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Abstract

Most subjective reasoning is influenced by mental states. It facilitates communication
between people and enhances interpersonal relationships. It can be difficult to duplicate
using machine learning since complicated questions with subjective and challenging themes
allow for multiple correct answers rather than just one. In my thesis, I mainly explored the
kinds of diverse replies in Visual Question Answering and what elements could cause mental
state references to signify the need for further exploration. Therefore, I created a user study
to collect the rationales for answers given to question-image pairs. The survey study’s results
offer a data set with several justifications that include mental states.
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1 Introduction

Mental state[16] is a term that covers the psychological state behind most cognitive reasoning,
like beliefs, desires and emotions. Mental state reference depicts the usage of referring to one’s
own mental state and others. Theory of Mind[33, 27] covers part of it, specifically the area where
one assesses the mental states of another person, whether in real life, in an image, or in a video.
It is a skill used to convey or understand a perspective. It helps in dissolving differences of per-
spective in case several people desire to coexist better and it helps in predicting another person’s
actions[16].
It is necessary to understand how users function and explain their actions to replicate them. And
also to understand how much of our behaviour is influenced by our mental state.
Programs function and react within defined variables. Human explanations that involve abstract
terms like beliefs, desires and emotions are harder to define or reproduce. The need to explore
this topic further needs to be made, especially, on the topic of recognising questions which have
diverse answers made by humans and delivering possible solutions which are more than one.
Typical in trying to replicate such an explanation is that one seeks one true defined answer.
VQA, Visual Question Answering[8], is an example where it prioritises finding common sense
answers when it comes to questions about images. Their main objective is to automatize answers
to visual questions in a natural language to aid the visually impaired. However, because they
were written or spoken by humans, questions in natural language also contained words that were
ambiguous and subject to interpretation. There was a lot of room for interpretation when it came
to questions that touched on our emotions, beliefs, and opinions. These questions frequently had
a wide array of responses since humans, unlike machines, can recognise objects and humans in
an image through their experience, memories and even imagination differently[20, 22].
These are difficulties in VQA that are challenging to solve because there is still research being
done on how to evaluate questions with several probable answers besides disregarding them to
focus on their actual goal of automating answers to questions that have one answer [15, 43].
Therefore, I needed more context from the human perspective to make a connection with mental
state references and the variety of opinions. By proving a significant correlation, there could
be a possible solution on where to research, specifically by being able to automate answers that
have a high variety of opinions on how an image is perceived. I have the desire to move in the
direction of a model that can reflect the variety of answers, in which there is not one true answer
but a multitude of perspectives that lead to different conclusions. This can be regarded as a
suggestion system that would generate natural-language explanations of different perspectives.
Gaining insight into another perspective leads to improved human-to-human interaction.
This is why I created this thesis to investigate the situation by creating a user study for human-
computer interaction, so I was capable of collecting explanations of answers and classifying
whether they contained mental state references and potential different factors on why an im-
age was perceived differently.

1.1 Problem and Goals

This section describes the problem statement and the hypotheses the thesis was dealing with.
After this, the next subsection describes the goals of this thesis.

1.1.1 Problem Statement

At the moment, the problems in resolving disagreements in image recognition due to the ambiguity
of the visual questions remain due to a lack of exploration. Human recognition is strongly affected
by our memories and beliefs [22] and has shown that there are situations where there is not one
right answer to questions. This is why I sought to find its involvement in Visual Question
Answering to understand and gather the variability in answers and tested it against different
potential factors. For this reason, I put up the following hypotheses that had been investigated:
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• If the questions possess a variety of answers, the explanations for them contain a higher
number of mental state references.

• Mental state references depend on the type of question.

• If people do not look in the same area on the image, there is a lower agreement rate.

These hypotheses’ variables are explained in more detail and are defined in the method section.

1.1.2 Mandatory and Optional Goals

A mandatory goal for this bachelor thesis was to seek out VQA samples that had a wide array
of different amounts of conflicting answers when it came to describing visuals. A user study was
designed that prompted the participants to explain their reasons, involving their states of mind,
for answering the visual questions. The second mandatory goal was gathering these explanations
and classifying and analysing them with the help of an automatic natural language tool. The
goal of the analysis was to analyse the hypotheses and determine whether or not they were true.
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2 Related Work

The associated work with the thesis is explained in this part. It begins with the first segment,
Visual Question Answering and its earlier research aimed at addressing disputes in replies and
their limitations. Then, related literature on the value of discussing mental states follows. Finally,
earlier initiatives compile justifications for automating natural texts.

2.1 VQA

The most common way for a system to replicate natural explanations was to find a defined true
answer and conclusion. The ”VQA: Visual Question Answering” [14, 41, 21] study and project
aimed to provide natural-language answers to questions about a given image. Their motivations
involved helping the visually impaired, so they gained context about images through open-ended
questions reflecting realistic scenarios. These questions had been gathered through a set-up,
according to the author [14], where participants in the experiment posed questions about an image
by ”trying to outsmart a tiny robot, an alien or a toddler”. The accuracy of answers was graded
by how many people had the same opinion on a question. Therefore, answers made by humans
that were conflicting and had low accuracy were regarded as incorrect or not usable since the aim
was to seek one common-sense answer. Their large data set of visual questions and answers was
gathered through the recruitment of Amazon Mechanical Turk, a crowd-sourcing marketplace[1].
This project naturally led to challenges and other projects trying to create a deep-learning model
that was capable of answering natural language questions with visuals trained by the collected
and given answers by humans.
The emphasis was laid on image recognition[13, 40] in seeking clearly defined answers and an
understanding of the image with complex reasoning and binding it with natural language. The
project posed challenges from 2015 to today for researchers to create systems, and they regarded
their accuracy in answering the open-ended questions in the context of the images. The results
of the researchers’ method were, in most cases, publicly posted on their site’s challenger leader-
board [9]. The project was built by seeking a common-sense perspective, with which the majority
agreed.
To improve the answer accuracy, studies have been done to consider dynamic word usage[44] by
taking the tone and situation of the image into context. This study pointed out that whenever
the answer was evaluated in VQA in most instances, the words were compared to see whether or
not they matched the answer.
In another following study, ”Perception Matters: detecting perception Failures of VQA models
using metamorphic testing”[43] attempted to overcome any ambiguity in a question by trying
to create a meta-model of the thought process for a more complex question. Before it came to
the actual logical conclusion to be able to answer it, it checked with smaller questions if certain
objects were present in the image associated with the question and used this information to
answer the question.
While these mentioned studies did showcase ways to improve in helping answer difficult logical
questions and giving a foundation on decreasing the amount of invalid ambiguous questions, these
studies still had a limit to the unsolved problems of questions that weren’t low-quality or vaguely
phrased.
However, ambiguous and subjective questions that allowed for many possible answers remained
a challenge. Only in a recent paper, ”Why does a Visual Question Have Different Answers?”[15]
the limitation was further addressed by trying to understand the causes of different opinions
in answers. In this paper, they proposed the idea that data sets with visual questions should
be filtered further by differentiating whether certain questions have a possible technical answer.
They checked whether an image was of bad quality, such as badly lit or blurry images, or whether
it was a subjective or ambiguous question that requested an opinion. The study did note their
limitations on how to approach the questions, which can have valid different answers, or how to
train a model of complex reasoning like common sense.
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2.2 Existing Studies of Mental State and Theory of Mind

This is the subsection where the research now moves further into mental state references, as it
covers most of the subjective reasoning and even our common sense. The introduced related
works showcase attempts to define the mental state references and also to see their potential and
benefit by indulging in exploring mental states further.
The paper ”Why talk about mental states? the significance of children’s conversations with
friends, siblings, and mothers” [16] mentioned the importance of why people shared their mental
state in social conversation. The result showed that children reveal their mental state to convey
their perspective for their friends to understand or even modulate their assertion. By sharing
their mental states, their motivation was to prolong their time for shared activity and resolve
conflicting views while playing.
With this paper, I learned that understanding another perspective could lead to the improvement
of human-to-human interactions and is very vital in social settings. To understand a different
perspective, one needs to understand how it is shaped.
A related study involving mental state references, specifically Theory of Mind, ”Spontaneous
mentalizing captures variability in the cortical thickness of social brain regions”[34] examined a
group of people watching naturalistic videos. The participants were prompted to make sponta-
neous descriptions of the characters they perceived in the video. Their discovery provided new
insight into the neural bases of variability in naturalistic mentalizing performance. It further
showcased the usage of mental state references for an individual to grasp the reason and perspec-
tive of the figures they are perceiving.
To be able to differentiate what is a mental state reference in collected explanations, the study
”Representing other minds: Mental state reference is moderated by group membership” [28] had
a good foundation for word usage. This research collected explanations from the participants and
analysed them for potential mental state references in the logged conversations of their experi-
ments. With their results, they were capable of defining explanations for whether they refer to a
mental state or not.

2.3 Studies about Automated Rationale

The natural explanation is important in situations where human operators work alongside au-
tonomous and semi-autonomous systems because it can help build understanding between the
agent and its operator. In health care, [17] natural explanation was necessary for conveying in-
formation more efficiently than structured data, as it had been shown that communication was
very vital.
The paper ”Automated Rationale Generation: A Technique for Explainable AI and its Effects
on Human Perceptions” [19], moved in this direction. This was an approach for real-time expla-
nation generation whereby a computational model learned to translate an autonomous agent’s
internal state and action data representations into natural language.
In this paper, they collected a corpus of explanations with the goal of using it by desiring to
train a neural rationale generator to produce different rationales and also checked how people
perceive these rationales. The study was broader when it came to capturing human rationale as
it involved the possibility of AI and how well they were able to convey human likeness by the use
of a simpler game. A similar project that moved in the direction of automating explanation is
”Generating Visual Explanations” where people could request an explanation to a visual question
but not the reasons for the thought processes.
In this thesis, I expanded on the research of Visual Question Answering by focusing on questions
and images with several different amounts of opinions. Although the reason for different answers
is known, the actual cause needs to be further investigated. In this case, my desire was to connect
the research to mental states and the Theory of Mind that could help further indicate what people
use to answer complex, subjective, and ambiguous questions.
Inspired by the mentioned experiments of prior research in automated rationale, I desired to
create a survey in which participants regarded the collected images from VQA and explained
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their rationale when they gave an answer to a question. The purpose was to gather data on
natural language explanations that contained mental state references and demonstrated different
numbers of views to assist in understanding another person’s conclusion and resolving conflicts
of opinion. The data collection could provide more context for the VQA model’s responses to
open-ended questions and a need to explore further mental states to automate questions that
may have more than one correct answer.
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3 Methods

This section explains the approach used for several tasks in this thesis. The first sub-section
explains the selection of the image and question pairs and their criteria. Then I showcase the
user study that used the selected question image pairs as stimuli and how I gathered the desired
data I needed for my calculation. After this, I defined the variables needed for my hypotheses
and how I used the gathered data from the user study to properly evaluate them in the analysis.

3.1 Image and Question Pair - Data Sets

The main source of data set for this thesis was the VQA v2.0 data set. The images and questions
presented for the user study were derived from the data set from Visual Question Answering
[8] and COCO, Common Objects in Context[26]. The data set was the most up-to-date and
accessible to use. The real-life images were common cases of wanting a description in daily life.
Furthermore, the validation data set and test data set have been used most by VQA studies for
their models to learn [18, 42]. However, since I only required a small sample for a large data set,
I mostly focused on analysing the validation data set.
The official VQA site provided annotation files about the collected data of their natural-language
questions, where people had regarded specific images and answered questions in their context of
them. It contained information on the image ID, question ID, and ten answers to said question-
image pair. Alongside it, each answer contained a confidence value between ”yes”, ”maybe”, and
”no”. The annotation files were stored as large JSON files[3].
One of my first goals was to seek out the information that told which question-image pair con-
tained a variety of different responses to certain questions. To be able to differentiate the largest
amount of similar opinions, there was in each question an already expected answer under the tag
”multiple choice answer”. The value in this tag told me what was the most mentioned answer in
each question, but not how many out of the ten annotators agreed with said answer.

Annotatoragreement =
Amount of answers agreeing to the value of ”multiple choice answer”

10
(1)

Therefore, to seek out a rough number, I coded an annotation file parser in Python that went
through the answers to each question. It compared the answer to the value in the tag ”multi-
ple choice answer”. If the answers were regarded as matching, the parser would count up. At
maximum, the parser could only count up to ten because there were only ten answers to compare
to the expected answer. To cover the cases in which some answers were similar to each other,
words that were synonyms were also regarded through the usage of nltk[4]. Specifically, the
package WortNet [10, 5] and NLTK.corpus as it is a lexical database about the English language
with a heavy focus on context and making natural language processing in Python simpler. The
list of synonyms was created by the value of ”multiple choice answer” and that list would check
whether the provided answers from the annotator matched with any of the words in the list.
This is how I defined the annotator agreement rate, and equation 1 showcases the definition. For
each question-image pair, the annotator agreement rate was counted up from a value of one to
ten whenever an answer from an annotator matched it. The validation file was sorted according
to its annotator agreement rate and split into ten files.

To note in Figure 1 and its amounts, there was still a chance that some of the question-image
pairs in the sorted files weren’t, for example, exactly 5 out of 10 people in agreement but po-
tentially had a higher agreement. The explanation for this was that the parser didn’t consider
the context of how words were used, like analysing the image the question was paired with. The
parser only matched the answers with the provided words from the synonym list and the value
of the multiple-choice answer.
In some cases, if the expected answer was, for example, ”mix of red and white”, the parser
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Figure 1: This bar chart showcases the number of question-image pairs for each annotator agree-
ment rate.

wouldn’t see the answer ”pink” as the same opinion because the word wasn’t in the list. Some
answers, while using different vocabulary, could imply the same opinion, but may not be covered
by the NLTK synonym database. Since the files were too large with 214,354 questions, it was
inefficient to be able to check through the annotator agreement manually. If the annotation parser
was much more accurate, then the graph would still resemble a function that exponentially grew.
The question and image IDs in the separated ten files and associated questions had been identified
for each agreement rate file by comparing the IDs in the question data set, also provided on the
official VQA project site. In these split files, I noted that the questions with higher agreement
rates contained the most question types, which involve colour questions, counting questions, and
questions that contain only ”yes” and ”no” answers. The lowest level of agreement they could
get before one of the responses ends up being higher would be 50% annotator agreement rate,
especially because ”yes” and ”no” questions were binary. For the files that had a low annotator
agreement rate, they contained more complex questions that would require specific expert knowl-
edge, vague questions that left too many possible answers, and even too subjective questions
where one should guess a person’s name.
I wanted to select question-image pairs that had different annotator agreement rates. To have a
range, I selected question-image pairs that had an annotator agreement rate of 20%, 40%, 60%,
80% and 100%.
Out of the sorted annotation files, specific types of questions were sought from each mentioned
annotator agreement rate.
For the specific types of reasoning questions, I decided on sentiment recognition, scene recog-
nition, and object recognition. I decided on them since I wanted to pick a type of question
where I didn’t expect any mental state references and one where I did. Sentiment recognition
questions demanded the need to evaluate the emotional state, specifically the mental state of the
depicted person in an image. This was the type of question I expected to have the most mental
state references if someone had to explain their thought process to answer it. Scene recognition
questions were picked because I had the assumption that the people who would answer these
types of questions would have to rely on their experiences and memories. But my assumption
was that it wouldn’t evoke as many mental state references as sentiment recognition. The least
amount of mental state references I would expect in object recognition was that it purely relied
on the visuals of an image. The type of question was defined as follows: Emotional recognition
questions contained adjectives or verbs that describe sentiments like ”smiling, sad, upset” etc.
Object recognition was a question that identified the object in an image. I relied on how COCO
images were tagged, which described the content of the images [26] to specify how an object was.
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Scene recognition was defined, in comparison to object recognition, to recognise the context,
state, or semantic relationship of objects depicted in the image. But to simplify, any question
that questioned the functionality and state of an object in the context of the image layout, like a
wall, sky, or ground, was seen as a scene recognition question. To evaluate how confident people
were in answering a question, I calculated a mean value between the ratings of ”yes”, ”maybe”
and ”no”. The rating ”yes” received a value of 1, the rating ”maybe” received a value of 0.5 and
the rating ”no” received a value of 0.
The selection of the questions had to fulfil the following criteria:

1. The selected questions’ answers must have a confidence rate of at least over 0.7 to avoid
question-image pairs that have bad quality.

2. To select a sentiment recognition question, it must contain an adjective or verb that indicates
sentiments.

3. To ask an object recognition question, it must only prompt the participant to identify the
object in the image.

4. For scene recognition questions, the question must ask about the function or state of an
object or scene in the context of its full environment depicted in the image.

To pick out a selection of questions of specific question types, I used keywords to search for
the types of questions in the different agreement rates. An example keyword search for a scene
recognition question involved words like ”weather, function, purpose, wall, sky”. I also specifically
regarded questions with the format ”What is... for?” because they ask about the functionality
of a depicted object. Then I checked if the question fulfilled the criteria mentioned prior and
selected it if it was fulfilled.
In the picked-out selection, most of the sentiment recognition questions depicted women and
children. The decision to select them was made without focusing particularly on gender but
rather on whether or not they fulfilled the criteria belonging to specific types of questions.

3.1.1 Defining Agreement Rate

Since the question-image pair was used in a user study and therefore did not have a predefined
answer that defined the majority opinion like in the annotation files, I defined the agreement rate
similarly to the prior evaluation when I was dividing the annotation file by their agreement rate.
The agreement rate of the answers to a question was defined as the most commonly appearing
answer, divided by the number of answers given by participants. This gave me a value between
1 and 0. To be able to decide whether one answer was the same as another answer but with
different word choices, synonyms were considered by checking dictionaries like thesaurus[7, 2].
Since the selected data set was much smaller than the annotation file, I was capable of manually
analysing the agreement rate by comparing answers. To note, I wouldn’t be taking into account
the context given by the explanations to an answer, as I was evaluating similarly to how VQA
proceeded by having only the context of the short answer given by an annotator.

3.2 Mental State References Study

This subsection explains the setup of the user study to gather the desired data I required for my
hypotheses. The premise of a survey required no expert knowledge or experience aside from one’s
own biased perspective and common sense.
The survey was structured as a questionnaire; therefore, LimeSurvey was used as it covered
most functions and was readily available and provided. The user study took place locally at the
University of Stuttgart with the set-up of a mouse and laptop in a laboratory. The participants
had to be there in person to participate. This decision had been made for the sake that the
quality of data was higher with fewer disturbances in comparison to participating in the user
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Figure 2: Screenshots of the user study’s first part sans the confidence rating. The second image
portrays the second part of the user study with placed semi-transparent squares.

study at home since online recruitment in comparison to Amazon Mechanical Turk had a lower
quality of data[32].
From the methods by which I picked out question-image pairs for certain criteria, depending on
question types and annotator agreement rate, fifteen question-image pairs had been selected as
stimuli. The full list of stimuli can be found in the appendix.
I decided to present the stimuli with the lowest annotator agreement rate at the beginning and
the highest at the end of the questionnaire. The justification for this was the assumption, based
on a small pilot test among volunteers, that people would be too focused on explaining their
thought process if they were confronted with question-image pairs with low agreement rates from
the start, as they tend to evoke the need to explain.
The study was split into three parts for each question-image pair presented.
The first part’s purpose was to replicate the setup of the Visual Question Answering project. This
was to garner comparable results to the original annotation data sets to validate my selection of
stimuli. The participant had to answer the visual question presented. The criteria were to give
an unbiased answer or an answer most people would agree on. They also had to keep the answer
short and precise. After their answer, they had to rate how confident the participant was about
their given answer by choosing between ”yes”, ”maybe” and ”no”. The values to pick from for
the confidence rating were also taken from the VQA annotation files.

The second part of the user study involved clicking on the area the user focused on when
answering the prior question. They placed a semi-transparent black square of the size of 50 pixels
onto the image. The highest number of squares that could be placed onto the image was eight,
due to the limitations the survey provided. The coordinates of said placed squares were recorded
to later help in making a click pattern, which was used to calculate later as described in section
3.4.
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Before the participants proceeded with the study, they were able to read through an example.
Figure 2 visualised the example every participant had to read through and showcased the two
parts described above.
The third part requested the thought process behind the answer given to the question-image
pair. The criteria and conditions, in this case, were to write in full sentences and explain their
reasons for giving a certain answer to a visual question. This was for the sake of having a proper
text analysis later on for variables like mental state reference, which is defined in the upcoming
subsection.

3.3 Defining Mental State References

To approach the upcoming text analysis and to differentiate whether a mental state reference had
been made in given explanations, I researched studies about their methods.
I focused on verb usage in the explanation rather than adjectives alone since most studies point
in the direction of relying on verbs. Examples of it were the automatic text analysis study about
the Linguistic Category Model [38, 39] that argued verb usage was the most reliable in analysing
text.
To differentiate what a mental state reference is, I regarded papers that had done analysis about
the language used between humans when they revealed a mental state. Certain words could
indicate mental state references by having an explanation involving the participant as the object of
the sentence. The basis for the classification of verb terms that insinuated mental state references
belonged to the study[37], already referred to in the related work section. This study provided
a master list of mental state verbs that had been collected in a user study involving group
discussions. For further extension, newer studies like [31, 12] had been regarded as extending the
master list as they pointed out further verbs and what most people regarded as verbs that could
describe a mental state.
The full list of mental state verbs used in the quantitative analysis can be found in the appendix.
For images that involved the depiction of humans, I considered the categories of Theory of Mind,
and Spontaneous Theory of Mind, STOMP[34]. STOMP was defined as an unconscious and
automatic understanding of others’ mental states. To be able to differentiate it from the usage
of Theory of Mind in the analysis, I needed to check whether the participant attempted to
understand the mental state of the figure depicted in an image without the question prompting
it. So to find out whether STOMP was present, I would disregard any sentiment recognition
questions, as they asked for an intentional understanding of the emotional state of a person
depicted in an image.
To verify whether Theory of Mind had been used, I must verify that the referenced subject and
the known mental state reference verbs in a participant’s explanation were about the person
depicted in the images and not the participant themselves. Theory of Mind and STOMP was
taken into consideration in order to determine whether they might be present as the variable
”mental state references rate”, which would be used in subsequent calculations described in the
result section, served as an umbrella term that included references to Theory of Mind, STOMP,
and the mental state of the participants. For easier identification in the upcoming analysis, I
refer to the mental state reference only directed at the participant’s mental state as MSR. This
meant the variable mental state references rate covered Theory of Mind, STOMP and MSR.
Naturally, it was to be expected that not every explanation, as I gathered, would refer to a
mental state. The sentences that described the exterior or situation of the image were kept in
the discussion.
It was to be expected that some terms were not included in the master list that covered the
entire usage of making mental state references, so the list of terms that referred to mental state
references was extended due to the result given from the experiment. This is explained in detail
in the quantitative analysis of the mental state references subsection.
The second method of analysing the mental state references relied not solely on the mental
state references master list but also on manually analysing the noun and language usage in the
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given explanation to check whether a mental state reference had been made. To differentiate
later for the analysis, I called the mental state reference results that solely relied on the master
list ”Automatic MS” and the second method ”Manual MS”. When an explanation given by a
participant contained a mental state reference, I gave it a value of 1, otherwise, it would have a
value of 0. Then I calculated the mean of how many participants gave a mental state reference
for one question-image pair. The resulting value was my mental state reference rate.

3.4 Calculations of the Similarity of Click Pattern

This section discusses the reasoning behind the methodologies used for comparing the click pat-
terns acquired by the user study. Then I explain the ensuing calculation and definition of the
pattern similarity score. The defined similarity score helped in answering the third proposed
hypothesis.
Comparing two images about their similarities by using Pearson correlation was common practice
in studies [35, 23, 29]. The most notable paper whose methods I based on was the study ”Bub-
bleView: an interface for crowdsourcing image importance maps and tracking visual attention”
[23]. The researchers tracked the areas where the participant clicked on an image and turned
it into maps. These maps were images compared to a similar map that visualised where the
participant actually looked. The paper also used Pearson correlation; therefore, I proceeded with
the equation too. This was how I approached the resulting maps I received from my user study.
From the study in which the participant placed squares on the images in task two, I created
a black-and-white map that visualised the click pattern of the participant. The placed squares
were black on the image, while the remainder of the image that wasn’t covered by any squares
remained white. An example is displayed in figure ??imgex]. A sigma of one degree was used to
blur the patterns to allow for error. To receive the similarity score of two images, I performed
the Pearson correlation coefficient[30]. It gave me a result between minus one and one. Equation
2 [30] describes the formula that performs it on two images.

r =

∑
i(xi − xm)(yi − ym)√∑

i(xi − xm)2
√∑

i(yi − ym)2
(2)

In this equation x were the pixels in image 1 and y the pixels in image 2. xi, yi described the
intensity of the ith pixels of the first and second image. Intensity[36] can be understood as the
pixel value between 1, which is seen as black, and 256 which is the colour white. In bits, the grey
scale starts with 0 and goes until 255.
The xm, ym described the mean intensity of the pixels of their respective images. To note, both
images needed to have the same length and width for the comparison to be able to succeed.
To calculate the image similarities between two images in Python, the image was exported as a
Mat object[24] which was an n-dimensional array. To be able to use the readily available function
in Numpy [6] that calculated the Pearson correlation coefficient, the image was flattened as a
one-dimensional array[11]. If r gave us the result ”0”, the images were not similar at all. For
result ”1”, the images were identical. In the case of the result of ”-1”, the two images were
negatives of each other. Because the Pearson correlation coefficient was only capable of doing
pairwise comparison results, I received a nxn matrix for n numbers of click pattern maps as I
needed to compare them with one another. The values were combined and divided by their entire
quantity to obtain one mean value. The numbers that contained the picture comparison with
itself were removed from the calculations because the r result is naturally 1. Because each value
below the matrix’s diagonal had identical values in the upper triangle, only the values above the
diagonal were added together to save complexity.
If the mean score was less than 0.5, they were considered unrelated. In the appendix, the figure
8 displays the code for what was previously described.
To visualise the maps of every participant in one image, I converted the black-and-white map
into a matrix. Since I only wanted 1 and 0 values in the matrix, I divided the intensity of the
pixels by 255 to keep the image on a black-and-white scale. I added the click patterns of other
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Figure 3: Ethnicity and educational background pie charts from the demographic user study

participants from the same question-image pair to each other and divided them by the number
of click patterns that were available in one image, which was 19 to return to the range of values
between 1 and 0. This would lead me to an image that had varying tones of grey. This would
indicate that the darker the grey areas are in the resulting image, the more people clicked on the
same area as others.
This map in grey scale had a filter performed on it, which I coded. It extracted any values of grey
and made it have different values of opacity depending on how dark the grey value was. Pixels
with the color black had for example an opacity of 0. The map was placed onto the stimuli image
to visualise which area the participants most focused on and can be regarded in the appendix.

3.5 Participant Demographic

The people that were recruited for the user study were gathered through the university forums
and platforms. The number of samples that were collected was nineteen. The majority of the
participants in the study were male. Out of 19 people, 15 identified as male and four as female.
Almost half of the participants had an educational background of a Master’s degree as visualised
in figure 3. Seven of the participants’ ages ranged from 18 to 25, and twelve participants’ ages
ranged from 25 to 35. Most participants were Caucasian or Asian. The right image in figure 3
displays it. In general, the demographic wasn’t diverse. The participant’s time spent finishing
the user study was approximately 45 minutes, with a standard deviation of ±14.81 minutes.

Participants were compensated for their time because the expected duration of the experiment
was around an hour, with 10 euros.
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4 Results

This section showcases the results of the calculations of the defined values described in the method
sections. Then it describes the results of the hypotheses by performing tests to determine whether
they were viewed as true or disregarded.

Question-Image Pair ID Agreement Rate Automatic MS Manual MS Confidence
1 0.42 0.74 0.84 0.95
2 0.42 0.47 0.58 0.55
3 0.26 0.47 0.52 0.63
4 0.37 0.78 0.89 0.76
5 0.37 0.26 0.31 0.92
6 0.37 0.58 0.68 0.55
7 0.78 0.84 0.94 0.82
8 0.78 0.26 0.47 0.94
9 0.37 0.47 0.52 0.69
10 1 0.89 1 0.82
11 0.84 0.21 0.42 0.84
12 0.63 0.21 0.37 0.84
13 1 0.94 1 0.94
14 0.94 0.15 0.15 0.92
15 1 0.15 0.15 0.97

Table 1: Data collected from mental state reference analysis, agreement and confidence rate

4.1 Agreement Rate and Confidence Rate

The variable agreement rate was evaluated as described in subsection 3.3. In the evaluation
of the agreement rate of the question-image pairs, there were differences between the expected
agreement rate that was calculated through the answers found in the annotator file of VQA and
the calculated agreement rate from the answers collected in the user study.
I performed a Mann-Whitney U-test to check whether the differences between the calculated
agreement rate from my user study and the agreement rate I calculated from the answers in the
annotator file had a significant difference. The p-value of the test was over 0.05, indicating there
were no significant differences between my calculations and my prior calculations.
The standard deviation of the agreement rate was 0.279.
There were confidence rates that were lower than the posed criteria in the stimuli selection, which
was at least over 0.7 when calculating the mean value. In table 1, the question-image pair with
ID 2 and ID 6 had the lowest confidence rate, which was 0.55.

4.2 Mental State References Analysis

In the quantitative analysis, I performed the automatic MS method that regarded the verb used
with the help of the master list that contained verbs that indicated mental state references as
previously defined in the section 3.3.
Explanations that did contain a verb from the master list, like ”be excited” appearing in the text
shown below, were counted as mental state references. The following explanation is one of the
explanations given to answer the question image pair ID 13 ”Is the kid crying?”.

”I can’t see any tears, and the child seems to be excited about the umbrella it holds.”

In the analysis where I manually searched the mental state references, the ratio differed by
two more participants making mental state references without using the identified verbs. In these
instances, I accounted for sentences that mentioned ”in my experience” or ”I have seen other
people do”, making a mental state reference to their experience and memory. A sample, from the
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Figure 4: Bar chart depicts mental state references in each question-image pair.

question image pair ID 4, of an explanation with mental state references without the verbs from
the master list looked like this:

”She stares very intently, her head slightly nicked to the side, with her mouth lacking
and large expressions. Other people I’ve seen concentrating look like that.”

The participant made a note of how they saw other people make a similar face to justify their
answer ”concentrated” when they replied to the question. This explanation contained an assess-
ment of the emotional state of the person depicted by mentioning that ”she is staring intently”.
The participant made also a mental state reference about their mental state, MSR, by using the
words ”other people I have seen... look like that”.
The mental state references, which were identified as Theory of Mind were only mentioned in
the sentiment recognition questions. Their value was greater than the number of identified MSR
references because it was made with the association of the Theory of Mind. The explanation
sample shown prior was a prime example that contained MSR and Theory of Mind.
Participants directed their assumption to make a mental state reference about the figure depicted
in the image.
If I counted only the numbers of MSR appearing in explanations as my mental state reference
rate, I would receive approximately 0.1 for each sentiment recognition question in table 1 with the
Manual MS method. Around two participants explicitly stated their experience to be counted as
MSR. Theory of Mind appeared 100% in the identified mental state reference from the Automatic
MS method and Manual Ms method.
Any finding of STOMP outside the sentiment recognition questions where the participant assessed
the mental state of a figure depicted in the image without being prompted to barely appeared
unless one took into account assessing the emotional state of a bird in the question-image pair
IDs 12 and 15 of the people holding a surfboard.

”She is looking at food, it seems; her posture is very calm and focused.”

The explanation above is from question-image pair ID 12.

”Looks like they are having fun on the beach and are trying to surf with their surf-
boards on a nice sunny day in Australia or somewhere where the climate is similar.”

This explanation is from question-image pair ID 15. There could be no large value supplied to
STOMP as a mental state reference rate other than 0.05 for question-image pairs ID 15 and 12.
It was part of one-third of the discovered 0.15 mental state reference rate in the question-image
pair ID 15 in the table 1.
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Figure 5: The image on the left displays a scatter plot between agreement rate and mental state
references with the values from the table 1. The right graphic showcases the average amount of
mental state references with an error bar in each question type

The most common verb used was ”think” with 79 instances and ”assume” with around thirty
instances in the collected explanations from the user study. The number of mental state references
varied throughout the question-image pairs, as figure 4 shows. The standard deviation of the
results in the Automatic MS method is 0.28 and 0.27 for the Manual MS method. The sentiment
recognition questions have a higher value for mental state references. The values are depicted in
table 1. The significant differences will be proven in the next subsection.

The number of mental state references varied throughout the question-image pairs. The
standard deviation of the results in the Automatic MS method is 0.28 and 0.27 for the Manual
MS method. The sentiment recognition questions have a higher value for mental state references.
The values are depicted in table 1. The significant differences will be proven in the next subsection.

4.3 Hypothesis: Mental State Reference Depends on a Specific Type
of Question

For the hypothesis to showcase what type of questions had the most mental state references,
I performed a Friedman Test as the data wasn’t independent due to participants answering in
a certain order of questions. The mean value of how likely a participant made a mental state
reference for the question type was calculated as a vector. For the three vectors of sentiment-,
scene-, and object recognition, I received a p-value below 0.05, 2.07∗10−6 to be exact. Therefore,
I performed a post hoc test through the Wilcoxon signed-rank test. The results from the test
showed that the comparison between the sentiment recognition type of questions and object
recognition had a p-value of 0.0026 which was lower than 0.05, making the result significant that
there was a difference between the data. A similar result of this happened between the sentiment
question and the scene recognition question, with a p-value of 1.14 ∗ 10−5. The comparison
between the scene recognition and object recognition questions had a p-value of 0.16, indicating
no significant difference. The figure 5, specifically the right image, showcases the differences
between each question type.

19



4.4 Hypothesis: Agreement Rate Depends on the Area a Participant
Looked on an Image

Figure 6: Samples of summarized click patterns placed on the original image. The left image
portrays the click pattern of the question image pair ID 6. The right one portrays question image
pair ID 15

Prior discussed in the method section 3.4, I calculated the values on how similar the click
patterns were to other participants for each question-image pair and received values between
0 and 1. To see an example of a click pattern, figure 7 visualises two. The full click pattern
similarity score can be viewed in the appendix, specifically the table 2. Due to the result of
how there was a potentially significant difference between the types of questions, I performed the
Pearson correlation coefficient tests for each type of question separately to check if there were any
differences between them. For the image click similarity data against the agreement rate data, I
received the following results: For the results without regard to the types of questions, I received
a, r result of 0.15 and a p-value of 0.58. For the emotional recognition question image pairs, I
received a p-value of 0.057, scene recognition a p-value of 0.71, and object recognition a p-value
of 0.34. None of the results of the tests indicated any significant relationship between agreement
rate and click pattern similarities, as the results were above the value of 0.05.

4.5 Hypothesis: The Lower the Agreement Rate, the Higher the Men-
tal State Reference Rate

Finally the main hypothesis of this thesis, I performed the Pearson correlation coefficient on the
data of mental state references and agreement rate, visualised in table 1. Similar to testing the
prior hypothesis, I performed the Pearson correlation coefficient once without regard to the type
of questions and also another time by disregarding the sentiment recognition questions since it
had shown that they evoked the most mental state references, regardless of agreement rate.
In the results of the whole data set of values between mental state references and agreement
rate, I received a correlation of -0.23 and a p-value above 0.05. Regarding the agreement rates
and mental state references that excluded the values from the sentiment recognition questions,
I received a higher correlation of -0.843 and a p-value of 0.0022, which is below 0.05 with the
data from the automatic MS method, and a p-value of 0.017 with the data from the manual MS
method. Both results show a significant relationship between the variables for the case regarding
only the object and scene recognition question image pair. The scatter plot in figure 5 visualises
the correlation between the agreement rate and mental state references if one disregards the blue
dots.
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Figure 7: Sample of placed click patterns from question image pair ID 1

5 Discussion

This section discusses the meaning of the results from the prior section and also what findings
I didn’t expect from the user study and my calculations. Then I compare my findings to the
related studies mentioned in the related work and my limitations in this study. At the end of the
section, I discuss the potential of future work.

5.1 Meaning of the Results

For easier identification in this section, I refer to the agreement rate that was calculated from the
given answers in the annotation file of the VQA v2.0 data set as the annotator agreement rate,
like the one described in section 3.1. From the calculations of the agreement rates, I noted that
the question-image pair, which had an annotator agreement rate of 0.2, had a higher agreement
rate in comparison. The question image pair with IDs 1 and 2 had an agreement rate of 0.42,
which is showcased in the table 1.
The biggest difference in agreement rate that was lower than the annotator agreement was with
the question-image pair ID 9 because the annotator agreement rate of this question was 0.6 while
it ended up with an agreement rate of 0.37.
For this result of differences, I acknowledged that the number of participants to calculate the
agreement rate was 19 and not ten as in the annotation file in VQA. The demographic of the
participants was different as the user study took place in Germany, while the majority of the
demographic of their annotators in VQA was in the United States. However, despite the differ-
ences, the differences weren’t significant through the Mann-Whitney U test.
For the lack of any STOMP usage in the explanations provided by the participants in the mental
state reference analysis, the reason could be that only two images had humans depicted outside
of the sentiment recognition questions.
For the reason that Theory of Mind consisted 100% of the identified mental state references in
the sentiment recognition question, could be explained that the skill was asked to be used since
the participant had to assess the emotional state of the person depicted in the image.
The small percentage of identified MSR in sentiment recognition questions was because they were
only counted when the participant explicitly mentioned they based it on their own experience as
the assumption was mostly about the figure depicted in the image.
I noted that by participants trying to keep their answers short and precise as instructed by the
user study, there was a potential risk that some answers wouldn’t be viewed as the same opinion.
The most visual example to showcase that risk was the question image pair ID 1 ”Why is the
girl smiling?”. The provided answers to this, like ”heard good news”, ”talking with family”, and
”having a phone call” could be considered the same opinion if I took into account the explanation
the participants provided because most participants indicated in their explanation further context
that they meant the phone call.
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Out of my three put-up hypotheses, only two had shown any significance. Mental state references
depend on the type of question and it had shown that sentiment recognition questions evoked the
most mental state references in comparison to object and scene recognition. The main hypothesis
of the relationship between agreement rate and mental state references showed significance if I
disregarded the sentiment recognition questions.
This indicated that the questions, which had the potential for a low agreement rate and didn’t
directly ask for the participant to evaluate the mental state of a figure depicted in the image,
evoked mental state references, specifically mental state references about the participant’s expe-
rience and memories, to answer these types of questions. This could showcase the potential of
people using mental state references to answer more difficult questions.
The hypothesis that checked the correlation between the agreement rate and the image click
pattern score had no significance and therefore was not linear. The only special case in creating
the click pattern map was the question image pair ID 6 with the question ”What’s in the vase?”.
The term ”vase” was very ambiguous in the context of the image, leaving room to interpret for
people what they considered a vase because there was no traditional-looking vase in the image.
The mean click pattern of this image showcased no clear focal point, as the image covered by the
click pattern appeared blurry in figure 6 in comparison to the click pattern of the question image
pair with ID 15 that focused on the surfboards in the image.
This was one of the click maps where people clicked at other areas of the image and came to
different conclusions. The other example was the question image pair ID 9, where most users
were unsure if the question referred to the inside of the church or the outside.

5.2 In Comparison to Previous Studies

In contrast to previous studies mentioned in the related work section, most VQA studies tried
to lead solutions by trying to improve the agreement rate from the answers they collected by
applying them to different evaluation methods. Either by filtering the question’s data to be
more unbiased and more precisely worded or by using simpler-worded questions to answer a more
complex question[43].
Only one of the recent studies investigated the potential reasons for different answers, however, it
suggested a system to differentiate questions that had the potential for one true answer and one
that didn’t. But the suggestion only showed how they could separate the types of questions, not
necessarily a solution to how to overcome them. My results, especially with my first hypothesis,
showcased that mental state references were used in questions with low agreement rates. Mental
state references appeared in a subjective type of questions like emotions[25]. This added a step
on how to solve the problem by considering creating data sets about mental state references and
the rationale to answers for a visual question to teach deep-learning algorithms about dealing
with questions that allowed for more answers.

5.3 Limitations of this Study

The limitation of the study was potentially the number of participants due to the hypothesis,
which involved image comparison, as it would likely have had an accurate result if more partici-
pants were involved. However, for the main hypothesis like the correlation of agreement rate and
mental state references, it was sufficient, especially in comparison to how VQA only had ten an-
notators to potentially decide the answer to an image-question pair when excluding the sentiment
type of questions. Another limitation could be the potential for further categorization of images
by putting them in further distinct types, which involved terms like ”difficult,” ”ambiguous,” and
”subjective,” similar to the previous work, which was about ”Why does a visual question have
different answers” for each question type.
The demographic of the participant wasn’t diverse, so there was a chance of cultural differences,
especially when the recruitment in VQA through Amazon Mechanical Turk have annotators who
were native to the United States and answered these questions in their free time while doing other
activities.
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5.4 Potential Future Research

With the results and the mentioned limitations, there could be future research that focused
solely on ”ambiguous” and ”subjective” question image pairs, already identified in the study
”Why does a visual question have different answers?” [15]. This could create a potential data set
of explanations that relied on the subjective perspective of a person and be used as a training data
set to be automated through a deep-learning model that handled questions with the possibility
of several different answers.
In the proposal of the bachelor thesis, there was originally an extra feature in which the user
interacts with a ”robot” who reveals their mental state with the expectation that the user will
react in a similar context. This was to reflect the improvement of human and computer interaction
and would be closely tied to the research mentioned in related work about the Theory of Mind.
This future research would showcase the benefits of exchanging answers and explanations.

6 Conclusion

The intended outcome of this bachelor thesis was to collect various perspectives and reasoning
behind the participants’ recognition. Through the classification of the analysis, I sought a clearer
context on why different answers had been given and also to recognise the involvement of our
mental states in our actions and judgement by analysing the explanations participants provided in
the user study. This helped in explaining why question image pairs had been perceived differently
and also provided a data set of explanations for answers to the visual questions selected out of
VQA. The several hypotheses I put up to check the several factors that potentially caused mental
state and potentially influenced the agreement rate, specifically in the VQA scenario, showed
only two of them had significance according to the calculations to validate the hypotheses.
We learned that the questions that evoked the most mental state references, especially those
involved in the Theory of Mind due to the participants being asked directly to evaluate the
mental state of the person depicted in the image, were the sentiment-recognition questions.
Because of the results of this hypothesis, the main question was whether there was a significant
correlation between participants relying on their mental state to overcome questions that had
a high variety of answers; in other words, a low agreement rate was calculated once with and
once without the sentiment recognition questions. Without the sentiment recognition questions,
there was a correlation between the agreement rate and the number of mental state references,
telling me that even without the questions prompting a participant to evaluate someone’s mental
state in images, participants referred to their own mental state to answer the visual question,
especially through their experience and assumptions on what they understood and believed. The
significance of the hypothesis indicated the potential benefit of exploring mental state reference
in the context of VQA, especially when it involved questions with a low agreement rate.
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A Appendix

A.1 Click Pattern Map on Stimuli Images and their Click Pattern Sim-
ilarity Score

CPS= 0.65 for ID 1 CPS=0.41 for ID 2 CPS= 0.57 for ID 2

CPS= 0.57 for ID 4 CPS=0.3 for ID 5 CPS= 0.11 for ID 6

CPS= 0.57 for ID 7 CPS=0.52 for ID 8 CPS= 0.36 for ID 9

CPS= 0.38 for ID 10 CPS=0.26 for ID 11 CPS= 0.34 for ID 12

CPS= 0.49 for ID 13 CPS=0.19 for ID 14 CPS= 0.57 for ID 15

Table 2: Table showcases the summarised click pattern on their image and Click Pattern Similarity
CPS.
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A.2 Code to calculate Click Pattern Similarity Score

1 #calculate PCC by comparing every 19 images with each other

2 #saves the r results in a 19x19 matrix

3 def blurccorr(imgfolder):

4 fullmatrix =[]

5 for x in range (0,19):

6 array =[]

7 _str1=f"data/img/{ imgfolder }/{x}.png"

8 OriImage = Image.open(_str1)

9 blurImage = OriImage.filter(ImageFilter.GaussianBlur).convert(’RGB’)

10 open_cv_image = np.array(blurImage)

11 open_cv_image = open_cv_image [:, :, ::-1]. copy()

12 for y in range (0,19):

13 _str=f"data/img/{ imgfolder }/{y}.png"

14 OriImage2 = Image.open(_str)

15 blurImage2 = OriImage2.filter(ImageFilter.GaussianBlur).convert(’RGB’)

16 open_cv_image2 = np.array(blurImage2)

17 open_cv_image2 = open_cv_image2 [:, :, ::-1]. copy()

18 cm = np.corrcoef(open_cv_image.flat , open_cv_image2.flat)

19 r=cm[0,1]

20 array.append(round(r, 3))

21

22 print(array)

23 fullmatrix.append(array)

24 return fullmatrix

25

26 def averagecorr(array:list):

27 #receive upper triangle of matrix

28 uppertriangle= list(array[np.triu_indices (19)])

29 while( 1 in uppertriangle): #remove self comparison values

30 uppertriangle.remove (1)

31 pearsonmean=np.mean(uppertriangle)

32 print(f’average of pearsoncorr: {pearsonmean}’)

Figure 8: Python Code for calculating PCC of every click pattern
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A.3 Selected Question Image Pair Stimuli

ID Image Question Annotator
Agree-
ment
rate

Type

1 ”Why is this girl smiling?” 20% Sentiment

2 ”What is the large pole sticking up for?” 20% Scene

3 ”What is the truck carrying? 20% Object

4 What is her expression? 40% Sentiment

5 How is the weather? 40% Scene

6 What’s in the vase? 40% Object

7 Is she sad? 60% Sentiment
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8 Has the bed been made? 60% Scene

9 What is displayed under the triangular dome? 60% Object

10 Is this woman happy? 80% Sentiment

11 Does this hydrant look like it is in the wrong place? 80% Scene

12 What is the bird perched on? 80% Object

13 Is the kid crying? 100% Sentiment

14 What season was this picture taken in? 100% Scene

15 What are the people holding? 100% Object
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A.4 Master List of Verbs of Mental State References

”want” ”hope” ”wish”
”care” ”be pleased to” ”be tempted to”
”be interested in” ”be bothered to” ”be keen on”
”look forward to” ”be bored of” ”have a crush on”
”be mad about” ”desire” ”fancy”
”miss” ”need” ”enjoy”
”be fond of” ”hate” ”abhor”
”detest” ”loath” ”hold in contempt”
”prefer” ”feel” ”be hurt”
”be angry” ”be happy” ”be excited”
”be sad” ”love”
”like” ”dislike” ”be afraid”
”enjoy” ”have fun” ”be glad”
”be mad” ”be scared” ”be upset”
”be surprised” ”fear” ”be disgusted”
”worry” ”be anxious” ”be relieved”
”be shocked” ”be disappointed” ”be nervous”
”be sad” ”think” ”know”
”believe” ”wonder” ”remember”
”forget” ”guess” ”pretend”
”understand” ”expect” ”have a clue”
”be confused” ”notice” ”assume”
”find out” ”underestimate” ”agree”
”be sure” ”make sense” ”disagree”
”be able to relate” ”judge” ”be determined”
”be only joking” ”accept” ”mean”
”be serious” ”realise” ”recognise”
”learn” ”have an idea” ”be conscious of”
”imagine” ”reckon” ”fathom”
”figure” ”plan to” ”lie”
”be sorry” ”decide” ”choose”
”trust” ”look (serious/angry/sad)” ”seem (serious/angry/sad)”
”be intelligent” ”esteem” ”admire”
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