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Abstract

Recent surge of interest towards increasing frame rate of existing videos to display the infor-
mation with slow smooth motion has led to the demand for qualitative frame interpolation
approaches that create spatially and temporally coherent intermediate frames. Traditional
methods usually use only two adjacent frames to estimate the motion trajectories linearly,
generally failing to overcome challenges like occlusion and non-linear motion.

In this thesis, we introduce basic concepts regarding motion-compensated frame interpolation
including optical flow, warping, splatting and inpainting and present an extension of linear
forward and forward forward warping [5] that uses arbitrary number of frames to approximate
the motion trajectories in a polynomial way. We explore the difficulties of using optical flows
over more distant frames and compare the use of sequentially warped optical flows with the
direct variants.

The best performing approach of this work named quadratic forward forward warping ap-
proximates forward and backward motion trajectories as parabolas, using three frames for
every direction and requiring four frames in total, and utilizes a modification designed specif-
ically to reduce warping artifacts. It achieves better results than the linear approaches on
the high frame rate version of Sintel dataset [20] proving that leveraging additional temporal
information benefits frame interpolation. The use of more than three frames, however, is not
beneficial and leads to decreasing performance.



Kurzfassung

Das aktuell gestiegene Interesse an der Erhöhung der Bildrate von existierenden Videos, um
die Informationen mit langsamer glatter Bewegung anzuzeigen, hat zur Nachfrage nach quali-
tativen Bildinterpolationsansätzen geführt, die räumlich und zeitlich kohärente Zwischenbilder
erzeugen. Herkömmliche Methoden verwenden meistens nur zwei benachbarte Frames, um die
Bewegungsbahnen linear zu schätzen, und bewältigen in der Regel die Herausforderungen wie
Okklusion und nichtlineare Bewegung nicht.

In dieser Arbeit stellen wir grundlegende Konzepte für die bewegungsbasierte Bildinterpola-
tion einschließlich optischen Flusses, Warping, Splatting und Inpainting vor und präsentieren
eine Erweiterung der linearen Forward und Forward Forward Warping [5], die eine beliebige
Anzahl von Frames verwendet, um die Bewegungstrajektorien polynomisch anzunähern. Wir
untersuchen die Schwierigkeiten bei der Verwendung optischer Flüsse über weiter entfernte
Frames und vergleichen die Verwendung sequenziell gewarpten optischer Flüsse mit den di-
rekten Varianten.

Der leistungsstärkste Ansatz dieser Arbeit heißt quadratisches Forward Forward Warping, ap-
proximiert Vorwärts- und Rückwärtsbewegungsbahnen als Parabeln, benutzt drei Frames für
jede Richtung, erfordert vier Frames insgesamt und nutzt eine Modifikation, die speziell für
die Reduktion der Warping-Artefakte entwickelt wurde. Dieser Ansatz erzielt bessere Ergeb-
nisse als die linearen Methoden auf der Version vom Sintel Datensatz mit höherer Bildrate [20]
und beweist, dass die Nutzung zusätzlicher zeitlicher Informationen für Bildinterpolation von
Vorteil ist. Die Verwendung von mehr als drei Frames ist jedoch nicht vorteilhaft und führt
zu einer abnehmenden Leistung.
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1 Introduction

1.1 Motivation

Video frame interpolation is a classic problem in computer vision with various practical ap-
plications. While it is nowadays possible to create a qualitative high frame rate video without
expensive professional cameras, the vast majority of existing videos has the standard frame
rate of 24 frames-per-second. Retiming or slow-motion effect creation for such videos thus
requires generation of intermediate frames that are spatially and temporarily coherent. The
videos with higher frame rate positively influence human perception [25, 26], help to reduce
judder, smooth motion blur and enhance visual quality for low response time devices, such as
liquid crystal displays [27]. Intermediate frame generation can also be used for video compres-
sion by saving only a part of frames and interpolating the others [48, 51]. It can be used to
generate training data to learn how to synthesize motion blur [7] or as a measure of how well
the motion estimation methods can be applied for intermediate frames prediction to compare
these methods [3].

The use of motion information has led to significant progress in the frame interpolation field.
Usually, the motion between two consecutive frames is used to interpolate an intermediate
frame between them. However, this requires a general assumption that the motion between
two frames can be represented by a linear function. This thesis therefore introduces different
ways of using three or more frames for frame interpolation and focuses on answering the
following questions:

• In which ways can multiple frames be used for frame interpolation?

• Can leveraging additional temporal information increase the interpolant quality?

• What are the difficulties in using multiple frames and how can we overcome them?

1.2 Related Works

In the recent years, several frame interpolation methods were proposed in order to handle
difficult scenarios caused by significant appearance changes or large motion and achieve better
performance and efficiency. These methods can be roughly divided into three groups and will
be briefly introduced in the following.

Phase-Based Frame Interpolation Instead of using estimated motion between frames,
phase-based methods represent motion as the phase shift of individual pixels and generate
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1 Introduction

intermediate frames by per-pixel phase modification [35]. The later phase-based approach,
PhaseNet, is based on the advances in the deep learning and contains a neural network decoder
that directly estimates the phase decomposition of the intermediate frame and helps to cope
with larger motion, which was the key limitation of the earlier method [34]. The phase-based
approaches compare favorably to other frame interpolation methods, do not require explicit
motion estimation and are thus computationally very efficient, while being easy to implement
and parallelize.

Kernel-Based Frame Interpolation Similarly to phase-based methods, kernel-based meth-
ods avoid using explicitly estimated motion. Instead, they calculate per-pixel spatially-
adaptive convolutional kernels and convolve them with the input frame to predict future
frames [14, 21, 49] or generate intermediate frames [36]. However, these kernels need to be
large to handle large motion and this condition leads to drastic memory demand, thus an ap-
proach using separable kernels was introduced later to reduce the number of kernel parameters
and memory consumption [37]. Kernel-based methods have achieved excellent performance,
but still have difficulties with complex scenarios containing motion blur or light changes.

Motion-Based Frame Interpolation Motion-based methods are by far the most popular
frame interpolation methods and usually leverage motion information in form of an optical
flow, since motion estimation has achieved great progress in the last decades. However, esti-
mating optical flow remains a challenging problem due to large motion, occlusion, brightness
change and motion blur and many motion-based methods were specifically designed to ac-
count for the optical flow weaknesses [4, 42]. Most of motion-based methods focus on using
two adjacent frames to create intermediate frames between them [22,24,39,47] and only a few
approaches exploit temporal information from additional frames [12,13,46,52]. The past few
years have seen a rise in interest in using more than two frames for frame interpolation. The
approach described in this work also belongs to the motion-based methods using multiple
frames and is based on the research conducted in [5] where different ways of interpolation
using optical flow were discussed and compared.

1.3 Outline

The following chapter provides relevant concepts required for understanding the basics of op-
tical flow and frame interpolation. Chapter 3 introduces frame interpolation methods that use
only two consecutive frames. Chapter 4 builds on the methods from the previous chapter and
extends them for the case of multiple frames. Then in Chapter 5 the multi-frame techniques
are evaluated and compared to methods that use two frames, and finally, the summary and
outlook are given in the last chapter.
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2 Background

This chapter contains the basic concepts required for foundational understanding of the re-
search goals and solutions presented in the following chapters. Firstly, the reason for using
motion compensation techniques in frame interpolation will be discussed, followed by the ex-
planation of how it can be applied. The core technique needed for motion-compensated frame
interpolation will be introduced along with its main problems.

2.1 Motion Estimation

The focus in this section lays on the motion. Firstly, the motivation for integrating motion into
the frame interpolation process will be given. Afterwards, the representation of motion in the
form of optical flow and a state-of-the-art method for motion estimation will be introduced.

2.1.1 Motivation

Motion is an important feature of image sequences that describes the position change of
objects in the scene and helps to understand its dynamics. Motion information is widely
used in computer vision for various purposes. It can help segmenting image sequences into
independently moving regions [38] or recognizing an object by its characteristical motion
features [10]. It can also be used for frame interpolation that is being researched in this
work.

Fig. 2.1: A naive frame interpolation method without considering motion creates noticeable
duplication artifacts.
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2 Background

The knowledge of motion between frames is crucial for creating high-quality interpolants. A
naive approach without considering motion generates images with eye-catching duplication
artifacts (see Fig. 2.1). The task of determining the intermediate position between two known
points thus requires knowledge about the object motion which is typically used in computer
vision in the form of the so-called optical flow.

2.1.2 Optical Flow

The concept of optical flow was first introduced by the American psychologist James J. Gib-
son as a description of visual stimuli animals percept while moving [16]. This term was later
adapted in computer vision as the interframe per-pixel displacement field between two consec-
utive frames. It is an essential tool for many image processing problems and is used in various
fields of application such as object detection and tracking [1], video object segmentation [11],
robot navigation [41], and video compression [28]. Frame interpolation is one of the problems
where significant progress was made due to the use of optical flow.

The importance of optical flow estimation has led to extensive research in this area over the
last four decades. The first traditional approaches, which suggest handcraft feature evalua-
tion, such as the Lucas-Kanade method [29] or the Horn-Schunck method [18], are currently
effectively outperformed by newer approaches that use convolutional neural networks and are
based on deep learning techniques [40]. However, the task of computing the optical flow
remains unsolved because of various difficulties such as large object motion and occlusions
caused by overlapping objects.

Fig. 2.2: Illustration of RAFT structure. Image source [43].

The optical flow estimation method chosen for this work is a deep network architecture called
Recurrent All-Pairs Field Transforms (RAFT). It tries to combine the known concepts intro-
duced by traditional optimization-based methods with the performance and learnability of
deep learning methods. RAFT consists of three main parts that were designed to simulate
corresponding processes in traditional approaches: (1) the feature encoder that extracts per-
pixel features such as pixel intensity, edges, changes in brightness, etc.; (2) the correlation
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2.2 Warping

layer that computes visual similarity between pixel-wise features; (3) the update operator
that mimics the steps of iterative optimization. The RAFT architecture is illustrated in more
detail in Fig. 2.2.

Fig. 2.3 compares flow predictions by RAFT and two other approaches. Since RAFT approach
showed an excellent performance on optical flow benchmarks, in the following it will be used
to compute optical flow applied for the frame interpolation.

Fig. 2.3: Comparison of flow predictions on two sequences of the Sintel dataset [9]. From left
to right: ground truth, VCN [50], IRR-PWC [19], RAFT. Image source [43].

2.2 Warping

Image warping is a common technique in image processing and can be used in various fields
such as perspective transformation and removing or adding optical distortions. Warping is
a specific type of transformation which maps the points without changing the colors. This
can be based on any function from one image plane to a second plane W : R2 → R2. The
warping function W can be chosen to create different effects, e.g., translation, rotation, scaling,
reflection, etc. (more details in [17]). Some effects are visualized in Fig. 2.4.

(A) Translation (B) Scalation (C) Reflection

Fig. 2.4: Visualization of different effects created by warping. Black areas indicate undefined
pixels.

There are two approaches in creating a transformed image using warping. The more obvious
one called forward warping iterates over all pixels x⃗ = (x, y) of the source image assigning

11
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them to some pixels of the target image according to the transformation W :

Itarget(W (x⃗)) = Isource(x⃗). (2.1)

The other approach is applicable in the case of an injective warping function and is called
backward warping. Unlike forward warping, it iterates over all pixels in the target image and
assigns source values to them according to the inverse transformation W −1:

Itarget(x⃗) = Isource(W −1(x⃗)). (2.2)

Although the backward warping may seem to be more promising because of the fact that the
iteration goes over all target pixels leaving no undefined places, forward warping is claimed
to have better results to a certain degree [5] and is thus used in this work.

Image warping is an important part for the frame interpolation along with the optical flow
estimation. Together they build the basis for the core technique of motion-compensated frame
interpolation which is introduced in the next section.

2.3 Frame Interpolation

Frame interpolation aims to create an intermediate spatially and temporarily coherent frame
between two consecutive input frames denoted as I0 and I1. The goal of this section is to give
a foundational explanation of warping using optical flow and introduce possible difficulties.
The color information from I0 will be moved according to the optical flow to reconstruct the
frame I1.

2.3.1 Optical Flow as Warping Function

This subsection addresses the use of optical flow introduced in the last section as the function
for warping. The optical flow that represents the motion from frame I0 to frame I1 is denoted
as v⃗0→1. Although the warping can be analogously done with the use of the opposite flow
v⃗1→0, only the flow v⃗0→1 is going to be used in this chapter for the sake of consistency.

Since optical flow contains per-pixel displacements and pixel positions are usually integer, the
following restriction on the warping function naturally appears:

Wflow : N2 → R2. (2.3)

The optical flow often contains sub-pixel displacements, thus the values are still real-valued.

Since the optical flow depicts the displacements, its use for the warping function strongly
resembles translation. The distinctive feature of optical flow is that the displacement is not
uniform for the whole image but pixelwise and is given for x⃗ = (x, y) as the optical flow value
for this position v⃗0→1(x⃗):

Wflow(x⃗) = x⃗ + v⃗0→1(x⃗). (2.4)
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2.3 Frame Interpolation

2.3.2 Forward Warping

Forward warping is the core technique for motion-compensated frame interpolation and will be
used as the basis for various interpolation methods in the following chapters. For the optical
flow v⃗0→1 that describes motion from frame I0 to frame I1, the forward warping equation is
given as follows:

I1(x⃗0 + v⃗0→1(x⃗0)) = I0(x⃗0). (2.5)

Fig. 2.5 visualizes the forward warping. The image I0 serves as the source of color values that
are warped from the positions x⃗0 with the use of the optical flow v⃗0→1 to the target positions
x⃗1 of the image I1. This way the color values are moved along the time axis according to the
detected motion between frames.

I0(= Isource) I1(= Itarget)

x⃗0

x⃗1 = x⃗0 + v⃗0→1(x⃗0)

x⃗0

v⃗0→1
v⃗0→1(x⃗0)

Fig. 2.5: Visualization of forward warping with the optical flow v⃗0→1. The images I0,I1 are
schematically represented in 1D.

The real-valued nature of optical flow values leads to the fact that the target positions x⃗1 =
x⃗0 + v⃗0→1(x⃗0) can lay between integer pixel locations. Thus, the warped color value can be
splatted among the four nearest neighbors. The positions of these neighbors are always given
as follows:

x⃗0,0 = ⌊x⃗1⌋ x⃗1,0 = ⌊x⃗1⌋ + (1, 0)T

x⃗0,1 = ⌊x⃗1⌋ + (0, 1)T x⃗1,1 = ⌊x⃗1⌋ + (1, 1)T

where ⌊·⌋ denotes rounding down.

Alternatively, assigning the warped color value only to the nearest neighbor pixel gives less
blurred results, however, it also leads to more target pixel values being undefined. The strategy
of distributing the warped color value to all four neighbors called 4N has been proven to be
more effective for frame interpolation [5] and is thus the splatting method used in this work.

Because of the real-valued nature of optical flow, the 4N often leads to situations where a
pixel is influenced by several warped color values and its resulting color value thus needs
further considerations called collision handling. A pixel on the other hand can also have no
warped color values influencing it and is left undefined. These problems will be discussed in
the following subsections.
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2 Background

2.3.3 Collision Handling

The splatting in forward warping can lead to collisions in color values. They can appear when
the warped target positions x⃗1 and x⃗′

1 in I1 of two source positions in I0 have the same four
neighbors (see Fig. 2.6 left). The other case of collisions is created by overlapping of the
neighbors (see Fig. 2.6 right). The collision can naturally have more than two warped color
values involved.

x⃗0,1

x⃗0,0 x⃗1,0

x⃗1,1
(A) Identical neighbours

x⃗0

x⃗′
0

x⃗1

x⃗′
1

v⃗0→1(x⃗0)

v⃗0→1(x⃗′
0)

x⃗0

x⃗′
0

(B) Overlapping neighbours

x⃗1

x⃗′
1

v⃗0→1(x⃗0)

v⃗0→1(x⃗′
0)

x⃗0,1

x⃗0,0

x⃗1,0 = x⃗′
0,1

x⃗1,1

x⃗′
0,0 x⃗′

1,0

x⃗′
1,1

Fig. 2.6: Left: Collision case with the same four neighbors for two different warped positions
x⃗1 and x⃗′

1. Right: Collision case with overlapping neighbors. The right top neighbor
of x⃗1 is the left bottom neighbor of x⃗′

1 and its color value is thus affected by color
values of both x⃗0 and x⃗′

0.

In the weighted variant of collision handling, the influence on the result pixel color value
depends on its distance to the warped position, motivated by bilinear interpolation [23].
These distances are graphically illustrated in Fig. 2.7. The weights for the four neighbors are
given as follows:

w0,0 = (1 − dx) · (1 − dy) w1,0 = dx · (1 − dy)
(

dx

dy

)
= x⃗1 − ⌊x⃗1⌋.

w0,1 = (1 − dx) · dy w1,1 = dx · dy (2.6)

x⃗0,1

x⃗0,0 x⃗1,0

x⃗1,1

x⃗1(1 − dy)

dy

dx (1 − dx)

Fig. 2.7: Illustration of the distances dx and dy used in Equation (2.6) for weights calculation.
Note that the weight of a pixel corresponds to the area of the opposite rectangle.
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2.4 Inpainting

The result of summing up the weights from all warped positions that are influencing the pixel
is not necessarily equal to 1. Thus, the next step after adding up the corresponding color
values is the normalization of the result.

Algorithm 1 describes the splatting and collision handling process. Firstly, two arrays are
initialized with zero values, the first one holds the information about summed up color values
(array I1), the other one is for keeping the summed up weights (array W ). In a for loop over
all pixels x⃗0 of the image I0 the warped positions x⃗1 are determined. Then for every neighbor
x⃗i,j of x⃗1 the corresponding weight wi,j is calculated. The warped color values I0[x⃗0] are
weighted according to wi,j and added to the accumulated color value in I1[x⃗i,j ]. The weight
wi,j is summed up in W [x⃗i,j ]. Finally, the normalization takes place in another for loop. It
iterates over all pixels x⃗1 of the image I1 and the color values I1[x⃗1] are normalized due to the
division by the according accumulated weight value W [x⃗1]. The places where W [x⃗1] is equal
to zero are marked as undefined and have to be filled in the next step called inpainting.

Algorithm 1: Forward warping with 4N splatting and weighted collision handling
Input: Image I0 and optical flow v⃗0→1
Output: Image I1

Initialize an empty array I1 //summed up weighted color values
Initialize an empty array W //summed up weights

foreach position x⃗0 in I0 do
x⃗1 := x⃗0 + v⃗0→1(x⃗0)
foreach i ∈ {0, 1} , j ∈ {0, 1} do

Calculate x⃗i,j and wi,j according to x⃗1
I1[x⃗i,j ] := I1[x⃗i,j ] + I0[x⃗0] · wi,j

W [x⃗i,j ] := W [x⃗i,j ] + wi,j

end
end
foreach position x⃗1 in I1 do

if W [x⃗1] > 0 then
I1[x⃗1] := I1[x⃗1]/W [x⃗1]

else
Mark x⃗1 as undefined

end
end

2.4 Inpainting

As mentioned in the previous subsection, some pixels in the created result are left undefined
leading to holes in the image. Although the color values could not be found during the warping
process, they need to be determined with the help of defined pixels to obtain a complete image.
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2 Background

The process of closing such holes is called inpainting. It considers the information from the
neighbors of undefined pixels and concludes from that which color value should be inserted in
empty places (see Fig. 2.8).

? ? ?

Fig. 2.8: Visualization of inpainting. The question mark denotes the pixels that are left un-
defined during the warping process and need to be filled with the help of color
information from the neighboring pixels.

2.4.1 Diffusion

The inpainting process is inspired by the diffusion which describes the movement of substance
from a region of higher concentration to the region of lower concentration. The spreading out
substance in inpainting is represented by the color values. However, there is no quantitative
difference in concentration between different positions, since the pixels in inpainting either
have a color value or not.

Let f represent a continuous image with the domain Ω. This image is divided into region Ωk

which contains available color values and region Ωempty of undefined pixels, Ωk + Ωempty = Ω.
The goal of inpainting is to close the holes and create a filled image u.

The main difference from the diffusion is that the region Ωk should stay constant, i.e., the
color information from Ωk should be used to fill Ωempty but should not leave Ωk, which results
in the following condition for u:

u(x, y) = f(x, y), (x, y)T ∈ Ωk. (2.7)

The other condition concerns the behavior at the border of the image ∂Ω to model a closed
medium and do not let color information leave the image area:

n⃗T ∇u(x, y) = 0, (x, y)T ∈ ∂Ω, (2.8)

where n⃗ denotes the normal vector and ∇u = (ux, uy)T is the gradient of u.

The inpainting of the remaining pixels is described with the diffusion equation as follows:

∆u(x, y) = 0, (x, y)T ∈ Ωempty, (2.9)

where ∆u = uxx+uyy corresponds to the Laplace operator. This equation models the diffusion
process by verifying that the differences between color values in the holes are small enough,
since the partial derivatives of the image u in x- and y-directions are close to zero. The regions
of image f in inpainting are visualized in Fig. 2.9.
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2.4 Inpainting

Ωempty

Ωempty

∂Ω

Ωk

Fig. 2.9: The image regions in inpainting.

2.4.2 Discretisation

Diffusion Equation (2.9) contains two partial derivatives and is thus a partial differential
equation (PDE) that needs to be solved numerically. This subsection focuses on the numerical
approximation for this equation that leads to an equation system that can be iteratively solved
with Jacobi method or Gauss-Seidel method.

Diffusion Equation (2.9) is discretized by central finite differences for every discrete position
(i, j) ∈ Ωempty as follows:

0 = uxx(i, j) + uyy(i, j)

=
∑

(̃i,j̃)∈N
Ωempty
4 (i,j)

uĩ,j̃ − ui,j

h
+

∑
(̃i,j̃)∈N

Ωk
4 (i,j)

fĩ,j̃ − ui,j

h
. (2.10)

h denotes the step size and N4(i, j) is the set of available direct neighbors for the position (i, j).
This set can have up to 4 elements depending on the location of (i, j) (corner, edge or in the
middle) and whether the neighbor pixels are defined. The superscript of N4 denotes which
domain, Ωk or Ωempty, is used.

There are |Ωempty| instances of the introduced equation which together build an equation
system of the form Ax = b. x is a one-dimensional vector of the size Ωempty which contains
all variables ui,j to be found. b is a one-dimensional vector of the same size containing zeros.
A is the equation matrix of the size Ωempty × Ωempty that contains the weights for neighbors
of ui,j in the corresponding row. This equation system can grow very big depending on the
number of undefined pixels in the image and is solved with relatively great expense.

Since A has up to 4 entries in every row and other elements are zeros, A is a sparse matrix
and can be solved iteratively. For that, Equation (2.10) is reformulated for h = 1 by setting
the sums apart as follows:

0 =
∑

(̃i,j̃)∈N
Ωempty
4 (i,j)

(uĩ,j̃ − ui,j) +
∑

(̃i,j̃)∈N
Ωk
4 (i,j)

(fĩ,j̃ − ui,j)

=
∑

uĩ,j̃

(̃i,j̃)∈N
Ωempty
4 (i,j)

−
∑

ui,j

(̃i,j̃)∈N
Ωempty
4 (i,j)

+
∑

fĩ,j̃

(̃i,j̃)∈N
Ωk
4 (i,j)

−
∑

ui,j

(̃i,j̃)∈N
Ωk
4 (i,j)

. (2.11)
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Then the sums of ui,j are brought to the left side and merged since Ωempty + Ωk = Ω:∑
ui,j

(̃i,j̃)∈N
Ωempty
4 (i,j)

+
∑

ui,j

(̃i,j̃)∈N
Ωk
4 (i,j)

=
∑

uĩ,j̃

(̃i,j̃)∈N
Ωempty
4 (i,j)

+
∑

fĩ,j̃

(̃i,j̃)∈N
Ωk
4 (i,j)∑

ui,j

(̃i,j̃)∈NΩ
4 (i,j)

=
∑

uĩ,j̃

(̃i,j̃)∈N
Ωempty
4 (i,j)

+
∑

fĩ,j̃

(̃i,j̃)∈N
Ωk
4 (i,j)

(2.12)

∣∣∣NΩ
4 (i, j)

∣∣∣ · ui,j =
∑

uĩ,j̃

(̃i,j̃)∈N
Ωempty
4 (i,j)

+
∑

fĩ,j̃

(̃i,j̃)∈N
Ωk
4 (i,j)

.

With a final division by
∣∣∣NΩ

4 (i, j)
∣∣∣, Equation (2.11) results in an iterative Jacobi scheme,

where the solution can be approximated step by step as follows:

uk+1
i,j =

∑
uĩ,j̃

(̃i,j̃)∈N
Ωempty
4 (i,j)

+
∑

fĩ,j̃

(̃i,j̃)∈N
Ωk
4 (i,j)∣∣NΩ

4 (i, j)
∣∣ . (2.13)

This iterative approach leads to the gradual inpainting from outside towards the center of the
holes.

2.4.3 Acceleration

The number of iterations is crucial for the time required for frame interpolation. The Jacobi
scheme introduced in the previous subsection fills the holes with a constant speed of one pixel
per iteration and thus needs Ωempty iterations which leads to a rather long inpainting in the
case of large holes. We are generally interested in speeding up the inpainting process and thus
switch from the Jacobi method to the Gauß-Seidel method.

Unlike the Jacobi method where only the values from the previous iteration are used, the
Gauß-Seidel method uses the latest values as soon as they are updated and is thus expected
to yield faster convergence. The new solution for the position (i, j) has the following form:

u
(k+1)
i,j GS =

∑
uĩ,j̃

(̃i,j̃)∈N
Ωempty
4,− (i,j)

+
∑

uĩ,j̃

(̃i,j̃)∈N
Ωempty
4,+ (i,j)

+
∑

fĩ,j̃

(̃i,j̃)∈N
Ωk
4 (i,j)∣∣NΩ

4 (i, j)
∣∣ . (2.14)

The sets N4,−,N4,+ contain not updated neighbor values from the previous iteration and
updated values accordingly.

The last acceleration improvement for the inpainting process is made by converting the Gauß-
Seidel equation to the successive over-relaxation (SOR) variant, which results in an even faster
convergence. We use a fixed (not optimized) relaxation parameter ω = 1.95 which results in
the following equation:

u
(k+1)
i,j = u

(k)
i,j + 1.95 · (u(k+1)

i,j GS − u
(k)
i,j ). (2.15)

The use of SOR can lead to temporarily invalid color values and requires a sufficient number
of iterations to ensure a converged result. The equations in this chapter are given for a single
color channel and can be thus used during inpainting for every channel separately.
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3 Frame Interpolation using Two Frames

This chapter addresses the task of intermediate frame interpolation with the use of techniques
presented in Chapter 2. The frame interpolation methods that are being researched in this
work are motion-compensated and the source for motion information is the optical flow.
Therefore, the first step for all methods in this work is to estimate one or several optical flows
needed for frame interpolation according to the method used. The next step is to generate a
frame interpolant along the optical flow using the basic forward warping technique introduced
in the previous chapter. This step can contain several substeps and multiple use of forward
warping and is the main focus of this chapter. As explained in Chapter 2, the frame interpolant
often has undefined places as a side effect of warping and has to undergo a final processing
step named inpainting. The frame interpolation process is illustrated in Fig. 3.1.

Optical flow
estimation

Frame
interpolant
generation

Inpainting

Fig. 3.1: Three main steps of motion-compensated frame interpolation.

Notation The frames in this chapter are notated as It. The parameter t ∈ [0, 1] indicates
the relative temporal position of the frame. The vector x⃗t denotes all integer positions in the
frame It. The optical flow v⃗i→j contains the motion from frame Ii to frame Ij , the indices i,
j are integer.

Problem Formulation Given are two adjacent frames I0, I1 and the target interpolation
time step t ∈ [0, 1]. To determine is the intermediate frame It with the use of optical flows
created from frames I0, I1.

3.1 Naive Approach

Before starting with motion-compensated methods, the naive interpolation approach without
considering motion is presented in this section to emphasis the advantages of using motion
once again. The spatial information is not considered and only simple pixelwise interpolation
takes place. Comparing to forward warping introduced in the previous chapter, this method
acts as if the optical flows would contain only zero values (see Fig. 3.2). The intermediate
frame is thus created as follows:

It(x⃗t) = (1 − t) · I0(x⃗t) + t · I1(x⃗t). (3.1)
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3 Frame Interpolation using Two Frames

I0 It I1

x⃗t

v⃗0→1 := 0⃗ v⃗1→0 := 0⃗

Fig. 3.2: Visualization of the naive approach when compared to forward warping. This method
does not consider motion and acts as if the optical flows values were zero.

However, this simple method has obvious weaknesses. It completely ignores the image contents
and the occurrence of motion between frames leads to severe artifacts, when objects from both
sample frames appear in the interpolant twice (see Fig. 2.1). The following frame interpolation
methods in this chapter are designed to reduce these duplication artifacts by using motion
information provided by optical flow.

3.2 Assumption about Linear Motion

The central tool for frame interpolation in this chapter is the optical flow that contains
pixelwise displacement information of the images. Since there are only two frames used for
motion trajectory estimation, the objects in the intermediate frames follow a straight line (see
Fig. 3.3). The main assumption of this chapter is that the linear function is sufficient for
successful motion consideration.

v⃗

Y

Y

t

t+1

Fig. 3.3: In this chapter the motion between frames is assumed to be linear, according to
the optical flow v⃗. The bigger is the temporal distance between frames t and t + 1,
the greater is the possibility for the actual motion (dashed) to differ from a linear
trajectory.

While the assumption of linearity holds true for high frame rate slow motion sequences where
the motion displacements are particularly small, this assumption may not suffice for larger
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3.3 Forward Warping

motion. In Chapter 5 we are going to verify whether the linear function can approximate
sequences with standard frame rate of 24 frames per second well enough.

3.3 Forward Warping

The considerations in the previous chapter concerned the warping process of image I0 to
reconstruct image I1 using the optical flow v⃗0→1 between them. The frame interpolation
however focuses on the generation of intermediate frames It with t ∈ [0, 1].

The core idea behind the forward warping lies in moving the information from the source image
along the time axis determined by the optical flow. The intermediate frames can be created
by moving the color information of I0 partially until time step t with v⃗0→t (see Fig. 3.4).

I0 It I1

x⃗0

v⃗0→1

I0 It I1

x⃗0

v⃗0→t

(A) Moving to full distance (B) Moving to partial distance

Fig. 3.4: Visualization of forward warping. Left: Information of I0 is moved with v⃗0→1 re-
sulting in the warped reconstruction of frame I1. Right: Information of I0 is moved
with v⃗0→t resulting in an intermediate frame It.

The important question is how to estimate the flow v⃗0→t when only the flow v⃗0→1 is available.
This is where the assumption about linear motion is applied. Since the optical flow v⃗0→1
describes the whole displacement between images I0 and I1, this displacement has to be
shortened in order to simulate the optical flow v⃗0→t. This is performed due to multiplication of
the optical flow with t which leads to the displacement until the time step t and approximates
v⃗0→t as follows:

v⃗0→t ≈ t · v⃗0→1. (3.2)

This adjusted optical flow can be used for forward warping frame interpolation to obtain an
intermediate frame It with given time step t as follows:

It(x⃗0 + t · v⃗0→1(x⃗0)) = I0(x⃗0). (3.3)

The displacement of various objects in the scene can lead to two important problems. Firstly,
there exists a possibility of overlapping when parts of different objects are moved to the same
place in the image. This case requires collision handling, as described in Subsection 2.3.3.
The other problem appears when an object is moved but nothing takes its place instead,
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3 Frame Interpolation using Two Frames

resulting in the holes in the image. These undefined places have to be inpainted according to
Subsection 2.4. Such holes often occur on the edges of images due to camera motion.

The forward warping frame interpolation consists of three main steps. Firstly, the optical
flow v⃗0→1 is calculated based on images I0 and I1. Then the information of I0 is forward
warped using v⃗0→1 to create an intermediate interpolant It, splatting and collision handling
are included in this step. Finally, the undefined places in the interpolant are closed during
inpainting. These three steps correspond to the three steps of motion-compensated frame
interpolation at the beginning of the chapter (see Fig. 3.1).

3.4 Forward Forward Warping

The forward warping introduced in the previous section uses color information from only one
image and inevitably suffers from large amounts of undefined pixels after the warping step
(see Fig. 3.5). Even the naive approach introduced in Section 3.1 uses color information from
two images for frame interpolation, therefore this section focuses on advancing the method
from the previous section by making use of both input frames I0 and I1.

I0 It I1

Fig. 3.5: Left: Source image I0. Right: Target image I1. Middle: Interpolant created with
forward warping. The undefined pixels are colored in gray.

The use of two images is expected to enhance the performance by being able to give ad-
ditional information needed for improving the closing of holes. While it is possible to use
color information from both images with only a single optical flow, the separate optical flows
independently calculated from frames I0 and I1 for both directions have been proven to have
better performance [5]. Therefore, the input data for this section are the images I0 and I1
and the optical flows v⃗0→1 and v⃗1→0. The goal is as before to create an intermediate frame It

for a given time step t ∈ [0, 1].

The main idea of bidirectional frame interpolation methods, which use optical flows in both
directions as opposed to the unidirectional methods like forward warping, is to create an
interpolant for both directions and then fuse them together (see Fig. 3.6). The use of two
interpolants leads to the change in notation. From now on in this chapter Ii→j

t denotes
an interpolant created by using optical flow v⃗i→j for the time step t. These intermediate
interpolants are later used to create the final interpolant It.

The bidirectional frame interpolation method used in this work is called forward forward
warping since forward warping is used there twice, once for every direction. Firstly, the
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3.4 Forward Forward Warping

I0 I0→1
t I0→1

t & I1→0
t I1→0

t I1

Fig. 3.6: Result of a bidirectional method. The leftmost and the rightmost images are I0 and
I1 respectively. The second and second-to-last images are the interpolants created
using forward warping for the respective optical flow direction. The undefined areas
are colored in gray and are different for both interpolants. The image in the middle
is created through the appropriate fusing of the interpolants.

optical flows v⃗0→1 and v⃗1→0 are calculated. Then the intermediate interpolants I0→1
t and

I1→0
t are calculated for every direction with forward warping using the correspending optical

flow to simulate the flows v⃗0→t and v⃗1→t as follows:

I0→1
t (x⃗0 + t · v⃗0→1(x⃗0)) = I0(x⃗0)

I1→0
t (x⃗1 + (1 − t) · v⃗1→0(x⃗1)) = I1(x⃗1)

The intermediate interpolants are illustrated in Fig. 3.7. In this example, the interpolant on
the left is more reliable since its distance to the sample frame I0 is smaller than the distance
of I1→0

t to I1.

I0 I0→1
t I1

x⃗0

I0 I1→0
t I1

x⃗1t · v⃗0→1
(1 − t) · v⃗1→0

Fig. 3.7: Visualization of forward forward warping interpolants. Left: Interpolant created for
the direction from I0 to I1. Right: Interpolant for the opposite direction.

In the next step the interpolants are fused together. The fusion is performed in such a way
that as many undefined pixels as possible get a value. If both interpolants are undefined at
some position, then this position remains undefined in the final interpolant and has to be
inpainted. If only one of the interpolants at a position is defined, then this value is used in
the final interpolant. If both interpolants are defined, then their values have to be weighted
according to the distance to the source frame and summed up. The interpolant that lies
temporarily nearer to its source frame is considered more reliable and is weighted stronger as
follows:

It = (1 − t) · I0→1
t + t · I0→1

t . (3.4)
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3 Frame Interpolation using Two Frames

The interpolants fusing is visualized in Fig. 3.8. Finally, the inpainting step is performed after
interpolants fusing.

+
+ +
+ +

+
+ +
+ +

Forward
interpolant

Backward
interpolant

Fusion
result

Inpainting
result

+ =⇒ =⇒

Fig. 3.8: Visualization of interpolants fusing followed with the inpainting step. Lime and
blue colors denote the pixels acquired from the forward and backward interpolants
respectively. Undefined pixels are marked in white color. The fused pixels which are
defined in both interpolants are marked in dark green with + sign. The remaining
undefined pixels are then inpainted and marked in pink.

3.5 Artifacts Reduction

This section describes some specific types of artifacts created during motion-compensated
frame interpolation and ways to reduce them. It also addresses some artifacts that cannot be
removed with the approaches introduced in this work, explaining its restrictions and empha-
sizing how challenging frame interpolation is.

3.5.1 Fusing Blur Reduction

A drawback of interpolants fusing as introduced in Equation (3.4) is blurring of the same
objects that are warped to different positions in the interpolants (see Fig. 3.9). The blurring
reaches its maximum at the time step 0.5 when both interpolants are equally weighted and
the motion prediction is the most unreliable. The bigger the difference in the weights, the
smaller the blurring gets.

To counteract the blurring, another approach for using interpolants can be applied. The core
idea is to keep the difference between the weights as big as possible, i.e., to keep it one and
use color information from only one interpolant for the pixels in the result. In this case one of
the interpolants is chosen as the main interpolant and the other is used only in places where
the main interpolant is undefined (see Fig. 3.10).
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3.5 Artifacts Reduction

Fig. 3.9: Left: Cropped result of forward forward warping for the time step 0.5. Note the
blur produced by interpolants fusing. Middle: Refence image for the same time step.
Right: Result of the modification introduced in this subsection.

Main
interpolant

Supporting
interpolant

Interpolants
result

Inpainting
result

+ =⇒ =⇒

Fig. 3.10: Visualization of interpolation using a main interpolant followed with the inpainting
step. Lime and blue colors denote the pixels acquired from the forward and back-
ward interpolants respectively. Undefined pixels are marked in white color. The
remaining undefined pixels are then inpainted and marked in pink.

3.5.2 Single Pixel Artifact Reduction

Another noticeable artifact is created during the warping process due to inaccuracies when
some pixels are marked as defined in occluded regions that should be fully undefined, e.g. be-
cause they were covered by a moving object. This leads to standing out artifacts in form of
single pixels after the fusing of interpolants (see Fig. 3.11).

To counteract these artifacts, the following modification is proposed: the image is traversed
four times and in every iteration the number of undefined pixels among the eight neighbors
is calculated for every pixel. If this number exceeds the threshold, this pixel is marked as
undefined for the next iterations and the final result. The threshold corresponds to the
number of the current iteration, starting with four and increasing up to seven. The result of
this modification is illustrated in Fig. 3.12 and contains much less disturbing artifacts when
compared to Fig. 3.11.
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3 Frame Interpolation using Two Frames

Forward interpolant Backward interpolant Fusing result

Fig. 3.11: Visualization of warping artifacts created when some pixels in undefined regions are
falsely labeled as defined. Undefined pixels are marked in white.

Forward interpolant Backward interpolant Fusing result

Fig. 3.12: Visualization of the interpolants after modification and their fusing result. Unde-
fined pixels are marked in white.

3.5.3 Advanced Artifacts Outlook

Not all artifact types have effective countermeasures which are applicable based solely on
the knowledge about motion. Two of them are presented in this subsection to emphasis the
difficulty of frame interpolation.

I0 I0.977 I1

Fig. 3.13: Visualization of transparency artifacts. On the left and right are the sample frames
I0 and I1. In the middle is the result of forward warping for the time step t = 0.977
with single pixel artifact reduction modification before inpainting.

Fig. 3.13 illustrates the transparency artifacts. They are caused by the way of collision
handling described in Algorithm 1. As the dragon and girl move, parts of them occupy the
same areas. Since there is no knowledge about what object is nearer to the observer, the
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3.6 Summary

values in these areas are simply summed up and normalized, resulting in transparent objects.
The knowledge about distance to the objects is required in order to effectively reduce such
artifacts.

Other sophisticated artifacts are illustrated in Fig. 3.14. As the wing changes its form between
sample frames, the optical flow estimation and frame interpolation become extremely difficult
leading to poor results. The case of object deformation is one of the most challenging issues
in computer vision along with the luminance change.

I0 I0.977 I1

Fig. 3.14: Visualization of artifacts caused by object deformation. On the left and right are
the sample frames I0 and I1. In the middle is the result of forward warping for the
time step t = 0.977 before inpainting.

3.6 Summary

In this chapter, the frame interpolation methods using two frames were introduced with the
general assumption that the motion between adjacent frames can be represented as a linear
trajectory. Firstly, we took a look at the unidirectional forward warping that warps color
information from one of two input frames, then this method was extended to bidirectional
forward forward warping that uses both frames. Finally, several types of frame interpolation
artifacts were described alongside with method modifications aiming to reduce some of them.
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4 Frame Interpolation using Multiple Frames

Chapter 3 addressed the frame interpolation with a central assumption that the motion be-
tween frames can be approximated by a linear function. This chapter goes away from this
assumption and introduces frame interpolation methods that approximate the motion as a
polynomial function with a degree higher than one. Since optical flow plays as important role
as in the previous chapter and a polynomial of degree n needs n + 1 distinct data points to be
determined, these polynomial methods are part of motion-compensated frame interpolation
methods that use multiple frames.

Similar to the three main steps of motion-compensated frame interpolation from the previous
chapter, the four main steps of the methods in this chapter are introduced in Fig. 4.1. It
contains all three steps from Fig. 3.1 and additionally has a motion function estimation as
the second step. The motion function that is used to describe motion between frames was not
mentioned explicitly in the previous chapter since the object position in the frame interpolant
was determined linearly. The methods in this chapter use more sophisticated polynomial
motion functions that need to be explicitly calculated, therefore this step is added to the
process to emphasis its importance.

Optical
flow

estimation

Motion
function

estimation

Frame
interpolant
generation

Inpainting

Fig. 4.1: Four main steps of motion-compensated frame interpolation with non-linear motion
function.

The considerations about the polynomial motion functions are first explained on the case of
the quadratic function that needs three frames for calculation, then they are generalized for a
polynomial function of an arbitrary degree n. In contrast to the methods introduced in this
chapter, the methods from Chapter 3 will be called linear forward warping and linear forward
forward warping due to their linear motion functions. This chapter introduces both uni- and
bidirectional polynomial frame interpolation methods.

Notation Since the restriction on having only two frames holds no more, some changes
concerning notation have to be made. The input frames Ik in this chapter have integer indices
k ∈ Z that order them on the time axis. The interpolation target frames It with t ∈ (0, 1) are
also ordered temporarily and lay between the input frames I0 and I1. The vectors x⃗k and x⃗t

denote all integer positions in the frames Ik and It respectively. As before, the optical flow
v⃗i→j contains the motion from frame Ii to frame Ij , the indices i, j are integer.
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4.1 Quadratic Forward Warping

Problem Formulation Given are several adjacent frames I−m, I−m+1, ..., I0, I1, ...In−1, In

and the interpolation time step t ∈ [0, 1]. To determine is the intermediate frame It with the
use of optical flows created from the frames Ik.

4.1 Quadratic Forward Warping

The forward warping method from the previous chapter used a linear motion function deter-
mined by two frames I0 and I1. The quadratic forward warping in this section on the other
hand uses an additional frame I−1 and two optical flows v⃗0→1, v⃗0→−1 to better approximate
the pixelwise motion functions not with a straight line but with a parabola (see Fig 4.2). The
frame I−1 is the frame before I0.

I−1 I0 It I1

x⃗0

v⃗0→1v⃗0→−1

Fig. 4.2: Visualization of the quadratic forward warping. Three frames I−1, I0, I1 are used for
the motion function estimation at position x⃗0 which results in a parabola marked
with the dashed line. Note the differences between places where this parabola and
v⃗0→1 used in the linear forward warping intersect the position of the frame It.

The only differences between the algorithms of quadratic forward warping and linear forward
warping lay in the number of given frames, the number of optical flows to be estimated and in
how the warping position is calculated. It is no longer performed linearly as x⃗0 + t · v⃗0→1(x⃗0),
but with the use of a quadratic motion function v⃗x⃗0(t) calculated for every pixel x⃗0:

It(v⃗x⃗0(t)) = I0(x⃗0) (4.1)

4.1.1 Quadratic Motion Function Calculation

This subsection concentrates on the problem of the quadratic motion estimation. As every
pixel x⃗0 in the image I0 has its own optical flow values for both directions, it also has its
own quadratic motion function v⃗x⃗0(t) to be calculated. The quadratic motion function for
x⃗0 is determined using three positions: the position x⃗0 and the corresponding positions from
the previous and next frames calculated with the use of optical flows as x⃗0 + v⃗0→−1(x⃗0) and
x⃗0 + v⃗0→1(x⃗0). The first value indicates from where the object in the pixel x⃗0 came, the second
value points to where it will move afterwards.
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4 Frame Interpolation using Multiple Frames

To simplify the calculation process, we assume that the motion functions can be determined
for x- and y-axis independently, resulting in the following equations:

vx(t) = axt2 + bxt + cx

vy(t) = ayt2 + byt + cy.

These equations can be solved separately and their parameters a, b, c are derived from the
next system of linear equations for every pixel x⃗0 on the example for the x-axis:

vx0(0) = x0

vx0(1) = x0 + ∆ x0→1

vx0(−1) = x0 + ∆x0→−1

with

x⃗0 = (x0, y0),
v⃗0→1(x⃗0) = (∆x0→1, ∆y0→1)

v⃗0→−1(x⃗0) = (∆x0→−1, ∆y0→−1).

This leads to the following simple system of linear equations:
cx0 = x0

ax0 + bx0 + cx0 = x0 + ∆x0→1

ax0 − bx0 + cx0 = x0 + ∆x0→−1

Solving this system leads to the x-axis motion function to be determined as follows:

vx0(t) = x0→1 + x0→−1
2 · t2 + x0→1 − x0→−1

2 · t + x0. (4.2)

The equation for y-axis is analogous. The equations for both axis combined lead to motion
function for the pixel x⃗0 = (x0, y0) to be calculated as:

v⃗x⃗0(t) = (vx0(t), vy0(t)). (4.3)

This motion function quadratically approximates the motion between frames I−1 and I1 and
is able to predict a target position for frame interpolation for t ∈ [−1, 1].

4.2 Generalized Polynomial Forward Warping

Since a quadratic motion function potentially approximates the real motion better than a
linear trajectory, the motion functions based on a polynomial of a higher degree also need to
be taken into consideration to achieve an even better motion approximation (see Fig. 4.3).
This section thus concerns the transition from quadratic forward warping to a generalized
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4.2 Generalized Polynomial Forward Warping

polynomial forward warping with a certain degree n. Exactly as in the previous section, the
number of input frames, the number of optical flows and the way of calculating the warping
position differ from those for the linear forward warping from the previous chapter. Every
pixel x⃗0 thus has its own polynomial motion function v⃗n,x⃗0(t) and the interpolant is calculated
as follows:

It(v⃗n,x⃗0(t)) = I0(x⃗0) (4.4)

I−1 I0 I1 I2 I−1 I0 I1 I2

Fig. 4.3: Left: Quadratic motion function. Right: Cubic motion function.

4.2.1 Input Frames

The first question for the polynomial warping to be answered is which frames are used for
interpolation. The polynomial of degree n needs n + 1 data points, the parameter n in this
chapter is set as n ≥ 2 for the polynomials to be starting with quadratic functions. Since
the result interpolant lays between I0 and I1, both these frames should be included in the
input.

The motion function depends on which frames are used, and the input frames for polynomial
motion in this section are distributed equally on both sides of I0. If the number of frames
is even, then the right side has one more frame. This distribution not only contributes to a
more accurate motion function, but also considers the characteristics of optical flow as shown
in the next subsection.

4.2.2 Polynomial Motion Function Calculation

The motion functions are calculated based on the optical flows. The optical flows are chosen
according to the motion function type: in the previous chapter there was one optical flow
v⃗0→1 based on both available frames I0 and I1 and in the previous section there were two
optical flows v⃗0→1 and v⃗0→−1 based on pairs I0, I1 and I0, I−1 respectively. The polynomial
motion function with degree n needs n + 1 frames, which leads to various opportunities for
the optical flow set.

In this chapter the optical flows are calculated only between adjacent frames since motion
estimation over bigger distances is less reliable. A position of an object from the start frame
I0 on other frames is determined with backward warping with optical flow and nearest neighbor
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4 Frame Interpolation using Multiple Frames

strategy. The position estimation for more distant frames requires use of several backward
warpings with sequential optical flows (see Fig. 4.4) and is calculated as follows:

x⃗k = x⃗0 +
k−1∑
i=0

v⃗i→i+1(⌊x⃗i⌉), (4.5)

where ⌊·⌉ denotes rounding to the next integer value. For negative k the index i in this
equation is decreasing.

Since the optical flow values are determined only for integer coordinates, the intermediate
real-valued positions have to be rounded to the nearest integer value according to the nearest
neighbor strategy. Another strategy would be to involve all four neighbors of the intermediate
warped position to calculate its optical flow value and is not further discussed in this work.

I0 I1 I2

x⃗1 := x⃗0 + v⃗0→1(x⃗0)

x⃗0

x⃗2 := x⃗1 + v⃗1→2(x⃗1)

v⃗0→1(x⃗0)
v⃗1→2(x⃗1)

Fig. 4.4: Visualization of sequential position calculation over several optical flow values.

The problem of sequential use of optical flows is that some intermediate positions can land
beyond the valid value domain, making the calculation of subsequent positions impossible
(see Fig. 4.5). This often happens for pixels on image edges where the objects go beyond the
image. In this case there are not enough positions for polynomial motion function with initial
degree n. Instead of completely giving up on the pixel x⃗0, we use it with a motion function
of a lower degree to minimize the number of pixels that need to be inpainted.

I0 I1 I2

x⃗1

x⃗0

v⃗0→1(x⃗0)
?

Fig. 4.5: Visualization of a position landing outside the valid value domain. Since x⃗1 lays
outside I1, no further calculation with v⃗1→2(x⃗1) is possible.
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The system of linear equations for quadratic motion function from the previous chapter could
be solved manually and was the only necessary system. Because of the possibility that po-
sitions during generalized polynomial motion function land outside the valid value set, more
systems of linear equations need to be considered to cover all possible cases. For example,
when using five input frames four cases need to be dealt with: the usual case, the case where
position x⃗−1 is invalid, the case where position x⃗1 is invalid and the case where both these
positions are invalid (the last case is illustrated in Fig. 4.6). Four systems of linear equations
are needed to cover these cases: one for five available positions, two for four and one for
three.

I−2 I−1 I0 I1 I2

x⃗0

x⃗−1 x⃗1
v⃗0→−1(x⃗0) v⃗0→1(x⃗0)? ?

Fig. 4.6: Visualization of a polynomial motion function with five frames when positions x⃗−1
and x⃗1 land outside the valid value domain. Only a quadratic motion function can
be calculated for the pixel x⃗0 in this case.

While it is possible to automatically create and solve all necessary systems of linear equations
for a given polynomial degree n, a better approach would be to use well-known and efficient
methods designed specifically for this problem, such as polynomial and spline interpolation.
Since polynomial interpolation that tries to approximate n + 1 data points with a polynomial
of the degree at most n may diverge for equally spaced intervals [6] and is computationally
expensive, we are going to use spline interpolation that will be introduced in the following
subsection.

4.2.3 Spline Interpolation

When using the polynomial interpolation with polynomials of higher degrees, increasing the
number of interpolation points may cause strong oscillation between the data points. Spline
interpolation is commonly used to resolve this problem.

Spline interpolation is a special form of interpolation using piecewise polynomial functions
called splines. Instead of building a single polynomial function of higher degree which is
influenced by every data point, spline interpolation fits several splines of lower degree to small
subsets of interpolation points. For example, in the case of eight input frames, seven splines
are fitted between the pairs of frames.

Given the points (xi, yi), i ∈ {0, ..., n}, the goal is to find each polynomial qi(x) which in-
terpolates from (xi, yi) to (xi+1, yi+1). The final function is built from qi(x) piecewise in
the corresponding intervals. The spline interpolation in this work uses cubic polynomials as
splines and is implemented using the CubicSpline method from the sub-package interpolate
of the SciPy scientific computing library [45].
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4 Frame Interpolation using Multiple Frames

4.3 Generalized Polynomial Forward Forward Warping

The last step in this chapter is rather similar to the last step of the previous chapter. In
this section the unidirectional forward warping will be extended to bidirectional forward for-
ward warping using the previous considerations concerning the polynomial motion function
calculation.

The forward forward warping is based on fusing two intermediate interpolants created with
forward warping of I0 or I1 as source image respectively to get the final interpolant with less
undefined pixels. Each interpolant has its own input frames and optical flows sets required
for interpolation (see Fig. 4.7).

I−1 I0 It I1 I2

x⃗0

v⃗0→1v⃗0→−1

x⃗1
v⃗1→0 v⃗1→2

Fig. 4.7: Visualization of the quadratic forward forward warping. The interpolant that gets
color information from the frame I0 needs frames I−1, I0 and I1 and optical flows
v⃗0→−1 and v⃗0→1. The interpolant that gets color information from the frame I1 on
the other hand needs frames I0, I1 and I2 and optical flows v⃗1→0 and v⃗1→2. Four
frames and four optical flows are required in total.

While the even number of frames in Section 4.1 always leads to the distribution where the
right side of I0 has one more frame, the distribution in this chapter depends on the interpolant
direction. The forward interpolant created from I0 has the same distribution as in Section 4.1.
The backward interpolant created from I1 has its input frames equally distributed on both
sides of I1, not I0. In the case of an even number of frames, the left side of I1 has one more
frame. This minimizes the number of required frames.

4.4 Summary

In this chapter, we went away from the assumption about linear motion and took a look at
the methods that use more than two frames to approximate the motion between frames. We
started with quadratic warping that uses three frames and models the motion as a parabola
and generalized the approach for an arbitrary number of frames for both forward and forward
forward warping.
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This chapter focuses on the evaluation of frame interpolation methods introduced in the
previous chapters. We are particularly interested in the advantages that the polynomial
frame interpolation is expected to bring over the linear variant, and what its limitations are.
Another aspect of interest is frame interpolation with several intermediate frames and their
quality in relation to their temporal position.

Firstly, the datasets and quality assessment measures are introduced, then the experiments
concerning interpolation methods using two frames introduced in Chapter 3 and multiple
frames introduced in Chapter 4 are conducted and the usefulness of modifications proposed
in Section 3.5 is tested. The results and observations are discussed in detail and finally the
overall conclusion is given.

5.1 Test Data

The test results strongly depend on the quality and variety of the used test data. It is
meaningful to use nontrivial test data that is as close as possible to the reality and contains
challenges such as larger motion, occlusions and diversity.

In the computer vision field, several standardized datasets for the optical flow estimation
assessment were developed which can also be used to compare frame interpolation results.
The earlier datasets such as the famous Yosemite sequence [2] or Middlebury dataset [3] are
rather small due to the complexity of ground truth optical flow estimation. In an attempt
to create larger and more realistic datasets for such real-world applications as autonomous
driving, two KITTI datasets from 2012 [15] and 2015 [33] were created by gathering ground
truth data while driving with a Light Detection and Ranging (LIDAR) system that is used
to estimate distances.

Another example of a popular standardized dataset is the MPI Sintel dataset from 2012 [9].
This dataset is based on the open-source computer-animated 3D short film Sintel. Its arti-
ficial nature allows to derive optical flows from the film source data with key features: long
sequences, large motions, motion and defocus blur, specular reflections, and atmospheric ef-
fects. Alongside Kitti, Sintel serves as one of the most used benchmarks for optical flow
estimation.

However, the MPI Sintel dataset is sampled at a rather low frame rate of 24 frames per second
and is not suitable for evaluation of multiple intermediate frames. Therefore, the experiments
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in this work are conducted on the high frame rate version of the MPI dataset that is re-
rendered at a multiple frame rate of the default MPI Sintel dataset [20]. As a result, the high
frame rate version contains additional 41 intermediate frames between every frame pair. This
dataset will be used for the frame interpolation estimation in this work.

5.2 Quality Assessment Measures

While checking whether two images are completely identical is a quite simple task, the problem
of finding out their grade of similarity has proven to be challenging. Furthermore, the widely
used techniques such as root mean squared error (RMSE), peak signal-to-noise ratio (PSNR)
or structure similarity index measure (SSIM) are stated to be insufficient for evaluation of
image interpolation performance [30,32]. Despite this fact, RMSE and SSIM are mainly used
in this work for result quality assessment, since better methods are still to be developed.

The RMSE estimates the difference between the interpolant I(x⃗) and the reference image
IGT (x⃗) by calculating pixelwise differences with N being the number of pixels:

RMSE(I, IGT ) =
√

1
N

∑
x⃗

||I(x⃗) − IGT (x⃗)||2. (5.1)

The RMSE provides an easy way to measure differences between samples. However, such sim-
ple error metric does not necessarily correspond to the human visual perception. It is possible
to create examples with clear visual differences, but the same RMSE value, as visualized in
Fig 5.1.

Fig. 5.1: Two frames interpolated with different methods. The RMSE values are equal, but
the visual quality differs, in particular in the zoomed regions. Image source: [30]
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The RMSE is not the only error metric that suffers from such problems. All metrics have their
own weak points, that is why it is not wise to use a single technique for quality measurement,
as confirmed in [30]. In this work, the SSIM is used in addition to the RMSE.

Unlike other common techniques, the SSIM does not try to estimate the absolute errors but
to quantify differences in structural information. Since spatially close pixels have strong inter-
dependencies, the SSIM evaluates squared areas of images called windows rather than single
pixels, as it is the case for the RMSE. It has been recognized that the SSIM is sensitive to
relative scaling, translations, and rotations [8].

The SSIM value of windows x in I and y in IGT is a weighted combination of luminance l,
contrast c and structure s calculated as:

SSIM(x, y) = [(l(x, y))α · (c(x, y))β · (s(x, y))γ ]. (5.2)

In this work luminance, contrast and structure are considered equally important, hence the
weights are chosen as α = β = γ = 1. The individual functions of comparison measurements
are:

l(x, y) = 2µxµy + c1
µx

2 + µy
2 + c1

, c(x, y) = 2σxσy + c1
σx

2 + σy
2 + c1

, s(x, y) = σxy + c3
σxσy + c3

(5.3)

with µ being the averages, σ being the variances, and ci being the constants to stabilize the
division with weak denominator according to the dynamic range of pixel values.

Since the test data are color images, the SSIM indices are calculated for every color channel
separately and then averaged. The final SSIM value for I and IGT with N windows is obtained
as follows:

SSIM(I, IGT ) = 1
N

∑
x∈I,y∈IGT

SSIM(x, y). (5.4)

The SSIM value of identical images is 1 and the quality of an interpolant is determined by
its similarity to the reference image IGT , thus we want the SSIM values to be as near to 1 as
possible. On the contrary, low RMSE values are desired to keep the differences small.

5.3 Experiments

The high frame rate version of MPI Sintel dataset consists of several independent scenes and
we are going to use ten of them named ambush_2, ambush_6, bamboo_2, cave_2, cave_4,
market_2, market_6, mountain_1, temple_2, and temple_3. Since the test data allows com-
parison for 41 intermediate frames, the frame interpolation methods introduced in previous
chapters will also create 41 intermediate frames for every scene by setting the input time
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step t according to the frame position. The results are averaged over all scenes and all time
steps if not stated otherwise.

In the first subsection the results of linear and quadratic frame interpolation are compared,
interpolants of forward and forward forward warping are visually evaluated before and after
inpainting and the interpolant quality is inspected over time for all intermediate frames. The
second subsection focuses on methods using multiple frames and points out the weaknesses
of sequentially warped optical flows introduced in Subsection 4.2.2. The third subsection
compares methods using sequentially warped optical flow with methods using direct optical
flows both in average and for every single scene separately. The last subsection briefly touches
on the topic of consistency checking for direct optical flows.

5.3.1 Linear vs. Quadratic

This section focuses on comparing the results of the linear frame interpolation introduced in
Chapter 3 with the quadratic frame interpolation from Chapter 4. Table 5.1 shows the results
for linear and quadratic methods both before and after inpainting.

Method
Before

inpainting
After

inpainting

RMSE RMSE SSIM

Linear FW 22.912 28.039 0.639
Quadratic FW 20.842 26.277 0.732
Linear FFW 18.678 18.824 0.677

Quadratic FFW 16.138 16.272 0.784

Table 5.1: Results of the interpolation with linear and quadratic forward and forward forward
warping methods.

The quadratic methods perform consistently better than the linear variants for both unidirec-
tional forward warping and bidirectional forward forward warping, allowing to conclude that
the use of an additional frame effectively helps to yield better results. Even the linear forward
forward warping completely outperforms both forward warping variants, making clear that
the use of color information from both sample frames is beneficial. Quadratic forward forward
warping thus shows the best performance among these four methods.

As mentioned in the previous section, the SSIM index is calculated for the whole image by
evaluating areas and not single pixels, thus it can not be used for quality assessment before
inpainting, since the undefined pixels can not be excluded for estimation and would greatly
influence the result. The RMSE values on the other hand can be calculated exclusively for
defined pixels and show a drastic difference between uni- and bidirectional methods regarding
results before and after inpainting. While forward forward warping has comparably few un-
defined pixels and its RMSE values are almost identical before and after inpainting, forward
warping naturally has a large number of undefined pixels that need to be inpainted. The
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inpainting of bigger holes yields poor results and leads to a significantly larger RMSE value.
Fig. 5.2 illustrates the result difference between uni- and bidirectional methods.

Before
inpainting

After
inpainting

Forward warping Forward forward warping

Fig. 5.2: Results of quadratic forward and forward forward warping for the scene cave_4 and
the time step t = 0.977 before and after inpainting. Undefined pixels are marked in
white.

The previous table shows only the values averaged over all intermediate interpolants, the
temporal behavior of results’ quality is however also of interest. Fig. 5.3 visualizes how the
RMSE and SSIM values change over time for forward and forward forward warping after
inpainting for a single scene. While the values for forward warping monotonically get worse
with a bigger time step t for both assessment measures, the trend of forward forward warping
results resembles a parabola.

Fig. 5.3: Visualization of quality assessment measures’ values changing over time, calculated
for 41 intermediate frames after inpainting. The frame interpolation is performed
with quadratic forward and forward forward warping for the scene cave_4.
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The monotonical behavior of forward warping results can be explained by the fact that the
number of undefined pixels gets larger with increasing distance to the sample frame. As these
pixels need to be inpainted, the quality of interpolants steadily declines. The forward forward
warping has two sample frames instead of one. Its results can be said to behave analogically
to the forward warping, as the poorest quality is achieved approximately at the intermediate
frame 21 where the distance to the sample frames is also the largest.

5.3.2 Frame Interpolation using Multiple Frames

As the use of one additional frame has proven useful, the next step is to evaluate the in-
terpolation methods using more frames. Table 5.2 summarizes the results of forward and
forward forward warping after inpainting performed for polynomials of different degrees start-
ing with the quadratic methods. The results show that except for the case of degree four the
performance slowly decreases with the increasing degree.

Polynomial
degree

FW FFW

RMSE SSIM RMSE SSIM

2 26.277 0.732 16.272 0.784
3 26.615 0.730 17.037 0.771
4 26.450 0.732 16.853 0.764
5 26.651 0.717 17.275 0.753
6 26.709 0.715 17.378 0.747
7 26.793 0.707 17.540 0.741

Table 5.2: Results of the interpolation with forward and forward forward warping after in-
painting using different polynomial degrees.

The reason for this behavior possibly lays in the way how the optical flow over longer distance
is determined. Since direct motion estimation would be less reliable, we decided to sequentially
use optical flows between adjacent frames to estimate it, as described in Subsection 4.2.2.

Fig. 5.4 visualizes an optical flow as described above in comparison to a direct optical flow,
an optical flow between adjacent frames and an input frame. As expected, the optical flow
v0→2 has a lower quality than the optical flow v0→1 over smaller distance, e.g., it looks more
blurred and it failed to estimate motion for some fine details such as the girl’s leg and ear.
The sequentially warped optical flow, by contrast, has unexpected doubling artifacts such as
the second girl, left paw or left horn. These artifacts are caused by the fact that the objects
and the background move in the opposite directions [44]. These sharp doubling artifacts in
the sequentially warped optical flows lead to whole regions in the interpolants to be moving
wrongly and separately over time.
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v0→2 v̂0→2 = v0→1 + v1→2

v0→1 Ground truth frame I0

Fig. 5.4: Below: Direct and sequentially warped optical flows. Above: Optical flow between
adjacent frames and the first of these frames.

5.3.3 Warped vs. Direct

Since the sequentially warped optical flows over more distant frames contain disturbing arti-
facts that lead to the performance decrease of frame interpolation, in this subsection we are
going to compare their use against direct optical flows with the same value validity check.
Table 5.3 shows the results of interpolating with direct optical flows compared with the pre-
viously used sequentially warped optical flows and, for the sake of completeness, also includes
the results of the quadratic method.

The experiments show that the performance of interpolation with direct optical flows steadily
declines with the increasing frames number, similar to the sequentially warped optical flow.
The quadratic forward forward warping thus remains the best interpolation method in this
work.

Unexpectedly, the interpolation with direct optical flows performed consistently worse in
average than interpolation with sequentially warped optical flows, except for the case of degree
three. Thus, we would like to also take a look at the results of every single scene. Table 5.4
contains the separate results for every scene for all polynomial degrees from one to seven and,
where applicable, the warped (W) or direct (D) variant. The quadratic method performs
better than all other methods for most scenes and interpolation with direct optical flows with
degree four is the best for the remaining scenes while also performing mostly the best among
the methods with degree higher than two.

The direct version performs better in 26 experiments with different scenes and degrees, the
sequentially warped version performs better in 20 experiments, in four experiments both
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Polynomial
degree

Optical
flow type RMSE SSIM

2 - 16.272 0.784

3 Warped 17.037 0.771
Direct 16.900 0.772

4 Warped 16.853 0.764
Direct 17.050 0.761

5 Warped 17.275 0.753
Direct 17.492 0.746

6 Warped 17.378 0.747
Direct 17.760 0.736

7 Warped 17.540 0.741
Direct 17.968 0.727

Table 5.3: Results of forward forward warping with warped and direct optical flows after
inpainting for different polynomial degrees.

methods have almost identical or controversial results. The SSIM differences were considered
more important than the RMSE differences. Although direct version has more experiments
where it has better results, its performance in the scene ambush_2 is significantly worse and
strongly influences the average results, leading to direct version being worse than sequentially
warped version on average.

The distinctive feature of the scene ambush_2 is that due to the large camera motion big
objects leave the scene, making their motion estimation extremely difficult. While optical
flows of adjacent frames have sufficient quality for these objects, optical flows of more distant
frames are considerably worse. When an intermediate position in sequentially warped version
lands outside the image domain, the following optical flow is simply not used. This validity
test however is not as useful for the direct version and wrong optical flow values greatly
influence the motion functions. Explicit optical flow values consistency check can potentially
help to improve performance.

5.3.4 Direct Optical Flow with Consistency Check

In this last subsection we conduct experiments with direct optical flows and occlusion maps
generated via forward-backward consistency checking [44] as follows:

v⃗i→j(x⃗) consistent ⇔ ||v⃗i→j(x⃗) + v⃗j→i(x⃗ + v⃗i→j(x⃗))|| ≤ 2, (5.5)

where ||(a, b)|| =
√

a2 + b2 and i, j are different frame numbers. In this way we exclude from
calculation the optical flow values where the target position x⃗ + v⃗i→j(x⃗) lands outside the
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Method ambush_2 ambush_6 bamboo_2 cave_2 cave_4

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

1 27.362 0.485 21.056 0.313 10.346 0.952 15.217 0.549 19.018 0.544
2 22.928 0.699 16.288 0.528 10.213 0.953 8.961 0.840 17.226 0.646

3W 25.798 0.698 17.885 0.450 10.437 0.952 8.820 0.850 17.880 0.629
3D 26.086 0.663 17.306 0.471 10.348 0.953 8.782 0.850 17.637 0.643

4W 24.999 0.608 17.899 0.482 10.259 0.953 8.753 0.851 17.703 0.630
4D 28.179 0.532 17.398 0.480 10.258 0.953 8.751 0.851 17.565 0.647
5W 25.662 0.560 17.950 0.464 10.516 0.951 8.819 0.850 18.418 0.613
5D 29.891 0.492 18.424 0.471 10.353 0.952 8.768 0.851 18.077 0.631

6W 25.754 0.520 18.020 0.469 10.536 0.951 8.828 0.849 18.537 0.604
6D 31.281 0.427 18.691 0.469 10.356 0.953 8.769 0.851 18.096 0.627

7W 26.070 0.490 18.291 0.470 10.586 0.950 8.844 0.849 18.793 0.593
7D 31.281 0.427 18.691 0.469 10.356 0.953 8.769 0.851 18.096 0.627

Method market_2 market_6 mountain_1 temple_2 temple_3

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

1 11.650 0.839 24.404 0.737 6.158 0.865 23.533 0.861 29.497 0.625
2 11.229 0.876 18.511 0.834 5.703 0.870 22.992 0.854 28.667 0.741

3W 12.013 0.871 19.433 0.829 5.889 0.869 23.727 0.849 28.484 0.714
3D 11.242 0.878 19.340 0.824 6.083 0.869 23.470 0.852 28.707 0.718

4W 11.938 0.872 19.423 0.827 5.858 0.869 23.387 0.846 28.708 0.708
4D 11.202 0.879 19.150 0.823 5.983 0.869 23.179 0.852 28.334 0.724

5W 12.500 0.868 20.191 0.821 5.926 0.869 23.732 0.841 29.038 0.690
5D 11.325 0.876 20.130 0.810 6.033 0.869 23.418 0.851 28.501 0.659

6W 12.722 0.866 20.251 0.820 5.966 0.868 23.725 0.838 29.437 0.680
6D 11.285 0.876 20.434 0.805 6.034 0.869 23.397 0.850 29.253 0.629

7W 12.978 0.864 20.461 0.818 5.989 0.868 23.810 0.834 29.577 0.671
7D 11.285 0.876 20.434 0.805 6.034 0.869 23.397 0.850 29.253 0.629

Table 5.4: Separate results for every scene of forward forward warping with warped and direct
optical flows after inpainting for different polynomial degrees. For the completeness
of comparison, linear and quadratic methods are also included, although they use
optical flows only of adjacent frames. The best results for the scene are marked
in bold, the best results for the scene among the methods with degree higher than
two are underlined.
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valid image domain or is covered by another object and thus has inconsistent opposite flow
value.

Table 5.5 contains the results of consistency check application for the forward forward warp-
ing with direct optical flows and polynomial degree four, compared with the same method
without consistency check and quadratic forward forward warping. The consistency check
improves the performance of frame interpolation with degree four and it reaches the level of
quadratic forward forward warping. However, since it is more computationally expensive due
to additional optical flow estimation and consistency check, the quadratic forward forward
warping remains the preferred frame interpolation method in this work.

Method RMSE SSIM

2 16.272 0.784
4D 17.050 0.761
4D with consistency check 16.255 0.779

Table 5.5: Results of forward forward warping for the degrees two and four with direct optical
flows with and without consistency check.

5.4 Modifications

This section focuses on the experiments concerning the modifications of the basic approach
consisting of single pixel artifact reduction modification and fusing blur reduction modification
from Section 3.5. The test data is the same as in the previous section.

5.4.1 Single Pixel Artifact Reduction

The inaccuracies during the warping process often lead to single pixel artifacts, and in this
subsection, we evaluate the advantages of using the modification proposed in Subsection 3.5.2
to reduce these artifacts. Table 5.6 shows the results of using single pixel artifact reduction
modification. The modification leads to slightly better results for both uni- and bidirectional
methods. The SSIM index for forward warping stays almost identical, possibly because the
modification impact is rather small for a large number of undefined pixels.

This modification shows a performance increase for both warping variants and both quality
measures, even though a rather small number of pixels is affected. Although the quantitative
quality increase is comparably small, the advantages of using this modification are obvious
for a subjective observer (compare Fig. 3.12 and Fig. 3.11). The objective quality measures
generally have rather low correlations with the evaluations made by human observers [31].
Thus, this modification is beneficial despite small quantitative result improvement, since it
reduces eye-catching single pixel artifacts.
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5.4 Modifications

Modification
use

FW FFW

RMSE SSIM RMSE SSIM

- 26.277 0.732 16.272 0.784
+ 26.239 0.733 16.169 0.789

Table 5.6: Results of frame interpolation with and without single pixel artifact reduction mod-
ification on the example of quadratic forward and forward forward warping after
inpainting.

5.4.2 Fusing Blur Reduction

The fusing of interpolants can lead to notable blur due to the different positions of the same
object in the interpolants. Table 5.7 shows the results of using fusing blur reduction modifica-
tion introduced in Subsection 3.5.1. The decision to use one interpolant as main interpolant
leads to worse results compared to fused interpolants.

Method RMSE SSIM

Quadratic FFW 16.272 0.784
Quadratic FFW
with main forward interpolant 20.793 0.751

Qudratic FFW
with main backward interpolant 20.479 0.751

Table 5.7: Results of frame interpolation with fused interpolants, main forward interpolant,
and main backward interpolant on the example of quadratic forward forward warp-
ing after inpainting.

We are also interested in the temporal performance of the methods researched in this sub-
section, thus Fig. 5.5 visualizes how the assessment measures’ values of the previous table
change over time for a single scene. The results of using one of the interpolants as the main
interpolant strongly resemble the results of forward warping, as they tend to get worse for
bigger distance from the sample frame. Even using main forward interpolant for time steps
smaller than 0.5 and then switching to the main backward interpolant for bigger time steps
would yield worse results than fusing the interpolants for every time step.

This behavior is caused by the transparency artifacts that become more obvious when using
only one interpolant, while fusing two interpolants effectively counteracts this problem by
weighting the interpolant that is closer to its sample frame stronger. Fig. 5.6 illustrates this
difference in the approaches. All methods have transparency artifacts in the interpolants for
the time step t = 0.5. However, while for fused interpolants these artifacts are the worst for
this time step in the middle between input frames and the quality gets better when nearing
the frames, for main interpolant methods the transparency artifacts continue to get worse.
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5 Results and Evaluation

Fig. 5.5: Visualization of quality assessment measures’ values changing over time, calculated
for 41 intermediate frames after inpainting. The frame interpolation is performed
with quadratic forward forward warping with fused interpolants, main forward in-
terpolant, and main backward interpolant for the scene bamboo_2.

Fig. 5.7 visualizes the pixel origins for the three approaches to further point out their dif-
ferences. The methods with a main interpolant acquire most pixel values from it, using the
supporting interpolant only at places where the main interpolant is undefined. The method
with fused interpolants mostly uses values obtained through fusion, leveraging information
from a single interpolant only when the other is undefined. The areas that need to be in-
painted afterwards are the same for all methods.

5.5 Summary

In this chapter, we examined frame interpolation methods using different polynomial degrees.
According to the experiments, the methods that are leveraging information from additional
frames perform better than the methods using only two frames. However, the performance
deteriorates with increasing number of frames due to sequential warping of optical flows and
using less precise optical flows over more distant frames. Even applying the consistency
check for forward forward warping with direct flows with degree four did not outperform the
quadratic forward forward warping.

Several modifications of interpolation methods were also tested. Although the fusing blur
reduction modification did not prove useful, the single pixel artifact reduction modification
slightly improves performance and, more importantly, removes eye-catching artifacts.
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5.5 Summary

t=0.023

t=0.5

t=0.977

Main backward Fused Main forward

Fig. 5.6: Results of interpolation with quadratic forward forward warping with fused inter-
polants, main forward interpolant, and main backward interpolant for the scene
cave_4 and the time step t = 0.977 before inpainting. Undefined pixels are marked
in white.

Main backward Fused Main forward

Fig. 5.7: Visualization of pixel origins for frame interpolation with fused interpolants, main
forward interpolant, and main backward interpolant for the scene cave_4. Lime and
blue colors denote the pixels directly acquired from forward and backward inter-
polants respectively. The pixel values obtained through fusion are marked in dark
green color. Pink denotes the remaining inpainted pixels.

47



6 Conclusion

In this thesis, motion-compensated frame interpolation methods using multiple frames were
introduced and evaluated in order to answer the three questions we initially raised. Firstly,
we were interested in the different ways of using multiple frames. The extension of linear
interpolation methods to the quadratic case was introduced and generalized for a polynomial
of an arbitrary degree to approximate the motion between frames more precisely. Two different
approaches using sequentially warped or direct optical flows along with a consistency check
were presented to make use of more distant frames.

Then we conducted experiments using up to eight frames to find out whether leveraging
additional temporal information helps to increase the interpolant quality. According to the
previous chapter, the use of more than two frames indeed leads to a performance increase,
confirming the main assumption of this work. The results show that approximating the object
motion by using three frames for one direction improved the RMSE by 6% and the SSIM by
12% for the simple forward warping that interpolates the frame from a single direction. Both
RMSE and SSIM were improved by 13% for the forward forward warping that interpolates
from both directions, when compared to the linear methods using only two frames on the high
frame rate version of MPI Sintel dataset [20].

The quadratic forward forward warping is the best method in this thesis since the use of
more than three frames for motion trajectory estimation leads to a decrease in performance
due to the difficulties in using multiple frames that were our another point of interest. The
main problem of using additional frames is the need to acquire position information from more
distant frames for motion function estimation. The idea of using sequentially warped positions
resulted in eye-catching artifacts when whole regions in the interpolants move wrongly and
separately. The attempt to use direct optical flows requires motion estimation over longer
distance which results in optical flows of lower quality. Using such flows for position calculation
with a simple value domain validity check led to severe artifacts at the boundaries. However,
even the consistency check did not help to outperform the quadratic warping and the methods
of degree higher than two have slow decrease of performance with the increasing degree.

Additionally, we proposed two modifications to reduce interpolation artifacts which can also
be applied in other frame interpolation methods. Fusing blur reduction modification was
introduced to counteract the blur caused by interpolants fusing in forward forward warping
by using only one interpolant for color information and showed generally worse results than
fusing. The second modification that aims to reduce eye-catching single pixel artifacts caused
by inaccuracies during warping successfully increases the performance and applying it with
quadratic forward forward warping yields the best results in this thesis.
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6.1 Outlook

6.1 Outlook

The multi-frame interpolation methods in this work leverage additional temporal information
to track the object positions over several frames and approximate their motion with a polyno-
mial of highest valid degree. However, we derive color information only from two frames like
the linear methods. A potential approach would be to consider color information from the
additional frames and polynomially track the luminance changes to consider them for frame
interpolation.

The use of multiple frames for motion estimation can be researched further. More sophisti-
cated policies concerning motion function calculation depending on the consistency of available
optical flow values, occlusions and object segmentation could result in methods using more
than three frames for motion trajectory estimation that outperform the quadratic warping.
The sequentially warped optical flows may benefit from using four neighbors strategy instead
of nearest neighbor strategy.

The extension to multi-frame case in this thesis was applied to basic frame interpolation
methods forward and forward forward warping and brought significant performance increase.
Given this success, the use of multiple frames can be also considered to increase quality of
state-of-the-art machine learning-based frame interpolation methods that gained popularity
due to recent deep convolutional neural networks achievements.
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