
Citation: Stötzner, M.; Becker, S.;

Breitenbücher, U.; Képes, K.;

Leymann, F. Modeling Different

Deployment Variants of a Composite

Application in a Single Declarative

Deployment Model. Algorithms 2022,

15, 382. https://doi.org/10.3390/

a15100382

Academic Editors: Charalampos

Konstantopoulos and Grammati

Pantziou

Received: 14 September 2022

Accepted: 11 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Modeling Different Deployment Variants of a Composite
Application in a Single Declarative Deployment Model
Miles Stötzner 1,* , Steffen Becker 1 , Uwe Breitenbücher 2 , Kálmán Képes 2 and Frank Leymann 2

1 Institute of Software Engineering, University of Stuttgart, 70569 Stuttgart, Germany
2 Institute of Architecture of Application Systems, University of Stuttgart, 70569 Stuttgart, Germany
* Correspondence: miles.stoetzner@iste.uni-stuttgart.de

Abstract: For automating the deployment of composite applications, typically, declarative deploy-
ment models are used. Depending on the context, the deployment of an application has to fulfill
different requirements, such as costs and elasticity. As a consequence, one and the same application,
i.e., its components, and their dependencies, often need to be deployed in different variants. If each
different variant of a deployment is described using an individual deployment model, it quickly re-
sults in a large number of models, which are error prone to maintain. Deployment technologies, such
as Terraform or Ansible, support conditional components and dependencies which allow modeling
different deployment variants of a composite application in a single deployment model. However,
there are deployment technologies, such as TOSCA and Docker Compose, which do not support
such conditional elements. To address this, we extend the Essential Deployment Metamodel (EDMM)
by conditional components and dependencies. EDMM is a declarative deployment model which
can be mapped to several deployment technologies including Terraform, Ansible, TOSCA, and
Docker Compose. Preprocessing such an extended model, i.e., conditional elements are evaluated
and either preserved or removed, generates an EDMM conform model. As a result, conditional
elements can be integrated on top of existing deployment technologies that are unaware of such
concepts. We evaluate this by implementing a preprocessor for TOSCA, called OpenTOSCA Vintner,
which employs the open-source TOSCA orchestrators xOpera and Unfurl to execute the generated
TOSCA conform models.

Keywords: deployment; modeling; variability; TOSCA; OpenTOSCA Vintner; xOpera; Unfurl

1. Introduction

For automating the deployment of composite applications, which consist of components
having dependencies on each other, several deployment technologies, such as Terraform or
Ansible, have been developed. According to a review conducted by Wurster et al. [1], most
deployment technologies support executing deployments based on declarative deployment
models [2], which describe the application components to be deployed, their configurations,
and their dependencies in the form of a graph. However, depending on the current context
in which a deployment must be performed, different aspects, e.g., requirements regarding
costs, scalability, or security, need to be considered. For example, to reduce costs during
the development of an application, often all components, e.g., business logic components,
databases, or queues, are simply deployed on virtual machines running on a private hyper-
visor, such as OpenStack, or inside Docker containers running on a local Docker engine.
On the other side, production deployments that have to serve high workloads typically run
on hyperscaler clouds, e.g., Google Cloud Platform (GCP), and are hosted using modern
service technologies, such as Function-as-a-Service, e.g., Google Cloud Functions [3].

Describing different variants of an application deployment using individual deploy-
ment models quickly results in a large number of models which are error prone to maintain.

Algorithms 2022, 15, 382. https://doi.org/10.3390/a15100382 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15100382
https://doi.org/10.3390/a15100382
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1538-5516
https://orcid.org/0000-0002-4532-1460
https://orcid.org/0000-0002-8816-5541
https://orcid.org/0000-0002-1392-9789
https://orcid.org/0000-0002-9123-259X
https://doi.org/10.3390/a15100382
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15100382?type=check_update&version=2

Algorithms 2022, 15, 382 2 of 25

For example, if a new version of a component is released, this component must be up-
dated in each deployment model in which it is present. Deployment technologies, such
as Terraform or Ansible, support conditional components and dependencies which allow
modeling different deployment variants of a composite application in a single deployment
model. However, there are deployment technologies, such as TOSCA and Docker Compose,
which do not support such conditional elements. The objective of this work is to integrate
conditional components and dependencies into technologies that do not support such conditional
elements by preprocessing respective deployment models. To achieve this we proceed as follows:

(i) Variable Deployment Models: We present a modeling approach to describe different
deployment variants of a composite application in a single deployment model, which
we call the Variable Deployment Model.

(ii) Preprocessing: We introduce algorithms to preprocess such a Variable Deployment
Model to derive a deployment model based on current context parameters, such as
costs or scalability requirements.

(iii) Prototype: We implement an open-source prototype called OpenTOSCA Vintner, which
applies our approach to the TOSCA standard [4].

For this purpose, we extend the Essential Deployment Metamodel (EDMM) [1] by condi-
tional components and conditional dependencies. We refer to this extended model as Variable
Deployment Model. EDMM is a normalized declarative deployment metamodel that can be
mapped to the most prominent declarative deployment technologies, such as Terraform, An-
sible, TOSCA, and Docker Compose. The Variable Deployment Model is then preprocessed
to derive an EDMM conform deployment model. As a result, conditional elements can be
integrated on top of existing deployment technologies that are unaware of such concepts.
For our prototype, we applied our extension to the TOSCA modeling language, which
we call Variability4TOSCA. Afterward, we implemented a Variability4TOSCA Deployment
System which automatically transforms Variability4TOSCA models into standard-compliant
TOSCA models and shows that these models can be executed by the open-source TOSCA
orchestrators xOpera and Unfurl which are not aware of conditional elements.

The remainder of this paper is structured as follows. Section 2 introduces fundamentals
and motivates our approach. In Sections 3 and 4, we present the approach and its formal
definitions and algorithms. We present a system architecture, prototypical implementation,
detailed technical case study, and benchmark in Section 5. In Section 6, we discuss related
work, and we conclude the paper in Section 8.

2. Fundamentals and Motivation

In this section, we present fundamentals about deployment automation and motivate
the need for variability in deployment modeling.

2.1. Fundamentals of Deployment Automation

Modern cloud applications typically consist of many components having dependen-
cies on each other, which makes a manual deployment error prone, time consuming,
and therefore, impractical. Various model-based deployment technologies have been de-
veloped that enable executing deployments automatically based on so-called deployment
models [1]. While the imperative deployment modeling [2] approach enables specifying an
application deployment in the form of an explicitly described process that describes each
activity to be executed, the declarative deployment modeling [2] approach describes only
the structure of the application to be deployed, i.e., its components, their configurations,
and their dependencies on each other, in the form of a graph in which colored nodes
represent components and their configurations, weighted edges their relations [2]. Thus,
while an imperative deployment model explicitly describes how the deployment has to
be executed, the declarative approach only describes what has to be deployed, and the
actual deployment logic is automatically inferred by the deployment technology. Since the
declarative approach has prevailed in practice and is supported by the most prominent
deployment technologies [1], we focus in this paper on declarative deployment models.

Algorithms 2022, 15, 382 3 of 25

2.2. Motivating Scenario

The following motivating scenario is used throughout the paper to explain our vari-
ability modeling concepts and to show technical feasibility. We choose here a very simple
scenario consisting only of two components that form the entire application to be deployed
since already this simple scenario shows the drawbacks and difficulties if variants are
managed in the form of individual deployment models. The motivating scenario is a
simple composite application that consists of two components, (i) a web component and (ii) a
database. This application can be deployed in different variants. Requirements, such as
expected workload, costs, availability, development simplicity, and compliance, influence
the decision on which variant to use.

During development, the deployment of the entire application should be cost efficient
and fast. Therefore, often all components are simply deployed on a single virtual machine
that runs on a hypervisor such as a private OpenStack as shown on the left in Figure 1. In
our scenario, the web component is a NodeJs14 application that runs on a local NodeJs14
runtime that connects to a local SQLite3 database.

Private OpenStack
(OpenStack)

Private VM
(Ubuntu20.04)

Deployment
Model 2

Deployment
Model 1

Web Component
(NodeJs14App)

Dev Database
(SQLite3Database)

Dev Runtime
(NodeJs14Runtime)

Prod Runtime
(GoogleAppEngine)

Web Component
(NodeJs14App)

Prod DBMS
(GoogleCloudSQL)

Prod Database
(MySQL5Database)

= HostedOn Relation

= SQLConnection Relation

Legend

Figure 1. Two different deployment variants for the motivating scenario: deployment model 1 for
development (left) and deployment model 2 for production (right).

However, if the application has to serve production workloads all components should
be hosted on managed elastic cloud service offerings. In our scenario, we select GCP as
provider as shown on the right in Figure 1: The web component is hosted inside Google
App Engine [5] and Google Cloud SQL [6] is used to provide a MySQL5 database. If GCP is
not a suitable provider, of course also Amazon Web Services (AWS) or others could be used.

Thus, in general, any combination of suitable technologies, cloud providers, and cloud
service types can be used to deploy this composite application. If many different deploy-
ment variants of a single application are required, it is infeasible to model each variant as a
separate deployment model. Managing all these deployment models would be a complex,
time-consuming, and error-prone task. For example, if a new version of the web component
is released, the respective component must be updated in each deployment model.

3. Variable Deployment Modeling Method

To give an overview of the idea of what Variable Deployment Models are, how they
are created, and how they are used for deployment, this section presents the Variable Deploy-
ment Modeling Method, which consists of five steps. The method is split into the Deployment
Modeling Phase and the Deployment Execution Phase as shown in the lower part of Figure 2.
The two phases involve different user roles: while the modeling phase is typically con-
ducted by deployment experts creating Variable Deployment Models, the execution phase

Algorithms 2022, 15, 382 4 of 25

can be conducted by experts as well as non-experts that want to deploy the application in a
certain variant.

Identify
Deployment

Variants

Execute
Deployment Model

5

Deployment Execution PhaseDeployment Modeling Phase

Create Variable
Deployment Model

Specify
Variability Inputs

Derive
Variability-Resolved
Deployment Model

✓?

42 31

Figure 2. Overview of the Variable Deployment Modeling Method and its five steps.

During the modeling phase, the first step is (i) to identify deployment variants along
with their commonalities and differences. Then (ii) a Variable Deployment Model is created
that describes all these variants. During the execution phase, (iii) inputs are specified that
are then used in step (iv) to automatically resolve the variability and to derive an executable
deployment model, i.e., the inputs are used to evaluate conditional elements in the model
that are then either present or not. Finally, in the last step, (v) the derived deployment
model is executed to automatically deploy the respective variant. In the next subsections,
we further explain each step in more detail.

3.1. Step Ê: Identify Deployment Variants

Before a Variable Deployment Model can be created, the possible variants along with
their commonalities and differences must be manually identified by a deployment expert.
The result of this step is, for example, that a development variant and a production variant are
required according to our motivating scenario where the development variant intends to
provide a simple deployment with costs and time in mind, while the production variant
requires a high-available and elastic deployment. Please note that a variant does not
necessarily affect all components and relations but can differ from only a single component
or configuration, for example.

3.2. Step Ë: Create Variable Deployment Model

After understanding which variants exist and which components and relations must
be present in each variant, the Variable Deployment Model can be created. A Variable
Deployment Model is a deployment model that has at least one conditional component or
relation, which is only present if attached conditions, so-called Variability Conditions, are
fulfilled. As a starting point, the Variable Deployment Model is developed for one variant
and then incrementally extended with components and relations of other variants. During
this process, conditions are assigned to these components and relations to ensure that they
are only present in the respective variants. Variability Conditions are expressions based
on Variability Inputs. In our motivating scenario, there is a single Variability Input “mode”
that specifies if the application should be deployed for development or production. In
contrast, in a more complex scenario, there could be various Variability Inputs, such as the
legal location of the company that is responsible for this deployment or the current prices
of cloud offerings. Thereby, the legal location might be used to select a compliant data
storage while the prices are used to select the most cost-efficient deployment variant. Thus,
Variability Inputs can be combined arbitrarily in complex conditions to model deployment
variants that are highly dependent on the current context.

Algorithms 2022, 15, 382 5 of 25

3.3. Step Ì: Specify Variability Inputs

This step is the first of the execution phase, in which a human operator or a system
invoking the deployment selects a Variable Deployment Model and provides the required
Variability Inputs. For example, a Variable Deployment Model may define the legal location
of the deployment as the Variability Input, which could be important if personal data need
to be stored by the application and when there are laws such as the General Data Protection
Regulation that needs to be complied with. In our motivating scenario, only the Variability
Input “mode” has to be specified, which is used to evaluate if the application should be
deployed for development or for production.

3.4. Step Í: Derive Variability-Resolved Deployment Model

The Variable Deployment Model as well as the Variability Inputs are then sent to the
Variability Resolver. The Variability Resolver is a software component that automatically
resolves the variability, i.e., it generates a Variability-Resolved Deployment Model that is a
normal executable deployment model of a certain deployment technology, such as Ter-
raform, Puppet, or TOSCA. Thus, the resulting model represents the derived deployment
variant. Thereby, the Variability Resolver evaluates each condition attached to a component
or relation and removes the ones whose conditions are not fulfilled. This resolver might be
integrated into a deployment system that is aware of Variable Deployment Models. We
provide an architecture and prototypical implementation of such a deployment system
based on the TOSCA standard in Section 5.

3.5. Step Î: Execute Deployment Model

The final step of the method is the actual deployment of the application. Therefore,
a deployment system interprets the previously derived Variability-Resolved Deployment
Model and executes the deployment. Since the resolved deployment model is a normal
executable deployment model this deployment system must not be aware of Variable
Deployment Models. If requirements change at a later stage, the execution phase can be
repeated to update the running application.

4. Variable Deployment Models

This section first presents the concept of Variable Deployment Models in detail fol-
lowed by a formal definition of the corresponding metamodel in Section 4.1, which provides
the basis for realizing Step Ë of our method. In Section 4.2, we introduce algorithms for
resolving the variability to generate concrete executable deployment models. These algo-
rithms are implemented by the Variability Resolver as described in Step Í of the method.

A Variable Deployment Model is a deployment model which has conditional elements.
These are components or relations which have at least one Variability Condition assigned.
Only if all Variability Conditions of a conditional element evaluate to true is the associated
component or relation present in the deployment. This significantly eases handling multiple
variants of a deployment since the human operator does not have to select one out of
many deployment models implementing different variants, but only has to provide the
required Variability Inputs.

Figure 3 shows this concept based on the motivating scenario introduced in Section 2.
Instead of having two different deployment models for the two variants, the shown Variable
Deployment Model contains all components and relations of both variants but associated
with the Variability Conditions under which they are present in the respective deployment
variant. The component “Web Component” should always be present and, thus, has no
conditions assigned. However, the components “Dev Database”, “Dev Runtime”, “Private
VM” and “Private OpenStack” along with their respective relations are conditional elements
which should be only present in the development variant. Therefore, they have a condition
assigned that evaluates if the desired deployment is intended for development. In contrast,
the components “Prod Database”, “Prod DBMS”, and “Prod Runtime” along with their

Algorithms 2022, 15, 382 6 of 25

respective relations are conditional elements having a condition assigned that evaluates if
the desired deployment is intended for production.

Private VM
(Ubuntu20.04)

Dev Database
(SQLite3Database)

Web Component
(NodeJs14App)

Dev Runtime
(NodeJs14Runtime)

Prod Runtime
(GoogleAppEngine)

Prod DBMS
(GoogleCloudSQL)

Prod Database
(MySQL5Database)

= Production Condition

= Development Condition

= HostedOn Relation

= SQLConnection Relation

Legend

= Conditional Component

= Component

= Conditional Relation

= Relation

Dev Prod

Prod

Prod

Prod
Prod

Prod

Dev

Dev

Dev

Dev

Dev

Dev

Prod

DevPrivate OpenStack
(OpenStack)

Dev

Figure 3. Variable Deployment Model of our motivating scenario.

4.1. Variable Deployment Metamodel

This section introduces the Variable Deployment Metamodel (VDMM), which is based on
EDMM introduced by Wurster et al. [1]. In the following, we first explain the underlying
EDMM and introduce the required extensions for variability afterward.

EDMM defines a metamodel for declarative deployment models which was the result
of an analysis of the most prominent declarative deployment technologies, including Ter-
raform [7], Puppet [8], Kubernetes [9], and Ansible [10]. EDMM contains only modeling
elements that can be mapped to all of these technologies, thus providing the greatest
common denominator of all these technologies. Since our approach is based on EDMM, the
approach can also be applied to these technologies. EDMM defines declarative deployment
models in the form of a directed graph in which typed components are represented as
colored nodes and typed relations as weighted edges. Figure 4 contains the class dia-
gram of EDMM in the form of white boxes. Please note that this class diagram does not
show the entire EDMM but only the classes required for our approach. For example, we
omit the definition of Operations that are, for example, responsible for provisioning and
configuring a component.

has

has
Element

Type
Property

Relation
Type

Relation

Element

Component
Type

Variability
Condition

Component

Group

1 *

is of type1 *

* *

is of type

has* 1

has*

*

has *1

is source of

is target of

1

1*

*

Variability
Input

is part of *1 … *

*

*

Figure 4. Class diagram of VDMM based on EDMM (EDMM original classes in white, added classes
for variability in grey).

Algorithms 2022, 15, 382 7 of 25

VDMM extends EDMM with classes for variability modeling which are rendered as
grey boxes in Figure 4. A Variable Deployment Model represents all possible deployment
variants. A deployment variant is defined as di ∈ Dvdm, where Dvdm is the set of all
executable deployment models that can be derived from a Variable Deployment Model
vdm ∈ VDM, where VDM is the set of all Variable Deployment Models.

Let VDM be the set of all Variable Deployment Models, then vdm ∈ VDM is defined
as a tuple as follows:

vdm =(Cvdm, Rvdm, CTvdm, RTvdm, typevdm, Pvdm, propertiesvdm, VIvdm,

CONvdm, inputsvdm, Gvdm, conditionsvdm, evaluatevdm)
(1)

We first describe the classes of EDMM as defined by Wurster et al. [1]. These classes
provide the basis for declarative deployment models.

• Cvdm is the set of Components in vdm. Each ci ∈ Cvdm represents a component of the
application. Considering our motivating scenario, the components “Web Component”,
“Dev Runtime”, and “Private VM”, for example, belong to this set.

• Rvdm ⊆ Cvdm × Cvdm is the set of Relations between two components in vdm. Each
ri = (cs, ct) ∈ Rvdm represents a relationship between two components of the applica-
tion, whereby cs is the Source and ct the Target Component. Considering our motivating
scenario, the hosting relation between the (source) component “Web Component” and
(target) component “Dev Runtime”, for example, is such a relationship.

• CTvdm is the set of Component Types in vdm. Each cti ∈ CTvdm describes the semantics
of a component having this type. Considering our motivating scenario, the component
“Web Component”, for example, has the type “NodeJs14App” which describes, for
example, that a hosting relation is required.

• RTvdm is the set of Relation Types in vdm. Each rti ∈ RTvdm describes the semantics
for each relation having this type. Considering our motivating scenario, the relation
between the components “Web Component” and “Dev Runtime”, for example, is of
type “hostedOn” and describes that the component “Web Component” is running on
the component “Dev Runtime”.

• The set of Typed Elements Evdm := Cvdm ∪ Rvdm is the union set of components and rela-
tions in vdm. Considering our motivating scenario, the components “Web Component”
and “Dev Runtime”, for example, along with their hosting relation belong to this set.

• The set of Typed Element Types ETvdm := CTvdm ∪ RTvdm is the union of component
and relation types in vdm. Considering our motivating scenario, the component type
“NodeJs14App” and relation type “hostedOn”, for example, belong to this set.

• typevdm : Evdm → ETvdm is the mapping function that assigns all components and
relations in vdm their respective component or relation type and, therefore, provides
the semantics of typed elements. Considering our motivating scenario, the component
“Web Component”, for example, is of type “NodeJs14App”.

• Pvdm ⊆ Σ+×Σ+ is the set of Properties in vdm. Each pi = (key, value) ∈ Pvdm describes
a property of a component (type) or relation (type). Considering our motivating
scenario, such properties are, for example, database credentials such as a username
and password. However, properties are not shown in the figures for brevity.

• propertiesvdm : Evdm ∪ ETvdm → ℘(Pvdm) is the mapping function that assigns each
typed element ei ∈ Evdm and typed element type eti ∈ ETvdm its properties psi ∈
℘(Pvdm) in vdm. Considering our motivating scenario, the database connection be-
tween the “Web Component” and “Prod Database”, for example, is assigned its
respective properties, such as a username and password. However, properties are not
shown in the figures for brevity.

At this point, the described classes represent a deployment model according to EDMM.
In the following, we introduce new classes required for variability modeling as described
in our concept presented above. Thus, these new classes together with the already listed
EDMM classes form the VDMM.

Algorithms 2022, 15, 382 8 of 25

• VIvdm is the set of Variability Inputs in vdm. Each vii ∈ VIvdm is used inside Variability
Conditions. Considering our motivating scenario, a Variability Input “mode”, for ex-
ample, states if the desired deployment is for development or for production. Other
Variability Inputs could ask for enabled features such as elasticity or for the legal
location to select a compliant hosting offering.

• CONvdm is the set of Variability Conditions in vdm. Each coni ∈ CONvdm describes a
Variability Condition under which a component, relation, or group is present in the
deployment variant. Considering our motivating scenario, a Variability Condition
“Dev”, for example, is assigned to the component “Dev Runtime” which evaluates
that the Variability Input “mode” has the value “dev”. Other Variability Conditions
could consider cloud offering prices.

• inputsvdm : CONvdm → ℘(VIvdm) is the mapping function that assigns each Variability
Condition coni ∈ CONvdm the required set of Variability Inputs visi ∈ ℘(VIvdm) in vdm
that are required to evaluate coni. Considering our motivating scenario, the Variability
Input “mode”, for example, is assigned to the Variability Condition “Dev”.

• Gvdm ⊆ ℘(Evdm) is the set of all Groups in vdm. Hereby, a gi ∈ Gvdm is a group that
consists of components and relations in vdm that are grouped to associate one or
more Variability Conditions to all elements contained in this group. Considering our
motivating scenario, the components “Dev Runtime”, “Dev Database”, and “Private
VM”, for example, along with their relations could have been added to the same group
to manage all conditional elements which are present during the development variant.

• conditionsvdm : Evdm ∪ Gvdm → ℘(CONvdm) is a mapping function in vdm that as-
signs each component ci ∈ Cvdm ⊆ Evdm, relation rj ∈ Rvdm ⊆ Evdm, and group
gk ∈ Gvdm the Variability Conditions consl ∈ ℘(CONvdm) under which it is present in
the deployment variant. If a component, relation, or group have no Variability Condi-
tions, the mapping function assigns them the empty set. Considering our motivating
scenario, the Variability Condition “Dev”, for example, belongs to this set.

• evaluatevdm : CONvdm × ℘(VIvdm)→ {true, f alse} is the function in vdm that assigns
under the Variability Inputs vii ∈ ℘(VIvdm) a Variability Condition coni ∈ CONvdm
either true or f alse. Considering our motivating scenario, this function evaluates,
for example, regarding the Variability Condition “Dev” if the Variability Input “mode”
has the value “dev”.

4.2. Algorithms for Resolving Variability

This section presents algorithms to transform a Variable Deployment Model into
a Variability-Resolved Deployment Model as required in Step Í of our method. These
include the algorithms resolveVariability for deriving a deployment model from a Vari-
able Deployment Model, checkElementPresence for checking the presence of an element,
and checkConsistency for checking the consistency.

4.2.1. Variability Resolving Algorithm

The algorithm resolveVariability in Algorithm 1 resolves the variability and derives a
Variability-Resolved Deployment Model from a Variable Deployment Model. First, in Line 2
all components are collected which are present in the derived deployment model, Line 3
collects all present relations. Thereby, the conditions that are assigned to components and
relations are evaluated using the checkElementPresence algorithm introduced in Section 4.2.2.
In Line 6, the derived deployment model is constructed from the set of present components
and relations. The remaining elements, such as the set of component types, can be directly
taken from the Variable Deployment Model. The derived deployment model does not
have any variability and conforms to EDMM. Therefore, since EDMM models can be
automatically transformed to concrete deployment technologies such as Terraform [11] the
derived deployment model can be executed by standard deployment technologies that are
not aware of our variability concepts.

Algorithms 2022, 15, 382 9 of 25

Algorithm 1 resolveVariability(vdm ∈ VDM): d ∈ Dvdm

1: // Calculate all present components and relations
2: Cd := {ci|ci ∈ Cvdm : checkElementPresence(ci) = true}
3: Rd := {ri|ri ∈ Rvdm : checkElementPresence(ci) = true}
4:
5: // Return Deployment Model
6: return {Cd, Rd, CTvdm, RTvdm, typevdm, Pvdm, propertiesvdm}

4.2.2. Element Presence Check Algorithm

The algorithm checkElementPresence in Algorithm 2 checks if an element is present
in a deployment by evaluating assigned conditions. Therefore, all conditions which are
assigned to the element are collected. Conditions are either directly assigned to the element
(see Line 2) or indirectly by a group (see Lines 5–7). The element is present if all assigned
conditions are fulfilled (see Line 10).

Algorithm 2 checkElementPresence(e ∈ Evdm, vdm ∈ VDM): b ∈ {true, f alse}
1: // Capture all conditions which are assigned to e
2: cons := conditionsvdm(e)
3:
4: // Add all conditions which are assigned to the groups of e
5: for all

(
gi ∈ {gi|gi ∈ Gvdm : e ∈ gi}

)
do

6: cons := cons ∪ conditionsvdm(gi)
7: end for
8:
9: // Check that all conditions evaluate to true

10: return
(
∀coni ∈ cons : evaluatevdm(coni, inputsvdm(coni)) = true

)
4.2.3. Consistency Check Algorithm

Inconsistencies might occur in the derived Variability-Resolved Deployment Model. If,
for example, a component has multiple conditional hosting relations to several components
but their conditions do not exclude each other, i.e., more than one of these hosting relations
have all their assigned conditions fulfilled, the component must be hosted on multiple
components at the same time which is not possible. Of course, such overlapping conditions
are a clear modeling mistake and must be avoided during modeling. However, if the
variability is high, such modeling errors might occur. Therefore, we introduce the algorithm
checkConsistency in Algorithm 3 that executes four checks regarding the consistency of the
derived model. The first two checks verify that the source component and target component
of each relation in the derived model is also present in the derived model (see Lines 2–4
and 7–9). It is possible that, for example, a relation is present while the target component
is not if all conditions of the relation evaluate to true but the ones assigned to the target
component do not. The third check verifies that each component in the derived model
has at maximum one hosting relation in the derived model (see Lines 12–14). Multiple
hosting relations can occur, for example, when their assigned conditions do not exclude
each other. Thereby, the check allows components without hosting relations, such as a basic
infrastructure virtualization layer as OpenStack, since these are typically not managed
by the deployment model. The last and fourth check verifies that each component in the
derived model has a hosting relation if the component has at least one hosting relation in
the Variable Deployment Model (see Lines 17–19). Thereby, we assume that if a component
has a hosting relation in any variant then a hosting relation is always required. Considering
our motivating scenario, the component “Web Component”, for example, always requires a
hosting relation while having two conditional hosting relations in the Variable Deployment
Model. If none of these relations are present in the derived model, then the deployment
model cannot be executed.

Algorithms 2022, 15, 382 10 of 25

Algorithm 3 checkConsistency(d ∈ Dvdm, vdm ∈ VDM): b ∈ {true, false}
1: // Ensure that each relation source exists
2: if

(
∃ri = (s, t) ∈ Rd : s /∈ Cd

)
then

3: return false
4: end if
5:
6: // Ensure that each relation target exists
7: if

(
∃ri = (s, t) ∈ Rd : t /∈ Cd

)
then

8: return false
9: end if

10:
11: // Ensure that every component has at maximum one hosting relation
12: if

(
∃ci ∈ Cd ∃rj = (ci, a) ∈ Rd ∃rk = (ci, b) ∈ Rd :

rj 6= rk ∧ typed(rj) = typed(rk) = hostedOn
)

then
13: return false
14: end if
15:
16: // Ensure that every component that had a hosting relation previously still has one
17: if

(
∃ci ∈ Cd ∃rj = (ci, a) ∈ Rvdm ∃!rk = (ci, b) ∈ Rd :

typevdm(rj) = typed(rk) = hostedOn
)

then
18: return false
19: end if
20:
21: // All checks passed
22: return true

5. Prototypical Validation and Case Study

To validate the technical feasibility of the method presented in Section 3 and the con-
cept of Variable Deployment Models, we implemented a prototype based on the Topology
and Orchestration Specification for Cloud Applications (TOSCA) [4]. TOSCA is an official OA-
SIS standard for automating the deployment and management of cloud applications in a
technology-independent and vendor-neutral manner. For this purpose, we (i) first introduce
Variability4TOSCA, which is an extension of the TOSCA Simple Profile in YAML Version 1.3 [4]
that supports VDMM introduced in Section 3. Afterward, we (ii) present the architecture,
prototypical implementation, and benchmark of OpenTOSCA Vintner [12], which is a Vari-
ability4TOSCA Deployment System that enables automating Steps Í and Î of our method.
Thus, OpenTOSCA Vintner enables automatically transforming Variability4TOSCA mod-
els into standard-compliant TOSCA models that can be executed by standard-compliant
TOSCA orchestrators. We demonstrate this by employing the open-source orchestrators
xOpera [13] and Unfurl [14] for executing the generated TOSCA models. Finally, we (iii)
conduct a case study and apply our method to our motivating scenario.

5.1. Variability4TOSCA: An Extension of the TOSCA Standard

To support our variability concept in TOSCA Simple Profile in YAML Version 1.3 [4]
we present our TOSCA extension Variability4TOSCA. The full specification can be found
on our GitHub repository together with the source code of OpenTOSCA Vintner [12].

5.1.1. Mapping EDMM to TOSCA

Since the EDMM classes are part of VDMM, we first describe how they can be mapped
to TOSCA. According to Wurster et al. [1,15], EDMM can be mapped to TOSCA as follows:
In TOSCA, the deployment of an application is described as a Topology Template. Such
a Topology Template is the equivalent of our deployment model and consists of Node
Templates and Relationship Templates. These templates describe the application components
along with their relations. Thereby, components of our deployment model correspond
to Node Templates and relations to Relationship Templates. Node Types and Relationship

Algorithms 2022, 15, 382 11 of 25

Types semantically describe Node Templates and Relationship Templates. Therefore, component
types and relation types correspond to Node and Relationship Types. Node Templates and
Types can be configured using Properties that are equivalent to properties of components
and their types. The same applies to Relationship Templates and Types. A more detailed
description of TOSCA is given by Binz et al. [16,17].

5.1.2. Extending TOSCA for VDMM

To support VDMM, we extend the TOSCA standard as follows. Variability4TOSCA
is based on TOSCA Simple Profile in YAML Version 1.3 [4] and introduces conditional
elements. Thereby, we extend the Topology Template with a Variability Definition that
contains Variability Inputs.

A Variability Condition is modeled as a Boolean expression producing a Boolean value,
i.e., true or false, when evaluated. Thereby, Boolean, arithmetic, and constraint operators
along with intrinsic functions can be used inside conditions. These include, among others,
and, or, not, xor, implies, getVariabilityInput, getVariabilityCondition, getElementPresence, add,
sub, concat, equal, and greaterThan operators.

To model conditional elements, we extend Node Templates, Requirement Assignments,
and Group Definitions with the capability to contain a Variability Condition. Requirement
Assignments are entities in TOSCA that assign the Source and Target Node Template to
a Relationship Template, while Group Definitions are used to group Node Templates.
Furthermore, we extend Group Definitions by allowing Requirement Assignments to
be group members. An example of a conditional element from our motivating scenario
is shown in Listing 1 in Line 13: The Node Template “DevRuntime” is only present if
the Variability Condition in Line 15 is true, thus, if the Variability Input “mode” equals
“dev”. It is also possible to assign multiple conditions by specifying a list. In such a
case, the conditions are combined using the logical and operator. To reduce repetitiveness,
a Variability Condition, or even only parts of the condition, can be defined globally as part
of the Variability Definition and then referenced on multiple occasions.

Listing 1. Excerpt of the Topology Template of our motivating scenario showing modeled Variability
Conditions for the runtime of the web component as well as hosting relations to them.

1 topology_template:
2 node_templates:
3 WebComponent:
4 type: NodeJs14App
5 requirements:
6 - host:
7 node: DevRuntime

8 conditions: {equal: [{get_variability_input: mode}, dev]}

9 - host:
10 node: ProdRuntime

11 conditions: {equal: [{get_variability_input: mode}, prod]}

12 ...
13 DevRuntime:
14 type: NodeJs14Runtime

15 conditions: {equal: [{get_variability_input: mode}, dev]}

16 ...
17 ProdRuntime:
18 type: GoogleAppEngine

19 conditions: {equal: [{get_variability_input: mode}, prod]}

20 ...
21 ...
22 ...
23 ...

Algorithms 2022, 15, 382 12 of 25

5.2. System Architecture for a Variability4TOSCA Deployment System

In this section, we present a conceptual system architecture for a Variability4TOSCA
Deployment System, which is implemented by our OpenTOSCA Vintner prototype de-
scribed in the next section. Our system architecture is shown in Figure 5 and consists
of the following components. The Variability4TOSCA Model Importer parses a Variabil-
ity4TOSCA model and transforms it into an internal data structure. To derive a Variability-
Resolved Deployment Model, the Variability Resolver implements the algorithms from
Section 4.2. A derived model is then exported as TOSCA conform deployment model using
the TOSCA Model Exporter.

Variability4TOSCA Deployment System

TOSCA Models

Variability4TOSCA
Model Importer

Variability Resolver

TOSCA Model Exporter

CLI

REST API

Orchestrator Plugins

Orchestrator X

Orchestrator Y

…?
Deployment Manager

Instance Models

Figure 5. System architecture of a Variability4TOSCA Deployment System.

The Deployment Manager executes the deployment model using Orchestrator Plugins
which communicate with TOSCA conform orchestrators. Therefore, our architecture is
not restricted to a specific TOSCA orchestrator. TOSCA models and definitions, such as
TOSCA Type Definitions and Topology Templates, are stored in the TOSCA Models database.
Information about instances of a TOSCA model, such as used Topology Templates, are
stored in the Instance Models database.

5.3. OpenTOSCA Vintner

OpenTOSCA Vintner implements the system architecture introduced above. The
system is written in NodeJs and can be invoked using the command line or a REST API.
The Variability Resolver can be also used as a standalone tool and, thus, be integrated
into any toolchain. The Deployment Manager is able to deploy applications using xOpera
and Unfurl. Thereby, we implemented a plugin for Linux and for Windows using the
Windows-Subsystem for Linux (WSL) [18]. To store TOSCA models and instance models,
the filesystem is used. The prototype does not support the inheritance of the TOSCA type
system as it is not required for our approach and expects that hosting relations are named
“host” as commonly done in the TOSCA specification. The source code and documentation
can be found in our repository.

5.4. Case Study Based on the Prototype

This section presents a detailed case study in which we apply the Variable Deploy-
ment Modeling Method presented in Section 3 to the motivating scenario introduced in
Section 2. A step-by-step guide, including corresponding TOSCA definitions, is provided
in our repository.

In Step Ê of our method, we first identify that we require a development variant and
a production variant. With costs and simple installation in mind, the development variant
deploys all components on a single virtual machine on a private OpenStack instance. For the
database, we use a lightweight SQLite3 database because it is easier to manage compared to
MySQL. Since an unexpected workload is expected during production, the web component
and the database are deployed on GCP in the production variant.

Algorithms 2022, 15, 382 13 of 25

To create the Variability4TOSCA model in Step Ë, we start with creating the devel-
opment variant, i.e., we model all components and relations as shown in Figure 1 on the
left. To integrate the production variant, the components “Prod Database”, “Prod DBMS”
and “Prod Runtime” are added along with their relations. At this stage, the web compo-
nent has two hosting relations and two database connections. Therefore, we define the
Variability Input “mode” and assign a condition that checks if “mode” equals “dev” to the
components and relations that are only present in the development variant (see Listing 1).
Analogously, we assign a condition checking if “mode” equals “prod” to the components
and relations that are only present in the production variant. Since the component “Web
Component” should always be present, it does not have any conditions assigned. The final
Variability4TOSCA model is shown in Figure 3. Hereby, the manual modeling phase of the
method is completed.

In the execution phase, we want to deploy the application in the development vari-
ant. Therefore, we import the created Variability4TOSCA model to OpenTOSCA Vintner
and assign the Variability Input “mode” the value “dev” in Step Ì. The Variability Re-
solver receives the model and our input in Step Í. Since only the conditions that check if
“mode” equals “dev” evaluates to true, the resolver removes all components and relations
whose conditions check for “prod”. The resulting standard-compliant TOSCA model cor-
responds to the development variant given in Figure 1 on the left. In the final Step Î, we
select xOpera or Unfurl as the TOSCA orchestrator to execute the deployment in a fully
automated manner.

This case study can be used to evaluate different aspects of our presented approach.
First, the motivating scenario introduced in Section 2 can be realized using Variabil-
ity4TOSCA, which shows that our extension of the TOSCA standard provides all required
features for this kind of scenario. Moreover, the case study also demonstrates that our pro-
totypical implementation OpenTOSCA Vintner is able to automatically transform Variabil-
ity4TOSCA models for a given set of provided Variability Inputs into a standard-compliant
TOSCA model that can be executed by unmodified TOSCA orchestrators, in this case,
xOpera or Unfurl. Thus, these results pave the way for executing different deployment
variants in practice on top of existing toolchains.

5.5. Benchmark Evaluation of the Variability Resolver Prototype

To further evaluate our concept and prototype, we ran benchmark tests whose results
are given in Table 1. The to-be-tested Topology Templates are generated based on a
seed. For example, a seed of 1000 generates the 1000 Node Templates a0, a1, . . . , a999,
which have a condition assigned that evaluates to true. In addition, 1000 Relationship
Templates ra0 = (a0, a1), ra1 = (a1, a2), . . . , ra999 = (a999, a0) are generated, which connect
one Node Template ai and the next Node Template ai+1 mod 1000 and which have a condition
assigned, which evaluates to true. Furthermore, the 1000 Node Templates b0, b1, . . . , b999
are generated, which have a condition assigned that evaluates to false. Additional 1000
Relationship Templates rb0 = (a0, b0), rb1 = (a1, b1), . . . , rb999 = (a999, b999) are generated
which connect the Node Template ai with the Node Template bi and which have a condition
assigned which evaluates to false. In total, 4000 templates are generated consisting of
2000 Node Templates and 2000 Relationship Templates. After resolving the variability,
only the 1000 Node Templates a0, a1, . . . , a999 along with the 1000 Relationship Templates
ra0, ra1, . . . , ra999 between them are present.

The time for transforming the Variability4TOSCA model into an internal data structure,
resolving the variability, running the consistency check, and transforming the Topology
Template into a TOSCA Simple Profile in YAML Version 1.3 model is measured. Thereby,
the Variability4TOSCA model is already loaded as JSON in memory. To remove outliers,
the median of 10 test runs is used. The benchmark results of all in-memory tests are given
in Table 1 (see tests 1–7). A Topology Template consisting of 40 templates (20 Node Tem-
plates and 20 Relationship Templates) is processed within 0.295 ms, a Topology Template
consisting of 40,000 templates (20,000 Node Templates and 20,000 Relationship Templates)

Algorithms 2022, 15, 382 14 of 25

within 137.353 ms. As seen by the median per template column in Table 1 and Figure 6 on
the left, the time used for processing scales slightly non-linear.

In another test set, we additionally measured the time which is needed to read and
write the Topology Template files which also includes YAML parsing. These tests take
significantly longer mainly due to the parsing of YAML. The benchmark results of these
tests are given in Table 1 (see tests 8–14). A Topology Template consisting of 40 templates
is processed within 3.335 ms, a Topology Template consisting of 40,000 templates within
11.345 s. The file of the Topology Template consisting of 400,000 templates has a size of
14.270 MB and consists of 350,010 lines. As a result, the processing scales worse (see Table 1
and Figure 6 on the right). Such Topology Templates are already huge, possibly representing
a single deployment consisting of thousands of servers and their hosted components along
with databases. The required time for processing is negligible in comparison to the time
required to actually provision such huge topologies. Based on our experience, creating,
for example, a MySQL5 DBMS on GCP takes several minutes.

The tests have been executed on commodity hardware; to be specific, on Windows 10,
an i7-6700K CPU 4x 4.00GHz, 2133MHz DDR4 RAM, and NVMe M.2 SSD. Due to the
single-threaded nature of NodeJs, only a single core is used. The performance could be
further improved by using better hardware, threading, or a more efficient language, such
as Go. Refactoring the algorithm could also improve the performance. However, at the
current stage, we prefer understandability over performance.

Table 1. Benchmark results of the Variability Resolver prototype (Since tests 1–7 are in-memory,
respective file measurements are not available).

Test Seed Templates Median Median/Template File Size File Lines

1 10 40 0.295 ms 0.007 ms n/a n/a
2 250 1000 4.045 ms 0.004 ms n/a n/a
3 500 2000 4.329 ms 0.002 ms n/a n/a
4 1000 4000 7.383 ms 0.002 ms n/a n/a
5 2500 10,000 29.436 ms 0.003 ms n/a n/a
6 5000 20,000 63.307 ms 0.003 ms n/a n/a
7 10,000 40,000 137.353 ms 0.003 ms n/a n/a

8 10 40 3.335 ms 0.083 ms 14 kB 360
9 250 1000 39.033 ms 0.039 ms 351 kB 8760
10 500 2000 88.504 ms 0.044 ms 704 kB 17,510
11 1000 4000 225.444 ms 0.056 ms 1.409 MB 35,010
12 2500 10,000 947.011 ms 0.095 ms 3.553 MB 87,510
13 5000 20,000 3.185 s 0.159 ms 7.125 MB 175,010
14 10,000 40,000 11.345 s 0.284 ms 14.270 MB 350,010

0 1 2 3 4

×104

0

50

100

150

Templates

In
-M

em
or

y
M

ed
ia

n
(m

s)

0 1 2 3 4

×104

0

0.5

1

1.5
×104

Templates

M
ed

ia
n

(m
s)

Figure 6. Benchmark results of the Variability Resolver prototype (on the left in-memory, on the right
with filesystem interaction and YAML parsing).

Algorithms 2022, 15, 382 15 of 25

6. Related Work

In the following, we discuss related work considering different research topics, such
as product line engineering, context-aware deployment, optimization, and self-adaptation.

6.1. Software Product Line Engineering

Software Product Line Engineering (SPLE) [19–22] is an approach to manage and de-
rive different variants of software, the product. There are two phases: domain engineering
and application engineering. During domain engineering, a requirements analysis is con-
ducted to create the product line along with a variability model, such as feature models [23]
or orthogonal variability models (OVM) [19], which represent the problem space. A feature
model describes in a single tree which common and variable features are available and
which dependencies between them exist [23]. In comparison, an OVM consists of multiple
variant points which represent variable features and, therefore, do not consider common
features [19]. During application engineering, another requirements analysis is conducted
to select the features and generate the desired product using artifacts from the product line,
which represent the solution space. Compared to our work, we have a similar high-level
process. The Variable Deployment Model and the corresponding algorithms can be seen as
the solution space in SPLE terminology. Furthermore, we make use of conditional elements,
which is an established technique for the solution space. In contrast, we focus on deploying
composite multi-cloud applications and not on the generation of software. However, these
concepts can be combined. For example, before a component is deployed, corresponding
software can be generated based on information contained in the deployment model. Thus,
our approach sits between the variability modeling and the generation of corresponding
software and, therefore, bridges the gap between SPLE and deployment.

Groher and Voelter [24] presented a general method to integrate feature-based vari-
ability and structural models in the context of product line engineering. They differentiated
between positive and negative variability. Based on a feature selection, positive variability
extends a base model by optional elements, whereas negative variability removes optional
elements from a base model. Our approach can be classified as negative variability. Simi-
lar, Czarnecki et al. [25] discussed the combination of SPLE and Model Driven Software
Development (MDSD). However, deployment was not discussed.

Czarnecki and Antkiewicz [26] presented a general approach for integrating feature
models for negative variability. They discussed how feature models and a model template
can be used to generate a desired model. Thereby, elements of the model template were
assigned with presence conditions, e.g., Boolean expressions over the feature selection. If
an element is not present, its contained elements are also not present. They also propose
different kind of default presence conditions. For example, if an element is removed,
outgoing relations should also be removed, even if they have no presence conditions
assigned. Furthermore, meta-expressions can be used to calculate, for example, properties,
such as names. After evaluating the presence conditions, they further process the model to
patch or simplify the model. They show their concept based on UML 2.0 class and activity
diagrams. We also make use of the concept of presence conditions but explicitly in the
context of deployment models, which was not focused on by Czarnecki and Antkiewicz [26].
In contrast to their work, we provide a formal metamodel and corresponding algorithms.

Extending UML with variability using stereotypes has been researched in several
related work [27–32]. In general, they introduced optional, variant point, alternative,
required or exclusive stereotypes with or without the possibility to model constraints
between components. In comparison, we assign conditions directly to components and
relations of a deployment model.

Ferko et al. [33] reported their experience from generating configuration files from the
railway domain. They used feature models in combination with a translator file, which
eventually produces XML configurations that describe the product, a train. The translation
file consists of a set of parameters and corresponding values along with conditions on
selected features. However, they do not generate deployment configurations.

Algorithms 2022, 15, 382 16 of 25

In programming languages, such as C and Java, there also exist preprocessors that
enable conditional compilation, e.g., to include specific parts of the code only if a specific
condition holds true [34–36]. Conditional compilation along with feature models was, for
example, used by Cavalcante et al. [37] to generate application code that is specific for the
used cloud offerings. They focused on the generation of code, while our approach focuses
on the deployment of already built components and their relations. However, these con-
cepts can be integrated into our approach by generating software based on the information
contained in the deployment model before the respective components are deployed.

Using variability models from SPLE to model deployment variants is a widely used
approach [22,38–45]. Thereby, multiple variability models along with dependencies be-
tween them can be used to manage different aspects of variability. However, the focus
of these related work is on modeling variability in the problem space, e.g., functional
and non-functional capabilities and requirements of applications in the form of multiple
combined feature models. In contrast, we focus on the modeling of the application topol-
ogy in the solution space and especially address the deployment of applications in detail.
Since modeling the problem space complements the solution space these related work may
complement our approach. For example, the feature selection of a feature model can be
used as Variability Inputs for our Variability Resolver.

6.2. Variable Composite Applications

Mietzner has conducted several research studies in the field of deployment of compos-
ite applications considering topics such as variability and multi-tenancy. In the following,
we present his research and discuss it in the context of our work.

Mietzner [46] addressed the problem of managing variability of applications with a
focus on multi-tenancy. Several concepts of SPLE were used. An application is modeled
using an application model which consists of components and their hosting relations. Multi-
tenancy patterns can be assigned to components [46–48]. For example, a component can be
shared across different deployments of different tenants. Variability is modeled using a
variability model which is based on OVM and consists of variability points [19,45,46]. These
variability points have different alternatives, which can be chosen from. Examples are the
RAM size of a virtual machine or the branding name that should be displayed on a website.
Enabling conditions state which alternatives are allowed. Thereby, complex dependencies
between variability points are possible. For example, if alternative A is chosen for the
variability point B, only the alternative C of variability point D is allowed. The application
and variability model was also used in later work to dynamically bind services during
runtime in the context of service composition [49], while Koetter et al. [50,51] made use of
the variability model in the context of compliance.

In addition, Mietzner et al. generated customization flows which guide through the
selection of alternatives and ensure the completeness and correctness of the selection [46,52].
There are different selection phases. For example, one phase is used by the provider of the
deployment system to restrict the available infrastructure, while another phase is used by
the tenant for tenant-specific configurations, such as branding or passwords. The chosen
alternatives are then used to modify the implementation files of components.

Furthermore, Mietzner et al. considered multi-tenancy patterns in which components
are either bound to already running components or need to be deployed [46,47,53]. For
example, instead of deploying a new component, a new tenant along with tenant-specific
configurations is registered at an already running component. This binding is automatically
done and respected during deployment. Different optimization algorithms can be used,
e.g., to reduce costs or to distribute the expected workload [46,54]. However, they do not
provide such algorithms. A provisioning flow provisions components using component
flows while respecting hosting relations and relations introduced by variability point depen-
dencies [46,55]. Component flows expose a unified provisioning and management interface,
which is used for lifecycle management of the components. In a later work, the overall
concept was further extended with triggers, e.g., to scale components up or down [56].

Algorithms 2022, 15, 382 17 of 25

In comparison to our work, we model variability inside a deployment model. Thereby,
we do not focus on multi-tenancy but on modeling conditional components and their
relations. This is not explicitly possible in the concept proposed by Mietzner et al., where
variability targets the implementation files of components and not the application model.
Furthermore, our deployment model is not only restricted to hosting relations but allows
to model other relations, such as SQL connections.

The concept by Mietzner et al. for customization flows for ensuring completeness and
correctness could be integrated into our concept. Having such a concept would enable us
to omit our consistency check. However, such a check is still a valuable sanity check since
modeling variability point dependencies is complex and error prone. We also do not further
specify different phases for binding variability. However, the different phases proposed by
Mietzner et al. might be used inside our phase in which Variability Inputs are specified.
Furthermore, Mietzner et al. defined his own custom metamodel, whereas our deployment
model is based on EDMM [1] and, therefore, can be mapped to TOSCA, Terraform, Ansible,
Kubernetes, Docker Compose and more deployment technologies [1,11].

6.3. Context-Aware Deployments

In the following, we discuss related work, which focuses on context-aware deploy-
ments, such as self-adaptive systems.

Saller et al. [42] presented an approach for the context-aware adaptation of dynamic
software product lines. They combined a classical feature model with a feature model
representing the context. Dependencies between these two models state whether a feature
can be used under a certain context. These models are used to adapt applications at runtime
by monitoring the context and adapting the currently active features. In comparison to our
work, they operated on feature models to directly derive the adaptation steps, while we
generate a declarative deployment model which contains the application structure along
with all components, relations, and configurations.

Le Nhan et al. [57] used a feature model for provisioning virtual machines which
specifies available operating systems and software. The feature selection was then trans-
formed into Chef configurations which install the expected software on the virtual machine.
However, they were only restricted to a single virtual machine at a time, whereas we
generate a deployment model which may consist of several components, such as virtual
machines, databases or even other cloud offerings, such as Function-as-a-Service.

Quinton et al. [58] presented the concept of using a Cloud Knowledge Model to automat-
ically select features of a feature model representing a cloud provider which finally results
in the deployment of an application. Thereby, the Cloud Knowledge Model is an abstract
view on available cloud offerings and is mapped to the cloud provider feature models.
The selected features have assets such as configuration files or deployment scripts, which
are then executed. In comparison, we generate a declarative deployment model based on
conditional elements which is then executed.

Gui et al. [59] proposed a framework for adaptive real-time applications for OSGi.
Their deployment model consists of components and communication relations and allows
to enable or disable components based on a Boolean flag. In comparison, we explicitly
model the conditions under which components and relations are present. Furthermore,
our model is not focused on OSGi, allows to model any relations between components,
and includes the management of hosting components.

Anthony et al. [60] presented a middleware for a self-configuring automotive control
system. Software components are configured by policies that are loaded into the compo-
nents. These policies execute actions based on information monitored by the middleware.
In comparison, they assigned conditions to actions that should be triggered to adapt the
application, whereas we assign conditions to components and relations to derive a model
of the desired application.

Alkhabbas et al. [61] presented a goal-driven approach for self-adaptive systems
for Internet of Things (IoT). Their framework is based on MAPE-K [62], which includes

Algorithms 2022, 15, 382 18 of 25

monitoring, analyzing, planning, and executing components along with a knowledge
base. For example, a user defines the goal to adjust the light level in a meeting room.
A deployment planner generates a topology by mapping required software components
to existing hardware components while considering expected and current workload. In
contrast, they expected that hardware components already exist, whereas we are able to
provision, e.g., virtual machines. Furthermore, they only simulated the deployment inside
their prototype, whereas we actually deployed our motivating scenario.

Ayed et al. [63] presented an approach for context-aware deployments of component-
based applications on top of existing deployment technologies by using a deployment
model that is platform independent. The deployment model consists of components and
communication relations. Components are semantically described by types that define
their interface, properties, implementations, component dependencies, and placement
constraints regarding hardware. Software components are automatically matched to ex-
isting hardware components during deployment. Thereby, properties, implementations,
dependencies, and placement constraints may have conditions on the context. Furthermore,
the components and relations can have conditions assigned which specify if the component
or relation is present in the deployment. They also detect inconsistencies such as multiple
assignments of the same property or missing connection targets already during design
time [64], whereas we check for inconsistencies during the deployment phase. However,
they focus on software components and dynamic placement of software components to
hardware components and expect that hardware components already exist. In contrast, our
deployment model also allows to model, e.g., hardware components that should be auto-
matically provisioned. Furthermore, our deployment model is based on EDMM [1] and,
therefore, can be mapped to TOSCA, Terraform, Ansible, Kubernetes, Docker Compose,
and more deployment technologies [1,11].

Atoui et al. [65] integrated feature models into a deployment model specialized for
Network Function Virtualization (NFV) infrastructures. They represented the deployment
model as a tree whose nodes are, for example, virtual compute nodes or virtual storage,
and relations, such as composition, allocation, and connection. In addition, the deployment
model includes OR and XOR gateways. These gateways state which subtrees can be
selected. In comparison, our deployment model does not require a tree-like structure, is not
specialized for NFV, and does not include such gateways but complex conditions assigned
to components and relations.

Sáez et al. [66] presented a utility function to select a hosting stack for each busi-
ness component based on key performance indicators. However, only the underlying
hosting stack is variable, whereas in our concept, also business components are variable.
Furthermore, we provide a formal metamodel along with algorithms to derive a deploy-
ment model.

Johnsen et al. [67] combined the functional and deployment variability concepts of
Abstract Behavioural Specification (ABS) [68]. ABS is a specification for modeling the
behavior of concurrent and distributed processes of software systems in a Java-like syntax.
Following SPLE and delta-oriented programming [69,70], functional variability is modeled
using a feature model for a delta-oriented base model. Selected features are linked to deltas
which are applied to the base model to derive the desired product. Deployment variability
refers to execution costs of process statements and resource capacities of compute nodes.
The concepts are combined by integrating the feature model for functional variability with a
feature model for execution costs and another one for resource capacities. As a consequence,
deltas patch the base model not only regarding functionality but also regarding execution
costs and resource capacities. In a given example, a MapReduce [71] master uses this
information to decide which and how many workers to use. This delta-oriented approach is
fundamentally different from our approach to generate the desired outcome since they add
new elements to a common base model while we remove elements from a model containing
all possible elements. Furthermore, we focus on modeling conditional components and
relations inside a deployment model which is not only restricted to compute nodes.

Algorithms 2022, 15, 382 19 of 25

Hochgeschwender et al. [43] presented a feature-oriented Domain-Specific Language
(DSL) to be used in a model-driven engineering-based development process for configuring
robot software architecture in the context of the BRICS robot application development
process (RAP) [72]. The DSL enables to declaratively describe the deployment in a vendor-
neutral manner. Thereby, a feature model describes features whose selection is used along
with a resolution model to transform a template system model into the desired architecture.
In comparison to our work, they focused on robotics, while we do not restrict to any domain.
Furthermore, our approach is not restricted to a specific DSL.

Breitenbücher et al. [73] presented a method to transform a deployment model de-
pending on the context by applying graph transformations. Thereby, context refers to the
state and structure of the application. Management plans are then automatically generated
and executed to provision and manage the application. In comparison, we do not apply
graph transformations but use conditional elements and refer, for example, to costs or
scalability as context.

Terraform and Ansible support conditional components and relations. In the following,
we briefly discuss their concepts since we mentioned them previously. In Terraform, the
count attribute [74] can be used in resource or module blocks to model conditional components.
A corresponding numeric expression sets the value of count either to zero or one. This
expression might be based on user-provided inputs. Relations between components are
modeled using the depends_on attribute of a component or implicitly by accessing attributes
of other resources. However, conditions cannot be assigned to relations. They are present
as long as their source component is. This restriction does not apply to our concept.
Furthermore, we support, for example, the intrinsic function getElementPresence that can be
used inside an expression to specify a condition with respect to the presence of any other
conditional element.

In Ansible, conditional components can be modeled using the when attribute [75]
which conditionally includes components represented by playbooks [1]. The corresponding
expressions use Jinja2 [76] and might be based on host facts or user-provided inputs. Rela-
tions between components are modeled implicitly by imports [1]. The same considerations
which apply to Terraform also apply to Ansible. In future work, we plan to analyze the
variability concepts of other popular deployment technologies and use our approach as an
enabler for technologies that are not aware of such variability concepts.

6.4. Incomplete Deployment Models

Our approach explicitly models the complete deployment model, i.e., each possible
component and relation along with their configurations. In contrast, the following ap-
proaches do not explicitly model the complete deployment model but use, for example, ab-
stract components, patterns, and/or automatic completion. These approaches complement
each other and can be integrated into our approach especially since some of them are
based on TOSCA [77–82]. For example, business-related components can be assigned with
conditions, while the underlying hosting stack is automatically completed or refined using
patterns. We plan to integrate some of these concepts into our approach in future work.

Harzenetter et al. [77,78] presented an approach to model and execute deployment
models using technology-agnostic and vendor-neutral cloud patterns, such as elastic plat-
forms. Thereby, patterns are abstract components inside the deployment model, which
are further refined into concrete components. For example, a user application is hosted
on an elastic platform pattern which is refined to the components “AWS Elastic Beanstalk
Environment” and “AWS Elastic Beanstalk”.

Kuroda et al. [83] presented a method to transform an abstract topology into a concrete
deployable topology. The abstract topology is transformed based on actions that replace
a subgraph with another subgraph until the topology consists only of concrete compo-
nents and relations. A search-based algorithm is used to decide which actions should be
executed. They proved the feasibility of their method by implementing a prototype that
is based on TOSCA.

Algorithms 2022, 15, 382 20 of 25

Knape [79] presented a method to automatically select and deploy software compo-
nents in the cloud by combining feature models and TOSCA. Thereby, the TOSCA model
only consists of software components having an abstract type. Each component expresses
constraints that are used to select a cloud offering along with its configuration based on a
component-specific feature model. Based on this selection, the component type is changed
to a concrete type which results, for example, in the deployment of the component on GCP.

Inzinger et al. [84] presented a methodology to iteratively refine an abstract application
model into a deployment model while considering current customer requirements. Initially,
the model consists only of coarse-grained architecture components, such as a management
system or a gateway. These are then refined to architectural units, such as storage or
computing components. With the use of decision trees, architectural units are refined into
technical units, such as a relational database management system. The root node of a
decision tree represents an architectural unit, intermediate nodes decision points, and leaf
nodes deployment units. Decision points are, for example, strict or eventual consistency.
Deployment units are then provisioned using configuration directives, which contain, for
example, Puppet manifests.

Hirmer et al. [80] presented an approach to model and execute incomplete deployment
models. Such a deployment model is incomplete in the sense that there are, for example, re-
lations without target components. Missing components are iteratively added until every
relation has a target component. For example, a user application has a pending relation
for a web server. Therefore, a web server component is added, which introduces a new
pending relation for a virtual machine. This process is repeated until no component is
missing. Saatkamp et al. [81] makes use of this approach and further injects communication
drivers into components to enable middleware-independent modeling.

Saatkamp et al. [82] presented a method that first splits the hosting components of a
deployment model based on labels. These labels are assigned to business-relevant compo-
nents and represent, for example, the desired deployment on a specific cloud provider such
as AWS. A matching step transforms the hosting components to conform to the specified
label of their hosted business-relevant components. For example, a Java web application
that is hosted on a Tomcat on a virtual machine is labeled to be deployed on AWS. This
results in the replacement of the Tomcat and underlying hosting components with an
AWS Beanstalk component.

6.5. Templating Engines

There exist several templating engines. For example, the Go Templating Engine [85]
is used by the Kubernetes package manager Helm [86] to generate Kubernetes manifests,
Jinja2 is used by Ansible, among others, to access variables inside Playbooks or to generate
configuration files, and Embedded JavaScript Templating (EJS) [87] or Pug [88] can be used
with the Node.js server framework Express [89] for server-side rendering of HTML.

These templating engines support conditional elements but are usually restricted
to specific programming languages, e.g., Go Templating Engine for Golang and EJS for
JavaScript. In comparison, our approach is independent of the used programming language.
Furthermore, our approach is integrated into TOSCA. For example, if a condition on a
group is evaluated as false, then all group members are removed from the deployment
model. Therefore, not even templating engines which are independent of the programming
language are suitable.

7. Threats to Validity

Considering threats to validity regarding the case study, the case study was conducted
by one of the authors and not by one or even multiple probands, being unfamiliar with the
approach. Furthermore, the case study was restricted to our motivating scenario. However,
we are confident about the generalizability of the motivating scenario since from the view
of a graph-based deployment model, the components and relations are simply nodes and
edges possibly representing any kind of application.

Algorithms 2022, 15, 382 21 of 25

Furthermore, we validated our approach with a prototype based on TOSCA. We did
not validate applying our approach, for example, to Docker Compose. However, since our
approach is based on EDMM, we are confident about the generalizability.

Considering threats to validity regarding the benchmark, the median of several runs
was used to mitigate outliers. However, the benchmark was executed while the system was
not under load. Combining the results of several benchmarks distributed over several days
while the system is under various load would improve the validity of the benchmarking
results. Furthermore, the benchmarking is in respect of a single implementation. Other
implementations might perform better or worse.

8. Conclusions and Future Work

Describing different variants of an application deployment using individual deploy-
ment models quickly results in a large number of models which are error prone to maintain.
Deployment technologies, such as Terraform and Ansible, address this by conditional
components and dependencies. We applied this concept to TOSCA in form of a prepro-
cessing step. By transforming Variability4TOSCA models to standard TOSCA models,
our approach can be easily integrated into existing toolchains since employed TOSCA
orchestrators can be used without any modifications. However, this preprocessing step can
also be applied to other deployment technologies, such as Docker Compose which also
does not support conditional components and dependencies.

We plan to extend our method to fully automate the Deployment Execution Phase.
Therefore, requirements must be automatically identified, and respective Variability Inputs
must be automatically specified. Furthermore, changing requirements should be detected
to continuously update the running application. In addition, we are working on a graphical
modeling tool for modeling Variability4TOSCA models.

Author Contributions: Conceptualization, M.S., U.B. and K.K.; methodology, M.S., U.B. and K.K.;
software, M.S.; validation, M.S., U.B., K.K., S.B. and F.L.; formal analysis, M.S.; investigation, M.S.;
resources, M.S. and U.B.; data curation, M.S.; writing—original draft preparation, M.S. and U.B.;
writing—review and editing, M.S., U.B., K.K., S.B. and F.L.; visualization, M.S. and U.B.; supervision,
U.B., S.B. and F.L.; project administration, U.B.; funding acquisition, U.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This publication is based on the research project SofDCar (19S21002), which is funded by
the German Federal Ministry for Economic Affairs and Climate Action.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This publication is based on the research project SofDCar (19S21002), which is
funded by the German Federal Ministry for Economic Affairs and Climate Action.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wurster, M.; Breitenbücher, U.; Falkenthal, M.; Krieger, C.; Leymann, F.; Saatkamp, K.; Soldani, J. The Essential Deployment

Metamodel: A Systematic Review of Deployment Automation Technologies. SICS Softw.-Intensive Cyber-Phys. Syst. 2019, 35, 63–75.
[CrossRef]

2. Endres, C.; Breitenbücher, U.; Falkenthal, M.; Kopp, O.; Leymann, F.; Wettinger, J. Declarative vs. Imperative: Two Modeling
Patterns for the Automated Deployment of Applications. In Proceedings of the 9th International Conference on Pervasive
Patterns and Applications (PATTERNS 2017), Athens, Greece, 19–23 February 2017; pp. 22–27.

3. Google Cloud Functions. Available online: https://cloud.google.com/functions (accessed on 16 October 2022).
4. OASIS. TOSCA Simple Profile in YAML Version 1.3; Organization for the Advancement of Structured Information Standards

(OASIS): 2020. Available online: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-
Profile-YAML-v1.3-os.html (accessed on 16 October 2022).

5. Google Cloud App Engine. Available online: https://cloud.google.com/appengine (accessed on 16 October 2022).

http://doi.org/10.1007/s00450-019-00412-x
https://cloud.google.com/functions
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://cloud.google.com/appengine

Algorithms 2022, 15, 382 22 of 25

6. Google Cloud SQL. Available online: https://cloud.google.com/sql (accessed on 16 October 2022).
7. Terraform. Available online: https://terraform.io (accessed on 16 October 2022).
8. Puppet. Available online: https://puppet.com (accessed on 16 October 2022).
9. Kubernetes. Available online: https://kubernetes.io (accessed on 16 October 2022).
10. Ansible. Available online: https://ansible.com (accessed on 16 October 2022).
11. Wurster, M.; Breitenbücher, U.; Brogi, A.; Falazi, G.; Harzenetter, L.; Leymann, F.; Soldani, J.; Yussupov, V. The EDMM Modeling

and Transformation System. In Proceedings of the Service-Oriented Computing—ICSOC 2019 Workshops, Toulouse, France,
28–31 October 2019; Springer: Cham, Switzerland, 2019.

12. OpenTOSCA Vintner. Available online: https://github.com/opentosca/opentosca-vintner (accessed on 16 October 2022).
13. xOpera. Available online: https://github.com/xlab-si/xopera-opera (accessed on 16 October 2022).
14. Unfurl. Available online: https://github.com/onecommons/unfurl (accessed on 16 October 2022).
15. Wurster, M.; Breitenbücher, U.; Harzenetter, L.; Leymann, F.; Soldani, J.; Yussupov, V. TOSCA Light: Bridging the Gap between

the TOSCA Specification and Production-ready Deployment Technologies. In Proceedings of the 10th International Conference
on Cloud Computing and Services Science (CLOSER 2020), Prague, Czech Republic, 7–9 May 2020; pp. 216–226.

16. Binz, T.; Breitenbücher, U.; Kopp, O.; Leymann, F. TOSCA: Portable Automated Deployment and Management of Cloud
Applications. In Advanced Web Services; Springer: New York, NY, USA, 2014; pp. 527–549.

17. Binz, T.; Breiter, G.; Leymann, F.; Spatzier, T. Portable Cloud Services Using TOSCA. IEEE Internet Comput. 2012, 16, 80–85.
[CrossRef]

18. Windows-Subsystem for Linux. Available online: https://learn.microsoft.com/en-us/windows/wsl (accessed on 16 October
2022).

19. Pohl, K.; Böckle, G.; van der Linden, F. Software Product Line Engineering; Springer: Berlin/Heidelberg, Germany, 2005.
20. Pohl, K.; Metzger, A. Variability Management in Software Product Line Engineering. In Proceedings of the 28th International

Conference on Software Engineering, ICSE ’06, Shanghai, China, 20–28 May 2006; Association for Computing Machinery:
New York, NY, USA, 2006; pp. 1049–1050.

21. Pohl, K.; Metzger, A. Software Product Lines. In The Essence of Software Engineering; Springer International Publishing: Cham,
Switzerland, 2018; pp. 185–201.

22. Beuche, D.; Dalgarno, M. Software product line engineering with feature models. Overload J. 2007, 78, 5–8.
23. Kang, K.C.; Cohen, S.G.; Hess, J.A.; Novak, W.E.; Peterson, A.S. Feature-Oriented Domain Analysis (FODA) Feasibility Study;

Technical Report; Carnegie Mellon University, Software Engineering Institute: Pittsburgh, PA, USA, 1990.
24. Groher, I.; Voelter, M. Expressing feature-based variability in structural models. In Proceedings of the Workshop on Managing

Variability for Software Product Lines, Kyoto, Japan, 4–10 September 2007.
25. Czarnecki, K.; Antkiewicz, M.; Kim, C.H.P.; Lau, S.; Pietroszek, K. Model-Driven Software Product Lines. In Proceedings of

the Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA ’05, San Diego, CA, USA, 16–20 October 2005; Association for Computing Machinery: New York, NY,
USA, 2005; pp. 126–127.

26. Czarnecki, K.; Antkiewicz, M. Mapping Features to Models: A Template Approach Based on Superimposed Variants. In
Generative Programming and Component Engineering; Glück, R., Lowry, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp.
422–437.

27. Ziadi, T.; Hélouët, L.; Jézéquel, J.M. Towards a UML Profile for Software Product Lines. In Software Product-Family Engineering;
van der Linden, F.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 129–139.

28. Clauß, M.; Jena, I. Modeling variability with UML. In GCSE 2001 Young Researchers Workshop; Springer: Berlin/Heidelberg,
Germany, 2001.

29. Razavian, M.; Khosravi, R. Modeling Variability in Business Process Models Using UML. In Proceedings of the Fifth International
Conference on Information Technology: New Generations (ITNG 2008), Las Vegas, NV, USA, 7–8 April 2008; pp. 82–87.

30. Junior, E.A.O.; de Souza Gimenes, I.M.; Maldonado, J.C. Systematic Management of Variability in UML-based Software Product
Lines. J. Univers. Comput. Sci. 2010, 16, 2374–2393.

31. Korherr, B.; List, B. A UML 2 Profile for Variability Models and their Dependency to Business Processes. In Proceedings of the
18th International Workshop on Database and Expert Systems Applications (DEXA 2007), Regensburg, Germany, 3–7 September
2007; pp. 829–834.

32. Robak, S.; Franczyk, B.; Politowicz, K. Extending the UML for modeling variability for system families. Int. J. Appl. Math. Comput.
Sci 2002, 12, 285–298.

33. Ferko, E.; Bucaioni, A.; Carlson, J.; Haider, Z. Automatic Generation of Configuration Files: An Experience Report from the
Railway Domain. J. Object Technol. 2021, 20, 1–15. [CrossRef]

34. The C Preprocessor: ConditionalsExpress—Node.js Web Application Framework. Available online: https://gcc.gnu.org/
onlinedocs/gcc-3.0.2/cpp_4.html (accessed on 16 October 2022).

35. Munge—Simple Java Preprocessor. Available online: https://github.com/sonatype/munge-maven-plugin (accessed on 16
October 2022).

36. Antenna—An Ant-to-End Solution For Wireless Java. Available online: http://antenna.sourceforge.net (accessed on 16 October
2022).

https://cloud.google.com/sql
https://terraform.io
https://puppet.com
https://kubernetes.io
https://ansible.com
https://github.com/opentosca/opentosca-vintner
https://github.com/xlab-si/xopera-opera
https://github.com/onecommons/unfurl
http://dx.doi.org/10.1109/MIC.2012.43
https://learn.microsoft.com/en-us/windows/wsl
http://dx.doi.org/10.5381/jot.2021.20.3.a4
https://gcc.gnu.org/onlinedocs/gcc-3.0.2/cpp_4.html
https://gcc.gnu.org/onlinedocs/gcc-3.0.2/cpp_4.html
https://github.com/sonatype/munge-maven-plugin
http://antenna.sourceforge.net

Algorithms 2022, 15, 382 23 of 25

37. Cavalcante, E.; Almeida, A.; Batista, T.; Cacho, N.; Lopes, F.; Delicato, F.C.; Sena, T.; Pires, P.F. Exploiting Software Product Lines
to Develop Cloud Computing Applications. In Proceedings of the 16th International Software Product Line Conference, SPLC ’12,
Salvador, Brazil, 2–7 September 2012; Association for Computing Machinery: New York, NY, USA, 2012; Volume 2, pp. 179–187.

38. Lee, K.C.A.; Segarra, M.T.; Guelec, S. A deployment-oriented development process based on context variability modeling. In Pro-
ceedings of the 2014 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD),
Lisbon, Portugal, 7–9 January 2014; pp. 454–459.

39. Tahri, A.; Duchien, L.; Pulou, J. Using Feature Models for Distributed Deployment in Extended Smart Home Architecture. In
Software Architecture; Weyns, D., Mirandola, R., Crnkovic, I., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp.
285–293.

40. Jamshidi, P.; Pahl, C. Orthogonal Variability Modeling to Support Multi-cloud Application Configuration. In Communications in
Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 249–261.

41. Kumara, I.P.; Ariz, M.; Baruwal Chhetri, M.; Mohammadi, M.; Heuvel, W.J.V.D.; Tamburri, D.A.A. FOCloud: Feature Model
Guided Performance Prediction and Explanation for Deployment Configurable Cloud Applications. IEEE Trans. Serv. Comput.
2022. [CrossRef]

42. Saller, K.; Lochau, M.; Reimund, I. Context-Aware DSPLs: Model-Based Runtime Adaptation for Resource-Constrained Systems.
In Proceedings of the 17th International Software Product Line Conference Co-Located Workshops, SPLC ’13 Workshops, Tokyo,
Japan, 26–30 August 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 106–113.

43. Hochgeschwender, N.; Gherardi, L.; Shakhirmardanov, A.; Kraetzschmar, G.K.; Brugali, D.; Bruyninckx, H. A model-based
approach to software deployment in robotics. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3907–3914.

44. Jansen, S.; Brinkkemper, S. Modelling Deployment Using Feature Descriptions and State Models for Component-Based Software
Product Families. In Component Deployment; Dearle, A., Eisenbach, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 119–133.

45. Mietzner, R.; Leymann, F. A Self-Service Portal for Service-Based Applications. In Proceedings of the IEEE International Conference
on Service-Oriented Computing and Applications (SOCA 2010), Perth, Australia, 13–15 December 2010.

46. Mietzner, R. A Method and Implementation to Define and Provision Variable Composite Applications, and Its Usage in Cloud
Computing. Ph.D. Thesis, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik, Stuttgart, Germany,
2010.

47. Mietzner, R.; Unger, T.; Titze, R.; Leymann, F. Combining Different Multi-Tenancy Patterns in Service-Oriented Applications. In
Proceedings of the 13th IEEE Enterprise Distributed Object Conference (EDOC 2009), Auckland, New Zealand, 1–4 September
2009; Society, I.C., Ed.; pp. 131–140.

48. Mietzner, R.; Leymann, F.; Unger, T. Horizontal and Vertical Combination of Multi-Tenancy Patterns in Service-Oriented
Applications. Enterp. Inf. Syst. 2010, 5, 59–77. [CrossRef]

49. Mietzner, R.; Fehling, C.; Karastoyanova, D.; Leymann, F. Combining horizontal and vertical composition of services. In
Proceedings of the IEEE International Conference on Service Oriented Computing and Applications (SOCA 2010), Perth,
Australia, 13–15 December 2010.

50. Koetter, F.; Kochanowski, M.; Renner, T.; Fehling, C.; Leymann, F. Unifying Compliance Management in Adaptive Environments
through Variability Descriptors (Short Paper). In Proceedings of the 6th IEEE International Conference on Service Oriented
Computing and Applications (SOCA), Koloa, HI, USA, 16–18 December 2013; pp. 1–8.

51. Koetter, F.; Kintz, M.; Kochanowski, M.; Fehling, C.; Gildein, P.; Leymann, F.; Weisbecker, A. Unified Compliance Modeling
and Management using Compliance Descriptors. In Proceedings of the 6th International Conference on Cloud Computing and
Services Science—Volume 2: CLOSER, INSTICC, Rome, Italy, 23–25 April 2016; pp. 159–170.

52. Mietzner, R.; Leymann, F. Generation of BPEL Customization Processes for SaaS Applications from Variability Descriptors. In
Proceedings of the International Conference on Services Computing, Industry Track, SCC, Honolulu, HI, USA, 8–11 July 2008.

53. Mietzner, R.; Unger, T.; Leymann, F. Cafe: A Generic Configurable Customizable Composite Cloud Application Framework. In
Proceedings of the On the Move to Meaningful Internet Systems: OTM 2009 (CoopIS 2009), Vilamoura, Portugal, 1–6 November
2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 357–364.

54. Fehling, C.; Leymann, F.; Mietzner, R. A Framework for Optimized Distribution of Tenants in Cloud Applications. In Proceedings
of the 2010 IEEE International Conference on Cloud Computing (CLOUD 2010), Miami, FL, USA, 5–10 July 2010; pp. 1–8.

55. Mietzner, R.; Leymann, F. Towards Provisioning the Cloud: On the Usage of Multi-Granularity Flows and Services to Realize a
Unified Provisioning Infrastructure for SaaS Applications. In Proceedings of the International Congress on Services (SERVICES
2008), Honolulu, HI, USA, 6–11 July 2008; pp. 3–10.

56. Fehling, C.; Mietzner, R. Composite as a Service: Cloud Application Structures, Provisioning, and Management. It Inf. Technol.
2011, 53, 188–194. [CrossRef]

57. Le Nhan, T.; Sunyé, G.; Jézéquel, J.M. A Model-Driven Approach for Virtual Machine Image Provisioning in Cloud Computing.
In Service-Oriented and Cloud Computing; De Paoli, F., Pimentel, E., Zavattaro, G., Eds.; Springer: Berlin/Heidelberg, Germany,
2012; pp. 107–121.

http://dx.doi.org/10.1109/TSC.2022.3142853
http://dx.doi.org/10.1080/17517575.2010.492950
http://dx.doi.org/10.1524/itit.2011.0642

Algorithms 2022, 15, 382 24 of 25

58. Quinton, C.; Romero, D.; Duchien, L. Automated Selection and Configuration of Cloud Environments Using Software Product
Lines Principles. In Proceedings of the 2014 IEEE 7th International Conference on Cloud Computing, Anchorage, AK, USA, 2–27
July 2014; pp. 144–151.

59. Gui, N.; De Florio, V.; Sun, H.; Blondia, C. A Framework for Adaptive Real-Time Applications: The Declarative Real-Time OSGi
Component Model. In Proceedings of the 7th Workshop on Reflective and Adaptive Middleware, ARM ’08, Leuven, Belgium,
1–5 December 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 35–40.

60. Anthony, R.J.; Chen, D.; Pelc, M.; Persson, M.; Torngren, M. Context-aware adaptation in DySCAS. Electron. Commun. EASST
2009, 19. [CrossRef]

61. Alkhabbas, F.; Murturi, I.; Spalazzese, R.; Davidsson, P.; Dustdar, S. A Goal-Driven Approach for Deploying Self-Adaptive IoT
Systems. In Proceedings of the 2020 IEEE International Conference on Software Architecture (ICSA), Salvador, Brazil, 16–20
March 2020; pp. 146–156.

62. Kephart, J.; Chess, D. The vision of autonomic computing. Computer 2003, 36, 41–50. [CrossRef]
63. Ayed, D.; Taconet, C.; Bernard, G.; Berbers, Y. CADeComp: Context-aware deployment of component-based applications. J. Netw.

Comput. Appl. 2008, 31, 224–257. [CrossRef]
64. Ayed, D.; Taconet, C.; Bernard, G.; Berbers, Y. An Adaptation Methodology for the Deployment of Mobile Component-based

Applications. In Proceedings of the 2006 ACS/IEEE International Conference on Pervasive Services, Lyon, France, 26–29 June
2006; pp. 193–202.

65. Atoui, W.S.; Assy, N.; Gaaloul, W.; Yahia, I.G.B. Configurable Deployment Descriptor Model in NFV. J. Netw. Syst. Manag. 2020,
28, 693–718. [CrossRef]

66. Sáez, S.G.; Andrikopoulos, V.; Bitsaki, M.; Leymann, F.; van Hoorn, A. Utility-Based Decision Making for Migrating Cloud-Based
Applications. ACM Trans. Internet Technol. 2018, 18, 1–22. [CrossRef]

67. Johnsen, E.B.; Schlatte, R.; Tapia Tarifa, S.L. Deployment Variability in Delta-Oriented Models. In Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change; Margaria, T., Steffen, B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 304–319.

68. The ABS Modeling Language. Available online: https://abs-models.org (accessed on 16 October 2022).
69. Schaefer, I.; Bettini, L.; Bono, V.; Damiani, F.; Tanzarella, N. Delta-oriented programming of software product lines. In Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2010; Volume 6287, pp. 77–91.

70. Schaefer, I.; Damiani, F. Pure Delta-Oriented Programming. In Proceedings of the 2nd International Workshop on Feature-
Oriented Software Development, FOSD ’10, Eindhoven, The Netherlands, 10 October 2010; Association for Computing Machinery:
New York, NY, USA, 2010; pp. 49–56.

71. Dean, J.; Ghemawat, S. MapReduce. Commun. ACM 2008, 51, 107–113. [CrossRef]
72. Kraetzschmar, G.K.; Shakhimardanov, A.; Paulus, J.; Hochgeschwender, N.; Reckhaus, M. Best Practice in Robotics. In

Deliverable D-2.2: Specifications of Architectures, Modules, Modularity, and Interfaces for the BROCTE Software Platform and Robot
Control Architecture Workbench; Bonn-Rhine-Sieg University: Sankt Augustin, Germany, 2010.

73. Breitenbücher, U.; Binz, T.; Kopp, O.; Leymann, F.; Wieland, M. Context-Aware Provisioning and Management of Cloud
Applications. In Cloud Computing and Services Science; Communications in Computer and Information Science; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 151–168.

74. Terraform—The Count Meta-Argument. Available online: https://terraform.io/language/meta-arguments/count (accessed on
16 October 2022).

75. Ansible—Conditionals. Available online: https://docs.ansible.com/ansible/6/user_guide/playbooks_conditionals.html (ac-
cessed on 16 October 2022).

76. Jinja2. Available online: https://jinja.palletsprojects.com (accessed on 16 October 2022).
77. Harzenetter, L.; Breitenbücher, U.; Falkenthal, M.; Guth, J.; Krieger, C.; Leymann, F. Pattern-based Deployment Models and Their

Automatic Execution. In Proceedings of the 11th IEEE/ACM International Conference on Utility and Cloud Computing (UCC
2018). IEEE Computer Society, Zurich, Switzerland, 17–20 December 2018; pp. 41–52.

78. Harzenetter, L.; Breitenbücher, U.; Falkenthal, M.; Guth, J.; Leymann, F. Pattern-based Deployment Models Revisited: Automated
Pattern-driven Deployment Configuration. In Proceedings of the Twelfth International Conference on Pervasive Patterns and
Applications (PATTERNS 2020), Nice, France, 25–29 October 2020; pp. 40–49.

79. Knape, S. Dynamic Automated Selection and Deployment of Software Components within a Heterogeneous Multi-Platform
Environment. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2015.

80. Hirmer, P.; Breitenbücher, U.; Binz, T.; Leymann, F. Automatic Topology Completion of TOSCA-based Cloud Applications. In
Proceedings des CloudCycle14 Workshops auf der 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI); Gesellschaft für Informatik
e.V. (GI): Bonn, Germany, 2014; Volume 232, LNI; pp. 247–258.

81. Saatkamp, K.; Breitenbücher, U.; Leymann, F.; Wurster, M. Generic Driver Injection for Automated IoT Application Deployments.
In Proceedings of the 19th International Conference on Information Integration and Web-based Applications & Services, Salzburg,
Austria, 4–6 December 2017; ACM: New York, NY, USA, 2017; pp. 320–329.

http://dx.doi.org/10.14279/tuj.eceasst.19.245
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1016/j.jnca.2006.12.002
http://dx.doi.org/10.1007/s10922-020-09531-2
http://dx.doi.org/10.1145/3140545
https://abs-models.org
http://dx.doi.org/10.1145/1327452.1327492
https://terraform.io/language/meta-arguments/count
https://docs.ansible.com/ansible/6/user_guide/playbooks_conditionals.html
https://jinja.palletsprojects.com

Algorithms 2022, 15, 382 25 of 25

82. Saatkamp, K.; Breitenbücher, U.; Kopp, O.; Leymann, F. Topology Splitting and Matching for Multi-Cloud Deployments. In
Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), Porto, Portugal,
24–26 April 2017; pp. 247–258.

83. Kuroda, T.; Kuwahara, T.; Maruyama, T.; Satoda, K.; Shimonishi, H.; Osaki, T.; Matsuda, K. Weaver: A Novel Configuration
Designer for IT/NW Services in Heterogeneous Environments. In Proceedings of the 2019 IEEE Global Communications
Conference (GLOBECOM), Big Island, HI, USA, 9–14 December 2019; pp. 1–6.

84. Inzinger, C.; Nastic, S.; Sehic, S.; Vögler, M.; Li, F.; Dustdar, S. MADCAT: A Methodology for Architecture and Deployment
of Cloud Application Topologies. In Proceedings of the 2014 IEEE 8th International Symposium on Service Oriented System
Engineering, Oxford, UK, 7–11 April 2014; pp. 13–22.

85. Go Templating Engine. Available online: https://pkg.go.dev/text/template (accessed on 16 October 2022).
86. Helm. Available online: https://helm.sh (accessed on 16 October 2022).
87. Embedded JavaScript Templating. Available online: https://ejs.co (accessed on 16 October 2022).
88. Pug. Available online: https://pugjs.org (accessed on 16 October 2022).
89. Express. Available online: https://expressjs.com (accessed on 16 October 2022).

https://pkg.go.dev/text/template
https://helm.sh
https://ejs.co
https://pugjs.org
https://expressjs.com

	Introduction
	Fundamentals and Motivation
	Fundamentals of Deployment Automation
	Motivating Scenario

	Variable Deployment Modeling Method
	Step ➊: Identify Deployment Variants
	Step ➋: Create Variable Deployment Model
	Step ➌: Specify Variability Inputs
	Step ➍: Derive Variability-Resolved Deployment Model
	Step ➎: Execute Deployment Model

	Variable Deployment Models
	Variable Deployment Metamodel
	Algorithms for Resolving Variability
	Variability Resolving Algorithm
	Element Presence Check Algorithm
	Consistency Check Algorithm

	Prototypical Validation and Case Study
	Variability4TOSCA: An Extension of the TOSCA Standard
	Mapping EDMM to TOSCA
	Extending TOSCA for VDMM

	System Architecture for a Variability4TOSCA Deployment System
	OpenTOSCA Vintner
	Case Study Based on the Prototype
	Benchmark Evaluation of the Variability Resolver Prototype

	Related Work
	Software Product Line Engineering
	Variable Composite Applications
	Context-Aware Deployments
	Incomplete Deployment Models
	Templating Engines

	Threats to Validity
	Conclusions and Future Work
	References

