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Abstract

For larger molecules, the computational demands of configuration selective vibra-

tional configuration interaction theory (cs-VCI) are usually dominated by the configu-

ration selection process, which commonly is based on second order vibrational

Møller-Plesset perturbation (VMP2) theory. Here we present two techniques, which

lead to substantial accelerations of such calculations while retaining the desired high

accuracy of the final results. The first one introduces the concept of configuration

classes, which allows for a highly efficient exploitation of the analogs of the Slater-

Condon rules in vibrational structure calculations with large correlation spaces. The

second approach uses a VMP2 like vector for augmenting the targeted vibrational

wavefunction within the selection of configurations and thus avoids any intermediate

diagonalization steps. The underlying theory is outlined and benchmark calculations

are provided for highly correlated vibrational states of several molecules.
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1 | INTRODUCTION

Vibrational configuration interaction (VCI) theory allows for the accu-

rate calculation of state energies,1–5 but usually on cost of consider-

able computational demands. In part 1 of this article series (cf. Ref.

[6]) we reported about the acceleration of configuration-selective VCI

calculations arising from a rigorous exploitation of the antisymmetry

of the spectroscopic ζ-constants, the analogs of the Slater-Condon

rules in finite basis vibrational structure theory and the introduction

of subspace diagonalizations for obtaining physically meaningful and

reliable start vectors for the iterative determination of vibrational

eigenstates. These concepts led to considerable speed-ups with

respect to the overall computation times and thus paved the way for

even larger VCI calculations, which allow for highly accurate state

determinations. In the second part of this series, even further acceler-

ations are presented originating from two technical refinements

concerning mainly the configuration selection process. The first one

introduces the concept of configuration classes, which allows to pro-

cess whole blocks of configurations instead of individual ones. This

results in a significantly enhanced screening of the correlation space

and can be applied to both, the configuration selection process and

the evaluation of the VCI matrix. The second technique exploits state

vectors obtained from an expression related to second order vibra-

tional Møller-Plesset perturbation (VMP2) theory, which replace VCI

state vectors and thus allow to avoid intermediate diagonalizations in

the iterative selection process. The benefits of this approach arise

mainly for highly correlated vibrational states–as observed in regions

of high-state densities, which require many configurations and thus

expensive diagonalizations for their proper representation. In order to

be consistent with respect to the first part of this article series, the

same set benchmark molecules, namely B2H6, C3H4, and C2H5F, or,

more precisely, the same set of potential energy surfaces (PES) has
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been used, which rely on n-mode expansions being truncated after

the 4-mode coupling terms. However, we have augmented this set of

molecules by the quasi-linear HCCNCS molecule, which shows a Cham-

pagne bottle potential with strong quartic contributions. This system,

whose potential has also been truncated after the 4-mode coupling

terms, shows exceptionally long diagonalization times and thus behaves

differently than the other three systems. Details about these have been

presented in separate publications, cf. Refs. [7–9] In addition, we also

present benchmarks obtained by applying the refinements presented in

both parts of this article series in order to demonstrate the overall per-

formance, which can be achieved in calculations aiming at high accuracy.

While the first technique presented in this contribution here can

be rigorously applied within any implementation of VCI theory, the

second aspect is more specific and requires a VMP2 like selection cri-

terion. We explicitly note here that different approaches for the selec-

tion of configurations have been presented in the literature,10–12

which all show some pros and cons. However, the VMP2 like criterion

is applicable to any type of wavefunctions and potentials and is used

in several implementations.13,14

2 | VCI PROGRAM STRUCTURE -
CONFIGURATION SELECTION

In the following, we briefly outline aspects of our VCI implementation

being relevant for a general understanding, which is indispensable for

revealing the computational bottlenecks. For additional and detailed

information concerning our VCI algorithm, we refer to Refs. [15–17].

In order to be able to handle large systems, we employ an itera-

tive configuration selective VCI algorithm based on the commonly

used Watson-Hamiltonian.18 The VCI wavefunction jΨVCIi is given as

a linear combination of Hartree products

jΨVCIi¼ c0 jΦ0iþ
X
S

cs jΦSiþ
X
D

cD jΦDiþ…, ð1Þ

that is, the wavefunction is expanded in terms of singly (S), doubly (D),

triply (T), � � � excited configurations jΦi regarding the reference jΦ0i,
which corresponds to the vibrational self-consistent field (VSCF) solu-

tion. The configurations themselves may be either products of one-

dimensional harmonic oscillator functions, or, as used in this work,

one-dimensional functions (modals) obtained by solving the VSCF

equations. The ni-th modal in coordinate qi will be denoted by φni
i in

the following, that is, a configuration is given as jΦi¼jQ iφ
ni
i i. Note,

that in our implementation of VCI, we exclusively use real basis func-

tions. For further information about handling non-Abelian systems in

this workaround see Ref. [17].

Initially a correlation space will be generated being restricted by

(a) the number of excitations within a single mode, (b) the maximal

number of modes being excited and (c) the total number of quanta

within the configuration. In order to subsequently reduce the initial

configuration space, we apply the aforementioned VMP2-based selec-

tion criterion19,15

ε aþ1ð Þ
AJ ¼

P
K ∈ af gc

að Þ
AK ΦK jH0jΦJh i

���
���2

ε að Þ
A �εJ

ð2Þ

for the purpose of selecting configurations that are supposed to have

a non-negligible contribution to the total energy of the state of interest.

If ε að Þ
AJ is larger than a certain threshold, the tested configuration jΦJi

will be included in the configuration space, otherwise not. The

VCI wavefunction of a state A in the a - th iteration step is thus

given as

jΨ að Þ
A i¼

X
K ∈ af g

c að Þ
AK jΦKi, ð3Þ

with af g being the set of selected configurations until the ath itera-

tion. Within the configuration selection the reference state,

cf. Equation (3), is chosen to be the eigenstate of the last iteration

step having the largest overlap with the harmonic counterpart.20,17

This ensures that the configuration space is appropriately chosen to

describe the target state. Note that, in the first iteration step, the

VSCF reference configuration (in case of molecules belonging to Abe-

lian point groups and canonical normal coordinates) or a wavefunction

in a meaningful subspace is used - for details see Ref. [6]. Subse-

quently, the correlation space is iteratively increased until conver-

gence by using Equation (2). In order to determine the respective

eigenvalue of the intermediate VCI matrix, we employ an iterative

eigenvalue solver based on the RACE-algorithm,21 which minimizes

the residual norm. This algorithm has been shown to surpass the per-

formance of the commonly used Jacobi-Davidson algorithm. Within

the selection iterations, it has to be guaranteed that the correct state

is tracked, which is realized by a physically meaningful start vector.17

Typically, many of the coefficients c að Þ
AK of the eigenvector in Equa-

tion (3) are very small. In order to reduce the computational effort

within the configuration selection via Equation (2), which includes a

sum over all K∈ af g, we adjust the eigenvector for insignificant coeffi-

cients, that is, configurations belonging to very small coefficients are

skipped in the selection process. Note, that the concerning configura-

tions are not removed from the current correlation space, but they

are simply not considered in Equation (2).

The procedure described here leads to a VCI algorithm, in which

the configuration space is built up iteratively. Each iteration step con-

sists of three parts: (a) Building the VCI matrix within the current cor-

relation space, (b) Diagonalization of this VCI matrix by using an

appropriate start vector for the RACE algorithm in order to track the

correct state (which is especially important when multi-resonance

effects are present), (c) Selecting new configurations based on the

VMP2-like criterion (2) using the VCI wavefunction of the eigenstate

with the largest overlap integral with respect to the harmonic refer-

ence state. Obviously, all three steps mentioned above suffer from

large correlation spaces. The reasons are evident: An increasing

dimension of configuration spaces leads to higher computational cost

for (i) building up the VCI matrix since there are more elements to be

evaluated, (ii) diagonalization of the VCI matrix since it grows larger
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and (iii) selecting configurations since more integrals have to be evalu-

ated and summed up. Therefore it is attractive to reduce (a) the com-

putational cost of individual matrix element evaluations (see part 1 of

this article series), (b) the number of matrix elements to be calculated

(see Section 3 and 4 and part 1 of this article series), (c) the number of

iterations needed (see Section 4 and part 1 of this article series) and

(d) the number of diagonalization steps (see below, Section 4).

Energetically separated vibrational states usually require a modest

number of iterations within the described VCI procedure. In contrast,

states energetically located in a region of high density, as for example

CH-stretching modes, tend to slower convergence. Whereas for the

first group of states usually less than eight iterations are necessary in

order to achieve convergence with respect to the energy eigenvalue

of the state of interest, states with high energy may necessitate up to

20 iterations. Therefore, computation times for calculating

CH-stretching modes, certain overtones and combination bands in

regions of high state density, may be excessive. For this reason, we

will focus in particular on such states in our benchmark calculations in

order to prove our developments to be very efficient.

3 | CLASSES OF CONFIGURATIONS

3.1 | Method and implementation

There are two computationally demanding parts within the program

structure, in which the calculation of matrix elements is needed,

namely the set-up of the VCI matrix and the configuration selection

step. Both parts suffer from large configuration spaces. Quantitatively,

the scaling is the following:

• During the configuration selection, all configurations not included

in the current configuration space need to be tested regarding their

energy contribution via the VMP2-like energy expression (2). The

upper bound of the sum within Equation (2) is given by the number

of selected configurations Nconf,sel: að Þ in the current iteration step

a. The expression itself has to be evaluated Nconf,tot:�Nconf,sel: að Þ
times with Nconf,tot: being the number of configurations present in

the initial configuration space. Obviously, the computational effort

for the calculation of a single term (2) dramatically increases with

growing Nconf,tot: , on the other hand, the sum of elements depends

on Nconf,sel:.

• In contrast, the number of new VCI matrix elements that have to

be evaluated within one iteration step, is approximately given as
1
2 N2

conf,sel: aþ1ð Þ�N2
conf,sel: að Þ

� �
, since the matrix is Hermitian. This

holds, if the matrix elements from the previous iteration step are

kept in memory and need not to be recalculated as in our

implementation.

Obviously, in order to reduce the number of elements, the analogs of

the Slater-Condon rules, which exploit orthogonality of the basis func-

tions with respect to the order of the operator considered, can be

applied to sort out vanishing integrals without explicitly calculating

them. Note that, this corresponds to the concept of active and passive

terms in vibrational coupled-cluster theory.22 Nevertheless, a large

computational effort remains, especially within the configuration

selection process due to the scaling with Nconf,tot:. As shown below, by

grouping configurations having the same properties regarding the ref-

erence configuration and driving the loop structure by these “classes”
instead of single configurations significant reductions in CPU time can

be achieved.

The VCI wavefunction in a specific iteration step is expanded in

terms of configurations according to Equation (3). Technically, within

our configuration selective implementation of VCI, we employ two

lists, namely the

i. list of (binary coded) configurations in the initial configuration

space, which is used in order to determine the energetic contri-

bution of a single configuration via Equation (2), and

ii. the list of configurations already selected via Equation (2) used in

order to generate the VCI wavefunction (cf. Equation (3)) and the

VCI matrix and to apply the VMP2-like criterion again in the next

iteration step.

In order to maximally exploit the analogs of the Slater-Condon rules

to gain a smaller number of matrix elements to be evaluated in (a) the

matrix set-up and (b) the configuration selection, we presort the con-

figurations in the initial configuration space. Subsequently, we com-

bine certain configurations into blocks, the aforementioned

(configuration) classes. The criterion for sorting is the following: Let us

consider the set of modes Mm ΦIi, ΦJij Þjð with jMm ΦIi, ΦJij Þ j¼mjð .

In these modes, the two configurations jΦIi and jΦJi differ in the

respective quantum numbers. All configurations jΦKi sharing the same

Mm Φ0i, ΦKij Þjð with respect to the reference configuration jΦ0i are

elements of the same class. The reason is obvious: When building the

VCI matrix and especially within the configuration selection via Equa-

tion (2), the respective integral vanishes if for two configurations jΦIi
and jΦJi it holds jMm ΦIi, ΦJij Þ j >Pjð , with P being the order of the

operator considered, e.g. the potential energy operator or the VAM

operator. Thus, sorting the initial configuration space by Mm with

respect to jΦ0i leads to blocks of configurations with the same prop-

erties regarding vanishing integrals. Instead of checking every single

configuration for obeying the Slater-Condon rules or even evaluating

every single integral, the contribution of whole classes is tested. If a

specific class contributes, the respective matrix elements are explicitly

calculated, otherwise the whole block is skipped. Obviously, this

enables to skip a large number of elements at once. Within the imple-

mentation, the loop structure is now driven by classes instead of

single configurations. This leads to (a) a significant reduction of if-

statements passed and (b) significantly smaller loop lengths.

3.1.1 | Configuration selection

Let Ktot, jKtot j¼Nconf,tot: be the set of configurations within the initial

configuration space and Ksel að Þ the set of configurations that are
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included in the configuration space in iteration step a,

jKsel að Þ j¼Nconf,sel: að Þ. Generally, using the analogs of the Slater-

Condon rules, the VMP2-like criterion (2) can be rewritten as

ε aþ1ð Þ
AJ ¼

PNconf,sel að Þ
I ∈ Ksel að Þ^jMm jΦIi, jΦJið Þj≤ Pc

að Þ
AI ΦIjH0jΦJh i

���
���2

ε að Þ
A � εJ

, ð4Þ

with P being the maximum order of the coupling terms present in the

PES and J∈KtotnKsel að Þ. Note that H0 does not include any VAM con-

tributions. Equation (4) refers to our previous implementation not

using the concept of classes introduced here, but application of the

Slater-Condon rules to each configuration separately. All reference

CPU times shown in the following are based on Equation (4).

We now mathematically introduce (configuration) classes. As a

class CMm we define a set of configurations jΦIi sharing the

same Mm Φ0i, ΦIij Þjð :

CMm ¼ jΦMm
1 ijΦMm

2 i…jΦMm
jCMm ji

n o
: ð5Þ

With the definition (5), the sets Ksel að Þ and KtotnKsel að Þ can be written

as the unions

Ksel að Þ¼ [NC,sel að Þ

τ¼1

Csel
Mm ,τ ð6Þ

and

KtotnKsel að Þ¼ [NC,nsel að Þ

ρ¼1

Cnsel
Mm ,ρ, ð7Þ

with NC,sel að Þ and NC,nsel að Þ being the number of classes in the set of the

selected configurations in iteration step a and the non-selected ones,

respectively. Employing the concept of configuration classes via Equa-

tions (6) and (7), we can rewrite Equation (4) as

ε aþ1ð Þ
AJ ¼

PNC,sel að Þ

τ:jMm jΦτ
1i, jΦJið Þj≤ P

PjCsel
Mm ,τ j

I

c að Þ
AI ΦIjH0jΦJh i

������

������

2

ε að Þ
A �εJ

ð8Þ

Note, that a specific element ε aþ1ð Þ
AJ is only calculated in the case that

jΦJi∈Cnsel
Mm

with jMm jΦτ
1ijΦρ

1i
� � j ≤P j, that is, jΦJi has to be an ele-

ment of a contributing class of the non-selected configurations. Tech-

nically, we test all the first elements (as all elements of a class have

same properties, we choose the first one) of each class via

jMm jΦτ
1ijΦρ

1i
� � j ≤ P ð9Þ

with τ∈Csel
Mm

and ρ∈Cnsel
Mm

. Subsequently, we generate a list of the con-

tributing pairs and calculate the elements from these classes.

Thus, regarding efficiency, there are two aspects: First, the sum-

mation over the number of configurations in the current configuration

space in iteration step a is replaced by the much smaller one over the

number of configuration classes. Only in the case that a configuration

class renders a non-zero contribution according to the Slater-Condon

rules, the matrix element belonging to the concerning class is explicitly

evaluated. Second, we screen the classes of the remaining non-

selected configurations. Both together, a loop structure consisting of

two large loops is broken down to four smaller ones. It is important to

notice, that the initial configuration space can be used much more

efficiently for screening via the Slater-Condon rules, as the classes are

much larger than in the list of selected configurations.

3.1.2 | Set-up of the VCI matrix

For building the VCI matrix, the same technique as described for the

configuration selection is applied, but for this case only set (6) is rele-

vant. As described before, in every iteration we solely calculate the

missing matrix elements regarding the configurations of the last step.

Thus, the list of new configurations is, compared to the number of ele-

ments occurring with the configuration selection, relatively small.

Therefore, there are less elements in a specific class and the resulting

computational saving has to be expected to be significantly smaller.

3.2 | Results

In order to demonstrate the CPU timesavings arising from configura-

tion classes, benchmark calculations for B2H6, C3H4, and C2H5F have

been performed. Both, computational savings arising from the matrix

set-up and the configuration selection are depicted in Figure 1 for

allene and are listed for all systems in Tables 1 (VCI matrix set-up) and

2 (configuration selection).

Since the impact of classes strongly depends on the order of the

operator, we performed different sets of tests: Regarding the computa-

tional cost for evaluating the VCI matrix, we considered potential

energy surfaces up to 3- and 4-mode couplings, whereas VAM terms

were entirely neglected or included up to 0D. Note that, within the con-

figuration selection according to Equation (2), VAM terms are always

neglected, but are considered within the (intermediate) VCI matrix set-

up. As restrictions for the initial configuration spaces, we used a maxi-

mum sum of quantum numbers of 15 with at most six modes being

simultaneously excited. For allene, a maximum excitation of seven per

mode has been utilized, six for B2H6 and five for C2H5F. As reference,

CPU times without using classes have been determined.

As can been seen in Figure 1, the computational savings are much

larger for the configuration selection process (last two groups of bars

on the rhs) as for the matrix set-up (4 bar groups on the lhs). The red

bars depict the reference calculation without classes, the blue ones

show the CPU times employing this new concept. Note, that the scaling

for the first y-axis is logarithmic. The lines refer to the second y-axis on

the right hand side and provide the mean and total saving instead.
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3.2.1 | Configuration selection

Since the VAM contributions are not considered within Equation (2),

the inclusion of the VAM terms show only an indirect effect on the

CPU time needed for the configuration selection. Figure 1 clearly illus-

trates, that merging configurations into classes instead of checking

individual configurations leads to a tremendous computational

advantage.

Naturally, using a 3D potential energy surface, which includes

couplings up to three modes involved, leads to larger savings than

employing a 4D PES, because many more integrals will vanish due to

the analogs of the Slater-Condon rules. Additionally, driving the con-

figuration selection by classes leads to larger blocks of configurations

that can be skipped in advance without evaluating the respective

matrix element. Moreover, considering a specific PES, the effect of

saving CPU time by using classes grows even larger if the size of

(a) the systems and/or (b) the correlation space increases. Both in turn

leads to larger blocks that can be neglected and therefore the total

CPU time decreases.

We like to emphasize here that the ordering of the configurations

in the initial correlation space plays a major role regarding the savings.

Expression (4) has to be evaluated for all configurations ΦJ not being

included in the current configuration space, which may be a large

number (i.e., Nconf,tot:�Nconf,sel: að Þ). By using the ordering described

above, the initial configuration space can be divided into a minimal

number of classes, whereas a single class has maximum size. For

example, within the calculation of the vibrational ground state of

allene, there are 30,926,490 configurations present in the initial

F IGURE 1 Comparison of CPU times
for building the VCI matrix (abbreviated as
“mat.”) and determining the correlation
space using the VMP2-like criterion
(abbreviated as “sel.”) in the cases of
(A) using the concept of configuration
classes (blue bars) and (B) without (red
bars). The values given refer to the
calculation of the fundamental transitions

of C3H4, that is, 11 states have been
considered. The labels 3D and 4D refer to
the order of the multimode expansion of
the PES. Note, that the first y-axis giving
the CPU time has a logarithmic scaling;
the second is non-logarithmic and shows
the CPU time savings

TABLE 1 Total CPU times and
savings for building the VCI matrix (for all
fundamentals) within the calculation
depending on the operator included. The
potential energy surface has been
truncated after 3D or 4D terms,
respectively, the VAM operator has been
included until 0D terms (ĤVAM 0Dð Þ) or has
not (Ĥw=o VAM)

tot. CPU [s] tot. CPU [s] tot. CPU Mean CPU saving

Molecule PES Operator (w/o classes) (w/classes) Saving (%) Per state (%)

C2H5F 3D Ĥw=o VAM 2237.1 659.1 70.5 46.2

3D ĤVAM 0Dð Þ 19515.2 17224.0 11.7 4.4

4D Ĥw=o VAM
6026.2 5376.4 10.8 10.2

4D ĤVAM 0Dð Þ 27327.8 24198.0 11.5 9.8

B2H6 3D Ĥw=o VAM
2028.6 751.0 63.0 46.2

3D ĤVAM 0Dð Þ 3566.2 2808.2 21.3 14.3

4D Ĥw=o VAM 1911.2 1710.8 10.5 8.9

4D ĤVAM 0Dð Þ 3047.0 2822.5 7.4 6.1

C3H4 3D Ĥw=o VAM
534.6 191.7 64.1 46.9

3D ĤVAM 0Dð Þ 1792.8 1580.3 11.9 7.2

4D Ĥw=o VAM 1471.4 1241.7 15.6 10.0

4D ĤVAM 0Dð Þ 2592.6 2467.0 4.8 3.5

10 MATHEA ET AL.



configuration space used. These can be divided into 9946 classes, that

is, on average a class contains 3108 configurations, while the number

of elements per class varies between 6 and 4501. Since many inte-

grals will not contribute within the sum, this will lead to comparatively

short lists of contributing blocks. Only if one class contributes, all

included configurations will be tested via the VMP2-like criterion, oth-

erwise not. This results in a maximum number of configurations that

can be skipped. In summary, driving the configuration selection by

classes on average (all three systems investigated, see Table 2) leads

to a CPU time saving of about 97% in total for 3D PESs and to about

83 % for 4D PESs.

3.2.2 | VCI matrix set-up

Regarding the matrix set-up, the largest computational savings can be

achieved, once the potential includes up to 3D terms and VAM contri-

butions are neglected within the Watson Hamiltonian, namely 64.1%

for allene. This behavior is not surprising, because for a 3-mode oper-

ator the number of elements in a single class is much larger than in

calculations involving 4-mode operators. Thus, the computational

effort for 3-mode operators is much smaller as many more elements

can be skipped at once.

The savings in the other three cases (3D potential and 0D VAM

terms, 4D potential and no/0D VAM terms) are quite similar to each

other, since the total order is four regarding the mode couplings in the

underlying operator. The savings scatter between 4.8% and 15.6%.

The other systems investigated (see Table 1), show qualitatively the

same behavior. On average (all three systems considered), savings are

as large as 66% in the first case and about 12% in the three other

ones. In any case, the savings are much smaller than for the configura-

tion selection procedure. Essentially, this behavior results from the

technical framework within our implementation. The efficiency of our

VCI algorithm benefits from a specific ordering of the selected config-

urations from the previous iteration step, that is, the configuration list

is sorted by iterations. In this way, we are able to reuse information

and transfer it to the next iteration step in order to avoid recalculation

to a great extent. Within the list of already selected configurations,

we conserve the original sorting, which renders the most efficient

structure regarding classes, only within configurations from the same

iteration step. Thus, the list is split into many sections. Since the VCI

matrix is generated from already selected configurations, the resulting

loop leads to much smaller classes that may be skipped compared to

the case of configuration selection. Although the savings are compara-

tively moderate, for larger systems the benefit from the alternative

loop structure (classes vs. no classes) will increase and the savings will

grow larger. It is important to notice here, if the VCI implementation is

non-iterative and/or the VCI matrix would be generated as a whole

from a list ordered in the optimal way, the savings would be signifi-

cantly larger. In general, the computational savings that can be

achieved by using classes increase with a growing number of modes

and/or the size of the correlation space.

4 | ELIMINATION OF INTERMEDIATE
EIGENPAIR DETERMINATIONS

The computational effort within configuration selective VCI calcula-

tions is dominated by the last few iteration steps, when the VCI matrix

has already gained a certain size. Consequently, it must be the primary

goal to reduce the CPU time in these last steps and thus we will focus

in the following on two situations:

• Although the method of prediagonalizing subspaces presented in

part 1 of this article series improves the convergence behavior of

the iterative VCI implementation by optimizing the start vector for

the configuration selection, there are still vibrational states, espe-

cially in the regions of high density, showing very slow conver-

gence. For example, for the calculation of the fundamental

transitions ν1 and ν3 of C2H5F (see Table S2 in the supporting

information), 24 and 18 iterations within our (former) algorithm are

necessary to reach converged energy eigenvalues. Of course, this

is an indication for small numerical effects playing a major role for

such critical states, since the main physically relevant information

is already covered by the first iteration steps. Thus, small uncer-

tainties within the dynamic correlation may sum up during the iter-

ation process leading to a large number of steps.

• Usually, the configuration selection itself dominates the total CPU

time of the calculation (see for example Figure 1). In contrast, for

computationally very challenging systems as for example

HCCNCS, the diagonalizations of the VCI matrix can become the

computational bottleneck, although we employ the highly opti-

mized eigenvalue solver based on the RACE algorithm described

in Section 2.

TABLE 2 Total CPU times needed
for selecting configurations within the
iterations via the VMP2-like criterion. In
all calculations the Hamiltonian used is
ĤVAM 0Dð Þ. The values given refer to the
sum of CPU times needed in all iterations
for the calculation of all fundamental
transitions. The savings do not depend
on the VAM operator used within the
calculation, since it is not considered in
Equation (2)

tot. CPU [s] tot. CPU [s] tot. CPU Mean CPU saving

PES (w/o classes) (w/classes) Saving (%) Per state (%)

C2H5F 3D 6659572.2 136559.5 98.0 98.1

4D 4020021.1 652234.4 83.8 84.0

B2H6 3D 851357.3 25220.1 97.0 95.7

4D 263132.0 41849.6 84.1 85.0

C3H4 3D 632625.0 22198.1 96.5 97.2

4D 576226.6 99502.2 82.7 85.0
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Both aspects combined may lead to the fact that iterative VCI calcula-

tions may slow down unendurably for certain states or even whole

systems. In the following, we try to overcome this bottleneck and pre-

sent a method, which essentially increases the performance of our

VCI algorithm for the calculation of states requiring a large number of

iterations and/or computationally very demanding diagonalization

steps occurring within these.

4.1 | Method and implementation

In order to save CPU time in case of computationally demanding

eigenvalue determinations and to further improve the convergence

behavior of our algorithm, we modified the criterion for the configura-

tion selection. Note, that the starting point for the following consider-

ations again is Equation (2) used in our original implementation, that

is, the prediagonalization of subspaces, presented in part 1 of this

series paper, is not considered here. Within second order Rayleigh-

Schrödinger perturbation theory (cf. Ref. [23] for example) and the

case of small perturbations j Ĥ0 j = j Ĥ 0ð Þ j¼ α�1 described by the

operator Ĥ
0
, while Ψ 0ð Þ

n denotes eigenfunctions for the non-perturbed

system with the Hamiltonian Ĥ
0ð Þ

and E 0ð Þ
n the corresponding eigen-

value, the energy correction of second order E 2ð Þ
n is given as

E 2ð Þ
n ¼

X
m≠ n

j hΨ 0ð Þ
m j Ĥ0

Ψ 0ð Þ
n i�� ��2

E 0ð Þ
n �E 0ð Þ

m

, ð10Þ

the corresponding wavefunction Ψ1,n is

jΨ1,ni¼ jΨ 0ð Þ
n iþ

X
m≠ n

hΨ 0ð Þ
m j Ĥ0 jΨ 0ð Þ

n i
E 0ð Þ
n �E 0ð Þ

m

jΨ 0ð Þ
m i: ð11Þ

In order to estimate the (energy) correction an arbitrary configuration

contributes to the total energy of the state jΨAi, the basis function

jΨ 0ð Þ
n i in Equation (10) is replaced by the wavefunction jΨ að Þ

A i in the

iteration step a given by Equation (3). This yields the VMP2-like

energy expression (2) which is used to decide whether a certain con-

figuration should be included in the correlation space or not. The

energy value, cf. Equation (2), itself does not provide a physically

meaningful energy correction in the sense of perturbation theory.

In analogy to this, we define a corresponding VMP2-like

wavefunction of first order jΨ að Þ,1
A i by

jΨ aþ1ð Þ,1
A i¼

X
K ∈ af g

c að Þ
AK jΦKiþ

X
J≠ K

P
K ∈ af g

c að Þ
AK ΦK jH0jΦJh i

ε að Þ
A �εJ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼c aþ1ð Þ, 1ð Þ

AK,J

jΦJi

¼jΨ að Þ
A iþ

X
J≠ K

c aþ1ð Þ, 1ð Þ
AK,J jΦJi

ð12Þ

obtained by one-to-one comparison with the wavefunction (11). We

want to emphasize here, that the requirements of perturbation theory

formally are not fulfilled for the wavefunction jΨ að Þ
A i (no complete

basis set with respect to Ĥ
0ð Þ
). Thus, neither Equation (2) nor (12) ren-

der physically meaningful quantities in the sense of perturbation

theory.

The existing configuration selection scheme is now modified as

follows:

1. Initially, the configuration selection via criterion (2) is used.

2. If the difference between the energy eigenvalues obtained from

two consecutive iteration steps falls below a certain threshold

Ediff,thres, we replace criterion (2) by

ε aþ1ð Þ,1
AJ ¼

Ψ að Þ,1
A jH0jΦJ

D E���
���2

ε að Þ,1
A �εJ

ð13Þ

with the VMP2-like wavefunction (12) and ε að Þ,1
A being the respec-

tive energy.

3. We define the correlation space to be converged, if the sum of

“energy corrections” (13) is smaller than a certain thresh-

old Ecorr,thres.

4. Finally, the VCI matrix in the converged configuration space is

diagonalized and the state of interest is identified.

It is important to notice, that the criterion (13) is only employed once

the major part of physical information is already covered by the cur-

rent correlation space, that is, static correlation. This is ensured by the

threshold regarding the energy difference of two consecutive itera-

tion steps. In the last iterations the main concern is to achieve conver-

gence of the energy eigenvalue by further improving the description

of the state of interest by supplementing the correlation space. Con-

sequently, although the VMP2-like wavefunction (12) has not a physi-

cal meaning in the sense of perturbation theory, because the

respective requirements formally are not fulfilled for the

wavefunction jΨ að Þ
A i), it can be applied in order to estimate the actual

VCI wavefunction for determining the correlation space fitting to the

state of interest in late iteration steps. As the wavefunction is updated

by an VMP2-like procedure, there is no need for any intermediate

eigenvalue determinations, which may be costly. The final diagonaliza-

tion after the very last iteration yields a physical meaningful genuine

VCI wavefunction and the energy eigenvalue provided by the selected

configuration space.

Note, that the norm of the wavefunction (12) is given as

Ψ aþ1ð Þ,1
A jΨ aþ1ð Þ,1

A

D E
¼1þ

X
J≠ K

c aþ1ð Þ, 1ð Þ
AK,J0

���
���2, ð14Þ

since ΦJjΨ að Þ
A

D E
¼0, that is, the wavefunction (12) is formally normal-

ized, because the quadratic terms in c aþ1ð Þ, 1ð Þ
AK,J0 are of order O α2

� �
with

α being the perturbation parameter. Nevertheless, we will renormalize

Equation (12) within the VCI iterations. We want to notice here, that

the effects of renormalization are usually very small. In order to fur-

ther reduce the computational cost, one may dispense this step.

As outlined above, many of the coefficients c að Þ
AK in Equation (3)

were found to be very small. For this reason and in order to reduce
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the computational effort within the configuration selection, in the

original algorithm these insignificant coefficients were set to zero. By

replacing the genuine VCI wavefunction (3) by the VMP2-like expres-

sion (12), this adjustment is not possible any more. Consequently, the

computational cost for the configuration selection rises, but is over-

compensated by using the proposed method.

4.2 | Results

We benchmarked the method of employing a VMP2-like

wavefunction (12) within the configuration selection for all test mole-

cules presented above. In all cases, the PESs have been truncated

after the 4-mode coupling terms and 0D VAM contributions have

been included within the VCI calculations. In order to restrict the ini-

tial configuration space, we used nex,init: ¼6, nmax,init: ¼6, nsum,init: ¼15

for B2H6, C3H4, and C2H5F, for HCCNCS we utilized nex,init: ¼5,

nmax,init: ¼5 and nsum,init: ¼15.

CPU timesavings regarding the total computational time required

are shown in Table 3. The reference calculation refers to our former

VCI implementation using Equation (2) for configuration selection

only, the CPU saving refers to the use of the criterion (13) when

Ediff,thres < 2:0 cm�1. The threshold for convergence has been set to

Ecorr,thres ¼1:0 cm�1. In order to obtain the statistical data presented

in the table, we calculated the six BH-stretching (CH-stretching) fun-

damental transitions of B2H6 (C2H5F), the four CH-stretching funda-

mental transitions of C3H4 as well as its first overtones 2ν6, 2ν2 and

2ν7 and the four highest lying fundamentals of HCCNCS.

As shown in Table 3, on average, the mean absolute energy dif-

ference between the results obtained with our former algorithm and

the new one employing Equation (13) is 0.3 cm�1 and the maximum

deviation is 1.1 cm�1. These results show that the final energy eigen-

values obtained by the new method described do not differ signifi-

cantly from the results generated within the former algorithm. Since

deviations of these magnitudes can arise from many error sources

within the entire calculation (quality of the potential energy surface,

quality of the polynomial fit of the PES, size of the correlation space

in VCI, choice of startvector for the diagonalization, thresholds for

convergence, � � �) the error must be considered to be small. This

behavior had to be expected, because, as mentioned before, the main

effect of the late iterations (regarding Ediff,thres) is to fine-tune the cor-

relation space whereas all relevant physical information about the

state of interest is already covered within the early ones. This refers

to the concept of static and dynamic correlation in electronic struc-

ture theory. Consequently, the actual energy eigenvalue will not

essentially depend on individual configurations, that is, the difference

between using Equation (2) or (13) instead will not be very large.

On the other hand, using this technique the total CPU time

can be tremendously reduced. The data given in Table 3 show, that

using the modified algorithm on average leads to total CPU time

savings of 61.9% for the respective states and an average mean

CPU time saving of 54.5% per state. Regarding the single systems

considered, the mean saving per state varies between 31.5% for

B2H6 and 73.9% for C2H5F, that is, there may be large differences

regarding the possible savings, which depend on the behavior of

the systems considered within the calculation. In the following, we

will discuss different situations exemplified by our benchmarks

molecules.

4.2.1 | C3H4

A detailed depiction of the computational demands for the vibrational

states of allene calculated is shown in Figure 2. The CPU time is given

by bars, split up in contributions of the configuration selection

(orange), diagonalization of the VCI matrix (red) and the set-up of the

VCI matrix (blue). The number of iterations necessary within both of

the implementations are given as lines (second y-axis, former algo-

rithm in blue, new one in black). The red numbers provide the final

configuration spaces and the black ones the energy difference

between the results obtained from both algorithms.

As shown in Figure 2, the replacement of the VCI wavefunction

(3) by the VMP2-like wavefunction (12) on average leads to an

improvement of the convergence behavior w.r.t. (i) the number of iter-

ations necessary and (ii) the dimension of the final configuration

space. On average, 11.0 iterations per state are necessary within our

former algorithm to gain convergence of the energy eigenvalue. Our

new approach reduces the number of iterations to 7.0 on average;

whereas diagonalizations are necessary within 3.9 iterations (see also

Tables S1–S4 in the supporting information). Thus, the CPU savings

are generated by improving the convergence behavior, because the

total CPU time is dominated by the configuration selection while the

diagonalization steps amount to a minor contribution. Additionally,

the final correlation spaces are usually smaller employing our new

TABLE 3 CPU savings (w.r.t. total computational time) and energy deviations arising from using the VMP2-like vector (12) instead of the VCI
eigenvector (3) obtained by diagonalization of the intermediate VCI matrix. The configuration selection has been carried out based on
Equation (2) and Ediff,thres > 2:0 cm�1. Subsequently, for further augmentation of the correlation space equation (13) has been used (Ecorr,thres ¼1:0
cm�1). For details regarding single states see the supporting information

B2H6 C2H5F C3H4 HCCNCS

mean ΔE (cm�1) per state 0.0 0.8 0.2 0.3

max. ΔE (cm�1) 0.0 1.1 0.5 0.6

mean CPU saving (%) per state 31.5 73.9 46.6 66.1

tot. CPU saving (%) (all states) 31.1 78.3 55.2 82.8
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algorithm. For example, regarding the state ν1 the configuration space

is reduced to almost 50%, whereas the energy difference with respect

to the reference value is 0.5 cm�1 only.

Obviously, state ν5 constitutes an exception from this overall ten-

dency. Since the number of iterations stays unchanged in this case

and the diagonalization does not dominate the total CPU time, we

lose performance by using Equation (13), because negligible configu-

rations cannot be discarded in this formalism. This is in contrast to our

former implementation based on Equation (2). All in all, this results in

larger CPU times. Note that, none of the other states investigated

within our benchmarks suffers from a larger CPU time compared to

our former implementation, but show much faster convergence and

significant CPU savings can be generated by using the new

implementation.

4.2.2 | B2H6

Within the calculation of the BH-stretching modes of B2H6, on aver-

age 7.2 iterations are necessary in order to obtain converged energy

eigenvalues using the standard configuration selection algorithm,

which is a comparatively small number. The total CPU time is domi-

nated by the configuration selection while the diagonalization steps

yield a minor contribution. By using the new algorithm, the number of

iterations is reduced to 6.2 on average, while 4.2 iterations contain

diagonalizations (see Tables S1–S4 the supporting information). Note

that, the iteration steps employing Equation (13) instead suffer for

additional cost, since negligible coefficients within the wavefunction

(3) may not be eliminated (see above). Therefore, the CPU needed for

configuration selection increases, but the effect is overcompensated

by the saving of whole (late and thus computationally demanding)

iteration steps. In comparison to the other systems investigated, the

convergence behavior can be only marginally improved for B2H6,

which results in a rather small overall CPU time saving of (only) 31.5%

per state.

4.2.3 | C2H5F

In contrast to B2H6, for calculating the CH-stretchings of C2H5F, on

average 17.3 iterations per state are needed with our former algo-

rithm, while the new requires only 7.7 and 4.5 iterations of these con-

tain VCI matrix diagonalizations (see Tables S1–S4 in the supporting

information). These numbers clearly show that the convergence

behavior can tremendously be improved by using the configuration

selection based on the VMP2-like vector. Additionally, the final con-

figuration spaces for all the states are significantly smaller than before

(see Tables S1–S4 in the supporting information). In summary, mas-

sive CPU timesavings can be observed, namely 73.9% of the total

CPU time per state.

4.2.4 | HCCNCS

Within the conventional algorithm the total CPU time for calculating

the states of HCCNCS is dominated by the diagonalization steps

F IGURE 2 CPU times for the calculation of the CH-stretching fundamentals and three overtones of C3H4, split up in times for evaluating and
diagonalizing the VCI matrix and employing the configuration selection scheme based on Equation (2). For every state shown, the bar on the left
hand side depicts the CPU time for a reference calculation using the VCI eigenvector obtained by diagonalization of the VCI matrix in order to
apply Equation (2) for selecting configurations. The bar on the right hand side refers to an implementation using a VMP2-like vector of the form
(12) instead as long as the thresholds described in the text are reached. The corresponding differences between the energies obtained are given
above the bars, the dimensions of the associated correlation spaces are depicted in red. The second y-axis on the right hand side provides the
number of iterations required
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(see Figure 3, note the logarithmic scale of the first y-axis). Addi-

tionally, on average this algorithm needs 15.0 iterations in order to

converge. Using the new implementation, the number of iterations

can be reduced to 9.0 on average, which constitutes a significant

improvement. Besides, there are on average 5.8 iterations con-

taining intermediate diagonalizations of the current VCI matrix,

which has a tremendous impact on the overall CPU time. Thus, in the

case of HCCNCS, the saving is twofold: On the one hand, the con-

vergence of the energy eigenvalue is increased, on the other hand a

large number of computationally demanding eigenvector determina-

tions is omitted. Both aspects, taken together, lead to the tremen-

dous total saving of 82.8% while again the energy differences are

negligible.

In summary, our benchmark calculations prove the new algorithm

employing a configuration selection based on a VMP2-like

wavefunction to be essentially more efficient than using a conventional

configuration selection scheme relying on Equation (2). Although our

criterion (13) does not include the genuine VCI eigenfunction but an

approximation via Equation (12), the resulting energy eigenvalues do

not suffer from a loss of accuracy. Regarding CPU time, we partially

obtain tremendous savings resulting from an improvement of the con-

vergence behavior (number of iterations, smaller final correlation

spaces). On the other hand, the algorithm profits from omitting compu-

tationally demanding diagonalizations of the VCI matrix. The loss of

performance within the configuration selection caused by additional

cost for a larger number of negligible coefficients is clearly over-

compensated. Nevertheless, in order to save CPU time using the pres-

ented method, the systems/correlation spaces considered must exhibit

a certain minimum size, that is, very small systems may be calculated

faster by using the conventional method.

5 | OVERALL PERFORMANCE

Here we combine the methods to accelerate iterative VCI calculations

based on a configuration selection scheme presented in both parts of

this articles series. We modified the following steps within the algo-

rithm: (i) The VAM contributions, wherever necessary, are evaluated

by using unrolled equations efficiently using symmetry properties and

discarding vanishing integrals in advance. (ii) Prediagonalization of

appropriate subspaces is utilized in order to take into account state

information beyond the harmonic one right from the beginning of the

calculation leading to faster convergence of the energy eigenvalue.

(iii) Configuration classes are used to maximally exploit the Slater-

Condon type rules within the configuration selection process and the

set-up of the VCI matrix. (iv) A modified criterion for configuration

selection based on a VMP2-like wavefunction is employed for late

iteration steps in order to omit computationally demanding eigenvec-

tor determinations and further improve the convergence behavior of

the VCI energy.

In order to determine the total improvement with respect to our

former implementation obtained by the techniques mentioned, we

performed calculations including all aspects. Again, we used B2H6,

C3H4, and C2H5F for benchmarking. The potential energy surfaces

have been truncated after 4-mode coupling terms; VAM contributions

have been included up to 0D terms. The initial configuration spaces

F IGURE 3 CPU times for the calculation of the four highest lying fundamentals of HCCNCS, split up in times for evaluating and diagonalizing
the VCI matrix and employing the configuration selection scheme based on Equation (2). Note that, the scaling is logarithmic. For every state
shown, the bar on the left hand side depicts the CPU time for a reference calculation using the VCI eigenvector obtained by diagonalization of
the VCI matrix in order to apply Equation (2) for selecting configurations. The bar on the right hand side refers to an implementation using a
VMP2-like vector of the form (12) instead as long as the thresholds described in the text are reached. The corresponding differences between the
energies obtained are given above the bars, the dimensions of the associated correlation spaces are depicted in red. The second y-axis on the
right hand side provides the number of iterations required
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has been restricted by nmax,init: ¼6, nsum,init: ¼15 and nex,init: ¼6 5ð Þ for
B2H6, C3H4, (C2H5F). In order to define the application of the criterion

(13) instead of Equation (2) for configuration selection, we used the

thresholds Ecorr,thres ¼1:0 cm�1 and Ediff,thres < 2:0 cm�1. For all sys-

tems investigated, the CH (BH)-stretching fundamentals have been

evaluated. The respective results can be found in Table 4.

In summary, the mean CPU time saving is 89.8% for B2H6, 86.8%

for C3H4, and 94.7% for C2H5F, that is, the performance of the algo-

rithm has been increased tremendously. We will discuss the results

exemplified by allene in the following.

In Figure 4, the CPU times and savings for the calculation of the

CH-stretching fundamentals of allene are depicted. Note, that the

TABLE 4 Comparison of CPU times
for calculating the BH/CH-stretching
modes of B2H6, C3H4, and C2H5F using a
conventional configuration-selective VCI
algorithm (old) and using all optimizations
described in part 1 and part 2 of this
article series (new)

Molecule State Sym. CPU (old) [s] CPU (new) [s] Savings (%)

B2H6 ν1 Ag 28203.1 2406.5 91.5

ν2 Ag 46638.3 6157.1 86.8

ν5 B1g 24302.8 2338.6 90.4

ν11 B1u 21107.5 2366.9 88.8

ν13 B2u 21486.6 1999.8 90.7

ν16 B3u 16314.8 1583.8 90.3

C3H4 ν1 A1 116444.1 4890.5 95.8

ν5 B2 63242.9 16243.8 74.3

νjþ1j
8

E 122646.3 12533.7 89.8

νj�1j
8

E 96809.3 12403.3 87.2

C2H5F ν1 A' 818896.6 53058.9 93.5

ν2 A' 2351238.2 63765.3 97.3

ν3 A' 1401331.4 18634.0 98.7

ν4 A' 1003966.9 100891.5 90.0

ν12 A" 1801184.2 68445.0 96.2

ν13 A" 59180.5 4556.9 92.3

F IGURE 4 Comparison of CPU times for the calculation of the CH-stretching modes of C3H4. The implementation labeled “new alg.” refers
to an implementation using (A) Optimized equations for calculating the VAM contributions, (B) Classes of configurations for rigorously exploiting
the slater-Condon rules, (C) Prediagonalization of meaningful subspaces and (D) The technique of replacing diagonalization steps within the
configuration selective algorithm by using a VMP2-like wavefunction instead of a VCI eigenvector. The reference CPU times (labeled “former
alg.”) refer to our former implementation of VCI not using any of the techniques mentioned before. The blue line depicts the computational
saving for each state; the black numbers give the respective energy difference between the respective energy eigenvalues. Note that, the scaling
regarding the first y-axis is logarithmic
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y-axis on the lhs is logarithmic and shows the total CPU time for the

calculation of the individual states. It can clearly be seen that our new

implementation unifying the optimization techniques presented in

both parts of this article series leads to significant CPU timesavings.

We explicitly emphasize here, that Figure 4 shows total CPU times

and not single steps within the calculation. For allene, the mean CPU

time saving is 86.8% with respect to our former implementation. On

the other hand, as shown in Figure 4, the results for the energy eigen-

values match with former results, that is, there is almost no loss of

accuracy due to the optimizations.

The total CPU time saving is a sum of the following aspects: With

respect to our former implementation, we gain a factor of (i) 12.6

within the set-up of the VCI matrix by using optimized equations for

the evaluation of the VAM terms (part 1, cf. Ref. [6]), (ii) 1.2 regarding

the total CPU time by prediagonalization of appropriate subspaces in

order to take information beyond the harmonic one into account from

the beginning of the calculation (part 1, cf. Ref. [6]), (iii) 5.8 within the

sum of the configuration selection and the matrix set-up by the use of

classes of configurations to efficiently exploit the Slater-Condon rules,

(iv) 1.9 regarding the total CPU time by using a modified selection

scheme for late iteration steps based on a VMP2-like wavefunction

further improving the convergence behavior.

Consequently, the optimizations presented in this work lead to a

substantial increase of the performance of our VCI algorithm. Since

the saving nearly constitutes a whole order of magnitude regarding

the necessary computational time, these improvements make larger

and more complicated systems than before accessible. Of course, also

rovibrational calculations will profit essentially from a faster and more

stable VCI implementation.

6 | SUMMARY

Accurate VCI calculations suffer from a significant computational

effort increasing with the size of the molecule of interest. Much work

has already been devoted to tackle this problem. In this work, we

presented four new technical aspects leading to a significant reduc-

tion of the computational cost for configuration selective VCI

calculations:

i. In part 1 of this article series (cf. Ref. [6]) we provided analyti-

cal unrolled equations leading to a fast and efficient evaluation

of the vibrational angular momentum terms. The scaling of the

computational effort with the number of modes has been

reduced by at least one order, some expressions are even inde-

pendent of the size of the system. Thus, the computational

effort has been reduced essentially. Roughly, for the evaluation

of zeroth order terms, we gain a factor 10 within the set-up of

the VCI matrix with regard to our former, but already opti-

mized implementation.

ii. Also in part 1 (cf. Ref. [6]) we presented an improvement of the

convergence behavior within the iteration by defining appropri-

ate subspaces of configurations and prediagonalize them.

Combined with our state picking scheme, the obtained eigenvec-

tor is used to take into account resonance information from the

very first iteration step, which improves the behavior of the algo-

rithm regarding convergence. Approximately, this modification

generates a saving of 20 % of the total CPU time.

iii. Within this article here, we introduced so-called classes of config-

urations in order to maximally exploit the Slater-Condon type

rules in a more efficient manner. In particular, the configuration

selection can be speeded up substantially, because the number of

matrix elements to be evaluated during the iterations is signifi-

cantly reduced. This leads to a considerably increased efficiency

of the algorithm, that is, we roughly gain a factor of 6 within the

configuration selection process (which dominates the total CPU

time in most cases).

iv. We modified our former configuration selection scheme utilizing

the genuine VCI eigenvector by employing a mixed

VCI/VMP2-like wavefunction instead. It has been shown that the

convergence behavior of the energy eigenvalue of the state of

interest is significantly improved by doing so. Additionally, com-

putationally demanding eigenvector determinations can be omit-

ted this way. The overall saving is roughly a factor of 2 regarding

total CPU time.

Extensive benchmark calculations have been presented for the time

consuming BH/CH-stretching states demonstrating the effects of the

single techniques and proving the modifications to significantly

increase the performance of the algorithm. It has been shown, that

the combination of all four methods results in CPU time saving of

about one order of magnitude with respect to the total CPU time.

Consequently, the concepts presented allow to apply cs-VCI theory to

even larger systems in the future.
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