multiple
features according to the Eight golden Rules of Interface Design [SPC+16].

4. Removal of text field for notes. The results of Zaltron et al. [ZZR20] showed that
users did not use the text field for notes, so we removed it to reduce the complexity
of the user interface.

34

6 Experiments

6.1 User Study

We conducted a user study to compare our improved user interface with the existing one
of Zaltron et al.[ZZR20]. The user study is divided into two parts. First, users create
facial composites with both systems. Second, the generated images will be compared
to verify if the supposedly improved usability of our system leads to better results.
Participants were recruited among family, friends and students. Participants did not
receive any compensation for their participation. For the first part of the user study, we
had 12 participants. All participants were between 18 and 60 years old (mean=27.9,
SD=13.8). Three of the participants were female and nine were male. For the second
part of the user study, we had 22 participants. But we do not have any information about
the participants, as this part of the user study was conducted online and no personal
information was collected.

6.2 Procedure

Participants should reconstruct two target persons, one with CG-GAN and one using
our new UI. The 12 participants used both systems in random order. We have 12 target
persons who users need to recreate. Each participant had a different target person for
each system. Two participants had the same targets but switched the target for the
respective system. As a result, we have 24 composites generated, where two composites
generated represent one target, each of the targets where generated with a different
system.
As in the user study of Zaltron et al. [ZZR20], the target person is shown to the user
for the entire reconstruction time. This helps to avoid the influence of participants not
being able to remember the face because we want to focus on evaluating our improved
user interface. The target persons were randomly chosen from the CelebA [LLWT15], on
which CG-GAN was pre-trained.
Participants got an introduction to the system they were using and got upcoming
questions answered. Then they started using the system until they were satisfied with

35

6 Experiments

their result image.
To evaluate the usability of the systems, we used several questionnaires and tracked
metrics during their usage.

6.2.1 Questionnaires

The questionnaires were filled in by the users directly after using the system.

1. System Usability Scale (SUS). This questionnaire measures the usability of a system.
It outputs a score of 0 to 100. The higher the score, the higher the usability of the
system. The participant completed the questionnaire after using each system.

2. Raw NASA Task Load Index (NASA-TLX). A multidimensional questionnaire de-
signed to assess the perceived workload of a user. The final score ranges from 0 to
100. The lower the score, the lower the perceived workload of the task.

3. General questionnaire. We use a non-standardized questionnaire, with our own
questions, to evaluate our new features. Some questions are answered with a
Likert scale. We use a 5-point Likert scale, where 1 means strongly disagree and 5
means strongly agree. This survey is completed by participants after using both
systems.

For the second part of the user study, the evaluation of the generated images, we had
22 participants. All participants who took part in the first part of the user study also
participated in the second part. Participants filled out an online questionnaire, where
they had to choose the image of the two generated, which they think looks more like
the target person. Images were shown in a randomized order.

6.2.2 User Tracking

Additionally, the usage of the applications is tracked. All button clicks made by the user
are tracked with a timestamp. For our new system, we implement a simple API endpoint
for tracking button click actions. The use of CG-GAN is also tracked; this will provide
comparative data. Therefore, we extend the code of CG-GAN with a tracking feature.
As in our web version, every button click is logged. But here it is written to a CSV file
instead of storing the collected data in a database. All the tracked raw data is available
as CSV files in the Git repository of this thesis.

36

6.3 Results

Raw Time spent ↓ Votes for better person ↑
Systems SUS ↑ NASA-TLX ↓ (mins) (# comparisons won ↑)

Ours 94.8± 10.5 25.9 ± 6.6 12.9 ± 5.9 9.75 ± 4.7 (6 / 12)
CG-GAN 80.5 ± 17.4 32.8 ± 13.0 11.3 ± 3.7 12.25 ± 4.7 (6 / 12)

Table 6.1: Comparison between our System and CG-GAN based on questionnaires and
the data tracked during use of the participants. The values shown are the
mean and standard deviation of the respective metric. The symbols ↑ and
↓ show if a higher or lower value is better. The better result is written bold.
None of the differences are statistically significant, as for all p > 0.05.

6.3 Results

For all the collected metrics, we performed a Shapiro-Wilk test to check if the differences
between the two systems are normally distributed. If the samples were normally
distributed, we performed a paired t-test, otherwise a Wilcoxon signed-rank test was
performed. A p-value of p < 0.05 was considered significant.

6.3.1 Standardized questionnaire

For the SUS, CG-GAN has an average score of 80.5 and our system has an average score
of 94.75. But the difference is not significant, as t = 2.00, p = 0.071. With a standard
deviation of 17.4 for CG-GAN and 10.5 for our system, the scores for CG-GAN are more
spread than the scores for our system. The results of SUS are shown in Table 6.1. For
the NASA-TLX, CG-GAN has an average score of 32.8 and our system has an average
score of 25.9. But the difference is not significant as well with t = −1.9, p = 0.084. As
Table 6.1 shows, the standard deviation of CG-GAN is 13.0 and the standard deviation
of our system is 6.6. So again, the scores of CG-GAN are more spread than the scores of
our system.

6.3.2 General questionnaire

The results of the Likert scales of the general questionnaire are shown in Table 6.2. Most
of the participants found our system more pleasant to use, with more than 80% of the
participants agreeing or strongly agreeing. For this statement, that is, a mean of 4.1 and
a standard deviation of .086.

37

6 Experiments

Statements Mean ± Std

The web version is more pleasant to use overall. 4.1 ± 0.86
Rate the efficacy of the feature lock system with the tags. 3.8 ± 0.75
The tags give a helpful overview of the locked features. 3.8 ± 0.69
With the tags feature can be locked faster and easier. 3.7 ± 0.74
Changing the feature values is easier with the sliders
than with the +/- buttons. 4.4 ± 1.11
I was able to efficiently achieve the desired result using the sliders. 3.7 ± 0.75

Table 6.2: General questionnaire. The responses are given on a 5-point Likert scale,
where 1 means strongly disagree and 5 means strongly agree. The mean and
standard deviation of the responses are shown.

More than 60% said they used our tag-based feature lock system. Most of the participants
agree that with our tag system, the features can be locked and unlocked more easily.
The mean of this statement is 3.8 (SD=0.75). On average, participants agree with a
value of 3.8 (SD=0.69) that the tags provide a helpful overview of the currently locked
features, so that there is no need to search specific features in the categories.

For the sliders, the users are mostly agreeing or strongly agreeing that changing the
feature values is easier with the sliders than with the increase and decrease buttons. Our
survey shows that with a mean of 3.7 and a standard deviation of 0.75, the participants
are mostly agreeing that with the sliders they could efficiently achieve their desired
result.
Moreover, the users stated that with the sliders they could better anticipate the changes of
the feature values. And they confirmed that with the sliders they could avoid spamming
the buttons to achieve major changes.

The results related to the improved presets are not meaningful as the participants rarely
used this feature. But the participants, who used the presets, are mostly agreeing the
hover effect simplifies comparing the presets. The situation is similar for the weighted
crossover, as this feature was also rarely used by the participants. However, when
participants used this feature, they noted that they are not satisfied with this feature
because they could not specify which features they want to transfer to other people.

6.3.3 Collected Metrics

Users used our system for an average of 12:56 minutes (SD=5.9) and CG-GAN for
an average of 11:17 minutes (SD=3.7). The time difference is not significant, as
t = 1.1, p = 0.29 and p > 0.05.

38

6.3 Results

Users very rarely locked images while evolving. The most of the time, users only selected
the person so that the person was locked automatically. The differences between the two
systems are not significant, for both locking and selecting. For CG-GAN, users locked
on average 4.4 times (SD=14.1) and selected on average 22.3 times (SD=13.6). For
our system, users locked on average 0.8 times (SD=1.1) and selected on average 15.0
times (SD=8.1). But for both systems the difference between locking and selecting is
significant, as t = −5.0, p = 0.0004 for CG-GAN and t = −5.6, p = 0.0002 for our system.

As stated in the results of the general questionnaire, users changed the features values
with our system less often than with CG-GAN. The total number of calls made to the
pg-GAN model to change feature values with CG-GAN was 1, 122 and with our system
there were 878 calls. But as our system has a timeout feature to prevent too many calls
in a short time, we only generated after a series of calls. Therefore, the images were
only generated 506 times, that is, a decrease of 54.9% compared to CG-GAN. This leads
to far less delay when generating images, which then results in increased usability.
However, the difference between the two systems and number of changes made was not
significant, as t = 13.0, p = 0.075.

The number of times that users used the buttons to change the feature values is for
CG-GAN on average 93.5 times (SD=67.9) and for our system on average 73.2 times
(SD=177.2). The difference is not significant, as t = 13.0, p = 0.075.
The reset button, which resets all feature values to zero, was only used twice by one
user.

Another interesting metric is the number of times users left the edit page without saving
and canceled their editing. First of all, for CG-GAN on average 1.8 times (SD=0.90) and
for our system on average 4.3 times (SD=3.33) entered the edit page. The difference
between the two systems is significant, as t = 0.0, p = 0.004. But our system users left
the edit page without saving on average 2.1 times (SD=3.4), while the users of CG-GAN
left the edit page without saving on average 0.5 times (SD=0.87). This difference is not
significant, as t = 4.0, p = 0.17. On average, 0.28 (SD=0.31) of the edits were canceled
by users of our system, and 0.21 (SD =0.32) of the edits were canceled by users of
CG-GAN. This difference is again not significant, as t = 4.0, p = 0.17.

6.3.4 Observations

We did not track all actions such as mouse movements or clicks on disabled buttons and
sliders. However, in the following section, we describe further observations we made
during the user study.

39

6 Experiments

We observed users trying to click or drag the slider, even though the respective feature
was locked and therefore could not be used. With CG-GAN, buttons were still clickable,
but then showed a warning message that the feature was locked. With our system, the
buttons and sliders were disabled and grayed out, but few users still tried to click or
drag them.

When users used the web version first and then the notebook version, they often clicked
on the image instead of the select button, but CG-GAN only supports the button clicks.
This shows that users adapted the way of clicking on the image instead of the button.

Participants rarely used the preset feature on either system, despite the fact that our
system has improved the use of presets. But, with the slider changes, our system offers a
better way to keep track of the feature changes, so that presets may become obsolete.

With CG-GAN, users spam the plus button to significantly increase a feature value, the
generation of all the single images then takes some time. But users did not wait for the
final change and kept clicking the button. The resulting image has then changed too
much, so users then spammed the decrease button to undo the changes. Users could
have increased the amount of changes, but almost none of them used this feature. This
did not happen with our UI, users simply dragged the slider to the desired position.
Due to our implementation, images were generated only once, even when buttons were
quickly clicked multiple times. Limiting the value of the feature also helped prevent this
effect of users forcing too much change by spamming the increase or decrease buttons.

Users often did not select a mutation type before clicking the evolve button, resulting in
a warning message saying that no mutation type was selected. Although the message
was clearly about the problem and its solution, users were confused and asked what
they had done wrong. Our UI made it easier to evolve by having pre-selected elements
for the mutation type selection, which resulted in users rarely changing the mutation
type.

There were also some problems with the categories chosen for the features. Users often
searched for features in the wrong category; although we added our tags with the search
bar, users have not adopted the feature enough. This could also be due to the fact that
with the feature tags, features could only be locked and unlocked. But when using the
edit page, users could not search for features when they wanted to change the value of
a feature.
A further problem was that the categories of the features are not equally distributed, so
some categories have more features than others. With too many features in a category,
users had to scroll to find the feature they wanted. If they then changed the feature
value, the resulting images were out of the view and users had to scroll back to see the
result.

40

6.3 Results

Target CG-GAN Ours Target CG-GAN Ours

Figure 6.1: Generated composites. The target columns show the target person, which
the participants had to recreate. The CG-GAN columns show the generated
composites with CG-GAN and the Ours columns show the generated com-
posites with our system.

As the results showed in the user study by Zaltron et al. [ZZR20] users missed the
opportunity to change the color of the eyes or transfer a single feature to another person.
Participants did not mention this in the surveys, but some asked for this feature while
creating the composites.

6.3.5 Evaluation of generated composites

Composites generated by our system had an average of 9.8 (SD=4.7) votes that they
looked more like the target person than composites generated by CG-GAN. In contrast,
the composites generated by CG-GAN had an average of 12.3 (SD=4.7) votes. The
difference between the evaluated images is not significant, as t = −0.9, p = 0.39.
However, in the end, half of the images that were selected as being better were generated
by our system, and the other half were generated by CG-GAN.

41

7 Discussion

In this chapter, we discuss the results of our user study. None of our results are statistically
significant, so we cannot prove our hypothesis that we have improved the usability of
the system and that we are creating better facial composites as a result.

One reason for this could be our small sample size for the user study, especially for the
first part of the user study when using both systems. For the second part of the user
study, the evaluation of the generated facial composites, we had a larger sample size.

An important factor of CG-GAN was missing in our user study. The participants did not
need to set up the notebook system for themselves; they got it set up and just needed
to use it. This could be one reason why users did not have so much trouble with the
system and why the results of NASA-TLX are not significantly different from our system.
Therefore, this advantage of our system was not included in the user study, but this was
necessary because we wanted to compare the usability of the two systems in the first
place. Another reason could be that most of the participants were computer science
students and, therefore, are more experienced with using new and unknown software.

As mentioned in Section 6.3.3 the reset button for the feature value slider was almost
never used. For one reason, it could be that users did not notice the reset button. Or for
another reason, it could be that users did not need to reset the feature value slider and
simply dragged the slider back to the original value. In any case, the reset button should
be kept, as it is a fundamental feature, but perhaps it needs to be made more visible.
The tracking data also shows that users may be more efficient at adjusting feature values
with our system, so they do not need to make as many changes.

Our attempt to visualize disabled buttons or sliders with grayed out colors was not
effective enough, as few users still tried to use them. Since this was only our observation,
and we did not track this, it is not proven that this is a significant problem. However, it
may be necessary to make it more obvious to the user that certain buttons are disabled.

The fact that users more often left the edit page without saving their changes with our
system is interesting because it contradicts with the other results of the user study, where
users enjoyed using the slider to manually edit the features. So, it could be that either
users could not produce their desired result or that they just wanted to experiment more,
as it is easier with the sliders.

43

7 Discussion

Features such as the tag-based feature overview, the smart lock, and the weighted
crossover were less popular with users. This could be a sign that the inexperienced
users only focused on the most important features, as our system allowed them to do.
However, the weighted crossover is not very useful in its current state and has not been
adapted by users. Users usually do not want to combine two composites with weight,
but they want to transfer specific features from one person to another.

The focus of the software was on the usability of the system, not on software performance.
The web application has some more latency due to the communication between the
client and the server. The web application would need to be optimized to reduce the
latency, to further improve the response time of the system.

44

8 Summary and Outlook

In this chapter, we summarize the results of our work and give an outlook on future
work.

8.1 Summary

We were not able to show that users create better face composites with our system, but
the composites created are not worse either. The improvement in usability was also not
shown to be significant. However, the results are still promising and show that users are
enjoying the new features, such as the range slider for changing the feature values, and
the web application itself. Other improvements, such as the tag-based feature overview
or the weighted crossover, were less popular with users.

8.2 Outlook

Future work is needed to investigate whether experienced users use this system differ-
ently, if they use advanced features, such as the weighted crossover or the smart lock,
more often. It could also be investigated whether adding an expert mode would provide
further usability improvements, where experienced users could optionally disable the
feature value limits so that they are not constrained by the system to set high values
for features. It is then the user’s responsibility not to generate distorted images, as the
system no longer prevents user error.

For problems with the categorization of the features, different solutions could be im-
plemented. One solution could be just to use different categories, to distribute the
features more evenly and to make it easier for users to find the right category. Another
solution could be to add a search or filter function, so that users can search and filter
for the feature they want to change, so that the search function is not exclusively for
the tags and locking and unlocking of features, but also for the features themselves. A
third solution could be to add favorites, so that users can mark features as favorites and
then only see their favorites. Another solution is needed when users scroll down to the

45

8 Summary and Outlook

bottom of the page looking for certain features and no longer see the resulting image.
An easy fix could be to make the resulting image stay at the top of the screen or simply
make the features scrollable so that users can scroll through the features and always see
the resulting image.

Since most users did not use the lock and select feature while evolving the image, it
might be useful to show only the select button to first-time users.

With more efficient models or more GPU power, it would be possible to implement a
live preview for certain actions like dragging the sliders. Where the image is updated in
real time and the change of the feature is shown, not only after releasing the slider. This
would improve the interactions with the users.

In the future, the deficits regarding image generation could be overcome by using a new
and better model. For example, StyleGAN could be used. With StyleGAN, for example, it
is possible to change someone’s eye color. With future work, it is possible to implement
the ability to transfer a feature, a specific part of the face, from one person to another.
StyleCLIP, based on StyleGAN, supports a text-driven manipulation of images by text
input. In a future version, this could be added as a feature to not only manipulate the
image by increasing or decreasing the feature value with buttons or sliders, but also by
text descriptions. [KLA19] [PWS+21]

Our web application is only a prototype and implemented for a small user study and
needs further development before it can be used in production. But in future this web
application could be deployed. When deploying this system publicly and with a larger
user base, there could be more metrics collected, to further improve the UI.

46

Bibliography

[Dix03] A. Dix. Human-computer interaction. Pearson Education, 2003 (cit. on
pp. 28, 33).

[FBH08] C. D. Frowd, V. Bruce, P. J. Hancock. “Changing the face of criminal iden-
tification.” In: The Psychologist 21.8 (2008), pp. 668–672 (cit. on pp. 19,
20).

[FHC04] C. D. Frowd, P. J. Hancock, D. Carson. “EvoFIT: A holistic, evolutionary
facial imaging technique for creating composites.” In: ACM Transactions on
applied perception (TAP) 1.1 (2004), pp. 19–39 (cit. on p. 20).

[FN98] D. Flanagan, G. M. Novak. Java-Script: The Definitive Guide. 1998 (cit. on
p. 24).

[GPM+14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio. “Generative adversarial nets.” In: Advances in neural
information processing systems 27 (2014) (cit. on p. 20).

[KALL17] T. Karras, T. Aila, S. Laine, J. Lehtinen. “Progressive growing of gans for im-
proved quality, stability, and variation.” In: arXiv preprint arXiv:1710.10196
(2017) (cit. on p. 20).

[KLA19] T. Karras, S. Laine, T. Aila. “A style-based generator architecture for gen-
erative adversarial networks.” In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2019, pp. 4401–4410 (cit. on
p. 46).

[LLWT15] Z. Liu, P. Luo, X. Wang, X. Tang. “Deep Learning Face Attributes in the
Wild.” In: Proceedings of International Conference on Computer Vision (ICCV).
Dec. 2015 (cit. on pp. 20, 35).

[Man10] S. Mancusi. The police composite sketch. Springer Science & Business Media,
2010 (cit. on pp. 17, 19).

[PWS+21] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, D. Lischinski. “Style-
clip: Text-driven manipulation of stylegan imagery.” In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 2085–
2094 (cit. on p. 46).

47

[SCGC19] C. N. Stephan, J. M. Caple, P. Guyomarc’h, P. Claes. “An overview of the
latest developments in facial imaging.” In: Forensic sciences research 4.1
(2019), pp. 10–28 (cit. on pp. 17, 19, 20).

[SPC+16] B. Shneiderman, C. Plaisant, M. S. Cohen, S. Jacobs, N. Elmqvist, N. Di-
akopoulos. Designing the user interface: strategies for effective human-
computer interaction. Pearson, 2016 (cit. on pp. 33, 34).

[WR12] C. Wilkinson, C. Rynn. Craniofacial identification. Cambridge University
Press, 2012 (cit. on pp. 17, 19).

[ZZR20] N. Zaltron, L. Zurlo, S. Risi. “CG-GAN: An Interactive Evolutionary GAN-
Based Approach for Facial Composite Generation.” In: Proceedings of the
AAAI Conference on Artificial Intelligence 34.03 (Apr. 2020), pp. 2544–2551.
DOI: 10.1609/aaai.v34i03.5637. URL: https://ojs.aaai.org/index.php/
AAAI/article/view/5637 (cit. on pp. 17, 19, 20, 22, 27, 31, 34, 35, 41).

All links were last followed on July 17, 2023.

https://doi.org/10.1609/aaai.v34i03.5637
https://ojs.aaai.org/index.php/AAAI/article/view/5637
https://ojs.aaai.org/index.php/AAAI/article/view/5637

	1 Introduction
	2 Related work
	2.1 Facial composite creation
	2.2 CG-GAN

	3 Web CG-GAN
	3.1 Architecture
	3.2 Back-end
	3.3 Front-end
	3.4 Deployment / Software Engineering

	4 New Features
	4.1 Tags for feature locking
	4.2 Range slider for feature values
	4.3 Weighted Crossover
	4.4 Presets Preview

	5 Usability improvements
	6 Experiments
	6.1 User Study
	6.2 Procedure
	6.3 Results

	7 Discussion
	8 Summary and Outlook
	8.1 Summary
	8.2 Outlook

	Bibliography

