
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Developing an Ontology on
Information Governance Using

Description Logic

Denis Moslavac

Course of Study: Autonomous Systems

Examiner: Prof. Dr.-Ing. habil. Bernhard Mitschang

Supervisor: Dipl. Phys. Cataldo Mega

Commenced: August 1, 2023

Completed: February 1, 2024

Abstract

Currently, companies have high compliance requirements. Enterprises consult with Subject Matter
Experts (SME) on regulatory compliance, for designing suitable compliance solutions, while
simultaneously assessing for possible violations. While this is a crucial aspect of Information
Governance (IG), this constitutes a complex and financially burdensome challenge, especially for
startups or smaller companies. Furthermore, according to recent surveys, approximately 40% of
companies are exposed to compliance risks due to insufficient implemented IG measures. To
overcome this problem, this thesis introduces an Information Governance Ontology (IGONTO),
which implements concepts and knowledge of the IG domain. IGONTO demonstrates how to
capture IG knowledge in an ontology together with regulatory requirements, and possible solutions
that satisfy regulatory compliance use cases. Moreover, individual architecture solutions are inferred
based on regulatory requirements. IGONTO is developed as an aggregation of multiple ontologies,
each specific to a sub-domain of the larger IG-domain. These sub-domains represent unique but
relevant contexts, with concepts that establish connections between them. We designed IGONTO
with a focus on the European General Data Protection Regulation (GDPR) and its regulatory
requirements. Validation is performed through SHACL scripts implemented for each domain to
ensure consistency. IGONTO’s usefulness is verified by evaluating two use cases that show what
companies of different sizes must implement to reach regulatory compliance. The evaluation
demonstrates that IGSO can correctly answer SPARQL queries that help identify the necessary
compliance measures as required by the 99 articles from GDPR.

3

Contents

1 Introduction 15

2 Context 17

3 Ontology Development - Prerequisites 19
3.1 General Approach . 19

3.1.1 Ontology Hierarchy . 19
3.1.2 Object Property Structure . 20
3.1.3 Datatype Property Structure . 22

3.2 Reasoning . 23
3.2.1 Ontology Reasoning and Its Parameters 23
3.2.2 Reasoning Methods . 24
3.2.3 IGONTO Characterization . 26
3.2.4 Reasoning Choice . 28
3.2.5 Description Logic (DL) . 28
3.2.6 ALC - The Smallest Description Logic 29
3.2.7 SROIQ - Description Logic . 31

3.3 Shapes Constraint Language (SHACL) . 35
3.3.1 IGONTO Validation . 35
3.3.2 PropertyGroups . 36

3.4 Ontology Fusion . 40
3.4.1 Concept Fusion . 40
3.4.2 Schema Fusion . 42
3.4.3 Instance Connection . 43

4 IGONTO Development 45
4.1 Jurisdiction Ontology . 47
4.2 Organization Ontology . 50
4.3 Lifecycle Ontology . 52
4.4 Information Ontology . 53
4.5 Implementation Ontology . 55

4.5.1 ArchitectureDesign Ontology . 56
4.5.2 DataDomain Ontology . 58
4.5.3 IGServicesDomain Ontology . 60
4.5.4 ImplementationDomain Ontology . 62
4.5.5 OrganizationDomain Ontology . 63
4.5.6 PlatformDomain Ontology . 64
4.5.7 RegulatoryDomain Ontology . 66
4.5.8 RequirementDomain Ontology . 70

5

4.5.9 TOSCA Ontology . 70
4.5.10 PractitionerDomain, StandardsDomain, SystemsDomain and VendorDo-

main Ontology . 73
4.6 Semantic Web Rule Language (SWRL) Rules 74

4.6.1 Jurisdiction Rules . 74
4.6.2 Organization Rules . 77
4.6.3 Solution Rules . 79

5 Evaluation 81
5.1 Use-Case Scenario . 81

5.1.1 General Queries . 82
5.1.2 Use-case Queries . 85

5.2 Performance . 96
5.3 Validation . 101
5.4 Further Development . 103

5.4.1 Toward an IGONTO-Based Expert System Solution 103
5.4.2 Application Design . 105
5.4.3 Agile Development . 110

6 Conclusion 113

7 Outlook 115
7.1 Refinement . 115
7.2 Use Case Extension . 116

8 Related Work 117

9 Acknowledgement 119

Bibliography 121

6

List of Figures

2.1 The IGONTO framework [IGONTO23]. 18

3.1 IGONTO topology. 19
3.2 Object property structure. 21
3.3 Example of reasoner inconsistency. 22
3.4 Knowledge graph metrics. 26
3.5 SHACL example. 36
3.6 SHACL validation report example. 36
3.7 PropertyGroup hierarchy implementation. 38
3.8 Ontology fusion. 41
3.9 Example fusion of abstract classes. 41
3.10 Example fusion of classes with different a point of view. 41
3.11 Example of a schema fusion from abstract classes. 42

4.1 Visualization of the Jurisdiction ontology. 48
4.2 Visualization of annotation property. 48
4.3 Visualization of the Organization ontology. 52
4.4 Visualization of the Lifecycle ontology. 54
4.5 Visualization of the Information ontology. 55
4.6 Visualization of the Implementation ontology hierarchy. 56
4.7 Visualization of the ArchitectureDesign ontology. 57
4.8 Visualization of the DataDomain ontology. 61
4.9 Visualization of the RegulatoryDomain ontology hierarchy. 67
4.10 Visualization of the TOSCA ontology. 71

5.1 Gruff result visualization of Query 1. 84
5.2 Gruff result visualization of Query 2. 84
5.3 Gruff result visualization of Query 3 (1). 84
5.4 Gruff result visualization of Query 3 (2). 84
5.5 Gruff result visualization of Query 4 (1). 84
5.6 Gruff result visualization of Query 4 (2). 85
5.7 Gruff result visualization of Query 6. 86
5.8 Gruff result visualization of Query 7 with the capability LegalP33. 87
5.9 Gruff result visualization of Query 8 with legal capabilities connected to the

LegalInstance organization. 89
5.10 Gruff result visualization of Query 9 for small enterprises (1). 90
5.11 Gruff result visualization of Query 9 for large enterprises (2). 90
5.12 Gruff result visualization of Query 10 for small enterprises. 91
5.13 Gruff result visualization of Query 11a. 93
5.14 Gruff result visualization legend of Query 11b. 94

7

5.15 Gruff result visualization of Query 11b. 94
5.16 High-level architecture of Alfresco [Alf24b]. 95
5.17 Gruff result visualization of Query 12 for small enterprises. 96
5.18 Performance overview for Queries 0-12 in IGONTO. 97
5.19 Performance overview for Queries 0-12 in IGONTO without ORDER BY. 98
5.20 Performance overview for Queries 1-5 in Jurisdiction. 99
5.21 SHACL Shapes building schema (1). 102
5.22 SHACL Shapes building schema (2). 102
5.23 Proposed system design for the IGONTO application. 105
5.24 Graph visualization design concept for the IGONTO application. 109
5.25 Agile development of IGONTO. 111

7.1 Refinement reason example. 115

8

List of Tables

3.1 Description Logic features. 31
3.2 Mapping of DL Syntax to OWL 2 keywords. 34

4.1 Graph legend. 46
4.2 Hierarchy of Obligations, Rights and Requirements. 50
4.3 Remaining hierarchy of the ArchitectureDesign ontology. 58
4.4 Remaining hierarchy of the DataDomain ontology. 60
4.5 Hierarchy of the IGServiceDomain ontology. 62
4.6 Hierarchy of the ImplementationDomain ontology. 63
4.7 Hierarchy of Occurrence in the OrganizationDomain ontology. 64
4.8 Hierarchy of the PlatformDomain ontology. 66
4.9 Hierarchy of the remaining RegulatoryDomain ontology. 69
4.10 Hierarchy of the RequirementDomain ontology. 70
4.11 Hierarchy of the remaining TOSCA ontology. 73
4.12 Hierarchy of the remaining Domains ontology. 74

5.1 IGONTO query deviation calculations. 98
5.2 IGONTO query deviation calculations. 99
5.3 Jurisdiction query deviation calculations. 100
5.4 Query 13 and Query 14 deviation calculations. 101
5.5 Used axioms translation. 101

9

Listings

3.1 Description Logic (DL) OWL implementation example. 34
3.2 Definition of SHACL [23e]. 37
3.3 SHACL PropertyGroup definition [23e]. 38
3.4 SHACL PropertyGroup example. 38

4.1 SWRL Rule S1 OWL implementation. 76

5.1 All PREFIXES included in every SPARQL query. 81
5.2 Implementation of SPARQL Query 1. 82
5.3 Implementation of SPARQL Query 2. 83
5.4 Implementation of SPARQL Query 3. 83
5.5 Implementation of SPARQL Query 4. 83
5.6 Implementation of SPARQL Query 5. 83
5.7 Implementation of SPARQL Query 6. 86
5.8 Implementation of SPARQL Query 7. 87
5.9 Implementation of SPARQL Query 8. 88
5.10 Implementation of SPARQL Query 9. 89
5.11 Implementation of SPARQL Query 10. 90
5.12 Implementation of SPARQL Query 11a. 92
5.13 Implementation of SPARQL Query 11b. 93
5.14 Implementation of SPARQL Query 12. 95
5.15 Implementation of SPARQL Query 13. 100
5.16 Implementation of SPARQL Query 14. 100
5.17 Example of a SPARQL result without PropertyGroups. 107
5.18 Example of a SPARQL result with PropertyGroups. 108

11

Acronyms

ARM Association Rule Mining. 25

CCO Chief Compliance Officer. 51

CIGO Chief Information Governance Officer. 51

CSO Chief Security Officer. 51

DCAT Data Catalog Vocabulary. 23

DL Description Logic. 5, 11, 25, 28, 29, 33, 34, 45, 46, 66, 101, 113

DMC Document Management Component. 94

DPO Data Protection Officer. 51

DSL Domain Specific Language. 70

ECM Enterprise Content Management. 62, 92

EEA European Economic Area. 47, 82

EIM Enterprise Information Management. 15, 17, 117

ERM Electronic Records Management. 51

FOL First-Order Logic. 24, 25, 28

FR Functional Requirements. 91

GDPR General Data Protection Regulation. 3, 16, 27, 47, 57, 66

IG Information Governance. 3, 15, 17, 62, 82, 113, 117

IGONTO Information Governance Ontology. 3

ILP Inductive Logic Programming. 25

NFR Non-Functional Requirements. 91

OASIS Organization for the Advancement of Structured Information Standards. 70

OR Obligatory Requirements. 91

PII Personally Identifiable Information. 105, 116

RDBMS Relational Database Management System. 94

RESCAL Relational Single-Channel Analysis of Learning. 25

RIM Records and Information Management. 51, 78, 79, 89, 90, 91

13

Acronyms

RR Regulatory Requirements. 86

SHACL Shapes Constraint Language. 5, 35, 36, 37, 39, 42, 101

SME Subject Matter Experts. 3, 15

SWRL Semantic Web Rule Language. 6, 45, 47, 50, 56, 74, 75, 77, 79, 113, 115

TOSCA Topology and Orchestration Specification for Cloud Applications. 70

URI Uniform Resource Identifier. 41, 87, 101, 102

14

1 Introduction

Enterprise Information Management (EIM) is crucial to the success of modern enterprises and
becomes complicated and challenging when required to satisfy the numerous compliance require-
ments. Regulatory requirements vary according to the jurisdictions in which the companies operate.
Because many companies seek to expand to more regions, with additional requirements, overall
compliance becomes even more complicated. Therefore, enterprises hire compliance SME’s to
address this challenge at higher costs.

SME’s are crucial in bridging the knowledge gap between compliance needs and effective EIM,
but the need to continuously adapt their IG strategy leads to high expenses. This financial burden
poses a major challenge to startups and small- or medium-sized companies that must operate with
a limited budget. Despite the financial challenges, both domain expertise and knowledge remain
indispensable to ensure compliance and avoid non-conformance with laws and regulations.

This master’s thesis aims to implement an ontology on IG. The term “ontology”, of Greek origin,
means “the study of being”, which can be divided into onto- (“being” or “that which is”) and -logia
(“logical discourse”). While the origin of the term was already recorded by the Oxford English
Dictionary in 1664 and has philosophical roots, its prominence in technical applications began
with the development of the World Wide Web in the 1990s, which further accelerated interest in
ontologies. In technical domains, ontologies are organized frameworks that define concepts and
their relationships within a formal structure, enabling an unambiguous and systematic representation
of complex and interrelated aspects of a specific domain.

This thesis suggests an ontology that encapsulates the knowledge of the information governance
domain and implements a prototype to prove the approach. Given the complex nature of the IG
domain, it was necessary to split the IG domain context into three sub-domains each with their
respective ontology that are later merged into the one large ontology on IG. The three domain
contexts include:

1. The Jurisdiction domain, which encompasses the regulations an enterprise must comply with.

2. The Enterprise domain, which includes various subdomains representing different aspects of
an enterprise’s structure

3. The Implementation domain, which, despite being a part of the enterprise, combines the
knowledge of the first two domains, to determine the necessary actions and needs for
compliance.

15

1 Introduction

IGONTO aims at demonstrating that the knowledge of the IG domain can be effectively represented
within an ontology and that companies can dynamically retrieve IG solution knowledge based on their
profile or needs. Our investigation showed that regulations expose similar regulatory requirements,
therefore we used the European General Data Protection Regulation (GDPR) to examine different
representative use cases and extracted from those a set of regulatory requirements.

16

2 Context

This thesis is based on the previous contributions of Cataldo Mega in “An Ontology-based Knowl-
edge Management Model on Information Governance”, [IGONTO23]. Based on the situation
illustrated in the introduction, Mega proposed an ontology-based framework (IGONTO) to simplify
access to knowledge regarding the IG domain. His work encompasses a domain analysis, which
forms the basis of implementing models describing several IG subdomains. These models are
combined into one ontology and their concepts are mapped to certain services and components,
which represent the solution to the knowledge retrieved from the ontology.

The domain analysis evaluates various important sources of the IG domain. These include the
following:

• Associations, with detailed interpretations of regulatory mandates and requirements.

• ISO standards, that describe standardized best practices.

• Regulations, with descriptions of regulatory policies and rules within their jurisdiction.

• Enterprise Information Management (EIM) standards, which describe the architectural
connections between governance and design concepts.

• Vendors, with their platform and service offerings that aggregate required functional compo-
nents for implementing the enterprise-wide solution infrastructure.

The terms and concepts of each domain source are harmonized into one taxonomy. Several concept
models were implemented based on this taxonomy to describe different subdomains within IG.
The Organizational Model (ORG) focuses on the administrative view of organization units and
their interaction with the organizational processes within the enterprise [IGONTO23, p. 174]. The
concept of data and the description of Information and its value are illustrated in the Information
Model (INF) [IGONTO23, p. 174], whereas its management and lifecycle are implemented in
the Lifecycle Model (LCS) [IGONTO23, p. 175]. The System Model (SYS) entails core notions
relevant to the design and architecture of solutions based on the requirements of an IG program
[IGONTO23, p. 175]. The core functional components within IG are summarized in the Component
Model (CPT) [IGONTO23, p. 175], and the Platform Model (PLT) [IGONTO23, p. 176] describes
the execution environment and the services needed for the enterprise infrastructure [IGONTO23,
p. 176]. The concepts of these models are implemented within the IGONTO ontology and its
foundation.

Figure 2.1 describes the IGONTO framework in detail. IGONTO comprises five development
stages of information governance: acquisition, pre-processing, processing, post-processing, storing,
and archiving, using the enterprise repository. During the acquisition stage, vocabulary terms
are gathered that best describe the IG domain context. The pre-processing stage determines key

17

2 Context

concepts, defines policies and associated rules based on the information gathered in stage one, and
classifies them into a taxonomy. Stage three processes the concepts found into an IG ontology
(IGO), and creates class instances (individuals) based on the semantic schema into a knowledge
graph (IGG). In the post-processing stage, blueprints and design solutions that satisfy individual use
cases are retrieved, using SPARQL queries. Afterward, service templates are mapped to individual
design concepts, thus providing all components required to complete an IG solution.

Figure 2.1: The IGONTO framework [IGONTO23].

This thesis focuses on the pre-processing and the processing stages as defined in [IGONTO23],
in which the acquired knowledge is implemented into IGONTO, an ontology on information
governance. The ontology development was done using the ontology editor, Protegé, with which we
implemented the concepts of the pre-processing phase [Pro23]. To visualize query results, we utilized
AllegroGraph and its interactive visualization tool, Gruff [23a]. The ontology implementation
also includes validation logic, which was executed using Stardog [23d], an online database for
ontologies.

18

3 Ontology Development - Prerequisites

This chapter provides the prerequisites of IGONTO and explains the implemented design decisions.
Section 3.1 explains the general approaches. Section 3.2 analyzes reasoning parameters, which are
important for inferring knowledge within our ontology, and the analysis of reasoning requirements
in IGONTO. Based on this, the most suitable reasoning type for IGONTO is presented. Section 3.3
delves into the validation of the ontology, describing the structure and additional useful properties
in IGONTO. Considering that multiple subdomains are implemented, Section 3.4 explains how
these subdomains are brought together.

3.1 General Approach

This section describes three general approaches to the IGONTO ontology. Section 3.1.1 describes
the ontology hierarchy used to build IGONTO. How object properties are implemented from
the structural perspective is explained in Section 3.1.2, whereas the use of datatype properties is
explained in Section 3.1.3.

3.1.1 Ontology Hierarchy

The IGONTO ontology consists of five top-level sub-ontologies. Each sub-ontology describes its
subdomain within information governance. This allows the individual domains to be represented
and implemented independently.

Figure 3.1: IGONTO topology.

19

3 Ontology Development - Prerequisites

Figure 3.1 shows the structure of the ontology. The IGONTO ontology is at the top level. This
represents the final ontology consisting of the Jurisdiction ontology and the Enterprise ontology.
The Jurisdiction is responsible for covering the legal aspect of information governance, whereas the
Enterprise ontology implements the organization, structure, and relationships within an enterprise.
The Enterprise ontology in turn consists of the Organization, Lifecycle, Information, and Imple-
mentation ontologies.
Merging Organization, Lifecycle, Information, and Implementation into the Enterprise ontology first,
before directly merging it into IGONTO, is consistent with the concept of reuse. This intermediate
step allows the Enterprise concept (or parts of it) to be potentially reused in a different context
outside of IGONTO.
Each of these ontologies has its concepts, relations, attributes, and schema. By isolating indi-
vidual sub-areas, they can be developed separately from other ontologies. This can have several
advantages:

1. Maintainability: Each submodule can be developed, updated, and maintained independently
of the others.

2. Clarity: The clear delimitation of individual subdomains increases the clarity of the entire
system. This ensures proper understanding by users and developers.

3. Reusability: Small ontologies, like small software, are easy to reuse and embed in personal
systems.

4. Parallelism: By isolating individual domains, it is easier to work in parallel on the overall
system.

The division of the ontology also has some disadvantages:

1. Consistency: It makes maintaining a consistent ontology difficult. Changes within a
sub-ontology can have an unwanted impact on the overall system. Therefore, it is important
to develop a validation scheme for each ontology and the overall system to ensure quality and
consistency. Therefore, the explanation of the framework used for validation is covered in
Section 3.3, and its precise implementation regarding our ontology structure is described in
Section 5.3.

2. Integration: Maintaining sub-ontologies requires consistent integration into the overall
system. Similar to the problem of handling different branches in agile development (GitHub,
etc.), it is not recommended to develop one ontology in isolation for a long time.

To mitigate such negative aspects, a process has been designed and outlined in 5.4.3. It can serve as
a template for the further development of the prototype and as an initial reference point that can be
modified if necessary. However, the key aspects presented there should be preserved.

3.1.2 Object Property Structure

Object properties are relationships between individuals linked to a domain and a range. The domain
defines the set of subjects and the range defines the sub-set of objects that are connected. These
relationships should be clear, but not too complicated. Object properties should automatically

20

3.1 General Approach

provide the reader insight into the object that is connected to it through its object property char-
acteristics. Similar to reading relationship names in class relationships of common UML class
diagrams, insight into the meaning and context of the relationship should be automatically available,
increasing readability and maintainability.

Figure 3.2: Object property structure.

In ontologies, object properties are implemented in a hierarchical structure. Figure 3.2 describes
this concept outlining the implementation on the left side and is accompanied by an explicit example
from IGONTO on the right side. Every object property has a base <property> that acts as the super
property. In the given example, the super property is linkedTo. This super property is not used
by any instance directly but acts as the top-level parent that aggregates all lower-level properties
beneath it.
The next level and the first possible relationships are direct children of the super property, built
from the base property (linkedTo) and the range of the class (<object1> / Design, object2 /
OrganizationUnit, ...), which should be connected by that object property. If the object class is only
connected by exactly one subject class with the base property, there is no need to further detail the
structure (see linkedToDesign). However, if multiple subject classes (<subject1> / architecture,
subject2 / process, ...) connect with the same base property to the same object class, additional
relationships are required.
Without advanced differentiation, both classes would have the same base relationship, leading to
possible inconsistencies or incorrect interpretations within the ontology. For instance, if architecture
and process have no other unique and distinguishing characteristics and use the same relationship,
the reasoner would interpret them as equivalent classes. On the one hand, this is semantically wrong
because both classes do not describe the same concept. On the other hand, if the ontology explicitly
rules that those classes must be disjointed, the reasoner would throw an error, indicating inconsistency.

Figure 3.3 visualizes the potential inconsistencies and presents the reasoner’s explanation. Line 1
reveals that Architecture and Process are disjointed from each other. Lines 2 and 4 state that both
classes are registered as the domain of the property, and line 3 reveals the connection of the process
instance to the object. The reasoner interprets both instances as members of both classes based on
these axioms, which contradicts the disjoint argument and leads to inconsistency. Removing the
disjoint argument would resolve this error, but this would lead to the first problem: the reasoner
equates both classes, which is consistent but semantically wrong.

21

3 Ontology Development - Prerequisites

Figure 3.3: Example of reasoner inconsistency.

In addition to solving consistencies, this structure enhances readability and maintainability. Instances
are always connected via the bottom level of the object property hierarchy. Therefore, in the example
shown in 3.2, subject instances would be connected with linkedToDesign, architectureLinked-
ToOrganizationUnit, and processLinkedToOrganizationUnit. The object for every relationship
becomes clear, namely Design and OrganizationUnit, which is obtained by the object property
name itself. Without these suffixes, every instance would be connected via linkedTo, and the type
of the connected object may be unknown. In the case of linkedToOrganizationUnit, the reader is
also aware of the subject type, namely architecture and process. If desired, the subject could also
be included in linkedToDesign, but to reduce unwanted overhead in reasoning and querying, the
subject is only included if it is necessary to prevent inconsistency.
Likewise, if reasoning is enabled, the query can also be implemented only by using the super
property linkedTo. Remembering the exact object property is unnecessary because all properties are
subproperties of linkedTo, and the reasoner iterates through the whole property hierarchy. Asking
what subjects are linkedTo what objects would lead to the same set of objects, like using the exact
subproperties.

Organizing object properties in such a hierarchical way not only increases consistency but also
the readability and maintainability of the ontology and queries. All instances are systematically
connected, which enhances clarity and effective knowledge representation.

3.1.3 Datatype Property Structure

Datatype properties can be referred to by the more common name “attribute”. They describe classes
and instances more explicitly and represent the most fine-grained description within an ontology.
Data properties can be asserted in a domain and range similar to object properties. However, the
difference arises from the fact that the range is not a set of classes but a set of datatypes. These
datatypes range from simple ones, such as integers and strings, to more complex ones, such as

22

3.2 Reasoning

“datetime” and “hexbyte”, as described by the XML schema [Wor12].
We imported datatype properties from the Data Catalog Vocabulary (DCAT) ontology [Wor21],
which provides some data-related definitions. In addition, two data properties, name and description,
were implemented on the top level of every sub-ontology, because these represent basic additional
knowledge about classes and instances. Name can be considered a synonym for rdfs:label, which
describes the id of a class or instance in human-readable terms. The description should detail the
concepts in textual form.

3.2 Reasoning

Reasoning, in the context of ontology, describes the processes of inferring knowledge that is not
directly stated within the ontology. Because reasoning plays a crucial role in ontologies, this
chapter explores several reasoning methods and identifies the most suitable for IGONTO. Section
3.2.1 defines reasoning, the tasks it fulfills, and the parameters to consider from the perspective
of a knowledge graph to select an appropriate reasoning method. Section 3.2.2 introduces several
reasoning methods and their characteristics. Section 3.2.3 delves into the characterization of our
IGONTO’s knowledge graph. Finally, Section 3.2.4 deals with the proper selection of reasoning for
our use case.

3.2.1 Ontology Reasoning and Its Parameters

Reasoning forms a crucial aspect of ontologies, as it enables the extraction of meaningful information
and the inference of implied knowledge based on the existing ontology. Ontological reasoning
involves applying logical rules and algorithms to the ontology to derive new facts or validate existing
ones [Tra08].
One of the main reasons for using reasoning in ontologies is to ensure consistency. Reasoning can
detect and resolve ontological inconsistencies, thus ensuring that the knowledge representation is
coherent and free of contradiction [KBM+11]. Additionally, reasoning validates correctness by
checking for logical inconsistencies within an ontology [SBW19].
Moreover, reasoning enables ontology alignment and, therefore, facilitates interoperability and
knowledge sharing by finding correspondences among different ontologies [SGSH16].
Ontologies can integrate knowledge from multiple sources by using reasoning algorithms, which
align different ontologies based on their semantic and logical structure [QZC09].

Reasoning has numerous potential applications, and there exist multiple reasoning methods. However,
method applicability can vary based on the context and ontology requirements. To determine the
best method to use, one must first consider knowledge graph characteristics that influence the choice
of the method. The following briefly explains the key aspects of the characteristics of a knowledge
graph that are important in the choice of a suitable reasoning method.

23

3 Ontology Development - Prerequisites

1. One of the most critical parameters is the size of a knowledge graph, as it impacts the
efficiency and scalability of reasoning. On the one hand, large knowledge graphs naturally
require computationally intensive reasoning methods to handle the complexity and volume of
data. On the other hand, smaller knowledge graphs are potentially easier to reason over using
simpler reasoning methods [CJX20].

2. The accuracy of inferences is also crucial. This includes the required accuracy of making
correct inferences and avoiding incorrect ones. Thus, the magnitude of the consequences in
the case of wrong inferences has to be considered. Accuracy is also used in [TZW+22] to
characterize reasoning methods.

3. Another aspect is the frequency of data changes in the knowledge graph and its structure.
The more frequently and extensively the knowledge graph changes, the more dynamic the
reasoning method should be. The need for dynamic reasoning methods to handle frequent
data changes is highlighted by [CJX20], and the approach involves different techniques for
reasoning over knowledge graphs.

4. Additionally, how explicit and transparent the explanations of inferences have to be is
considered [TZW+22]. Are the resulting inferences enough, or are justifications and
explanations needed for how these inferences were generated?

5. The last aspect builds performance. Naturally, reasoning methods should align with the
performance requirements needed for the knowledge graph. A general decision is required
regarding whether real-time results are needed for one’s use case, or whether for instance,
faster results are only for usability reasons and not because the data are required in real-time.

In conclusion, these parameters describe the most critical reasoning characterizations and should be
considered when selecting the reasoning method. Some more specialized use cases may require
more specialized parameters. For our case, this characterization is sufficient and it includes the
most relevant ones.

3.2.2 Reasoning Methods

This section introduces the most well-known reasoning methods. We highlight the work of Tian
et. al. [TZW+22], which offers a comprehensive overview of various approaches to reasoning.
For each method explained, we also present the pros and cons to facilitate an evaluation and to
determine which method is best suited for our knowledge graph implementation.

Reasoning Based on Logic Rules

Reasoning based on logic is further divided into two subcategories. The first subcategory is
reasoning based on First-Order Logic (FOL). FOL provides a formal language for representing
knowledge and performing logical inferences. Moreover, it serves as the basis for logical reasoning,
enabling the derivation of new facts from existing ones [Fit90]. FOL reasoning is represented by
rules, which are manually defined by experts. One example is the representation by Horn clauses,
which resembles natural human language and increases the readability of the rules. A Horn clause
is a disjunction of literals or constraints that imply certain knowledge when every constraint within

24

3.2 Reasoning

the clause is fulfilled. Its specific use for IGONTO is further explained in Section 4.6. Description
Logic (DL) implements fragments of FOL to enhance usability and decidability at the expense of
expressivity, as FOL is rather complex and lacks scalability. In this method, so-called TBoxes and
ABoxes are defined. TBoxes are terminological axioms, which describe concepts and relations,
and ABoxes are assertional sets, which consist of a variance of TBoxes and thus describe whole
concepts. How DL differs from FOL is discussed in depth in Section 3.2.5.
Another logic-based reasoning method is reasoning based on statistics. The goal of this method is
not to manually define rules but to automatically extract and apply the said rules with the help of
machine learning approaches. Inductive Logic Programming (ILP) and Association Rule Mining
(ARM) are distinct. While ILP aims to learn abstract rules from examples, ARM’s goal is to
detect and extract patterns in large amounts of data and identify association rules between different
attributes. ILP achieves its goal by applying machine learning techniques and logic programming
to automatically detect and model complex relationships in data. ARM, on the other hand, achieves
this goal by using algorithms to find the association rules that describe how different attributes
are connected. ILP dispenses manually defined rules and offers good reasoning via small-scale
knowledge graphs. ARM offers high-confidence rules and is faster, so it can handle more complex
and larger knowledge graphs.
Reasoning based on the graph structure refers to using the graph structure as a feature to draw
conclusions. Specifically, the relationships between entities in the graph can be used to discover
and infer new facts or relationships. A typical feature in a knowledge graph is the paths between
entities, which play an important role in knowledge processing. This method is divided into global
structured-based and local structured-based models. In the global structured-based model, the
paths of the entire knowledge graph are used as a feature, which makes this method effective but
also computationally expensive. On the other hand, the local structure-based model focuses on
finer granularity by only examining the narrow and local graph structure of the relationship under
investigation. Therefore, its computational costs are lower.

Knowledge Graph Reasoning Based on Representation Learning

The basic idea of representation learning is to convert complex data structures into vectors. There
are several approaches, such as the tensor decomposition approach, distance model, and semantic
matching model. The tensor decomposition approach uses the possibility of modeling interactions
between entities and relations using a three-way tenor (entity-relation-entity). Relational Single-
Channel Analysis of Learning (RESCAL) is an approach for tensor decomposition that reflects
similarities within the graph structure by solving the simple tensor decomposition problem.
The distance model aims to model the distance between the embeddings of the subject and object
entities in the knowledge graph. By minimizing the transformation error, this type of model learns
low-dimensional embeddings of all the entities and relation types in the knowledge graph.
The semantic matching model uses a scoring function to determine similarity. With the scoring
function, hidden semantics between entities and relations are matched and thus the validity of
relation triples among these entities are measured. Because the parameters are numerous, this
method suffers from a high complexity.

25

3 Ontology Development - Prerequisites

Knowledge Graph Reasoning Based on Neural Network

Knowledge graph reasoning based on neural networks reasons new entity-relationship representations
by using neural networks in a knowledge graph. This approach allows complex and multi-hop
relational reasoning, for which traditional logic-based methods are ineffective. Knowledge graph
reasoning based on a neural network is effective for link prediction, entity classification, and
question answering. However, as Nikolov and d’Aquin [Nd20] point out in their paper, the black-box
nature of AI models leads to a lack of interpretability and does not explicitly explain the reasoning
results.

3.2.3 IGONTO Characterization

This section discusses the characterization of the knowledge graph in terms of the parameters
mentioned in Section 3.2.1 to choose the suitable reasoning method for our use case.

Parameter: Size

The first parameter pertains to the size of the knowledge graph. To classify our knowledge graph,
what distinguishes a knowledge graph as small or large scale should be determined. However,
defining such a threshold is challenging and cannot be categorically stated due to the contribution
of several factors, including the number of classes, individuals, relations, and attributes, as well
as the degree of interconnection among individual instances (i.e., the quantity of relationships
and attributes each instance possesses). While it is feasible to query the precise metrics of our
knowledge graph with the assistance of Protegé, as illustrated in Figure 3.4, no official reference
metric designates a knowledge graph as “large” based on a specific number of instances.

Figure 3.4: Knowledge graph metrics.

However, the storage space needed to save the ontology could be an approximate indication and
metric of the graph’s size. It is also feasible to transform a relational database into a knowledge
graph [VMT13]. Moreover, the size of the knowledge graph can be compared with that of a
relational database. Currently, the required storage space for our knowledge graph is approximately
19 MB. A database this size is considered rather small. Not many additional classes are going to
be implemented, specifically not in a magnitude that alters the dimensions in which we currently
reside. Nevertheless, IGONTO does not yet cover all domain knowledge and could increase in

26

3.2 Reasoning

size regarding its instances and relationships. In case these changes would alter the magnitude of
IGONTO, a new analysis for reasoning requirements would be necessary. However, we analyze
the current requirements for our prototype, and therefore, the knowledge graph is unequivocally
small-scale.

Parameter: Accuracy

The inference accuracy is crucial to the use case. Every inference must be correct, and no inference
should be excessive. The two case distinctions clarify the need for high accuracy:

1. If an inference is not derived when it should be, the consequences could be serious. For
instance, a company is told that it does not require certain tools or processes because the
knowledge is not inferred. This could violate the obligations of the GDPR and result in
a large fine. For example, the hotel chain “Marriott Hotel” was sued and fined over 18.4
million euros because certain safety standards were not implemented [Hei21]. Therefore, if
an inference related to this standard is missing, it would not be a satisfactory implementation.

2. In the other case, where an inference is derived when it is not necessary, the consequences
may be an economic problem rather than a legal one. For instance, consider the inference
state where a certain process or organization unit is needed even though it is not actually
required. The company would have to provide resources to implement the unnecessary
processes, which would cause economic damage.

In both cases, inaccurate inferences would be very harmful. We cannot afford “false positives” or
“false negatives”. Consequently, a high degree of accuracy in inferences is needed to guarantee
sufficient GDPR compliance.

Parameter: Frequency of Data Changes

Here, how frequently new instances, relationships, or attributes are added and how often specific
instances are altered in such a manner that a different model is formed must be clarified. A good
indicator is the frequency of changes in the General Data Protection Regulation. The last update
to the GDPR occurred on May 25, 2018. ISO standards, which are designed to provide years of
stability and continuity, do not undergo frequent changes. Even if design or technology aspects
are changed more frequently, the main complexity of IGONTO remains in inferring regulatory
requirements for enterprises. Therefore, data within the mature IGONTO knowledge graph are
unlikely to experience frequent alterations.

Parameter: Explicit Explanations of Inferences

In our use case, an explanation of inference is useful, if not necessary. For instance, if a company is
told by querying the knowledge graph that it has to implement a certain tool or process, there is
certainly interest in finding out why this is necessary in the first place. Each additional process
costs money and resources, making it crucial to comprehend the reasons behind the inference.
Accordingly, an explicit justification is necessary.

27

3 Ontology Development - Prerequisites

Parameter: Performance

Good performance is desirable. Here, however, a distinction must be made between whether
real-time results are needed or whether it would be manageable to wait a few seconds. Our use case
does not require results in real time. How often queries are executed and how often certain queries
are repeated is not crucial but the quality and accuracy of the answers are.
In theory, a company may only need to execute each query once, as the final result remains
unchanged. Repeated queries will yield the same processes and outcomes. In addition, ontologies
can be materialized in advance. The process of materialization infers all reasoning knowledge and
saves the inferred triples in a second, materialized version. Afterward, the queries are performed
over the materialized version, whereas the original version remains available for further development
processes. This way, no dynamic reasoning is required in query time, and therefore, reasoning
performance does not play a crucial role. In this respect, performance in our knowledge graph
is not a primary consideration and should not be the highest priority. Instead, fulfilling the other
parameters would be much more important.

3.2.4 Reasoning Choice

Considering the properties of the knowledge graph, what is needed above all is a method for
small-scale knowledge graphs with high accuracy. The rules and inferences must be comprehensible
and explainable. Although a dynamic method would also be desirable, the dynamic methods
presented here have poor accuracy, lack justification for the inferences, and are more suitable
for large-scale knowledge graphs. Therefore, a reasoning method with logic-based reasoning is
appropriate. Because OWL 2 uses SROIQ as the foundation of its description logic, Section 3.2.5
briefly describes the use of the description logic employed in our ontology.
Our approach uses reasoning with description logic for generating inferences, extended by SWRL
rules. With the SWRL rules, complicated chained inferences can be implemented with high
accuracy. Furthermore, every ontology has its own SHACL schema to guarantee consistency and
validate our ontology.

3.2.5 Description Logic (DL)

This section describes the concept of description logic. The reason for its general use is explained in
Section 3.2.5. Section 3.2.6 focuses on the basic DL and its theoretical concepts, whereas Section
3.2.7 explains the different DL features and what DL is used for in our ontology.

First-Order Logic (FOL) versus Description Logic (DL)

First-Order Logic (FOL) is a mathematical logic used to describe statements about objects in a
specific domain. FOL is highly expressive but semi-decidable, which makes using it in computational
contexts impractical [Pur06]. In addition, FOL is unintuitive for complex ontology domains because
of its mathematical origin. Further, proving the consistency of FOL in ontologies is difficult due to
scalability and complexity bottlenecks [SH20].
To find a compromise of expressiveness and scalability, certain fragments of FOL were simplified

28

3.2 Reasoning

with the help of constructors. The set of these constructors builds the DL and also its name. With
these simpler constructors, more complex logical descriptions can be made. This explains why
DL is not one “language” or one “logic” but a family of multiple DLs, involving a different set of
constructors. The set of implemented constructors distinguishes the DLs from each other. Most
DLs are decidable, easier to implement, and sufficiently expressive; therefore, they are often used in
ontologies.

3.2.6 ALC - The Smallest Description Logic

In general, a DL consists of two or three architecture elements [DL96]:

1. TBox:
The TBox includes terminological knowledge. Here, knowledge about the concepts of the
domain is implemented, for instance, description logic about classes.

2. ABox:
The ABox includes assertional knowledge. Here, knowledge about individuals is defined, for
instance, by the definition of an individual type or the relationship to another individual.

3. RBox: The RBox contains role-centric knowledge. While TBoxes and ABoxes are included
in every DL, RBoxes are optional. Basic DL, such as ALC, does not include RBoxes.
However, if DL needs to be more expressive, RBoxes are included to provide knowledge about
roles, including relationships. For instance, a hierarchy of relationships can be implemented
with RBoxes.

ALC−Definition

To grasp the logic used in our ontology, we first define the building blocks of the base DL ALC
which is short for Attribute Language with Complement. The following definitions of ALC are
taken from [dFE05] and [HKS06] but changed in certain vocabulary to ensure they align with
further definitions of the DL SROIQ, as described in Section 3.2.7.
The basic building blocks ofALC are classes, roles/properties, and individuals. Even though roles
are included, they are only used to connect concepts and individuals.

Definition 3.2.1 (ALC Atomic Types)
Let#� = {�, �, ...} be a set of concept names interpreted as a subset from individuals � = {0, 1, 2...}
of a domain Δ. #' = {', (, ...} is the set role interpreted as binary relations. Let I = (ΔI , ·I) be
an Interpretation, where ΔI is the domain of the interpretation and ·I the interpretation function,
which maps the following:

1. Individual names G ∈ � to domain elements GI ∈ ΔI

2. Class names � ∈ #� to a set of domain elements �I ∈ ΔI

3. Role names ' ∈ #' to a set of domain element pairs 'I ⊆ ΔIGΔI

4. The top concept >, where >I = ΔI

29

3 Ontology Development - Prerequisites

5. The bottom concept is ⊥, where ⊥I = ∅

Definition 3.2.1 introduces the basic types of ALC. The top concept > and the bottom concept
⊥ are two special concepts, where every defined class is automatically a subclass of >, while
simultaneously ⊥ is a subclass of every defined class.

Definition 3.2.2 (ALC Constructors)
Given the interpretation I = (ΔI , ·I), concepts �, �, � and the role '.
Let %ALC = {>I |⊥I | (¬�)I | (� u �)I | (� t �)I | (∃'.�)I | (∀',�)I} be the set of production
rules for creating complex concepts, where >I and ⊥I are interpreted as in Definition 3.2.1 and

(¬�)I = ΔI\�I

(� u �)I = �I ∩ �I

(� t �)I = �I ∪ �I

(∃'.�)I = {G ∈ ΔI |∃H ∈ ΔI ((G, H) ∈ 'I ∧ H ∈ �I)}
(∀'.�)I = {G ∈ ΔI |∀H ∈ ΔI ((G, H) ∈ 'I → H ∈ �I)}

Definition 3.2.3 (ALC TBox assertions)
Let)�>GALC = {� v �,� ≡ �} be the set of concept assertions contained in a TBox. An
interpretation I satisfies a TBox T (I |= T), where:

I |= (� v �) holds, iff �I ⊆ �I for every interpretation I
I |= (� ≡ �) holds, iff (�I ⊆ �I) ∧ (�I ⊆ �I) for every interpretation I

Definition 3.2.4 (ALC ABox assertions)
Let ��>GALC = {(0 : �), (((0, 1) : ')} be the set of concept assertions contained in an ABox.
An interpretation I satisfies an ABox A (I |= A), where

I |= (0 : �) holds, iff 0I ∈ �I

I |= (((0, 1) : ') holds, iff (0I , 1I) ∈ 'I

Considering these concepts,ALC is the smallest deductively complete DL. It forms the foundation
for other DLs and only implements FOL fragments that are linked to TBoxes and ABoxes. Even
though the concepts and constructors ofALC are already expressive, the lack of number restrictions
and constructors regarding roles and properties is not sufficiently expressive for ontologies. Therefore,
further DLs with better expressiveness were created, but every one of them includes ALC and its
basic concepts.

30

3.2 Reasoning

3.2.7 SROIQ - Description Logic

What FOL fragments are implemented in a DL are represented by the name of the DL itself. Every
letter represents an included fragment. Table 3.1 lists the existing set of different FOL fragments
implemented in different DLs.

Symbol Description
ALC Attribute Language with Complement
S ALC + Transitivity of Roles
H Role Hierarchies
O Nominals
I Inverse Roles
N Number Restrictions
Q Qualified Number Restrictions
(D) Datatypes
F Functional Roles
R Role Constructors

Table 3.1: Description Logic features.

Because the description logic in OWL 2 is based on SROIQ(D) [W3C12], this description logic
is detailed. The following definitions and explanations are taken from [HKS06] and aligned to fit in
with the other definitions of ALC, similar to Section 3.2.6
The implemented DL features are outlined in Table 3.1 and in the name of SROIQ(D) itself.
SROIQ is first presented in detail, before including the Datatypes (�). The largest addition in
SROIQ, compared to ALC, is the implementation of the RBox with its axioms and constructors.
Definition 3.2.5 defines the inverse Roles as follows:

Definition 3.2.5 (SHOIQ - Inverse Roles)
Given the interpretationI = (ΔI , ·I), the set of individuals � = {0, 1, 2...} and the role ' ⊆ ΔIGΔI
from Definition 3.2.1, we define the universal role* = ΔIGΔI . For each role ' ∈ R, we define the
inverse role interpreted as:

('−)� = {(H, G) | (G, H) ∈ '� }

Definition 3.2.6 is cited from [HKS06] and introduces the role hierarchy Rℎ and its regularity.
Regularity prevents cyclic dependencies, which would lead to undecidability [HS05].

Definition 3.2.6 (((Regular) Role Inclusion Axioms) [HKS06])
“Let ≺ be a regular order on roles. A role inclusion axiom (RIA for short) is an
expression of the form F

.
v ', where F is a finite string of roles not including the

universal role *, and ' ≠ * is a role name. A role hierarchy Rℎ is a finite set of
RIAs. An interpretation � satisfies a role inclusion axiom F

.
v ', written � |= F

.
v ', if

F� ⊆ '� . An interpretation is a model of a role hierarchy 'ℎ if it satisfies all RIAs in
'ℎ, written � |= 'ℎ.
A RIA F

.
v ' is ≺-regular if ' is a role name, and

31

3 Ontology Development - Prerequisites

1. F = '',

2. F = '−,

3. F = (1 . . . (= and (8 ≺ ', for all 1 ≤ 8 ≤ =,

4. F = '(1 . . . (= and (8 ≺ ', for all 1 ≤ 8 ≤ =,

5. F = (1 . . . (=' and (8 ≺ ', for all 1 ≤ 8 ≤ =.

Finally, a role hierarchy 'ℎ is regular if there exists a regular order ≺ such that each
RIA in 'ℎ is ≺-regular.”

Similar to the TBox and ABox assertions, some assertions can be defined for roles. These include
symmetry (Sym(R)), asymmetry (Asy(R)), transitivity (Tra(R)), reflexivity (Ref(R)), irreflexivity
(Irr(R)), and disjointness (Dis(D,S)) of roles. These assertions, including the role hierarchy from
Definition 3.2.6, build the role box defined in Definition 3.2.7.

Definition 3.2.7 (Role Box)
Given the regular role hierarchy Rℎ, the universal role * and individuals G, H, I ∈ ΔI . Let
R0 = {(H<('), �BH('),)A0('), '4 5 ('), �AA ('), �8B(', ()} be the set of role assertions for
roles ', (≠ *. A role box is a set R = Rℎ ∪R0. An interpretation models R if I |= Rℎ and I |= q
for all role assertions q ∈ R0, where the elements of R0 are defined as

(H<(') = {(G, H) ∈ '� → (H, G) ∈ '� }
�BH(') = {(G, H) ∈ '� → (H, G) ∉ '� }
)A0(') = {((G, H) ∈ '� ∧ (H, I) ∈ '�) → (G, I) ∈ '� }
'4 5 (') = {(G, G) |G ∈ Δ� } ⊆ '�

�AA (') = {(G, G) |G ∈ Δ� } ∩ '� = ∅
�8B(', () = '� ∩ (� = ∅

In addition to the Role box and its assertions, some extensions regarding the constructors within
SROIQ are implemented. Definition 3.2.8 presents the constructors in SROIQ

Definition 3.2.8 (SROIQ - Production rules)
Given the concept names, roles, and nominals interpreted as in Definition 3.2.1 and %ALC as
in Definition 3.2.3, let %(SROIQ/ALC) = {(∃'.(4; 5)I , (> ='.�)I , 6 ='.�)I} be the set of
additional production rules, defined by the following equations, where #" denotes the cardinality
of a set ":

(∃'.(4; 5)I = {G ∈ ΔI | (G, H) ∈ '� }
(> ='.�)I = {G ∈ ΔI |#H.(G, H) ∈ '� → H ∈ �I) > =}
(6 ='.�)I = {G ∈ ΔI |#H.(G, H) ∈ '� → H ∈ �I) 6 =}

32

3.2 Reasoning

%SROIQ = %ALC ∪ %(SROIQ/ALC) completes the production rule set for complex concepts in
SROIQ.

The additional constructors in Definition 3.2.8 enable the implementation of quantifiers within the
DL. The assertion for the TBox in SROIQ is equivalent to the assertions presented in Definition
3.2.3. The assertions for the ABox are expanded by two, as defined in 3.2.9

Definition 3.2.9 (SROIQ - Production rules)
Given the concept names, roles and nominals interpreted as in Definition 3.2.1 and ��>GALC as in
Definition 3.2.4, let ��>G (SROIQ/ALC) = {(0

.
≠ 1), (0, 1) : ¬'} be a set of additional assertions

contained in an ABox. An interpretation I satisfies an ABox A (I |= A), where:

I |= (0
.
≠ 1) holds, iff 0� ≠ 1�

I |= ((0, 1) : ¬') holds, iff (0� , 1�) ∉ '�

��>GSROIQ = ��>GALC ∪ ��>G (SROIQ/ALC) completes the assertion set for the ABox in
SROIQ.

(�) is also included as a DL fragment in OWL 2, allowing the implementation of datatypes.
However, because datatypes do not play a crucial role in inferences in our ontology, we will not
define them. The definitions for datatypes can be retrieved from [W3C12]. The constructors and
assertions of SROIQ are defined, and Table 3.2 lists how these axioms and constructors are
implemented in OWL 2.

Because these are only the main keywords, the use of these keywords and how they are implemented
are outlined in example code 3.2.7. Here, the Obligation class from the Jurisdiction ontology has
the existential constructor ∃'.� implemented.
First, rdf:type owl:Restriction initiates the description logic and contains the constraints described
by it. The term restriction in this context is also interesting but rational. Because ontologies
act on the open world assumption, indirectly implemented knowledge can not be interpreted as
negation. With DL, we further restrict the domain by defining the constraints the concepts have to
comply with. Here, the constraint begins with the declaration of the object property that the rule is
applied to (owl:onProperty jurisdiction:programRequiredForRegulation). Afterward, the keyword
owl:someValuesOn is used on the class jurisdiction:GDPR. Therefore, this constraint restricts the
instances from the class Obligation that need at least one relationship obligationInvolvesArticle
connected with an instance from the class GDPRArticles. Other constructors are similarly imple-
mented using their corresponding OWL keywords.

33

3 Ontology Development - Prerequisites

DL Syntax OWL 2 Keyword
> owl:Thing

⊥ owl:Nothing

� u � owl:intersectionOf

� t � owl:unionOf

¬� owl:complementOf

∃'.� owl:someValuesFrom

∀'.� owl:allValuesFrom

� v � rdfs:subClassOf

� ≡ � owl:equivalentClass

0 : � rdf:type

(0, 1) : ' Object Property Assertion

('−) owl:inverseOf

(H<(') owl:SymmetricProperty

�BH(') owl:AsymmetricProperty

)A0(') owl:TransitiveProperty

'4 5 (') owl:ReflexiveProperty

�AA (') owl:IrreflexiveProperty

�8B(', () owl:propertyDisjointWith

(∃'.(4; 5) owl:hasSelf

(> ='.�) owl:minCardinality

(6 ='.�) owl:maxCardinality

(0
.
≠ 1) owl:differentFrom

((0, 1) : ¬') owl:NegativePropertyAssertion

Table 3.2: Mapping of DL Syntax to OWL 2 keywords.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

2 @prefix sh: <http://www.w3.org/ns/shacl#> .

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

4 @prefix owl: <http://www.w3.org/2002/07/owl#> .

5 @prefix jurisdiction: <http://www.semanticweb.org/igonto/jurisdiction#> .

6

7 jurisdiction:Obligation rdf:type owl:Class ;

8 rdfs:subClassOf jurisdiction:IgontoTopJurisdictionDomain ,

9 [rdf:type owl:Restriction ;

10 owl:onProperty jurisdiction:obligationInvolvesArticle ;

11 owl:someValuesFrom jurisdiction:GDPRArticles

12] .

Listing 3.1: Description Logic (DL) OWL implementation example.

34

3.3 Shapes Constraint Language (SHACL)

3.3 Shapes Constraint Language (SHACL)

3.3.1 IGONTO Validation

Shapes Constraint Language (SHACL) is a language that focuses on validating RDF graphs.
Typically, SHACL is implemented in a separate document, which is often referred to as a SHACL
schema. The schema consists of shapes on which the RDF graph is validated. Each shape is a
tuple 〈s, t, d 〉, where s describes the unique id of the shape, t the target definition, and d the set of
constraints for the target. If the graph meets the constraints, it is considered valid. In the event
that the RDF graph violates a constraint in the schema, the validation report throws an error with
an explanation of which constraint failed and why. Because the schema is an RDF graph itself, it
does not need additional infrastructure and can even be embedded in the ontology itself [PK21].
However, the schema is often separately stored in a file to ensure maintainability and usability.
Figure 3.5 shows a brief example of a SHACL shape in our jurisdiction ontology. Following the
first triple, which is the definition of the shape including its name, the target of the shape is defined.
In our example, the target is a whole class, and therefore all instances from this class (here: EU) are
considered a focus node. Four types of possible target definitions exist.

1. sh:targetNode: Specifies an individual instance as the target node of this shape and its
constraints.

2. sh:targetClass: Specifies a class, and therefore all of its instances as the target node of this
shape and its constraints.

3. sh:targetSubjectsOf : Specifies a property, and therefore all constraints of the shape apply to
all the subjects of that property.

4. sh:targetObjectsOf : Specifies a property, and therefore all constraints of the shape apply to
for all the objects of that property.

After specifying the instances where this shape is responsible, the set of constraints is then
presented. Recursively, these constraints can be implemented as their own property shapes with
their own constraints, either by defining a new shape (hasRegulationShape) or by implementing
these constraints directly. Although constraints can be implemented directly, defining new shapes
is recommended for traceability reasons in the validation report if invalid constraints occur. The
targets of these constraints are called the “target nodes”. Here, the target nodes are all instances
from jurisdiction:Regulation and the attribute rdfs:label. The reference to a property in the original
knowledge graph is defined in sh:path. The following lines represent the constraints of the said
property. For example, the constraints for the property rdfs:label are that the datatype of the label
should be a string, and the focus node must have a minimum of one label.

Figure 3.6 shows an example of a violation report. Here, both constraints failed. The report describes
which constraint component failed (sh:sourceConstraintComponent), the instance (sh:focusNode),
and the property (sh:resultPath) that violated the constraint, along with a message explaining why it
failed. This message can also be redefined for each shape and purpose. It also illustrates why it is
useful to define new property shapes for each property. In the first violation, the sh:sourceShape
indicates in which constraint and shape the error occurred. On the second violation, a generic
identifier for that property shape is generated because, in our schema, the property shape is
anonymous and undefined.

35

3 Ontology Development - Prerequisites

Figure 3.5: SHACL example.

Figure 3.6: SHACL validation report example.

3.3.2 PropertyGroups

As mentioned in Section 3.3.1, the main purpose of SHACL is to validate RDF graphs. In addition
to validation, SHACL can also be implemented directly into the ontology.
Analyzing how SHACL is implemented reveals that SHACL and its concepts are also RDF graphs.
Listing 3.3.2 presents a part of the SHACL ontology. Lines 2, 9, and 16 show that a NodeShape and
a PropertyShape are also classes. When defining a concrete nodeShape or a propertyShape as a
sh:NodeShape / sh:PropertyShape in a schema (see 3.5 JurisdictionShape / hasRegulationShape),
those shapes are in reality instances of the class sh:NodeShape / sh:PropertyShape. This structure
allows object properties to be treated as instances and, therefore, subjects by creating the corre-
sponding PropertyShape.

With these PropertyShapes and the ability to treat relationships as subjects, more information
and knowledge can be created and involved in our ontology. One of the additional abilities is
PropertyGroups.
A PropertyGroup is a concept of the SHACL ontology, where PropertyShapes can be put into one

36

3.3 Shapes Constraint Language (SHACL)

thematic concept, allowing us to classify object properties, hence improving the ontology struc-
ture and knowledge representation. This new type of knowledge can also be used in SPARQL queries.

1 @prefix sh: <http://www.w3.org/ns/shacl#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3

4 sh:Shape

5 a rdfs:Class ;

6 rdfs:label "Shape"@en ;

7 rdfs:comment "A shape is a collection of constraints that may be targeted for

8 certain nodes."@en ;

9 rdfs:subClassOf rdfs:Resource ;

10 rdfs:isDefinedBy sh: .

11

12 sh:NodeShape

13 a rdfs:Class ;

14 rdfs:label "Node shape"@en ;

15 rdfs:comment "A node shape is a shape that specifies constraint that need to be

16 met with respect to focus nodes."@en ;

17 rdfs:subClassOf sh:Shape ;

18 rdfs:isDefinedBy sh: .

19

20 sh:PropertyShape

21 a rdfs:Class ;

22 rdfs:label "Property shape"@en ;

23 rdfs:comment "A property shape is a shape that specifies constraints on the

24 values of a focus node for a given property or path."@en ;

25 rdfs:subClassOf sh:Shape ;

26 rdfs:isDefinedBy sh: .

Listing 3.2: Definition of SHACL [23e].

Every (sub-)ontology has its own PropertyGroups implemented in its SHACL schema to ensure
consistency and a closed implementation environment. Figure 3.7 shows how each PropertyGroup
that is implemented. The first prefix of each PropertyGroup begins with the name of the ontology.
Afterward, the name of the PropertyGroup follows. If an ontology is a sub-ontology of another,
the corresponding PropertyGroup of that ontology will also be grouped into the super-ontology
PropertyGroup. For instance, the PropertyGroup OrganizationInversePathPropertyGroup will
be part of the EnterpriseInversePathPropertyGroup which will be part of the overall InversePa-
thPropertyGroup that is implemented on the top-level IGONTO ontology. Listing 3.3.2 shows
how a PropertyGroup is implemented in the SHACL ontology. Like the PropertyShape and the
NodeShape, a PropertyGroup is also a rdfs:Class.
Therefore, the implementation of the InversePathPropertyGroup example is implemented as shown
in Listing 3.3.2 at the top-level IGONTO ontology. Thus, in the enterprise ontology, the declaration
of the igonto:InversePathPropertyGroup subclass relation is missing, ensuring the concept of
semantical self-containment mentioned before. Recursively, the same applies to the organization
ontology with the enterprise:EnterpriseInversePathPropertyGroup.

37

3 Ontology Development - Prerequisites

1 @prefix sh: <http://www.w3.org/ns/shacl#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3

4 sh:PropertyGroup

5 a rdfs:Class ;

6 rdfs:label "Property group"@en ;

7 rdfs:comment "Instances of this class represent groups of property shapes that belong

8 together."@en ;

9 rdfs:subClassOf rdfs:Resource ;

10 rdfs:isDefinedBy sh: .

Listing 3.3: SHACL PropertyGroup definition [23e].

1 @prefix sh: <http://www.w3.org/ns/shacl#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3 @prefix enterprise: <http://www.semanticweb.org/igonto/enterprise#> .

4 @prefix igonto: <http://www.semanticweb.org/igonto/igonto#> .

5 @prefix organization: <http://www.semanticweb.org/igonto/organization#> .

6

7 igonto:InversePathPropertyGroup

8 a sh:PropertyGroup .

9

10 enterprise:EnterpriseInversePathPropertyGroup

11 a sh:PropertyGroup ;

12 rdfs:subClassOf igonto:InversePathPropertyGroup .

13

14 organization:OrganizationInversePathPropertyGroup

15 a sh:PropertyGroup ;

16 rdfs:subClassOf enterprise:EnterpriseInversePathPropertyGroup .

Listing 3.4: SHACL PropertyGroup example.

Figure 3.7: PropertyGroup hierarchy implementation.

38

3.3 Shapes Constraint Language (SHACL)

PropertyGroups have several positive impacts on the ontology, including:

1. Maintainability:
Grouping helps the developer to combine constraints on several object properties simulta-
neously. Each object property within a group inherits the constraints defined in that group,
making it easier to maintain these constraints and reducing the overall lines of code.

2. Clarity:
Grouping can be particularly helpful when, for instance, it is not clear whether the connection
of an ObjectProperty is generated via inference or statically implemented and always present.
PropertyGroups can inform the developer or user about the purpose of the ObjectProperty,
leading to a clearer understanding of the overall system.

3. Better expression:
PropertyGroups can offer very useful knowledge by expressing the meaning of an object
property, for instance, when the object property explicitly indicates that there should be
no connection between two instances. Because ontologies operate under the open-world
assumption, a nonexistent connection cannot be interpreted as an explicitly unwanted
connection. By grouping object properties within a NegativeObjectPropertyGroup, it
becomes possible to treat the object property as a relationship that explicitly denotes the
absence of a link between those two instances.

4. Useability:
Implementing PropertyGroups can enhance usability in query writing. For example, when a
query should only include inferences or negative object properties from an instance, having
groups makes filtering easier. Without them, every unwanted relationship must first be
explicitly known by its name and meaning. With PropertyGroups, the query can be easily
implemented by filtering out the members of a group that represents that specific semantic
meaning.

We implemented three PropertyGroups to improve the structure of the ontology. Each one serves a
different purpose and is used differently.

1. InversePath- & PathPropertyGroup:
Every relationship has an inverse one that oppositely connects subjects and objects. These
two relationships are normal object properties with an additional axiom, owl:inverseOf,
forming the bi-directional link between both of them. While inverse properties enhance an
ontology’s structure, the hierarchy can become obscured without further modifications. In
our case, the preferred direction of thought begins with the Jurisdiction and the Enterprise
ontology, extending down to the Implementation ontology. This is due to the fact that the
implementation of the enterprise architecture depends on the regulation, what compliance
requirements are to be met, and the organization units involved.
Although the OWL ontology already allows the definition of properties as
owl:InverseFunctionalProperty, there are limitations regarding this property, as the object
of an owl:InverseFunctionalProperty uniquely determines the subject. In other words, the
subject of this InverseFunctionalProperty can only have a relationship to exactly one object
[23b]. This would not be suitable for many classes in our ontology.
To maintain the hierarchy and structure while implementing inverse properties, relationships

39

3 Ontology Development - Prerequisites

are grouped into either PathPropertyGroup, indicating the top-down direction in the hierarchy,
or the InversePathPropertyGroups for the opposite direction.

2. InferenceObject- & NormalObjectPropertyGroup:
The InferenceObjectPropertyGroup only contains object properties that are derived from
SWRL rules. Since inferences are also defined as normal object properties in ontologies,
a separation without explicitly looking at the rules is not possible. To enhance clarity,
relationships explicitly defined in the ontology development process and not inferred are put
into the NormalObjectPropertyGroup, whereas inferences are put into the InferenceObject-
PropertyGroup.

3. NegativeObject- & PositiveObjectPropertyGroup:
The same clarity problem applies to object properties, which explicitly denote the negative
relationship to objects. Without grouping these relationships, the problem can appear later
on to misinterpret the result. To filter these properties out of the results or explicitly contain
them in queries without naming each one of them, object properties that are meant negatively
are divided from normal positive object properties.

Object properties can also be members of multiple groups. For instance, a SWRL-inferred
relationship can be meant as a negative one (for example “enterpriseDoesNotNeed”). A practical use
besides the additional structuring for these PropertyGroups and the advantages of these structures is
shown in Section 5.4.

3.4 Ontology Fusion

Although splitting the ontology has some advantages, these ontologies must be combined in such
a way that they work without errors in the overall system. The merging of ontologies is shown
schematically in Figure 3.8. It describes two different ontologies, Ontology 1 and Ontology 2, with
their concepts, schemas, and instances. The merging is handled differently.

3.4.1 Concept Fusion

In the present case, we always have at least one class as an intersection between two ontologies.
This is implemented as a concept in both ontologies. These two classes describe the same concept,
but either one of them is meant to be an abstract class of the other or both to describe the same
thing but from a different point of view.

Figure 3.10 relates to the fusion of two classes where one of them is implemented as abstract,
based on the example of the class Capability. Here, the original Capability class is implemented
in the Organization ontology. This class is significant because it bridges the Jurisdiction with
the Organization ontology. In both cases, description logic has to be implemented from the
Jurisdiction and the Organization’s point of view. Therefore, the implementation of an abstract
class in Jurisdiction that describes the same concept with the same meaning is needed. The

40

3.4 Ontology Fusion

Figure 3.8: Ontology fusion.

Figure 3.9: Example fusion of abstract classes.

CapabilityAbstract class enables the implementation of description logic from the Jurisdiction side,
whereas the description logic from the organizational side is implemented on Capability. With this
approach, both ontologies are inherently consistent with the ability to implement their description
logic in the connecting class. When setting both classes equal on the top ontology, both classes
inherit the description logic from each other. Without this approach, the description logic would
have to be implemented manually on the top level, thus decreasing maintainability and making both
classes dependent on the top-level description logic implementation. If a class is meant abstractly,
it will have the suffix Abstract in its Uniform Resource Identifier (URI).

Figure 3.10: Example fusion of classes with different a point of view.

41

3 Ontology Development - Prerequisites

An example of the fusion of classes that share the same concept but from a different perspective is
shown in Figure 3.10. While the name of the class Data is the same, the perspective from which
this class is seen differs in every ontology. In the Information ontology, data are described in terms
of their concrete values, the organizational aspect details which departments are responsible for
maintaining data, and the Lifecycle ontology places it within the context of a Record lifecycle.
These classes will also be set equal at the top level.

3.4.2 Schema Fusion

The schema fusion describes how the SHACL validation schema from two different ontologies are
combined. As already mentioned in Section 3.3, every ontology has its own SHACL validation
schema implemented, including its own PropertyGroups. These validation schemas can also be
used on the top-level ontology. Therefore, combining two or more schemas is limited to these
implementations:

Figure 3.11: Example of a schema fusion from abstract classes.

• Abstract classes with their non-abstract equivalents:
As discussed in Section 3.4.1, implementing abstract classes within the ontology is one
possibility for combining ontologies. These abstract classes also implement the required
DL. Figure 3.11 illustrates the necessary implementation needs in case those instances were
also realized within abstract classes. As previously mentioned, CapabilityAbstract resides
in the ontology Jurisdiction. In theory, implementing abstract instances is possible and
allows validation of the involved relationship between CapabilityAbstract and GDPRArticle.
However, the establishment of semantic equivalence between every abstract instance and its
non-abstract variant would be necessary. This would result in even more implementation
needs than simply validating the involved relationship at the top-level schema. In addition,
each instance would have an unnecessary abstract duplicate, leading to overhead regarding
storage and query performance. Because abstract classes are only implemented to later
connect both ontologies and are not important for the Jurisdiction sub-ontology, validation at
the bottom level is not required. Thus, validation still takes place at the top level to validate
the relationships involved in the overall system.

42

3.4 Ontology Fusion

• PropertyGroups:
As mentioned in Section 3.3.2, every ontology has its own PropertyGroups. To utilize
PropertyGroups from all ontologies simultaneously, these PropertyGroups become members
of another PropertyGroup at the top-level schema, as shown in code snippet 3.3.2.

• SWRL rules:
SWRL rules are implemented exclusively at the top level, as they integrate multiple classes
and relationships across different ontologies. Thus, these rules and their corresponding
inferences are validated in the top-level schema.

Apart from these implementations, the rest of the validation schema from every sub-ontology can
be used exactly as they are to validate their part.

3.4.3 Instance Connection

As already mentioned, the implementation of instances for abstract classes leads to unwanted and
unnecessary overhead. Returning to the example in Figure 3.11, the description logic for Capability
is automatically carried over, including the involves relationship. However, explicit connections
between instances are not automatically established. Therefore, in this case, the connection between
the instances from Capability and GDPRArticles has to be connected via the involves relationship
to conform to the description logic rules. The same principle applies to any connection between
a regular class and its abstract counterpart, in which the non-abstract variant is implemented in
another ontology along with its instances.

43

4 IGONTO Development

After illustrating various general approaches and design decisions associated with the development
of IGONTO, this chapter describes the concrete implementation. Every sub-ontology is presented,
along with the fusion of the whole system, including the development of validation, description
logic, and SWRL rules. The concepts, general classes, and their relationship are based on previous
work from [IGONTO23]. This chapter focuses on the specific implementation of these concepts,
combined with the general approaches mentioned in Chapter 3.
Each sub-ontology described will include a visual representation. Every relationship has an inverse
relationship, though to avoid overloading the visual representation, only the top-down direction
will be visualized. Although some ontologies have SWRL rules that apply only for connections
within their domain, the discussion of all SWRL inferences will be included in a separate section at
the end of this chapter. This structure was chosen because the validation and implementation of
all SWRL inferences occur at the top level, which enhances the overall structure and organization.
Some classes are highlighted in green to denote that they contain subclasses, but are excluded
from the overall visualization to enhance clarity. These subclasses do not have relationships
other than isSubClassOf the corresponding superclass. Therefore, they are not critical for the
overall view and are explained in more detail in the textual description. Table 4.1 explains how re-
lationships and the description logic between classes are implemented in the following visualizations.

Visualization Explanation
The dashed arrow symbolizes a subclass
relation between two or more classes. The
class from which the arrow originates is the
subclass. In this case, Class1 is a subclass
of Class2.
If the arrow is not dashed, it indicates a
relationship from one class to another. The
relationship name is written above the arrow.
In this case, Class1 has a relationship to
Class2.
If an “&” stands before multiple arrows, all
descendant relationships belong to one DL.
Here, the DL would be implemented in
Protegé as follows:
Class1 and
(hasRelationShip1To Class2) and
(hasRelationShip2To) Class3) and
(hasRelationShip3To Class4)

Continued on next page

45

4 IGONTO Development

Table 4.1 continued from previous page
Visualization Explanation

Classes can have different colors. If the
class is blue, it is an abstract class. If the
class is green, it has further subclasses that
are not visualized for clarity but are
mentioned in a table within the section. If
the class is orange, it is already visualized at
another location within the graph but
duplicated to make relationships shorter.
On every relationship arrow, certain entities
are noted. These entities explain the
description logic behind the relationship:

• If the entity has a 1 with dots, the
description logic keyword “some” is
used, indicating that the subject of this
relationship is connected to at least
one instance from the object class.

• If the entity has a 1 without dots, the
description logic keyword “exactly” is
used, indicating that the subject of this
relationship is connected to exactly
one instance from the object class.

• If the entity has a 0 with dots the
description logic keyword “min 0” is
used, indicating that the subject of this
relationship may be connected to at
least one instance from the object
class.

Every relationship has a corresponding
inverse relationship that connects the subject
and the object in the opposite direction. For
clarity, inverse relationships are not shown
in the graph, but they are practically always
present. Sometimes the description logic
differs in the opposite direction. To still
show the inverse DL, the entity number of
the inverse relationship (here, the blue 1) is
included.

Table 4.1: Graph legend.

46

4.1 Jurisdiction Ontology

4.1 Jurisdiction Ontology

The jurisdiction ontology is at the top level, encompasses the jurisdiction domain of a government
and its regulations, and bridges the path between jurisdiction and enterprise. Figure 4.1 visualizes
the concept level. As it connects the jurisdiction and the enterprise domain, several abstract classes
are implemented (see Section 3.4.1). Each abstract class is colored blue, and its origins lie in the
organization ontology.

The Enterprise represents a business or organization that operates in one or more Countries. Every
Country belongs to a Jurisdiction, which is the legal entity of a region and has the authority to
govern and legislate within its boundaries. A Jurisdiction has a Regulation with which Countries
are regulated, it establishes and enforces rights and obligations for enterprises, business partners and
customers. Every Regulation requires an enterprise-wide governance Strategy to achieve regulatory
compliance and a governance Program with specific initiatives and projects that implement the
required measures to satisfy compliance needs. Country has the sub-classes US and EEA including
its subclass EU, to connect countries with the right jurisdiction. Countries in the EU must comply
with GDPR, whereas states in the US need to comply with various federal and state laws, each
serving a different purpose. The European Economic Area (EEA) includes every country that needs
to comply with GDPR. This hierarchy is important because not every country in the EEA is also
in the EU, such as Norway. In the IGONTO prototype, we developed the concept of information
governance based regulatory compliance using GDPR to represent regulatory requirements in
general. Therefore, the concept of European Union was implemented as a subclass of Regulation,
with further sub-classes implementing the GDPR structure. GDPR is the european Regulation and
includes GDPR Articles. The GDPR has 11 Chapters, each including a varying number of Articles.
A total of 99 articles form the foundation of GDPR. Every Article includes Keywords, to quickly
summarize the intention behind each article.

Associations such as ARMA or CGOC, which are based on GDPR, have defined Capabilities that
describe how to achieve compliance at different levels. Whereas ARMA concentrates on providing
implementation guidelines based on the GDPR Principles, CGOC defines capabilities in functional
processes. Because they describe GDPR, every Capability involves some GDPR requirements as
specified in their respective Articles. Since these associations describe compliance from different
points of view, identifying commonalities between them is challenging. Therefore, we connect
these capabilities with more generally defined Rights and Obligations using SWRL inferences to
form a unified set of Requirements. This is realized because each of these classes involves GDPR
Articles. The exact implementation is explained in the separate Section 4.6, which deals with
all SWRL inferences in this ontology. Originally, these capabilities were implemented in the or-
ganization ontology, but also as an abstract class here because they are based on GDPR and its articles.

Obligations and Rights include sub-classes, each describing a specific obligation/right. Because
Obligations and Rights are fundamental for the connection between the (non)-functional Require-
ments and the Capabilities, each connection to the GDPR Articles involves an annotation property
with a citation or explanation, as well as why the article is involved in this obligation or right

47

4 IGONTO Development

Figure 4.1: Visualization of the Jurisdiction ontology.

instance. Figure 4.2 illustrates this approach based on the Obligation To Ensure Integrity Of Data
Instance. Article 5 is involved in this obligation, and the explanation is added as a comment to the
object property as a citation from Article 5.

Figure 4.2: Visualization of annotation property.

Table 4.2 lists the further taxonomy of Obligations, Rights, and Requirements. The intention of
each Obligation, Right and Requirement can be derived from the class name itself.
Additionally, obligations, rights, and requirements are semantically grouped whenever possible.
These include the following:

• Obligations for the Data Controller

48

4.1 Jurisdiction Ontology

• Obligations for the Data Processor

• Data Subject rights

• Functional Requirements

• Non-Functional Requirements

Superclass Subclass
Obligation DataControllerObligation, DataProcessorObligation,

ObligationToAppointDataProtectionOfficer, ObligationTo
NotifyOfPersonalDataBreach,
ObligationToPerformDataProtectionImpactAssessment

DataControllerObligation ObligationToCooperateWithSupervisoryAuthority,
ObligationOfCross-borderDataTransfer,
ObligationToEnsureAccountabilityOfDataController,
ObligationToEnsureAccountabilityOfProcessor,
ObligationToEnsureAccuracyOfData,
ObligationToEnsureConfidentialityOfData,
ObligationToEnsureIntegrityOfData,
ObligationToFulfillConsentRequirement,
ObligationToLimitPurposeDataProcessing,
ObligationToLimitStoragePeriod, ObligationToMinimizeData

DataProcessorObligation ObligationToCaptureRecordsOfDataProcessingActivity,
ObligationToFairnessDataProcessing,
ObligationToLawfulnessDataProcessing,
ObligationToTransparencyOfDataProcessing

Right DataSubjectRight
DataSubjectRight RightRelatedToAutomatedDecision-making,

RightRelatedToAutomatedProfiling, RightToAccess,
RightToBeForgotten, RightToBeInformed, RightToComplain,
RightToDataPortability, RightToErasure, RightToObject,
RightToRectification, RightToRestrictProcessing

Requirement FunctionalRequirement, Non-FunctionalRequirement
FunctionalRequirement FR.Access, FR.SearchFR.Audit, FR.Dispose, FR.Store,

FR.Secure, FR.Transfer, FR.Classify, FR.Privacy, FR.eDiscover,
FR.Record, FR.Archive, FR.Replicate, FR.Manage, FR.Protect,
FR.Administration, FR.Load, FR.Query,
FR.TransactionSupport, FR.ReferentialIntegrity, FR.Collect,
FR.Hold, FR.Retain, FR.Control

Non-
FunctionalRequirement

NFR.Availability, NFR.ServiceQuality, NFR.Backup,
NFR.Resiliency, NFR.Recovery, NFR.Restore,
NFR.LoadBalancing, NFR.Elasticity, NFR.DisasterRecovery,
NFR.TransactionSupport, NFR.Scale

NFR.Availability NFR.HighAvailability
NFR.Scale NFR.DynamicScale

Continued on next page

49

4 IGONTO Development

Table 4.2 continued from previous page
Superclass Subclass
NFR.ServiceQuality NFR.ServiceLevelAgreement
NFR.TransactionSupport NFR.TwoPhaseCommit, NFR.ReferentialIntegrity

Table 4.2: Hierarchy of Obligations, Rights and Requirements.

4.2 Organization Ontology

The principle underlying this sub-ontology is presenting information governance from an organiza-
tional point of view. The main part consists of a description of the Enterprise, its Organizational
Units, and how they interact with and produce Data.
The Enterprise superclass has three subclasses: SmallEnterprise, MediumEnterprise, and LargeEn-
terprise. These subclasses represent enterprises with a certain number of employees. Small
Enterprises have fewer than 250 employees, MediumEnterprises have between 250 and 5000 and
LargeEnterprises represent enterprises with an employee number larger than 5000. These subclasses
also represent the use case covered in this prototype to show the functionality of IGONTO. By
GDPR mandate compliance obligations depend on the size of an enterprise. These different
obligations and implementation requirements are dynamically created through SWRL rules and
multiple sub-ontologies. The exact rules and how they are implemented are discussed in Section
4.6.

The Governance class represents the governance side and how the Enterprise interacts with it at a top
level. Governance has three subclasses: Governance Criterion, Governance Body, and Governance
Strategy. Every Enterprise needs a GovernanceStrategy to manage its resources effectively. Calahan
et. al. [CBK04] emphasized that IT governance and therefore the needed strategies are crucial for
organizations to achieve their business objectives and goals. The GovernanceStrategy defines these
Objectives and Goals. Objectives set by the strategy ensure adherence to governance criteria, such
as Quality, Compliance, and Transparency. These criteria, which need to be fulfilled, ensure the
alignment of governance strategy within the organization’s legal, ethical, and operational standards.
This alignment of strategy in (IT)-Governance with the Enterprise Risk Management positively
impacts an organization’s overall performance [Sir21].

Every Enterprise needs a Steering Committee, a group of high-level stakeholders, who are essential
in directing project sponsors and involving managers and supervisors in the project [SL14]. The
Steering Committee defines a Program and a set of Strategies. The Program represents a set of
activities with the intention to implement parts of the Strategy. Every Program specifies Principles,
which are fundamental guidelines for steering the program. A Strategy is a plan to realize long-term
Objectives and to define Policies, that define Rules to govern all actions within an enterprise.

Every Rule executes or governs the creation and management of Records. A Record is documented
information of activities or transactions. [HH13] highlighted the importance of enforcing business
rules within the data lifecycle so that they ensure data quality and consistency. A Process is a series

50

4.2 Organization Ontology

of actions that creates Records, which document the decisions taken and the outcome of the Process.
Records govern management and use of data, which include information about creation, processing,
storage, retrieval, protection, disposition, and other needs [Ben10]. These steps are summarized in
Record Lifecycle, which are used on Records.

Every Enterprise has multiple Organization Units, which refer to different segments such as Depart-
ments or Business Unit that fulfill different functions within the enterprise. While Departments focus
more on specific functions, Business Units operate more independently and focus on specific market
segments or product lines. The specific functions of the Departments are divided into Change
Management, IT, Legal, Privacy and Security, Records Management, and Risk and Compliance.
Every Department has Employees, who work in specific Departments. Because departments are
functional organization units, each Department creates Data.
The Change Management implements strategies and adopts approaches to transform organizational
goals, processes, and technologies. The key objectives include not only finding and preparing
for changes to improve performance but also minimizing resistance while adopting these changes.
IT departments have a wide range of responsibilities that are crucial for the enterprise, such as
administration, accounting, and data integration. The Legal department oversees the regulatory
part by managing legal risks, thus ensuring compliance. Privacy and Security summarizes the
departments responsible for privacy and security within the enterprise, such as Access Control,
Audit, and Monitoring. Records Management is responsible for all functions and processes in
connection with records. Records and Information Management (RIM) and Electronic Records
Management (ERM) are two specifications. While the RIM contains the management of all records,
the ERM concentrates on digital records such as emails, and digital documents. RiskAndCompliance
also includes EnterpriseRiskManagement and Information Risk Management as specifications. Both
have the goal of identifying, managing, and reducing risks. While EnterpriseRiskManagement
concentrates on identifying risks regarding the overall enterprise, the scope of InformationRiskMan-
agement covers risks regarding the management and security of information.

Every Organization Unit has a specific Role they fulfill. Every specific role is grouped into one of the
following concepts: Governance Role, Data Protection Role, or Business Role. Governance Roles
focuses on monitoring and managing the overall enterprise governance strategy and compliance.
Governance Roles include the following:

• Chief Compliance Officer (CCO), who is responsible to ensure lawfull and regulatory
compliance.

• Chief Security Officer (CSO), who is responsible for physical and digital security.

• Chief Information Governance Officer (CIGO), who is responsible for leading the strategy
rearding information governance

• Data Protection Officer (DPO),which involves advising and supervising the enterprise
regarding data compliance.

Data Protection Roles concentrate on data protection and data security. The Data Controller
determines data processing methods while ensuring data protection principles. The DataProcessor
acts on behalf of the DataController and must ensure confidentiality and security while processing
data. The Data Subject is the owner of the processed data and has several rights that need to be

51

4 IGONTO Development

ensured throughout the whole process.
Business Roles include positions that are linked to the management, planning, and implementation
of projects. Executive Sponsors often lead positions that bridge the gap between upper management
and project implementation, which the Project Manager is responsible for. Stakeholders represent
internal or external parties with a certain interest in the project and have a direct impact on the
project’s success.

Figure 4.3: Visualization of the Organization ontology.

4.3 Lifecycle Ontology

The Lifecycle is relatively small and focuses on the lifecycle of data, extending the organization
ontology in the Record Lifecycle. Data drives the Record Lifecycle, which handles the creation,
management, and retention of records. A well-defined information lifecycle and its governance are
crucial for the reduction of data growth, risk, and cost to optimize information value [Lam14].
A Record Lifecycle is divided into Service and Process. Service represents a set of activities to
manage, access or utilize data/records (e.g. information). This includes the following:

• Access, representing methods to access information by an authorized user.

52

4.4 Information Ontology

• Find, representing methods to locate specific information.

• Rendering, representing methods to convert information into usable formats.

• Retrieve, representing methods to retrieve specific information from a database.

• Service Search, representing structural methods to search and retrieve information based on
specific queries or criteria.

• Session, representing user interaction periods with the system to access and manipulate data.

• Submission, representing methods to upload data into the system for later processing,
management, or storage.

A Process is a sequence of steps to achieve a specific record or data management goal. These goals
include processes for record creation up to their disposal and archiving:

• Archive, representing processes to transfer records into long-term storage for preservation.

• Classify, representing categorization processes of information, based on predefined metrics.

• Index, representing indexing methods to enhance the searchability of information.

• Measure, representing the application of predefined metrics on information to enhance
efficiency and compliance.

• Metric, representing standardized units for measurement to evaluate effectivity and efficiency.

• Monitor, representing processes to oversee data management to ensure functionality.

• Retain, representing processes for keeping information as long as required in a certain
repository or process, to meet policy rules or other requirements.

• Search, representing processes to locate information.

• Secure, representing processes regarding security measurements to protect information from
unauthorized access.

Processes create Statistics, providing various information regarding record management. Reportings
are produced by these Statistics, to assist upper management in decision-making and compliance.

4.4 Information Ontology

The information ontology describes the concept of data and its information value. Data represents
raw facts used and collected by organizations and can be interpreted in several ways. Data is
equivalent to an item, which represents a concrete individual unit of information. Every Item has
a Version to represent its state over time. Because data can have multiple structures, Document,
Asset, Content, and Metadata are defined as subclasses of Data. Documents are structured units of
recorded information. A Document has a Rendition, which represents the document in a different
format for a different purpose (different file format, different language, etc.), and an Edition, which
documents updates and changes. Assets describe strategic, financial, or operational information
valuable to the enterprise. Content focuses on the information conveyed by the data itself. Metadata
provide Information about data, which is a subclass of Metadata. This Information can include

53

4 IGONTO Development

Figure 4.4: Visualization of the Lifecycle ontology.

Archival Information, Content Information, or a Description. These pieces of Information are
contained in Files, which in turn are contained in Container - a broader term used for organizing
and storing records.

Container organize files and include their information. Data can also be represented as a vector,
comprising containing Value, exposing Risk, and producing Cost. Calculating these components
aids in process decisions regarding data management. For instance, if the data value is too low and
the costs of keeping it in a certain repository are too high, the data may be archived for long-term
storage.
Records classify and therefore categorize and organize Data, thus represents a crucial component
in effective data management [Fra13]. Records have a RecordControlStructure, which is used
to manage and control records within organizations. These RecordControlStructures include the
following:

• Control Data, representing records of sensitive data, such as PersonnelFiles, PII-Data, and
AuditData.

• Report, representing records of data that provide analytical information for decision-making.

• Hold, representing an organizational directory to retain records, often for audits or legal
matters.

• Retention, representing policies to manage the duration of record keeping in certain reposito-
ries.

54

4.5 Implementation Ontology

• Audit Trail, representing recordings of changes or actions performed on records to ensure
security, integrity, and compliance [Bjo75].

• Category: A classification of records.

Every Record uses a DataDictionary. The DataDictionary forms the vocabularyFor the Taxonomy,
which provides uniform terms and definitions for categorization and classification, and therefore,
allows the effective organization of information [Mil07]. The Data Dictionary ensures consistency,
and clarity and is crucial for effective record management [BP08].

A Policy is a set of guidelines to govern proceedings and activities within an enterprise. Policies
grant Priviliges to Roles, defining what actions a role can perform. Policies monitor metrics to
evaluate their effectiveness and to enable necessary changes. A Policy has a Goal, representing an
objective, a desired outcome, or a principle such as accountability that the policy aims to achieve.
These policies and their goals need to be implemented. This is done by first applying Rules, which
are specific regulations that must be followed. These Rules build the foundation and define a
Schedule, which is used in Retention to ensure that records are kept for an appropriate duration.

Figure 4.5: Visualization of the Information ontology.

4.5 Implementation Ontology

The Implementation ontology provides a structured approach for creating unique blueprints for
architecture solutions and their design components based on the individual company’s needs. Knowl-
edge inferred from the other ontologies aids in inferring solutions in this domain. Although the
Implementation ontology is a direct subdomain to the Enterprise such as Organization, Information,
and Lifecycle, its granularity is higher. Therefore Implementation contains multiple subdomains

55

4 IGONTO Development

to grasp all necessary concepts in a structured manner. Some Implementation sub-ontologies
semantically represent the same domain as those already implemented but from a different point of
view. Thus, even though these domains are similar, some changes are implemented to represent the
domain in the implementation context.

Figure 4.6: Visualization of the Implementation ontology hierarchy.

Figure 4.6 demonstrates the hierarchy of the Implementation ontology. Even though Implementation
has various subdomains, some of them are rather simple but still kept in their individual ontologies
to provide a clearer structure.

4.5.1 ArchitectureDesign Ontology

The ArchitectureDesign bridges the knowledge of other ontologies with the implementation domain
and forms the framework of the individual enterprise solutions. Enterprises from the top level are
connected with SWRL rules to concepts of this domain. These concepts represent the different
architecture solutions, where these solutions are in turn implemented with the other domains within
the Implementation ontology.

Figure 4.7 shows the ArchitectureDesignDomain. The subclasses of the green-highlighted classes
are presented in Table 4.3, to simplify the visualization. The first subclass level contains concepts
about Function, DataQuality, DataArchitectureManagement, DesignComponent, Method, Lifecycle,
SoftwareDesignPattern and Solution.
DataArchitectureManagement is crucial to organizing data assets to ensure certain DataQuality.
Both aspects are involved in the architecture solution, as different implementation solutions require
different data quality and management efforts. DesignComponents describe the building blocks of
the system architecture. The combination of all components defines the structure and behavior of the
system. Methods refer to the necessary procedures within the architectural solution. Function is a
synonym for Methods used in other domains. Therefore, we equate both classes. Lifecycle describes
the different stages of an architectural entity, as distinct stages may require alternate functional
solutions. SoftwareDesignPatterns are proven efficient, standardized solutions that provide scalable
design strategies for the architectural domain.

56

4.5 Implementation Ontology

Figure 4.7: Visualization of the ArchitectureDesign ontology.

In Solution, diverse examples of solutions are implemented, to which the enterprises at the top
level of the ontology are connected. ArchiveSolutions focuses on long-term data retention and
access. ECMSolutions represent architecture implementations needed to organize information
across the enterprise, such as documents, and assets. ContentRepositorySolutions are more
specialized management architectures that focus on organizing, storing, and retrieving digital
content. Therefore, ECMSolutions often include ContentRepositorySolutions and InformationRe-
trievalSolutions. Because the digital content also has to be archived, ContentRepositorySolutions
includes ArchiveSolutions. The InformationGovernanceSolution is a more extensive solution
architecture and represents the combination of solutions if all GDPR obligations have to be
implemented. Therefore, InformationGovernanceSolution is a complex class, which contains
solution architectures focused on retrieving information (InformationRetrievalSolution), managing
records RIMSolution, discovery processes (eDiscoverySolution) and requires an ECMSolution. Like
the ECMSolution, it includes some ContentRepositorySolutions. That these four solutions are all
together part of the InformationGovernanceSolution, is visually illustrated by the “&” in the graph.
The LegalCaseManagementSolution focuses on tracking case progress and the management of

57

4 IGONTO Development

further legal matters, such as billing and evidence. Each solution is solved by a template of various
SolutionPatterns. These include best practices for solving common problems.

Superclass Subclasses
DataQuality DataQualityAwerness, DataQualityBusinessRule, DataQualityDefect,

DataQualityManagement, DataQualityMetric,
DataQualityPerformance, DataQualityServiceLevel,
OperationalDataQualityProcedure

DesignComponent CatalogComponent, ClassificationComponent,
ContentManagementComponent, GovernancePortal,
GovernanceComponent, TransactionManagementComponent,
ControlComponent, IMSComponent, FulltextServer,
ContentManagementPortal, StorageManagementComponent, RIM,
RelationalDatabase, Repository, SoftwareComponentPattern,
LoadBalancing, TransformationComponent, EndUserPortal,
IndexingComponent, InformationManagement

CatalogComponent ContentCatalog, ContentObjectCatalog, RecordsCatalog
Content
Management
Component

MetadataManagement, RepositoryManagement,
SearchAndRetrievalManagement, TransactionManagement

FulltextServer FulltextIndexServer, FulltextSearchServer
Information
Management

AnalyticsImp, BusinessIntelligence,
BusinessIntelligenceManagement, InformationRetrieval

Lifecycle InformationLifecycle, LifecycleStage
Method AccessMethod, TransferMethod, SecureMethod, StoreMethod,

ManageMethod, DisposeMethod, SearchMethod, RecordMethod,
TwoPhaseCommitFunctionMethod, eDiscoverMethod, AuditMethod,
AdministerMethod, ArchiveMethod, PrivacyMethod, ControlMethod,
QueryMethod, HoldMethod, LoadMethod, ClassifyMethod,
CollectMethod, ProtectMethod, RetainMethod

AnalyticsImp AI, MachineLearning

Table 4.3: Remaining hierarchy of the ArchitectureDesign ontology.

4.5.2 DataDomain Ontology

The DataDomain Ontology is similar to the Information Ontology but focuses on data management
in the context of architecture solutions. Figure 4.8 shows the visualization of the domain.
The direct subclasses of the domain are DataType, DataRisk, DataCost, DataValue, SpecialCate-
gory, Policy, Schedule, Rule and dcat:Catalog. The biggest subclass is DataType, which describes
various forms of data. Every DataType has DataCost, DataRisk and DataValue, which represents
financial aspects of data, potential threats associated with data, and the importance and relevance
of data, respectively. All three concepts are merged, and thus each data point is represented
by a vector containing risk, cost, and value. Every piece of data consistsOf a Policy which

58

4.5 Implementation Ontology

recursively consistsOf the combination of a Schedule and its Rules. The class dcat:Catalog involves
organization and indexing of data, which is again divided into ObjectCatalog, CatalogComponent,
and RecordsCatalog. The SpecialCategory refers to data that requires special management, such as
sensible data.
The subclasses of DataType describe different data variations, which include AssetType, Catego-
ryType, ObjectType, TransferType, DispositionType, LifecycleType, StorageType, MetadataType,
and a TriggerType. AssetType, CategoryType, and ObjectType classify and categorize data, which
is crucial for effective data management. TransferType, DispositionType and LifecycleType refer
to different stages of data management that are important for maintaining data integrity. More
detailed concepts are implemented in the DataDomain as examples. For instance, ContentObjects,
such as multimedia files and Documents are subclasses of BusinessData, which encompasses data
related to business processes. Here, a Document is detailed and consistsOf DocumentMetadata,
which is a subclass of MetadataType, and ContentObjects. From these ContentObjects, more
specific types exist, such as Rendition. Additionally, an example of using connections for Databases
is implemented. Here, RelationalSchema, RelationalDatabase and a IndexingScheme are part
of a Database. The RelationalDatabase is a type of Database that stores data in a structured
format and is composedOf a RelationalSchema, which defines its structure. ContentCatalog and
RecordsCatalog are further examples that illustrate the relationship with the Database concept. Here,
ContentCatalog requires a RelationalSchema and a RelationalDatabase to function effectively. The
RecordsCatalog isSearchable within a RelationalSchema and isComposedOf of a RecordsCategory,
which is a subclass of CategoryType and implies that the RecordsCatalog is a collection of records.
These concepts now have to be extended to all DataTypes, Catalogs, and Databases, as listed in
Table 4.4, in the next implementation iteration of this prototype.

Superclass Subclasses
AssetType BusinessAsset, ContentAsset, DataAsset, DesignAsset,

HRAsset, IPAsset, ITAsset
HRAsset HRData
BusinessData BusinessAsset, ContentAsset, DataAsset, DesignAsset,

HRAsset, IPAsset, ITAsset
ContentObject MultimediaObject, OfficeDocument, Rendition
Rendition HTMLDocumentRendition, PDFDocumentRendition
Document Book, LegalDocument, Notice, ReferenceDocument, Report
RecordsCategory AccessManagement.RC, EvaluationAndDisposal.RC,

GovernmentRelation.RC, InformationManagement.RC
Database FulltextIndex, RelationalSchema, IndexingScheme,

RelationalDatabase, NewSQLDatabase, SQLDatabase,
NoSQLDatabase

DispositionType DispositionRecord, DispositionSchedule, DispositionTrigger
LifecycleType ContentLifecycle, InformationLifecycle, StorageLifecycle,

DataLifecycle
MetadataType AccessControlList, Information, DocumentMetadata, Record
ObjectType BusinessObject, ContentObject
Policy DispositionPolicy, StoragePolicy, RetentionPolicy,

TransferPolicy
Continued on next page

59

4 IGONTO Development

Table 4.4 Continued from previous page
Superclass Subclasses
RetentionType RetentionRecord, RetentionPeriod, RetentionSchedule
Rule DispositionRule, RetentionRule, StorageRule, TransferRule
Schedule RetentionSchedule
StorageType BlockStorage, StorageInformation, KeyValueStorage,

HierarchicalStorage, TieredStorage, ObjectStore,
StorageLocation

ClassificationScheme DocumentModel, RecordsPlan
TransferType TransferRecord, TransactionRecord
TriggerType DispositionTrigger, RetentionTrigger, StorageMigrationTrigger,

TransferTrigger

Table 4.4: Remaining hierarchy of the DataDomain ontology.

4.5.3 IGServicesDomain Ontology

The IGServiesDomain includes a list of Services and represents their hierarchy. A Service is
provisioned by a ServiceProvider and has to expose certain Capabilities such to satisfy the
ServiceConsumer needs. Every service has ServiceAgreements to outline conditions between
the ServieProvider and the clientServiceConsumer. The ServiceLevelAgreement defines specific
service quality levels that are expected from the service provider and includes metrics to measure
ServiceQuality. A ServicePattern represents re-useable templates of different services organized
in different categories. IGServiesDomain is a hierarchical representation of the domain, and its
concepts are presented in Table 4.5. All services that are subclasses of the IGServiceDomain in the
first order represent services with different objectives, which again can contain multiple sub-services
where the individual focus can be obtained from its name. The top services include the following:

• RecordsManagementService, which focuses on managing and maintaining records.

• StorageService, which focuses on storing data to ensure GDPR principles such as availability
and integrity.

• LegalCaseManagementService, which focuses on managing data for legal cases such as
evidence or legal documents.

• RegulatoryService, which focuses on services that guide information management through
regulatory compliance.

• InformationRetrievalService, which focuses on services to effectively retrieve information.

• ContentManagementService, which focuses on managing digital content such as multimedia
files.

• RenderingService, which focuses on converting information into different formats.

• eDiscoveryService, which focuses on the discovery of digital content for legal matters.

• UtilityService, which focuses on basic utility services such as networking.

60

4.5 Implementation Ontology

Figure 4.8: Visualization of the DataDomain ontology.

• DocumentManagementService, which focuses on document management within their different
lifecycle stages.

• DataService, which focuses on services directly related to data, such as analysis.

Some services include multiple sub-services, where each focus can be read from its name.

61

4 IGONTO Development

Superclass Subclass
IGServiceDomain Capability, RecordsManagementService,

ServicePattern, StorageService,
LegalCaseManagementService, ServiceAgreement,
dctype:Service, ServiceProvider, RegulatoryService,
InformationRetrievalService,
ContentManagementService,
InformationManagementService,
ServiceLevelAgreement, RenderingService, Service,
eDiscoveryService, UtilityService,
DocumentManagementService, ServiceQuality,
DataService

ContentManagementService AccessService, TransferService, LoadService,
ArchiveService, ManageService, QueryService,
AdministerService, SecureService, CollectService,
AuditService, StoreService, ControlService,
SearchService

DataService DatabaseFunction, DatabaseOperation,
DataManagementSupervision

eDiscoveryService ServerDiscoveryService
ServerDiscoveryService DataDiscoveryService
DataDiscoveryService DataDiscoveryRequest, DataDiscoveryResult
RecordsManagementService ClassifyService, HoldService, RetainService,

ManagedRecordService, PrivacyService,
DisposeService, eDiscoverService, ProtectService

ServiceLevelAgreement Archive, Gold, Bronze, Silver, Platinum
ServiceProvider CloudServiceProvider
ServiceQuality arc:Availability, arc:Scale, arc:Elasticity, arc:Backup,

arc:Restore, arc:DynamicScale, arc:DisasterRecovery,
arc:LoadBalancing, arc:Recovery, arc:Resiliency,
arc:HighAvailability

UtilityService ControlType, DataType

Table 4.5: Hierarchy of the IGServiceDomain ontology.

4.5.4 ImplementationDomain Ontology

The ImplementationDomain contains a hierarchical description of several implementation compo-
nents for IG, as presented in Table 4.6. EnterpriseContentManagement refers to components for
managing and implementing the organizational aspects of Enterprise Content Management (ECM),
such as Archive, Case, Content, Document, eDiscovery and Records. InformationManagement
focuses on components for implementing information-related processes, such as Analysis, Business-
Intelligence, and InformationRetrieval. Similar to other domains, the InformationPattern describes

62

4.5 Implementation Ontology

standardized methods within its domain. Because IG does not only consist of processes but also
the collaboration of all resources, InteractiveResource represents external tools for interactive
engagement with data resources, employees, and the system.

Superclass Subclass
ImplementationDomain DataManagement, WorkflowManagement,

InformationManagement,
EnterpriseContentManagement,
ImplementationPattern,
EnterpriseInformationManagementPortal,
ITGovernance

DataManagement DataAssessment, DataClassification, DataCollection
ImplementationDomain EnterpriseContentManagement,

InformationManagement, ImplementationPattern,
InteractiveResource

EnterpriseContentManagement ArchiveManagement, RecordsManagement,
eDiscoveryManagement, DocumentManagement,
CaseManagement, ContentManagementComponent

ContentManagementComponent MetadataManagement,
SearchAndRetrievalManagement,
TransactionManagement, RepositoryManagement

DocumentManagement DocumentRelatedBusinessCases
InformationManagement AnalyticsImp, InformationRetrieval,

BusinessIntelligenceManagement,
BusinessIntelligence, OperationalSupportSystems

AnalyticsImp AI, MachineLearning, KnowledgeBase
WorkflowManagement ContentCentricWorkflow, WorkflowProcess

Table 4.6: Hierarchy of the ImplementationDomain ontology.

4.5.5 OrganizationDomain Ontology

The OrganizationDomain Ontology is similar to the Organization ontology described in Section
4.3. Even though these ontologies are similar, the implementation domain needs the addition of
the classes around Occurrence, as illustrated in Table 4.7. Occurrence refers to certain actions,
events, or triggers that bridge the concepts of organization and implementation. Organizations may
perform some Actions to achieve their objectives or initiate certain processes. AssessmentEvents
represent evaluation initiatives such as audits or reviews. Certain events can also be bound to
their specific LifecycleOccurence. Events that may involve more critical lifecycle stages could
involve more critical processes. Organizations also can Request certain information. Finally, the
TriggeringEvent implies events that initiate or trigger certain processes. For instance, a request
could trigger processes to retrieve certain records from a database.

63

4 IGONTO Development

Superclass Subclass
OrganizationDomain Occurrence
Occurrence Action, AssessmentEvent, LifecycleOccurrence, Request,

TriggeringEvent
Action CorporateAction, RegulatoryAction

Table 4.7: Hierarchy of Occurrence in the OrganizationDomain ontology.

4.5.6 PlatformDomain Ontology

The PlatformDomain Ontology describes various aspects related to platform services and their
architecture. The hierarchy is described in Table 4.8. These patterns are derived from Fehling et. al.
[FLR+14]. We will not discuss every pattern in detail, as only the hierarchy and conceptualization
of these patterns are important. To further explain each cloud computing aspect, please refer to
their contribution.
The first distinction is made between the concepts of CloudComputingPattern, representing stan-
dardized design matters in cloud computing, and CloudPlatform, representing some existent cloud
platforms such as AmazonCloud, GoogleCloud, IBMCloud, MicrosoftCLoud, and RadhatCloud. A
complete CloudComputingPattern includes the following:

• CloudApplicationArchitecturePattern, which describes the architecture of cloud applications.

• CloudApplicationManagementPattern, which describes methods for cloud computing man-
agement.

• CloudComputingFundamental, which describes fundamental characterization of the cloud.

• CloudOfferingPattern, which describes a set of technical functionalities a cloud can provide.

• CompositeCloudApplicationPattern, which describes more complex cloud application char-
acteristics.

In this use case, a KubernetesPattern is additionally implemented, as the IGONTO framework
uses one. CloudApplicationArchitecturePattern is further divided into four subclasses. The
CloudApplicationComponent contains individual building blocks needed to implement a cloud
application. These building blocks need to be integrated with each other and the system and
are represented in the CloudIntegration. Each cloud application has one or more core concepts,
represented in FundamentalCloudArchitecture. Because cloud applications serve multiple customers
(tenants) at once, the needed components are described in Multi-Tenancy.
A CloudApplicationManagementPattern can be divided into a ManagementComponent, including
functionalities and tools for efficient cloud management, and ManagementProcess, involving the
required processes for effective cloud management.
The CloudComputingFundamental characterizes the type of workload that is performed on cloud
applications, represented in ApplicationWorkload. A cloud application can be deployed in different
ways. The different models are conceptualized in CloudDeploymentModel. The implemented
service offerings of a cloud application are implemented in the CloudServiceModel.
CloudEnvironment, CommunicationOffering, ProcessingOffering and StorageOffering describe
different aspects within the CloudOfferingPattern. The CloudEnvironment specifies the cloud

64

4.5 Implementation Ontology

infrastructure, and each variable is associated with availability, scalability, and flexibility. The
communication used within a cloud application is detailed in CommunicationOffering. Since
cloud application demands can vary, different ProcessingOfferings are used to enhance processing
performance. Since different demands also affect the way we store data, aspects of the data storage
are summarized in StorageOffering.
These patterns can also be combined to define new patterns. Fundamental compositions are
described in NativeCloudApplication, whereas HybridCloudApplication details solutions in the
case of the distribution of application components.

Superclass Subclass
PlatformDomain CloudComputingPattern, CloudPlatform
CloudComputingDomain CloudApplicationArchitecturePattern,

CloudOfferingPattern, KubernetesPattern,
CloudApplicationManagementPattern,
CompositeCloudApplicationPattern,
CloudComputingFundamental

CloudPlatform AmazonCloud, IBMCloud, GoogleCloud, RadhatCloud,
MicrosoftCloud

CloudApplication
ArchitecturePattern

CloudApplicationComponent,
FundamentalCloudArchitecture, CloudIntegration,
Multi-Tenancy

CloudApplication
ManagementPattern

ManagementComponent, ManagementProcess

CloudComputing
Fundamental

ApplicationWorkload, CloudDeploymentModel,
CloudServiceModel

CloudOfferingPattern CloudEnvironment, CommunicationOffering,
StorageOffering, CloudPlatformService, ProcessingOffering

CompositeCloud
ApplicationPattern

HybridCloudApplication, NativeCloudApplication

CloudApplication
Component

BatchProcessingComponent, DataAbstractor,
Timeout-BasedMessageProcessor, Multi-ComponentImage,
Transaction-BasedProcessor, StatefulComponent,
ProcessingComponent, UserInterfaceComponent,
DataAccessComponent, IdempotentProcessor

CloudIntegration ApplicationComponentProxy, IntegrationProvider,
CompliantDataReplication, RestrictedDataAccessComponent,
MessageMover

FundamentalCloud
Architecture

DistributedApplication, LooseCoupling

Multi-Tenancy LooseCoupling, SharedComponent, Tenant-IsolatedComponent
ManagementComponent ElasticityManager, ElasticLoadBalancer,

ManagedConfiguration, ProviderAdapter, ElasticQueue,
Watchdog

Continued on next page

65

4 IGONTO Development

Table 4.8 continued from previous page
Superclass Subclass
ManagementProcess ElasticityManagementProcess, ResiliencyManagementProcess,

StandbyPoolingProcess, UpdateTransitionProcess,
FeatureFlagManagementProcess

ApplicationWorkload ContinuouslyChangingWorkload, Once-in-a-LifetimeWorkload,
UnpredictableWorkload, StaticWorkload, PeriodicWorkload

CloudDeploymentModel CommunityCloud, HybridCloud, PublicCloud, PrivateCloud
CloudServiceModel Infrastructure-as-a-Service, Software-as-a-Service,

Platform-as-a-Service
CloudEnvironment ElasticInfrastructure, EnvironmentBasedAvailability,

ElasticPlatform, Node-BasedAvailability
CommunicationOffering VirtualNetworking
ProcessingOffering ExecutionEnvironment, MapReduce, Hypervisor
StorageOffering BlobStorage, BlockStorage, EventualConsistency,

StorageSystem, KeyValueStore, RelationalDatabase,
StrictConsistency

HybridCloudApplication HybridApplicationFunction, HybridBackend, HybridBackup,
HybridUserInterface, HybridProcessing, HybridData

NativeCloudApplication ContentDistributionNetwork, Three-TierCloudApplication,
Two-TierCloudApplication

Table 4.8: Hierarchy of the PlatformDomain ontology.

4.5.7 RegulatoryDomain Ontology

The RegulatoryDomain ontology presented in Figure 4.9 is similar to the Jurisdiction, described
in Section 4.1. Therefore, only the description of new classes is going to be considered. The
implementation domain requires a more detailed conceptualization of the regulatory domain.
Everything isRelatedTo a Regulation. Because this relationship is implemented at the top level,
its subclasses inherit this DL. An Activity is a specific operation, such as the DataOperation,
which isDefinedBy the GDPR, EconomicActivity and LegalActivity. Each Activity isRegulatedBy a
Regulation. The formal representation of regulations is realized by the Law. These regulations
describe Duties, which is a more general concept that includes certain types of obligations. The
representation that organizations or persons are subject to these regulations is represented by
LegalEntity. Penalty, Privacy-firendlySetting, SecurityMeasure, Violation and VitalInterest are
additional keywords describing regulatory aspects, which may be useful for certain solutions.
The Obligations and Rights in the Jurisdiction ontology 4.1 are further specified in Regulato-
ryRequirementType, Obligation, and Right, whereas the RegulatoryRequirementType is equivalent
to the RegulatoryRequirement class in the RequirementDOmain ontology. Additionally, each
process can be described regarding its purpose and characteristics of the regulatory aspects with
DataProcessingType, where PersonalDataPRocessing is a specification for personal data. Each
process requiresConsent from the DataSubject and requiresComplianceWith the GDPR. The GDPR
definesPrinciplesFor the DataSubjectRight, DesirableBehavior and DataControllerObligation,

66

4.5 Implementation Ontology

while being a subclass of DataProcessorObligation in combination with the DataControllerObliga-
tion, as the data controller determines how the data processor should process personal data. The
complete hierarchy of all green-highlighted classes is listed in Table 4.9.

Figure 4.9: Visualization of the RegulatoryDomain ontology hierarchy.

Superclass Subclass
Duty Compensation, Consistency, LegalObligation, Violation,

Responsibility, VitalInterest
Violation PrivacyBreaches

Continued on next page

67

4 IGONTO Development

Table 4.9 continued from previous page
Superclass Subclass
PersonalDataProcessing PersonalDataTransfer, ProcessingWithFairness,

ProcessingPurpose, ProcessingWithLawfulness,
PurposeOfProcessing, ProcessingWithTransparency,
ProcessingWithConfidentiality,
ProcessingWithDataMinimization,
ProcessingWithAccuracy,
ProcessingWithStorageLimitation, ProcessingWithIntegrity

EU Germany, Italy
Law LawfulBasis, StatuteLaw
LegalEntity Association, DataProcessor, DataController, DataOwner,

NaturalPerson, LegalPerson, DataSubject
DataProcessor SubProcessor
LegalMeasure Association, DataProcessor, DataController, DataOwner,

NaturalPerson, LegalPerson, DataSubject, SubProcessor,
Claim, SecurityMeasure, RestrictionMeasure, Cooperation,
Penalty, Privacy-friendlySetting, LegalRecourse, Liability,
DataSubjectConsent

Location BackupLocation, org:GeographicRegion, RemoteLocation,
StorageLocation, Country

Country EuropeanUnion, USA
Obligation DataControllerObligation,

ObligationToAppointDataProtectionOfficer,
ObligationToNotifyOfPersonalDataBreach,
DataProcessorObligation, DesirableBehavior,
ObligationToPerformDataProtectionImpactAssessment

DataProcessorObligation ObligationToCaptureRecordsOfDataProcessingActivity,
ObligationToFairnessDataProcessing,
ObligationToLawfulnessDataProcessing,
ObligationToTransparencyOfDataProcessing

DataControllerObligation ObligationOfCross-borderDataTransfer,
ObligationToCooperateWithSupervisoryAuthority,
ObligationToEnsureConfidentialityOfData,
ObligationToEnsureAccuracyOfData,
ObligationToEnsureAccountabilityOfProcessor,
ObligationToLimitPurposeDataProcessing,
ObligationToFulfillConsentRequirement,
ObligationToLimitStoragePeriod,
ObligationToMinimizeData,
ObligationToEnsureAccountabilityOfDataController,
ObligationToEnsureIntegrityOfData

Regulation DSGVO, GDPR, USPrivacyAct
Continued on next page

68

4.5 Implementation Ontology

Table 4.9 continued from previous page
Superclass Subclass
RegulatoryRequirementType RR.AppointDataProtectionOfficer,

RR.SupportEnterpriseWithRemoteLocation,
RR.RightToErasure, RR.LimitPurposeDataProcessing,
RR.ImplementManageDataSubjectConsent,
RR.EnsureConfidentialityOfData,
RR.NotifyOfPersonalDataBreach,
RR.EnsureLawfulnessDataProcessing,
RR.SupportEnterpriseWithBackupLocation,
RR.MinimizeDataSubjectData,
RR.EnsureAccuracyOfData, RR.SupportLegitimateInterest,
RR.RightToBeForgotten, RR.RightToObject,
RR.RightToAccess, RR.EnsureFairnessDataProcessing,
RR.EnsureAccountabilityOfDataProcessor,
RR.CaptureRecordsOfDataProcessingActivity,
RR.RightToDataPortability,
RR.FulfillConsentRequirement, RR.RightToRectification,
RR.SupportEnterpriseWithMainEstablishment,
RR.ImplementDataProcessingRestrictionMeasure,
RR.ImplementLegalRecourse,
RR.EnsureTransparencyOfDataProcessing,
RR.LimitStoragePeriod,
RR.PerformDataProtectionImpactAssessment,
RR.RightRelatedToAutomatedProfiling,
RR.CooperateWithSupervisoryAuthority,
RR.RightRelatedToAutomatedDecision-making,
RR.EnsureAccountabilityOfDataController,
RR.EnforceDesirableBehavior,
RR.Cross-borderDataTransfer, RR.EnsureIntegrityOfData,
RR.RightToBeInformed, RR.ImplementSecurityMeasure,
RR.RightToRestrictProcessing,
RR.SupportEnterpriseWithStorageLocation

DataSubjectRight LegitimateInterest, RightToRestrictProcessing,
RightToBeForgotten, RightToObject, RightToBeInformed,
RightRelatedToAutomatedProfiling,
RightRelatedToAutomatedDecision-making,
RightToErasure, RightToAccess, RightToRectification,
RightToDataPortability

Table 4.9: Hierarchy of the remaining RegulatoryDomain ontology.

69

4 IGONTO Development

4.5.8 RequirementDomain Ontology

The RequirementDomain Ontology extends the functional and non-functional requirements from the
Jurisdiction ontology explained in Section 4.1. In addition, the equated RegulatoryRequirementTypes
from the RegulatoryDomain are part of it. These requirements for the implementation solution are
more detailed, and their hierarchy is listed in Table 4.10. These requirements line up with certain
processing and service names that have already been discussed in this thesis and represent the need
for their implementation.

Superclass Subclass
RequirementDomain UseCaseScenario, RegulatoryRequirement,

Non-FunctionalRequirement, FunctionalRequirement
FunctionalRequirement FR.Access, FR.Record, FR.eDiscover,

FR.ReferentialIntegrity, FR.Store, FR.Manage,
FR.Query, FR.TransactionSupport, FR.Protect,
FR.Privacy, FR.Audit, FR.Retain, FR.Classify,
FR.Transfer, FR.Collect, FR.Control, FR.Replicate,
FR.Administration, FR.Dispose, FR.Archive,
FR.Secure, FR.Hold, FR.Search, FR.Load

Non-FunctionalRequirement NFR.Availability, NFR.Backup,
NFR.DisasterRecovery, NFR.Resiliency,
NFR.Recovery, NFR.Elasticity, NFR.Scale,
NFR.Restore, NFR.LoadBalancing,
NFR.ServiceQuality, NFR.TransactionSupport

NFR.Availability NFR.HighAvailability
NFR.Scale NFR.DynamicScale
NFR.ServiceQuality NFR.ServiceLevelAgreement
NFR.TransactionSupport NFR.ReferentialIntegrity, NFR.TwoPhaseCommit
UseCaseScenario UseCase, UserStory

Table 4.10: Hierarchy of the RequirementDomain ontology.

4.5.9 TOSCA Ontology

Topology and Orchestration Specification for Cloud Applications (TOSCA) is an open cloud
standard for defining the topology and orchestration of cloud applications. TOSCA was developed
by the Organization for the Advancement of Structured Information Standards (OASIS) and initially
published in 2013. TOSCA uses Domain Specific Language (DSL) to define interoperable descrip-
tions of applications, thereby enabling portability and automated cloud management, expanding
customer choice, improving reliability, and reducing cost. The initial publication was implemented
in XML, and 2017, it was enhanced with a YAML syntax to enhance readability, accessibility, and
conciseness. Every piece of information regarding TOSCA is retrieved from its official YAML
documentation [OAS19]. Because TOSCA is a wide domain, only superficial aspects are going to
be explained to understand the implemented hierarchy. To further explain each TOSCA aspect,
the reader is encouraged to refer to the documentation. The TOSCA ontology is required in

70

4.5 Implementation Ontology

the post-processing of IGONTO (see Figure 2.1) and therefore its vocabulary and hierarchy are
implemented in this ontology.
TOSCA’s main parts are topology and orchestration. The topology describes the application
structure, whereas the orchestration illustrates the deployment and management of the application.
Figure 4.10 describes the hierarchy of the TOSCA ontology.

Figure 4.10: Visualization of the TOSCA ontology.

TOSCA defines Node templates and Relationship templates, which are the most important building
blocks of the topology. Because the relationship templates are implemented to connect different
nodes within TOSCA, they are implemented as object properties in this ontology. TOSCA defines
Root types for multiple concepts for portability, and therefore they are also implemented as classes
within the ontology. Nodes are the primary elements in the TOSCA topology and describe
individual components in the topology structure. These components are semantically further
divided into Application, WebApplication, SoftwareComponent, DBMS, NodeDatabase, WebServer,
AbstractCompute, NodeContainer, AbstractStorage, NodeNetwork, and LoadBalancer. Each one
of them describes their respective component and can be Grouped. DataTypes describe complex
datatypes with the node, such as XML, JSON, Credential, TimeInterval, and DatatypeNetwork.
Because some vocabulary, such as “DatatypeNetwork” are used multiple times in TOSCA, a
prefix has to be added to ensure unique identifiers. In addition, some nodes in TOSCA can be
implemented as abstracts and referenced in other templates. Nodes can be further described by
adding Capabilities to them. These include the following:

• CapabilityNode, which describes the basic capabilities of the node.

• CapabilityNetwork, which describes that the node can provide addressability.

71

4 IGONTO Development

• CapabilityCompute, which describes that the node can provision hosting on a compute
resource.

• Storage, which describes that the node can provide a storage location.

• Endpoint, which extends the network capability and includes information about the endpoint.

• Attachment, which defines the attachment capability of a node. OperatingSystem, which
describes capabilities regarding the used operating system within the node. Scalable, which
describes the scalability capability of the node. Container, which describes that the node can
contain or host other nodes.

Artifacts specify packages and files used in Nodes. These include representative artifacts regarding
Deployement, Files, Implementation, and Templates. The Network class models the network
connectivity semantics within TOSCA. Connection networks represent semantics that need to be
implemented to use the target services, and Provisioning describes the logical model for managing
network components and services. These elements constitute the TOSCA topology template.
Multiple topology templates can be summarized into a service template, which serves as a reusable
container and provides the orchestration with the needed information. Policies are used within the
service templates to guide node management regarding Performance, Scaling, Placement, and
Update. The Interface defines the node Lifecycle and possible Relationships. Lifecycle includes
possible node Operations that, if executed, lead to different NodeStates. In Standard, predefined
and standardized concepts, operations, and practices are implemented. Table 4.11 illustrates the
remaining classes within the TOSCA ontology. Based on the application requirements defined in
the service template and the infrastructure capabilities of the service provider, the orchestration
decides what cloud environment is optimal for the TOSCA application.

Superclass Subclasses
Provisioning ControllingNetworkFulfillment,

DeclarativeNetworkProvisioning,
ImplicitNetworkProvisioning

Connection PeerToPeer, SourceToTarget, TargetToSource
Deployment Image
Image VM
Implementation Bash, Python
Template Ansible, Helm, DockerCompose, Kubernetes
Endpoint Admin, Public, Database
DatatypeNetwork NetworkInfo, PortInfo, PortDef, PortSpec
NodeStates Error, Creating, Deleting, Starting, Stopping, Initial,

Configuring, Created, Configured, Started
Operations Delete, Stop, Start, Configure, Create
Configure RemoveTarget, RemoveSource, PostConfigSource,

AddTarget, AddSource, PreConfigTarget, PostConfigTarget,
PreConfigSource

NodeContainer NodeContainerApplication, NodeContainerRuntime
NodeNetwork NodeNetworkTypes

Continued on next page

72

4.5 Implementation Ontology

Table 4.11 continued from previous page
Superclass Subclasses
NodeNetworkTypes BindsTo, Linkable, Port, LinksTo
AbstractCompute NodeCompute
AbstractStorage Blockstorage, ObjectStorage

Table 4.11: Hierarchy of the remaining TOSCA ontology.

4.5.10 PractitionerDomain, StandardsDomain, SystemsDomain and VendorDomain
Ontology

Because the last domains are rather small and only describe the taxonomy of their domain, all three
are included in Table 4.12. The practitioner domain lists various agencies, associations, and the
concept of maturity level. The standards domain represents a list of several ISO standards. These
standards provide standardized best practices and are important for providing crucial knowledge for
implementing certain processes. The SystemsDomain includes several concepts of IT infrastructure,
each summarizing specific processes and functionalities. Finally, the VendorDomain represents
vendors, where companies provide certain products and services that can be integrated to implement
certain solutions.

Domain Subclasses
PracticionerDomain Agency, Association, MaturityIndex
Agency CRL, NARA, PROV
Association ARMA, CGOC, DAM, DAMA, EDRM, ISACA
ARMA Accountability, Transparency, Disposition,

Availability, Retention, Compliance, Protection,
Integrity

MaturityIndex MI-Level-1, MI-Level-2, MI-Level-3,
MI-Level-4, MI-Level-5

StandardsDomain ISOStandards
ISOStandards ISO14000, ISO17000, ISO15000, ISO27000,

ISO23081, ISO20000
ISO14000 ISO14271
ISO15000 ISO15489, ISO15939
ISO27000 ISO27001:2019, ISO27701:2022,

ISO27013:2021
SystemsDomain System

Continued on next page

73

4 IGONTO Development

Table 4.12 continued from previous page
Superclass Subclasses
System ArchiveSystem, CaseManagementSystem,

InformationRetrievalSystem, NetworkSystem,
eDiscoveryManagementSystem,
RecordsManagementSystem,
DocumentManagementSystem, StorageSystem,
EnterpriseContentManagementSystem,
RDBMSystem, SystemPattern,
CommunicationSystem, TransferSystem,
RenderingSystem

VendorDomain Alfresco, IBM, Microsoft, Google, Vendor,
Redhat, Opentext, Amazon, CloudNativeFoun-
dationComputingFoundation,
Oracle

Amazon AWS
CloudNativeFoundationComputing
Foundation

CNCF, Kubernetes

Google GCP
Microsoft Azure
Redhat Openshift

Table 4.12: Hierarchy of the remaining Domains ontology.

4.6 Semantic Web Rule Language (SWRL) Rules

This section describes all implemented SWRL rules. There are two different levels of how these
rules are implemented. Every rule is first implemented as a Horn clause, which is then translated into
semantic and syntactically coherent OWL syntax based on the OWL RDF/XML exchange syntax.
Thus, the implementation of SWRL rules is made easier with Horn clauses while simultaneously
providing expressive power [HPBT05]. The first rule will include a more detailed description,
including the OWL translated code to give an impression of the appearance of the OWL code,
whereas the others are only explained with the Horn clauses, as the translated code is often large
and more difficult to read.

4.6.1 Jurisdiction Rules

The jurisdiction rules primarily deal with inferences regarding Capabilities, Obligations, Rights
and Requirements. The first rule connects the capabilities with the obligations. As mentioned in
Section 4.1, every article relates to obligation and capabilities. The first SWRL rule, 4.6.3, connects
capabilities with obligations that involve the same articles.

74

4.6 Semantic Web Rule Language (SWRL) Rules

Rule: S1

capabilityInvolvesArticle(?cap, ?article) ∧
obligationInvolvesArticle(?obligation, ?article)

→ capabilityInvolvesObligation(?cap, ?obligation)

The first two clauses take the relationships capabilityInvolvesArticle and obligationInvolvesArticle
as a requirement for the rule. Variables are denoted with a “?” at the beginning of the Horn clauses.
Thus, ?cap represents the set of instances that are the subjects of the relationship, and ?article
represents the set of objects to which the subjects are connected. Since every relationship in our
ontologies has only one domain and one range, as described in Section 3.1.2, we do not need further
specifications. If this were not the case, we would need an additional Capability(?cap) horn clause
to state that the subjects should only be instances of the class Capability. The same would go
for every other variable. This keeps the length of each Horn clause to a minimum and, also, the
translated OWL code. The same principle applies to the obligationInvolvesArticle relationship,
where ?obligation is the set of obligation instances and ?article is the set of articles to which each
obligation is connected.
The requirements of the rule and the resulting inferences are divided by an→. In this inference,
we state that the set of capabilities and obligations that are connected to the same articles should
have the relationship capabilityInvolvesObligation, where the capabilities are the subject and the
obligations are the object.
Figure 4.6.1 illustrates the translated OWL code in Turtle format. The first lines of the implementation
include:

Line 1-4: All namespace prefixes to reduce the rule length.

Line 6: Information about whether the SWRL rule is enabled or not and, therefore, whether it is
active or not.

Line 7: Optional explanation of this rule in the form of a comment.

Line 8: The label or identifier.

Line 9: The declaration of the rule type.

The actual implementation of this rule begins at line 10. The swrl#body section from lines 10-16
describes the antecedent (if part) of the rule. It consists of an AtomList, a list of conditions for the
rule to apply in the first place. Lines 11-16 check, whether a capabilityInvolvesArticle relationship
exists between cap and article. Lines 17-23 check the second condition (obligationInvolvesArticle).
The code rdf:rest rdf:nil at line 24. describes a special rdf resource and represents an empty list,
which is used to indicate the end of the conditions.

75

4 IGONTO Development

1 @prefix swrla.owl: <http://swrl.stanford.edu/ontologies/3.3/swrla.owl#> .

2 @prefix swrl: <http://www.w3.org/2003/11/swrl#> .

3 @prefix igonto: <http://www.semanticweb.org/igonto/igonto#> .

4 @prefix jurisdiction: <http://www.semanticweb.org/igonto/jurisdiction#> .

5

6 [swrla.owl:isRuleEnabled "true"^^xsd:boolean ;

7 rdfs:comment "" ;

8 rdfs:label "S1" ;

9 rdf:type swrl:Imp ;

10 swrl:body [rdf:type swrl:AtomList ;

11 rdf:first [rdf:type swrl:IndividualPropertyAtom ;

12 swrl:propertyPredicate

13 jurisdiction:capabilityInvolvesArticle ;

14 swrl:argument1 igonto:cap ;

15 swrl:argument2i igonto:article

16] ;

17 rdf:rest [rdf:type swrl:AtomList ;

18 rdf:first [rdf:type swrl:IndividualPropertyAtom ;

19 swrl:propertyPredicate

20 jurisdiction:obligationInvolvesArticle ;

21 swrl:argument1 igonto:obligation ;

22 swrl:argument2 igonto:article

23] ;

24 rdf:rest rdf:nil

25]

26] ;

27 swrl:head [rdf:type swrl:AtomList ;

28 rdf:first [rdf:type swrl:IndividualPropertyAtom ;

29 swrl:propertyPredicate

30 jurisdiction:capabilityInvolvesObligation ;

31 swrl:argument1 igonto:cap ;

32 swrl:argument2 igonto:obligation

33] ;

34 rdf:rest rdf:nil

35]

36] .

Listing 4.1: SWRL Rule S1 OWL implementation.

If the conditions are met, swrl#head from lines 27-33 describes the consequence and the inferred
rule that needs to be applied. Line 34 ends the head, similar to line 24.
Although the rule is concise, the implementation is extensive. Larger rules will consequently result
in even larger OWL translations. Therefore, the following rules in this chapter are explained only
through Horn clauses.

76

4.6 Semantic Web Rule Language (SWRL) Rules

Rule: S2

capabilityInvolvesArticle(?cap, ?article) ∧
rightInvolvesArticle(?right, ?article)

→ capabilityInvolvesRight(?right, ?obligation)

Rule: S3

capabilityInvolvesObligation(?cap, ?obligation) ∧
requirementInvolvesObligation(?req, ?obligation)

→ capabilityInvolvesRequirement(?cap, ?req)

The same principle from Rule S1 is applied to Rule S2. The difference is that S2 is about the
connection to Rights rather than Obligations. It is also possible to include the outcomes of some
rules as input in other rules. For instance, Rule S3 connects Capabilities with Requirements, based
on the result from Rule S1. In theory, these rules can be included in only one large SWRL rule.
However, just as large methods in common software decrease software quality, large SWRL rules
decrease understandability and manageability in ontologies and, therefore, decrease their quality
[ROM11]. Related work [HOD10] also implemented visualizations for SWRL rules to improve
SWRL tools, thus revealing the downside of large rule sets. Therefore, if possible, SWRL rules
should be divided to keep them short.

4.6.2 Organization Rules

Organization rules focus on connecting enterprises with capabilities. Enterprises that are considered
“large”, such as those with more than 250 employees, have to comply with all GDPR requirements.
Therefore, Rule S4 is a simple rule where every capability gets connected to a large enterprise.
Thereafter, further queries can be executed to determine what obligations, rights, and requirements
each capability includes based on Rules S1-S3.

Rule: S4

IGCapability(?capability) ∧ LargeEnterprise(?large)

→ enterpriseNeedsToFullfillCapability(?large, ?capability)

77

4 IGONTO Development

If an enterprise has fewer than 250 employees, more specialized rules are needed, which are
represented in Rules S5-S7. According to GDPR Article 30 (5), enterprises with fewer than 250
employees are exempt from the obligation to maintain records of processing activities and, therefore,
do not need a Records Information Management system. Therefore, small enterprises do not need
to possess the capabilities that are linked to the RIM and only make inferences about capabilities
that are linked to Legal (Rule S5), IT (Rule S6) or Privacy and Security Rule S7.

Rule: S5

processLinkedToOrganizationUnit(?process, ?legal) ∧
capabilityLinkedToProcess(?capability, ?process) ∧ Legal(?legal) ∧
Small_Enterprise(?enterprise)

→ enterpriseNeedsToFullfillCapability(?enterprise, ?capability)

Rule: S6

processLinkedToOrganizationUnit(?process, ?it) ∧
capabilityLinkedToProcess(?capability, ?process) ∧ IT(?it) ∧
SmallEnterprise(?enterprise)

→ enterpriseNeedsToFullfillCapability(?enterprise, ?capability)

Rule: S7

processLinkedToOrganizationUnit(?process, ?pas) ∧
capabilityLinkedToProcess(?capability, ?process) ∧
PrivacyAndSecurity(?pas) ∧ SmallEnterprise(?enterprise)

→ enterpriseNeedsToFulfillCapability(?enterprise, ?capability)

To include the RIM as knowledge within the small enterprise, Rule S8 was implemented as a
negative object property to explicitly express that the small enterprise does not need a RIM, and
therefore, the associated capabilities are also not needed. Further, a justification relationship is
utilized to directly state which article is responsible for this negative inference.

78

4.6 Semantic Web Rule Language (SWRL) Rules

Rule: S8

RecordsAndInformationManagement(?rim) ∧
capabilityLinkedToProcess(?capability, ?process) ∧
processLinkedToOrganizationUnit(?process, ?rim) ∧
justifiedByArticle(?rim, Article30)(?enterprise) ∧
IGCapability(?capability) ∧ Process(?process)

→ justifiedByArticle(?capability, Article30) ∧
enterpriseDoesNotNeedOrganizationUnit(?enterprise, ?rim) ∧
enterpriseDoesNotNeedCapability(?enterprise, ?capability) ∧
justifiedByArticle(?rim, Article30)

4.6.3 Solution Rules

The solution rules connect the enterprise use cases with the correct solution implementation. In
our use case, other solutions are inferred depending on whether the enterprise needs an RIM.
As illustrated in Rule S9, a large enterprise is connected to the information governance solution,
which includes every possible solution, including the RIM, eDiscovery, and Content Management
solutions.
Rule S10 describes the solution connection for small enterprises. Because they do not need a
RIM, small enterprises only need to implement a basic ECM and archive solution that relates
to an ECM reference model, that represents an architecture solution pattern. Similar to Rule
8, a negative object property is implemented to state that small enterprises do not need a RIM solution.

Rule: S9

LargeEnterprise(?enterprise) ∧ InformationGovernanceSolution(?infog)
∧ SolutionPattern(?pattern)

→ needsSolution(enterprise, ?infog) ∧ needsSolution(?enterprise, ?pattern)

79

4 IGONTO Development

Rule: S10

SmallEnterprise(?enterprise) ∧
RecordsAndInformationManagement(?rim) ∧
enterpriseDoesNotNeedOrganizationUnit(?enterprise, ?rim) ∧ ECMSolu-
tion(?ecm) ∧
ReferenceModel(?pattern) ∧ ArchiveSolution(?archive) ∧ RIMSolu-
tion(?rimSol)

→ needsSolution(?enterprise, ?ecm) ∧
needsSolution(?enterprise, ?pattern) ∧
needsSolution(enterprise, ?archive) ∧
enterpriseDoesNotNeedSolution(?enterprise, ?rimSol)

80

5 Evaluation

The evaluation covers several aspects of the IGONTO prototype. Section 5.1 presents the results of
several SPARQL queries and demonstrates the functional correctness of the prototype in relation to
the IGONTO concept. The performance of these queries is discussed in Section 5.2. Moreover,
Section 5.3 explains the technique used for validating IGONTO, thus ensuring its consistency. The
potential for further development of IGONTO, along with its design decisions, is demonstrated in
Section 5.4.

5.1 Use-Case Scenario

To demonstrate and prove how enterprises of varying sizes can achieve GDPR compliance, we
developed a typical use case scenario and a set of competency questions to test our IGONTO
prototype. In this section, we will iterate through various competency questions formulated through
SPARQL queries and will include visual representations of the query results in Gruff. The actors
for this use case consist of the following concepts:

1. Small Enterprise: Represent the set of companies with fewer than 250 employees.

2. Large Enterprise: Represent the set of companies with more than 250 employees.

Besides the employee sizes, both sets of enterprises belong to the same jurisdiction and operate
in the same country. To shorten the query length, certain PREFIXES are included in every query,
which abbreviates the namespaces of every ontology. Without these prefixes, the entire namespace
would have to be included for every class, relationship, and attribute, which increases the query
readability.
Listing 5.1 illustrates the prefixes which are included in every query.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX sh: <http://www.w3.org/ns/shacl#>

3 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

5 PREFIX owl: <http://www.w3.org/2002/07/owl#>

6 PREFIX igonto: <http://www.semanticweb.org/igonto/igonto#>

7 PREFIX organization: <http://www.semanticweb.org/igonto/organization#>

8 PREFIX jurisdiction: <http://www.semanticweb.org/igonto/jurisdiction#>

9 PREFIX lifecycle: <http://www.semanticweb.org/igonto/lifecycle#>

10 PREFIX information: <http://www.semanticweb.org/igonto/information#>

11 PREFIX enterprise: <http://www.semanticweb.org/igonto/enterprise#>

12 PREFIX igso-arc: <http://www.example.org/cm/igso/2023/igso-arc#>

13 PREFIX igso-svc: <http://www.example.org/cm/igso/2023/igso-svc#>

14 PREFIX igso-org: <http://www.example.org/cm/igso/2023/igso-org#>

81

5 Evaluation

15 PREFIX igso-ddy: <http://www.example.org/cm/igso/2023/igso-ddy#>

16 PREFIX igso-data: <http://www.example.org/cm/igso/2023/igso-data#>

17 PREFIX igso-req: <http://www.example.org/cm/igso/2023/igso-req#>

18 PREFIX igso-impl: <http://www.example.org/cm/igso/2023/igso-impl#>

19 PREFIX igso-plt: <http://www.example.org/cm/igso/2023/igso-plt#>

20 PREFIX igso-ass: <http://www.example.org/cm/igso/2023/igso-ass#>

21 PREFIX igso-stds: <http://www.example.org/cm/igso/2023/igso-stds#>

22 PREFIX igso-sys: <http://www.example.org/cm/igso/2023/igso-sys#>

23 PREFIX igso-vend: <http://www.example.org/cm/igso/2023/igso-vend#>

Listing 5.1: All PREFIXES included in every SPARQL query.

5.1.1 General Queries

This section lists the relevant competency questions that an enterprise of a given size would ask,
along with seeking qualified answers around more general questions regarding IG.

1. Which countries are subject to GDPR?

2. What are the rights of the data subject?

3. What are the obligations of the data controller and data processor?

4. What data subject rights imply which functional- and non-functional requirements?

5. What data controller obligations imply which functional- and non-functional requirement?

Query 1 retrieves all countries that are subject to GDPR, whereas Figure 5.1 presents the result.
Here, all countries are visualized, including countries outside the EU and inside the European
Economic Area (EEA).
Query 2 lists all data subject rights and its results are visualized in Figure 5.2.
Query 3 focuses on the resulting GDPR obligations. These obligations are further specialized in
DataControllerObligation and DataProcessorObligation and visualized in Figure 5.3 and Figure
5.4.
Query 4 lists all rights and associated requirements. These requirements are either Functional-
Rquirements or NonFuncitonalRequirements. To enhance visualization, the graph is divided into
two sub-graphs. Figure 5.5 shows the NonFuncitonalRequirements graph, and Figure 5.6 contains
the graph regarding FunctionalRequirements .
Query 5 is similar to Query 4 but focuses on the data controller obligations, including their involved
requirements. Because the results are too numerous, a visualization is not included.

1 SELECT ?country WHERE {

2 ?country jurisdiction:isRegulatedBy jurisdiction:GDPR.

3 }ORDER BY ?country

Listing 5.2: Implementation of SPARQL Query 1.

82

5.1 Use-Case Scenario

1 SELECT ?dataSubjectRight WHERE {

2 ?dataSubjectRight rdf:type jurisdiction:DataSubjectRight.

3 }ORDER BY ?dataSubjectRight

Listing 5.3: Implementation of SPARQL Query 2.

1 SELECT ?dataControllerObligation ?dataProcessorObligation

2 WHERE {

3 {

4 ?dataControllerObligation rdf:type jurisdiction:DataControllerObligation.

5 }

6 UNION

7 {

8 ?dataProcessorObligation rdf:type jurisdiction:DataProcessorObligation.

9 }

10 }

11 ORDER BY ?dataControllerObligation ?dataProcessorObligation

Listing 5.4: Implementation of SPARQL Query 3.

1 SELECT ?dataSubjectRight ?funcRequirement ?nonFuncRequirement WHERE {

2 ?dataSubjectRight rdf:type jurisdiction:DataSubjectRight.

3 {

4 ?funcRequirement rdf:type jurisdiction:FunctionalRequirement.

5 ?dataSubjectRight jurisdiction:rightInvolvedInRequirement ?funcRequirement.

6 }

7 UNION

8 {

9 ?nonFuncRequirement rdf:type jurisdiction:NonFunctionalRequirement.

10 ?dataSubjectRight jurisdiction:rightInvolvedInRequirement ?nonFuncRequirement.

11 }

12 }ORDER BY ?dataSubjectRight ?funcRequirement ?nonFuncRequirement

Listing 5.5: Implementation of SPARQL Query 4.

1 SELECT ?dcObligation ?dcRequirement

2 WHERE {

3 ?dcObligation rdf:type jurisdiction:DataControllerObligation.

4 ?dcObligation jurisdiction:obligationInvolvedInRequirement ?dcRequirement.

5 }

6 ORDER BY ?dcObligation ?dcRequirement

Listing 5.6: Implementation of SPARQL Query 5.

83

5 Evaluation

Figure 5.1: Gruff result visualization of Query
1. Figure 5.2: Gruff result visualization of Query

2.

Figure 5.3: Gruff result visualization of Query
3 (1).

Figure 5.4: Gruff result visualization of Query
3 (2).

Figure 5.5: Gruff result visualization of Query 4 (1).

84

5.1 Use-Case Scenario

Figure 5.6: Gruff result visualization of Query 4 (2).

5.1.2 Use-case Queries

The queries start at the top level of IGONTO and move down to the implementation level. Query 6
provides answers to the competency question of which regulations a company must comply with, in
a particular country.
The variable ?smallEnterprise represents the concept of small enterprises. Because only one instance
from the class SmallEnterprise was implemented, which represents the concept of small enterprises
at the instance layer, we can easily retrieve that specific instance by asking for all instances that are
members of the class SmallEnterprise. Afterward, we query the operatesIn connection to retrieve
the instance of the country in which the small enterprise operates. The country is represented in
the variable ?country. If the enterprise operated in multiple countries, ?country would involve
multiple instances of the class Country. In case the query should contain a specific country, the
variable ?country must be replaced with the desired instance (e.g. jurisdiction:Germany). After
linking to the country instance, we recursively ask for the ?regulation that the country is regulated
by. Similarly, we query the connection belongsToJurisdiciton, to retrieve the ?jurisdiction.
Figure 5.7 shows the results of Query 6 in Gruff, where the instances are displayed on the right side
and the legend on the left side.

85

5 Evaluation

1 SELECT ?smallEnterprise ?country ?regulation ?jurisdiction WHERE{

2 ?smallEnterprise a organization:SmallEnterprise.

3 ?smallEnterprise jurisdiction:operatesIn ?country.

4 ?country jurisdiction:isRegulatedBy ?regulation.

5 ?country jurisdiction:belongsToJurisdiction ?jurisdiction.

6 }ORDER BY ?smallEnterprise

Listing 5.7: Implementation of SPARQL Query 6.

Figure 5.7: Gruff result visualization of Query 6.

When asking what the Regulatory Requirements (RR) we need to comply with, the capabilities
required to fulfill the RR must be identified. Associations like ARMA and CGOC interpreted the
GDPR and defined a large number of capabilities, classifying them into different maturity levels
that range from level 1 (not existent) to level 5 (overachieved). To be GDPR-compliant, capabilities
from level 3 need to be fulfilled. Query 7 deals with the following questions:

• What minimum Capabilities do I need to fulfill to be GDPR compliant, and what do they
entail?
To retrieve the capabilities required for minimum GDPR compliance, we queried all capabilities
represented by the variable ?capability that are partOfMaturityLevel organization:3Essential,
which represents maturity level 3 of 5.

• What Requirements, Obligations, and Rights are satisfied by these capabilities?

We then retrieve the set of requirements connected to every ?capability, represented by the
variable ?requirement. The obligations (?obligation) and rights (?right) potentially linked to
every ?requirement are queried within the OPTIONAL environment, as not every requirement
directly involves rights and vice versa. If the statements were not embedded within the
OPTIONAL environment, the results would only include requirements that involve at least
one ?right instance and one ?obligation instance simultaneously. For every obligation and
right, the involved articles (obligationArticle, rightArticle) are also included.

86

5.1 Use-Case Scenario

1 SELECT ?capability ?requirement ?obligation ?obligationArticle ?right ?rightArticle WHERE{

2 ?capability organization:partOfMaturityLevel organization:3Essential.

3 ?capability jurisdiction:capabilityInvolvesRequirement ?requirement.

4 OPTIONAL{?requirement jurisdiction:requirementInvolvesObligation ?obligation.

5 ?obligation jurisdiction:obligationInvolvesArticle ?obligationArticle}

6 OPTIONAL{?requirement jurisdiction:requirementInvolvesRight ?right.

7 ?right jurisdiction:rightInvolvesArticle ?rightArticle.}

8 }ORDER BY ?capability

Listing 5.8: Implementation of SPARQL Query 7.

The results of Query 7 are too numerous to visualize them in one picture. Therefore, we focused
on a specific capability, LegalP33. The selection of this instance is arbitrary, any capability can
be similarly retrieved. To return only relations including this specific instance, we replace the
?capability variable in the query with the URI of the instance (organization:LegalP33). The result
is visualized in Figure 5.8. The description of LegalP33 is as follows:

“Systematically send notices and reminders, require and track confirmations. To
manage exceptions, employees can look up their holds at any time. Communications
tailored to recipient role (IT, RIM, employee).”

Figure 5.8: Gruff result visualization of Query 7 with the capability LegalP33.

87

5 Evaluation

Next we analyze requirements and involved capability in order to assess their relevance.

1. FR.Record, because tracking information is stored within records.

2. FR.Store:, because records need to be stored securely to ensure GDPR compliance.

3. FR.Load:, because requested information needs to be retrieved accurately and efficiently.

4. FR.Collect:, because collecting communication information is crucial for effective data
management.

5. FR.Archive:, because archiving information is crucial for later processes such as audits.

6. FR.Classify:, because data also needs to be classified when collected to ensure correct data
management and, therefore, correct tailoring to individual roles.

7. NFR.TwoPhaseCommit:, because transactional data integrity is crucial in the context of
exception management and confirmation tracking.

Every requirement explicitly relates to rights and/or obligations, which are documented in the
instance label and are not further discussed here.
The capabilities of the association CGOC are directly linked to governance-related processes
because they focus on a technical interpretation of GDPR, whereas ARMA focuses on principles
such as transparency and availability among others. Therefore, capabilities implemented by CGOC
are directly linked to IG processes. Query 8 extends Query 7 by including the ?process linked to
every capability, the ?organizationUnit to which they belong, and, more importantly, the potential
?risk that a process exposes if not implemented correctly.

1 SELECT * WHERE{

2 ?capability organization:partOfMaturityLevel organization:3Essential.

3 ?capability organization:capabilityLinkedToProcess ?process.

4 ?process organization:processLinkedToOrganizationUnit ?organizationUnit.

5 ?process organization:description ?risk.

6 }ORDER BY ?capability

Listing 5.9: Implementation of SPARQL Query 8.

Because the resulting graph is too large to visualize in a single image, we focus only on the
capabilities whose processes are connected to the Legal department. This is accomplished by
replacing the ?organizationUnit with the representative Legal instance (organization:LegalInstance).
The resulting graph is shown in Figure 5.9.

Capabilities connected to processes are also crucial to our use case. SWRL rules S4-S8 discussed
in Section 4.6 connect our two use cases - small enterprise and large enterprise - to the capabilities
they need to fulfill according to GDPR. For large enterprises with more than 250 employees, every
capability needs to be fulfilled. For enterprises with fewer than 250 employees, GDPR defines an
exception in article 30 (5), stating that these enterprises are not required to keep record activities,

88

5.1 Use-Case Scenario

Figure 5.9: Gruff result visualization of Query 8 with legal capabilities connected to the LegalIn-
stance organization.

and therefore do not need a RIM nor do they need to possess the capabilities connected to the RIM.
Query 9 can be used to retrieve information about what capabilities each use case needs to
fulfill. Here, the use case of the small enterprise is implemented. Because many capabilities are
connected to both use cases, we focus on the CGOC capabilities by asking for the ?process they are
connected with. To retrieve the information about the large enterprise, simply change the variable
?smallEnterprise to ?large_enterprise and modify the first line to state the ?largeEnterprise is a
organization:LargeEnterprise. Figure 5.10 shows the resulting graph for the small enterprise, and
Figure 5.11 shows the result for the large enterprise.

1 SELECT ?smallEnterprise ?capability WHERE{

2 ?smallEnterprise a organization:SmallEnterprise.

3 ?smallEnterprise igonto:enterpriseNeedsToFulfillCapability ?capability.

4 ?capability organization:capabilityLinkedToProcess ?process.

5 }ORDER BY ?smallEnterprise

Listing 5.10: Implementation of SPARQL Query 9.

89

5 Evaluation

Figure 5.10: Gruff result visualization of Query 9 for small enterprises (1).

Figure 5.11: Gruff result visualization of Query 9 for large enterprises (2).

The connections of each capability to their corresponding organization unit can be determined as in
Query 9, but this is excluded here due to the otherwise overwhelming size of the graph. Figure 5.12
shows that the large enterprise also includes all capabilities connected to RIM (RIM P1 3,RIM P1
4,RIM P2 3,RIM P2 4,RIM P3 3,RIM P3 4,RIM P4 3,RIM P4 4).

1 SELECT ?smallEnterprise ?capability ?process WHERE{

2 ?smallEnterprise a organization:SmallEnterprise.

3 ?smallEnterprise igonto:enterpriseDoesNotNeedCapability ?capability.

4 ?capability organization:capabilityLinkedToProcess ?process.

5 }ORDER BY ?capability

Listing 5.11: Implementation of SPARQL Query 10.

The knowledge of the RIM capabilities that are not needed for small enterprises is not lost, however.
As implemented in SWRL Rule S8, an explicit connection to these capabilities is inferred. This
is crucial because, as already mentioned, ontologies act according to the open-world assumption.
Without a relationship established between the small enterprise and the RIM capabilities, we
would not be able to infer that these capabilities are not needed. Therefore, the small enterprise is
connected via enterpriseDoesNotNeedCapability to explicitly express that these capabilities are
not necessary. Query 10 shows the syntax to retrieve this information, including the connected
processes, whereas Figure 5.12 visualizes the result.

90

5.1 Use-Case Scenario

Figure 5.12: Gruff result visualization of Query 10 for small enterprises.

Now that the Functional Requirements (FR), Non-Functional Requirements (NFR), and Obligatory
Requirements (OR) are specified, we can ask for a suitable solutions architecture, list associated
software components, and the IG services (capabilities) they must provide. Based on SWRL Rules
S9 and S10, the correct solutions are mapped to our use cases. Depending on whether the RIM and
thus its capabilities are needed, different solution instances can be found. Query 11 retrieves this
information, including the solution type (?solutionType). Solutions are classified by type, to indicate
what problem the solutions solve. Solutions can be composed of other solutions to address multiple
problem areas. Every instance in an ontology is automatically an owl:NamedIndividual when using
OWL2 syntax, and its type is from a random annotation ID after materialization. Because this
information is unnecessary, we filter it out by directly excluding owl:namedIndividuals and types
that start with the “anon” string.
Figure 5.13 visualizes the solutions for small enterprises, whereas the solutions for large enterprises
are shown in Figure 5.15. The visualization shows that the small enterprise is only connected to the
ECM Solution, the Archive Solution, and a Reference Model. These solutions recursively include
further implementation requirements. The ECM Solution includes a Information Retrieval Solution,
and a Content Repository Solution. The Content Repository Solution includes a Storage Service and
a Content Object Catalog, and requires an Indexing Component and a Transformation Component.
The Archive Solution implements Archive Management and an Archive Method, and requires a
Transfer Service and a Records Plan.

91

5 Evaluation

1 SELECT * WHERE {

2 ?smallEnterprise a organization:SmallEnterprise.

3 ?smallEnterprise igonto:needsSolution ?solution.

4 ?solution rdf:type ?solutionType.

5 FILTER (

6 ISIRI(?solutionType) &&

7 ?solutionType != owl:NamedIndividual &&

8 ?solutionType != igso-arc:ArchitectureDesignDomain &&

9 ?solutionType != igso-arc:Solution &&

10 !STRSTARTS(STR(?solutionType), "anon") &&

11 !STRSTARTS(STR(?solutionType), STR(igso-ddy:))

12)

13 OPTIONAL {

14 ?solution ?predicate ?solutionComponent.

15 FILTER (?predicate IN (igso-arc:implementsArchiveManagement,

16 igso-arc:implementsArchiveMethod, igso-arc:requiresRecordsPlan,

17 igso-arc:requiresTransferService, igso-arc:includesContentRepositorySolution,

18 igso-arc:includesInformationRetrievalSolution))

19 }

20 OPTIONAL {

21 ?solutionComponent ?predicate2 ?component.

22 FILTER (?predicate2 IN (igso-arc:includesContentObjectCatalog,

23 igso-arc:rerquiresContentManagementComponent,

24 igso-arc:requiresTransformationComponent, igso-arc:includesStorageService,

25 igso-arc:requiresTransactionManagementComponent))

26 }

27 }ORDER BY ?solution

Listing 5.12: Implementation of SPARQL Query 11a.

The query 11b for the large enterprise needs to be customized as it includes more and different
solutions. We connected the large enterprise to the Alfresco governance solution to simulate an
existing real-world ECM [Alf24a]. The resulting diagram is divided into Figure 5.15 and Figure
5.14 because the diagram is already too large for Gruff to export without visual errors. Furthermore,
the graph could be expanded in certain components, but this would lead to the same visualization
problems. For example, the Content Repository Solution Instance could be extended as shown in
Figure 5.13.

92

5.1 Use-Case Scenario

1 SELECT * WHERE {

2 ?LargeEnterprise a organization:LargeEnterprise.

3 ?LargeEnterprise igonto:needsSolution ?solution.

4 ?solution igso-arc:includesSolution ?solution2.

5 ?solution igso-arc:requiresSolution ?solution3.

6 ?solution igso-arc:consistsOfManagement ?management.

7 OPTIONAL {

8 ?solution2 igso-arc:includesComponent ?component1.

9 ?component1 ?consistsOf ?artifact.

10 OPTIONAL{

11 ?artifact igso-data:consistsOfDatabase ?db.

12 ?artifact igso-data:consistsOfSystem ?system.

13 ?artifact igso-data:consistsOfRelationalSchema ?schema.

14 }

15 }

16 ?solution3 igso-arc:consistsOfService ?service.

17 ?solution3 igso-arc:includesSolution ?solution4.

18 ?solution3 igso-arc:consistsOfComponent ?component2.

19 ?solution3 igso-arc:includesComponent ?component3.

20 ?component3 igso-arc:includesSolution ?solution5.

21 }ORDER BY ?solution

Listing 5.13: Implementation of SPARQL Query 11b.

Figure 5.13: Gruff result visualization of Query 11a.

93

5 Evaluation

Figure 5.14: Gruff result visualization legend of Query 11b.

Figure 5.15: Gruff result visualization of Query 11b.

To compare the resulting graph, Figure 5.16 shows the high-level architecture of Alfresco. The
AlfrescoContentManagement component consists of a Share Document Management Component
(DMC) and a digital workspace, represented in the graph by the individual Data Services. The
ReST API is represented by the ECM API, and includes a Content Repository Solution, which could
be expanded similarly to Figure 5.13. The Search Index is a physical storage, where search indices
for the Search Services are kept. Since the large enterprise includes records, a RIM solution is
needed, which consists of a Retention Schedule, Regulatory Policy, Law Policy, Corporate Policy,
Retention Rule, Dispose Method, Transfer Method and a Records Model. This model operates as
a Content Catalog and consists of Postgres, an ERSchema, and a Relational Database. Postgres
is a Relational Database Management System (RDBMS) that provides efficient data storage and
querying capabilities for the Records Model. The ERSchema helps to structure and visualize
relationships between Data entities. The Relational Database is a physical database that stores Data
according to the ERSchema. To adapt content for various needs, the Alfresco solution includes
Content Transformation Services, such as Encryption, Decryption, Rendition, and Transcoding.
Furthermore, to utilize information effectively, certain Data Management processes are needed
such as Data Classification, Data Collection, and Data Assessment.

94

5.1 Use-Case Scenario

Figure 5.16: High-level architecture of Alfresco [Alf24b].

1 SELECT ?smallEnterprise ?negativePredicate ?solution ?article WHERE{

2 ?smallEnterprise a organization:SmallEnterprise.

3 ?smallEnterprise ?negativePredicate ?solution.

4 OPTIONAL{?solution igonto:justifiedByArticle ?article.}

5 FILTER((?negativePredicate IN (igonto:enterpriseDoesNotNeedSolution,

6 igonto:enterpriseDoesNotNeedCapability,

7 igonto:enterpriseDoesNotNeedOrganizationUnit))

8)

9 }ORDER BY ?solution

Listing 5.14: Implementation of SPARQL Query 12.

Applying the same reasoning as that in Query 10, we inferred negative relationships to solutions
that the small enterprise does not need. In addition, the organization unit that is not needed is
retrieved, including the ?article, justifying why it is not needed. Query 12 and Figure 5.17 include
the information for the small enterprise.

95

5 Evaluation

Figure 5.17: Gruff result visualization of Query 12 for small enterprises.

5.2 Performance

As previously mentioned, performance is not crucial for our prototype knowledge base. However,
some performance measurements are taken in this section to establish a reference point and should
be considered a sniff test. The focus is not on improving the performance of individual queries, but
rather on identifying characteristics that influence them. Our test environment contains a virtual
machine configured with 4 VCPUs, 16GB of RAM, and a 200GB disk. The measurements were
carried out using the graph visualization tool Gruff [23a]. The application is running on a Docker
container, which has been allocated 1GB of shared memory.
Figure 5.18 demonstrates the average performance on the y-axis and the query ID on the x-axis,
according to the queries described in Section 5. Performance-relevant data for each query is listed
beneath the bar chart. These include the number of query triples resulting from each query, involved
classes, SPARQL functions, and the individual measurements leading to the average time. To have
a performance reference within our tests, Query 0 retrieves all triples.

Analyzing the bar chart, the first conspicuousness is the performance of Q7. The obvious reason for
that is the number of resulting triples for the query. Table 5.1 lists additional information about
each query, including the number of resulting query triples, classes involved, SPARQL functions,
average time, and standard deviation. While other queries do not exceed 48 triples, Q7 includes
19109 results, leading to an average time of 797.3 ms.
Because a sample of 10 measures is considered, we will take the formula for calculating the standard

96

5.2 Performance

Figure 5.18: Performance overview for Queries 0-12 in IGONTO.

deviation of a sample, where B is the standard deviation, = is the number of measurements, G8 is the
individual measure, and G is the average:

B =

√√
1

= − 1

=∑
8=1
(G8 − G)2

The high standard deviation of Query 7 shows that the measurements of Query 7 are unstable. High
standard deviations for Query 4, 5, and 8 can also be seen. This is explained by the individual
measures within the queries that take 111-115 ms. Because they are always in that range and only
appear sometimes, Gruff is presumed to be performing some operations, leading to a higher but
constant query time. Gruff itself does not document further information, but it is noticeable that
these anomalies appear more often in queries with more classes involved.

Query Query
Triples

Involved
Classes

SPARQL
Functions

Average
Time
G (ms)

Standard
Deviation
B (ms)

Query 0 122510 1133 - 1994.9 451.03
Query 1 30 2 1 x ORDER BY 13.6 2.32
Query 2 13 1 1 x ORDER BY 12.6 1.17
Query 3 15 2 1 x ORDER BY,

1 x UNION
12.5 1.58

Query 4 27 3 1 x ORDER BY,
1 x UNION

63.1 51.78

Query 5 48 2 1 x ORDER BY 24.7 31.2
Query 6 1 4 1 x ORDER BY 12.7 0.48
Query 7 19109 6 1 x ORDER BY,

2 x OPTIONAL
797.3 254.97

Query 8 26 3 1 x ORDER BY 93.2 35.09
Query 9 30 2 1 x ORDER BY 13.6 1.43

Continued on next page
97

5 Evaluation

Table 5.1 continued from previous page
Query Query

Triples
Involved
Classes

SPARQL
Functions

Average
Time
G (ms)

Standard
Deviation
B (ms)

Query 10 8 3 1 x ORDER BY 13.2 1.14
Query 11a 17 7 1 x ORDER BY,

2 x OPTIONAL,
1 x FILTER

33.70 44.29

Query 11b 2640 28 1 x ORDER BY,
2 x OPTIONAL

172.2 32.17

Query 12 10 5 1 x ORDER BY,
1 x FILTER

13.3 2.31

Table 5.1: IGONTO query deviation calculations.

Since operations like ORDER BY can have a large impact on queries, Figure 5.19 demonstrates the
results without the ORDER BY function, while Table 5.2 provides additional information, similar to
Table 5.1. Other functions like FILTER or OPTIONAL are necessary to achieve the same triple
results.

Figure 5.19: Performance overview for Queries 0-12 in IGONTO without ORDER BY.

Without the ORDER BY function, queries with a larger number of triples run significantly faster
and most of them have a better standard deviation.
To test how the number of triples in the whole ontology influences performance, Queries 1-5
were performed only within their jurisdiction ontology, which contained only 16970 triples. The
remaining queries require knowledge of multiple ontologies and cannot be performed in one
sub-ontology.
Figure 5.20 illustrates the results. In these measures, the results do not differ much from the results
of IGONTO. However, considering the standard deviation listed in Table 5.3, queries from the
jurisdiction ontology appear to have fewer measure anomalies.

98

5.2 Performance

Query Query
Triples

Involved
Classes

SPARQL Func-
tions

Average
Time
G (ms)

Standard
Deviation
B (ms)

Query 0 122510 1133 - 1994.9 451.03
Query 1 30 2 - 12.9 1.85
Query 2 13 1 - 12.1 1.52
Query 3 15 2 1 x UNION 12.5 1.18
Query 4 27 3 1 x UNION 43.4 47.85
Query 5 48 2 - 13.9 1.64
Query 6 1 4 - 12.0 0.82
Query 7 19109 6 -

2 x OPTIONAL
557.9 72.17

Query 8 26 3 - 33.8 41.80
Query 9 30 2 - 13.0 1.94
Query 10 8 3 - 12.6 1.65
Query 11a 17 7 2 x OPTIONAL,

1 x FILTER
23.2 31.20

Query 11b 2640 28 2 x OPTIONAL 159.8 6.70
Query 12 10 5 1 x FILTER 12.5 0.97

Table 5.2: IGONTO query deviation calculations.

Figure 5.20: Performance overview for Queries 1-5 in Jurisdiction.

To facilitate the factor of how the number of involved classes influences the performance, Query
13 and Query 14 are defined as illustrated in Listing 13 and Listing 14. Query 13 retrieves all
capabilities and their involved articles, whereas Query 14 retrieves multiple connections from the
enterprise down to the records.

99

5 Evaluation

Query Average Time G (ms) Standard Deviation B (ms)
Query 1 13.40 1.27
Query 2 12.70 0.95
Query 3 13.10 2.33
Query 4 25.30 30.54
Query 5 15.60 3.06

Table 5.3: Jurisdiction query deviation calculations.

1 SELECT * WHERE {

2 ?capability jurisdiction:capabilityInvolvesArticle ?article.

3 }

Listing 5.15: Implementation of SPARQL Query 13.

1 SELECT * WHERE {

2 ?smallEnterprise a organization:SmallEnterprise.

3 ?smallEnterprise jurisdiction:operatesInCountry ?country.

4 ?country jurisdiction:isRegulatedByRegulation ?regulation.

5 ?smallEnterprise organization:hasOrganizationUnit ?organizationUnit.

6 ?organizationUnit a organization:IT.

7 ?organizationUnit organization:createsData ?data.

8 ?data organization:governedByRecord ?record.

9 ?process organization:createsRecord ?record.

10 ?rule organization:executesRecord ?record.

11 ?policy organization:definesRule ?rule.

12 }

Listing 5.16: Implementation of SPARQL Query 14.

Table 5.4 summarizes the results of both queries. Both queries were performed on IGONTO. The
two main differences are the number of resulting triples and the number of involved classes. Query
13 involves 423 triples and 2 classes, whereas Query 14 involves 176 triples and 9 classes. Even
though Query 13 involves more than double the number of triples as Query 14, its performance is
23.1 ms better on average. Query 14 also involves more aforementioned performance jumps up to
126 ms. Even when only considering the better measures, the performance is notably worse. This is
also represented in the slightly worse standard deviation of Query 13. Because the lower-ranged
measures of Query 13 are better, whereas the jumps are similar to the ones of Query 14, the average
is smaller, and therefore its deviation is higher.

The insights gained from this performance analysis lead to the conclusion that the volume of
resulting triples and the extent of class involvement are crucial factors for performance, whereas the
number of classes involved outweighs the number of resulting triples. For queries with a larger
number of triples, additional query functionality results in noticeable performance degradation. The
total amount of triples in the ontology appears to increase individual performance jumps and thus
reduce stability, but not directly query time. Since the cause of the performance jumps is unknown

100

5.3 Validation

Query Query
Triples

Involved
Classes

SPARQL
Functions

Average Time
G (ms)

Standard De-
viation B (ms)

Query 13 423 2 - 57 48.70
Query 14 176 9 - 80.1 46.41

Table 5.4: Query 13 and Query 14 deviation calculations.

and only what factors could lead to further jumps are known, the queries could be tested outside
of Gruff in the next increment of the prototype. Another possible environment is the RDFLib
framework mentioned in Section 5.4.

5.3 Validation

The validation of IGONTO is achieved with the implementation of SHACL validation schemas, as
described in Section 3.3. Based on the implemented structure regarding object properties, described
in Section 3.1.2, we implemented property shapes for each class and relationship within their
sub-ontology. The validation is performed in Stardog [23d], an online RDF-Graph database. Stardog
enables an existing database to be easily validated [Sta24]. This is simply achieved by uploading a
SHACL validation script in an empty editor. By pressing the “Get Validation Report” button, the
knowledge graph is validated against all the constraints implemented within the schema.

SHACL and its basic building blocks were described in the 3.3 section. This section focuses on the
semantic schema and how SHACL forms are implemented based on the IGONTO structure.
Each relationship in the sub-domains is implemented with DL and therefore validated within
the schema. Figure 5.21 shows an example of how a connection is implemented in Protegé and
expressed with DL. As mentioned in the legend 4.1, the cardinality is assigned to a specific Protégé
keyword. Table 5.5 maps all used graph cardinalities to the corresponding Protégé, DL, and SHACL
constraint descriptions.

Cardinality Protégé Keyword DL Axiom SHACL
Constraints

0... min 0 (> ='.�)I , = = 0 sh:minCount 0
1... some (∃'.�)I sh:minCount 1
1 exactly 1 ((> ='.�)I u (6

='.�)I), = = 1
sh:minCount 1,
sh:maxCount 1

Table 5.5: Used axioms translation.

Using these building blocks, we can systematically construct our SHACL shapes. Figure 5.22 shows
a schematic approach regarding the development of SHACL shapes. Each validation script starts
with a listing of all prefixes. These contain the standard prefixes such as owl, rdfs, and the prefixes
of the validated domains. The ID of a NodeShape consists of its corresponding domain prefix,
its SubjectClass URI without the namespace, and the suffix “Shape”. Afterwards, the targetClass
is declared, and its SuperClass, since we also want to validate the hierarchy. In addition, the DL

101

5 Evaluation

Figure 5.21: SHACL Shapes building schema (1).

declared within the SuperClassShape will be inherited by its subclasses, enabling a reduced and
transparent validation. Afterwards, the involved properties are listed.
The uniqueness of our relationships enables the implementation of unique PropertyShapes. This
ensures a correct validation of every relationship tailored to its specific requirements. The
PropertyShape ID is formed by the domain, URI and the “Shape” suffix, similar to the NodeShape.
Afterward, we declare the path, such as the object property validated by this shape. Since every
relationship has only one ObjectClass range implemented, its specification is not necessary but is
included here for the sake of completeness. Considering that object properties are also implemented
hierarchically, the corresponding SuperProperty is also included. As mentioned in Section 3.3.2,
every relationship is semantically grouped to infer more knowledge about the object property. At
the end, the constraints are listed according to the mapping listed in Table 5.5.

Figure 5.22: SHACL Shapes building schema (2).

Based on our structural implementation approach, the creation of such validation scripts could
be automated with further development. This would save development time, as SHACL schemas
still need to be manually implemented. Cimminio et. al. [CFG20] propose Aestra, a tool to
automate SHACL shape generation. Their covered SHACL restrictions would theoretically also

102

5.4 Further Development

include all important restrictions presented here (sh:NodeShape, sh:PropertyShape, sh:targetClass,
sh:property, sh:path, sh:class, sh:minCount, sh:maxCount). The only constraint that is not covered
due to practitioner-required restrictions is the sh:group constraint. Although grouping properties
infers additional knowledge, it is not necessary for validation. Because PropertyShapes needs to be
included in the knowledge graph to make use of their grouping semantics, the group association
can be handled separately outside of the validation. The PropertyShapes can be generated first for
validation purposes and then manually added to include them in the knowledge graph.
This work only implements a prototype. It does not utilize the full potential of SHACL and
further limitations may follow. It may not be possible to cover the additional constraints, so shape
generation would again require manual assistance. Nevertheless, Aestra covers 60% of all SHACL
constraints, and the idea can be considered for further increments of IGONTO to save manual
effort to some extent. In this way, automating SHACL shape generation offers potential for IGONTO.

5.4 Further Development

With the development of a prototype, questions arise regarding future work and its reuse for being
integrated into further research projects. Creating prototypes that are not just throwaway models
but a basis for new ones that form a final and functioning product is one of the main characteristics
of evolutionary prototyping. In the latter approach, the idea of the prototype is continuously refined
and evolved based on feedback and requirements until the lessons learned can be translated into
the final product [Boe88]. Evolutionary prototyping reduces risks (which is very important for an
expert system that relies on compliance) [Som11] and allows more flexibility and adaptability in
design, as changes can be iteratively incorporated [PB14].
Therefore, the ability to reuse or work further with a prototype is also a quality aspect and therefore
part of this chapter. This section describes how this prototype can be integrated into an independent
application and how certain design decisions are implemented to help in developing an application.

5.4.1 Toward an IGONTO-Based Expert System Solution

Given that IGONTO is a prototype for an IG consulting (expert) system, there is a definitive need
to develop a bespoke application or user interface for interacting with this knowledge base. This
requirement became evident during the development of the prototype. For instance, to visualize
the query results, AllegroGraph was used in conjunction with Gruff. AllegroGraph is a scalable
RDF Graph Database that supports big data analysis. Gruff, a visualization application, can
utilize AllegroGraph as a database and visualize query results, allowing interaction with nodes in
various ways [23a]. While AllegroGraph enables querying with reasoning, it cannot incorporate the
SWRL rules implemented in IGONTO. Therefore, to observe all inferences, the ontology must be
materialized, thus saving all reasoning triples in the RDF graph before uploading to AllegroGraph.
To address this issue, we explored Stardog, another RDF-Graph database with visualization and
querying capabilities. Stardog facilitates reasoning not only within its application but also via
its HTTP Endpoint. However, its visualization capabilities are limited, offering only a “Query
builder” that restricts query options like FILTER, and the reasoning process is slow. Stardog itself

103

5 Evaluation

acknowledges that it “performs reasoning in a lazy and late-binding fashion: it does not materialize
inferences; rather, the reasoning is performed during the query time” [23d]. This experience, made
during the development of IGONTO, illustrates the challenge of finding services that satisfy all
the requirements of ontology, and knowledge graph development. Moreover, there are reasons to
consider implementing a proprietary front-end system for interfacing with the ontology/ knowledge
graph that is hosted online, locally on-premise, or both online and on-premise:

1. Extensibility and Specification:
IGONTO, being an expert system for a specific domain, may require specific features not
available by third-party services. Developing a front-end application ensures independence
and facilitates the implementation of specialized features as needed.

2. Integration:
Another advantage is the potential for integration into larger and already existing systems.
When integrating IGONTO into larger systems, reliance on third-party services can be
limiting. The ability to integrate into a broader system can be enhanced by implementing
features tailored to individual requirements and needs.

3. Cost:
While the initial development of a custom application involves costs, it can be more economical
in the long term. This is because most third-party services involve ongoing expenses, and it
is unlikely that a single service will meet all of IGONTO’s requirements, potentially leading
to additional charges for multiple services.

4. Useability:

A critical aspect of this discussion centers on user interaction. Information governance
represents a complex domain that is often unfamiliar to users seeking compliance guidance.
These users may lack foundational knowledge about ontologies. Even when they possess a
basic understanding of ontology interaction and SPARQL query formulation, they probably
will not grasp all regulatory requirements. Therefore, despite predefined SPARQL queries
offering guidance on various use cases, users could still encounter problems when selecting
proper queries that accurately represent their situation. Two potential solutions exist. The first
involves the engagement of a domain expert to navigate user interaction through this process.
However, this approach incurs ongoing costs. Alternatively, developing a user interface that
enables intuitive interaction with the ontology and the knowledge base could represent a
better solution. This interface would ideally bridge the gap between the user’s compliance
needs and the technical requirements to manage the knowledge base environment, thereby
enhancing usability while reducing long-term company expenses.

Considering these points, a design concept will be presented that illustrates how a potential applica-
tion might appear, how certain design decisions from the ontology will aid in the development of
this application, and how some potentially desired features will enhance the system’s quality.

104

5.4 Further Development

Figure 5.23: Proposed system design for the IGONTO application.

5.4.2 Application Design

This section introduces a preliminary design proposal for the IGONTO application. Figure 5.23
illustrates the proposed system architecture, comprising a front-end for user interaction and a
back-end for data acquisition and processing. This architecture enables the front-end to effectively
utilize processed data. The application’s workflow is segmented into four subprocesses: Compliance
Checklist, Data Gathering, Data Processing, and Results Presentation.

Compliance Checklist

The Compliance Checklist serves as the user’s initial interaction point. Its primary function is to
identify the user’s specific use case, thereby guiding the subsequent data acquisition process. This
is achieved through a series of predefined questions tailored to ascertain the precise use case. Key
questions include the following:

1. What is the location of the company?
This question aims to categorize the company within the appropriate jurisdiction, establishing
the regulatory framework applicable to the user.

2. How many employees does the company have?
The size of the company is an important factor. For instance, companies with less than 250
employees have to comply with fewer regulations than large companies (see 5.1).

3. Does the company deal with sensitive data?
Handling sensitive data like Personally Identifiable Information (PII) data needs more caution
and therefore influences the regulatory requirements.

4. How often is data processed/accessed?
The regularity of data processing impacts the compliance measures needed. There is a greater
likelihood that additional measures will be necessary when data are accessed more frequently.

105

5 Evaluation

This section introduces a preliminary design proposal for the IGONTO application. Figure 5.10
illustrates the proposed system architecture, comprising a front-end for user interaction and a
back-end for data acquisition and processing. This architecture enables the front-end to effectively
utilize processed data. The application’s workflow has four subprocesses: Compliance Checklist,
Data Gathering, Data Processing, and Results Presentation. These cover only example questions. A
comprehensive checklist would implement additional queries to cover all potential use cases. In
addition, questions may vary based on the regulations of the company’s location. For example,
U.S. regulations, not covered in this prototype, may necessitate different questions. To limit the
possibilities of combination in the back-end, it would be necessary to contain answers. Suggested
limitations for each question may include the following:

1. Implement a drop-down list of countries, similar to other common user applications.

2. Allow the user to input an integer representing the company’s employee count. Implementing
corresponding ranges in the back-end should be straightforward.

3. Offer a data type checklist a company can potentially deal with, where the user can select
multiple options.

4. Include single choices such as “once a year”, “once a month”, which are tailored to different
compliance requirements based on processing frequency.

Upon completion, the user’s responses are forwarded to the back-end for further processing.

Data Gathering

With all questions answered the back-end can determine the correct use case by analyzing the
combinations answered from the checklist. Based on the user responses provided, the back-end
either picks predefined SPARQL queries or dynamically generates queries. These queries are then
executed against the ontology to retrieve the necessary results. If the database is hosted externally,
it can be accessed via its Endpoint. A possible Database endpoint could be any online RDF Graph
Database. For example, stardog also provides a comprehensive HTTP API documentation [Sta23].
Alternatively, the database can be integrated directly within the back-end and queried locally using
RDFLib [23c], which is a Python framework designed to work with ontologies. RDFLib allows
data serialization into graphs, enabling the execution of local SPARQL queries and yielding the
same results. Additionally, RDFLib supports reasoning and the pre-preparation of queries, which
can enhance overall performance. Either way, both methodologies lead to the same results.

Data Processing

After receiving the query results, the data needs to be processed for easy utilization by the front-end.
These results can include various formats, such as CSV, JSON, and XML. The documentation
of Stardog or RDFLib details what formats are supported. Listing 5.4.2 illustrates an example in
JSON. This data now requires processing and preparation for the front-end to use it effortlessly.

106

5.4 Further Development

1 {

2 "predicate": {

3 "type": "uri",

4 "value": "http://www.semanticweb.org/igonto/igonto#enterpriseDoesNotNeed"

5 },

6 "small_enterprise": {

7 "type": "uri",

8 "value": "http://www.semanticweb.org/igonto/organization#

SmallEnterpriseInstance"

9 },

10 "object": {

11 "type": "uri",

12 "value": "http://www.semanticweb.org/igonto/igonto#RIMSOlutionInstance"

13 }

14 },

15 {

16 "predicate": {

17 "type": "uri",

18 "value": "http://www.semanticweb.org/igonto/jurisdiction#operatesInCountry"

19 },

20 "small_enterprise": {

21 "type": "uri",

22 "value": "http://www.semanticweb.org/igonto/organization#

SmallEnterpriseInstance"

23 },

24 "object": {

25 "type": "uri",

26 "value": "http://www.semanticweb.org/igonto/jurisdiction#Germany"

27 }

28 },

Listing 5.17: Example of a SPARQL result without PropertyGroups.

Listing 5.4.2 presents a code snippet from an example query that retrieves every connection from
the instance “small_enterprise”. The properties are stored in the variable ’predicate’, and the
objects connected to the small enterprise are represented by the variable ’object’. This result is then
processed as needed. However, additional context is required to interpret this code meaningfully.
This is where PropertyGroups become useful.
In the first triple, the predicate “enterpriseDoesNotNeed” is an inference and a negative object
property. This connection explicitly indicates that small enterprises do not require a “RIMSolu-
tionInstance”. The second triple is a static property, stating that the small enterprises operate in
Germany. Without further modifications, further interpretations regarding this result would be
difficult, including determining whether an object property represents an inference or if it should
represent a negative object property. The JSON file simply lists both results as properties.
This scenario exemplifies the utility of ObjectProperties defined in Section 3.3.2 By grouping
object properties, we infer additional knowledge used by the application to introduce enhanced

107

5 Evaluation

features. The potential uses of these in the front-end are discussed later in Section 5.4.2. While it is
theoretically possible to store all object properties in a hardcoded dictionary, the organization of
data should ideally be managed by the ontology rather than the application itself. By implementing
PropertyGroups, they can also be queried, enhancing the richness of the results.

1 {

2 "predicate": {

3 "type": "uri",

4 "value": "http://www.semanticweb.org/igonto/igonto#enterpriseDoesNotNeed"

5 },

6 "small_enterprise": {

7 "type": "uri",

8 "value": "http://www.semanticweb.org/igonto/organization#

SmallEnterpriseInstance"

9 },

10 "objectGroup": {

11 "type": "uri",

12 "value": "http://www.semanticweb.org/igonto/igonto#

InferenceObjectPropertyGroup"

13 },

14 "object": {

15 "type": "uri",

16 "value": "http://www.semanticweb.org/igonto/igonto#RIMSOlutionInstance"

17 }

18 },

19 {

20 "predicate": {

21 "type": "uri",

22 "value": "http://www.semanticweb.org/igonto/igonto#enterpriseDoesNotNeed"

23 },

24 "small_enterprise": {

25 "type": "uri",

26 "value": "http://www.semanticweb.org/igonto/organization#

SmallEnterpriseInstance"

27 },

28 "objectGroup": {

29 "type": "uri",

30 "value": "http://www.semanticweb.org/igonto/igonto#

NegativeObjectPropertyGroup"

31 },

32 "object": {

33 "type": "uri",

34 "value": "http://www.semanticweb.org/igonto/igonto#RIMSOlutionInstance"

35 }

36 },

Listing 5.18: Example of a SPARQL result with PropertyGroups.

108

5.4 Further Development

One drawback of this method is that if an object property is grouped into two PropertyGroups, the
overall information connected to the object will be duplicated because the variable “objectGroup”
contains two values. However, the issue can be solved by concatenating both values into one string
using the “GROUP_CONCAT” operation from SPARQL. The downside of this method is that
afterwards, the string needs to be separated again. Additionally, there are not many object properties
involved in a single subject, which makes performance issues unlikely. The overall knowledge
acquired from these PropertyGroups outweighs the drawbacks they present.
When data are processed and meaningful results are obtained, they will be returned to the front-end
for further processing.

Result Representation

When the results are processed in a way that will be easy to deal with, they should be presented
in a user-friendly way to answer the questions about compliance and implementation needs. One
suggestion is to present the results in tabular format and as an interactive RDF graph. The tabular
representation provides quick and direct information, whereas the graph should visualize the result
for clarity. The idea is to allow user interaction with the graph, such as expanding existing nodes for
deeper searches and allowing the possibility to visually distinguish between certain connections.
A design concept is illustrated in Figure 5.24. The aforementioned PropertyGroups can now be
actively visualized in the graph and filtered using the selection options in the top right corner. The
user can now choose to view inferences, negative relationships, only normal relationships, or any
other combination of these three options. This approach enables the easy representation of more
knowledge, allowing the user to precisely understand, for instance, what they do not need to do by
selecting only negative object PropertyGroups.

Figure 5.24: Graph visualization design concept for the IGONTO application.

109

5 Evaluation

Another use of an Object PropertyGroup, namely the “InverseObjectPropertyGroup” allows users
to expand nodes and automatically retrieve the correct hierarchy, enhancing understandability.
Meanwhile, the application uses the same generic query, with the exception being that the subject
is changed (namely, the selected instance that the user wishes to expand). Accordingly, the
query can be implemented as a single reusable query that asks for all connections with their
corresponding PropertyGorup, representing all objects connected by this relationship, including the
inverse relationship (“the way back”). Afterward, the application determines which relationship
between the subject and object is an inverse property and decides, based on the user’s selection
and desired hierarchy (e.g. top-down, bottom-up, or both ways), how the data is displayed. This
approach results in an automatically generated tree structure without requiring the application to be
aware of every relationship and object. Without this method, the application would be limited to
only predefined SPARQL queries, restricting the user’s ability to interact with the graph as they wish.

5.4.3 Agile Development

While the previous section focused on integrating the IGONTO prototype into an independent
application, this section shifts its attention to how the further development of this prototype can be
managed within an agile team. The division of IGONTO into several independent sub-ontologies,
outlined in Section 3.1.1, is crucial to agile development. Additionally, this approach exploits the
capability to store RDF graphs into different named graphs. A named graph is a set of triples with
a specific name, based on a certain ontology. Named graphs facilitate the organization of RDF
data into different subsets. These subsets can be increments from each other or from different
viewpoints.
Figure 5.25 illustrates how the prototype can be developed by different teams. Each sub-ontology
can be developed by an independent person or department. The various lines represent different
branches in the development process. The overall ontology can be saved in the “Master” branch.
Whenever a pull request is created, the corresponding graph can be validated and, if successful,
saved as a named graph in the database. The graphs can be named based on the development branch
and the pull request number to uniquely identify each graph and trace every change. Upon merging
into the master branch, a new master graph can be stored in the database as a named graph with an
increment of the version number. The integration of a new pull request or merge into a new named
graph can be automated using workflow files, similar to the validation of every ontology.
The exact implementation depends on the database used. When using Stardog, its HTTP API enables
the direct integration of newly named graphs. With RDFlib, these named graphs need to be stored
in the Dataset object provided by RDFlib. Several named graphs can be integrated within this dataset.

110

5.4 Further Development

Figure 5.25: Agile development of IGONTO.

111

6 Conclusion

The work of this thesis includes the development of an ontology on information governance,
IGONTO, capturing valuable knowledge found in the Information Governance (IG) domain. Part of
the work focused on implementing of an IG Knowledge Graph a prototype based on IGONTO. The
work of Mega [IGONTO23] was used as a foundation, where the IG domain was analyzed and its
concepts identified.
We divided the ontology into several sub-ontologies, namely Jurisdiction, Organization, Information,
Lifecycle, and Implementation. To use the correct reasoning approach, we parameterized the
reasoning aspects, analyzed the IGONTO domain needs, and decided to use a logic-based approach
with Description Logic (DL) with the extension of Semantic Web Rule Language (SWRL) rules.
The effectiveness of the ontology is demonstrated using two different use cases, representing small
and large companies, to demonstrate its adaptability in providing compliance solutions following
GDPR requirements. These use cases were evaluated using SPARQL queries, with the results
visualized using AllegroGraph and Gruff.
To ensure consistency, SHACL validation schemas were implemented for each sub-ontology, where
IGONTO’s implemented structure provides a systematic approach, enabling potential automation in
future development stages.
Looking forward, the work proposes an application architecture for IGONTO that aims to simplify
user interaction with the ontology. This architecture leverages PropertyGroups to add additional
meaning to relationships and improve the user’s ability to interpret and visualize these relationships.

113

7 Outlook

The IGONTO prototype has demonstrated considerable potential but still needs some improvements
to be fully operational. This chapter outlines some improvements to achieve compliance, including
refinement 7.1 and the use case extension 7.2. Additionally, the possible improvements to show the
potential of this prototype explained in Section 5.4 are summarized to provide a comprehensive
outlook.

7.1 Refinement

The structure of the prototype is already robust, including the division of ontologies, the description
logic, the SWRL rules, and the validation. The focus of refinement involves the connection between
requirements, rights, obligations, and GDPR articles.

As explained in Section 4.1 obligations, rights, and capabilities are linked to GDPR articles.
Figure 7.1 illustrates why and where refinement should be performed. The Obligation To Ensure
Accuracy Of Data Instance involves Article 5 and Article 16, as well as a citation from the articles
explaining why the relationship exists in the first place. Sometimes, like in Article 5, the citations
are straightforward and directly include keywords (“accuracy”) with their explanation. Here, the
involvement of Article 5 in this obligation is clear. At other times, out-of-the-box explanations are
necessary to connect the articles. For instance, Article 16 states that,

Figure 7.1: Refinement reason example.

115

7 Outlook

“The data subject shall have the right to obtain from the controller without undue delay
the rectification of inaccurate personal data concerning him or her.”

Here, the connection to the obligation is not immediately apparent. This article obligates controllers
to correct inaccuracies in personal data. However, this requires that the data be kept accurate.
Otherwise, rectification will be challenging or could lead to errors within their data, potentially
resulting in compliance violations.
This demonstrates that it is often not clear which articles are relevant to obligations, rights, or
capabilities. Although it was not a requirement for this prototype to be compliant, to show that the
idea of the whole process works, the need for refinement should still be mentioned. IGONTO is an
expert system that requires a high degree of accuracy to ensure compliance, and therefore, it should
be revised by (data compliance) experts.

7.2 Use Case Extension

The use case extension also needs to be completed. In this prototype, we focused on the size of
enterprises to demonstrate the validity of the idea. There are additional use cases and parameters
that play a role in compliance, some of which have been identified but not implemented and are
briefly mentioned in Section 5.4.2.

The first additional use case is the type of data the enterprise processes. If the data is sensitive, such
as PII data, more security, and therefore, stricter regulations need to be followed. The other use
case is the frequency of data processing. These parameters also have to be added to the ontology,
including the right connections and inferences. Although we did not directly implement these use
cases, the concept has already been implemented. For example, in Figure 4.5, the sensitive data are
already implemented as a type of control data. The frequency of data access can be implemented by
attributes or by adding a class that represents the concept of date, including the start date, end date,
and other subclasses required to implement a process cycle.
Besides the already identified but not implemented use cases, there could be more use cases needed
to ensure compliance. As mentioned earlier, IGONTO is an expert system and should be revised by
experts, not only regarding article refinement but also regarding use case extension.

116

8 Related Work

In “An Ontology-based Knowledge Management Model on Information Governance”, Cataldo
Mega [IGONTO23], analyzes the Information Governance (IG) domain and suggests several
models. These models describe the concepts of an enterprise and its connection to IG. Mega’s
analysis includes IG domain sources such as associations describing compliance capabilities, ISO
standards, regulations, Enterprise Information Management (EIM) standards, and service vendors.
The synthesis of these sources forms a harmonized IG taxonomy, which is divided and implemented
in multiple IG knowledge models. These models represent enterprise concepts from different
perspectives, and their concepts are used for the sub-ontologies within IGONTO. These include the
Organizational Model (ORG), Information Model (INF), System Model (SYS), Component Model
(CPT), Lifecycle Model (LCS), and the Platform Model (PLT), where each model concept is part of
IGONTO.

Ling Tian et. al. [TZW+22] in “Knowledge graph and knowledge reasoning: A systematic
review” analyzed several reasoning approaches. These include reasoning based on logic rules,
reasoning based on logic, statistics, graph structure, representation learning, and neural networks.
From their summaries of the advantages and disadvantages, we extracted these statements and
turned them into reasoning parameters. After analyzing the IGONTO requirements and compar-
ing them with the reasoning parameters, we identified a suitable reasoning solution for our prototype.

Since we chose to use description logic as a reasoning method, we referred to Claudia d’Amato
et. al’s. [dFE05] and Ian Horrocks et. al’s. [HKS06] theoretical definitions of the description
logic used in OWL 2. We synthesized both definition languages to ensure they aligned and drew
conclusions on how these theorems are defined in OWL 2 keywords.

For the implementation side, we gained important insights from the official OWL 2 documentation
[23b], including its implemented description logic [W3C12]. Using the SHACL framework
documentation [23e] we implemented validation schemas. These schemas validate not only the
ontology structure but also its inferences. Additionally, with the SHACL PropertyGroups, we
implemented further knowledge for the relationships within IGONTO, enabling more efficient
development of future applications built around this prototype.

With the help of the triple-store browser AllegroGraph, including the integrated tool Gruff [23a], we
effectively visualized our results. The online RDF-Database Stardog [23d] facilitated easy and fast
ontology validation, including the capability for dynamic reasoning queries for inference testing.

117

9 Acknowledgement

I would like to thank Prof. Dr.-Ing. habil. Bernhard Mitschang for the opportunity to complete my
master’s thesis at the Institute for Parallel and Distributed Systems.

I’m extremely grateful to Dipl. Phys. Cataldo Mega for his competent and friendly support during
the preparation of this master thesis. Thank you for the data sets provided, the major contribution to
the Implementation Ontology, the proofreading, and the valuable suggestions that enriched this
work.

119

Bibliography

[23a] About Franz - AllegroGraph. https://allegrograph.com/about-franz/. 2023
(cit. on pp. 18, 96, 103, 117).

[23b] OWL Web Ontology Language Reference. https://www.w3.org/TR/owl-ref/. 2023
(cit. on pp. 39, 117).

[23c] RDFLib Documentation. https://rdflib.readthedocs.io/en/stable/index.html.
2023 (cit. on p. 106).

[23d] Stardog Latest Documentation. https://docs.stardog.com/. 2023 (cit. on pp. 18,
101, 104, 117).

[23e] W3C Shapes Constraint Language (SHACL) Vocabulary. https://www.w3.org/ns/
shacl.ttl. 2023 (cit. on pp. 37, 38, 117).

[Alf24a] Alfresco. Alfresco Content Services Documentation. 2024. url: https://docs.
alfresco.com/content-services/latest/ (cit. on p. 92).

[Alf24b] Alfresco Software, Inc. Software Architecture. https://docs.alfresco.com/
content-services/latest/develop/software-architecture/. 2024 (cit. on p. 95).

[Ben10] W. Benedon. “History of Records and Information Management”. In: (2010),
pp. 2133–2141. doi: 10.1081/E-ELIS4 (cit. on p. 51).

[Bjo75] L. A. Bjork. “Generalized Audit Trail Requirements and Concepts for Data Base
Applications”. In: IBM Syst. J. 14 (1975), pp. 229–245. doi: 10.1147/sj.143.0229
(cit. on p. 55).

[Boe88] B. W. Boehm. “A spiral model of software development and enhancement”. In:
Computer 21.5 (1988), pp. 61–72. doi: 10.1109/2.59 (cit. on p. 103).

[BP08] S. G. Blethyn, C. Y. Parker. “Data dictionary”. In: World Statistics Pocketbook 2007
(2008). doi: 10.1016/B978-0-7506-1038-4.50013-0 (cit. on p. 55).

[CBK04] J. Callahan, C. Bastos, D. Keyes. “The Evolution of IT Governance at NB Power”.
In: (2004), pp. 343–356. doi: 10.4018/978-1-59140-140-7.CH013 (cit. on p. 50).

[CFG20] A. Cimmino, A. Fernández-Izquierdo, R. García-Castro. “Astrea: Automatic
Generation of SHACL Shapes from Ontologies”. In: The Semantic Web 12123
(2020), pp. 497–513. doi: 10.1007/978-3-030-49461-2_29 (cit. on p. 102).

[CJX20] X. Chen, S. Jia, Y. Xiang. “A review: knowledge reasoning over knowledge graph”.
In: Expert Systems With Applications 141 (2020), p. 112948. doi: 10.1016/j.eswa.
2019.112948 (cit. on p. 24).

[dFE05] C. d’Amato, N. Fanizzi, F. Esposito. “A Dissimilarity Measure for the ALC
Description Logic.” In: SWAP. 2005 (cit. on pp. 29, 117).

121

https://allegrograph.com/about-franz/
https://www.w3.org/TR/owl-ref/
https://rdflib.readthedocs.io/en/stable/index.html
https://docs.stardog.com/
https://www.w3.org/ns/shacl.ttl
https://www.w3.org/ns/shacl.ttl
https://docs.alfresco.com/content-services/latest/
https://docs.alfresco.com/content-services/latest/
https://docs.alfresco.com/content-services/latest/develop/software-architecture/
https://docs.alfresco.com/content-services/latest/develop/software-architecture/
https://doi.org/10.1081/E-ELIS4
https://doi.org/10.1147/sj.143.0229
https://doi.org/10.1109/2.59
https://doi.org/10.1016/B978-0-7506-1038-4.50013-0
https://doi.org/10.4018/978-1-59140-140-7.CH013
https://doi.org/10.1007/978-3-030-49461-2_29
https://doi.org/10.1016/j.eswa.2019.112948
https://doi.org/10.1016/j.eswa.2019.112948

Bibliography

[DL96] G. De Giacomo, M. Lenzerini. “TBox and ABox reasoning in expressive description
logics”. In: KR 96 (1996), pp. 316–327 (cit. on p. 29).

[Fit90] M. Fitting. “First-order logic and automated theorem proving”. In: (1990). doi:
10.1007/978-1-4684-0357-2 (cit. on p. 24).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer,
2014. doi: 10.1007/978-3-7091-1568-8 (cit. on p. 64).

[Fra13] P. C. Franks. “Records and Information Management”. In: Internal Controls Toolkit
(2013). doi: 10.1002/9781119554424.ch9 (cit. on p. 54).

[Hei21] I. Heine. 3 Years Later: An Analysis of GDPR Enforcement. 2021. url: https:
/ / www . csis . org / blogs / strategic - technologies - blog / 3 - years - later -

analysis-gdpr-enforcement (cit. on p. 27).
[HH13] A. Haider, W. Haider. “Improving engineering asset lifecycle data quality: Setting

the rules”. In: 2013 Proceedings of PICMET ’13: Technology Management in the
IT-Driven Services (PICMET) (2013), pp. 1200–1206 (cit. on p. 50).

[HKS06] I. Horrocks, O. Kutz, U. Sattler. “The even more irresistible SROIQ”. In: Jan. 2006,
pp. 57–67 (cit. on pp. 29, 31, 117).

[HOD10] S. Hassanpour, M. O’Connor, A. K. Das. “A Software Tool for Visualizing,
Managing and Eliciting SWRL Rules”. In: (2010), pp. 381–385. doi: 10.1007/978-
3-642-13489-0_28 (cit. on p. 77).

[HPBT05] I. Horrocks, P. Patel-Schneider, S. Bechhofer, D. Tsarkov. “OWL rules: A proposal
and prototype implementation”. In: J. Web Semant. 3 (2005), pp. 23–40. doi:
10.1016/J.WEBSEM.2005.05.003 (cit. on p. 74).

[HS05] I. Horrocks, U. Sattler. “A Tableaux Decision Procedure for SHOIQ”. In: Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence (ĲCAI-19).
Morgan Kaufmann. Los Altos, 2005, pp. – (cit. on p. 31).

[IGONTO23] C. Mega. “An Ontology-based Knowledge Management Model on Information
Governance.” In: Proceedings ofthe 25th International Conference on Enterprise
Information Systems (ICEIS 2023) - Volume 2, pages 168-178 (2023). doi: 10.
5220/0011985000003467 (cit. on pp. 17, 18, 45, 113, 117).

[KBM+11] S. Köhler, S. Bauer, C. J. Mungall, G. Carletti, C. L. Smith, P. N. Schofield,
G. V. Gkoutos, P. N. Robinson. “Improving Ontologies by Automatic Reasoning
and Evaluation of Logical Definitions”. In: BMC Bioinformatics (2011). doi:
10.1186/1471-2105-12-418 (cit. on p. 23).

[Lam14] J. Lambrechts. “Information Lifecycle Governance (ILG)”. In: Journal of Telecom-
munications and the Digital Economy (2014). doi: 10.18080/JTDE.V2N3.284 (cit. on
p. 52).

[Mil07] C. Milne. “Taxonomy development: assessing the merits of contextual classifi-
cation”. In: Records Management Journal 17 (2007), pp. 7–16. doi: 10.1108/
09565690710730660 (cit. on p. 55).

122

https://doi.org/10.1007/978-1-4684-0357-2
https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.1002/9781119554424.ch9
https://www.csis.org/blogs/strategic-technologies-blog/3-years-later-analysis-gdpr-enforcement
https://www.csis.org/blogs/strategic-technologies-blog/3-years-later-analysis-gdpr-enforcement
https://www.csis.org/blogs/strategic-technologies-blog/3-years-later-analysis-gdpr-enforcement
https://doi.org/10.1007/978-3-642-13489-0_28
https://doi.org/10.1007/978-3-642-13489-0_28
https://doi.org/10.1016/J.WEBSEM.2005.05.003
https://doi.org/10.5220/0011985000003467
https://doi.org/10.5220/0011985000003467
https://doi.org/10.1186/1471-2105-12-418
https://doi.org/10.18080/JTDE.V2N3.284
https://doi.org/10.1108/09565690710730660
https://doi.org/10.1108/09565690710730660

Bibliography

[Nd20] A. Nikolov, M. d’Aquin. “Uncovering Semantic Bias in Neural Network Models
Using a Knowledge Graph”. In: Proceedings of the 29th ACM International
Conference on Information Knowledge Management (2020). doi: 10 . 1145 /

3340531.3412009 (cit. on p. 26).
[OAS19] OASIS TOSCA TC. Topology and Orchestration Specification for Cloud Appli-

cations Version 1.3. OASIS Standard. Nov. 2019. url: https://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-

YAML-v1.3-os.pdf (cit. on p. 70).
[PB14] R. Pressman, D. Bruce R. Maxim. Software Engineering: A Practitioner’s Approach.

McGraw-Hill Education, 2014. isbn: 9780078022128. url: https://books.google.
de/books?id=i8NmnAEACAAJ (cit. on p. 103).

[PK21] P. Pareti, G. Konstantinidis. “A Review of SHACL: From Data Validation to Schema
Reasoning for RDF Graphs”. In: (Dec. 2021). doi: https://doi.org/10.1007/978-
3-030-95481-9_6 (cit. on p. 35).

[Pro23] Protégé Project. Protégé. https://protegeproject.github.io/protege/. 2023
(cit. on p. 18).

[Pur06] W. C. Purdy. “Inexpressiveness of First-Order Fragments”. In: The Australasian
Journal of Logic 4 (2006). doi: 10.26686/AJL.V4I0.1777 (cit. on p. 28).

[QZC09] Y. Qing, L. Zhu, W. Chen. “Research on ontology matching method based on
description logics reasoning mechanism”. In: 2009 International Conference on
Web Information Systems and Mining (2009). doi: 10.1109/wism.2009.50 (cit. on
p. 23).

[ROM11] A. Rivolli, J. P. Orlando, D. A. Moreira. “An Analysis of Rules-based Systems to
Improve SWRL Tools”. In: (2011), pp. 191–194. doi: 10.5220/0003439901910194
(cit. on p. 77).

[SBW19] F. A. Setiawan, E. K. Budiardjo, W. C. Wibowo. “ByNowLife: A Novel Framework
for OWL and Bayesian Network Integration”. In: Information (2019). doi: 10.
3390/info10030095 (cit. on p. 23).

[SGSH16] L. T. Slater, G. V. Gkoutos, P. N. Schofield, R. Hoehndorf. “Using AberOWL for
Fast and Scalable Reasoning Over BioPortal Ontologies”. In: Journal of Biomedical
Semantics (2016). doi: 10.1186/s13326-016-0090-0 (cit. on p. 23).

[SH20] S. Stephen, T. Hahmann. “Model-Finding for Externally Verifying FOL Ontologies:
A Study of Spatial Ontologies”. In: (2020), pp. 233–248. doi: 10.3233/faia200675
(cit. on p. 28).

[Sir21] K. B. Sirait. “The Interrelation of Information Technology Governance and Enter-
prise Risk Management to The Organization’s Performance: A Review of Empirical
Literature”. In: RSF Conference Series: Business, Management and Social Sciences
(2021). doi: 10.31098/bmss.v1i5.450 (cit. on p. 50).

[SL14] M. Simard, D. Laberge. “Governance Representations in Temporary Organization:
A Case of Governance Sensemaking”. In: Procedia Technology 16 (2014), pp. 967–
978. doi: 10.1016/J.PROTCY.2014.10.050 (cit. on p. 50).

123

https://doi.org/10.1145/3340531.3412009
https://doi.org/10.1145/3340531.3412009
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://books.google.de/books?id=i8NmnAEACAAJ
https://books.google.de/books?id=i8NmnAEACAAJ
https://doi.org/https://doi.org/10.1007/978-3-030-95481-9_6
https://doi.org/https://doi.org/10.1007/978-3-030-95481-9_6
https://protegeproject.github.io/protege/
https://doi.org/10.26686/AJL.V4I0.1777
https://doi.org/10.1109/wism.2009.50
https://doi.org/10.5220/0003439901910194
https://doi.org/10.3390/info10030095
https://doi.org/10.3390/info10030095
https://doi.org/10.1186/s13326-016-0090-0
https://doi.org/10.3233/faia200675
https://doi.org/10.31098/bmss.v1i5.450
https://doi.org/10.1016/J.PROTCY.2014.10.050

[Som11] I. Sommerville. Software Engineering. International Computer Science Series.
Pearson, 2011. isbn: 9780137053469. url: https://books.google.de/books?id=
l0egcQAACAAJ (cit. on p. 103).

[Sta23] Stardog Union. Stardog HTTP Documentation. 2023. url: https://stardog-
union.github.io/http-docs/ (cit. on p. 106).

[Sta24] Stardog. Studio SHACL Released. https://www.stardog.com/blog/studio-shacl-
released/. 2024 (cit. on p. 101).

[Tra08] L. A. Tran. “A Semantic Web Primer”. In: Library Hi Tech (2008). doi: 10.1108/
07378830810903409 (cit. on p. 23).

[TZW+22] L. Tian, X. Zhou, Y.-P. Wu, W.-T. Zhou, J.-H. Zhang, T.-S. Zhang. “Knowledge
graph and knowledge reasoning: A systematic review”. In: Journal of Electronic
Science and Technology 20.2 (2022), p. 100159. issn: 1674-862X. doi: https:
//doi.org/10.1016/j.jnlest.2022.100159. url: https://www.sciencedirect.
com/science/article/pii/S1674862X2200012X (cit. on pp. 24, 117).

[VMT13] R. Virgilio, A. Maccioni, R. Torlone. “Converting relational to graph databases”.
In: June 2013. doi: 10.1145/2484425.2484426 (cit. on p. 26).

[W3C12] W3C OWL Working Group. OWL 2 Web Ontology Language: Direct Semantics.
2012. url: https://www.w3.org/TR/owl2-direct-semantics/#Introduction
(cit. on pp. 31, 33, 117).

[Wor12] World Wide Web Consortium (W3C). W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes. https://www.w3.org/TR/xmlschema-2/. 2012 (cit. on
p. 23).

[Wor21] World Wide Web Consortium. DCAT 3.0: An RDF Vocabulary Designed to
Facilitate Interoperability Between Data Catalogs Published on the Web. 2021.
url: https://www.w3.org/TR/vocab-dcat-3/ (cit. on p. 23).

All links were last followed on January 30, 2024.

https://books.google.de/books?id=l0egcQAACAAJ
https://books.google.de/books?id=l0egcQAACAAJ
https://stardog-union.github.io/http-docs/
https://stardog-union.github.io/http-docs/
https://www.stardog.com/blog/studio-shacl-released/
https://www.stardog.com/blog/studio-shacl-released/
https://doi.org/10.1108/07378830810903409
https://doi.org/10.1108/07378830810903409
https://doi.org/https://doi.org/10.1016/j.jnlest.2022.100159
https://doi.org/https://doi.org/10.1016/j.jnlest.2022.100159
https://www.sciencedirect.com/science/article/pii/S1674862X2200012X
https://www.sciencedirect.com/science/article/pii/S1674862X2200012X
https://doi.org/10.1145/2484425.2484426
https://www.w3.org/TR/owl2-direct-semantics/#Introduction
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/vocab-dcat-3/

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Context
	3 Ontology Development - Prerequisites
	3.1 General Approach
	3.1.1 Ontology Hierarchy
	3.1.2 Object Property Structure
	3.1.3 Datatype Property Structure

	3.2 Reasoning
	3.2.1 Ontology Reasoning and Its Parameters
	3.2.2 Reasoning Methods
	3.2.3 IGONTO Characterization
	3.2.4 Reasoning Choice
	3.2.5 DL
	3.2.6 ALC - The Smallest Description Logic
	3.2.7 SROIQ - Description Logic

	3.3 SHACL
	3.3.1 IGONTO Validation
	3.3.2 PropertyGroups

	3.4 Ontology Fusion
	3.4.1 Concept Fusion
	3.4.2 Schema Fusion
	3.4.3 Instance Connection

	4 IGONTO Development
	4.1 Jurisdiction Ontology
	4.2 Organization Ontology
	4.3 Lifecycle Ontology
	4.4 Information Ontology
	4.5 Implementation Ontology
	4.5.1 ArchitectureDesign Ontology
	4.5.2 DataDomain Ontology
	4.5.3 IGServicesDomain Ontology
	4.5.4 ImplementationDomain Ontology
	4.5.5 OrganizationDomain Ontology
	4.5.6 PlatformDomain Ontology
	4.5.7 RegulatoryDomain Ontology
	4.5.8 RequirementDomain Ontology
	4.5.9 TOSCA Ontology
	4.5.10 PractitionerDomain, StandardsDomain, SystemsDomain and VendorDomain Ontology

	4.6 SWRL Rules
	4.6.1 Jurisdiction Rules
	4.6.2 Organization Rules
	4.6.3 Solution Rules

	5 Evaluation
	5.1 Use-Case Scenario
	5.1.1 General Queries
	5.1.2 Use-case Queries

	5.2 Performance
	5.3 Validation
	5.4 Further Development
	5.4.1 Toward an IGONTO-Based Expert System Solution
	5.4.2 Application Design
	5.4.3 Agile Development

	6 Conclusion
	7 Outlook
	7.1 Refinement
	7.2 Use Case Extension

	8 Related Work
	9 Acknowledgement
	Bibliography

