
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Improved RAFT Architectures for
Optical Flow Estimation

Johannes Schäufele

Course of Study: Informatik

Examiner: Prof. Dr.-Ing. Andrés Bruhn

Supervisor: Prof. Dr.-Ing. Andrés Bruhn,
Azin Jahedi, M. Sc.,
Jenny Schmalfuß, M. Sc.

Commenced: July 6, 2020

Completed: January 27, 2021

Abstract

The estimation of optical flow, that is computing the displacement field between two images, is a
useful tool in computer vision that has many applications as part of larger frameworks. RAFT [70],
a recent method for optical flow estimation, has significantly improved the quality of results on
realistic benchmarks over previous approaches, while simultaneously reducing model complexity
and training cost. Despite these advancements, RAFT still has several shortcomings including
its flow upsampling that can only capture high-resolution details to a limited extent, simple cost
volume without normalization, and limited incorporation of multiple frames in sequences. Due to
its novelty, the method has also not been applied to related tasks, such as unsupervised optical flow
estimation. To address this, we propose several remedies to these mentioned shortcomings of RAFT,
including different cost volume normalization strategies and alternative matching cost functions,
as well as different flow upsampling strategies that can capture more high-resolution details. We
also extend the method to unsupervised training as well as online training, which involves multiple
frames of sequences. In the context of unsupervised training, we introduce learned losses that can
be applied to arbitrary model architectures and improve results over traditional photometric and
smoothness losses. Our online learning approaches yield an improvement over RAFT’s warm start
and use multi-frame consistency to improve performance on video sequences. We evaluate our
approaches on optical flow benchmarks and find that our modifications represent improvements
over RAFT when working within a limited computational budget. We also argue that these results
should scale for training configurations without such limitations.

3

Kurzfassung

Das Schätzen von optischen Fluss, genauer das Berechnen eines Verschiebungsfeldes zwischen zwei
Bildern, stellt im Bereich des Maschinensehen ein wichtiges Hilfsmittel dar, das oft als Teil komplex-
erer Ansätze verwendet wird. Das vor Kurzem veröffentlichte RAFT-Verfahren [70] zum Schätzen
von optischen Fluss erzielt auf realistischen Benchmarks deutlich bessere Ergebnisse als vorherige
Ansätze und verringert sowohl die Parameteranzahl als auch den Trainingsaufwand für das Modell.
Trotz dieser Ergebnisse weist das Verfahren einige Einschränkungen, wie beispielsweise die Interpo-
lation des Flusses, die hochfrequente Details nur eingeschränkt miteinbeziehen kann, sowie die naive
Berechnung des Kostenvolumens ohne Normalisierung und die eingeschränkte Miteinbeziehung
von mehreren Bildelementen einer Sequenz, auf. Da das Verfahren erst vor Kurzem veröffentlicht
wurde, existieren auch noch keine Ansätze, die die neue Architektur unüberwacht trainieren. Wir
behandeln dies, indem wir Änderungen, die diese Einschränkungen beheben können, vorstellen. So
führen wir beispielsweise verschiedene Normalisierungsstrategien für das Kostenvolumen, sowie
alternative Matchingkostenfunktionen und Flussinterplationsstrategien, die hochfrequente Details
besser miteinbeziehen können, ein. Des Weiteren führen wir Erweiterungen ein, die es erlauben die
Architektur unüberwacht zu trainieren und in Form des Onlinelernens Informationen von mehreren
Bildern einer Bildfolge miteinzubeziehen. Im Rahmen des unüberwachten Trainierens führen
wir erlernte Kostenfunktionen ein, die bessere Ergebnisse als herkömmliche photometrische und
Glattheitskostenfunktionen erzielen und unabhängig von der spezifischen Netzwerkarchitektur
angewandt werden können. Unsere Ansätze zum Onlinelernen verbessern weiterhin mittels zeitlich
transitiver Flusskonsistenz Ergebnisse für längere Bildfolgen und liefern akkuratere Flussfelder
als RAFTs warm-start. Wir werten die Ergebnisse unserer Ansätze anhand von Benchmarks für
optischen Fluss aus und können festhalten, dass unsere eingeführten Änderungen gegenüber RAFT
eine Verbesserung darstellen, wenn der Rechenaufwand beschränkt ist. Weiterhin erwähnen wir
Anzeichen, die andeuten, dass dies auch für uneingeschränkten Rechenaufwand der Fall ist.

4

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Thesis Organization . 10

2 Background 13
2.1 Mathematical Foundations . 13

2.1.1 Images . 13
2.1.2 Calculus . 14

2.2 (Artificial) Neural Networks . 14
2.2.1 Machine Learning . 15
2.2.2 Perceptron . 16
2.2.3 Activation Functions . 16
2.2.4 Multilayer Perceptron . 17
2.2.5 Optimization . 17
2.2.6 Learning Rates . 18
2.2.7 Gradient Pitfalls . 19
2.2.8 Recurrent Neural Networks . 19
2.2.9 Convolutional Neural Networks . 20
2.2.10 Challenges . 22
2.2.11 Insights into Neural Networks . 22

2.3 Optical Flow . 23
2.3.1 Error Measures . 24
2.3.2 Occlusions . 24
2.3.3 Visualization of Flow Fields . 25

2.4 Optical Flow Datasets . 25
2.4.1 KITTI Datasets . 26
2.4.2 Synthetic Datasets . 26
2.4.3 Data Augmentation . 27

2.5 Concepts from Local Methods for Optical Flow 27
2.6 Concepts from Variational Methods . 29

2.6.1 Data Term . 29
2.6.2 Smoothness Term . 29
2.6.3 Pyramid Schemes . 30

3 Related Work 31
3.1 Towards Learned Methods for Optical Flow 31
3.2 Previous CNN-based Approaches . 32
3.3 Unsupervised Training . 33

3.3.1 Semi-supervised Training . 33

5

3.4 Cost Volumes and Correlation . 34
3.5 Warping, Ghosting, and Neighborhoods . 34
3.6 The RAFT Method . 35

3.6.1 Architecture . 35
3.6.2 Cost Volume . 36
3.6.3 Correlation Lookup . 36
3.6.4 Flow Upsampling . 37
3.6.5 Training . 37
3.6.6 Evaluation . 38
3.6.7 Shortcomings . 38

4 Improved RAFT Architectures and Training Procedures 41
4.1 Baseline Modifications . 42
4.2 Cost Volume Processing . 43

4.2.1 Cost Volume Downsampling . 43
4.2.2 Cost Volume Normalization . 45
4.2.3 Alternative Cost Functions . 46

4.3 Upsampling . 48
4.3.1 Pyramid Schemes . 48
4.3.2 Traditional Approaches . 49
4.3.3 Convex Upsampling . 49
4.3.4 Flow-based Upsampling . 50

4.4 Data . 50
4.4.1 Augmentations . 51

4.5 Training . 51
4.6 Unsupervised Training . 52

4.6.1 Learned Losses . 53
4.6.2 Self-Supervision . 55
4.6.3 Unsupervised Loss . 56
4.6.4 Semi-Supervised Training . 56

4.7 Online Learning . 57
4.7.1 Multi-frame Approaches . 57
4.7.2 Our Approach . 58
4.7.3 Flow Fusion . 59

5 Evaluation 61
5.1 Methodology . 62
5.2 Configuration Details . 63

5.2.1 Implementation Details . 63
5.2.2 System Configurations . 65
5.2.3 Training Configurations . 65

5.3 Caveats . 67
5.4 Baseline Ablation Study . 68

5.4.1 A Note on KITTI Results . 71
5.5 Cost Volume Processing . 71
5.6 Upsampling . 72

6

Contents

5.7 Unupervised Results . 74
5.7.1 Semi-Supervised Results . 76

5.8 Online Learning . 76
5.9 Comparison with RAFT . 79

6 Conclusion 81
6.1 Future Work . 81

Bibliography 85

7

1 Introduction

1.1 Motivation

Optical flow is a useful tool for a large variety of computer vision and image processing tasks
concerning image time-series or videos, and multi-view images. Its applications range from frame
interpolation [2, 53, 20] and video compression [40], over depth estimation [73, 83] to tracking [42]
and action recognition [5].

This is makes the estimation of optical flow given input frames an important process and motivates
methods for efficiently inferring high-quality optical flow. However, the task of optical flow
estimation is very challenging and can not be regarded as a generally solved problem yet. Challenges
include large displacements, small fast-moving objects, occlusions, ambiguities, optical effects
and noise under realistic conditions, as well as missing information. State-of-the-art methods
are continually getting better [9, 25, 68, 23], but still show room for improvement, especially for
estimating high-quality optical flow for realistic video footage, potentially in real-time.

Many recent approaches involve leveraging Convolutional Neural Networks (CNNs) to tackle
the problem. These approaches have much smaller evaluation times and can be run in real-time,
due to only requiring a forward pass of the network for inference, but require extensive training
beforehand. They also significantly outperform traditional variational approaches with regard
to the quality of the inferred optical flow, especially in more challenging and realistic settings,
such as those involving motion blur. Despite these advantages, methods using CNNs have not yet
completely solved the problem of estimating optical flow either and are steadily being improved.
Such deep-learning-based methods also generally have the drawbacks of lacking interpretability
and missing robustness guarantees.

One CNN-based method in particular, a recently-published approach titled RAFT: Recurrent
All-Pairs Field Transforms for Optical Flow (RAFT) [70], stands out as being extremely successful,
especially regarding high-quality results in challenging, realistic scenes. This is evidenced by most
of the top-performing entries to the MPI Sintel Final benchmark [6] being RAFT-based, which also
translates well to other benchmarks. Similarly, all top 3 submissions to the Robust Vision Challenge1

2020 Flow Challenge utilize a variant of RAFT. RAFT does not only shine result-wise, but also
uses some slightly tweaked paradigms and new concepts that allow for such performance to be
achieved with a simpler model having less than six million parameters. This allows not only for fast
inference and potentially more effective optimization, but also much less computationally-intensive
training of the architecture.

1http://www.robustvision.net

9

http://www.robustvision.net

1 Introduction

Despite all its successes, the RAFT method is far from perfect, its main shortcomings being the low
resolution at which the main flow estimation is performed. This leads to incorrect estimation for
small and especially small fast-moving objects. Additionally, the handling of the cost volume and
part of the architectural design is suboptimal. All this limits the potential performance the model
can achieve. Further, the RAFT method could be extended to incorporate more information about
frames other than the current two inputs in a video frame sequence and be made more adaptive to
allow better results to be achieved on a wide variety of scenes.

As such, this new method also presents an opportunity to use its newly introduced concepts and
insights gained to create an improved variant building on it, that alleviates some of the shortcomings
of the original method and potentially surpasses it in terms of performance and being well-posed. It
is also an opportunity to apply its findings to different domains, such as unsupervised training. This
would represent a next step in the series of incrementally improving methods for optical flow.

We aim to take advantage of this opportunity and do so by proposing changes to RAFT that address
some of its shortcomings and explore possible directions of improvement. This includes changes
to the architecture, alternative ways of computing and processing cost volumes and new flow
upsampling approaches. Further, to explore the new space of possibilities opened up by RAFT, we
extend the method to unsupervised training and online learning. Our goal in all this is to improve
methods of estimating optical flow for realistic video sequences.

We find that our modifications can improve the performance of RAFT-based architectures noticeably.
The learned losses proposed in the context of unsupervised training also represent improvements
over their traditional counterparts and are applicable to CNN-based methods for optical flow in
general. Our online learning approach allows results to be improved even further at evaluation time
by incorporating multi-frame information.

1.2 Thesis Organization

In Chapter 2, we introduce all basic concepts needed for the rest of our work. We will base our
work upon RAFT, which is a CNN-based method for optical flow estimation. Thus, we require
CNNs and the basics of optical flow and optical flow estimation to be introduced. We start by
introducing the mathematical foundations of images and function derivatives. Then, (Artificial)
Neural Networks (NNs) in general and CNNs specifically are detailed, including training procedures
and architectures. Following this, optical flow and basic concepts for optical flow estimation, as
well as optical flow datasets for training are introduced.

Chapter 3 then recapitulates previous CNN-based methods for optical flow estimation, culminating
in RAFT itself being presented in more detail. We go over early CNN-based methods and mention
progressive improvements in more recent methods. Relevant concepts later used for RAFT, such as
cost volumes and ghosting, are also introduced. We end the chapter by detailing RAFT’s architecture
and training procedure, and go over the method’s strengths and weaknesses.

With RAFT itself being established, we move on to present our contributions in Chapter 4. We detail
our proposed modifications to RAFT. This spans from simple fixes over cost volume normalization
to different upsampling strategies. We also propose alternative training strategies for RAFT. This
includes unsupervised training, which trains models without ground truth flow, and online training,
which attempts to incorporate multi-frame information to improve evaluation results.

10

1.2 Thesis Organization

Having stated our modified approaches, Chapter 5 performs an evaluation of our methods on optical
flow benchmarks. Using ablation studies, we identify which of our proposed modifications represent
improvements and attempt to interpret our results. Visualizations of our results are also included
and we end the chapter by comparing our approach with RAFT.

We close our thesis in Chapter 6 with a more high-level view of our work and concluding remarks.
We also give an outlook by mentioning possible future directions of improvement and unattempted
ideas that seem promising.

11

2 Background

In this chapter we lay the foundation for our work by introducing fundamental concepts and notation
required for all further methods. As we ultimately aim to train RAFT-like CNN-based models to
take in images and output the estimated optical flow, we must first introduce concepts relating to
images, CNNs, optical flow, and the estimation of optical flow.

Beginning with mathematical foundations in Section 2.1, we define images and their notation as
well as derivatives of functions. The gradient, which is a specific arrangement of derivatives, is
later needed for the optimization of NNs.
Next, as CNNs are a special variant of NN, we introduce NNs in general as well as CNNs specifically
in Section 2.2. This includes how networks are trained and typical architectural patterns, which are
also used by many existing CNN-based methods for optical flow estimation, including RAFT.
Afterwards, the focus shifts to optical flow in Section 2.3, defining it and related concepts, such as
occlusions.
The transition is then made to the discussion of how optical flow can be estimated. This begins with
optical flow datasets in Section 2.4, which are used to train supervised methods, such as RAFT.
Flow datasets are also used to evaluate methods for optical flow estimation and we will use a subset
of the introduced dataset to evaluate our work.
Finally, useful concepts from non-learned methods for optical flow estimation are introduced, as
they are later used by CNN-based approaches including RAFT. These concepts stem from local
block-matching and PatchMatch approaches in Section 2.5, as well as global variational methods in
Section 2.6.

The concepts and notation introduced in this chapter form the basis to understanding CNN-based
methods for optical flow estimation, and specifically RAFT as well as our proposed improvements
to RAFT.

2.1 Mathematical Foundations

2.1.1 Images

Optical flow estimation pipelines, including RAFT, begin by taking in input images. Images also
appear as a representation for intermediate features and can be used as an encoding for optical flow.
Owing to the prevalence they have throughout this work, we begin by introducing our definition of
images.

Herein, we define a continuous 𝑐-channel 2D image 𝐼 to be the function 𝐼 : R2 → R𝑐, with the
short-form 𝐼(𝑥, 𝑦) for 𝑥, 𝑦 ∈ R denoting the value of 𝐼

(︀
(𝑥, 𝑦)⊤

)︀
.

13

2 Background

Further, a (domain-)discrete 2D image with 𝑐 channels of width 𝑤 and height ℎ, where 𝑤, ℎ ∈ N+,
is defined as the function 𝐼 : {0, . . . , 𝑤 − 1} × {0, . . . , ℎ − 1} → R𝑐. The notation
𝐼𝑖,𝑗 := 𝐼(𝑖, 𝑗) = 𝐼((𝑖, 𝑗)⊤) for 𝑖 ∈ {0, . . . , 𝑤 − 1}, 𝑗 ∈ {0, . . . , ℎ − 1} further provides a
convenient short-hand for image element values, also referred to as pixel values.

In practice, the codomain of images is also discretized as either 8-bit integer vectors {0, . . . , 255}𝑐
or vectors of floating point numbers of various differing representations.

2.1.2 Calculus

Image derivatives can allow capturing important features, such as edges. Derivatives can also be used
to measure the smoothness of flow fields, which is used for optical flow estimation. Additionally,
NNs in general, and CNNs such as the RAFT architecture specifically, are trained using gradients,
which are a construct based on function derivatives. Necessitated by these use cases further down
the line, we introduce basic concepts from calculus in form of derivatives, the gradient, and the
Hessian.

In the following, we assume all functions that we take a derivative of and are not further specified to
be sufficiently differentiable.

Given a function 𝑓 : R𝑛 → R𝑚 with 𝑓(𝑥1, . . . , 𝑥𝑛) = (𝑦1, . . . , 𝑦𝑚), we denote the partial
derivative of 𝑓 with respect to the variable 𝑥𝑖 as 𝜕𝑓

𝜕𝑥𝑖
for all 𝑖 ∈ {1, . . . , 𝑛}. Further, we define the

Jacobian of 𝑓 to be

J(𝑓) :=
(︁

𝜕𝑓
𝜕𝑥1

· · · 𝜕𝑓
𝜕𝑥𝑛

)︁
=

⎛
⎜⎝

𝜕𝑦1
𝜕𝑥1

· · · 𝜕𝑦1
𝜕𝑥𝑛

...
𝜕𝑦𝑚
𝜕𝑥1

· · · 𝜕𝑦𝑚
𝜕𝑥𝑛

⎞
⎟⎠ . (2.1)

For a scalar function 𝑔 : R𝑛 → R with 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ R, we refer to the transposed Jacobian of
𝑔 as the gradient of 𝑔, denoted by

∇𝑔 := J(𝑔)⊤ =

⎛
⎜⎝

𝜕𝑔
𝜕𝑥1...
𝜕𝑔
𝜕𝑥𝑛

⎞
⎟⎠ . (2.2)

Additionally, we refer to the Jacobian of the gradient of 𝑔 as the Hessian of 𝑔: H(𝑔) := J(∇𝑔).

2.2 (Artificial) Neural Networks

As we base our work on RAFT, which is a CNN-based approach, we need to introduce CNNs
specifically and NNs in general. In this section we go over NNs and their structure, as well as how
they can be optimized and trained, including notes on associated challenges and possible remedies.
We additionally introduce reoccurring architectural patterns, that reappear in later methods, such as
RAFT.

14

2.2 (Artificial) Neural Networks

We begin by introducing the general concept of machine learning that allows harnessing the power
of learning to achieve better results than possible with handcrafted approaches in Section 2.2.1.
Following this, the most basic type of NN is introduced. It consists of perceptrons, introduced in
Section 2.2.2, that use activation functions, as described in Section 2.2.3, and is called a multilayer
perceptron. The combination of these components into a multilayer perceptron is detailed in
Section 2.2.4.
Now that we can create simple NN architectures, we would like to apply machine learning to train
these architectures for a given objective. This optimization process is detailed in Section 2.2.5.
The optimization process uses the gradient and has its speed regulated by a learning rate. How
learning rates can be effectively chosen and varied in schedules to speed up training is detailed in
Section 2.2.6.
Following this, we give some insight into how the use of the gradient during optimization can lead
to issues with training and mention remedies to address the issues in Section 2.2.7.
At this point we are ready to discuss reoccurring architecture types, specifically Recurrent Neural
Networks (RNNs) in Section 2.2.8 and CNNs in Section 2.2.9, which are the type of NN most
relevant to our work. Both of these architecture types are highly relevant to RAFT, as it is a
CNN-based approach that borrows from RNNs to realize its iterative incremental estimation of
optical flow.
Having introduced the upsides and details of NNs, we mention some challenges with NNs in general
in Section 2.2.10. This includes the comparatively their low interpretability when compared to
hand-crafted approaches. We then mention some techniques that can provide more insight into NNs
in Section 2.2.11, helping with the interpretability issues. This also includes outputting statistics
than can be helpful when working with and debugging NNs in practice.

Through the introduction given in this section, all following CNN-based approach for optical flow
estimation and RAFT in particular should be understandable in regards to their architecture and
training. We also leverage some of the presented remedies to issues with NN training in our own
method to improve training.

2.2.1 Machine Learning

Machine learning describes the approach of automatically learning a model for a task by fitting to
an objective, possibly supported by training data, rather than manually designing an algorithm for
the task directly. Instead of defining a function that realizes the task directly, a family of functions
{𝑓𝜃}𝜃 := {𝑓(𝜃, ·)}𝜃, differentiated by their parameters 𝜃, is used to search for suitable parameters
𝜃. After search, the parameters should have values such that 𝑓𝜃 either minimizes the given objective
function or failing that represents a good solution or local minimum amongst all functions in the
family.

This is typically done by first manually choosing a family of functions thought appropriate for the
task, choosing an initial set of parameters 𝜃 according to a manually decided distribution, and then
iteratively updating the parameters to better fit the given objective function. It is also possible to
optimize the family of functions used iteratively instead of manually choosing it, an example of this
being neural architecture search [38].

15

2 Background

(Artificial) Neural Networks (NNs) are a way of parametrizing models for arbitrary functions,
loosely inspired by biological neural networks. A basic building block of NNs, directly inspired by
biological neurons, is the perceptron.

2.2.2 Perceptron

A perceptron [61], as sketched in Figure 2.1, takes in a fixed number 𝑘 ∈ N+ of scalar inputs and
outputs a single scalar value. It is parametrized by a scalar value weight 𝑤𝑖 for each input and an
additional bias scalar 𝑏 and is further defined by the choice of its activation function 𝑓 : R → R.
The output is computed as

Perceptron(𝑥1, . . . , 𝑥𝑘) = 𝑓

(︃(︃
𝑘∑︁

𝑖=1

𝑤𝑖𝑥𝑖

)︃
+ 𝑏

)︃
. (2.3)

The activation function or nonlinearity enables nonlinear relationships to be modeled.

(︂∑︀
𝑖
𝑤𝑖𝑥𝑖

)︂
+ 𝑏 𝑓(𝑥)

Figure 2.1: Schematic layout of a perceptron. The inputs 𝑥𝑖 are weighted by their corresponding
parameters 𝑤𝑖 and summed up, before adding the learned bias 𝑏 and finally passing the
result through the activation function 𝑓 and outputting the result as the perceptron’s
output.

2.2.3 Activation Functions

Functions typically chosen as the activations functions include the sigmoid function and its variant,
the Tanh function, which restrict outputs to the range of [0, 1] and [−1, 1] respectively. Another
activation function often chosen in practice is the Rectified Linear Unit (ReLU) function [11, 15, 51].
It is inspired by biological thresholding and only allows positive values to pass through, clamping
the rest of the output range to zero:

ReLU(𝑥) := max(𝑥, 0). (2.4)

Empirically, ReLU activation functions seem to allow for better learning in general [13] and are
thus very commonly chosen as nonlinearities [8]. There also exist many other possible activation
functions, some of which are variants of the previously mentioned functions.

16

2.2 (Artificial) Neural Networks

2.2.4 Multilayer Perceptron

Perceptrons can be combined by using the outputs of perceptrons as the inputs to further perceptrons,
which allows stacking layers of perceptrons, yielding a Multilayer perceptron, as depicted in
Figure 2.2. It is capable of learning more complex, indeed arbitrary, functions [18]. Multilayer
perceptrons are typically the most basic form of NNs used as architectures for learned models.

Input Hidden Layers Output

Width
Lightness

P(salmon)

Figure 2.2: Example topology of a multilayer perceptron. From the left, two scalar inputs are fed
into two consecutive layers of perceptrons, with three perceptrons in each layer, before
their outputs are combined to the final output to be predicted by a single perceptron on
the right.

2.2.5 Optimization

The parameters of NNs are generally first initialized by drawing initial parameters according to
a weight initialization distribution, which aims to provide random weights that do not lead to
numerical instabilities for typical inputs and often takes the chosen activation functions into account.
After initialization, the parameters are iteratively optimized to reduce the value of the chosen loss
function. Though evolutionary algorithms that allow for less restrictive optimization objectives
and more flexible network topologies [66] and other optimization algorithms for NNs exist, NNs
are primarily optimized via (stochastic) gradient descent, which is efficiently implemented via
backpropagation. This requires objective or loss functions to be a differentiable scalar function (or
at least a subgradient should be efficiently computable) and works by iteratively updating parameters
by moving in the direction of steepest descent, given by the negative gradient of the loss function
with respect to the parameters. Specifically, gradient descent updates parameters 𝜃 after time step
or iteration 𝑘 for a given loss function and model function 𝑓 as follows:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼∇loss(𝑓𝜃𝑘). (2.5)

The size of the update step, determined by the learning rate 𝛼, influences the speed of learning. In
stochastic gradient descent, only a small random subset of the training data, a so-called minibatch,
is used to compute an approximation of the gradient for efficiency reasons, though this typically
still yields a good enough estimate of the actual gradient.

Several optimizers improving upon stochastic gradient descent have been developed, including
momentum-based methods, which aim to speed up convergence. One of the most notable optimizers
is Adam [31], for which each parameter is assigned its own individual learning rate that is adapted

17

2 Background

during training, and the update direction is modified based on statistics of previous gradients. Adam
has become the de facto default choice for optimizing NNs and works well for a wide variety of
different architectures even given only minimal hyperparameter tuning, though in certain scenarios
other optimizers can outperform Adam. AdamW [39], a variant of Adam, modifies the effect of
weight decay in Adam to be more comparable to its effect with stochastic gradient descent and
otherwise functions the same as Adam.

2.2.6 Learning Rates

Choosing appropriate learning rates for optimization is important for the speed of learning and
quality of the resulting model. If the chosen learning rate 𝛼 is too small, the model only improves
very slowly, whereas when 𝛼 is too large, the (estimated) gradient is no longer accurate enough
for the large step size. This can potentially lead to a worse learned model, oscillation, or even
divergence. Larger learning rates can on the other hand help parameters escape from local minima,
where smaller learning rates would lead to the model getting stuck in said minima. To determine the
value range appropriate for the learning rate, learning rate tests, as proposed in [63], can be employed
to facilitate learning rate search in addition to typical exploration methods of the hyperparameter
space.

Further, various learning rate schedules, which vary the learning rate over training iterations rather
than keeping it a constant, have also been shown to be able to improve convergence. In case of
optimizers with individual learning rates, such as Adam, the schedules instead vary the permissible
range of values for each parameter. RAFT itself, and following it our method, uses a series of
OneCycleLR schedules, which can be interpreted as a single instance of a cyclic learning rate
schedule.

In a cyclic learning rate schedule [63], learning rates are continuously varied. This is typically done
linearly, between the minimum and maximum value of the appropriate range for learning rates.
Such appropriate ranges of learning rate can be determined though a learning rate test. Varying
the learning rate between this minimum and maximum repeatedly over the course of training,
potentially also decaying the overall learning rate, to encourage convergence, has been shown to
be able to significantly reduce the required training iterations necessary for convergence. One
possible interpretation is that decaying towards the minimum learning rate leads the model to a local
minimum, which is periodically interrupted by larger learning rates allowing escape from bad local
minima, resulting in a good local minimum being found more quickly than without the schedule.

Building on the idea of cyclic learning rates, a learning rate schedule was proposed that can exhibit
even faster convergence [64] using a much larger maximum learning rate for only a single cycle,
which quickly moves from the minimum learning rate to the maximum learning rate, and then
slowly decays back to the minimum learning rate. This schedule, which we will also refer to as
OneCycleLR, can be interpreted to lead the parameters close to a good local minimum utilizing the
regularizing effect of large learning rates at the schedule’s peak, before decaying the learning rate to
converge towards a good local minimum.

18

2.2 (Artificial) Neural Networks

2.2.7 Gradient Pitfalls

Gradients play a central role in optimizing NNs using gradient descent. Anomalies in the obtained
gradients can cause significant issues with optimization or even catastrophic failures. When gradient
magnitudes get very large, referred to as exploding gradients, optimization becomes unstable
and may diverge or even lead to numerical failures. On the other hand, for very small gradient
magnitudes, referred to as vanishing gradients, parameters only change very slowly, requiring many
steps for convergence. Vanishing gradients can be observed in the close to flat regions of the
sigmoid or TanH activation functions. In the extreme case where gradients are zero, parameters are
not updated at all. This can occur in the flat region of the ReLU activation function, as defined by
Equation (2.4). A ReLU activation can thus reach a state, in which its output will permanently be
zero and may never recover, effectively removing the contribution of a subnetwork from the output.
This effect of ReLU becoming permanently stuck in the flat region is referred to as the dying ReLU
problem, which can be avoided by choosing a different activation function, such as one of the ReLU
variants that does not feature a flat region. Such candidates include LeakyReLU [78], which allows
negative values to pass through heavily dampened, instead of completely clamping their value to
zero:

LeakyReLU(𝑥) :=

{︃
0.01𝑥 𝑥 < 0

𝑥 𝑥 ≥ 0
. (2.6)

Whenever a weight parameter is multiplied by an input or an activation, that is, the output of an
intermediate layer, the contribution towards the gradient of that parameter is also multiplied by this
value. To prevent the issue of vanishing or exploding gradients to arise as a result, the magnitude
of inputs and activations can be normalized, typically to a mean of zero and a standard deviation
of one. As such normalization generally makes training more stable by preventing these issues
and sometimes faster by increasing gradient magnitudes, normalization layers that perform this
transformation are commonly employed in NN architectures. Since the originally proposed batch
normalization [26], many other normalization strategies, such as instance normalization [72] or
more the more general group normalization [76], have been introduced, that mainly differ in how the
statistics for the mean and variance are computed and how activation are grouped before applying
normalization.

Building on these insights, we will employ both LeakyReLU activation functions and various
normalization strategies in our approach to mitigate issues with vanishing and exploding gradients.

2.2.8 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural network that can process a variable length
sequence of inputs by iteratively applying the same operator. This operator takes in the next
element of the input sequence and outputs the next element of the output in each iteration, while a
hidden state is internally maintained, updated, and passed to subsequent iterations. Though typical
architectures use LSTM units [17] to fill the role of the operator, more recently a variant called
gated recurrent unit (GRU) [7] that represents a simplified, but less powerful version of LSTMs, has
also been proposed for this purpose.

19

2 Background

As the same operator is applied consecutively several times in RNNs, a transformation that multiplies
its output would lead to the parameter gradients being multiplied several times in the completely
unrolled version, potentially leading to exploding gradients for multipliers greater than one. To
counteract this potentially destructive effect, gradient clipping [56] is often performed for RNNs,
in which gradients are transformed in a way that preserves the update direction, but limits the
magnitudes to be below a chosen threshold.

RAFT follows a strategy that iteratively estimates optical flow in increments. As such, it borrows
from RNN architectures to create its own update operator. For similar reasons, RAFT also employs
gradient clipping.

2.2.9 Convolutional Neural Networks

Ultimately, we want to use NNs to estimate optical flow by taking in and processing two images,
then outputting optical flow, representable as an image. As such, we need to adapt the concept of
NNs to allow images to be processed.
Though multilayer perceptrons can be used to process images by treating each pixel of an image
as a separate input or output, this completely ignores the 2-dimensional nature of images. This
also only allows images of fixed size to be processed, produces a very large number of parameters
which leads to both overfitting and high computational costs, and has no spatial invariances or
direct concepts of 2D neighborhoods. Convolutional Neural Networks (CNNs) are a special
variant of neural networks, which can instead be used for processing images, though they are also
occasionally employed for non-image data. The concept of convolutions can be generalized to
an arbitrary number of dimensions, but in the following we will only discuss with 2-dimensional
convolutions.

In the following, we introduce convolutional layers, the key component of CNNs and describe
how they are used as part of larger convolution blocks that make up a CNN. We then go over to
discussing residual connections, which are important for deep CNNs, which includes architectures
like RAFT. Finally, we go over architectural patterns for CNNs, which are used in the upcoming
CNN-based methods for optical flow.

2.2.9.1 Convolutional Layers

Instead of fully connected layers, as with the multilayer perceptron, weight sharing is employed
to drastically reduce the number of parameters and add translational invariance while respecting
the 2-dimensional nature of images. CNNs replace the many perceptrons in a layer with a single
convolutional layer, which is based on convolution filters known from image processing and
parametrized by learnable discrete convolution kernels. By applying the same filter at each location,
only a small stencil needs to be parametrized and the operation is translationally invariant. Somewhat
analogous to a perceptron, a convolutional layer takes in 𝑘 2-dimensional scalar image channels,
applies the convolution filter at every location to produce 𝑗 output channels, and finally adds a
separate bias to each of the output channels. Activation functions are still typically applied after
convolutional layers, but not part of the layer itself. The kernel is parametrized by its base size,

20

2.2 (Artificial) Neural Networks

which is often of the form 2𝑛 + 1 × 2𝑛 + 1 for 𝑛 ∈ N0, and contains one 2D stencil for each
unordered pair of an input and an output channel, defining the contribution of that input channel’s
neighborhood to the output channel’s value, giving it an overall size of 𝑗 × 𝑘 × 2𝑛 + 1 × 2𝑛 + 1.

2.2.9.2 Convolution Blocks

For a kernel with a base size larger than 1 × 1, locations near image boundaries do not have a
sufficient amount of neighbors for a value to be computed. Thus, if the image size should be kept
the same, the inputs can be padded to make up for this. Typical padding includes zero padding,
where padded regions are filled with the constant value of zero, and reflection padding, which
mirrors image values in the padded regions. Though zero padding is frequently employed before
convolutions, it introduces artificial boundaries that can introduce artifacts, such as a non-existent
edge being detected, due to the values at image boundaries and the padded regions being dissimilar.
In contrast, reflection padding does not introduce as many artifacts as zero padding.

When the resolution of channels should be decreased, strided convolutions or pooling can be used.
Strided convolutions only evaluate output channels at a subset of locations, such as only evaluating
at one of the locations in a 2 × 2 square, leading to the output channel with a quarter of the input
resolution. Instead, the full-resolution output can also be computed and subsampled by pooling,
such as by taking the minimum, mean, or maximum in each 2 × 2 square as the subsampled
value. Should the resolution be increased instead, transposed convolution or upscaling interpolation
can be employed. As transposed convolutions introduce undesirable checkerboard artifacts [54],
bilinearly upsampling channels followed by performing a normal convolution is typically preferable
to employing transposed convolutions.

Convolutional layers are thus generally part of a larger block of layers that first pads the input
appropriately for the following convolution, followed by the convolutional layer itself. The
convolutional layer may optionally be strided or followed by a pooling layer for downsampling, and
is followed by an activation layer, that applies the activation function for each channel, and finally
a normalization layer, such as a 2D variant of batch or instance normalization. Though there is
some debate about whether the activation layer or the normalization layer should be applied first,
we choose activation followed by normalization. This leads to the output of each block, which is
also the input for the next block and thus the activation that affects gradients for the weights in the
next block, being normalized. Normalization should not be performed for the last block, to enable
the model output to follow arbitrary distributions, or when information about the magnitude of
activations should be preserved [30].

2.2.9.3 Residual Connections

In deep CNNs, where the depth measured by the number of consecutive applications of convolutions
can be large, typical architectures show noticably worse results for higher depths. This issue has
been shown to be alleviated by introducing residual or skip connections [16] that add the outputs
of earlier convolutions to the input of convolutions further down the chain, effectively skipping
over all convolutions in between, thus reducing the minimal depth of the network measured as the

21

2 Background

shortest path between the input and the loss in the computational graph. It has also been shown
that introducing such residual connections effectively smooths the loss surface for the architecture,
allowing for better optimization [34].

2.2.9.4 Architectural Patterns

When a scalar or a few scalars should be inferred from a single image, such as for classification tasks,
encoder architectures are often employed. These architectures repeatedly downsize activations
after one or more blocks of convolutions until activations have a very small spatial size and then
feed these small activations into fully-connected layers, consisting of multilayer perceptrons, which
output the scalars to be predicted. If images should be synthesized from a small feature set, such as
for generative models, a decoder architecture can be used instead. It often begins with the input
being passed through a multilayer perceptron, and then repeatedly upsizes activations between
convolution blocks before outputting a higher-resolution image.

Encoders and decoders can be combined into encoder-decoder architectures that take in an image,
internally downscale it to a bottleneck representation before upscaling it again, and output an image
of the same resolution as the input, in this case fully-connected layers are often dropped. This
architecture can be used to transform images, while taking features from several scales of resolution
into account and benefit from a large effective receptive field. U-Net [60] architectures are an
improved variant of encoder-decoder, which adds residual connections from the encoder outputs
to the decoder inputs for each resolution scale. The added connections reduce the minimal depth
of the model and allow the decoder to preserve high-resolution details not captured by the lower
resolution outputs preceding the decoder blocks.

2.2.10 Challenges

Neural networks and especially deep learning are still active fields of research, in which many
insights, such as used architectures, layers, normalization, and objective choices are only practically
justified by their empirical success, but not well-understood or motivated theoretically [62]. Further,
neural networks show issues with interpretability and strong guarantees, as an intuitive understanding
can not easily be gained for larger, more complex architectures, the way the single component
of a perceptron can be understood. Automated analysis and reasoning techniques are also still
developing and currently do not lend themselves to interpretation of many models in real-world
use.

2.2.11 Insights into Neural Networks

Unlike for traditional software, it can often be very hard to tell whether a NN is functioning properly,
due to their learned nature, and tooling that grants insights into or debugs NNs being limited
and often not universally applicable. Errors in the implementation might not manifest themselves
directly and NNs may still appear to behave correctly and learn some behavior, even if the actual
implementation differs significantly from what one expects it to be. If, on the other hand, the network

22

2.3 Optical Flow

does not learn properly as expected, it can be very hard to pin down where exactly the problem lies.
The training data, loss function, training loop implementation, model architecture, hyperparameters,
numerical issues, or even the feasibility of the task itself could all be responsible.

This makes outputting and visualizing auxiliary information about the model, data, and training
invaluable, both to pin down errors and even realize that unexpected behavior exists in the first place.
Such information includes statistics, such as the minimum, mean, mean magnitude, and maximum,
and visualizations of input data, outputs, intermediary activations, and parameter gradients. Gradient
magnitudes in particular are useful for determining issues with improper learning rates, vanishing
or exploding gradients, and parts of the architecture through which gradients only flow with
small magnitude, potentially motivating additional normalization or skip connections. On a more
fundamental level, gradient magnitudes can help determine if the model or certain parts of it are
even learning at all.

At a higher level, advanced visualization techniques, such as guided backpropagation [65] can be
used to reason about specific outputs or the general relationship between inputs and outputs, though
these are often limited to certain types of tasks, most prominently classification. A reasoning
technique that is easily available is to determine the derivatives of certain parts of the output,
intermediate activations, or combined metrics thereof with respect to certain parts of the input or
activations to determine their relationship in a small neighborhood around the examined sample,
though this does not allow for as much insight as with more advanced techniques.

2.3 Optical Flow

As we eventually aim to pursue the task of optical flow estimation, we must introduce this task and
concepts related to optical flow. This includes error measure for optical flow, which we will later
use to evaluate the results of different methods for optical flow estimation. Further, the concept of
occlusions is significant to optical flow estimation, as the task is more difficult in occluded region.
Taking occlusions into account can also improve the result of methods for optical flow estimation.

Estimating optical flow is the task of finding a displacement field corresponding to the motion between
two images. More formally, given two continuous 2D images 𝑓 and 𝑔, also referred to as input frames,
both mainly defined on the same, typically rectangular, domain Ω ⊂ R2, which are commonly
images taken at subsequent times or from different perspectives, a motion field 𝑑 : Ω → R2 is
estimated, such that each location 𝑓(𝑥, 𝑦) in 𝑓 corresponds to 𝑔(𝑥+𝑢, 𝑦 + 𝑣) for (𝑢, 𝑣)⊤ = 𝑑(𝑥, 𝑦)
for all (𝑥, 𝑦)⊤ ∈ Ω. In practice, a domain-discrete version of this problem is solved, however, the
displacements (𝑢, 𝑣)⊤ are still real- or float-valued and locations 𝑔(𝑥 + 𝑢, 𝑦 + 𝑣) are seen as being
on a continuous domain of 𝑔, typically realized by higher than 0th order interpolation.

The location pairs (𝑥, 𝑦)⊤ and (𝑥 + 𝑢, 𝑦 + 𝑣)⊤ are correspondences in the sense that if the real
object and its location that mainly contributed to the value of 𝑓(𝑥, 𝑦) had been physically marked
with a sufficiently small marker, that marker would end up mainly contributing towards the value of
𝑔(𝑥+ 𝑢, 𝑦 + 𝑣) in the second frame. Alternatively, if one imagines perfect geometrical descriptions
of the recorded frames to exist, the first object and location hit by light originating from the sensors
responsible for recording the values of (𝑥, 𝑦)⊤ in the first frame and (𝑥 + 𝑢, 𝑦 + 𝑣)⊤ in the second
frame in direction of the focal point, or equivalent for different camera models, would be the same,
barring more complex optical effects.

23

2 Background

2.3.1 Error Measures

A typical error measure for optical flow is the Endpoint Error (EPE), which is the per-pixel L2
distance between the predicted and the ground truth flow vectors, denoted by 𝑑 and 𝑑 respectively:

EPE(𝑑, 𝑑)𝑖,𝑗 :=
⃦⃦
⃦𝑑𝑖,𝑗 − 𝑑𝑖,𝑗

⃦⃦
⃦
2
. (2.7)

The measure is usually averaged over the entire flow domain to obtain an overall measure for a flow
field. Although such an averaged metric is sometimes referred to as the Average Endpoint Error
(AEE), herein we also refer to it as EPE, when a single averaged value is used for an entire flow
field.

2.3.2 Occlusions

Unlike a scene’s actual motion, which typically happens in a 3-dimensional space of unconstrained
size, optical flow is seen from the perspective of a projection of that scene onto a limited-size
2-dimensional domain. This discrepancy gives rise to occlusions, such as when objects leave the
limited domain of a frame or overlap each other, causing multiple objects to be mapped to the same
projected location, though barring transparency, only one of them will be visible. Such occlusions
can be detected as inconsistencies between the forward and backward flows, that is, following the
motion from the first frame to the second frame using the forward flow and then back to the first
frame using the backward flow leads to a location different from the starting point, as illustrated in
Figure 2.3. Using such a forward-backward consistency check, locations exceeding a threshold of
distance between the original location and the followed one, regions can be marked as occluded.
Generally speaking, estimating optical flow is more difficult in occluded regions, as objects involved

Frame 0 Frame 1

Figure 2.3: Illustration of occlusions being detectable via failure of forward-backward consistency
check. Two objects change their positions from one frame to another. Following the
forward flow from the first frame into the second frame and then the backward flow
at that same location back to the first frame, one notices a large distance between the
destination and the original starting point, indicating an occlusion.

in the motion to be estimated may no longer be visible in one of the frames, due to being covered
up or out of the frame. This only leaves a reduced amount of information that can be used for
the estimation of motion in occluded regions, leading to estimation being more difficult in such
regions.

24

2.4 Optical Flow Datasets

2.3.3 Visualization of Flow Fields

Flow fields can be densely visualized by viewing flow vectors at each location in polar coordinate
form, then coloring each location using polar angle (flow direction) to select hue and radius (flow
magnitude) to determine lightness. This allows a compact representation of both the direction and
magnitude of the flow, though the hue mapping may take some getting used to. In practice, flow
magnitudes are first normalized and clipped to equalize the brightness range of visualizations across
different flows and constrain colors to the limited range of values supported by display devices or
print. A sample flow visualization and visualization guide can be found in Figure 2.4.

(a) Sample flow field visualization (b) Flow visualization guide

Figure 2.4: Sample flow field visualization and flow visualization guide. The flow field is taken
from the alley_1 sequence of the Sintel dataset [6]. The visualization guide shows the
color-coding of a flow vector originating in the center pixel for each location. Note that
flow magnitudes are scaled to make the range of color values in the visualization be
more in line with the range of possible output colors.

2.4 Optical Flow Datasets

CNN-based methods for optical flow including RAFT need to be trained on training data. When the
task to be learned is optical flow estimation, optical flow datasets are used for this purpose.

Deep neural networks, such as those typically used for challenging tasks in computer vision, often
possess on the order of millions of parameters on the low end. Fitting a model with such a large
number of degrees of freedom to data requires a similarly enormous amount of data and appropriate
regularization. Furthermore, increasing the training set size with more high-quality data is an
aspect that significantly improves performance and keeps improving performance logarithmically
[67], across different architectures, tasks, and optimization objectives for such models, as well as
representing the most important and often time-consuming factor for practical applications.

Training CNNs to estimate optical flow in a supervised manner requires input frame images and
corresponding ground truth flows, whereas unsupervised training only requires input frames, which
can be obtained from arbitrary videos. Obtaining ground truth flow is much harder than obtaining
input frames and can be done in a number of ways. Firstly, ground truth flow can manually
be created by humans, matching points of the input frames accordingly. As this is extremely
tedious, time-consuming, and potentially error-prone, only a very limited amount of data can be

25

2 Background

annotated this way. Alternatively, additional sensors and calibration can be used when recording
input frames, to determine flow via recorded geometry and motion, hidden textures, or using
other information captured with special sensors to reconstruct motion. This allows for capture
of real-world images with corresponding flow fields within a smaller margin of error and can be
done for larger video sequences, but requires additional, potentially costly tools and may not yield
dense accurate estimates. Finally, scenes can be synthetically rendered, allowing the optical flow
to be directly determined from the known underlying geometry, resulting in accurate dense flow
fields. Though rendered scenes may not be as realistic as real-world images, this acquisition method
gives the highest-quality flow fields and can be done automatically and much more cheaply for a
potentially arbitrary amount of scenes.

Early datasets and benchmarks for optical flow only included few samples, did not always feature
dense ground truth flow and were not always realistic. They were sourced from simple renderings,
manually annotated images, or objects with hidden texture [4, 55, 21, 1]. A more complete overview
of flow datasets and augmentation with focus on use for CNNs can be found in [48].

2.4.1 KITTI Datasets

The KITTI datasets, KITTI2012 [12] and KITTI2015 [50], are driving-related datasets that were
obtained by attaching multiple cameras and special sensors to a car, followed by recording video
and auxiliary data while driving the car and thus falls into the category of measured datasets. The
obtained flow fields are not dense and contain mostly rigid motion, some artifacts have also been
introduced by post-processing. As a benchmark, it offers realistic data, especially for approaches in
the area of autonomous driving. Though the dataset is larger than many previous datasets, it does
not contain a sufficient number of samples to be directly used for training CNNs, making it more
relevant for fine-tuning and as a benchmark.

2.4.2 Synthetic Datasets

Synthetic datasets offer the advantages of providing dense high-quality ground truth optical flow
that can be generated at scale cheaply and automatically, at the cost of being less realistic. The
feasibility of generating a large number of samples makes synthetic datasets the most suitable
candidate as training data for data-hungry CNNs.

FlowNet [9], the first method to infer optical flow using only CNNs, introduced the FlyingChairs
dataset, which consists of photographic background images with superimposed objects, in this
case chairs, a portion of which exhibit random 2-dimensional geometric transformations in the
next frame, and corresponding flow fields. As such samples can be generated easily, the dataset’s
size was chosen according to the needs of training data for CNNs. Further variants of the dataset,
FlyingChairsOcc [23] and FlyingChairs2 [24], which include additional data aspects, such as
backward flow and occlusions, have also been generated.

Since then, the FlyingThings3D [47] dataset has emerged, which is an optical flow and scene flow
dataset created by rendering 3D scenes with random objects and motions, making it somewhat more
realistic and challenging, while still including a large enough number of samples for CNNs.

26

2.5 Concepts from Local Methods for Optical Flow

2.4.2.1 Sintel Dataset

The Sintel dataset [6] is a synthetic dataset, based on the Blender open movie Sintel, and consists of
rendered scenes from the movie, optionally including optical effects such as motion blur. Though
not consisting of real-world images, it is a more realistic dataset, with its complex motion and
optical effects making it more challenging than other benchmarks. As the amount of scenes and
samples is fairly limited, the Sintel dataset primarily serves as a benchmark, and can be seen as a
relevant benchmark for estimating motion in realistic free-form videos.

2.4.3 Data Augmentation

Data augmentation creates more data from a limited dataset by applying various transformations
many times to each sample of the original dataset. This creates a larger amount of data, which
may be required for training, though the quality of augmented data is not comparable to additional
samples from the original dataset distribution. The application of such transformations can also be
used to encourage robustness of the trained model under such transformations, such as color and
brightness changes, geometric transformations, or noise.

Typical transformations include modifications of the image values, such as hue, brightness, and
contrast changes, geometric transformations in the form of translation, scaling, and rotation, as well
as crops, which can serve as an augmentation as well as a way of bringing data samples to the
required resolution for a model’s input.

As the change of the flow field between augmented frames can easily be computed from the
underlying transformations, augmentations can even serve to create training samples with known
ground truth flow in an unsupervised setting, or serve as a self-supervision constraint.

ScopeFlow [3] has also highlighted the importance of not altering the distribution of flow fields
between the original and the augmented datasets, especially when fine-tuning, as this can lead to
the model fitting to a skewed distribution, leading to worse performance on the dataset with the
original distribution. This was most prominently observed when continuously cropping and can be
avoided by cropping in discrete steps, such as dividing the original image into a fixed number of
equal-sized pieces and uniformly choosing one of them as the augmented cropped image.

2.5 Concepts from Local Methods for Optical Flow

Block matching approaches are simple methods for optical flow estimation that locally minimize
matching costs. Despite their simplicity, they provide important concepts also used in more advanced
methods for flow estimation. Matching costs specifically have been adapted to cost volumes and
are used in CNN-based methods for flow estimation. One of RAFT’s advancements specifically
involves cost volumes and uses cross correlation. Correlation is one of the three matching cost
functions that will be introduced in this section. Correlation having been adapted to cost volumes
also makes the other introduced cost functions starting points for possible cost volume calculation
and we will adapt the presented sum of absolute differences to cost volumes in our method.

27

2 Background

A basic family of approaches for optical flow estimation are PatchMatch approaches. These function
by assigning a matching cost to any pair of patches, that is small local neighborhoods around a point,
in each of the two input frames, where small costs indicate more similar or conforming patches. A
flow field is then estimated by comparing the patch for each location in the first frame to many other
candidate patches from the second frame, typically in limited windows around the original patch
location to reduce computational cost, and choosing the displacements that correspond to minimal
matching costs. This step is often used as part of a larger optimization routine that propagates
displacements among neighboring patches and adds random search. This is motivated by the
idea that certain feature descriptions based on a point and its local neighborhood are invariant or
corresponding under the motion between the frames, due to the motion of points being caused by
motion of larger objects that are largely unchanged by the motion.

Potential ways of choosing matching costs, also used in practice for block matching, include the
sum of absolute differences and (normalized) cross correlation. Both can either be directly applied
to the frames represented as gray value, color images, or on multi-channel feature images derived
from each input frame. The sum of absolute differences (SAD) is based on the L1 metric of the
difference of the two patches 𝑝𝑎 and 𝑝𝑏 with domain Ω,

SAD(𝑝𝑎, 𝑝𝑏) :=
⃦⃦
⃦𝑝𝑎 − 𝑝𝑏

⃦⃦
⃦
1

=
∑︁

𝑖∈Ω

⃒⃒
⃒𝑝𝑎𝑖 − 𝑝𝑏𝑖

⃒⃒
⃒ , (2.8)

is inexpensive to compute, robust under outliers, due to the sub-quadratic penalization, and can be
interpreted as the distance between feature vectors for each patch.

(Cross) Correlation (CC), on the other hand, is computed through channel-wise multiplication of
feature vectors reduced by summation and is instead maximized for corresponding patches:

CC(𝑝𝑎, 𝑝𝑏) := 𝑝𝑎 · 𝑝𝑏 =
∑︁

𝑖∈Ω
𝑝𝑎𝑖 · 𝑝𝑏𝑖 , (2.9)

and can be normalized for mean and variance:

NCC(𝑝𝑎, 𝑝𝑏) :=
(𝑝𝑎 − 𝑝𝑎) ·

(︁
𝑝𝑏 − 𝑝𝑏

)︁

⃦⃦
⃦𝑝𝑎 − 𝑝𝑎

⃦⃦
⃦
2
·
⃦⃦
⃦𝑝𝑏 − 𝑝𝑏

⃦⃦
⃦
2

, (2.10)

where 𝑝 refers to the mean of 𝑝. Normalized Cross Correlation (NCC) is invariant under affine
value transformations by virtue of the normalization performed. Correlation in general is more
expensive to compute, though still reasonable in cost, and can be geometrically interpreted as the
(normalized) inner product of feature vectors, relating to the cosine of the angle between vectors. If
patch features are corresponding, point in a similar direction, and have values of large magnitude
and the same sign for many channels, correlation is maximized, indicating matching patches.

Though correlation is commonly used for block matching directly on image gray values, the sum
of absolute differences, or other simple distance metrics, appear to be more intuitive and possibly
effective when dealing with feature vectors or descriptors rather than the images themselves.

28

2.6 Concepts from Variational Methods

2.6 Concepts from Variational Methods

Variational methods represent a more advanced approach of optical flow estimation that attempts to
globally optimize flow fields. The energy functionals used by variational methods to assign a global
cost to a flow field are often used as a starting point for unsupervised losses for CNN-based methods.
This is due to unsupervised training requiring a loss function that assigns a loss value to a flow field
given only input frames and no ground truth flow, just as for energy functionals. As we later present
a method for training RAFT in an unsupervised setting, we introduce components of variational
energy functionals as concepts from variational methods. We also introduce pyramid schemes used
by variational methods, as this concept too can be and has been applied to CNN-based methods for
optical flow. This also applies to the associated warping strategy.

Beyond brute-force, block and feature-matching approaches, and local-energy methods, variational
methods are traditionally an effective tool for optical flow estimation. Fundamentally, variational
approaches formulate an energy functional that assigns a single energy value to each potential flow
field, where low energy values correspond to more desirable flow fields, based on the input frames
and other objectives. After defining an initial flow field, they attempt to successively modify the
current flow field to one of lower energy.

Though variational approaches are not utilized in the kinds of methods mainly discussed in this
work and will thus not be introduced as thoroughly, some concepts originating from variational
models can and have been applied in more recent works using learned approaches.

Energy functionals of variational methods for optical flow typically comprise a data term, a
smoothness term, and possibly other terms for regularization or based on additional constraints,
such as material or depth.

2.6.1 Data Term

Data terms for variational methods are the counterpart of matching costs for block or patch matching
methods described previously, in that they penalize discrepancies of the visual structure between
the first frame and the second frame at the corresponding locations, implied by the current flow
field, possibly also involving their neighborhoods. Though quadratic penalization of the difference
between image or image derivative channels is often used for easy differentiation, subquadratic
penalizers quite similar to the sum of absolute differences are also used for better robustness under
outliers.

We will also refer to functions that assign a cost value to a flow field based on the assumption
that photometric invariants hold for corresponding locations as photometric losses. Data terms for
variational methods represent instances of photometric losses.

2.6.2 Smoothness Term

Smoothness terms measure the smoothness of a given flow field, favoring smooth flow fields
with lower energy, formalizing the assumption that the motion comprises larger objects moving
continuously and encouraging good matches of the data term in certain locations to propagate to the
surrounding area. As smoothness typically does not hold at the boundary between objects moving

29

2 Background

in different directions, the influence of smoothness may need to be reduced at certain locations,
which is often done at image boundaries, on the assumption that these often coincide with object
and thus motion boundaries.

Further, smoothness can be chosen as first order smoothness, which penalizes flow fields using
the magnitude of first order derivatives, completely discounting only constant motion, and second
order smoothness, which in turn penalizes second order derivatives, and allows affine motion to
stay unpenalized. Depending on the underlying motion, both first and second order smoothness
may be more appropriate, sometimes even differing between various image locations, leading
to adaptive approaches, which combine both first and second order smoothness by introducing
per-image-location weights for each order, choosing them as is most appropriate at that location.

2.6.3 Pyramid Schemes

More advanced variational methods are sometimes embedded in a pyramid-based coarse-to-fine
framework, wherein optical flow is first estimated at a very coarse scale before iteratively increasing
the resolution of the estimated flow field back to the original frame resolution. This allows for better
optimization of more complex energy functionals and allows large displacements to be correctly
estimated, but typically only for large objects rather than small, fast-moving objects.

2.6.3.1 Warping

Warping appears in the context of these pyramid schemes and allows the second frame to be
compensated by a motion field, in order to bring it into the same coordinate system as the first
frame. This is done by backward registration, which samples the second frame at the locations
corresponding to the first frame’s coordinate grid, that is the flow field being added to original
coordinate grid.

Optical flow can subsequently be estimated between the first frame and the compensated second
frame once more, and the resulting flow field can be added to the initial flow field to obtain a
combined estimate of the motion from the first to the original second frame, while respecting the
refinement of the flow field obtained after compensation.

Chapter Outlook

Having introduced the basic concepts required regarding CNNs and optical flow and discussed
traditional non-learned approaches for optical flow, we can now move on to learned methods for
optical flow and specifically look at how optical flow can be and has been estimated using CNNs.

30

3 Related Work

To put our work into context and introduce the methods we will be building upon, in the following,
we introduce a body of previously proposed approaches and concepts for optical flow estimation.

Having established some non-learned approaches for optical flow estimation in the previous chapter,
we first discuss how the concept of learning can be applied to optical flow estimation in Section 3.1.
It details how and at which different levels at learning can be incorporated.
We then move to CNN-based approaches for optical flow in Section 3.2. We mention the first CNN
architectures for optical flow estimation and more recent iterations on this. Recurring patterns and
shared concepts, such as the used supervision signal and architectural patterns of these methods are
also noted, some of which are used in RAFT.
We then take an excursion from supervised learning to unsupervised learning of optical flow
estimation in Section 3.3. We mention the typical loss functions, building in part on variational
methods, and self-supervision. Semi-supervised learning is also briefly introduced. This knowledge
forms the basis for the RAFT-based unsupervised and semi-supervised approach we will later
propose.
We then move on to the missing two aspects for understanding RAFT, the first of which is cost
volumes, introduced in Section 3.4. We explain how cost volumes related to the previously
introduced matching costs and how previous CNN-based methods have used them for optical flow
estimation.
Next, the issues occurring when working with warped input frames are detailed in Section 3.5.
Additionally, previous work that achieves better results by avoiding these issues is mentioned. RAFT
will join these methods in avoiding warping and the issues that are associated with it.
Finally, we introduce RAFT itself in more detail in Section 3.6. Having introduced all necessary
concepts for understanding the method, we explain RAFT’s components and how they are used to
estimate optical flow. We also go over RAFT’s strengths and impressive results, as well as some
shortcomings of the method which could be improved.

With RAFT and other previous CNN-based methods of optical flow being introduced, this chapter
will form the basis of understanding for our work, which builds on these methods and aims to
improve upon them.

3.1 Towards Learned Methods for Optical Flow

Machine learning and optimization processes in general can allow improvement beyond what
is typically feasible with manually designed solutions, making leveraging this potential for
improvements desirable for optical flow estimation. Bridging the gap from variational methods,
where the flow field is optimized according to a hand-crafted objective, to learned approaches can
be done by introducing learning at various different stages. This is mainly characterized by which

31

3 Related Work

components are kept fixed and which are to be parametrized and optimized. The choice of how to
parametrize and optimize such components can also have a large influence on the quality of the
resulting method.

At the most basic level, the image features used for feature matching or in the photometric losses
of variational methods can be learned. Going a step further, the entire matching cost or the
data and smoothness terms themselves, or just a single combined term, could be made subject to
optimization.

Leaving the framework of traditional approaches, one can also see optical flow estimation as a
general optimization process that begins with an initial flow estimate, then iteratively improves
the current estimate through an update. Learning a suitable update operator immediately yields a
method for inferring flow, parametrizable in the number of iterations and potentially the way flow is
initialized, if an initialization operator was not learned or initialization was set fixed. At its most
opaque, an estimator for optical flow takes in input frames and outputs a corresponding flow field.
Thus, a model realizing this transformation can be learned through end-to-end training.

Finally, meta-learning embeds the architecture [38], optimization objectives (see Section 4.6.1),
or even training process of models [58], like the ones previously mentioned, into an optimization
framework.

From here on out, we focus on learned approaches involving CNNs, due to RAFT and our work
building on it being CNN-based.

3.2 Previous CNN-based Approaches

Motivated by the then-recent success of deep learning and CNNs for computer vision tasks [33, 10],
FlowNet [9] was the earliest published successful attempt to infer optical flow using only CNNs
and did so in an end-to-end manner. Though its results were only of limited use and not inherently
impressive compared to the state of the art, even at the time, it had a significant runtime advantage.
More importantly, it introduced many concepts laying the foundation of optical flow estimation
using CNNs, some of which are still used in many recent approaches.

Following FlowNet, CNN-based methods have generally been supervised approaches and used the
EPE loss, also adapting the training schedule of training on the FlyingChairs dataset first, followed
by the FlyingThings3D dataset, and finally a finetune on benchmarks such as KITTI or Sintel,
with learning rates decreasing for each subsequent dataset. Though there are often other small
changes, most methods mainly differed in architecture, which still typically employed a U-Net-like
architecture like FlowNet. Unsupervised methods using CNNs exist, but typically perform much
worse than their supervised counterparts. Nonetheless, the potential to use arbitrary videos as
training data and the ability to train on frames for which flow should be inferred without requiring
ground truth makes this a promising direction of research.

Notable recent improvements on FlowNet include PWC-Net [68], which estimates flow in a coarse
to fine manner, inspired by variational methods with pyramids, as well as IRR [23], which uses
weight-sharing to reduce parameters and estimates forward flow, backward flow, and occlusions in a
rolled iterative scheme.

32

3.3 Unsupervised Training

3.3 Unsupervised Training

Unsupervised training aims to train a model without using any ground truth. For optical flow
estimation this implies a network being trained using only input frames, without any ground truth
flow. Training in an unsupervised manner has the advantage of being able to train on arbitrary
video data, which is available in high quality in abundance, as well as being able to train on input
frame scenes before estimating the optical flow between them. Despite these promising advantages,
unsupervised methods typically perform much worse than their supervised counterparts, as proper
guidance through a loss function is significantly more difficult without the availability of ground
truth.

Unsupervised losses often borrow from variational energy functionals, which similarly assign a
cost to estimated flow fields using only input frames as external data. In addition to data terms and
smoothness terms similar to those from variational energy functionals, some methods also add
self-supervised loss components, which use the model itself or data and data transformations to
synthesize pseudo ground truth, which can in turn be used with typical supervised losses. One
example of self-supervision would be to obtain a flow field for two frames using the current model,
then applying a known transformation to the input frames, and using the appropriately adjusted flow
field as ground truth for the transformed frames [35]. A pretrained teacher model can also provide
flow fields based on input model, which the trained model learns from, essentially distilling the
knowledge of the teacher model [37]. There also exist data-driven approaches [36] that generate
frame pairs and corresponding flow fields using geometric transformations, very similar to how some
synthetic datasets, such as the FlyingChairs dataset, are created. Self-supervised loss components
can enforce consistency constraints on a model and allow capturing the actual metric used for
penalizing errors in the flow fields, such as the EPE or L1 distance, which can not easily be done
using photometric losses.

UFlow [29] is a recent survey that compares the effect of different components for unsupervised
optical flow. It finds the census loss [49] to be a good choice for the photometric loss, suggests
stopping gradients at occlusions, and introduces cost volume normalization, which normalizes
features for mean and variance before correlation, similar to normalized cross correlation, amongst
other findings.

3.3.1 Semi-supervised Training

Supervised and unsupervised training can be combined into semi-supervised approaches, where
ground truth exists for some, but not all inputs in the training set. Applied to optical flow, one
could first train a network in the typical supervised fashion on synthetic datasets, followed by
unsupervised training on realistic data or the benchmark chosen to evaluate. Such an approach
could benefit from both the typically better results from supervised training as well as improved
performance by specifically fitting to the data later used for evaluation, without requiring ground
truth to do so. A potential pitfall could be that the unsupervised loss in the latter part of training
degrades model performance, due to the worse guidance exhibited. A possible remedy could be
to mainly employ self-supervised losses and drop data or smoothness terms, or weigh them down
considerably. Self-supervision is an appropriate choice, as it is not biased, in the sense that a perfect

33

3 Related Work

model should have a self-supervised loss of 0, preventing performance degradation. Further, the
model has already been trained fairly well and is this a suitable teacher for itself, already yielding
quite reasonable flow estimates.

3.4 Cost Volumes and Correlation

One established way of determining dense correspondences is to formulate a function to determine
how conforming locations in the first and the second frame are. Examples of such functions are
the cost functions for block matching or data terms in variational methods. The resulting cost
volume is 4-dimensional and stores a cost for every possible displacement (2D) for each location
in the first frame’s domain (2D). Due to the computational and memory requirements, the range
of possible displacements is sometimes limited to a small local neighborhood, as is often done
for block matching. Correspondences can then be determined by choosing the displacement with
minimal cost value for each image location in the cost volume.

When FlowNet [9] introduced a CNN architecture for optical flow, in addition to a fully convolutional
architecture, called FlowNetS, a variant including a layer that computes correlation cost, FlowNetC,
was also introduced. The correlation layer used to do so computes the correlation of feature maps
for the first and second frame for a limited set of small displacements, sampling a small part of the
corresponding cost volume. Initially this variant was introduced, as it was not clear whether a fully
convolutional network could effectively infer flow on its own, but correlation layers showed merit of
their own and were continued to be included in approaches building on FlowNet [25, 68, 23]. The
variant without it, FlowNetS, and architectures based on it were used less frequently, due to the
quality of inferred flow being worse.

Some recent approaches, such as VCN [81], have lifted the restriction on displacement ranges and
instead compute and process full 4D cost volumes. These methods have seen improved performance
on benchmarks as a result, though processing 4D cost volumes still remains comparatively
expensive.

Cost volumes are related to warping in that each slice of a cost volume across the entire image
domain with a fixed displacement field corresponds to the cost metric applied to the first frame
and the second frame at displaced locations or alternatively the same location in the second frame
warped according to the displacement field.

3.5 Warping, Ghosting, and Neighborhoods

Warping introduced for variational approaches using pyramids reappears for CNN-based methods,
such as for PWC-Net [68], which similarly uses a pyramid approach. Further, approaches that
estimate flows iteratively, such as IRR [23], also warp frames to estimate the remaining displacement
field between the first frame and the second frame warped by the currently estimated flow.

Despite such widespread use of warping, it is accompanied by two significant issues. Firstly,
occlusions can lead to so-called ghosting [82, 27], where the warped frame includes two copies of a
moving object: one at the actual new position and another around its original location to the frame,
which is the undesirable artifact introduced by warping. The second appearance is caused by the

34

3.6 The RAFT Method

occluded geometry behind the object in the second frame being mostly stationary, but attempting
to sample this occluded geometry at the location instead results in sampling the object in front of
it. If flow estimation is now performed with a warped image as the second frame, methods might
incorrectly find correspondences involving the ghost object, rather than the actual object, due to its
similar or even identical appearance, resulting in incorrectly estimated flow. One way of prevent
correspondences involving such ghosted regions, is to detect and mask away all affected regions, as
is done by MaskFlownet [82], which lends it improved performance on benchmarks.

A second issue with estimating optical flow for warped frames is the non-uniform displacement
caused by warping itself, which leads neighborhoods around points to be distorted. This causes
feature descriptors based on neighborhood information to be less consistent around more distorted
neighborhoods and may have more dramatic effects when neighborhoods are effectively cut off or
partially moved far away by discontinuities in the flow. Possible remedies that were proposed include
deformable [41] or even learned [79] neighborhoods, with which the distortion of neighborhoods
can be sidestepped, by never directly performing warping to begin with, or counteracted to an extent
by allowing neighborhood samples to be repositioned inversely to the distortion.

3.6 The RAFT Method

RAFT: Recurrent All-Pairs Field Transforms for Optical Flow (RAFT) [70], a recently published
CNN-based method for optical flow, introduced several new paradigms and significantly improved
state-of-the-art performance on benchmarks, such as MPI Sintel. It iteratively estimates optical
flow in increments and uses a novel lookup operator to sample a full 4-dimensional cost volume,
while simultaneously reducing both model complexity in terms of the number of parameters and the
number of training iterations required without sacrificing the quality of the estimated optical flow.

We first give a general overview of RAFT’s components and architecture, and then look at individual
components in more detail. This begins with the cost volume and corresponding cost volume
sampling, followed by its flow upsampling strategy. We then review the training procedure and
how evaluation is performed on benchmarks. We end by summarizing RAFT’s strengths and
shortcomings, providing candidates for improvement in our approach following this.

3.6.1 Architecture

RAFT estimates optical flow iteratively in increments. Beginning with an initial flow estimation,
each update iteration computes an incremental update of the estimated optical flow, based on
samplings from a cost volume. RAFT takes in two input frames, internally estimates optical flow at
1
8 of the resolution of the frames, to benefit from pooled information and lower computational costs,
before finally upsampling flow back to the full resolution and outputting the upsampled flow field.

The architecture features two encoders, one infers features used for correlation and the other provides
initialization and context input in each iteration. Both take in input frames and output computed
features at 1

8 resolution. The feature encoder shares its weights between both input frames, while
the context encoder is only applied to the first frame.

35

3 Related Work

The first step in the pipeline consists of inferring the features to be used for correlation from the
input frames using the feature encoder and precomputing the correlation for all displacement pairs.
Next, the context encoder is applied to the first frame, yielding context information of the reference
frame and an initial hidden state.

RAFT’s updates borrow from the design of recurrent neural networks. Each iteration, a hidden state
is updated based on the iteration inputs of the static context information, the currently estimated
flow field, and the result of the correlation lookup for the currently estimated flow field. This is
a sampled version of the cost volume, as described further below. An incremental update to the
current flow field is them computed from the new hidden state. This process can be interpreted as
fixed-point iteration, allowing the number of iterations to be varied between training and evaluation.
The update operator features a ConvGRU, which is a convolutional version of a GRU [7], wherein
perceptrons are replaced with convolutional layers. Optionally, standard convolutions are replaced
with separable convolutions in the ConvGRU, to allow for a more lightweight parametrization
of convolutions with larger kernel sizes. A complete update begins with passing the correlation
and flow components through a small network that compacts their representation, that includes
convolutions with large kernel sizes for the flow component, enabling propagation of flow values in
a larger neighborhood. This compact representation is then passed to the ConvGRU along with the
previous hidden state, to compute the new hidden state. From the new hidden state, small decoder
networks compute the flow update and additional values used for flow upsampling.

3.6.2 Cost Volume

The “all-pairs” in RAFT refers to the method constructing a full 4D cost volume. Though VCN
[81] has already employed 4D cost volumes for optical flow estimation previously, the sampling
and processing of the cost volume is done differently, as described in the next section. Using
(unnormalized) correlation as the cost metric, the volume is efficiently precomputed using a single
matrix multiplication. Storing a full 4D cost volume, even at 1

8 resolution as is done for RAFT,
requires a significant amount of memory, which is why RAFT also proposes an alternative method
of computation for correlation, in which only the values actually sampled from the cost volume
are computed ad hoc every iteration. The alternative computation offers the benefit of having only
linear memory and time complexity in the number of image pixels, as opposed to the quadratic
complexity of the original implementation.

Where VCN uses 4D convolutions to filter the cost volume directly, RAFT samples 2D slices of the
cost volume each iteration and processes them using 2D convolutions. This limits the amount of
information from the cost volume taken into consideration, but significantly reduces the complexity
and runtime of the processing.

3.6.3 Correlation Lookup

In each iteration, the cost volume is sampled using the current flow estimate to index the displacement
at each location. Similar to but distinct from Devon [41], the cost volume is also sampled in a
square neighborhood of displacements around the current flow estimate. In particular, this sampling

36

3.6 The RAFT Method

effectively yields the correlation between features of the first frame at a single pixel with every
element of a square neighborhood in the second frame around the same location displaced by the
current flow estimate.

This is also performed for several downsampled versions of the correlation, where the cost volume is
pooled over the displacements, leading to larger effective neighborhoods for coarser versions of the
cost volume, without having to proportionally increase the neighborhood size. Intuitively, this allows
correspondences to be found by selecting neighbors with maximal correlation, prioritizing coarse
neighbors, and using the respective displacement to update and improve the current estimate of the
flow. Once correlation is maximal for the central location on coarser levels, the finer neighborhoods
can be used to locate the correct displacement at higher resolution.

The sampled neighborhoods are undistorted and do not directly involve warped images, avoiding
the pitfalls otherwise encountered when using warping, as described in Section 3.5. This strategy is
an alternative to previously used correlation layers and is easily adaptable to multi-scale approaches.
The lookup itself is very cheap if the cost volume has already been precomputed. In the alternative
implementation, correlation is only computed for values that should be looked up.

3.6.4 Flow Upsampling

The flow field is upsampled by choosing the high-resolution flow to be a weighted average of
the flow values in a 3x3 neighborhood of the low-resolution flow, using learned interpolation
weights. This constrains high-resolution flow values to be in the range of the low-resolution
neighborhood values and allows meaningful interpolation to be learned easily, especially in regions
where the flow field is affine, but also prevents small or thin objects with a flow value significantly
different from the larger surroundings to be properly captured by this upsampling scheme. As nine
interpolation weights have to be learned for each of the 8x8 high-resolution values corresponding to
a single low-resolution value, this also introduces a significant amount of additional parameters
for interpolation. Nevertheless, this interpolation strategy improves results compared to constant
or bilinear interpolation of the flow field and allows high-resolution details to be captured more
accurately.

The upsampling is performed after each iteration before applying the loss, effectively disconnecting
the low-resolution flow field from the ground truth flow field, but the chosen parametrization still
leads to proper guidance.

3.6.5 Training

RAFT uses an L1 loss between the predicted and the ground truth flow to train the network in a
supervised manner. The L1 loss is similar to the sum of absolute differences and is defined as the
L1 norm of the difference between the predicted flow 𝑑 and ground truth flow vector 𝑑:

L1(𝑑, 𝑑) =
⃦⃦
⃦𝑑− 𝑑

⃦⃦
⃦
1
. (3.1)

It stands in contrast to the EPE loss, which is the L2 norm of this difference instead. Much like
for the EPE loss, an average is taken over all image locations as the single loss value for an entire
flow field. The loss is applied on the upsampled flow after every iteration, where later iterations are
weighted higher than early ones.

37

3 Related Work

Gradients for the flow and lookup indices are stopped after each iteration, which limits the size of
the computation graph and improves performance, but also encourages the update operator to be
more independent of the previous iterations, though information still flows through the hidden state
from one iteration to the next.

Gradient clipping is performed for much the same reason it is used for RNNs, due to the update
operator’s recurrent nature. AdamW is used as the optimizer with a small weight decay component.

3.6.5.1 Learning Rate Schedule

RAFT follows the typical training schedule already mentioned in Section 3.2. It first trains on the
FlyingChairs dataset, followed by training on FlyingThings3D, and then finetuning on Sintel. Each
dataset is used to train the network for 100k iterations with learning rates decreasing for datasets
later in the schedule.

A separate instance of OneCycleLR is used as the learning rate schedule for each dataset. Separating
learning rates between datasets is advisable due to the different distributions and loss (gradient)
magnitudes of the datasets as well as the desire to only finetune on datasets used for later schedules.
The series of OneCycleLR schedules can also be seen as a form of a single cyclic learning rate
schedule over all datasets, which decays the learning rate for each dataset.

3.6.6 Evaluation

At evaluation time, more iterations of the update operator are performed to achieve better results.
Optionally, a warm-start can be used for inference on sequence datasets, which uses the forward
flow estimated directly prior in the sequence and projects it into the space of the current frame, to
be used as the initialization of the flow field instead of the usual zero initialization.

3.6.7 Shortcomings

RAFT introduces a novel way of computing correlation and an incremental update operator,
achieving significantly improved results on benchmarks with a simpler model and cheaper training.
Despite this, the method has several shortcomings and aspects that could be improved.

The architecture mostly uses simple convolution blocks that do not take into account more recent
insights into activation functions and architectures for deep CNNs, such as discussed in Section 2.2.9.
Due to performance concerns of correlation and other operations, the resolution of the flow and
features is limited to 1

8 of the original resolution and the upsampling strategy is unable to capture
certain high-resolution details, limiting accuracy for small details at high resolution. The correlation
still consumes a significant amount of memory, even at this reduced resolution. Evaluation on
sequence datasets offers warm-start initialization, but much more information could potentially be
derived from more than two input frames or entire sequences. The newly introduced concepts also
represent a first iteration of a new idea, that may still have room for refinement and could be applied
to different domains, such as unsupervised training.

38

3.6 The RAFT Method

Chapter Outlook

These shortcomings and potential for application to different domains represent an opportunity to
build on the strengths of RAFT, improve upon the method, and apply it to other areas. We will
attempt to take advantage of this opportunity and present potential improvements and application of
the method to other problems in Chapter 4, describing our method.

39

4 Improved RAFT Architectures and Training
Procedures

The previous chapters have established the foundations of optical flow estimation using CNNs, as
well as previous methods for doing so and RAFT itself. We can now move on to investigating
how the RAFT approach can be improved and built upon to create new methods for optical flow
estimation.
Our aim in all this is to create methods of estimating optical flow that provide good results in realistic
scenarios, for use in larger computer vision pipelines. We specifically want to estimate high-quality
optical flow for realistic video sequences, and do so within the confines of our computational budget.
This stems from realistic video being the most abundant and frequently used source for input frames,
as well as many practical applications benefiting from high-quality results.
As it is difficult to directly measure the desirable metrics previously described, we use the
performance on realistic benchmarks as a stand-in. While this does not lead to the same metrics,
the benefit of being able to easily perform an evaluation outweighs this concern. We specifically
choose the Sintel benchmark [6] to fill this role, as it is the benchmark closest to real free-form
video, that can easily be evaluated from with the available ground truth flow. The Sintel dataset is
also challenging enough that results on it should generally translate well to other applications.
We follow a holistic approach that examines all areas of RAFT for potential improvements and
propose modifications to different parts of the architecture, the used loss functions and training
process in general, as well as the estimated outputs and how flow is estimated for frame sequences.
While this does mean that we may examine some areas more shallowly compared to an approach
that only focuses on only a single area, we believe that our approach is the most promising for the
overall improvement of results. This allows finding the areas that allow for the largest improvements
and enables combining modifications from different areas that can eclipse the results for each
modification on its own. It stands in contrast to being limited by the potentially smaller improvements
that can be gained when restricted to a single area, even with more focus on this area.

In this chapter, we present our approach that builds on, improves, and extends RAFT to further
domains. We limit ourselves to introducing our approach conceptually in this chapter, and go over
implementation details and obtained results in our evaluation chapter, following this. We begin
by introducing baseline modifications to the RAFT architecture in Section 4.1. This concerns the
RAFT architecture and represents small changes motivated by the empirical findings discussed in
Section 2.2.
Following this, we examine the cost volume computation, downsampling, and indexing more closely
in Section 4.2. We propose fixes, normalization strategies, and alternative computations that aim to
improve the quality of the matches derivable from the cost volume. Such improved correspondences
can directly elevate the quality of the resulting optical flow.
After the cost volume, we turn to the flow upsampling used by RAFT in Section 4.3. The
shortcomings of the upsampling discussed in Section 3.6.4 are addressed by our three proposed

41

4 Improved RAFT Architectures and Training Procedures

alternative upsampling strategies, aiming to improve full-resolution flow results and capture high-
frequency details of the motion.
Next, the training data and used augmentations are discussed in Section 4.4. Our inclusion of
occlusion information and focus on realistic data motivates some changes in the selected datasets
and performed augmentations.
The training process itself is then examined more closely in Section 4.5. We propose using a
different supervised objective that could improve performance on benchmarks and adjust training
parameters to better fit our computational budget.
An unsupervised approach for training RAFT is then presented in Section 4.6. Unsupervised
training can improve results, as it can use large quantities of readily available high-quality input
frames without requiring ground truth flow. It can also be used to train on benchmarks before
evaluating on them, allowing to improve benchmark results by taking the specific distribution of the
input frames into consideration.
Training at evaluation time also forms the basis of online learning, presented in Section 4.7. It
takes the idea further by not only training on the entire benchmark dataset, but directly fitting to the
specific sequence or even frame pair. Additionally, multi-frame information is taken into account,
all in all allowing for more specific details to be considered and results to be improved even further.
These improvements generalize to practical applications, where estimating flow on images sequences
is often the norm, leading us to the improved methods for optical estimation we aim to create.

4.1 Baseline Modifications

We begin by introducing a number of smaller modifications to the RAFT architecture. These
are motivated by Section 2.2, which introduced the vanishing and exploding gradient problem,
their relation to activation functions and normalization, as well as their effect on training. The
considerations for deep CNNs mentioned by ResNet [16] also lead us to introduce skip connections.
These mainly aim to improve gradient flow and can thus lead to better training and results. We also
opt to use the alternative correlation implementation to fit our computational budget.

To prevent dying ReLU issues, as described in Section 2.2.7, we replace all ReLU activations with
LeakyReLU activation functions.

Instead of zero-padding, which can result in artifacts at boundaries, we use reflection-padding
where appropriate. This includes padding of inputs and all padding before convolutions and the
padding before unfold for the convex upsampling. Notably, padding the cost volume using reflection
padding is not appropriate, as this would result in spurious costs for displacements corresponding
to padded locations, so this is kept as zero padding. The need for this modification and the change
in coordinate downscaling mentioned in the next section becomes evident when using visualization
techniques as described in Section 2.2.11, and may otherwise easily go unnoticed.

Normalization layers in the form of instance normalization are added after convolutions in the feature
and context encoders, to improve gradient flow and prevent exploding and vanishing gradients,
as described in Section 2.2.7. Normalization is not introduced into the update block, to prevent
inferred flow magnitude information being lost due to normalization.

42

4.2 Cost Volume Processing

Following [16], we introduce residual connections into the update block, to reduce the shortest
paths from the output to the parameters in the computation graph and work with a smoother loss
landscape [34] more favorable for optimization. Specifically, a skip connection is introduced to skip
the ConvGRU and another skip connections allows skipping over the flow encoding convolutions in
the update block. We also replace the flow decoder with a residual block.

Due to the computational and memory costs for all pairs correlation being quadratic in the input size,
we create an optimized, more efficient implementation of all pairs correlation and neighborhood
sampling written in CUDA, based on the alternative implementation described in RAFT and
Section 3.6.3.

4.2 Cost Volume Processing

The construction and sampling of the cost volume is the main way in which RAFT identifies
correspondences. Further, the quality of the matches derivable from the sampled cost volume
significantly influences the quality of the estimated optical flow, as such matches can directly yield
the flow vectors in unoccluded regions. This makes improving the matches derivable from the
sampled cost volume a primary target for improving the overall result quality of RAFT-based
architectures.

In this section, we introduce several modifications to the calculation and sampling of the cost volume,
all aiming to improve derived match quality. We begin with modifications to the cost volume
downsampling in Section 4.2.1. This includes a simple bug fix that properly centers downsampled
versions of the cost volume and a transformation of the cost volume pyramid that can allow for
better interpretation of the pyramid’s individual levels.
Following this, we propose cost volume normalization strategies in Section 4.2.2, which can help
the network better compare different match candidates against each other after magnitudes are
normalized. They also achieve the same positive effects typical normalization layers for NNs bring
with them.
Finally, Section 4.2.3 introduces several different variants that fundamentally change how the cost
volume is calculated, with the aim of improving match quality by allowing for more general and
learnable matching costs. We also take inspiration from block matching to compare correlation to
an L1-based cost function, similar to the sum of absolute differences defined in Section 2.5.

4.2.1 Cost Volume Downsampling

RAFT samples the cost volume using coordinates that correspond to adding the currently estimated
flow to a standard coordinate grid. When indexing downsampled versions of the cost volume, the
following modified coordinates 𝑐𝑖 are used for indexing level 𝑖, where 𝑐0 represent the original
coordinates without downsampling, 𝑔 the coordinate grid with value ranges [0, 𝑤 − 1] × [0, ℎ− 1]
for width 𝑤 and height ℎ, and 𝑑 denotes the flow field used to index the correlation volume:

𝑐𝑖 =
𝑐0

2𝑖
=

𝑔

2𝑖
+

𝑑

2𝑖
. (4.1)

Adjusting the coordinates in this manner does not take into account that the location of the values in
the downsampled cost volume lie at different positions, as illustrated in Figure 4.1.

43

4 Improved RAFT Architectures and Training Procedures

0 1 2 3

0 1 2 3

0 1

−1
4

1
4

3
4

5
4

(a) Coordinate downscaling

0 1 2 3

0 1

(b) Image downsampling

Figure 4.1: 1-dimensional illustration of downsampling and correct coordinate downscaling. Small
circles on the image to the right symbolize the point-like position of each pixel. The
downscaled coordinates are obtained as the position of the high-resolution grid points
on the low-resolution coordinate axis.

To address this, we instead use the following downscaling for coordinates:

𝑐𝑖 =
𝑐0 + 1

2

2𝑖
− 1

2
=

(︃
𝑔 + 1

2

2𝑖
− 1

2

)︃
+

𝑑

2𝑖
. (4.2)

The effect on the downsampled correlation is visualized in Figure 4.2.

We optionally transform the pyramid of subsampled cost volumes by subtracting an upsampled
version the next-lower layer from each layer of the pyramid save the last, resulting in levels similar
to those of a laplacian pyramid. This localizes correlation on specific scales, resulting in small
localized peaks for correspondences at higher resolution levels, as opposed to having a spread-out
peak around the correspondence with a slightly higher value for the peak localized at the higher
resolution level. This transformation only affects the visualization of the cost volume and possible
metrics applied directly to samplings of the cost volume. It does not change the expressibility of
the network taking in the sampled correlation, as the subtracted layers can easily be added back
in by the network, even on sampled versions of the pyramid. For visualizations, this change can
make peaks in the cost volume caused by correspondences to be more clearly localized at higher
resolution scales.

Sampled versions of the cost volume can be used to formulate metrics that measure the quality of
the features and the inferred flow. This can be done by penalizing peaks in the sampled cost volume
that do not correspond to the central location for the displacements given by the estimated or even
ground truth optical flow on each pyramid layer. Such metrics encourage the estimated optical flow
to coincide with the displacements of good correspondences, characterized by a large correlation
response for the features at the locations encoded by the correspondence. They could even be used
as part of a loss function for training. We opt for a slightly different approach directly penalizing
feature maps instead, independently of the estimated flow, as described later in this section.

44

4.2 Cost Volume Processing

(a) Original downsampling (b) Our downsampling

Figure 4.2: Visualization of downsampled versions of the cost volume for the original and our
modified downsampling. The pictured correlation sampling was downsampled by a
factor of 8. The 9 × 9 box grid contains a box for each neighborhood offset, with the
center box corresponding to an offset of 0. Each box shows the correlation value for
each image location, with brighter colors representing larger values. One can observe
that the correlation using our downsampling is properly centered, whereas the original
version is skewed towards the top left corner.

4.2.2 Cost Volume Normalization

Using (unnormalized) correlation as a cost function is inspired by block-matching methods, but
it is not clear that this choice is optimal. Normalized cross correlation improves results for
block-matching methods and [29] finds similar improvements for correlation normalization with
CNNs, suggesting that correlation normalization in RAFT-based architecture may improve results.
To this end, we investigate different normalization approaches for correlation and cost volumes in
general.

Traditionally, correlation is normalized for blocks or patches, however, the cost volume used
in RAFT computes matching costs between two individual points, with a neighborhood given
around the point in the second image. This motivates normalization across the entire domain or
normalization across each neighborhood in the second image instead.

Normalizing features across the entire image domain represents the most straightforward approach
and serves as the equivalent of normalized cross correlation. Such normalization was already
proposed by UFlow [29] and can be realized by and also interpreted as a standard normalization
layer. It is realized by passing the feature maps for both input frames through such a normalization
layer before computing correlation. We employ group normalization with a single group for all
channels on the features used to compute the cost volume for this purpose. We will also refer to this
modification as feature normalization.

45

4 Improved RAFT Architectures and Training Procedures

Normalizing each neighborhood patch in the sampled cost volume can additionally be employed
to more easily pick the displacement corresponding to the best match in each patch. This is
similar to normalizing all values in a patch, as is done for block matching. One downside to
this is that correlation can no longer be compared between different neighborhoods, preventing
selection of better matches to be propagated to locations with worse matches. To counteract this, the
information can be re-introduced by concatenating the unnormalized center cost to each normalized
neighborhood. We perform this normalization and concatenate unnormalized center costs, and refer
to this modification as neighborhood normalization.

We employ both feature and neighborhood normalization for our cost volume. Both normalization
types first subtract the mean value and then divide by the standard deviation, across the image
domain or in each patch respectively.

4.2.3 Alternative Cost Functions

Beyond normalizing correlation, correlation-based cost functions can be further modified, replaced
with cost functions based on other distance metrics, or cost functions can be learned themselves.
Through harnessing the power of learning and allowing for more general cost functions, learned
matching costs could improve the quality of matches derived from the cost volume.
Recently, several CNN-based methods have proposed modifications to cost volume calculations that
appear to noticeably improve the quality of the estimated optical flow. Motivated by the success of
these modifications, we propose changes to the computation of RAFT’s cost volume. This includes
simplified variants of the modifications proposed by the mentioned methods, typically to keep
computational costs reasonable, while still benefiting from their improvements.

LCV [77], a recently published approach that modifies the correlation used in methods utilizing
4D cost volumes, including RAFT, proposes multiplying the feature map for the second frame
with a learned positive definite matrix with a special parametrization. This allows weighing each
feature channel separately and can account for correlation between the feature channels, allowing
for a more general and potentially more effective computation of the cost volume. When using
correlation, we employ the proposed approach by multiplying the feature map of the second frame
with a learned matrix before correlation, but limit the matrix to be diagonal for simplicity. This
allows reweighing the importance of each feature channel individually.

GOCor [71] instead proposes learning a function that transforms the second feature map in a
way that incorporates information from both frames to make the resulting correlation matches
more globally unique. We attempt to incorporate such a transformation without having to incur
the costly components and optimization used by GOCor by computing new feature maps using
convolutional layers using information from both feature maps. We perform this operation with
unwarped feature maps, which does not allow for proper treatment of information between feature
maps for correspondences, but still allows transformations of each feature map individually and
information to be shared between feature maps if averaged over larger neighborhoods, assuming flow
magnitudes that are sufficiently small. To reduce parameter count, we apply the same transformation
for each feature channel, still allowing for transformations very similar to the initialization proposed
by GOCor.

46

4.2 Cost Volume Processing

Beyond correlation, which was inspired by cost functions for block-matching approaches, other
distance metrics, such as L1 distance, can also be used as a cost function, similar to the sum of
absolute differences for block matching. In particular, L1 distance seems promising as a cost
function between samples of a feature map, as it is more robust to outliers and it does not change
the gradient magnitude in the backward pass, unlike correlation, in which gradient magnitudes
are multiplied by the magnitudes of the values in the feature map. It is also computationally
cheaper, though it no longer allows efficient precomputation via a single matrix multiplication. We
optionally use L1 distance instead of correlation as the cost function to compute our cost volume,
computing it when the cost volume is indexed using a variant of our alternative CUDA correlation
implementation. Feature maps are normalized as with correlation, but we drop the multiplication of
the second feature map with a matrix. For simplicity and efficiency of implementation, values are
unmodified even if one of feature maps is not defined at the used offset, resulting in spurious values
for this location, compared to the constant zero value one would get for correlation. To remedy
this, a valid map with stopped gradients is passed to the network in each iteration that marks which
displacements are valid and which fall out of the range of the feature map. Typically, spurious
values are larger than values for corresponding locations, as the spurious values equal the L1 norm
of the features for a single image as opposed to matching values which are typically close to zero,
somewhat mitigating this issue.

Finally, DICL [75] proposes dropping correlation entirely in favor of a learned cost function. As
learned 4D cost volumes incur a significant computation and memory cost, DICL embeds its
flow estimation into a pyramid approach. This computational and memory cost prevents us from
employing a similar learned cost volume, though the approach can directly be applied to the RAFT
architecture by sampling the concatenated feature maps instead of their correlation when indexing
the cost volume, optionally followed by additional processing, which could be a promising direction
of research.

Inspired by DICL’s efforts to make cost volume peaks more unique, we add a feature loss
component that encourages the cost volume to have more corresponding values for ground truth
flow displacements 𝑑 than for random displacements 𝑑:

ℒfeature =
⃦⃦
⃦𝑚0 − warp(𝑚1, 𝑑)

⃦⃦
⃦
1
−
⃦⃦
⃦𝑚0 − warp(𝑚1, 𝑑)

⃦⃦
⃦
1
, (4.3)

for the feature maps 𝑚0,𝑚1 of the first and second input frame respectively, where warp refers to
the warping operation described in Section 2.6.3.1. The feature loss is only applied in non-occluded
regions, using ground truth occlusions to determine where the loss should be applied. Further,
we add a uniqueness loss component that encourages feature map values to be more unique by
encouraging the difference between feature map values at different locations to be large:

ℒunique = −
⃦⃦
⃦𝑚0 − warp(𝑚0, 𝑟)

⃦⃦
⃦
1
, (4.4)

where differing locations are realized via a random displacement field 𝑟. This loss component only
features a single difference, as the difference between the first feature map and itself is trivially zero.
Note that feature maps are normalized, thus preventing the uniqueness loss from becoming arbitrary
small. The norms containing warped elements are only evaluated when the displacements used to
warp fall into the corresponding image domain and the contributions are re-weighted accordingly
for both losses. We observe that these loss components decrease, even when they are not optimized

47

4 Improved RAFT Architectures and Training Procedures

for, confirming that they represent useful properties for the network to have. This may also suggest
that it is not strictly necessary to optimize for these objectives, but optimizing them might improve
results nonetheless.

4.3 Upsampling

Upsampling of flow fields is required in the RAFT architecture, as flow is only estimated at 1
8

resolution in the main part of the network, which significantly reduces the computational load and
allows the use of all-pairs correlation. Ultimately, full resolution flow needs to be computed and
naive upsampling, such as bilinear upsampling, limits the quality of the result, as it fails to capture
high-resolution details of the flow. The convex upsampling strategy employed by RAFT improves
results by yielding sharper flow changes at object boundaries and flow discontinuities, but fails
to capture the motion of small and thin objects. Using alternative upsampling strategies that do
not suffer from the same issues as RAFT’s upsampling strategy may improve the quality of the
estimated flow.

In this section, we attempt to improve results through better flow upsampling, and propose three
different strategies to do so. We begin by explaining why we do not choose to follow a pyramid
scheme in Section 4.3.1, despite seeming like an obvious solution that can overcome most of the
shortcomings of RAFT’s upsampling. This stems from RAFT not being easily adaptable into a
pyramid scheme, without significantly increasing the computational cost and memory required.
Next, drop-in methods for flow upsampling from previously published work and their applicability
to RAFT are discussed in Section 4.3.2. This gives us our first class of upsampling strategies,
directly taken from traditional methods.
Following, a modified version of the convex upsampling used by RAFT, that can alleviate some of
its issues, is proposed in Section 4.3.3. This gives us our second upsampling strategy candidate.
Finally, a novel flow-based upsampling approach is proposed to replace RAFT’s upsampling in
Section 4.3.4. This third candidate allows flow values to be adjusted at full resolution, without
disproportionately increasing computational cost.

4.3.1 Pyramid Schemes

A prominent strategy for capturing the motion of large objects with reasonable computational effort
used by variational approaches and previous methods involving CNNs is a pyramid structure, which
infers flow incrementally on coarse to fine scales. Such approaches are somewhat incompatible with
all-pairs correlation, which unlike pyramid approaches can capture the motion of small fast-moving
objects well, but is associated with very high computational effort at high resolutions. Naively
extending RAFT to a pyramid scheme runs into runtime performance and potentially quality
issues, as re-using the same invariant update operator across different scales incurs extremely high
computation effort at full resolution, due to 64 times as many pixels needing to be processed at that
scale. Instead using less complex update operators at higher scales can cause very simple update
operators to be unable to properly learn with their constrained expressibility, while still incurring a
considerable amount of computational effort. In our prototype experiments with pyramid schemes
based on RAFT, we were significantly limited by the computational effort and memory required to

48

4.3 Upsampling

use RAFTs components at full resolution and were unable to successfully train a variant with a
significantly reduced amount of layers to fit our computational budget, likely due to insufficient
complexity of the slimmed-down network.

PRAFlow_RVC [74] is a recent attempt to reconcile the RAFT architecture with pyramid schemes,
making concessions on the pyramid itself, and consists of two instances of RAFT with shared
weights, one internally inferring flow at 1

8 resolution as usual and another at 1
4 resolution. Both

instances share the same encoders and the upsampled output of the 1
8 instance is used as the initial

estimate for the 1
4 instance, finally using its output as the inferred flow. Although this approach

shows improved accuracy for small displacements, it significantly increases model complexity and
training cost by adding a second instance which operates at higher resolution and performs the final
upsampling with RAFTs convex upsampling, just at a slightly higher resolution.

4.3.2 Traditional Approaches

Though simple constant or bilinear interpolation can be used to interpolate optical flow, methods
specific to flow interpolation also exist. Flow interpolation has traditionally been required when
inferred flow from a lower resolution level needs to be transferred to a higher one in a pyramid
scheme, or sparse correspondences, such as from feature descriptor matches, need to be unified
into a dense flow field. Traditional approaches, employed in variational pyramid schemes include
EpicFlow [59] and RIC [19], which are mainly based on preserving flow discontinuities based on
input frame edges and segments.

Some of these methods could directly be used to upsample the low-resolution flow inferred by RAFT.
However, the approaches are typically not differentiable, preventing losses from being applied on
the upsampling flow. Instead, RAFT can be trained as usual, followed by using the traditional
upsampling method at evaluation time after the model has been trained. Another consideration
is that optimal upsampling depends on the downsampled representation, which can not easily be
learned to fit non-differentiable upsampling strategies.

We propose using RIC, which represents an improvement over EpicFlow, as a possible way to
upsample flow at evaluation time. For this, each pixel in the low resolution flow is regarded
to encode a correspondence of an 8 × 8 superpixel at full resolution. The correspondences are
interpreted to be at the top-left origin of each superpixel, as this experimentally yielded better
results than using the superpixel’s center. We do not use variational refinement after the upsampling,
due to its computational costs and differing function compared to all other upsampling approaches.
Variational refinement or refinement in general could be applied after all possible upsampling
methods, but we regard such refinement to be independent and not part of the actual upsampling
strategy.

4.3.3 Convex Upsampling

The convex upsampling strategy used by RAFT is already a reasonable starting point for an
upsampling scheme, with the benefits mentioned in Section 3.6.4. We propose a modified version
of this strategy that addresses two of its shortcomings.

49

4 Improved RAFT Architectures and Training Procedures

We propose first upsampling the 1
8 resolution flow field to 1

4 resolution via constant interpolation,
resulting in 2 × 2 blocks of the same flow value. Next, a learned 2 × 2 block is added to this flow
for each location in the low-resolution image. Finally, convex upsampling is performed as usual
with the modified 1

4 resolution flow.

This modification limits convex upsampling to a factor of 4 instead of 8, allowing the motion of
objects twice as thin in each direction to be captured. Additionally, the learned blocks added to
the flow are decoupled from the flow used to index the cost volume in each iteration, allowing for
more flexibility of the chosen values. Finally, adding blocks to the low-resolution flow rather than
using learned blocks directly allows the added blocks to be skipped initially, similar to residual
connections. This allows the low-resolution flow to be learned as for the original upsampling, mostly
ignoring the learned blocks initially. Afterwards, the learned blocks can add higher-resolution
details, while still taking the general motion of the larger neighborhood into account.

4.3.4 Flow-based Upsampling

Finally, we investigate completely replacing RAFT’s convex upsampling with a learned approach,
rather than just modifying it. For this, we want to perform convolutions at full resolution, to take
high-resolution information into account without suffering from the artifacts transposed convolutions
introduce. As full-resolution convolutions incur 8 · 8 = 64 times higher computation and memory
costs, we need to limit the complexity of the layers used.

Loosely inspired by UPFlow [43], we replace convex upsampling with flow-based upsampling. This
works by bilinearly upsampling low-resolution flow, followed by warping the upsampled flow by
a learned full-resolution displacement field. For better efficiency, the low-resolution flow can be
sampled with offset grid locations instead.

This operation is similar to convex upsampling, but interpolates between four neighbors instead of
nine, and is not limited to the neighbors directly around the location, but can sample values from
further away. This means that for thin extensions of larger objects the flow values from the main
part of the object can be used, even if they are further away. The upsampling weight count is also
reduced from nine to four.

The displacements used for warping are computed by a residual layer that takes in the part of the
finest level of the encoder feature pyramid and a bilinearly upsampled version of layers derived
from the low-resolution hidden state. By using only few channels and a single residual block,
the overhead of the full-resolution convolutions can be kept reasonable, though runtimes are still
somewhat higher. This approach allows flow values to be taken from further away and incorporates
full-resolution information without introducing artifacts. The concessions due to performance and
lack of cost volume computation may still limit the quality of its results, however.

4.4 Data

The typical optical flow datasets available were introduced in Section 2.4 and pose candidate training
datasets that we can choose from. We restrict our choice of datasets to those which contain the
image aspects of backward flow and occlusions in addition to the input frames and forward flow,

50

4.5 Training

to enable us to evaluate and train using these aspects. This rules out the FlyingChairs dataset [9],
but allows for the FlyingChairsOcc [23] and FlyingChairs2 [24] datasets to be used, which have
essentially the same distribution as the FlyingChairs dataset. We refer to the combination of the
FlyingChairsOcc and FlyingChairs2 dataset as chairs. As FlyingThings3D [47], which we also
refer to as things, only provides occlusions for a subset of the data, we restrict our use of it to the
subset with ground truth occlusions. Unlike RAFT, we do not use the HD1K [32] or KITTI [12,
50] datasets as training data, due to our focus on the Sintel benchmark. We still perform evaluation
on the KITTI15 dataset to provide a point of comparison.

4.4.1 Augmentations

Having both forward and backward flow available allows us to swap input frames and other data
aspects such as flow and occlusions as an augmentation. Augmentations carried over from RAFT
include color, brightness, and saturation changes to both frames, potentially varying between the
frames, and spatial flipping of the input frames and corresponding data aspects.

We do not scale input frames and following ScopeFlow [3] use discrete crops to get images to their
desired resolution, to limit the change in distribution that would arise from scaling images and
continuous crops, as described in Section 2.4.3. The augmentation of cropping introduces additional
occlusions, as parts of the frame that contained correspondences are now cut off. To provide
accurate occlusions for cropped frames, we adjust occlusion masks by marking all locations with
correspondences outside the cropped frame as occluded in addition to the ground truth occlusions
from the dataset.

We normalize input frames before passing them into the network, which is done for the same reason
activations are often normalized using normalization layers and additionally already introduces
simple invariances under global affine value transformations.

4.5 Training

Though we largely follow RAFT’s supervised training procedure, we propose using a different loss
function for better results on benchmarks. We also adjust the iteration count used during training
and tweak the batch size and training iteration steps in order to best make use of our computational
budget.

In contrast to RAFT, we use the EPE as our supervision signal, instead of an L1 loss. This means
penalizing the L2 norm of the difference between the predicted and ground truth flow, rather than
the L1 norm. The EPE metric has the advantage of being rotationally invariant and not favoring any
specific directions, unlike the L1 loss that favors the coordinate axes. It is also the metric used to
evaluate a model’s results for all relevant benchmarks, making it the objective of choice for better
evaluation results. One potential concern with using the EPE loss as the objective function is that
the derivative of the loss with respect to the horizontal and vertical components of the flow output
realized by 2 output channels no longer has constant magnitude and exhibits magnitude changes
for small flow differences. Despite this, the EPE loss is an adequate choice that has also already
been used by the majority of previous supervised methods estimating optical flow using CNNs, as

51

4 Improved RAFT Architectures and Training Procedures

described in Section 3.2.
Our complete supervised loss for predicted flow 𝑑 and ground truth flow 𝑑 thus reads

ℒsupervised = EPE(𝑑, 𝑑) + 𝜆feature · ℒfeature + 𝜆unique · ℒunique, (4.5)

for parameters 𝜆feature and 𝜆unique.

We apply this loss to the flow predictions after each update iteration and use a weighted sum as the
combined loss:

ℒtotal =
1∑︀
𝑖 𝛾

𝑖

∑︁

𝑖

𝛾𝑖 · ℒbase

(︁
𝑑𝑖

)︁
, (4.6)

for 𝛾 > 1, where ℒbase

(︁
𝑑𝑖

)︁
is our supervised loss for predicted flow 𝑑𝑖 for each update iteration

𝑖 ≥ 0. This allows each incremental update to be individually supervised and prevents parts of
the computational graph where gradients are stopped from lacking a supervision objective. The
weighted sum places more importance on the output of later iterations and normalizes the loss
magnitude to be independent of the number of iterations and the specific choice of 𝛾.

Following RAFT, we use the AdamW optimizer with a small weight decay component, stop flow
gradients after each iteration, and employ gradient clipping.

To cope with the constraints of our computational and memory resources, we reduce the number of
unrolled update iterations during training from 12 to 10 and reduce the number of channels used
in the encoders. These changes make experiments more feasible given our hardware, but reduce
the expressive power of the network making direct comparisons with RAFT more difficult, further
details are discussed in the evaluation chapter.

Given a fixed computational budget, the required time to train a network is very similar for different
configurations of iteration count and batch size, as long as the product of the number of iterations
and batch sizes stays the same, given large enough batch sizes and especially when using virtual
batch repetition, that is performing gradient descent multiple times and averaging the gradients
before performing a single parameter optimization step. Larger batch sizes yield a more accurate
estimate of the gradient and can improve the optimization quality significantly, allowing for larger
learning rates to be chosen. On the other hand using smaller batch sizes can lead parameters to
sharper local minima. This motivates re-evaluating which combination of batch size and iteration
count leads to the best learned models for a fixed computation budget or product of batch size
and iteration count. We find that training with larger batch sizes for fewer iterations can lead to
competitive results, even for smaller computation budget. Our specific training configurations and
results leading to our choice can be found in Section 5.2.3.

4.6 Unsupervised Training

Unsupervised training of optical flow estimation models, introduced in Section 3.3, can be performed
using only input frames and does not require ground truth optical flow. This allows overcoming the
significant issues with optical flow training data, as described in Section 2.4. Specifically, the realism
of input frames does not need to be sacrificed in favor of dense ground truth flow fields, and realistic
high-quality training data is available in abundance in the form of video recordings. The importance
of having large amounts of high-quality training data for CNNs makes unsupervised training even

52

4.6 Unsupervised Training

more desirable for CNN-based methods. Further, footage can easily be captured for use cases with
different input frame distributions, whereas obtaining the corresponding ground-truth flow is often
infeasible. This makes extending the method to applications with slightly different distributions
much more tenable with unsupervised training. Finally, unsupervised training allows models to
be fit to data at evaluation time, allowing fine-tuning to the specific distribution later evaluated
on without the need for ground truth flow. Taking the information from the specific inputs into
account can significantly improve the resulting optical flow for those inputs and makes the method
more adaptable. This can even be done in combination with supervised training as semi-supervised
training, or form the basis of online learning, which will be discussed in Section 4.7.

As we aim to estimate high-quality optical flow for realistic video sequences with RAFT-based
architectures, unsupervised training represents a promising approach for the reasons mentioned
above. Additionally, unsupervised methods for optical flow can benefit from and be improved
by applying RAFT’s advancements to unsupervised training. Unsupervised training will also be
required for our subsequent online learning approach, which aims to improve results even further.

Thus, we introduce an unsupervised training approach in this section. Unsupervised loss functions
represent the main difference to its supervised counterpart and will be the main point of discussion
in this section. Such losses typically consist of a photometric loss, a smoothness loss, and a
self-supervised loss, as described in Section 3.3. Following previous CNN-based approaches for
unsupervised learning of optical flow, we also use these three components in our unsupervised loss.
We begin by introducing are photometric and smoothness loss components in Section 4.6.1. Unlike
previous methods that use hand-crafted functions, we instead learn these loss functions to benefit
from the feature-matching capabilities of CNNs.
Following this, we propose our self-supervised loss component in Section 4.6.2. This allows us to
formulate our complete unsupervised loss function in Section 4.6.3.
We end on the note of how we combine this unsupervised loss function with the previous supervised
approach to create a semi-supervised approach in Section 4.6.4.

4.6.1 Learned Losses

Photometric and smoothness losses have previously been chosen to be similar to their variational
counterparts, with UFlow [29] settling on the census photometric loss and first order smoothness
for Sintel or second order smoothness for KITTI. In constrast, we propose learning photometric and
smoothness losses, to allow the loss components to benefit from CNNs’ strength of feature learning,
rather than relying on the invariance of hand-crafted or traditional edge-detection approaches to
weigh smoothness penalization.

We employ CNNs to realize learned photometric and smoothness losses, first training the loss
functions via a meta-loss, that is a loss for optimizing the learned losses. This pretraining is done in a
supervised manner and then followed by unsupervised training of the actual model using the learned
loss functions. This arguably makes our approach involving learned loss functions semi-supervised,
though frame pairs and corresponding flow fields could easily be generated from single frames,
such as described in Section 3.3. Ground truth flow only leaks in form of its derivatives to the
learned smoothness loss and indirectly through warped frames to the learned photometric loss. An

53

4 Improved RAFT Architectures and Training Procedures

additional constraint that learned loss functions should follow is that their magnitudes and gradient
magnitudes should be consistent across different trained loss functions, so that weights for the loss
functions can be chosen independently of the current run.

We realize both learned losses via U-Net architectures. The learned photometric loss passes both
inputs frames through a U-Net with shared weights between the frames to infer feature maps for
each frame. Both feature maps are then normalized and the feature map for the second frame is
then warped by the estimated flow, before taking the L1 distance between the first and the warped
second feature map, averaged across the image, as the photometric loss. The normalization ensures
consistent loss magnitudes across runs.
The learned smoothness loss takes in the first frame and passes it through a U-Net to obtain
location-specific weights for first and second order smoothness. One weight is learned per location
for each entry of the gradient of the flow field realizing first order smoothness and each entry of the
Hessian of the flow field, for second order smoothness. The gradient and Hessian are approximated
using discrete differences and the absolute value of each entry is taken before multiplying with the
learned weights. The final weighted sum is taken as the smoothness loss.

Both losses are trained by evaluating the losses for the ground truth flow 𝑑 and a flow 𝑑 that is
distinct from the ground truth flow, such as the zero flow, or the ground truth flow plus a small
random smooth flow field. The base loss components are

ℒreal = ℒlearned(𝐼0, 𝐼1, 𝑑) (4.7)

and
ℒfake = ℒlearned(𝐼0, 𝐼1, 𝑑), (4.8)

where ℒlearned refers to the learned photometric or learned smoothness loss respectively and 𝐼0 is
the first and 𝐼1 the second input frame. The difference between the real, ground-truth flow field, and
fake, other flow field, loss is minimized, such that the ground truth flow results in small loss values
and the fake flow field in large ones, similar to adversarial losses. Additionally, a small penalty is
placed on the loss magnitude for the real flow field, as a tie-breaker in favor of smaller loss values.
The complete meta loss with regularization parameter 𝜆reg thus reads

ℒmeta = (ℒreal − ℒfake) + 𝜆reg · ℒreal (4.9)

for both the learned photometric and learned smoothness loss, using their respective real and fake
components for their loss.

We use these learned losses as our photometric and smoothness losses. Following UFlow [29], we
limit the photometric loss in unoccluded regions and stop gradients at occlusion masks. Occluded
regions do not feature visibly corresponding objects, making the application of the photometric
loss in appropriate in occluded regions. Stopping gradients at occlusion masks additionally allows
computing occlusions without gradients for better performance and improves overall results, as
reported by UFlow. As occlusion ground truth is not available for unsupervised training, we estimate
occlusions using the forward-backward consistency check described in Section 2.3.2. The estimated
occlusions being inaccurate, especially towards the beginning of training, leads us to weigh down
the photometric loss in occluded regions, rather than completely disabling it. This still allows
proper training, even with slightly inaccurate estimated occlusions.

54

4.6 Unsupervised Training

4.6.2 Self-Supervision

We use self-supervision based on a teacher model and the consistency of flow for transformed input
frames with known transformations. We choose our RAFT-based architecture with an exponential
moving average of the model’s parameters as our teacher model. This limits the impact of feedback
effects and provides a more stable teacher model, while still incorporating parameters from more
recent iterations, allowing the teacher to continually improve.

We use our teacher’s predictions on the original frames as the first part of our self-supervised loss.
Similar to ARFlow [35], we also employ known random geometric transformations that introduce
additional occlusions, and use the EPE loss between the inferred flow field for the transformed frames
and the adjusted flow field of the teacher model as the self-supervision signal. This adds a good
supervision signal for occluded regions, in which the photometric loss can not provide guidance
and a naive self-supervised loss without the introduction of occlusions through augmentation would
provide a worse supervision signal, due to the occlusions for the teacher. Specifically, we deform
the first frame by a random smooth flow field and apply an affine geometric transformation to the
second frame.

We generate random smooth flow fields using independent fractal simplex octave noise for each
channel of the flow field. The affine transformation is realized via random scalings, translation, and
rotations in an interval of parameters. An affine transformation is chosen rather than warping by
a flow field for the second frame, as it is easy to invert an affine transformation and compute the
corresponding flow field. It is also possible to directly invert a flow field, but this is slightly more
involved. The combined flow for the augmented frames can be computed as the combination of the
random flow field used to warp the first frame, followed by the teacher’s predicted flow from the
augmented first to the augmented second frame, followed by the flow for the inverse of the affine
transformation applied to the second frame. Two flow fields can be consecutively combined by
adding the first flow field 𝑑1 to the second flow field 𝑑2 warped by the first flow field:

combine(𝑑1, 𝑑2) = 𝑑1 + warp(𝑑2, 𝑑1). (4.10)

This is equivalent to following a location in the first flow, then following the second flow from the
location prescribed by the first flow.
The resulting combined flow is only valid for locations that do not have occlusions for the first or
the second flow. A simple way of convincing oneself of this is to imagine combining a flow field
and its inverse, that is the forward flow and the backward flow. The combined flow field should be
zero everywhere, but from the forward-backward consistency check we know that this only holds in
unoccluded regions. Following an occluded correspondence from the first flow in the second flow
leads to following a different object, resulting in an incorrect combined flow. The valid mask for the
combined flow can be computed as

combine_valid(𝑑1, 𝑣1, 𝑑2, 𝑣2) = 𝑣1 · warp(𝑣2, 𝑑1), (4.11)

given the valid masks 𝑣1 for the first flow and 𝑣2 for the second flow. The individual valid masks
should be zero in occluded and invalid regions and one everywhere else. Warping returns zero
values for offsets that lie out of frame.

Our self-supervised loss thus consists of two components, based on two signals from the teacher
model. The first signal uses the teacher directly on the input frames to obtain the teacher’s prediction
𝑑teacher. The other first transforms both frames and uses the teacher’s prediction on the transformed

55

4 Improved RAFT Architectures and Training Procedures

frames to compute a combined flow 𝑑teacher,aug, as described above. We use the EPE loss to penalize
deviations from the teachers signal, for the same reason we use it in our supervised loss. The
self-supervised loss component reads

ℒself = 𝜆teacher · EPE(𝑑, 𝑑teacher) + 𝜆teacher,aug · EPE(𝑑, 𝑑teacher,aug) (4.12)

for a flow prediction 𝑑 and parameters 𝜆teacher and 𝜆teacher,aug. The augmented teacher predictions
facilitate guidance for occluded regions, but are not valid everywhere. The teacher prediction on
the unaugmented frames is thus used in addition, as it is valid for all locations.

The self-supervision loss is not applied for the first few iterations and only slowly increased to its
full magnitude over the course of many iterations. This is done, as the model itself is not a suitable
teacher when training first starts and a sudden rather than a smooth introduction of a loss component
can lead to undesirable jumps or even divergence.

4.6.3 Unsupervised Loss

Our complete unsupervised loss thus reads

ℒunsupervised = 𝜆photo · ℒphoto + 𝜆smooth · ℒsmooth + 𝜆self · ℒself + 𝜆unique · ℒunique, (4.13)

where ℒphoto refers to our learned photometric loss, ℒsmooth to our learned smoothness loss. Each
component is given its own weight parameter 𝜆. It incorporates the previously introduced uniqueness
loss, but does not use the feature loss as it requires ground truth optical flow. The unsupervised loss
is applied to the predicted flow after each iteration, in exactly the same fashion as is done for the
supervised loss.

We employ a variant of boundary dilated warping [44] for the photometric and self-supervised
loss. This functions by warping an image with a margin around the augmented cropped image,
and cropping the image down to its expected size after warping. It effectively removes occlusions
caused by corresponding locations lying outside of the cropped region. This allows the photometric
loss to provide guidance in occluded regions and can improve the teacher’s flow prediction in the
self-supervised component, due to more information being available. We choose to only add small
margins rather than using full frames to limit the computation overhead while still allowing for a
degree of additional information to be incorporated.

4.6.4 Semi-Supervised Training

We extend our unsupervised approach to a semi-supervised approach by first training on datasets
with available ground truth using the supervised approach, followed by training in an unsupervised
manner on the dataset that should be evaluated. This allows the model to learn from high-quality
ground truth flow and receive better guidance than typically possible with unsupervised losses
as well as being able to fit to the dataset used for evaluation without requiring any ground truth
with the unsupervised loss. The model trained via supervision provides an excellent starting point
for the teacher model of the unsupervised approach. This limits the bias otherwise introduced by
the unsupervised loss for a poorly-performing teacher model. Combining the strengths of both
supervised and unsupervised approaches in this fashion can improve results beyond what would be
possible using only supervised or only unsupervised training.

56

4.7 Online Learning

4.7 Online Learning

Online learning or test-time training is the process of fitting a model to the data it should be evaluated
on before the model is used to perform the actual evaluation on those inputs. Alternatively it can
also mean to continuously learn from predictions and potential feedback while a model is deployed.
We restrict ourselves to the former angle, that is fitting a model to data before evaluating on it.
Much like for unsupervised training, there is no ground truth available for the data at this time, but a
larger set of potentially related inputs may be available before having to evaluate the model on each
of the inputs. For the problem of optical flow, it is common to receive a sequence of consecutive
frames all taken from the same video and be given the task to estimate optical flow for each pair of
consecutive frames in the sequence, which is the case for many optical flow benchmarks including
Sintel. This allows exploiting additional information from other frames in the sequence on top of
fitting to a pair of specific input frames when evaluating on each consecutive frame pair.

We aim to improve RAFT-based models using online learning and present our approach to do so
in this section. We begin by discussing multi-frame approaches in general in Section 4.7.1. This
includes RAFT’s warm-start, which is a simple multi-frame approach, and previous approaches that
can incorporate information from multiple frames.
Having introduced these previous approaches, we can present our approach to online learning in
Section 4.7.2. We describe how our model is trained and online flow predictions are obtained.
Finally, we explain how we combine our online predictions with the pretrained predictions in a
fusion approach in Section 4.7.3. This is done to adaptively select the best predictions from both
the pretrained and online flow. It allows incorrect predictions both from the pretrained flow that
lacks context and the online flow that lacks a direct supervision signal to be mitigated.

4.7.1 Multi-frame Approaches

RAFT itself takes multi-frame information into account at evaluation time with so-called warm-starts
by taking the estimated forward flow field of the previous frame pair, warping it by itself, and using
the warped flow field as the initial flow field for the next frame pair. Assuming constant projected
velocities, this would yield the correct flow at all non-occluded locations. This does not typically
yield a dense flow field due to warping and occlusions and is also generally not the correct flow field
due to non-constant projected velocities, but still typically yields a better initial estimate than the
zero flow field. It should be noted that this approach only takes one additional frame into account
and could be improved by using the negative backward flow from the current first frame to the
previous frame as initialization instead, as this yields a dense estimate and would still be correct
at all locations assuming constant projected velocities. In our modified warm-start we use this
negative backward flow instead of the warped previous forward flow.

A previous approach involving CNNs and online learning is ProFlow [46], which learns a small
CNN from scratch that predicts the forward flow from the backward flow to the previous frame,
using selected samples from initial flow estimates as training data and combines the initial and
predicted flow into a final flow prediction along with some post-processing. This approach also
only uses one additional frame as input and can be seen as transforming the previous backward flow
into the predicted forward flow using a learned transformation, rather than just using the negative
previous backward flow as the estimate for initialization as with the previous example, allowing it to
take non-constant velocities into account.

57

4 Improved RAFT Architectures and Training Procedures

Though multiple frames in a sequence can be taken into account during normal training on a dataset
with longer sequences, such as FlyingThings3D, by constructing a cost volume spanning multiple
frames [27, 80] or adding temporal connections to a model [52, 14], we do not pursue this approach
directly due to the added complexity and computational and memory cost. This is also true for a
more recent approach [28] that learns to complete missing parts of the cost volume in RAFT, but
requires a large amount of memory.

4.7.2 Our Approach

One additional consideration for online learning is that the learned model will only be used for
inference on a specific known sequence of frame pairs, making overfitting to that specific sequence
or even frame pair a legitimate strategy. In the latter case, one essentially optimizes a single
flow field, similar to variational methods, but instead of directly parametrizing the flow field, one
optimizes the flow field through a parametrized model, which potentially makes for more well-posed
optimization and allows for initial parameters from a pretrained model to be used for better results.
This view motivates the introduction of additional inputs to a model, such as the coordinates for
each frame position as a grid and the times of the frames in the sequence, effectively removing the
translational invariance of convolutional layers, but allowing for specific characteristics of the flow
field at certain locations or points in time to be captured by the model. Nevertheless, overfitting
might still pose a problem for online training when the distribution being fit to differs from the
distribution used for evaluation. This can also be the case when the training data used is low-quality,
such as when it originates from bad initial flow estimates.

Though it is possible to follow ProFlow and design a separate model that is trained from scratch for
online training, we instead choose to fit our pretrained architecture to specific sequences and frame
pairs, motivated by the success of online training of pretrained models using consistency constraints
across frame pairs in a video sequence demonstrated in [45]. Although online training could be
restricted to certain parts of the network by freezing the parameters for certain components, we
allow all parameters to be trained to allow adjustments to be made to all parts of the architecture.
As no ground truth is available, a simple candidate for an online loss would be the loss used for
unsupervised training, which is directly applicable, but does not take multi-frame information into
account.

We perform our online training by fitting a pretrained model to a single sequence using an online
loss. For our online loss, we use our photometric and smoothness losses as they appear in our
unsupervised loss and replace the self-supervised loss with direct supervision using the pretrained
model as a teacher and a multi-frame consistency loss, that takes in three possibly non-consecutive
frames and penalizes deviations of the combined flow from the first to the second and the second to
the third frame to the flow directly from the first to the third frame. It reads

ℒconsistency = EPE(combine(𝑑1, 𝑑2), 𝑑12), (4.14)

where 𝑑1 is the output of the online model for the first and second frame and 𝑑2 the output for
the second and third frame, while 𝑑12 comes from the pretrained model given the first and third
frame.

We select frame triples randomly from the sequence, but ensure that they are either in correct
or reverse temporal order and are not more than a fixed number of frames apart, which depends
heuristically on the average flow magnitude for the sequence, determined via the flow predictions

58

4.7 Online Learning

of the pretrained model. We perform base flow and occlusion estimation at full resolution using
the pretrained model, whereas other loss components are calculated on cropped versions of the
frames.

Flow-combination is done as for unsupervised training and only holds in transitively non-occluded
regions. As the consistency loss does not hold everywhere, we still add teacher supervision through
the pretrained model as follows

ℒpretrain = EPE(𝑑1, 𝑑1) + EPE(𝑑2, 𝑑2), (4.15)

where 𝑑1 and 𝑑2 are the predictions of the teacher model given the first and second, and second and
third input frame, respectively.

Although even the consistency loss on its own already allows improving results via online learning,
adding pretrained teacher supervision and photometric and smoothness losses can yield further
improvement. Our overall online loss is thus defined as

ℒonline = 𝜆photo · ℒphoto + 𝜆smooth · ℒsmooth + 𝜆consistency · ℒconsistency + 𝜆pretrain · ℒpretrain. (4.16)

Due to the high memory requirements of our online approach, we only apply the photometric and
smoothness losses for the flow prediction of the final iteration, all other loss components are applied
to all iterations’ outputs as a weighted sum in the same way as for our supervised and unsupervised
loss.

We additionally supply the network with inputs stating the grid positions of the frame crop and time
for both frames in sequence. We use the negative backward flow to the previous frame using the
pretrained model as initialization for both the pretrained model and the online model.

4.7.3 Flow Fusion

The flow estimated by the online model may yield better results after fitting to the data to be
evaluated on, or might be outperformed by the pretrained model, which had better loss guidance
and a more balanced dataset to train on. To improve evaluation results as much as possible, we only
want to use the flow estimated by the online model if it outperforms the pretrained model. This can
either be done by binarily choosing one of the flow fields based on a metric, or combining both
flow fields, potentially using the pretrained prediction at some location and the online prediction at
others. As ground truth is not available, an alternative metric that approximates it needs to be used
for selection. A simple candidate for this could be based on photometric and smoothness losses for
the flow field, which are already available. This may however be a poor choice if the same loss
functions were already directly used to train the online network.

We propose a flow fusion strategy that combines two or more flow fields into a single prediction,
attempting to select for the best prediction available at each location. A cost image is constructed
for each input flow that uses a photometric loss, specifically our learned photometric loss, which is
smoothed spatially to limit irregular selection of pixels different from their neighborhood, likely
signaling outliers. Incorporating smoothness in this manner allows to independently pick the flow
with minimal cost at each location, rather than having to perform more costly optimization necessary
when smoothness losses are incorporated into the cost directly. In occluded regions all costs other
than that of the base flow are penalized, as the photometric loss is likely to not hold in these regions.

59

4 Improved RAFT Architectures and Training Procedures

After discounting the cost of the base flow estimate by a constant, to break ties in favor of the
pretrained flow and only use online flow if it improves cost beyond a certain threshold, the flow
with minimal corresponding cost is selected at every location as the fused flow. The overall cost for
a flow candidate 𝑑𝑖 and input images 𝐼0, 𝐼1 is

𝐹𝑖 =
(︁
𝐾𝜌 * ℒphoto(𝐼0, 𝐼1, 𝑑𝑖)

)︁
+ 𝑡𝑖, (4.17)

where 𝐾𝜌 is a gaussian kernel with standard deviation 𝜌 that is used to spatially smooth the cost
volume via the convolution operator *. The additive component 𝑡𝑖 penalizes occluded regions for
flows other than the pretrained flow candidate 𝑑0 and discounts 𝑑0 by the constant threshold. The
fused flow is chosen as the flow candidate with minimal cost 𝐹𝑖 for each location, which can be
approximated by using a softmin function, which smoothly approximates arg min, to make the
operation differentiable.

This fusion procedure can also be applied to arbitrary flow candidates and can improve results
beyond simply selecting one of the candidates. It is however limited by the quality of the photometric
loss used, only incorporates smoothness in a limited fashion, and suffers in occluded regions.
Nevertheless, it is generally better than constantly selecting either the pretrained or the online flow
and thus serves our purpose well enough.

Chapter Outlook

Having proposed many different changes, variants, and extensions to the RAFT method, we want
to investigate whether the proposed changes actually represent improvements, which combination
of different variants gives the best results, and how our extensions of RAFT for unsupervised
learning and online learning fare against previous approaches for these tasks. In the next chapter,
we perform an evaluation of our method to investigate and answer these questions by obtaining
performance results of our variants on optical flow benchmarks and comparing and interpreting the
results amongst themselves and with previous literature.

60

5 Evaluation

In the previous chapter, we introduced modifications to and extensions of RAFT, with the aim of
improving the quality of the estimated flow for realistic video sequences. Many of the proposed
changes may seem reasonable and likely to improve results. However, the complexity and opacity of
the impact of changes to NN models necessitates implementation of the method and measurement
of the method’s results to determine whether those changes actually lead to an improvement. Using
any of the proposed changes in models or even practical applications is not advisable if they have
not been shown to lead to improvements over the original RAFT method and other previously
published approaches. We thus perform an evaluation of our methods, to determine to which extent
the aim of our work has been met by our presented modifications.

In this chapter, we investigate the efficacy and usefulness of our previously proposed changes. We
do so by evaluating the results of an implementation of our method on benchmarks for optical flow
estimation. We also attempt to interpret these results and try to determine why certain variants
perform better than others.
We begin by detailing our evaluation methodology in Section 5.1. It motivates and explains in
concept how we measure the overall result quality of a variant. This ranges from training a model,
over evaluating on a dataset, to summarizing the results in a few numerical values that can be used
for comparison with other variants.
Next, we go into more detail of our implementation and evaluation in Section 5.1. This includes
implementation details and parameter choices, as well as specific details of the training procedure
and system configuration used to run our implementation. We include these details to make our
results more comprehensible with knowledge of this background and provide specific parameter
values to make our results more reproducible.
We close the introductory part of the evaluation by mentioning a number of caveats in Section 5.3.
Though we do not believe that these completely undermine or invalidate our results, they should be
kept in mind for the rest of the evaluation. This allows to critically examine our evaluation and
determine whether the presented interpretations are actually supported by the numerical results, to
prevent incorrect conclusions from being drawn.
We move on to present our results and begin with our supervised results and a baseline ablation
study in Section 5.4. It focuses on the baseline modifications proposed in Section 4.1 as well as the
different choice of supervised loss function. As this is the first time we present actual results of our
work, we also add a few notes on our results in general.
Following this, we evaluate our proposed changes to the cost volume in Section 5.5. We investigate
the effect of the different possible normalization strategies and choice of matching cost function.
Next, the different possible upsampling strategies are compared in Section 5.6. This spans the
traditional upsampling approaches including RIC, as well as learned upsampling strategies in the
form of convex and flow-based upsampling.
We then evaluate our unsupervised approach in Section 5.7. This includes comparing our learned
losses with traditional photometric and smoothness losses, as well as semi-supervised training.

61

5 Evaluation

Our online learning approach and its results are then examined more closely in Section 5.8.
We compare how the incorporation of multi-frame information affects results for our modified
warm-start and multi-frame consistency-based online training.
Having evaluated all of our individual modifications, we finally compare our methods with the
original RAFT method in Section 5.9. We examine the merit of our different categories of changes
and look at the overall impact of our combined changes. This will allow us to formulate our
conclusions in the next chapter.

5.1 Methodology

Our aim with this work is to create a method for optical flow estimation that infers high-quality
optical flow for realistic video sequences. As detailed in the introduction of Chapter 4, we choose
the Sintel dataset [6] as a stand-in benchmark to measure. Choosing such a stand-in metric is
required to allow quantitative evaluation of different variants against each other. Of the publicly
available datasets for optical flow, the Sintel dataset is one of the most realistic and challenging
benchmarks, making it a suitable choice. We also include results on KITTI15 [50] as a point of
comparison, but do not focus on these results. The KITTI-specific metric Fl-all describes the
percentage of locations with EPE larger than 3 or have an EPE error of more than 5%.
The Sintel dataset consists of a number of different sequences. Each sequence consists of 20 to
50 frames that are consecutively sourced from the same scene at constant frame rate, without any
drastic visual discontinuities or cuts. The benchmark provides a training split, for which ground
truth forward flow is available in addition to the frame sequences, and a test split, which only
contains the frames of sequences. As evaluation for the test split is locked off behind a restricted
submission system, we evaluate on the training split.
To ensure that our results generalize ion a meaningful way, we do not use Sintel ground truth flow
during training in any way. Leaking ground truth flow in such a way could lead to the model merely
memorizing previously seen information rather than actually estimating optical flow and make the
corresponding results invalid. The sequences frames on the other hand, can optionally be given to
the model before evaluation. This would also be possible for the test split and other datasets as well.
When inferring optical flow for videos recorded in advance, methods are also able to access this
information. For realtime estimation of optical flow, this would instead be limited to examining past
frames. Thus, access having access to input frames before evaluation does not make results invalid
or limit their ability to generalize.
We use the EPE as the error metric, which also chosen for public results on the Sintel benchmark
and was used as an error metric for optical flow throughout this work. We specifically measure the
average EPE between the predicted and ground truth flow of across all forward frame pairs of the
entire dataset. All reported EPE figures are rounded to two decimal places, unless explicitly stated
otherwise. We train models from scratch and report evaluation results either after every individual
step of the training schedule or only once after all steps of the training schedule have finished, for
brevity. We use 32 update iterations during evaluation. All results use our modified warm-start
described in Section 4.7.1, unless otherwise noted. We will use the shortcut C for the chairs datasets,
T for things, and S for Sintel. The combination C + T denotes first training on chairs, followed
by training on things, and similarly for other combinations. Two consecutive entries for the same
variant, such as C and C + T denote that the parameters from the training run on chairs were used
to initialize the parameters for the subsequent things training, rather than runs being independent.

62

5.2 Configuration Details

We have to perform all training and evaluation runs within our limited computational budget.
Iterating on designs and performing evaluation for many different variants requires performing
many training runs. To fit these runs into our computational budget, we have to limit the amount of
time a single run takes. We do so by limiting our model complexity and training complexity. This
means that our results are no longer directly comparable to RAFT, but this allows us to perform
iteration and sufficient evaluation in the first place, which we prioritize.

5.2 Configuration Details

We now give more details about the specific implementation of our method. We include this
information to aid reproduction of our results and give more insight into how the results were
obtained. This includes technical details and the more specific details of the architecture, as well as
parameter choices previously only mentioned symbolically. We also go over how our training is
performed, including details on the underlying hardware. We end by presenting our most commonly
used training schedule, used to obtain the majority of our results, and explain why we settled on this
specific schedule.

5.2.1 Implementation Details

We implement our approach using the PyTorch framework [57].

For the forward-backward consistency check, we regard locations as fully occluded for distance
inconsistencies greater than 10 and fully unoccluded for a discrepancy of 0. When using non-binary
occlusions, we linearly scale this relationship. This means that a distance of 5 is associated with
an occlusion value of 0.5, meaning the location is “half occluded”. When only applying loss
components in non-occluded regions we do so by multiplying the loss with (1− 𝑜) for the occlusion
mask 𝑜 at each location, and divide the average result by the average value of the mask we multiplied
by. The same is done for valid masks.

We remove variational refinement from RIC, and otherwise leave all of its parameters at their default
values.

5.2.1.1 Architecture

Our convolution block consists of symmetric reflection padding, with padding of size
⌊︀
𝑘
2

⌋︀
at all four

image edges for uneven kernel size 𝑘. Our default kernel size is 3. This is followed by a convolution,
which is optionally strided with stride 2 to achieve downsampling. Biases are dropped if the block
contains a normalization. This is followed by an optional activation, which is set to be a LeakyReLU
activation by default and finally an optional normalization layer. We use instance normalization
as the normalization layer in all instances other than our feature normalization and neighborhood
normalization. The latter utilize group normalization with a single group for all channels.

Our residual blocks consist of two convolution blocks and an optional additional convolution. The
first convolution block takes in the input channels and outputs an intermediary amount of channels.
The intermediary amount of channels is chosen to be the minimum of the input and output channel

63

5 Evaluation

count by default. It is followed by the second convolution block, which takes in the intermediary
channels and outputs the preliminary output channels. It optionally applied a downsampling factor
of two and does not contain an activation or a normalization layer. The original input is used as
the skip input, if the input and output layer count are identical and no downsampling is performed.
Otherwise, a bias-less and optionally strided convolution is applied to the input to obtain the
skip input. The skip input is added to the preliminary output, after which a final activation and
normalization layer are applied. This yields the output of the residual block.

All U-Net architectures have configurable depth and apply begin by applying a single convolution
block with kernel size 1 to obtain an input with the desired number of channels. It then applies a
configurable number of residual blocks with kernel size 3 on the narrowing encoder part, by default
this is only a single residual block. The first residual blocks performs downsampling by factor 2.
The skip input is taken as the output of the last output of a convolution block for each possible
resolution. The decoder part bilinearly upsamples the previous output by a factor of 2, concatenates
the corresponding skip input, and passes the result through a convolution block with kernel size 3
on each level. The final convolution block does not contain an activation function or normalization
layer, to allow for arbitrary output distributions.

Our feature and context encoders are designed in the same way as the contracting part of the
U-Net, using the lower-resolution output as their final output. The skip inputs at each resolution are
optionally accessible, which is later used for our flow-based upsampling. We use only one residual
block per level by default, and use a kernel size of 3. We use channel counts max

(︀
𝑐

4𝑑−𝑖 , 8
)︀

at level
𝑖, for total depth 𝑑 and final output channel count 𝑐. Following RAFT, we use 𝑐 = 256, though the
resulting channel counts on the other levels differ.

We replace all ReLU activation functions with LeakyReLU. We add a skip connection to the
ConvGRU by passing its input through a convolution with kernel size 1 to adjust layer counts
and add this to the final output. We add a convolution that skips over the two consecutive flow
convolutions in the motion encoder. We replace the flow decoder with a residual block without
norms or final activation.

We use our L1-based cost function for cost volume computation, unless otherwise specified. We
employ both feature and neighborhood normalization, unless otherwise specified.

Our modified convex upsampling adds eight output channels to the original mask block to obtain
2-dimensional flow values for each 2 × 2 block. Unlike RAFT, we do not multiply the mask
output by a factor. Our flow-based upsampling instead utilizes a residual block with kernel size 5
without normalization that outputs 4 channels. These channels are then bilinearly upsampled to
full resolution and concatenated with the first four full-resolution output channels of the feature
encoder. This is then passed through another residual layer with kernel size 9 without norms or final
activation and the output is used as the flow displacements, used to sample the original upsampled
flow. We utilize our modified convex upsampling, unless otherwise specified.

Our GOCor-inspired transformation first concatenates both feature maps and reshapes them to
consist of two channels and treat every feature dimension the same. The first feature channel
corresponds to a channel in the first feature map and the second in the second for each dimension.
We pass this through a residual block with kernel size 5, 2 input, 4 intermediary and 2 output
channels. After reverting the reshaping, the features are further processed as usual.

64

5.2 Configuration Details

Our learned losses are both based on U-Nets with depth 2. The learned photometric loss uses 2𝑖+2

channels on level 𝑖 and 8 output channels, whereas the learned smoothness loss uses 2𝑖+1 channels
on level 𝑖 and 10 output channels. The learned weights for the smoothness loss are obtained by
applying the function 𝑥 ↦→ 𝑒−|𝑥| to each output channel.

We disable photometric augmentations in the form of hue, saturation, and brightness changes for
unsupervised training, to make the distribution of the images from the training data more in line
with that of the test set. Photometric augmentations are still used when training our learned losses
on things.

Components otherwise unmentioned in this work are consistent with the original RAFT implemen-
tation.

5.2.1.2 Parameters

We choose our loss parameters as follows: 𝜆feature = 𝜆unique = 0.1, 𝜆reg = 0.001 𝜆teacher = 0.2,
𝜆teacher, aug = 0.8, 𝜆photo = 𝜆smooth = 1, 𝜆consistency = 1, and 𝜆pretrain = 0.1. We scale 𝜆self linearly
from 0.0 to 1.0 over the first 10k iterations after the first 1k iterations. Before that, we linearly scale
it from 0.0 to 1.0 over the first 100k iterations after the first 100 iterations. If these two schedules
are conflicting, we take the maximum, and limit it to the range [0, 1]. We use 𝛾 = 1.2 for our online
loss, and 𝛾 = 1.05 otherwise.

For AdamW, we use a weight decay of 10−4. We use a learning rate of 8 ·10−4 for training on chairs,
and a learning 2 · 10−4 for finetuning on things and Sintel. These learning rates are approximately
four times larger than those used in RAFT, allowing for faster learning in combination with the
larger batch size, similar to [64].

5.2.2 System Configurations

We use two different systems for our experiments which we will refer to as H1 and H2. The H1 system
features a single NVIDIA GeForce RTX 2080 Ti GPU, while H2 uses a single NVIDIA GeForce
RTX 3090 GPU. Both machines are only bottlenecked by GPU performance and GPU memory,
making the specific CPU and memory details less relevant, as they more than keep up with the
GPU’s computations for both machines. Due to the specific configuration of H2, the PyTorch JIT
had to be disabled when running on it, impacting both runtimes and memory usage negatively and
generally making training times between the systems incomparable, even if the hardware differences
were to be overlooked. We use H1 for most of our runs and use H2 predominately for unsupervised
training, which has higher memory requirements and benefits from the additional GPU memory.

5.2.3 Training Configurations

We use a learning rate of 8 · 10−4 when training on chairs and 2 · 10−4 on things and Sintel, unless
otherwise specified. We use a separate OneCycleLR learning rate schedule on each dataset, which
has a factor of 100 between the minimum and maximum learning rate and reaches its maximum
after 20% of the total dataset iterations.

65

5 Evaluation

Our basic training schedule is as follows: We train on chairs with an image size of 256 × 256 and a
batch size of 24 for 10k iterations, followed by training on things with an image size of 384 × 384
and a batch size of 6 for 10k iterations. These are chosen such that training with half the batch size
and the given crop size is possible within H1’s GPU memory, and batches are virtually repeated
twice. We use this training schedule, unless explicitly stated otherwise.

As discussed in 4.5, we choose the batch size and iteration count by comparing the results and
training times for different iteration counts and batch sizes. A set of different configurations and
their results can be seen in Table 5.1. We settle on our basic schedule by picking an option that has
low training time, but still gives good results.

Iteration
count

Batch size
factor

Training
duration

Sintel train EPE

Clean Final

10k 1 3.6h 2.32 3.42

10k 2 6.8h 2.08 3.32

10k 4 13.1h 2.05 3.22

20k 2 13.3h 1.99 3.30

Table 5.1: Overview of results for different batch sizes and iteration counts. Models are trained
using our basic training schedule, the base batch size is 12 for chairs and 3 for things.
The used batch size is calculated as the base batch size multiplied by the batch size
factor. The same noted iteration count is used for both training on chairs an things. This
means that our chosen training configuration corresponds to 10k iterations and a batch
size factor of 2. Results are obtained after training on both chairs and things and the
total training time is noted as the training duration. All runs were performed on H1.

For unsupervised and semi-supervised training, we additionally train on Sintel with an image size
of 256 × 218, which is exactly a quarter of the frame size, and a batch size of 12. For unsupervised
training, we reduce the batch size when training on chairs from 24 to 12 in order to keep training
times reasonable, as unsupervised training requires longer training times. We only train on input
frames from the Sintel train split for all of our methods, though results could potentially be improved
by incorporating frames from the Sintel test split when training without ground truth flow labels.
However, this would change the setting and invalidate our results on the Sintel train split to a certain
extent. We do not choose to do so, as a result.

Pretraining is done using the things dataset with an image size of 512 × 512 and a batch size of 24
for 5k iterations. This is again chosen to fit into GPU memory. We use a learning rate of 8 · 10−4 for
the photometric loss and 8 · 10−3 for our smoothness loss, with our typical OneCycleLR learning
rate schedule. When evaluating on the Sintel test split, one could train using the Sintel train dataset
instead, likely allowing for better results to be achieved.

Online training is done on the Sintel dataset with an image size of 256 × 218 and a batch size
of 12 for 300 iterations per sequence. We use a learning rate of 5 · 10−4 and follow our typical
OneCycleLR learning rate schedule.

66

5.3 Caveats

5.3 Caveats

Note that in most cases, only the result of a single training run is reported. As weight initialization,
data sampling and augmentations, and other details including non-deterministic implementation of
network layers all introduce non-determinism into training, there can be some variance of results
between different training runs. This means that small differences in results between different
variants may be the result of stochastic fluctuations between runs rather than actual improvements
caused by the modifications of the variant. Ideally one would repeat the same training run many
times in order to get a more accurate representation of the expected results and be able to estimate
the magnitude of fluctuations between runs. We were not able to do so in all cases, due to our
computational and time budget, necessitating more scrutiny to be applied when comparing similar
results for different variants. For variants that we were able to perform more training runs of, we
find that the run-to-run variance for Sintel results is typically below 0.2 EPE, often below 0.1 EPE
or even lower. This is measured after completing the training on both chairs and things, but is not
dissimilar, though sometimes more pronounced, for training runs on chairs only.

Though some effort was put into adjusting the overall learning rates, not all hyperparameters were
tuned, and hyperparameters were not tuned for specific variants. This means that results should fall
short of those achievable for models with proper hyperparameter tuning and certain variants might
happen to benefit more from the specific hyperparameters than others, which may lead to skewed
results between different variants.

Our changed approach to training and evaluation, mainly aimed at reducing the computational
effort required for a single training run, also prevents a large number of runs from being directly
comparable with RAFT’s original results or other results in previous literature. Our results are still
internally comparable amongst themselves. We instead reduce the computational effort used to
train RAFT, to make it more comparable with the computational budget we use. Comparing the
results of this more limited version of RAFT against our results can help compare our method to
RAFT when using a fixed computational budget. Though it seems reasonable that improved results
should scale given a larger computation budget, this is not guaranteed or verified experimentally.
We go into more detail on this in our overall comparison with RAFT in Section 5.9.

We evaluate on Sintel train without ever using Sintel ground truth flow during training. For
supervised training, we also do not use Sintel input frames, meaning that we use no data from
the Sintel dataset during training. For unsupervised, semi-supervised, and online training, we
additionally use Sintel input frames during training. We believe this to be valid, as even in real-world
unsupervised settings, input frames are available for use. When performing optical flow estimation
in real time, this is only true for past frames. It should be noted that we evaluated on Sintel when
iterating on our proposed modifications. Though our learning rate is unaffected, design choices
such as the layer count, training configurations, and some modifications themselves were decided
on after observing their impact on Sintel train evaluations. This means that through our iteration,
we may have inadvertently overfit to the Sintel train dataset, potentially leading to our results not
generalizing well to other datasets. We do not believe that this is too much of a source for concern,
as we only tested few, reasonable configurations for each decision, and it is difficult to completely
overfit on a dataset as complex as Sintel by choosing from only tens of possible configurations.
Nevertheless, this should be kept in mind when looking at our Sintel train results. Our evaluation
results on KITTI are legitimate, as we do not use any KITTI data during training and did not
extensively evaluate on KITTI during iteration.

67

5 Evaluation

5.4 Baseline Ablation Study

We begin by examining our supervised results. Visual results of our supervised approach can be
found in Figure 5.1. In addition to showing numeric results for our supervised approach, we also
investigate whether our baseline changes actually yield improved results. We do so by performing
an ablation study, which replaces or removes individual components and observes the effect on this
change on results. If removing a component leads to noticeably worse results, we conclude that the
component was important for the model to achieve good results. This allows us to estimate the
importance and effect of individual components and can be used to judge whether these individual
changes are worthwhile. As the number of training runs we can perform is limited, we focus on
ablation variants for changes with unpredictable or presumably large impact. In particular, we do
not perform individual ablation studies for seemingly straight-forward and low-impact changes,
such as the change of activation functions or the feature and uniqueness loss components. The
combined effect of all of our modifications can still be seen when comparing the results of our full
method to RAFT.

(a) First frame (b) Ground truth flow

(c) EPE visualization (d) Predicted flow

Figure 5.1: Sample visual results for the Sintel dataset. The results come from a model trained on
chairs and things using our basic training configuration. The maximum flow magnitude
is kept consistent across visualizations. In the EPE visualization, black corresponds to
an EPE of 0 and bright yellow to an EPE of 10. The values in between vary linearly
with lightness.

Table 5.2 shows the results of an ablation study concerning our proposed baseline modifications
proposed in Section 4.1 and choice of supervised loss function. We specifically compare the
results of our full supervised approach with a variant that drop the or skip connections, as well as a
variant that replaces the EPE loss component of our supervised loss with an L1 loss. The original
RAFT implementation is used to obtain results with our used batch size, image size, and iteration
count. We use RAFT’s original learning rate for its run. RAFT’s results are reported without its
warm-start, as it makes results worse in this case. Note that RAFT’s warm-start makes results

68

5.4 Baseline Ablation Study

Variant Training
schedule

Sintel train EPE KITTI15 train Parameter
CountClean Final EPE Fl-all

RAFT (2-view) C 2.95 4.01 12.97 36.88%
5.3M

C + T 2.57 3.74 10.62 33.15%

Ours (supervised) C 2.54 3.79 12.73 40.39%
3.7M

C + T 2.03 3.33 11.63 38.85%

Ours w/o update
skip connections

C 2.96 4.16 14.45 46.57%
3.6M

C + T 2.62 3.86 15.10 48.29%

Ours w/ L1 loss C 2.44 3.61 11.89 34.70%
3.7M

C + T 2.02 3.34 10.79 34.22%

Table 5.2: Results of the baseline ablation study. Bold entries mark the best result in each column.
We abbreviate with as w/ and without as w/o. The original implementation and learning
rate is used for RAFT, otherwise all runs follow our basic training configuration. All
models were trained with supervised loss functions and all runs were performed on H1.

slightly worse even for the original results on the Sintel train split. An evaluation of the different
warm-start procedures can be found in Section 5.8. By obtaining results on RAFT using our training
configuration, we can more easily compare the original method to our approach. Note that RAFT
still uses more update iterations, parameters, possibly better augmentation, and more computational
power overall, meaning that results are not completely comparable, but as comparable as they can
be for the original RAFT method.

For the introduced skip connections, one can observe that the EPE increase when the modification
is removed. This suggests that the usage of these extra skip connections noticeably improve results.
This is in line with our aim and expectations when proposing extra skip connections in, based on
the findings of [16].

When comparing the choice of supervised loss, we notice that results for both the EPE loss and L1
loss lie fairly closely together. The L1 loss seems to slightly outperform the EPE loss, which is
especially noticeable for the KITTI results. Though this does not definitively show that the L1 loss
is a superior choice in this case, due to the difference between the results falling well within the
margin of error, we believe that this is likely to be the case. This would explain why RAFT chose
the L1 loss over the EPE loss that previous methods went with. A possible explanation for this is
that the gradients of the L1 loss function are more suitable for the chosen parametrization of the
optical flow field. The flow field output is parametrized as the vector component in x-direction and
the vector component in y-direction, each represented by an individual output channel. The L1 loss
directly and independently penalizes deviations of these components between the predicted and
ground truth flow. It also leads to constant gradient magnitudes, regardless of the magnitude of the
difference between flows. For the EPE loss on the other hand, the penalization of each individual
channel depends on the value of the other channel, as do gradient magnitudes. As the EPE loss is

69

5 Evaluation

rotationally invariant and used as the metric to evaluate on benchmarks, this is still surprising, but
could reasonably explain the difference in results. Nevertheless, both losses seem viable and can
achieve good results, meaning that the EPE loss is still a viable supervision signal choice.

The comparison with the original RAFT method shows that our supervised results on Sintel are
noticeably better when using the training configuration that fits our computational budget. This is
in spite of the RAFT model being more complex and actually more computationally expensive even
in this configuration. We also note that our results are better than the reported results for the RAFT
small configuration. The computational effort required to obtain our results is smaller than that for
RAFT small, but our model is still more complex and the small configuration does not appear to
have been the main focus of RAFT. We go into a more detailed comparison between the original
method and our approach in Section 5.9.

(a) First frame (b) Second frame

(c) Ground truth flow (d) Sparse predicted flow

(e) EPE visualization (f) Dense predicted flow

Figure 5.2: Sample visual results for the KITTI15 dataset. Note how the reflections on the
windshield of the moving car to the left cause the model to incorrectly match locations
with similar brightness. The results come from a model trained on chairs and things
using our basic training configuration. The maximum flow magnitude is kept consistent
across visualizations. In the EPE visualization, black corresponds to an EPE of 0 and
bright yellow to an EPE of 20. The values in between vary linearly with lightness. As
the EPE is clamped to be at most 20, bright yellow areas may also correspond to larger
EPE values.

70

5.5 Cost Volume Processing

5.4.1 A Note on KITTI Results

Although we did not intend to focus on KITTI results, we find the achieved results very surprising.
They indicate very poor performance on KITTI data, compared to the respectable performance on
Sintel. The Fl-all metric in particular does not match up with what would typically be expected.
As Sintel results are good without having used any Sintel training data, and training losses on
chairs and things are reasonable, we do not believe that this is caused by catastrophic overfitting
on Sintel. We suspect that this may be caused by the difference in distributions between KITTI
and Sintel. RAFT reports significantly better results on KITTI, but our results for RAFT using our
configuration are similar to those we obtained. As the results were obtained with RAFT’s original
implementation and evaluation code, we can be fairly certain that these results are not caused by an
issue in our implementation. This suggests that the difference in results is caused by our modified
training configuration itself, rather than being caused by our proposed modifications. Visual results
on the KITTI15 dataset can be found in Figure 5.2.

Upon further inspection, we notice that most of the error is contributed by locations near the edges
of the frame, which are occluded due to moving out of frame. The motion in this region is mostly
affine and follows a similar pattern across most frames, and is caused by the egomotion of driving
forward. A specific example of this is the overall EPE value of 11.63 being made up by an EPE of
32.91 in the region with out of frame correspondences and 6.26 everywhere else. It may be that this
type of motion very much lies out of distribution for our model, causing these unexpected results.

5.5 Cost Volume Processing

We move on to evaluating our proposed changes to the cost volume calculation and processing. We
compare standard correlation with our proposed L1-based cost volume and perform an ablation
study for the proposed cost volume normalization.

The results in Table 5.3 suggest that both correlation and the L1-based cost are feasible choices for
cost functions. The results for correlation seem to be slightly better, but overall results are similar
and the differences fall into the margin of error. This means that L1-based cost volume computation
on its own does not appear to yield a significant improvement over the previously used correlation.
One way this could change is if the more direct relationship between feature maps could be exploited
elsewhere. Currently, this makes the viability of an L1-based cost volume an interesting discovery,
but it does not actually seem practically useful. This would suggest that correlation-based cost
volumes should continued to be used instead.

The ablation study for cost volume normalization shows more noticeable changes. It indicates that
using both normalization types significantly improves results over using no such normalization. To
break the effect down further into the individual contributions from the feature normalization and
neighborhood normalization, we also run configurations that only remove one of the normalization
types. Unfortunately, training becomes unstable when removing only neighborhood normalization.
This is likely due to the exploding gradients problem manifesting upon removal of the normalization.
We thus do not report results with only neighborhood normalization being removed. Results
without feature normalization are not too far from results with both normalization types, meaning
that its impact must not be that large. We conclude that using our normalization strategies yields
improvements and that the majority of these improvements is contributed by our neighborhood

71

5 Evaluation

Variant Training
schedule

Sintel train EPE KITTI15 train

Clean Final EPE Fl-all

Ours w/ L1-based
cost

C 2.54 3.79 12.73 40.39%

C + T 2.03 3.33 11.63 38.85%

Ours w/ correlation C 2.48 3.63 11.68 34.29%

C + T 2.01 3.38 10.57 34.00%

Ours w/o
normalization

C 3.20 4.13 16.23 41.58%

C + T 2.50 3.51 11.72 40.99%

Ours w/o feature
normalization

C 2.58 3.76 12.96 37.21%

C + T 2.04 3.41 11.21 35.29%

Table 5.3: Results of an ablation study for different choices of cost volume processing. Bold entries
mark the best result in each column. We abbreviate with as w/ and without as w/o. Ours
w/o normalization refers to removing both feature and neighborhood normalization from
the model. All models were trained using our supervised approach on H1.

normalization. Though feature normalization does not seem harmful and has sound theoretical
motivation, we do not observe a large benefit from using it. Neighborhood normalization should
thus be employed to improve results, and feature normalization can optionally be used, if the
motivations behind it seem attractive.

5.6 Upsampling

Next, we compare different possible upsampling strategies for RAFT-based architectures, which
were mentioned in Section 4.3.

Variant Sintel train EPE

Clean Final

Ours w/ constant interpolation 2.38 3.53

Ours w/ bilinear interpolation 2.41 3.56

Ours w/ RIC upsampling 2.37 3.51

Table 5.4: Results for different traditional upsampling strategies. All results were obtained using
the same low-resolution flow inputs from a model trained on chairs and things in a
supervised manner. We apply RIC without subsequent variational refinement. Bold
entries mark the best result in each column. We abbreviate with as w/.

72

5.6 Upsampling

Beginning with traditional upsampling approaches, the results in Table 5.4 show that RIC [19]
yields an improvement over simple constant or bilinear interpolation, even without variational
refinement. The results obtained with RIC also have sharper contours, as can be seen in Figure 5.3.
However, the results for traditional upsampling approaches are very close and noticeably fall short
of our baseline learned upsampling approach.

(a) Ground truth (b) Constant interpolation

(c) Bilinear interpolation (d) RIC upsampling

Figure 5.3: Sample visualization of flow fields obtained for the different traditional upsampling
strategies. All visualizations use the same low-resolution flow input and maximum
flow magnitude for visualization. The scene is taken from the Sintel clean dataset.

Variant Training
schedule

Sintel train EPE KITTI15 train Parameter
CountClean Final EPE Fl-all

Ours w/ RAFT’s
upsampling

C 2.73 3.87 14.08 42.66%
3.7M

C + T 2.19 3.34 13.29 40.73%

Ours w/ modified
convex upsampling

C 2.54 3.79 12.73 40.39%
3.7M

C + T 2.03 3.33 11.63 38.85%

Ours w/ flow-based
upsampling

C 2.72 3.65 11.43 37.20%
3.4M

C + T 2.20 3.51 12.62 39.14%

Table 5.5: Results for different choices of learned upsampling strategies. The models were trained
in a supervised manner. We use bold entries to highlight the best result in each column
and abbreviate with as w/. All runs were performed on H1.

Table 5.5 shows the results for the different learned upsampling approaches. This compares
RAFT’s original convex upsampling and our modified version with the proposed flow-based
upsampling. Though the proposed flow-based upsampling reduces the model’s parameter count,
the full-resolution convolutions lead to a higher overall computational efforts. Its obtained results

73

5 Evaluation

are mostly on par with RAFT’s original upsampling, meaning that it comes at a higher cost without
yielding the desired benefits. The visual results in Figure 5.4 show that flow-based upsampling
does not lead to block artifacts appearing, whereas block patterns are visible for both the original
and modified convex upsampling. However, the flow-based upsampling strategy still produces
artifacts of its own. As a result, we do not believe flow-based upsampling should be used as-is.
Our modification of RAFT’s convex upsampling on the other hand leads to improved results at
negligible cost, even if only by a smaller margin.

(a) Ground truth (b) Original convex upsampling

(c) Modified convex upsampling (d) Flow-based upsampling

Figure 5.4: Sample visualization of flow fields obtained for the different learned upsampling
strategies. The results are taken from a different training run for each strategy, to allow
for model differences. The results were obtained after training on both chairs and things
using our basic training configuration. All visualizations use the same maximum flow
magnitude for visualization. The scene is taken from the Sintel clean dataset.

All learned approaches beat every traditional approach, making them the more attractive choice.
Among learned approaches, our modified convex upsampling achieves the best results, making it
the upsampling strategy for choice from the strategies we compared.

5.7 Unupervised Results

We next evaluate our unsupervised approach, introduced in Section 4.6. We investigate the
effectiveness of our learned losses and compare our results with those of previous unsupervised
approaches.

Table 5.6 shows the results for our unsupervised approaches with different loss functions and UFlow
[29], which is a previous unsupervised method for optical flow achieving state-of-the-art results.
We specifically compare against UFlow, as this provides a direct point of comparison with its
suggested traditional loss functions. Though unsupervised methods with slightly better results
exist, these generally use more Sintel data, from the evaluation set or even from the original movie,

74

5.7 Unupervised Results

Variant Training
schedule

Sintel train EPE KITTI15 train

Clean Final EPE Fl-all

Ours w/ traditional losses
C 5.98 6.65 17.06 37.61%

C + T 4.66 5.39 14.24 38.38%

C + T + S 4.24 5.05 10.73 33.46%

Ours w/ traditional
smoothness and learned
photometric loss

C 4.54 5.46 16.80 37.50%

C + T 3.73 4.76 14.60 38.35%

C + T + S 3.32 4.23 11.21 32.03%

Ours w/ learned losses
C 4.64 5.55 18.85 43.73%

C + T 3.61 4.68 15.22 43.17%

C + T + S 3.24 4.11 13.05 37.44%

UFlow [29] (reported) C + S 3.01 4.09 2.84 9.39%

Table 5.6: Results for unsupervised training. We use our previously described unsupervised training
schedule. Note that models were trained on the Sintel train input frames. Traditional
losses refer to the census loss for the photometric loss and edge-aware first order
smoothness for the smoothness loss. We highlight the best result in each column in bold
face and abbreviate with as w/. Our runs were performed on H2.

making the comparison with our results more difficult. UFlow’s results are not that far behind these
methods’ results and are still better than our results, making our comparison with UFlow results
as a stand-in for state-of-the-art approaches valid. We first note that our approach is successful in
using RAFT-based architectures for unsupervised optical flow estimation. Our best unsupervised
results on the Sintel benchmark are not too far from state-of-the-art unsupervised results, despite
our training configuration being significantly more limited due to our computational budget. That
being said, one would expect that the advantages of the RAFT architecture could be used to improve
unsupervised results. We believe that this may still be achievable using configurations more similar
to those of the original RAFT.

For loss functions, we compare our learned losses with the traditional losses found to be a good
choice for the Sintel dataset by UFlow. This is the census loss [49] for the photometric loss and
edge-aware first order smoothness for the smoothness loss. The Sintel dataset results show that our
learned losses outperform traditional losses by a noticeable margin. The difference in KITTI results
is likely caused by the traditional smoothness function dealing better with the flow near frame
edges. The learned smoothness loss was optimized to fit the FlyingThings3D dataset, which differs
significantly from the KITTI datasets. To break down the contribution of the individual losses
to the overall results, we also perform a run with our learned photometric loss and a traditional
smoothness loss. As this run has somewhat similar, but slightly worse results on Sintel after training
is completed, we conclude that both of our learned losses individually outperform their traditional
counterparts. It does seem that that our learned photometric is a more substantial upgrade over its
traditional counterpart, whereas the learned smoothness loss represents an improvement, but only

75

5 Evaluation

a small one. We conclude our learned losses are effective and can outperform traditional losses.
These loss functions are applicable for unsupervised methods for optical flow in general and are not
limited to our specific approach.

5.7.1 Semi-Supervised Results

It is unsurprising that our unsupervised results are worse than our supervised results, due to the
poorer guidance. We next investigate whether our proposed semi-supervised approach can lead to
an overall improvement over supervised result.

Variant Training
schedule

Sintel train EPE KITTI15 train

Clean Final EPE Fl-all

Ours (supervised) C 2.52 3.57 12.37 38.64%

C + T 2.09 3.36 11.79 37.03%

Ours (semi-supervised) C + T + S 2.26 3.27 10.73 25.41%

Ours (semi-supervised, 2x batch size) C + T + S 2.17 3.17 7.83 25.22%

Table 5.7: Results for semi-supervised training. Bold entries mark the best result in each column.
The semi-supervised training uses our unsupervised Sintel schedule after the model
has been trained on chairs and things. The second semi-supervised run doubles the
batch size compared to the first. The unsupervised portions for both results were started
from the same pretrained supervised model, that has its results displayed above. The
supervised part of training was performed on H1 and the unsupervised part on H2.

The semi-supervised results in Table 5.7 show that our semi-supervised approach can improve
results to a certain extent. The KITTI and Sintel final results are improved by the additional
unsupervised training, but Sintel clean results get worse. A second run with doubled batch size
shows that larger training configurations can continue to improve results. It seems possible that
using a sufficiently large training configuration, results could be improved over the supervised
results in general, though one can not be certain of this. The significant improvement of KITTI
results suggests that the unsupervised part of training may allow the model to generalize better to
datasets with different distributions. In this configuration, semi-supervised training on its own does
not increase results over supervised models across the board. Our semi-supervised approach thus
can improve results, but is potentially somewhat limited by our training configuration.

5.8 Online Learning

We now turn to evaluating our methods incorporating multi-frame information with the aim of
achieving better results.

76

5.8 Online Learning

Variant Sintel train EPE

Clean Final

Ours w/o warm-start 2.15 3.43

Ours w/ RAFT warm-start 2.13 3.54

Ours w/ our warm-start 2.09 3.36

Table 5.8: Comparison of different warm-start variants. The model used for this completed the
C + T training schedule using our supervised approach. Only the warm-start variant
differs between entries, the underlying model is the same for all variants. Bold entries
highlight the best result in each column.

We begin by comparing the different warm-start approaches, results for this can be found in Table 5.8.
RAFT’s original warm-start gives slightly better results for the clean pass, but worsens performance
for the final pass. Our modified warm-start on the other hand leads to larger improvements
and improves results across the board. We conclude that our modified warm-start successfully
incorporates multi-frame information to improve results. It also outperforms the original warm-start
by being defined for whole image domain and not having to incorporate warping. It should be noted
that our warm-start requires one additional forward pass of the network to be performed, though
this is generally a comparatively cheap operation.

To make our runtimes comparable with the original RAFT, we similarly report inference times
when using 10 update iterations. The original RAFT reports a runtime of 100ms for this on a system
with a single NVIDIA GeForce GTX 1080 Ti GPU. On H1, which possesses a more powerful GPU,
our model can process a batch of 8 frame pairs in an average of 620ms. This implies an amortized
inference time of about 78ms per frame pair. For single frame pairs, our model takes an average of
95ms per frame pair, which is similar to RAFT’s timings.

Sintel sequence Pretrained EPE Online EPE Fused EPE

Clean Final Clean Final Clean Final

alley_1 0.369 0.416 0.318 0.345 0.318 0.343

alley_2 0.360 0.406 0.303 0.334 0.304 0.344

ambush_2 6.129 20.015 7.472 23.104 6.857 21.762

ambush_4 11.367 21.591 13.845 18.760 12.686 18.810

bamboo_2 0.949 1.073 0.891 1.070 0.878 1.040

bandage_1 0.630 0.756 0.563 0.673 0.563 0.681

sleeping_1 0.255 0.259 0.194 0.197 0.195 0.198

temple_3 3.550 5.654 4.121 6.168 3.888 6.047

Table 5.9: Results of online training on different Sintel sequences. All EPE figures are rounded to
three decimal places instead of two, due to values being closer together. Bold entries
mark the best values for each modality in each row. Entries marked bold respect more
decimal places than the ones displayed here. All runs were performed on H1.

77

5 Evaluation

Moving on to our online training, Table 5.9 shows the result of our approach for a selection of Sintel
sequences. We were not aware of the online training results for these sequences before selecting
them, but selected them after visually inspecting the input frames for the sequences. We favored
sequences with smooth motion and smaller flow magnitudes, but also included more challenging
sequences and tried to include a variety of different sequences. All results were obtained using
the same pretrained model that was trained on chairs and things with our basic supervised training
configuration. Note that each sequence is trained on separately for each modality, that is the
clean pass and the final pass. We trained a single online model for each sequence and modality
combination and used these to obtain all of our results. We can observe that for most sequences, our
online training is able to improve results beyond the pretrained prediction on its own. Training on a
single sequence with our online training configuration takes about one hour on H1. Better results
are likely achievable with higher iteration counts. It seems that for more challenging sequences
with high pretrained EPE, such as the ambush sequences, online learning can lead to worse results.
This may be due to the baseline pretrained flow predictions being to inaccurate, causing invalid
consistencies to be enforced. We find that our fusion strategy is effective, as it dampens the effect
online flow being worse than the pretrained flow and can occasionally yield better results than the
online flow on its own.

Sintel sequence Perfect fusion Average fusion Our fusion

Clean Final Clean Final Clean Final

alley_1 0.260 0.288 0.303 0.340 0.318 0.343

alley_2 0.248 0.279 0.295 0.337 0.304 0.344

ambush_2 4.572 17.444 6.136 20.784 6.857 21.762

ambush_4 10.010 13.495 12.484 19.352 12.686 18.810

bamboo_2 0.724 0.764 0.857 0.984 0.878 1.040

bandage_1 0.468 0.550 0.545 0.654 0.563 0.681

sleeping_1 0.163 0.170 0.196 0.204 0.195 0.198

temple_3 2.931 4.568 3.679 5.682 3.888 6.047

Table 5.10: Online results for different fusion strategies. All EPE figures are rounded to three
decimal places instead of two, due to values being closer together. Bold entries mark
the best values for each modality in each row, the perfect fusion row is disregarded for
this, as it uses a ground truth oracle. All runs were performed on H1.

As we know that our fusion strategy is only a simple approach that could be improved, we still
evaluate our fusion strategy to gauge how much room for improvement there is. The results in
Table 5.10 show our fusion approach in contrast to a perfect fusion strategy, that binarily picks the
flow candidate with minimal EPE at each location using ground truth flow fields, and an average
fusion strategy, that returns the average between all flow field candidates. Surprisingly, our baseline
averaging strategy outperforms our fusion strategy on most sequences. Our fusion strategy may
thus be improved if we attempt to build a weighted average of the candidate flow fields, rather than
choosing a single candidate at each location. The perfect fusion results also show that there is
more room for improvement, even when only binarily picking candidates, rather than more complex

78

5.9 Comparison with RAFT

combination schemes. Note that although we only use two flow candidates for fusion, if many
candidates are used even random flow fields will yield low EPE values when using the perfect
fusion strategy, making the results somewhat unrealistic.

We conclude that our proposed modified warm-start and online training can improve overall results
on video sequences. Our warm-start in particular improves results noticeably even over RAFT’s
warm-start and online training can further yield a small boost in performance. Though our fusion
strategy is somewhat effective, it is lacking and should be improved to achieve better results.

5.9 Comparison with RAFT

Having examined our proposed change individually, we now try to take a more high-level view and
compare our methods to the original RAFT method.

We have shown that our architectural changes lead to noticeable improvements when evaluating
on Sintel in our setting. The introduction of skip connections and additional normalization were
particularly effective. Note that our proposed changes to cost volume processing can also be utilized
in architectures other than RAFT using cost volumes, to benefit from these improvements. Though
our chosen upsampling strategy significantly outperforms bilinear upsampling, it is only slightly
better than RAFT’s convex upsampling. Nonetheless, it improves results at little to no additional
cost.

Our unsupervised results do not represent improvements over RAFT’s results, but are competitive
with and may be able to outperform previous unsupervised methods. Our learned losses in particular
provide an advantage over traditional losses and can be employed for models of arbitrary architecture.
The semi-supervised approach can partially improve results over those of our supervised model.
This shows that the incorporation of unsupervised approaches does have the potential to uplift
results over pure supervised training.

With our online results, we are able to improve the accuracy of optical flow further by incorporating
multi-frame information. Our modified warm-start is a significant improvement over RAFT’s
warm-start, and leads to larger, more consistent improvements. Online training can further lead to a
small improvement on video sequences.

Viewed as a method in general, and not directly in comparison with RAFT, our approaches allows
achieving very good results on Sintel, even when limited to a small computational budget. Though
computationally cheaper models for optical flow estimation exist [22], they typically sacrifice results
to a more significant extent to allow for this. They also generally still require more expensive
training than our method. On the other hand, a few hours of training on a single GPU can lead to
comparatively good results on benchmarks with our method. Compared to RAFT, this represents
an alternative when having only limited computational budget, but still requiring high-accuracy
optical flow. This is especially useful if one has to perform their own training runs, such as when the
distribution of images one wants to infer flow for significantly differs from that of typical datasets.

Getting back to a more direct comparison with RAFT, our experiments have shown that our methods
can noticeably outperform RAFT, when working in a setting with our limited computation budget.
Ideally, we would like to be able to show the same without these limits on computational cost. As

79

5 Evaluation

this is not feasible for us, we instead try to reason about why these results might scale to more
expensive configurations such as that of RAFT, and note some potential reasons that may prevent
this.

Our changes are generally motivated with a reason for why they should improve results, which are
often backed up by previous work observing this effect. The individual ablations show that they can
present an improvement when working within a limited computational budget. From experiments
with slightly higher computational cost, it can also be seen that our method can scale, at least to a
certain extent. One limiting factor for such scaling is our model’s reduced complexity. As these
reductions in complexity were motivated by our limited computation budget in the first place, they
longer need to be employed when more computational power is available. This should thus be
addressed by reverting our simplifications including the reduction of channel counts, the number of
update iterations, and the number of residual blocks on each level in the encoders. This also applies
to our decreased image size and iteration count when training. One final consideration is that our
increased batch size may need to be sustained for our results to carry over to more expensive training.
This may increase the overall computation cost compared to RAFT. Though this is not necessarily
bad in and of itself, we have also seen that batch sizes and iteration counts can be modulated to fit a
fixed computation budget, while still obtaining good results. It is likely that such tweaking could
also be applied to achieve similar results for a computational budget roughly equivalent to that of
RAFT.

We thus believe that it is likely for our changes to represent improvements over the original RAFT
method, even in the general setting. To achieve such results, some of the simplifications to our
model and training configuration may have to be reverted. Individual hyperparameters and training
schedules may also need to be re-tuned to fit the new setting.

As RAFT currently outperforms all published non-RAFT-based approaches, the comparison with
RAFT also gives a point of comparison against other previous literature.

Chapter Outlook

We have now performed an evaluation of our work and know the effectiveness of our proposed
changes. We have also seen what our results look like and where we stand in comparison to RAFT.
With this, the last thing left to do is to review out work as a whole. In the next chapter, we will
examine to which extent the results of our work have met our aim, give concluding remarks, and
leave off with potential directions of future work.

80

6 Conclusion

We end by putting our work and results into a greater context, giving concluding remarks and an
outlook on possible directions of future work.

We have proposed modifications to the RAFT method and shown that many of them can lead to
noticeably improved results in realistic scenarios for our setting of a fixed computational budget.
Our changes to cost volumes and their improvements are even applicable to methods using cost
volumes in general. Further, we have presented an approach for training RAFT in an unsupervised
manner, and introduced learned losses that can significantly improve results in an unsupervised
setting and are applicable to models with arbitrary architectures. We also applied online learning
to optical flow estimation to further improve results on video sequences. Our online approach is
also adaptable to learned methods for optical flow estimation in general. All in all, we addressed
many of RAFT’s shortcomings, successfully applied it to different domains, and introduced useful
concepts relevant to learned models for optical flow estimation in general along the way.

We originally set out to improve optical flow results for realistic video sequences by improving
upon RAFT. Within our limited computation budget, we certainly outperform RAFT and give
competitive results for realistic video sequences. However, our concrete results are limited to this
fixed scenario.

This is not necessarily a bad thing. Though this is not what we set out to do, as a result of optimizing
results within a limited computational budget, our approaches allow achieving very good results
within very low training times even with a single GPU. If low training times on limited hardware
are required, our methods can be trained in less time than the vast majority of previous approaches
and still often yield better results than these previous approaches.

Despite this, we can not say that our aim was completely met, and we have only demonstrably met
our aim within the limitation of a fixed, smaller computational budget. Nevertheless, we have shown
that many of our modifications represent noticeable improvements and have reasonably argued
that these results should scale to computational budgets similar to that of RAFT. The contributed
concepts including learned losses and our online learning approach are generally applicable and
promise improved results.

6.1 Future Work

Though we have explored many different ideas and directions, there are still other promising
directions we did not get to pursue. Further, due to us exploring different areas, not all aspects of
our methods were developed as deeply as they could be. The newly introduced concepts also give a
starting point, from which further steps towards improvement can be taken.

81

6 Conclusion

In the following, we mention some unexplored ideas and possible directions for future work as an
outlook, concluding this thesis.

First and foremost, our experiments should be repeated with more computational resources, and
potentially reverted simplifications, to confirm whether our results scale beyond our limited
computation budget. With more computational resources, more extensive hyperparameter tuning
and variants of architectures could also be explored.

The estimation of occlusions could also be improved and made part of the network, as is done by
IRR [23]. Such an integration could similarly improve optical flow estimation results. Alternatively,
a separate network could be trained to estimate occlusions, which would allow for better occlusion
estimation even when training in an unsupervised setting, where occlusion maps are often used as
part of loss functions.

Cost volumes could also be made fully learnable, similar to DICL [75], as mentioned in Sec-
tion 4.2.3.

On the case of flow upsampling, one could learn separate models for flow upsampling, as has been
previously explored by InterpoNet [84]. This would allow learned upsampling strategies to use
more complex models, without incurring the associated computational cost when training the main
flow estimation network.

Incorporating additional data aspects, such as depth, camera pose, material properties, and stereo
frames could additionally improve results for scenarios where such additional data is readily
available. From there, models could also be extended to infer full scene flow rather than just
projected optical flow.

To improve results for scenes similar to those in the KITTI datasets, the concept of rigid motion
could be directly embedded into the approach, such as is done for RAFT-based architectures in
[69].

The robustness of RAFT-based approaches could also be investigated, and typical defenses to
adversarial attacks could be applied as a defense strategy to improve robustness. This would be
particularly valuable for real-world applications, where lacking robustness guarantees could lead to
catastrophic failures of systems utilizing optical flow information.

Our unsupervised training scheme could benefit from further tuning and the newly introduced
learning losses may be improved through further iteration. Our semi-supervised approach also
only naively divides supervision between datasets and could be made more involved to improve
results.

For video sequences, cost volumes taking in information from multiple frames could improve results
in occluded regions. The modified warm-start strategy we follow could be further improved upon
through learning, by using initialization strategies similar in function to ProFlow [46]. Our online
training could also be taken further by not just tuning to the specific sequence, but also tuning to
each individual frame pair. The fusion strategy we employ also clearly leaves room for improvement,
one could potentially even train a separate model to perform fusion of multiple flow candidates.

Finally, the architectural design of models for optical flow estimation could be fundamentally
changed. This could be done by applying learning at a different level of abstraction, as described
in Section 3.1. At higher levels of abstraction, one could employ meta-learning to search for
architectures or even objectives. On lower levels, one might search for suitable energy functionals for

82

6.1 Future Work

variational approaches or use NNs to produce implicit systems of equations as part of an otherwise
more traditional method. Alternatively, one could also optimize flow fields parametrized by NNs
or use adversarial learning often used for generative methods to learn a model for optical flow
estimation in conjunction with a discriminator that effectively learns a suitable energy functional.
The latter could even enable new kinds of unsupervised training.

Acknowledgments

A small portion of the computational work required for training during iteration was performed on
the computational resource bwUniCluster funded by the Ministry of Science, Research and the Arts
Baden-Württemberg and the Universities of the State of Baden-Württemberg, Germany, within the
framework program bwHPC.

83

Bibliography

[1] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, R. Szeliski. “A database and
evaluation methodology for optical flow”. In: International Journal of Computer Vision 92.1
(Mar. 2011), pp. 1–31. issn: 1573-1405. doi: 10.1007/s11263-010-0390-2 (cit. on p. 26).

[2] W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao, M.-H. Yang. “Depth-aware video frame
interpolation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 3703–3712. doi: 10.1109/CVPR.2019.00382 (cit. on p. 9).

[3] A. Bar-Haim, L. Wolf. “ScopeFlow: dynamic scene scoping for optical flow”. In: 2020,
pp. 7995–8004. doi: 10.1109/CVPR42600.2020.00802 (cit. on pp. 27, 51).

[4] J. L. Barron, D. J. Fleet, S. S. Beauchemin. “Performance of optical flow techniques”. In:
International Journal of Computer Vision 12.1 (Feb. 1994), pp. 43–77. issn: 1573-1405. doi:
10.1007/BF01420984 (cit. on p. 26).

[5] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi. “Action recognition with dynamic image
networks”. In: vol. 40. 12. 2018, pp. 2799–2813. doi: 10.1109/TPAMI.2017.2769085 (cit. on
p. 9).

[6] D. J. Butler, J. Wulff, G. B. Stanley, M. J. Black. “A naturalistic open source movie for optical
flow evaluation”. In: Proc. European Conference on Computer Vision (ECCV). LNCS 7577.
Springer, 2012, pp. 611–625. doi: 10.1007/978-3-642-33783-3_44 (cit. on pp. 9, 25, 27, 41,
62).

[7] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Ben-
gio. “Learning phrase representations using RNN encoder–decoder for statistical machine
translation”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics,
2014, pp. 1724–1734. doi: 10.3115/v1/D14-1179 (cit. on pp. 19, 36).

[8] D.-A. Clevert, T. Unterthiner, S. Hochreiter. “Fast and accurate deep network learning by
exponential linear units (elus)”. In: arXiv e-prints (2015). arXiv: 1511.07289 [cs.LG] (cit. on
p. 16).

[9] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt,
D. Cremers, T. Brox. “FlowNet: learning optical flow with convolutional networks”. In: 2015
IEEE International Conference on Computer Vision (ICCV). 2015, pp. 2758–2766. doi:
10.1109/iccv.2015.316 (cit. on pp. 9, 26, 32, 34, 51).

[10] D. Eigen, C. Puhrsch, R. Fergus. “Depth map prediction from a single image using a
multi-scale deep network”. In: Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT Press, 2014,
pp. 2366–2374 (cit. on p. 32).

85

https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1109/CVPR.2019.00382
https://doi.org/10.1109/CVPR42600.2020.00802
https://doi.org/10.1007/BF01420984
https://doi.org/10.1109/TPAMI.2017.2769085
https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.3115/v1/D14-1179
https://arxiv.org/abs/1511.07289
https://doi.org/10.1109/iccv.2015.316

Bibliography

[11] K. Fukushima, S. Miyake. “Neocognitron: a self-organizing neural network model for a
mechanism of visual pattern recognition”. In: Competition and Cooperation in Neural Nets.
LNBM 45. Springer Berlin Heidelberg, 1982, pp. 267–285. doi: 10.1007/978-3-642-46466-
9_18 (cit. on p. 16).

[12] A. Geiger, P. Lenz, R. Urtasun. “Are we ready for autonomous driving? The KITTI vision
benchmark suite”. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. 2012, pp. 3354–3361 (cit. on pp. 26, 51).

[13] X. Glorot, A. Bordes, Y. Bengio. “Deep sparse rectifier neural networks”. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics. 2011,
pp. 315–323 (cit. on p. 16).

[14] P. Godet, A. Boulch, A. Plyer, G. L. Besnerais. “STaRFlow: a spatiotemporal recurrent
cell for lightweight multi-frame optical flow estimation”. In: arXiv e-prints (2020). arXiv:
2007.05481 [cs.CV] (cit. on p. 58).

[15] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S. Seung. “Digital
selection and analogue amplification coexist in a cortex-inspired silicon circuit”. In: vol. 405.
6789. Nature Publishing Group, 2000, pp. 947–951. doi: 10.1038/35016072 (cit. on p. 16).

[16] K. He, X. Zhang, S. Ren, J. Sun. “Deep residual learning for image recognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.
doi: 10.1109/CVPR.2016.90 (cit. on pp. 21, 42, 43, 69).

[17] S. Hochreiter, J. Schmidhuber. “Long short-term memory”. In: Neural computation 9.8
(1997), pp. 1735–1780 (cit. on p. 19).

[18] K. Hornik, M. Stinchcombe, H. White. “Multilayer feedforward networks are universal
approximators”. In: Neural Netw. 2.5 (1989), pp. 359–366. issn: 0893-6080 (cit. on p. 17).

[19] Y. Hu, Y. Li, R. Song. “Robust interpolation of correspondences for large displacement
optical flow”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 4791–4799. doi: 10.1109/CVPR.2017.509 (cit. on pp. 49, 73).

[20] Z. Huang, T. Zhang, W. Heng, B. Shi, S. Zhou. “RIFE: real-time intermediate flow estimation
for video frame interpolation”. In: arXiv e-prints (2020). arXiv: 2011.06294 [cs.CV] (cit. on
p. 9).

[21] F. Huguet, F. Devernay. “A variational method for scene flow estimation from stereo
sequences”. In: 2007 IEEE 11th International Conference on Computer Vision. 2007, pp. 1–7.
doi: 10.1109/ICCV.2007.4409000 (cit. on p. 26).

[22] T.-W. Hui, C. C. Loy. “LiteFlowNet3: resolving correspondence ambiguity for more accurate
optical flow estimation”. In: Computer Vision – ECCV 2020. LNCS 12365. Cham: Springer
International Publishing, 2020, pp. 169–184. isbn: 978-3-030-58565-5. doi: 10.1007/978-3-
030-58565-5_11 (cit. on p. 79).

[23] J. Hur, S. Roth. “Iterative residual refinement for joint optical flow and occlusion estimation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 5754–5763. doi: 10.1109/CVPR.2019.00590 (cit. on pp. 9, 26, 32, 34, 51, 82).

[24] E. Ilg, T. Saikia, M. Keuper, T. Brox. “Occlusions, motion and depth boundaries with a
generic network for disparity, optical flow or scene flow estimation”. In: Computer Vision –
ECCV 2018. LNCS 11216. Cham: Springer International Publishing, 2018, pp. 626–643.
isbn: 978-3-030-01258-8. doi: 10.1007/978-3-030-01258-8_38 (cit. on pp. 26, 51).

86

https://doi.org/10.1007/978-3-642-46466-9_18
https://doi.org/10.1007/978-3-642-46466-9_18
https://arxiv.org/abs/2007.05481
https://doi.org/10.1038/35016072
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.509
https://arxiv.org/abs/2011.06294
https://doi.org/10.1109/ICCV.2007.4409000
https://doi.org/10.1007/978-3-030-58565-5_11
https://doi.org/10.1007/978-3-030-58565-5_11
https://doi.org/10.1109/CVPR.2019.00590
https://doi.org/10.1007/978-3-030-01258-8_38

Bibliography

[25] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox. “Flownet 2.0: evolution
of optical flow estimation with deep networks”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 2462–2470. doi: 10.1109/CVPR.2017.179
(cit. on pp. 9, 34).

[26] S. Ioffe, C. Szegedy. “Batch normalization: accelerating deep network training by reducing
internal covariate shift”. In: Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015,
pp. 448–456. doi: 10.5555/3045118.3045167 (cit. on p. 19).

[27] J. Janai, F. Güney, A. Ranjan, M. Black, A. Geiger. “Unsupervised learning of multi-
frame optical flow with occlusions”. In: Computer Vision – ECCV 2018. LNCS 11220.
Cham: Springer International Publishing, 2018, pp. 713–731. isbn: 978-3-030-01270-0. doi:
10.1007/978-3-030-01270-0_42 (cit. on pp. 34, 58).

[28] Y. Jiao, G. Shi, T. D. Tran. “Optical flow estimation via motion feature recovery”. In: arXiv
e-prints (2020). arXiv: 2101.06333 [cs.CV] (cit. on p. 58).

[29] R. Jonschkowski, A. Stone, J. T. Barron, A. Gordon, K. Konolige, A. Angelova. “What
matters in unsupervised optical flow”. In: Computer Vision – ECCV 2020. LNCS 12347.
Cham: Springer International Publishing, 2020, pp. 557–572. isbn: 978-3-030-58536-5. doi:
10.1007/978-3-030-58536-5_33 (cit. on pp. 33, 45, 53, 54, 74, 75).

[30] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila. “Analyzing and improving
the image quality of stylegan”. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2020, pp. 8110–8119. doi: 10.1109/CVPR42600.2020.00813
(cit. on p. 21).

[31] D. P. Kingma, J. Ba. “Adam: a method for stochastic optimization”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. 2015. url: http://arxiv.org/abs/1412.6980 (cit. on p. 17).

[32] D. Kondermann, R. Nair, S. Meister, W. Mischler, B. Güssefeld, K. Honauer, S. Hofmann,
C. Brenner, B. Jähne. “Stereo ground truth with error bars”. In: Computer Vision – ACCV
2014. Ed. by D. Cremers, I. Reid, H. Saito, M.-H. Yang. LNCS 9007. Cham: Springer
International Publishing, 2015, pp. 595–610. isbn: 978-3-319-16814-2. doi: 10.1007/978-3-
319-16814-2_39 (cit. on p. 51).

[33] A. Krizhevsky, I. Sutskever, G. E. Hinton. “ImageNet classification with deep convolutional
neural networks”. In: vol. 60. 6. New York, NY, USA: Association for Computing Machinery,
May 2017, pp. 84–90. doi: 10.1145/3065386 (cit. on p. 32).

[34] H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein. “Visualizing the loss landscape of neural
nets”. In: Advances in neural information processing systems. 2018, pp. 6389–6399 (cit. on
pp. 22, 43).

[35] L. Liu, J. Zhang, R. He, Y. Liu, Y. Wang, Y. Tai, D. Luo, C. Wang, J. Li, F. Huang.
“Learning by analogy: reliable supervision from transformations for unsupervised optical flow
estimation”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020, pp. 6489–6498. doi: 10.1109/CVPR42600.2020.00652 (cit. on pp. 33, 55).

[36] P. Liu, M. Lyu, I. King, J. Xu. “SelFlow: self-supervised learning of optical flow”. In:
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 4566–4575. doi: 10.1109/CVPR.2019.00470 (cit. on p. 33).

87

https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.1007/978-3-030-01270-0_42
https://arxiv.org/abs/2101.06333
https://doi.org/10.1007/978-3-030-58536-5_33
https://doi.org/10.1109/CVPR42600.2020.00813
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-16814-2_39
https://doi.org/10.1007/978-3-319-16814-2_39
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR42600.2020.00652
https://doi.org/10.1109/CVPR.2019.00470

Bibliography

[37] P. Liu, I. King, M. R. Lyu, J. Xu. “DDFlow: learning optical flow with unlabeled data
distillation”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019,
pp. 8770–8777. doi: 10.1609/aaai.v33i01.33018770 (cit. on p. 33).

[38] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. Yen. “A survey on evolutionary neural architecture
search”. In: arXiv e-prints (2020). arXiv: 2008.10937 [cs.NE] (cit. on pp. 15, 32).

[39] I. Loshchilov, F. Hutter. “Decoupled weight decay regularization”. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. 2019. url: https://openreview.net/forum?id=Bkg6RiCqY7 (cit. on p. 18).

[40] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, Z. Gao. “DVC: An end-to-end deep video
compression framework”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 11006–11015. doi: 10.1109/CVPR.2019.01126 (cit. on p. 9).

[41] Y. Lu, J. Valmadre, H. Wang, J. Kannala, M. Harandi, P. H. S. Torr. “Devon: deformable
volume network for learning optical flow”. In: 2020 IEEE Winter Conference on Applications
of Computer Vision (WACV). 2020, pp. 2694–2702. doi: 10.1109/WACV45572.2020.9093590
(cit. on pp. 35, 36).

[42] J. Luiten, T. Fischer, B. Leibe. “Track to reconstruct and reconstruct to track”. In: IEEE
Robotics and Automation Letters 5.2 (2020), pp. 1803–1810. doi: 10.1109/LRA.2020.2969183
(cit. on p. 9).

[43] K. Luo, C. Wang, S. Liu, H. Fan, J. Wang, J. Sun. “UPFlow: upsampling pyramid for
unsupervised optical flow learning”. In: arXiv e-prints (2020). arXiv: 2012.00212 [cs.CV]

(cit. on p. 50).

[44] K. Luo, C. Wang, N. Ye, S. Liu, J. Wang. “OccInpFlow: occlusion-inpainting optical flow
estimation by unsupervised learning”. In: arXiv e-prints (2020). arXiv: 2006.16637 [cs.CV]

(cit. on p. 56).

[45] X. Luo, J.-B. Huang, R. Szeliski, K. Matzen, J. Kopf. “Consistent video depth estimation”.
In: 39.4 (2020). doi: 10.1145/3386569.3392377 (cit. on p. 58).

[46] D. Maurer, A. Bruhn. “ProFlow: learning to predict optical flow”. In: Proc. British Machine
Vision Conference (BMVC). BMVA Press, 2018 (cit. on pp. 57, 82).

[47] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, T. Brox. “A large
dataset to train convolutional networks for disparity, optical flow, and scene clow estimation”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 4040–4048. doi: 10.1109/CVPR.2016.438 (cit. on pp. 26, 51).

[48] N. Mayer, E. Ilg, P. Fischer, C. Hazirbas, D. Cremers, A. Dosovitskiy, T. Brox. “What Makes
Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?” In:
vol. 126. 9. 2018, pp. 942–960. doi: 10.1007/s11263-018-1082-6 (cit. on p. 26).

[49] S. Meister, J. Hur, S. Roth. “UnFlow: unsupervised learning of optical flow with a bidirectional
census loss”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.
2018 (cit. on pp. 33, 75).

[50] M. Menze, A. Geiger. “Object scene flow for autonomous vehicles”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 3061–3070 (cit. on
pp. 26, 51, 62).

88

https://doi.org/10.1609/aaai.v33i01.33018770
https://arxiv.org/abs/2008.10937
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/CVPR.2019.01126
https://doi.org/10.1109/WACV45572.2020.9093590
https://doi.org/10.1109/LRA.2020.2969183
https://arxiv.org/abs/2012.00212
https://arxiv.org/abs/2006.16637
https://doi.org/10.1145/3386569.3392377
https://doi.org/10.1109/CVPR.2016.438
https://doi.org/10.1007/s11263-018-1082-6

Bibliography

[51] V. Nair, G. E. Hinton. “Rectified linear units improve restricted boltzmann machines”. In:
Proceedings of the 27th International Conference on International Conference on Machine
Learning. ICML’10. Haifa, Israel: Omnipress, 2010, pp. 807–814. isbn: 9781605589077
(cit. on p. 16).

[52] M. Neoral, J. Šochman, J. Matas. “Continual occlusion and optical flow estimation”. In:
Computer Vision – ACCV 2018. Ed. by C. Jawahar, H. Li, G. Mori, K. Schindler. LNCS 11364.
Cham: Springer International Publishing, 2019, pp. 159–174. isbn: 978-3-030-20870-7. doi:
10.1007/978-3-030-20870-7_10 (cit. on p. 58).

[53] S. Niklaus, F. Liu. “Softmax splatting for video frame interpolation”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 5437–5446
(cit. on p. 9).

[54] A. Odena, V. Dumoulin, C. Olah. “Deconvolution and checkerboard artifacts”. In: Distill
(2016). doi: 10.23915/distill.00003. url: http://distill.pub/2016/deconv-checkerboard
(cit. on p. 21).

[55] M. Otte, H.-H. Nagel. “Estimation of optical flow based on higher-order spatiotemporal
derivatives in interlaced and non-interlaced image sequences”. In: Artificial Intelligence 78.1
(1995). Special Volume on Computer Vision, pp. 5–43. issn: 0004-3702. doi: 10.1016/0004-
3702(95)00033-X (cit. on p. 26).

[56] R. Pascanu, T. Mikolov, Y. Bengio. “On the difficulty of training recurrent neural networks”.
In: Proceedings of the 30th International Conference on International Conference on Machine
Learning - Volume 28. ICML’13. Atlanta, GA, USA: JMLR.org, 2013, III–1310–III–1318
(cit. on p. 20).

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala. “PyTorch: an imperative style,
high-performance deep learning library”. In: Advances in Neural Information Processing
Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett.
Vol. 32. Curran Associates, Inc., 2019, pp. 8024–8035 (cit. on p. 63).

[58] E. Real, C. Liang, D. So, Q. Le. “AutoML-zero: evolving machine learning algorithms from
scratch”. In: International Conference on Machine Learning. PMLR. 2020, pp. 8007–8019
(cit. on p. 32).

[59] J. Revaud, P. Weinzaepfel, Z. Harchaoui, C. Schmid. “EpicFlow: edge-preserving interpolation
of correspondences for optical flow”. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2015, pp. 1164–1172. doi: 10.1109/CVPR.2015.7298720 (cit. on
p. 49).

[60] O. Ronneberger, P. Fischer, T. Brox. “U-Net: convolutional networks for biomedical image
segmentation”. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015. LNCS 9351. Cham: Springer International Publishing, 2015, pp. 234–241. isbn:
978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4_28 (cit. on p. 22).

[61] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project Para. Vol. 85.
Report: Cornell Aeronautical Laboratory. Issues 460-461. Cornell Aeronautical Laboratory,
1957 (cit. on p. 16).

89

https://doi.org/10.1007/978-3-030-20870-7_10
https://doi.org/10.23915/distill.00003
http://distill.pub/2016/deconv-checkerboard
https://doi.org/10.1016/0004-3702(95)00033-X
https://doi.org/10.1016/0004-3702(95)00033-X
https://doi.org/10.1109/CVPR.2015.7298720
https://doi.org/10.1007/978-3-319-24574-4_28

Bibliography

[62] S. Santurkar, D. Tsipras, A. Ilyas, A. Madry. “How does batch normalization help opti-
mization?” In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2018, pp. 2483–2493
(cit. on p. 22).

[63] L. N. Smith. “Cyclical learning rates for training neural networks”. In: 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV). 2017, pp. 464–472. doi: 10.1109/
WACV.2017.58 (cit. on p. 18).

[64] L. N. Smith, N. Topin. “Super-convergence: very fast training of neural networks using
large learning rates”. In: Artificial Intelligence and Machine Learning for Multi-Domain
Operations Applications. Vol. 11006. International Society for Optics and Photonics. SPIE,
2019, pp. 369–386. doi: 10.1117/12.2520589 (cit. on pp. 18, 65).

[65] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller. “Striving for simplicity: the all
convolutional net”. In: (2015) (cit. on p. 23).

[66] K. O. Stanley, R. Miikkulainen. “Evolving neural networks through augmenting topologies”.
In: Evolutionary computation 10.2 (2002), pp. 99–127. issn: 1063-6560. doi: 10.1162/
106365602320169811 (cit. on p. 17).

[67] C. Sun, A. Shrivastava, S. Singh, A. Gupta. “Revisiting unreasonable effectiveness of data in
deep learning era”. In: 2017 IEEE International Conference on Computer Vision (ICCV).
2017, pp. 843–852. doi: 10.1109/ICCV.2017.97 (cit. on p. 25).

[68] D. Sun, X. Yang, M.-Y. Liu, J. Kautz. “PWC-Net: CNNs for optical flow using pyramid,
warping, and cost volume”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 8934–8943. doi: 10.1109/CVPR.2018.00931 (cit. on pp. 9, 32,
34).

[69] Z. Teed, J. Deng. “RAFT-3D: scene flow using rigid-motion embeddings”. In: arXiv e-prints
(2020). arXiv: 2012.00726 [cs.CV] (cit. on p. 82).

[70] Z. Teed, J. Deng. “RAFT: recurrent all-pairs field transforms for optical flow”. In: Computer
Vision – ECCV 2020. LNCS 12347. Cham: Springer International Publishing, 2020, pp. 402–
419. isbn: 978-3-030-58536-5. doi: 10.1007/978-3-030-58536-5_24 (cit. on pp. 3, 4, 9, 35).

[71] P. Truong, M. Danelljan, L. V. Gool, R. Timofte. “GOCor: bringing globally optimized
correspondence volumes into your neural network”. In: vol. 33. 2020 (cit. on p. 46).

[72] D. Ulyanov, A. Vedaldi, V. Lempitsky. “Instance normalization: the missing ingredient for
fast stylization”. In: arXiv e-prints (2016). arXiv: 1607.08022 [cs.CV] (cit. on p. 19).

[73] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, T. Brox. “DeMoN:
depth and motion network for learning monocular stereo”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 5038–5047. doi:
10.1109/CVPR.2017.596 (cit. on p. 9).

[74] Z. Wan, Y. Mao, Y. Dai. “PRAFlow_RVC: pyramid recurrent all-pairs field transforms for
optical flow estimation in robust vision challenge 2020”. In: arXiv e-prints (2020). arXiv:
2009.06360 [cs.CV] (cit. on p. 49).

[75] J. Wang, Y. Zhong, Y. Dai, K. Zhang, P. Ji, H. Li. “Displacement-invariant matching cost
learning for accurate optical flow estimation”. In: vol. 33. 2020 (cit. on pp. 47, 82).

90

https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1117/12.2520589
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.1109/CVPR.2018.00931
https://arxiv.org/abs/2012.00726
https://doi.org/10.1007/978-3-030-58536-5_24
https://arxiv.org/abs/1607.08022
https://doi.org/10.1109/CVPR.2017.596
https://arxiv.org/abs/2009.06360

Bibliography

[76] Y. Wu, K. He. “Group normalization”. In: Computer Vision – ECCV 2018. LNCS 11217.
Cham: Springer International Publishing, 2018, pp. 3–19. doi: 10.1007/978-3-030-01261-8_1
(cit. on p. 19).

[77] T. Xiao, J. Yuan, D. Sun, Q. Wang, X.-Y. Zhang, K. Xu, M.-H. Yang. “Learnable cost
volume using the cayley representation”. In: Computer Vision – ECCV 2020. LNCS 12354.
Cham: Springer International Publishing, 2020, pp. 483–499. isbn: 978-3-030-58545-7. doi:
10.1007/978-3-030-58545-7_28 (cit. on p. 46).

[78] B. Xu, N. Wang, T. Chen, M. Li. “Empirical evaluation of rectified activations in convolutional
network”. In: arXiv e-prints (2015). arXiv: 1505.00853 [cs.LG] (cit. on p. 19).

[79] H. Xu, J. Zhang. “AANet: adaptive aggregation network for efficient stereo matching”. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020,
pp. 1959–1968. doi: 10.1109/CVPR42600.2020.00203 (cit. on p. 35).

[80] F. Yang, Y. Cheng, J. V. D. Weĳer, M. G. Mozerov. “Improved discrete optical flow estimation
with triple image matching cost”. In: IEEE Access 8 (2020), pp. 17093–17102. doi: 10.1109/
ACCESS.2020.2968180 (cit. on p. 58).

[81] G. Yang, D. Ramanan. “Volumetric correspondence networks for optical flow”. In: Advances
in Neural Information Processing Systems. Vol. 32. 2019, pp. 794–805 (cit. on pp. 34, 36).

[82] S. Zhao, Y. Sheng, Y. Dong, E. I. Chang, Y. Xu, et al. “MaskFlownet: asymmetric feature
matching with learnable occlusion mask”. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2020, pp. 6278–6287. doi: 10.1109/CVPR42600.2020.00631
(cit. on pp. 34, 35).

[83] Y. Zou, Z. Luo, J.-B. Huang. “DF-Net: unsupervised joint learning of depth and flow using
cross-task consistency”. In: Proceedings of the European conference on computer vision
(ECCV). LNCS 11209. 2018, pp. 36–53. doi: 10.1007/978-3-030-01228-1_3 (cit. on p. 9).

[84] S. Zweig, L. Wolf. “InterpoNet, a brain inspired neural network for optical flow dense
interpolation”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 6363–6372. doi: 10.1109/CVPR.2017.674 (cit. on p. 82).

91

https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-58545-7_28
https://arxiv.org/abs/1505.00853
https://doi.org/10.1109/CVPR42600.2020.00203
https://doi.org/10.1109/ACCESS.2020.2968180
https://doi.org/10.1109/ACCESS.2020.2968180
https://doi.org/10.1109/CVPR42600.2020.00631
https://doi.org/10.1007/978-3-030-01228-1_3
https://doi.org/10.1109/CVPR.2017.674

Acronyms

CNN Convolutional Neural Network. 5, 9, 10, 13, 14, 15, 20, 21, 25, 26, 27, 29, 30, 31, 32, 34, 35,
38, 41, 42, 45, 46, 48, 51, 52, 53, 57

EPE Endpoint Error. 24, 32, 33, 37, 51, 55, 56, 62, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79

NN (Artificial) Neural Network. 5, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 43, 61, 83

RAFT RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. 1, 3, 4, 6, 7, 9, 10, 11, 13,
14, 15, 18, 20, 25, 27, 29, 31, 32, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 79, 80,
81, 82

ReLU Rectified Linear Unit. 16, 19, 42, 63, 64

RNN Recurrent Neural Network. 5, 15, 19, 20, 38

	1 Introduction
	1.1 Motivation
	1.2 Thesis Organization

	2 Background
	2.1 Mathematical Foundations
	2.1.1 Images
	2.1.2 Calculus

	2.2 (Artificial) Neural Networks
	2.2.1 Machine Learning
	2.2.2 Perceptron
	2.2.3 Activation Functions
	2.2.4 Multilayer Perceptron
	2.2.5 Optimization
	2.2.6 Learning Rates
	2.2.7 Gradient Pitfalls
	2.2.8 Recurrent Neural Networks
	2.2.9 Convolutional Neural Networks
	2.2.9.1 Convolutional Layers
	2.2.9.2 Convolution Blocks
	2.2.9.3 Residual Connections
	2.2.9.4 Architectural Patterns

	2.2.10 Challenges
	2.2.11 Insights into Neural Networks

	2.3 Optical Flow
	2.3.1 Error Measures
	2.3.2 Occlusions
	2.3.3 Visualization of Flow Fields

	2.4 Optical Flow Datasets
	2.4.1 KITTI Datasets
	2.4.2 Synthetic Datasets
	2.4.2.1 Sintel Dataset

	2.4.3 Data Augmentation

	2.5 Concepts from Local Methods for Optical Flow
	2.6 Concepts from Variational Methods
	2.6.1 Data Term
	2.6.2 Smoothness Term
	2.6.3 Pyramid Schemes
	2.6.3.1 Warping

	3 Related Work
	3.1 Towards Learned Methods for Optical Flow
	3.2 Previous CNN-based Approaches
	3.3 Unsupervised Training
	3.3.1 Semi-supervised Training

	3.4 Cost Volumes and Correlation
	3.5 Warping, Ghosting, and Neighborhoods
	3.6 The RAFT Method
	3.6.1 Architecture
	3.6.2 Cost Volume
	3.6.3 Correlation Lookup
	3.6.4 Flow Upsampling
	3.6.5 Training
	3.6.5.1 Learning Rate Schedule

	3.6.6 Evaluation
	3.6.7 Shortcomings

	4 Improved RAFT Architectures and Training Procedures
	4.1 Baseline Modifications
	4.2 Cost Volume Processing
	4.2.1 Cost Volume Downsampling
	4.2.2 Cost Volume Normalization
	4.2.3 Alternative Cost Functions

	4.3 Upsampling
	4.3.1 Pyramid Schemes
	4.3.2 Traditional Approaches
	4.3.3 Convex Upsampling
	4.3.4 Flow-based Upsampling

	4.4 Data
	4.4.1 Augmentations

	4.5 Training
	4.6 Unsupervised Training
	4.6.1 Learned Losses
	4.6.2 Self-Supervision
	4.6.3 Unsupervised Loss
	4.6.4 Semi-Supervised Training

	4.7 Online Learning
	4.7.1 Multi-frame Approaches
	4.7.2 Our Approach
	4.7.3 Flow Fusion

	5 Evaluation
	5.1 Methodology
	5.2 Configuration Details
	5.2.1 Implementation Details
	5.2.1.1 Architecture
	5.2.1.2 Parameters

	5.2.2 System Configurations
	5.2.3 Training Configurations

	5.3 Caveats
	5.4 Baseline Ablation Study
	5.4.1 A Note on KITTI Results

	5.5 Cost Volume Processing
	5.6 Upsampling
	5.7 Unupervised Results
	5.7.1 Semi-Supervised Results

	5.8 Online Learning
	5.9 Comparison with RAFT

	6 Conclusion
	6.1 Future Work

	Bibliography

