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Abstract

Finite basis vibrational configuration interaction theory (VCI) is a highly accurate

method for the variational calculation of state energies and related properties, but

suffers from fast growing computational costs in dependence of the size of the corre-

lation space. In this series of papers, concepts and techniques will be presented,

which diminish the computational demands and thus broaden the applicability of this

method to larger molecules or more complex situations. This first part focuses on a

highly efficient implementation of the vibrational angular momentum (VAM) terms as

occurring in the Watson Hamiltonian and the prediagonalization of initial subspaces

within an iterative configuration selective VCI implementation. Working equations

and benchmark calculations are provided, the latter demonstrating the increased per-

formance of the new algorithm.
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1 | INTRODUCTION

The variational calculation of accurate vibrational spectra is a demand-

ing task and many routes have been devised to reduce the computa-

tional effort of such calculations.1–13 It is the size of the correlation

space, which constitutes the primary bottleneck and which is com-

bated by the concept of configuration selection.2–5 Different variants

of configuration selective vibrational configuration interaction theory,

cs-VCI, have been developed, but common to all is a criterion, which

allows to decide about the importance of an individual Hartree prod-

uct. The evaluation of this criterion, which usually involves the deter-

mination of many integrals, may again be computationally demanding,

in particular for molecules with more than a couple of atoms and in

the case that high-order terms within the expansion of the potential

energy surface, PES, have been included, for example, 4-mode

coupling terms. In order to reduce the overall CPU time of a cs-

VCI calculation, the different individual steps of such a calculation

have to be optimized. For example, an iterative cs-VCI calculation

based on a criterion related to 2nd order vibrational Møller-

Plesset perturbation theory, VMP2, or 2x2 VCI matrices relies on

three major steps: (1) the evaluation of the selection criterion,

(2) the set-up of an intermediate VCI matrix in the subspace of

selected configurations, and (3) its diagonalization or, more pre-

cisely, the determination of the eigenpair of interest. While we

have presented a new and highly efficient residuum based eigen-

value solver, RACE, for interior eigenpairs some years ago,14 less

has been done with respect to an acceleration of the other two

aspects—besides the contraction of integrals15—which leads to

substantial savings for potential energy surfaces with high-order

contributions.
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In this series of articles, we present new technical aspects of

cs-VCI theory, which lead to significant speed-ups and thus allow

for the application of cs-VCI theory to even larger molecular sys-

tems. Those concepts, which act on the selection criterion, in prin-

ciple may have impact on the final results, while all others do not.

However, in all cases the observed deviations are less than one

wavenumber and are thus negligible for most applications and

much lower than the intrinsic error bar of the electronic structure

method used for spanning the PES. This first paper focuses on the

vibrational angular momentum (VAM) terms, whose calculation

within building the VCI matrix may require significant computa-

tional effort, especially for large systems. Unrolled analytical

expressions are presented, which constitute the basis for a fast

and efficient evaluation of these terms. For a constant μ-tensor

within the Watson Hamiltonian this ends up in substantially

reduced computational cost. Subsequently, an alternative set-up

of the initial configuration space within the iterative configuration

selection and diagonalization of the resulting subspace will be dis-

cussed. This improves the convergence behavior of the iterations

and leads to an overall stabilization of the algorithm. We will dis-

cuss these two aspects independently from each other and thus

two subsections being split into a theory part and subsequent

benchmarks will be presented below. Both algorithms presented in

the following have been implemented into the MOLPRO package

of ab initio programs.16

2 | VIBRATIONAL ANGULAR MOMENTUM
TERMS

In the following, general aspects regarding an implementation of the

VAM terms will be outlined, being necessary for an understanding of

what follows. The Hamiltonian, which will be employed within this

work, is the commonly used Watson Hamiltonian for non-rotating

molecules J¼0ð Þ,17 which is given as

H¼1
2

X
αβ

παμαβπβ�
1
8

X
α

μαα�
1
2

X
i

∂2qi þV q1,…,qMð Þ ð1Þ

with M being the number of modes of the system. The first term

describes the VAM terms, the third one denotes the kinetic energy

contribution. The second term, the Watson correction term, will be

added as a mass-dependent pseudopotential to the potential energy

surface (PES), V, for which we use an n-mode expansion.18,19

Mainly due to the large computational cost and due to their intricate

implementation, the VAM terms are neglected in some works,20–23 while

others take them into account.7,24,25 Neglecting VAM contributions may

be justified, if large molecules and low lying transitions are considered,

since the correction obtained decreases with increasing system size. Nev-

ertheless, for highly accurate calculations, energetically high lying states,

rather small systems and molecules showing large amplitude motion

(especially double well potentials) and rovibrational calculations these

terms are indispensable.

The evaluation of the VAM terms might dominate the evaluation

of a VCI matrix element. In Equation (1), the VAM operator πα is

given as

πα ¼�i
X
kl

ζαlkql∂qk ð2Þ

with rectilinear normal coordinates qi and the Coriolis-coupling coeffi-

cients ζαlk fulfilling ζαlk ¼�ζαkl and ζαkk ¼0, α,β� x,y,zf g. The ζαlk are given

as cross products

ζαlk ¼
X
a

Lal�Lakð Þα ð3Þ

of the unitary matrix of displacement vectors L transforming mass-

weighted displacement coordinates into normal coordinates. The

μ-tensor is connected with the moment of inertia tensor I of the mole-

cule via

μαβ ¼ I0�1
� �

αβ
ð4Þ

with

I0 ¼ I�
X
ijk

ζαikζ
β
jkqiqj: ð5Þ

In analogy to the expansion of the potential energy surfaces, an

n-mode expansion for the μ-tensor surface25 will be used, which is

given as

μαβ ¼ μ0αβþ
X
i

μαβ qið Þþ
X
i< j

μαβ qi,qj
� �þ�� �: ð6Þ

The matrix element of two Hartree products (configurations) jΦIi
and jΦJi and the first term of Equation (1) is thus given as

ΦIjHVAMjΦJh i¼�1
2

X
αβ

X
rstu

ζαrsζ
β
tu μ0αβ ΦIjqr ∂qs qt∂qu jΦJh i
h

ð7aÞ

þ
X
v
hΦIjqr ∂qsμαβ qvð Þqt∂qu jΦJiþ…

#
ð7bÞ

Equation (7) clearly shows that the calculation of the matrix ele-

ments may be a computationally demanding task since it requires the

summation of a relatively large number of elements, which increases

with growing dimension of the system. Obviously, for a system with

M modes the computational effort for the calculation of these matrix

elements restricted to 0D VAM terms scales as O M4� �
and as O M5� �

for additionally including 1D terms. Moreover, different operators/

integrals have to be used, depending on the running indices referring

to the modes r,s,t,u,… in Equation (7), which leads to the use of condi-

tional statements within the implementation.
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In previous work25 the calculation has been speeded up essen-

tially by using a prescreening technique, which only includes contrib-

uting index combinations depending on the size of the prefactor

μ0αβζ
α
rsζ

β
tu, since many of these are very small or do vanish by theory.

Of course, this procedure depends on a threshold, but usually one

gains at least a factor of about 10 in speed. For further information

about this implementation of the VAM terms, we refer to Reference

[25], where also details about the calculation of the contributing inte-

grals can be found. Instead of skipping elements by their prefactor, in

our new implementation presented here we will focus on the integrals

and the structure of Equation (7) in order to remove or at least reduce

the dependency on the number of modes. Simplification of

Equation (7) by rigorously using symmetry properties and excluding

vanishing parts from the summation in advance leads to a substan-

tially smaller computational overhead.

3 | COMPUTATIONAL DETAILS AND
BENCHMARK SYSTEMS

In order to prove the reduction of computational effort achieved by

the techniques described in the successive sections, we performed

extensive benchmark calculations. All calculations presented below

have been performed in a fashion close to real applications aiming at

highly accurate results, that is, high quality potential energy surfaces

(PES) and sufficiently large configuration spaces have been used.

Diborane (B2H6, D2h), fluoroethane (C2H5F, Cs) and allene (C3H4, D2d)

have been chosen as benchmark systems as these systems display dif-

ferent difficulties within the calculations. For example, the CH-

stretchings of fluoroethane show strong resonance/multi-mode

character which, inter alia, lead to large configuration spaces. This

selection also takes different point groups into account, that is, Abe-

lian versus non-Abelian point groups are considered, which behave

differently with respect to the handling of a real-based configuration

space (see Reference [26]). This, in addition, allows to consider differ-

ent situations regarding the exploitation of symmetry properties.

B2H6, for example, allows for an extensive use of symmetry since it

belongs to the point group D2h, whereas for C2H5F there is just one

symmetry element, which is reflected in larger CPU times.

As mentioned above, in all calculations presented in this work, we

used high quality potential energy surfaces spanned by rectilinear nor-

mal coordinates, which have been obtained from explicitly correlated

coupled-cluster calculations with a basis set of triple-ζ quality, that is,

CCSD(T)-F12a/cc-pVTZ-F12. The respective equilibrium geometries

have been used as an expansion point for the PES, for which an n-

mode expansion,18,19 being truncated after 4-mode coupling terms,

has been employed. In order to restrict the computational effort, a

multi-level scheme27–29 has been utilized. For further details regarding

the calculation of the potential energy surfaces, we refer to the origi-

nal literature, that is, Reference [30] (B2H6), Reference [31] (C3H4)

and Reference [32] (C2H5F). A highly efficient Kronecker product

fitting procedure33 has been employed in order to obtain a polynomial

representation of the PES. By solving the vibrational self-consistent

field (VSCF) equations in a basis of 20 distributed (mode-dependent)

Gauss functions,34–36 we obtain real one-mode wavefunctions (called

VSCF modals in the following). These VSCF modals are used to form

Hartree products (configurations) that are employed as basis functions

to span the correlation space for the VCI calculations. The nith modal

for coordinate qi will be denoted φni
i in the following, and the respec-

tive configurations by jΦIi¼jQ iφ
ni
i i. As described above the μ-tensor

is expressed in an n-mode expansion as given in Equation (6). In all cal-

culations, the VAM terms are considered (at least) until zeroth order.

For the subsequent VCI calculations, an iterative procedure has

been used (Note: For additional and detailed information concerning

our VCI algorithm, we refer to References [2,25,26].). We initially gen-

erate a configuration space restricted by (a) the number of modes

being excited, (b) the number of excitations for a single mode, and

(c) the total number of quanta within the configuration. Subsequently,

the initial configuration space is reduced by scanning it via a

VMP2-based configuration selection criterion2,37

ϵ aþ1ð Þ
AJ ¼

P
K∈ af g

c að Þ
AK ΦK jH0jΦJh i

�����
�����
2

ϵ að Þ
A �ϵJ

ð8Þ

with the VCI wavefunction

jΨ að Þ
A i¼

X
K � af g

c að Þ
AK jΦKi ð9Þ

of state A in the ath iteration step and c að Þ
AK are the respective coeffi-

cients. Within this configuration selection process, the correlation space is

iteratively increased by employing Equation (8) until convergence of the

state energy is reached. Using the algorithm described in Reference [26],

the eigenstate having the largest overlap integral with the multi-

dimensional harmonic wavefunction is chosen to be the reference state

in Equation (9). In order to determine the intermediate VCI wavefunctions

within these iterations, we use an iterative eigenvalue solver based on

the RACE-algorithm,14 which has been shown to outperform the com-

monly used Jacobi–Davidson algorithm. In order to guarantee that the

state of interest is tracked properly during the iterations of configuration

selection, physically meaningful startvectors are needed.26

4 | CALCULATION OF VIBRATIONAL
ANGULAR MOMENTUM TERMS

As mentioned in Section 2, within the calculation of VCI matrix ele-

ments the evaluation of the contribution of the VAM terms may be a

computational bottleneck. Although a brute force implementation can

be very much improved by using prescreening techniques,25 the addi-

tional computational time for including VAM contributions is still sig-

nificant. Therefore, we present here an even more efficient ansatz

based on analytical considerations. The underlying equations are mod-

ified in a way that most of the numerous elements resulting in
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vanishing contributions are excluded from the onset. Additionally,

reordering of the terms and rigorous use of symmetry properties of

the integrals lead to very compact equations which can be

implemented very efficiently. We will only discuss VAM terms of

zeroth and first order, respectively, which have been found to be suf-

ficient for most applications.24,25 Nevertheless, the basic ideas can be

easily transferred to higher order contributions.

Major simplifications of Equation (7) can be achieved by the dis-

tinction of cases regarding the involved basis functions (modals)

included in the two configurations jΦIi¼jQkφ
nIk
k i and jΦJi¼jQkφ

nJk
k i.

By doing so, it becomes possible to exploit symmetry properties, to

skip vanishing integrals in advance and to unite terms. Let

Mm ΦIi, ΦJij Þ¼ i1,…, imf gjð be the set of mode labels, whose

corresponding modes differ by the quantum numbers nIk and nJk of the

respective modals. Moreover, let jMm ΦIi, ΦJij Þ j¼mjð , that is,

jQkφ
nJk
k i¼jQk �� i1,…,imf gφ

nIk
k i jQk � i1,…,imf gφ

nJk
k i. In all what follows we

request the modals, φ, to be orthogonal. In favor of a shorter notation,

we will drop the configurations jΦIi, jΦJi for the setMm as long as the

context is obvious. Due to the orthogonality of the modals and the

separation of the respective multidimensional integrals into products

of one-dimensional integrals it is possible to simplify expression (7) in

dependence on m. Obviously, if m is larger than the order of the oper-

ator, the corresponding expectation value must vanish. Consequently,

for a constant μ-tensor there is a maximum m of 4, while for its 1D-

terms m¼5 and so on.

In the following, independently of m and the order of the μ-ten-

sor, the properties of the one-dimensional integrals shown in

Equations (10) and (11) will be exploited in all cases. For the left and

right hand sides showing the same function it is

φ
nIi
i j∂qi jφ

nIi
i

D E
¼0 ð10aÞ

φ
nIi
i j∂qi qijφ

nIi
i

D E
¼1
2

ð10bÞ

φ
nIi
i jqi∂qi jφ

nIi
i

D E
¼�1

2
, ð10cÞ

while for different ones it holds

φ
nIi
i jqi∂qi jφ

nJi
i

D E
¼ φ

nIi
i j∂qi qijφ

nJi
i

D E
ð11Þ

with φ being real valued and normalized functions.

4.1 | Vibrational angular momentum terms of
zeroth order

Depending on the summation indices r,s,t,u referring to the modes,

one has to distinguish 10 different cases regarding the operators

(or integrals, respectively) involved. These are qr ∂qs qt∂qu
� �

,

qr ∂qr qt∂qu
� �

, q2r ∂qs ∂qu
� �

, qr ∂qr qt∂qs
� �

, qr ∂qs qs∂qu
� �

, qr ∂
2
qs
qt

D E
,

qr ∂qs qt∂qt
� �

, qr ∂qr ∂qs qs
� �

, qr ∂qr qt∂qt
� �

, and q2r ∂
2
qs

D E
. As mentioned

above, we have dropped the configurations in the integrals, that is,

we write qr ∂qs qt∂qu
� �

instead of φ
nIr
r jqr jφnJr

r

D E
φ
nIs
s j∂qs jφnJs

s

D E
φ
nIt
t jqtjφ

nJt
t

D E
φ
nIu
u j∂qu jφnJu

u

D E Q
k ≠ r,s,t,uf gδnIk ,nJk .

Since ζαii ¼0, there is no contribution of integrals of types

qr ∂qr qt∂qu
� �

, qr ∂qs qt∂qt
� �

and qr ∂qr qt∂qt
� �

in Equation (7a). Giving sup-

port to a better readability of the following equations, we introduce

the abbreviations

A�
ij ¼ ∂qi

� �
qj
� �� qih i ∂qj

� � ð12Þ

Bijk ¼ q2i
� �

∂qj
� �

∂qk
� � ð13Þ

Cijk ¼ qih i ∂2qj

D E
qkh i ð14Þ

Fijk ¼ εijkBijk�2εijk qi∂qi
� �

Aþ
jk þ εijkCjik ð15Þ

Gijk ¼ ∂qi
� �

A�
jk , ð16Þ

where εijk is the Levi-Civita symbol

εijk ¼
þ1, if i, j,kð Þ is an even permuation of 1,2,3ð Þ
�1, if i, j,kð Þ is an odd permuation of 1,2,3ð Þ
0, otherwise

8><>: ð17Þ

with arbitrary mode indices i, j,k.

In the following, we present the working equations for the VAM

terms of zeroth order for a molecule in arbitrary orientation. Note,

that in the case that the system is oriented along its central principal

axis of inertia, the summation
P

αβ in the following equations can be

simplified to
P

α,α¼β , that is, only products including diagonal elements

of μ0αβ have to be taken into account.

4.1.1 | Off-diagonal elements with m¼4

For sufficiently large configuration spaces (which is the case in almost

all applications), m¼4 is the most common case and, simultaneously,

the one that provides the largest savings in comparison to an imple-

mentation based on Equation (7a). We show in the following, that the

computational effort for evaluating the VAM contribution of the

respective matrix element does no longer scale with the number of

modes of the system.

Let M4 ¼ i1, i2, i3, i4f g with m¼4, jΦIi¼jφnIi1
i1
φ
nIi2
i2
φ
nIi3
i3
φ
nIi4
i4
i

jQk ≠ i1,i2,i3,i4f gφ
nIk
k i and jΦJ

�¼jφnJi1
i1
φ
nJi2
i2
φ
nJi3
i3
φ
nJi4
i4
i jQk ≠ i1,i2,i3,i4f gφ

nJk
k i. Due

to the orthogonality of the modals, all integrals with less than four dif-

ferent indices vanish and therefore do not contribute. In addition, the

only integral in Equation (7a) having four different mode indices, that

is, qr ∂qs qt∂qu
� �

, is different from zero only in the case r,s,t,uf g�M4.

Thus, the only combinations of indices contributing are permutations

of M4, that is, 24 non-zero elements remain. Moreover, the integral
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qr ∂qs qt∂qu
� �

itself is symmetric regarding commuting r and t and s and u,

respectively, that is, qr ∂qs qt∂qu
� �¼ qt∂quqr ∂qs

� �
. Since (a) μ0αβ is inde-

pendent of the indices concerning the modes and (b) it is μ0αβ ¼ μ0βα and

(c) the summation runs over all α, β, there are pairs of identical sum-

mands including the prefactor ζαrsζ
β
tu. Summarized, using the abbrevia-

tion (12), one obtains

ΦIjH m¼4ð Þ
VAM,0DjΦJ

D E
¼�1

2

X
αβ

μ0αβ ζαi1 i2ζ
β
i3 i4

A�
i4 i3

A�
i2 i1

þζαi1 i3ζ
β
i2 i4

A�
i4 i2

A�
i3 i1

þ ζαi1 i4ζ
β
i2 i3

A�
i3 i2

A�
i4 i1

h i
ð18Þ

Since all the A� are independent of α and β, they need to be cal-

culated only once per matrix element. Consequently, the computa-

tional effort for a zeroth order VAM contribution with m¼4 is very

low and additionally independent of the number of modes present in

the system. Note, that this result refers to the evaluation of the VAM

contribution for a single matrix element.

4.1.2 | Off-diagonal elements with m¼3

Let M3 ¼ i1, i2, i3f g with m¼3, jΦIi¼jφnIi1
i1
φ
nIi2
i2
φ
nIi3
i3
i jQk ≠ i1,i2,i3f gφ

nIk
k i

and jΦJi¼jφnJi1
i1
φ
nJi2
i2
φ
nJi3
i3
i jQk ≠ i1 ,i2,i3f gφ

nJk
k i. Due to the orthogonality of

modals, integrals with less than three different mode indices do not con-

tribute, that is, qr ∂qr ∂qs qs
� �¼0 and q2r ∂

2
qs

D E
¼0. There is one integral

with four different indices. The term qr ∂qs qt∂qu
� �

is symmetrical con-

cerning an interchange of s and u and/or r and t. The integral will not

vanish due to Equation (10a), as long as s,uf g� i1, i2, i3f g. Thus, there
are six possible combinations, each two of them having the same pre-

factor. Consequently, the contribution of the integral qr ∂qs qt∂qu
� �

is

given by

�1
2

X
αβ

2 �
X

t≠ i1, i2, i3f g
qth i ζαi1 i2ζ

β
ti3

∂qi3

D E
A�
i2 i3

þ ζαi1 i3ζ
β
ti2

∂qi2

D E
A�
i3 i1

þ ζαi2 i3ζ
β
ti1

∂qi1

D E
A�
i3 i2

h i
:

ð19Þ

There is also a number of integrals having three different

mode indices. For each of them, only elements with r,s,tf g� i1, i2, i3f g,
that is, all permutations of M3, yield non-zero terms. Additionally, by

using Equation (11) and taking advantage of the antisymmetry of

the ζ-constants, one obtains, after summation over all indices, identi-

cal contributions for the integrals qr ∂qr ∂qs qt
� �

and qr ∂qs qs∂qu
� �

. Con-

sidering all aspects mentioned, a matrix element with m¼3 is given as

ΦIjH m¼3ð Þ
VAM,0DjΦI

D E
¼�P

αβ
μ0αβ ζαi1 i2ζ

β
i1 i3

Fi1 i2 i3 þζαi1 i2ζ
β
i2 i3

Fi2 i1 i3 þζαi1 i3ζ
β
i2 i3

Fi3 i1 i2

h
þ P

t≠ i1 , i2 , i3f g
⟨qt⟩ ζαi1 i2ζ

β
ti3
Gi3 i2 i1 þζαi1 i3ζ

β
ti2
Gi2 i3 i1 þζαi2 i3ζ

β
ti1
Gi1 i3 i2

� �i
:

ð20Þ

A decisive advantage of Equation (20) regarding computational

effort is the pre-calculation of certain quantities due to decoupling of

indices. The products of the ζ-constants with μ0αβ only depend on α

and β and are independent of the modes. All factors F and G have to

be calculated only once per matrix element. This results in a low num-

ber of necessary summations which tremendously reduces the com-

putational effort from O M4� �
to O Mð Þ.

4.1.3 | Off-diagonal elements with m¼2

For this case, there are no major simplifications possible. Thus, we will

not discuss this case explicitly.

4.1.4 | Off-diagonal elements with m¼1

Let M1 ¼ i1f g with m¼1, that is, jΦIi¼jφn j
i1

i1

Q
k ≠ i1

φ
n j
k

k i and

jΦJi¼jφnJi1
i1

Q
k ≠ i1

φ
nIk
k i. Using Equation (10a) one obtains

qr ∂qs qt∂qu
� �¼0 and q2r ∂qs ∂qu

� �¼0. Furthermore, it is

X
αβ

X
rst

μ0αβζ
α
rsζ

β
tr qr ∂qr ∂qs qt
� �¼�

X
αβ

X
rsu

μ0αβζ
α
rsζ

β
su qr ∂qs qs∂qu
� �

, ð21Þ

as solely the integrals qr ∂qr ∂qi1 qt
D E

and qr ∂qs qs∂qi1

D E
contribute due

to Equation (10a). Considering Equations (11) and (10b)

(Equation (10c), respectively) and using the symmetry of μ0αβ , summa-

tion over α and β yields identical terms with different sign. Addition-

ally, the contribution of the integrals qr ∂qr ∂qs qs
� �

add up to zero, that

is,
P

αβ

P
rsμ

0
αβζ

α
rsζ

β
sr qr ∂qr ∂qs qs
� �¼0, since the use of Equation (11)

leads to two identical parts with reversed sign canceling each other.

Finally, one ends up with

ΦIjH m¼1ð Þ
VAM,0DjΦJ

D E
¼1
2

X
αβ

μ0αβ
X
r ≠ i1

ζαri1ζ
β
ri1

q2r
� �

∂2qi1

D E
þ q2i1

D E
∂2qr

D E� �h
�

X
s≠ r, i1f g

ζαi1s qrh i 2ζβrs qi1
� �

∂2qs

D E
�ζβri1 qsh i ∂2qi1

D E� �i
ð22Þ

Equation (22) reduces the computational effort of Equation (7a)

to O M2
� �

.

4.1.5 | Diagonal elements, m¼0

For diagonal elements it is jΦIi¼jΦJi, that is, M0 ¼; with m¼0.

Using Equation (10a), one obtains qr ∂qs qt∂qu
� �¼0, q2r ∂qs ∂qu

� �¼0,

qr ∂qr ∂qs qt
� �¼0, and qr ∂qs qs∂qu

� �¼0. Therefore, only parts containing

the integrals qr ∂
2
qs
qt

D E
, qr ∂qr ∂qs qs
� �

, and q2r ∂
2
qs

D E
must be considered

in Equation (7a). Consequently, considering ζαil ¼�ζαli and

Equations (10b) and (10c) one obtains

ΦIjH m¼0ð Þ
VAM,0DjΦI

D E
¼�1

2

X
αβ

μ0αβ
X
r

X
s≠ r

ζαrs

ζβrs
1
4
þ q2r
� �	 


þ
X

t≠ r,sf g
ζβts qrh i ∂2qs

D E
qth i

0@ 1A ð23Þ
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Using Equation (23) instead of Equation (7a) reduces the compu-

tational effort regarding the number of modes from O M4� �
to

O M3
� �

. Note that, these diagonal elements are the rarest within the

evaluation of the VCI matrix.

4.2 | Results

In order to determine the computational savings generated by the

ansatz presented above, we performed benchmark calculations for the

three test molecules. Although the computational effort for including

the VAM contributions is independent of the expansion order of the

PES, in all calculations we took couplings up to fourth order into

account (see Section 3), which was found to be necessary for accurate

results. The initial VCI configuration spaces for the calculations have

been chosen as follows: For C2H5F we used up to five simultaneously

excited modes and a maximal excitation per mode of five. The calcula-

tions for B2H6 and C3H4 have been performed with up to

6 modes excited and a maximum excitation of not more than 6 (7 in

case of C3H4) per mode. The sum of quantum numbers per configura-

tions has been limited to 15 in all cases. We determined CPU times

required for the calculation of all matrix elements needed within the

calculation of all fundamental transitions, that is, 19 high quality ener-

gies (including the ZPVE) have been evaluated for C2H5F and B2H6,

respectively. For C3H4, also the first overtones below 2500 cm�1 have

been calculated. One set of calculations has been performed by using

our former prescreening algorithm as described in Reference [25], the

other one with the new ansatz described in Section 4. Timings and sav-

ings arising from the new algorithm are summarized in Table 1.

Figure 1 shows the CPU times for building the VCI matrix using

the equation shown above (light blue bars) with respect to our former

implementation (red bars). In order to visualize the order of the effect,

we also ran calculations using a brute force implementation of

Equation (7), for example, no optimization by prescreening has been

used (orange bars). It is important to notice that all CPU times shown

also include the computational time required for evaluating the PES

contributions. Since the configuration spaces for two calculations, one

including VAM contributions and the other not, may differ from each

other, we compare CPU times including contributions from the PES.

In order to provide the magnitude of the CPU time needed for the

PES parts, the dark blue bar refers to the calculation without VAM

contributions. The blue numbers within the bars show the relative

CPU time with respect to a calculation excluding VAM terms. Note,

that the y-axis on the left hand side referring to the total CPU time

shows a logarithmic scale, while the second y-axis on the right hand

side is linear and shows the computational savings relative to the CPU

time using the algorithm based on prescreening.

TABLE 1 CPU times in seconds for evaluating the VCI matrix depending on the operator calculated with (i) a former implementation based on
prescreening25 (abbrv. As “Prescr.”) and (ii) with the implementation based on the equations given in Section 4 (“This work”), the computational
savings are given in percent (“Sav.”)

C2H5F B2H6 C3H4

Prescr. This work Sav. Prescr. This work Sav. Prescr. This work Sav.

HVAM 0Dð Þ 315,024 14,588 95.4 20,368 2780 86.3 59,787 4805 92.0

HVAM 0Dð Þ=Hw=o VAM 72.0 3.3 10.5 1.4 22.8 1.8

HVAM 1D,diagð Þ 395,442 17,277 95.6 80,573 3854 95.2 102,245 5966 94.2

HVAM 1D,diagð Þ=Hw=o VAM 90.3 3.9 41.6 2.0 38.6 2.3

HVAM 1Dð Þ 91.9 92.0 94.3

Note: Relative CPU times refer to a calculation without the VAM operator. The total CPU times for these calculations are 4377.6 s (C2H5F), 1936.9 s (B2H6) and

2625.0 s (C3H4). For B2H6 and C2H5F, all fundamental transitions have been calculated, for C3H4 additionally the first overtones below 2500 cm�1 have been

considered. Within the 1D calculations, only the ground state has been determined. All CPU times include also the times resulting from the potential energy

surface.

Mean saving per state
Tot. saving

F IGURE 1 Comparison of different implementations (brute force,
an implementation based on prescreening25 and this work based on
Equations (18), (20), (22), and (23) (0D) and the equations shown in
the Appendix (1D)) regarding CPU times for evaluating the VCI matrix
within the calculation depending on the operator included. The times
shown refer to the calculation of the fundamentals and first overtones
below 2500 cm�1, that is, 19 states are included. Relative CPU times
with respect to a calculation excluding the VAM contributions are
given in blue, the second y-axis depicts the computational savings
with respect to the implementation using prescreening
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As Figure 1 clearly shows, using Equations (18), (20), (22), and (23)

(0D) and the equations from Appendix A (1D) result in tremendous

computational savings in CPU time. For allene, including the VAM

contributions of 0th order increases the CPU time by a factor 1.8 in

CPU time. The mean saving per state is 91.5%, while the total one has

a value of 92.0%. The enormous computational saving primarily is

generated by the cases m¼4 and m¼3, since these render the largest

reduction regarding the number of elements to be summed up. Also

precalculation of certain parts can be exploited in these cases

maximally.

On average (based on the data in Table 1), our new implemen-

tation relying on the equations presented in Section 4 is approxi-

mately 12 times faster than the former one for 0D VAM

contributions, 20 times faster for also including 1D VAM contribu-

tions for the diagonal elements and 12 times faster for considering

0D and 1D VAM terms for all matrix elements (see Table 1). Com-

pared with the computational effort for calculating the contribu-

tions of the potential energy surfaces, including the 0D VAM terms,

which include the most important physically relevant contributions

and are often sufficient, is no longer a computational bottleneck.

Note that, in the following all CPU times given refer to the new

implementation.

5 | PREDIAGONALIZATION OF
SUBSPACES

States located in regions of high state density often suffer from

comparatively slow convergence within iterative configuration

selection algorithms, for example, cs-VCI. In the following, we pre-

sent a method to improve the convergence of vibrational state ener-

gies and the VCI wavefunction based on spanning meaningful

subspaces of the correlation space and prediagonalize them. In our

benchmark calculations, we put a special focus on fundamentals

belonging to CH-stretching modes, since these often show rather

slow convergence.

5.1 | Method and implementation

As described in Section 3, within our implementation of VCI the-

ory each calculation starts by generating an initial configuration

space restricted by (a) the maximum number of modes excited

within the configurations (nex,init:), (b) the maximum excitation within

one oscillator (nmax,init:) and (c) the sum of quantum numbers within

one Hartree product (nsum,init:). Simplest, the starting wavefunction (9)

in the initial iteration step of the configuration selective procedure is

given by the corresponding VSCF configuration. For Abelian systems

and rectilinear normal coordinates, a single Hartree product is used,

otherwise meaningful linear combinations representing all physically

relevant information are employed, that is,

jΨ 1ð Þ
A i¼

jΦ0i for Abelian systemsP
n
cn jΦni else,e:g:, non-Abelian systems and=or localized normal coordinates

(

ð24Þ

with the coefficients cn describing meaningful linear combinations of

real-valued configurations covering additional quantum numbers as,

for example, the l-quantum number. For further details, we refer to

Reference [26]. Subsequently, Equation (8) is utilized for the configu-

ration selection process. Note that, the whole initial correlation space

is screened in this step. After building the VCI matrix in the correlation

space of selected configurations, the targeted eigenvalue is deter-

mined by an iterative eigenvalue solver employing the harmonic rep-

resentation of the reference wavefunction of the first iteration step

(24) as startvector. Convergence is defined to be reached if the differ-

ence of the state energies of two consecutive iterations is below a

given threshold. This procedure refers to our former implementation

and will be used as reference regarding performance in the following.

In our new ansatz aiming at an improvement of the convergence

behavior of critical states regarding the number of necessary iteration

steps, we essentially modify two steps within the algorithm described

above:

(i) We replace the starting wavefunction (24) by a wavefunction

containing static correlation effects. In order to do so, we define a

meaningful subspace (abbreviated as “subsp.” in what follows) of the

initial correlation space, which includes configurations showing reso-

nances with the reference state. In analogy to the notation for the ini-

tial configuration space, we denote the characteristic values

describing the size of the subspace nex,subsp:, nmax,subsp:, and nsum,subsp:.

The set of configurations contained in the subspace, is denoted

Ktot,subsp:. Usually the most important resonances are of Fermi- or

Darling-Dennison type. Thus, we choose nex,subsp: ¼3 and nmax,subsp: ¼
3 with a value of 4 up to 5 for nmax,subsp: depending on the size of the

initial correlation space (these values refer to the reference configura-

tion jΦ0i and not to the ground state configuration). Note, that the

subspace is generated exactly as the initial configuration space, that

is, not a subspace of modes is used, but the configurations included

are chosen via the parameters nex,subsp:, nmax,subsp: , and nsum,subsp: and

regardless of the state of interest all modes are treated equally. In

most cases, the values mentioned cover the most contributing reso-

nances, but they may be increased if necessary. Note that, choosing a

subspace of configurations is somewhat related to the concept pres-

ented in Reference [38], but here additionally resonance effects are

addressed explicitly, which leads to a more generalized ansatz.

Subsequently, we prediagonalize the defined subspace and use

our state picking scheme to identify the state of interest, that is, the

one with the largest overlap with the harmonic reference state. The

chosen eigenstate obtained by the diagonalization of the subspace

can be written as eigenvector

jΨ 1ð Þ
A i¼

X
I � Ktot,subsp:

cAI jΦIi, ð25Þ
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with cAI being the respective coefficients. The state (25) is used

instead of (24) within Equation (8) for constructing the correlation

space. Note, that we include all the configurations from the chosen

subspace in the selected configuration space regardless of their con-

tribution according to Equation (8).

(ii) Instead of using the harmonic representation of the state (24)

as starting vector for the iterative eigenvector solver used, we now

employ the eigenstate (25) obtained from the prediagonalization of

the subspace chosen. Particularly in cases of multi-resonance effects,

this leads to more stability within the calculation from the very

beginning.

The modifications (i) and (ii) result in manifold effects: At the

beginning of the calculation (that is, iteration step one) the actual

wavefunction of the state of interest is better described by the

expression (25) than by (24) since it contains resonance information,

not being contained in a single configuration. Thus, subsequently

(in the next iteration step) selected configurations will be more appro-

priate in order to describe the full wavefunction since important cou-

plings are taken into account from the beginning of the calculation.

Consequently, the number of unnecessary configurations, which are

“mistakenly” selected due to the unbalanced treatment, decreases.

Finally, this may lead to smaller configuration spaces when conver-

gence is reached and the entire calculation gains more stability, in par-

ticular for states showing multi-resonance effects.

The effects of the described modifications on the CPU time

depends on the system and the state under consideration: On the one

hand, the configuration spaces may be smaller during the iterations. In

this case, all three major steps within the calculation (that is, matrix

set-up, diagonalization and configurations selection) are speeded

up. On the other hand, a smaller number of iterations compared to

the old algorithm may be necessary, since the selected configuration

space of the 1st iteration fits better to the target state. As a conse-

quence, convergence is reached faster by using the prediagonalization

of meaningful subspaces. Both effects can occur and also add up, as

revealed by our benchmark calculations.

5.2 | Results

In order to prove the prediagonalization of appropriate subspaces

leading to faster convergence for states lying in regions of high state

density, we performed benchmark calculations based on 4D

PESs including 0D VAM terms for the CH and BH-stretching modes

of B2H6, C3H4, and C2H5F. The initial configuration space has been

restricted by nex,init: ¼6, nmax,init: ¼6, and nsum,init: ¼15 in all cases. For

defining the subspace, we used nex,subsp: ¼3, nmax,subsp: ¼3, and

nsum,subsp: ¼4 (B2H6 and C2H5F) and nsum,subsp: ¼5 (C3H4), respectively.

Table 2 lists the CPU time savings and the deviations of the

energy eigenvalues with respect to our former implementation with-

out prediagonalizing subspaces. As the data shows, the energies

obtained by both methods differ by less than 0.2 cm�1 and we obtain

a mean deviation of not more than 0.1 cm�1 per state which is negligi-

ble in comparison to other possible error sources. On the other hand,

on average (all three systems considered) 17.1% CPU time per state

are saved and 17.3% in total.

In Figure 2, a detailed breakdown of the CPU times needed for

the three most time consuming steps within our iterative VCI imple-

mentation is shown for allene, which has four CH-stretching modes:

ν1 (A1), ν5 (B2) and two degenerate states νþ1
8 (E) and ν�1

8 (E). We label

the degenerate states by νjþ1j
8 and νj�1j

8 , because within our real based

VCI implementation degenerate states with different l-quantum num-

ber are only specified by their absolute value l due to the fact that we

consider real linear combinations of configurations in order to repre-

sent all physically relevant information present in the complex basis.

The bars in Figure 2 provide the CPU time needed for the complete

calculation of the given fundamental transitions sorted by time for

diagonalization (red), matrix build-up (blue) and configuration selection

(orange). The red numbers depict the dimension of the final configura-

tion space. The lines refer to the second y-axis and show the number

of iterations needed by the algorithm in order to reach convergence

(without (blue) and with (black) prediagonalization).

As can be seen, in all cases the number of required iterations is

larger when using our former algorithm not considering subspaces.

Of course, omitting whole iteration steps leads to relatively large

CPU time savings. On average, 1.3 iterations per state are saved

within the calculations for allene, 1.2 for C2H5F and 0.0 for B2H6.

As the configuration selection has the largest share with respect to

the total CPU time, it is also responsible for most of the CPU time

savings if an iteration can be left out. Note, that we lose perfor-

mance by directly including all configurations from the subspace in

the current configuration space without selection via criterion (8).

Nevertheless, this loss is essentially overcompensated by saving

TABLE 2 CPU time savings and
energy deviations resulting from
employing the prediagonalization of
subspaces

B2H6 C2H5F C3H4

Mean CPU saving (%) per state 18.8 12.1 20.5

Mean ΔE per state (cm�1) 0.0 0.1 0.0

Max. ΔE (cm�1) 0.0 0.2 0.1

Tot. CPU saving (%) (all states) 18.5 13.6 19.7

Note: For all systems, the fundamentals belonging to the CH-stretching and BH-stretching modes,

respectively, have been calculated. We used nex,init: ¼6, nmax,init: ¼6, and nsum,init: ¼15 for the initial

correlation space in all cases. For defining the subspace, we employed nex,subsp:¼3, nmax,subsp:¼3, and

nsum,subsp: ¼4 (B2H6 and C2H5F) and nsum,subsp: ¼5 (C3H4), respectively. For details regarding the single

states see Tables S1–S3 in the Supporting information.

2328 MATHEA AND RAUHUT



iteration steps. Although we handle larger configuration spaces in

comparison to the former implementation at the beginning of the

calculation, the computational effort for the last iteration steps is

substantially larger. This is mainly due to the rising cost of the

selection process and the diagonalization, both dramatically

increasing for almost converged (and therefore large) correlation

spaces. On the other hand, the dimension of the correlation space

is smaller by using the new algorithm for the states ν5 and νjþ1j
8 of

allene, but larger for the two states ν5 and νj�1j
8 . It can be seen in

Figure 2, that the savings for the matrix set-up and its diagonalization

due to the smaller correlation spaces are not too large, since the con-

figuration selection dominates the total CPU time in the case of allene

(see above). Nevertheless, for the states ν5 and νjþ1j
8 the smaller

dimensions lead to CPU time savings, while most of the extra time

using our former algorithm is used for further optimization of the con-

figuration space, that is, configuration selection. In contrast, in the

case of B2H6 (see Table S1 in the Supporting information), all of the

CPU time savings generated by using the concept of subspaces results

from smaller correlation spaces. Here, matrix set-up, diagonalization

and configuration selection become faster due to smaller correlation

spaces during the iterations. The same holds true for C2H5F, the final

configuration spaces on average are smaller for all states, on average

10,500 configurations are saved (see Table S2 in the Supporting

information).

In summary, as demonstrated by the benchmark calculations

above, the ansatz of improving the start vector for the configuration

selection scheme by considering resonances from the very beginning

leads to a faster convergence of the correlation space. Additionally,

the number of required iterations decreases in some cases and leads

to CPU time savings. The results for the energy eigenvalues are

almost identical, that is, there is no loss of accuracy here.

6 | SUMMARY

Two strategies have been presented for the acceleration of vibrational

configuration interaction calculation, the first one being applicable to

any VCI implementation, while the 2nd is specific to configuration

selective variants. It was found that computational bottlenecks arising

from the VAM terms can efficiently be eliminated by unrolling the

equations with respect to the number of different modals within the

VCI matrix elements. Simple prescreening of the VAM terms cannot

compete with this implementation. This allows to consider 0D VAM

terms for all VCI matrix elements plus 1D VAM terms for the diagonal

terms in standard applications by default, which is of particular rele-

vance for rovibrational calculations requiring high accuracy. The intro-

duction of prediagonalizations in configuration selective VCI

algorithms is a subtle technique, which leads to an overall stabilization

of the selection process and, at the same time, leads to moderate

acceleration of these calculations. Both approaches essentially have

no impact on the final results, but increase the efficiency of VCI

implementations and thus allow to handle larger correlation spaces or

even larger molecules. In the subsequent paper within this series,

cf. Reference [39], even further techniques for accelerating VCI calcu-

lations will be presented.
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APPENDIX A.

A.1. | Vibrational angular momentum terms of first order

The calculation of the first order vibrational angular momen-

tum (VAM) terms, which may be important for highly accurate

rovibrational calculations, is even more demanding than that of

the zeroth order elements. For the sake of completeness, we provide

the respective working equations for the first order VAM terms

in the following. We have split up contributions resulting from differ-

ent integrals/operators in some of the cases. Note that, within the

implementation of all following expressions in our program, we

explicitly use Equation (10a), which leads to an additional noticeably

reduction of elements within the individual sums, but which is not

exploited in the equations below for the purpose of a better

readability.

A.2. | Notation

Let M≠ ; be an arbitrary set. Furthermore, let SM with

SM ¼ f :M!Mjf bijectivf g ðA1Þ

be the set of all bijective maps from M to itself, that is, the set of per-

mutations on the set M. SM, ∘ð Þ forms a group with the composition of

mappings being the group operation.

In the following, we use Cauchy's two-line notation in order to

denote a permutation σ � SM with jM j¼m and M¼ i1, i2,…imf g, that is,

σ¼ i1 i2 … im
σ i1ð Þ σ i2ð Þ … σ imð Þ

	 

: ðA2Þ

or, shorter,

σ¼ 1 2 … m

σ 1ð Þ σ 2ð Þ … σ mð Þ
	 


: ðA3Þ

Furthermore, it applies j SM j¼m! if m�ℕ.

We further introduce the following sets: As in Section 4, we

assume jΦIi¼jQkφ
nIk
k i and jΦJi¼jQkφ

nJk
k i and Mm ¼ i1,…, imf g being

the set of modes which differ by the occupation numbers nIk and nJk .

Let now MA ¼ k1,k2,…,kMf g, jMA j¼M be the set of all available mode

indices of a system with M degrees of freedom. Let

MI ¼MAnMm ¼ j1,…, jM�mf g, jMI j¼M�m be the set difference of MA

and Mm. We denote the union of Mm and an arbitrary element

jk ,1≤ k ≤M�m from the set MI by

~Mm,k ¼Mm[ jkf g j jk �MI: ðA4Þ

S ~Mm,k
with ~σ � S ~Mm,k

and j S ~Mm,k
j¼ mþ1ð Þ! denotes the set of all

bijective self-mappings of ~Mm,k . Furthermore, let

~Mm,k,l ¼ Mm,k [ jlf gjjl � MI^ l≠ kf g ðA5Þ

be the union of Mm,k and an element jl,1≤ l ≤M�m with l≠ k of the

set MI. The set of all bijective self-mappings of ~Mm,k,l is denoted S ~Mm,k,l
,

σ0 � S ~Mm,k,l
with j S ~Mm,k,l

j¼ mþ2ð Þ!.

A.2.1. | Offdiagonal elements with m¼5

Let M5 ¼ i1, i2, i3, i4, i5f g. Due to the orthogonality of the modals, only

integrals with five different indices contribute, which solely are of the

form qr ∂qsμαβ qvð Þqt∂qu
� �

. Within this, only the permutations of M5

yield non-zero terms. Using Cauchy's two-line notation (A3), the

matrix elements with m¼5 can be written in a compact form as

ΦI jH m¼5ð Þ
VAM,1D jΦJ

D E
¼�1

2

X
αβ

X
σ � SM5

ζασ 1ð Þσ 2ð Þζ
β
σ 3ð Þσ 4ð Þ μαβ qσ 1ð Þ

� �� �
qσ 2ð Þ
� �

∂qσ 3ð Þ

D E
qσ 4ð Þ
� �

∂qσ 5ð Þ

D E
,

ðA6Þ

that is, independent of the number of modes, 6!¼120 products of

integrals have to be summed up instead of O M5� �
.

A.2.2. | Offdiagonal elements with m¼4

Let M4 ¼ i1, i2, i3, i4f g. Due to the orthogonality of the modals, integrals

having less than four different indices vanish. In the case of integrals

with exactly four indices, all permutations of M4 have to be consid-

ered. Non-zero contributions of these are:

Sum of contribution of types qr ∂qsμαβ qið Þqt∂qu
� �

(i� r,s,t,uf g),
which can be united due to the same prefactor:

�1
2

X
αβ

X
σ � SM4

ζασ 1ð Þσ 2ð Þζ
β
σ 3ð Þσ 4ð Þ

∂qσ 2ð Þ

D E
∂qσ 4ð Þ

D E
μαβ qσ 1ð Þ

� �
qσ 1ð Þ

� �
qσ 3ð Þ
� �þ μαβ qσ 3ð Þ

� �
qσ 3ð Þ

� �
qσ 1ð Þ
� �� �h

þ qσ 1ð Þ
� �

qσ 3ð Þ
� �

μαβ qσ 2ð Þ
� �

∂qσ 2ð Þ

D E
∂qσ 4ð Þ

D E
þ μαβ qσ 4ð Þ

� �
∂qσ 4ð Þ

D E
∂qσ 2ð Þ

D E� �i
ðA7Þ

Let ~SM4 be the subset

~SM4 ¼ SM4n σ � SM4 jσ : σ 3ð Þ> σ 2ð Þf g ðA8Þ

with j ~SM4 j¼4!=2. Then it holds for the contribution

of q2r ∂qsμαβ qvð Þ∂qu
� �
�1
2

X
αβ

X
σ � ~SM4

ζασ 1ð Þσ 2ð Þζ
β
σ 1ð Þσ 3ð Þ μαβ qσ 4ð Þ

� �� �
q2σ 1ð Þ

D E
∂qσ 2ð Þ

D E
∂qσ 3ð Þ

D E
, ðA9Þ

since due to the symmetry of the integral regarding interchanging the

indices s and u, summation over all α,β, and v not coupling to other

indices, only the subset ~SM4 has to be taken into account.
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Let S0M4
be the subset defined as

S0M4
¼ SM4n σ � SM4σ : σ 3ð Þ> σ 1ð Þf g ðA10Þ

with S0M4
¼4!=2 The integral qr ∂

2
qs
μαβ qvð Þqt

D E
contributes by

�1
2

X
αβ

X
σ � S0M4

ζασ 1ð Þσ 2ð Þζ
β
σ 3ð Þσ 2ð Þ μαβ qσ 4ð Þ

� �� �
qσ 1ð Þ
� �

∂2qσ 2ð Þ

D E
qσ 3ð Þ
� �

, ðA11Þ

obtained via similar considerations as for q2r ∂qsμαβ qvð Þ∂qu
� �

.

Sum of contributions of types qr ∂qs qsμαβ qvð Þ∂qu
� �

and

qr ∂qr ∂qsμαβ qvð Þqt
� �

, which can be combined due to Equation (11):

�1
2

X
αβ

X
σ � SM4

ζασ 1ð Þσ 2ð Þζ
β
σ 2ð Þσ 3ð Þ þζασ 2ð Þσ 3ð Þζ

β
σ 1ð Þσ 2ð Þ

� �
μαβ qσ 4ð Þ

� �� �
qσ 1ð Þ
� �

∂qσ 2ð Þqσ 2ð Þ
D E

∂qσ 3ð Þ
� �
ðA12Þ

There is one integral having five different indices. In this case, all

permutations of M4 have to be considered, while there is one free

index I having M�m possible values. Therefore, the contribution of

qr ∂qsμαβ qvð Þqt∂qu
� �

yields

�1
2

X
αβ

XM�m

k¼1

X
eσ � SeM4,k

ζαeσ 1ð Þeσ 2ð Þζ
βeσ 3ð Þeσ 4ð Þ

D
μαβ qeσ 5ð Þ

� �E
qeσ 1ð Þ

D E
∂q eσ 2ð Þ

D E
qeσ 3ð Þ

D E
∂q eσ 4ð Þ

D Eh i
ðA13Þ

The matrix element hΦIj jH m¼4ð Þ
VAM,1D jΦJi is given as the sum of the

expressions (A7), (A9), (A11), (A12), and (A13).

A.2.3. | Offdiagonal elements with m¼3

In the case of integrals having three different indices, solely the ele-

ments of SM3 have to be taken into account for possible index combi-

nations, that is, 3!¼6 combinations are remaining. Terms having the

same prefactors can be grouped as follows:

Sum of contributions of types qr ∂qsμαβ qið Þqr ∂qu
� �

, i� r,s,uf g and

qr ∂qsμαβ qj
� �

qt∂qr
� �

, j� r,s,tf g:

�1
2

X
αβ

X
σ � SM3

ζασ 1ð Þσ 2ð Þζ
β
σ 1ð Þσ 3ð Þ

∂qσ 2ð Þ

D E
μαβ qσ 1ð Þ

� �
q2σ 1ð Þ

D E
∂qσ 3ð Þ

D E
þ μαβ qσ 3ð Þ

� �
∂qσ 3ð Þ

D E
q2σ 1ð Þ

D E
� μαβ qσ 1ð Þ

� �
qσ 1ð Þ∂qσ 1ð Þ

D E
qσ 3ð Þ
� ��h

�
D
μαβ qσ 3ð Þ

� �
qσð3Þ

ED
qσ 1ð Þ∂qσ 1ð Þ

E
∂qσ 3ð Þ

D E�
þ μαβ qσ 2ð Þ

� �
∂qσ 2ð Þ

D E
q2σ 1ð Þ

D ED
∂qσ 3ð Þ

E
� qσ 1ð Þ∂qσ 1ð Þ

D ED
qσ 3ð Þ

E� �i
ðA14Þ

Sum of contributions of qr ∂qsμαβ qið Þqs∂qu
� �

, i� r,s,uf g
and qr ∂qsμαβ qj

� �
qt∂qs

� �
, j� r,s,tf g:

�1
2

X
αβ

X
σ � SM3

ζασ 1ð Þσ 2ð Þζ
β
σ 2ð Þσ 3ð ÞD

qσ 1ð Þ
E

μαβ qσ 2ð Þ
� �

∂qσ 2ð Þqσ 2ð Þ
D E

∂qσ 3ð Þ

D E
þ μαβ qσ 3ð Þ

� �
∂qσ 3ð Þ

D E
∂qσ 2ð Þqσ 2ð Þ

D E
� μαβ qσ 2ð Þ

� �
∂2qσ 2ð Þ

D ED
qσ 3ð Þ

�h E

� μαβ qσ 3ð Þ
� �

qσ 3ð Þ∂
2
qσ 2ð Þ

D E�
þ
D
μαβ qσ 1ð Þ

� �
qσ 1ð Þ

E
∂qσ 2ð Þqσ 2ð Þ

D E
∂qσ 3ð Þ

D E
� ∂2qσ 2ð Þ

D ED
qσ 3ð Þ

E� �i
ðA15Þ

Sum of contributions of qr ∂qsμαβ qvð Þqs∂qr
� �

and qr ∂qsμαβ qvð Þqr ∂qs
� �

:

�1
2

X
αβ

X
σ � SM3

ζασ 1ð Þσ 2ð Þζ
β
σ 1ð Þσ 2ð Þ

D
μαβ qσ 3ð Þ

� �E
D
qσ 1ð Þ∂σ 1ð Þ

ED
∂σ 2ð Þqσ 2ð Þ

E
�
D
q2σ 1ð Þ

ED
q2σ 2ð Þ

Eh i ðA16Þ

For integrals having four different indices there is one free index

left after considering elements of SM3 . By using Equation (A4), the

non-zero contributions are the following:

Sum of contributions of types qr ∂qsμαβ qið Þqt∂qu
� �

, i� r,s,t,uf g:

�1
2

X
αβ

XM�m

k¼1

X
~σ � S ~M3,k

ζα~σ 1ð Þ~σ 2ð Þζ
β
~σ 3ð Þ~σ 4ð Þ

∂q~σ 2ð Þ

D E
∂q~σ 4ð Þ

D E �
μαβ q~σ 1ð Þ

� �
q~σ 1ð Þ

��
q~σ 3ð Þ

�
þ
�
μαβ q~σ 3ð Þ

� �
q~σ 3ð Þ

��
q~σ 1ð Þ

�	 


þ
�
q~σ 1ð Þ

��
q~σ 3ð Þ

�
μαβ q~σ 2ð Þ

� �
∂q~σ 2ð Þ

D E
∂q~σ 4ð Þ

D E
þ μαβ q~σ 4ð Þ

� �
∂q~σ 4ð Þ

D E
∂q~σ 2ð Þ

D E� ��
ðA17Þ

Sum of contributions of types qr ∂qsμαβ qvð Þqt∂qi
� �

, i� r,sf g
and qr ∂qsμαβ qvð Þqj∂qu

� �
, j� r,sf g:

�1
2

X
αβ

XM�m

k¼1

X
~σ � S ~M3,k

ζα~σ 1ð Þ~σ 2ð Þ μαβ q~σ 4ð Þ
� �� �

�
q~σ 3ð Þ

�
ζβ~σ 3ð Þ~σ 2ð Þ

�
q~σ 1ð Þ

�
∂2q~σ 2ð Þ

D E
þζβ~σ 3ð Þ~σ 1ð Þ q~σ 1ð Þ∂q~σ 1ð Þ

D E
∂q~σ 2ð Þ

D E	 


þ
�
∂q~σ 3ð Þ

�
ζβ~σ 2ð Þ~σ 3ð Þ

�
q~σ 1ð Þ

�
∂q~σ 2ð Þq~σ 2ð Þ

D E	
þζβ~σ 1ð Þ~σ 3ð Þ q2~σ 1ð Þ∂q~σ 1ð Þ

D E
∂q~σ 2ð Þ

D E�i
ðA18Þ

Within the only integral having five different indices,

qr ∂qsμαβ qvð Þqt∂qu
� �

, the set M3 fixes three of them. Thus, for the two

indices left all modes being not in M3 have to combined with those in

M3. Using Equation (A5), one obtains for the contribution

of qr ∂qsμαβ qvð Þqt∂qu
� �

:

�1
2

X
αβ

XM�m

k¼1

XM�m�1

l¼1

X
σ0 � S ~M3,k,l

ζασ0 1ð Þσ0 2ð Þζ
β
σ0 3ð Þσ0 4ð Þ

μαβ qσ0 5ð Þ
� �� �

qσ0 1ð Þ
� �

∂qσ0 2ð Þ

D E
qσ0 3ð Þ
� �

∂qσ0 4ð Þ

D E ðA19Þ

The matrix element ΦIjH m¼3ð Þ
VAM,1DjΦJ

D E
is given as sum of the

expressions (A14),(A15),(A16), (A17), (A18), and (A19).

2332 MATHEA AND RAUHUT



A.2.4. | Offdiagonal elements with m¼2 and m¼1

Since there are no considerable simplifications leading to large compu-

tational saving for these two cases, we neglect these.

A.3. | Diagonal elements

All integrals containing the term ∂qi
� �

vanish due to Equation (10a).

The non-vanishing contributions are the following:

Contributions of integrals with only two different indices:

�1
2

X
αβ

X
s

X
r < s

ζαrsζ
β
sr

1
2

μαβ qrð Þqr ∂qr
� �þ1

2
μαβ qsð Þqs∂qs
� ��1

2
μαβ qrð Þ∂qr qr
� ��1

2
hμαβ qsð Þ∂qs qs


i

�
D
μαβ qrð Þq2r

ED
∂2qs

E
�
D
μαβ qsð Þq2s

ED
∂2qr

E
�
D
μαβ qsð Þ∂2qs

ED
q2r

E
�
D
μαβ qrð Þ∂2qr

ED
q2s

Ei
ðA20Þ

Contributions of integrals with only three different indices:

�1
2

X
αβ

X
rst

1
2

�ζαrsζ
β
tr þζαtrζ

β
rs

� �
μαβ qsð Þ∂qs
� �

qth i


þ ζαrsζ
β
tsþζαtsζ

β
rs

� �
μαβ qrð Þqr
� �

qth i ∂2qs

D E
þζαrsζ

β
ts μαβ qsð Þ∂2qs
D E

qrh ihqt:iþζαrsζ
β
rs μαβ qtð Þ� � 1

4
þ q2r
� �

∂2qs

D E	 
�
ðA21Þ

Contribution of qr ∂
2
qs
μαβ qvð Þqt

D E
:

�1
2

X
αβ

X
vrst

ζαrsζ
β
ts μαβ qvð Þ� �

qrh i ∂2qs

D E
qth i ðA22Þ

ΦIjH m¼0ð Þ
VAM,1DjΦI

D E
is given by the sum of the expressions (A20),

(A21), and (A22).
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