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Abstract: Leakage mitigation methods are an important part of reservoir engineering and subsurface
fluid storage, in particular. In the context of multi-phase systems of subsurface storage, e.g., subsur-
face CO2 storage, a reduction in the intrinsic permeability is not the only parameter to influence the
potential flow or leakage; multi-phase flow parameters, such as relative permeability and capillary
pressure, are key parameters that are likely to be influenced by pore-space reduction due to leakage
mitigation methods, such as induced precipitation. In this study, we investigate the effects of enzy-
matically induced carbonate precipitation on capillary pressure–saturation relations as the first step
in accounting for the effects of induced precipitation on multi-phase flow parameters. This is, to our
knowledge, the first exploration of the effect of enzymatically induced carbonate precipitation on
capillary pressure–saturation relations thus far. First, pore-scale resolved microfluidic experiments in
2D glass cells and 3D sintered glass-bead columns were conducted, and the change in the pore geom-
etry was observed by light microscopy and micro X-ray computed tomography, respectively. Second,
the effects of the geometric change on the capillary pressure–saturation curves were evaluated by
numerical drainage experiments using pore-network modeling on the pore networks extracted from
the observed geometries. Finally, parameters of both the Brooks–Corey and Van Genuchten relations
were fitted to the capillary pressure–saturation curves determined by pore-network modeling and
compared with the reduction in porosity as an average measure of the pore geometry’s change due to
induced precipitation. The capillary pressures increased with increasing precipitation and reduced
porosity. For the 2D setups, the change in the parameters of the capillary pressure–saturation relation
was parameterized. However, for more realistic initial geometries of the 3D samples, while the
general patterns of increasing capillary pressure may be observed, such a parameterization was not
possible using only porosity or porosity reduction, likely due to the much higher variability in the
pore-scale distribution of the precipitates between the experiments. Likely, additional parameters
other than porosity will need to be considered to accurately describe the effects of induced carbonate
precipitation on the capillary pressure–saturation relation of porous media.

Keywords: enzymatically induced carbonate precipitation; capillary pressure–saturation relation;
pore-network modeling; computed tomography; microfluidics

1. Introduction

Subsurface fluid storage is an important means to combat climate change by sequester-
ing supercritical CO2 [1] or storing energy, e.g., as compressed air, CH4, or H2, for coping
with intermittent production of renewable sources, such as wind and solar, as well as
balancing fluctuating supply and demand [2]. However, fluids stored underground have
the potential to leak through damaged cap rocks or wellbores, posing a threat to other
subsurface operations and the environment as well as reducing storage efficiency [3].

Engineered precipitation of minerals has the potential to seal such leakage pathways.
Many minerals may precipitate due to a wide variety of biogeochemical reactions, which
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can be influenced by engineering measures. The most widely used are carbonate miner-
als [4]. In this study, we will focus on the geo-engineered precipitation of induced calcium
carbonate precipitation (ICP), which, among many other applications, has been demon-
strated to have immense potential not only for subsurface engineering, but also for novel
construction materials, soil stabilization, or remediation applications [4–8].

ICP reduces the porosity, permeability, and, likely, two-phase flow parameters of a
porous medium by the precipitation of calcium carbonate, creating subsurface barriers
for flow. Such barriers have the potential to remediate damaged cap rocks or leaky well
cements in order to increase storage security by blocking potential leakage pathways. Most
applications of ICP rely on urea hydrolysis by microbes or plant-based urease extracts
to promote carbonate precipitation within porous media [9]. Urease is an abundant and
well-studied enzyme [10], and urea is a relatively cheap reactant, which might explain the
popularity of ureolytically induced carbonate precipitation. However, other metabolisms
may also lead to the precipitation of carbonates [5]. In the presence of sufficient concentra-
tions of calcium, this results in the overall reaction:

CO(NH2)2 + 2 H2O + Ca2+ urease
2 NH +

4 + CaCO3 ↓ ; (1)

Several large- or field-scale demonstrations of ICP have been completed with the
aims of modifying soil properties, e.g., [11–16], or mitigating leakage in deeper subsurface,
e.g., [8,17–21]. Often, these demonstrations were assisted by numerical investigations,
e.g., [14,22,23]. Additionally, numerical investigations are used to study the feasibility of
leakage mitigation in the deep subsurface, such as [24,25]. While ICP is widely proposed
as a leakage mitigation technology, only a few field-scale investigations were actually
conducted in the relevant two-phase flow conditions. The first step in the experimental
investigation of two-phase flow was the lab-scale investigation of microbial ICP in [26].
The field application of Kirkland et al. [27] goes one step further, as it successfully applied
ICP to seal leakage pathways in the presence of a CO2 phase at the field scale.

However, most models developed of ICP assume full saturation of the porous medium
with an aqueous phase [28–33]. Most recently developed models, especially those explicitly
designed with leakage mitigation in mind, consider the impact of ICP on the porous
medium’s hydraulic properties, but this is usually limited to predicting the permeability
change based on the change in porosity. Even those models of ICP that consider two-
phase flow, e.g., [34–36], generally do not account for ICP-induced changes of two-phase
flow parameters, such as the capillary pressure–saturation relation. A simplistic approach
is used in [34] to account for ICP changing capillary pressure–saturation relations using
Leverett scaling [37]. However, even in those instances where an impact of ICP on hydraulic
parameters is considered in numerical models, the parameterizations are usually rather
simplistic. Permeability changes are mostly accounted for using a power law, e.g., [34–36],
or relations based on the Kozeny–Carman equation, e.g., [32,33].

The effect of ICP on porosity–permeability relations has become the target of exper-
imental studies with the aim of understanding the effect of ICP or similar precipitation
processes at the pore scale [38,39], expanding on previous microfluidic studies of ICP,
e.g., [40–43]. Both [38] and [39] investigated porosity–permeability relations, observing the
porosity change by microscopy and calculating the permeability change from pressure mea-
surements. However, these quasi-2D geometries allow for convenient and time-resolved
imaging but usually cannot represent realistic 3D geometries as they occur in real porous
media [44]. Recently, porosity–permeability relations, not only of ICP, have been studied in
3D systems. The use of micro X-ray computed tomography (µXRCT) to observe the porosity
change has been conducted, e.g., [45,46]. µXRCT eliminates the geometrical constraints of
2D microfluidic systems, providing more realistic porosity–permeability relations for use
in predictive numerical models. As a recent example, ref. [47] examines the flow properties
of various sandstones by using pore-network modeling on pore networks extracted from
µXRCT images. Experimentally, the impact of pore-geometry changes has been investi-
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gated in, e.g., carbonate dissolution in [48]. Similarly, ref. [49] investigated the effect of CO2
injection into carbonate rocks on multi-phase flow properties.

The respective two- or multi-phase flow relations, such as capillary pressure–saturation
or relative-permeability-saturation relations, have not yet been studied in detail, even
though they are arguably of equal importance for the understanding and numerical model-
ing of leakage mitigation or other reservoir applications. Capillary pressure pc is generally
defined as the difference between the non-wetting phase pressure pn and the wetting phase
pressure pw:

pc = pn − pw. (2)

On the scale of a single pore throat or capillary tube with radius rc, the individual
capillary pressure can be calculated based on the Young–Laplace equation:

pc =
2γ cos Θ

rc
, (3)

where γ is the interfacial tension between the wetting and non-wetting fluids, and Θ is the
contact angle between the fluid–fluid interface and the solid surface. Based on the bundle
of capillary tubes model, which simplifies a porous medium into a bundle of parallel
tubes, e.g., [50], and the Young–Laplace equation, which shows the effect of radius on
capillary pressure, it can be expected that any precipitation within porous media that
necessarily, at least locally, reduces pore or pore-throat radii, and thereby also the capillary
pressure in this pore or pore throat, is likely to influence capillary pressure–saturation
relations on the representative elementary volume (REV) scale. For porous media in general,
however, consideration of individual pores becomes impractical, necessitating the use of
alternative descriptions, e.g., algebraic relations, or based on assumptions of bundles of
capillary tubes through which the wetting phase saturation for a given capillary pressure is
determined by integration, as, e.g., completed for dynamic conditions by [51]. The result
of this approach is then a relation between the wetting phase saturation and the capillary
pressure, which represents Equation (3) on a larger scale using averaging over a REV. Such
REV-scale capillary pressure–saturation relations are widely used in numerical modeling
of two- or multi-phase flow in porous media. The commonly used relations for modeling
are of the Brooks–Corey [52] and Van Genuchten types [53]. The relation according to
Brooks–Corey [52] is:

pc = peS
− 1

λ
e ; for pc > pe, (4)

and the relation according to Van Genuchten is:

pc =
1
α

(
S−

1
m−1

e

) 1
n

; for pc > 0, (5)

both provide an equation to estimate pc based on the effective wetting phase saturation
Se, which can be calculated based on the current and residual water saturations Sw and
Sw,r, respectively:

Se =
Sw − Sw,r

1− Sw,r
. (6)

For the Brooks–Corey relation, the additional parameters are the entry pressure pe
and the parameter λ. For the Van Genuchten relation, the parameters are α, m, and n.
The Van Genuchten parameter m is sometimes expressed as m = 1− 1/n for theoretical
considerations, enabling complete integration of Mualem’s equation [54].

We use two different experimental setups as the basis for this: the 2D microfluidic
experiments of [38], which provide excellent possibilities for observation by optical mi-
croscopy with a resulting high temporal resolution but at limited realisticity of the porous
medium, and the 3D sintered glass-bead columns, which offer more realistic porous media;
however, this is more difficult to image as it requires the much more time-consuming
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lab-based µXRCT scanning as the imaging method, which does not allow for temporal
resolution within experiments. Both setups were mineralized using enzymatically induced
calcium carbonate precipitation (EICP), and, while the 2D microfluidic cells were continu-
ously imaged, the 3D columns could only be imaged after mineralization. The columns
with an initial average porosity ranging from 36% to 39% were thus mineralized to various
degrees to achieve different porosity reductions. The decision to stop the mineralization
treatment was based on the increase in differential pressure to 1 bar, 8 bar, and 8 bar at a
reduced flow rate, resulting in a 21, 56, and 59% porosity reduction for the low, medium,
and high mineralizations. The mineralized 3D columns were then scanned in a custom
µXRCT device with a single micrometer resolution, as described in detail in [55]. The
reconstructed images of the 3D columns were finally segmented into three phases: glass,
void, and precipitate. See the published datasets [56–59]. The continuously imaged 2D
microfluidic cells were selected at various steps of porosity reduction and segmented
into solid and pore space; the actual pore geometry was reconstructed based on previous
investigations [38]. See also the dataset [60].

To capture and later upscale what are essentially pore-scale displacement processes,
it is important to investigate the scale of the pores. Direct pore-scale modeling using
the segmented images directly, e.g., by [61,62], or, in general, methods not requiring
morphological assumptions, e.g., [63,64], result in the most realistic results, capturing the
effects of sub-pore-scale surface roughness or additional sub-pore-scale complexity, such
as, e.g., the heterogeneous distribution of contact angles [65]. However, direct pore-scale
simulations on the actual geometry as determined by the XRCT images of the 3D samples,
or even the comparatively small geometry of the 2D samples, are likely prohibitive in
computational cost, especially when using the entire domain or large parts of it. Thus, there
is a need to simplify the imaged geometry without sacrificing too much of the detailed
geometrical knowledge of the image data. This can be achieved by extracting a pore
network (PN) from the available segmented images. While a PN represents a simplified
geometry that, obviously, cannot represent every sub-pore-scale detail, by choosing angular
pore-body and pore-throat geometry, which better approximate the angular pore geometry
of our samples, wetting fluid flow is possible even after the non-wetting fluid has invaded
a location due to wetting fluid remaining connected via the corners [50]. This will account
for some, but not all, sub-pore-scale detail, but we prefer investigating a larger domain
over having the highest resolution, as our aim is ultimately to upscale to the REV-scale,
a transition in which some detail of even the pore scale might be lost. Pore-network
modeling (PNM) combines a relatively realistic, though simplified, version of the pore-scale
geometry of a porous medium, idealized into a network of pore bodies linked by pore
throats [50,66]. PNs represent a scale between the exact pore scale and coarser scales, and
PNM can be a convenient tool for determining coarser-scale, upscaled properties, such as,
e.g., intrinsic permeability, but also multi-phase flow properties [46,50,67–69]. PNM has
been used to investigate the impact of simultaneous mineral dissolution and precipitation
on porosity–permeability relations for certain hypothetical scenarios of pore-geometry
change in, e.g., [70]. PNM has also been used to investigate reactive transport affecting
pore geometry by, e.g., mineral dissolution and precipitation [71] or biofilm growth [72,73].
Moreover, in the context of ICP, PNM has been used, e.g., to determine the interplay of
pore-scale transport and reactions in [74].

We extracted PNs from the segmented images of both the complete 2D and 13 length-
wise sections of each of the 3D samples, using the complete diameter at the given porosity
reductions. This way, we ensured that our simulation domains are large enough to be
considered a representative elementary volume (REV) while retaining a geometry that is
as realistic as possible. We prefer using PNs extracted from the actual geometry over PNs
created on a structured lattice based on a statistical analysis of the actual geometries, as
proposed by, e.g., [75]. On the extracted PN, we evaluate capillary pressure–saturation
curves by performing numerical primary drainage experiments using water and air as the
wetting and non-wetting phase to determine the effect of EICP on the capillary pressure–



Minerals 2022, 12, 1186 5 of 26

saturation relation. Both the Brooks–Corey [52] and Van Genuchten [53] types of capillary
pressure–saturation relations are fitted to the curves obtained by the numerical primary
drainage experiments.

Finally, we study the impact of the porosity reduction due to precipitation on the
parameters of both the Brooks–Corey (pe, λ, Sw,r) and the Van Genuchten (α, m, n, Sw,r) cap-
illary pressure–saturation relations to find suitable parameterizations for implementation in
numerical models describing ICP. In general, we expect to observe an increase in capillary
pressure for a given saturation and a decrease in porosity during mineralization with ICP as
the precipitates reduce the space available for the fluids and reduce the pore-throat radii for
which Equation (3) predicts higher capillary pressures at given saturations. Additionally,
Leverett scaling [37] suggests increased capillary pressure for a given saturation, when
the porosity and, therefore, also the permeability are reduced. For constant fluid and
fluid–solid-interaction properties, Leverett scaling results in scaling the capillary pressure
for the reference condition pc,0 by a factor determined by the changes in porosity φ and
permeability K:

pc(∆φ)

pc,0
=

√
K0φ

Kφ0
, (7)

where pc(∆φ) is the capillary pressure for the porosity change ∆φ, and K0 and φ0 are the
initial values of permeability and porosity. A problem with using Leverett scaling is that it
also requires a description of the effect of ICP on the permeability K, which is not a trivial
task, as observed by several experimental studies, e.g., [38,39,41].

In this study, we attempt the first exploration of the effect of ICP on capillary pressure–
saturation relations, combining experimental observations in microfluidic systems as a
base and PNM as a method to evaluate the effect of the observed pore-geometry changes
due to ICP on the capillary pressure–saturation curves. Investigating different degrees of
porosity reduction allows us to propose capillary pressure–saturation–porosity relations
that, on an REV scale, describe the effects of ICP on capillary pressure. This enables us to
describe such effects on the REV-scale models of ICP, which are commonly used to design,
monitor, and assess the real-world applications of ICP, thereby improving the predictive
capabilities of such models for leakage mitigation scenarios, which are a common scenario
for the use of ICP. We believe this study is a crucial step toward more realistic models of
ICP in the context of subsurface leakage mitigation applications and an improved general
understanding of the impact of ICP on two- or multi-phase flow.

2. Materials and Methods
2.1. Samples

We used two types of samples: quasi-2D, microfluidic glass cells, further called 2D for
their convenience in imaging, and 3D sintered glass-bead columns, further called 3D for
their geometry that better represents bulk porous media.

As the quasi-2D structure of glass microfluidic cells is more accessible for imaging,
such microfluidic glass cells were used to enable a high temporal resolution. The chemically
wet-etched glass cells were purchased from Micronit©, Enschede, The Netherlands, and
are made out of Borosilicate glass. The glass cells feature two inlet and outlet channels,
distribution channels, and a pore structure in the center of the glass cells. Each of the
inlet and outlet channels, respectively, connects to a pressure sensor in order to measure
the differential pressure across the pore structure. The solid matrix of the pore structure
consists of pillars of various sizes with diameters ranging from 200 to 700 µm. Initially, thus,
the pore space is fully connected and of a constant height of 35 µm. The porous domain in
this case has the dimensions 20.5 mm× 11.9 mm× 0.035 mm. More details regarding the
microfluidic cells can be found in [38].

The 3D columns consist of sintered borosilicate glass beads with a mean diameter of
180 µm. The overall dimensions of the columns include a diameter of d = 5 mm and a
length of l = 10 mm. The columns were sealed on the side with shrink tubes and, using
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epoxy resin, glued into the center of a cylindrical, 3D-printed plastic mold. This was done
to ensure the consistent outer dimensions of each sample and to create a wide enough
surface around the inlet and outlet ends of the columns to prevent leakage or flows that
bypass the o-ring seals placed in the sample holder. Figure 1 shows the steps of the sample
preparation and the sample holder.

5 mm
10 mm

Figure 1. 3D column sample preparation from left to right: sintered glass-bead column, column
wrapped in shrink tube, and columns fixed in the plastic mold; both clean and mineralized (left) and
the sample holder (right).

Preparation of reactive solutions:
Two reactive solutions were prepared as described in [39]: a reactant solution contain-

ing urea and calcium as well as a urease solution. The reactant solution was prepared by
dissolving urea and calcium chloride (both MERCK©, Darmstadt, Germany) in deionized
water at equimolar concentrations of 1/3 mol/L. The urease solution was prepared by
suspending jack-bean meal (Sigma Aldrich©, Darmstadt, Germany) in deionized water
at a concentration of 5 g/L, which was stirred at 8 ◦C for 17 h and then filtered through a
0.45 µm cellulose membrane to eliminate remaining solids.

2.2. Experimental Setup And Procedure

The setup for the 2D samples is sketched in Figure 2. The quasi-2D microfluidic
cells were initially saturated with deionized water. The reactant and urease solutions
were co-injected into the glass cells using DC motor-driven syringe pumps (mid-pressure
pumps, type neMESYS 100N) from CETONI GmbH, Korbussen, Germany, at controlled
flow rates using 2.5 mL glass syringes. Both solutions mix in a T-junction before entering the
microfluidic cell through the inlet. The outlet was connected to a constant-head reservoir
elevated 10 cm above the cell to create a back pressure to reduce gas bubble formation.
A pressure sensor (maximum pressure of 70 mbar, resolution of 16 bit, accuracy of 14 Pa,
and internal volume of 7 µL) from ELVEFLOW, Paris, France, was connected to each of
the second inlet and outlet connections of the microfluidic cell to measure the differential
pressure across the porous structure. The precipitation process was observed continuously
by optical microscopy. In parallel to imaging, the flow and pressure data were logged
continuously (see [38]). This imaging approach ensured a high temporal and spatial
resolution with the drawback of only providing 2D images. The initial flow rate was
40 nL/s, and this was decreased to 20 nL/s once the limit of the pressure sensor had
been reached. This was repeated once more, and, finally, the mineralized glass cell was
flushed with deionized water to stop further reaction. During the 2D experiments, the
ambient temperature was 25 ◦C. Note that Experiment 2D1 required restarting, including
resaturation, after approximately 26 h due to clogging issues in the inlet zone of the cell.
The relatively high flow rates during the resaturation process may have led to experimental
artifacts, such as the initiation of a preferential flow path. More details on the procedure
of the 2D experiments can be found in [38]. The arrangement of the 2D setup is shown in
Figure 3.
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Reactant

Urease

Figure 2. Sketch of the 2D EICP setup as used in this study, modified from [38].

Figure 3. Photograph of the 2D setup as used during the EICP-mineralization experiments.

The setup for the 3D samples is, in general, similar to the 2D samples. Each glass-bead
column was placed in a sample holder with three inlets. Two inlets were connected to
the two syringe pumps, as in the 2D setup, but, here, we use larger, 5 ml glass syringes.
As in the 2D experiments, one syringe was filled with the reactant solution containing
calcium chloride and urea, and the other one was filled with the urease solution containing
urease. The third inlet was connected to a pressure sensor (maximum pressure of 8 bar,
resolution of 12 bit, accuracy of 2 mbar) from CETONI GmbH, Korbussen, Germany. The
outlet was connected to a waste container with a constant head, and the diameter of the
outlet tube was large enough (1.6 mm) to neglect the pressure drop along its length, which
was calculated to be less than 10 Pa. Therefore, the pressure measured at the inlet subtracted
by the constant head pressure of the outlet can be assumed to be the pressure difference
over the column at a given flow rate. However, the pressure was mainly measured to
monitor the progress of mineralization in the glass-bead column samples, rather than to
accurately determine the permeability of the pore structure. The setup with the installed 3D
samples was initially saturated with 70% ethanol and then flushed with deionized water to
disinfect the sample and tubing as well as to avoid initial gas bubbles.

The mineralization of the glass-bead column was promoted by co-injecting the urease
as well as the urea and calcium chloride solutions into the glass-bead columns. Both
solutions were injected at a constant rate of 5 µL/s each, resulting in a total injection rate
of 10 µL/s. During the entire mineralization process, the inlet pressure was monitored.
Further, the glass-bead columns were immersed during mineralization in a water bath at
60 ◦C to increase the reaction rates and achieve sufficient amounts of precipitation within a
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working day. In the experimental study [76], 20 g/L was hydrolyzed almost completely
within 120 min at 60 ◦C, while, at 30 ◦C, only about half of that was hydrolyzed within
the same time by identical urease concentrations. Three columns were mineralized to
various degrees with the aim of achieving varying degrees of porosity reduction: The
first was mineralized to a differential pressure of approximately 1 bar. The second was
mineralized to a differential pressure of approximately 8 bar, and the third was mineralized
to a differential pressure of approximately 8 bar, but with a step-wise reduced injection rate.
Each time the 8 bar pressure threshold was reached, the injection rate was reduced to the
final injection rate of 0.5 µL/s.

After the mineralization process, the system was flushed with deionized water in
order to replace the reactive solutions inside the column and avoid further precipitation.
Imaging of the 3D samples was carried out after mineralization.

2.3. Image Acquisition

The images of the 2D samples were acquired using optical microscopy. The mi-
croscopy setup used was as described by [77], with slight modifications for the needs of
the EICP setup. The frame rate was between 0.1 and 1 fps, but only images at select 2D
porosity reduction steps were chosen for further processing. The image resolutions were
2296× 1349 pixel and 2289× 1348 pixel (length × width) for the two 2D experiments 2D1
and 2D2, respectively.

To characterize the inner 3D structure of the three prepared glass-bead column samples
after the completed mineralization procedure, micro X-ray computed tomography (µXRCT)
imaging was performed. For this, the modular and open micro X-ray computed tomogra-
phy (µXRCT) system, described in [55], was used. Except for the geometric magnification,
all three samples were scanned with the same settings: X-ray tube voltage 90 kV, X-ray
tube flux 90 kV, detector exposure time 2000 ms (Shad-o-Box 6K HS detector employed),
and 1800 equidistant projection angles with 5 slightly in-plane shifted detector positions
for bad detector pixel compensation, cf. [55]. In the µXRCT datasets analyzed in this contri-
bution, the medium-mineralization sample was imaged with a geometrical magnification
of M = 26.18, and the high- and low-mineralization samples with M = 22.51, which leads
to corresponding uniform voxel edge lengths of 1.9 µm and 2.2 µm in the reconstructed
datasets. The physical size of the field of view is about 5.59 mm × 5.59 mm × 4.07 mm
and 6.47 mm × 6.47 × 4.71 mm (width × depth × height). Consequently, the complete
cross-section area (diameter 5 mm) of the prepared samples may be visualized; however,
the entire height of the sample cannot. Since the field of view in the vertical direction
is not large enough, it was focused on the inlet for samples 3 and 10 and on the outlet
for sample 4. The 3D volume reconstruction was performed with the software Octopus
Reconstruction (Version 8.9.4-64 bit) [78] using the Feldkamp–Davis–Kress (FDK) algo-
rithm [79] for the cone-beam reconstruction. Typical artifacts, such as beam hardening
and ring artifacts, were reduced with the implemented methods. The underlying datasets
(projection, reconstructed images), including further metadata, can be found in [56–58].

2.4. Image Post-Processing

After obtaining the images, post-processing was necessary to evaluate the change in
pore geometry and the resulting effects on the upscaled parameters’ porosity and capillary
pressure–saturation relation.

2.4.1. 2D Experiments

As the 2D experiments were imaged in a high temporal resolution and the initial,
empty porous geometry was available, it was sufficient to segment the images into void
and solid, as the precipitated CaCO3 can be distinguished by subtracting the initial, empty
porous geometry as a mask. Further, as the obtained images were only in 2D, the actual 3D
geometry had to be reconstructed from the 2D images for a more realistic account of the
geometry change.
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Segmentation

The gray-scale images obtained from optical microscopy were segmented to determine
the geometry change due to EICP. For this, selected images were processed with the
software Matlab R2019b© (The Mathworks, Inc., Natick, MA, USA) [80]. Before the actual
image processing, the initial, unmineralized porous domain was set as a mask and all
subsequent images were registered to the initial image. The main processing consisted of
smoothing, morphological, and, finally, binarization operations. When comparing images
at different time steps while precipitation is still taking place, it is important that they are
geometrically aligned. In the resulting binarized images, individual crystal aggregates can
be identified, and the size of their 2D projection can be derived. More details on image
processing are given in [38,39].

3D Reconstruction from 2D Images

The 3D information was reconstructed from the 2D images obtained by optical mi-
croscopy, as described in more detail in [38]. Based on an assumption of a characteristic,
representative crystal shape, the area of a crystal aggregate on the 2D image and the height
of the microfluidic cell are used to determine the 3D reconstruction of the precipitate within
the microfluidic cell and thereby the pore geometry. Compared to a final µXRCT scan,
frustum and spheroidal shapes were shown to be the best choices to determine the volume
from a projected area, with the spheroidal shape only being applicablem while single,
separated crystals could be identified [38]. Thus, we use a frustum shape with a slope
of αf = 72◦ for reconstruction in this study as it showed the best agreement in volume
reconstruction in [38]. For further details regarding the reconstruction, we refer to [38].

2.4.2. 3D Experiments

As imaging of the 3D experiments was only carried out after the mineralization, our
intent was to segment the µXRCT images not only into void and solid, but to additionally
separate the solid into glass beads and precipitated CaCO3. With this three-phase seg-
mentation, at least the initial and the final pore geometry within the samples are available
for analysis and do somewhat compensate for the lacking temporal resolution as in the
easy-to-image 2D experiments.

Segmentation

As the 3D experiments were imaged after the mineralization was completed, the im-
ages had to be segmented into three phases: glass beads, CaCO3, and void. Distinguishing
between glass beads and CaCO3 was possible due to a slight contrast in their gray values.
However, at the interfaces of both phases, the noise within the gray values of the images
prohibits a simple, threshold-based segmentation, which would lead to an unrealistic,
ragged interface between areas segmented as glass beads and CaCO3. Further, as the
intensity of glass beads is lower than the intensity of CaCO3, any simple, threshold-based
segmentation would lead to the occurrence of a thin glass layer at the CaCO3–void interface,
which is not only highly unrealistic but also makes it impossible to use the segmented
images to evaluate the unmineralized initial geometry by accounting only for the glass
phase as a solid and CaCO3 and void combined as the initial void space.

Due to these reasons, segmentation of the µXRCT slices was carried out using the
machine learning-based software ilastik [81]. Ilastik was developed for image analysis,
mainly in a microbiological context, and offers sophisticated pixel and object classification,
amongst many other image analysis tools. Using ilastik, the abovementioned artifacts can
be minimized by simple, threshold-based segmentation as the machine-learning classifi-
cation by ilastik also takes into account the surrounding neighboring pixels. Ilastik was
trained by indicating on a few slices which features belong to which phases by coloring
an increasing number of features in the software until a satisfactory segmentation was
achieved throughout the column. The output of ilastik are maps of the probability of
segmentation into the three phases: glass beads, CaCO3, and void, as shown in Figure 4.
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Figure 4. Distribution of the segmented phases, glass (in red), void (in green), and CaCO3 (in blue),
for the 3D experiments over selected cross sections of the three sample columns: slice #570 for the
low mineralization (left), slice #477 for the medium mineralization (center), and slice #706 for the
high mineralization (right).

The probability distributions from ilastik are further processed by smoothing opera-
tions using Matlab R2019b© (The Mathworks, Inc.) [80], similarly to the processing of the
2D experiments (see Section 2.4.1). Additionally, a circular mask was overlaid over the
slices to eliminate areas outside of the column as well as the rough and irregular edges
of the sample columns, limiting the investigation in this study to the regular center of the
column to avoid influences by boundary effects.

2.5. Pore-Network Generation

Pore-network geometries were extracted from the segmented images using the Pore-
Spy python toolkit [82,83], which segments the images using a marker-based watershed
algorithm. The parameters used for the 2D experiments were R = 10 and σ = 20, while,
for the 3D experiments, R = 5 and σ = 1 were used, where R is the radius of a structuring
element of the watershed algorithm used in PoreSpy, and σ is the standard deviation of the
convolution kernel used for smoothing to eliminate spurious peaks.

2.6. Pore-Network Modeling

The PNs extracted from the processed images of both the 2D and 3D experiments were
used to evaluate capillary pressure–saturation curves on the geometry affected by EICP by
performing numerical primary drainage experiments to determine the effect of EICP on the
capillary pressure–saturation curves. In these numerical primary drainage experiments,
the pore network is initially saturated with water during the wetting phase. On one side,
air is introduced during the invading non-wetting phase, and the global capillary pressure
between water and air is increased step by step from 0 Pa to the maximum pressure, which
was 10 kPa for the 2D experiments and 20 kPa for the 3D experiments. At each pressure
step, the global capillary pressure is compared to the pore throat’s entry pressure for all
pore throats at the interface between air and water. Whenever the pore throat’s entry
pressure is exceeded, air will invade the pore throat, until all pore throats at the air–water
interface have entry pressures higher than the globally applied capillary pressure. Then,
we integrate the phase volumes over the pore network to determine the phase saturations.
By repeating these steps and recording the pairs of applied capillary pressure and resulting
saturations, we can construct the capillary pressure–saturation curves of each pore network,
representing a simplified version of the geometry of each of the samples.

PNM was carried out using the release version 3.4 of the simulator DuMux [84].
DuMux (Dune for Multi-Phase, Component, Scale, Physics, . . . flow and transport in
porous media) is a free and open-source simulator [85]. We use the pore-network models as
implemented and published previously by [86–88]. The specific code used with installation
instructions was published on 30 May 2022 at: https://git.iws.uni-stuttgart.de/dumux-
pub/gehring2022a. The results of the PNM with the geometry reconstruction and the
extracted PN are published in the datasets [59,60].

https://git.iws.uni-stuttgart.de/dumux-pub/gehring2022a
https://git.iws.uni-stuttgart.de/dumux-pub/gehring2022a
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3. Results

In the following, we present the results of our study, first for the 2D experiments and
second for the 3D. For each set of experiments, we give the capillary pressure–saturation
curves resulting from the numerical primary drainage experiments as well as the Brooks–
Corey- and Van Genuchten-type capillary pressure–saturation relations fitted to param-
eterize them. For the 2D experiments with high temporal and, thus, porosity reduction
resolution, we also parameterize the effect of the porosity reduction on the parameters of
the obtained Brooks–Corey- and Van Genuchten-type relations.

3.1. 2D Experiments

Figure 5 shows the extracted pore network overlayed over the microscopy image
of the unmineralized 2D sample. The capillary pressure–saturation curves obtained by
PNM for the various porosity reductions as well as the Brooks–Corey and Van Genuchten
relations fitted to them are shown in Figure 6 for the 2D1 sample and in Figure 7 for the
2D2 sample.

Figure 5. Extracted pore network showing the determined pore volumes overlayed over the mi-
croscopy image.
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Figure 6. Capillary pressure–saturation relations for Experiment 2D1 at various porosity reductions
as fitted with Brooks–Corey (Equation (4)) (left) and Van Genuchten relation (Equation (5)) (right).
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Figure 7. Capillary pressure–saturation relations for Experiment 2D2 at various porosity reductions
as fitted with Brooks–Corey (Equation (4)) (left) and Van Genuchten relation (Equation (5)) (right).

As can be seen in Table 1 and Figures 8 and 9, both 2D experiments show similar
behavior of the fitted Brooks–Corey-relation parameters; in general, all increase with
increasing porosity reduction. Likely due to the homogeneous thickness of the microfluidic
cells, at least initially, the residual saturation is relatively small, Sr < 4%. The residual
saturation increases only slightly with an increasing ∆φ, except for the highest porosity
reduction of 41%, while λ and pe increase significantly with ∆φ. However, the changes are,
in general, smaller in Experiment 2D1, in which a preferential flow path remained largely
unmineralized, compared to Experiment 2D2 with more homogeneous precipitation [38].
The Brooks–Corey-relation parameter λ increases from 2.2 and 2.0 to 3.17 and 3.39 as
the porosity reduction by ICP increases from 0% to 41%, for Experiments 2D1 and 2D2,
respectively. Similarly, the entry pressure pe increases from 1284 Pa and 1145 Pa to 3829 Pa
and 4143 Pa as the porosity reduction by ICP increases from 0% to 41%, for Experiments
2D1 and 2D2, respectively.

Table 1. Parameters of the Brooks–Corey capillary pressure–saturation relation (Equation (4)) for
various porosity reductions ∆φ due to EICP.

∆φ [-] λ [-] pe [Pa] Sr [-]

Experiment 2D1

0.0 2.195 1283.5 0.0185
0.06 2.407 1673.1 0.0252
0.13 2.594 1929.7 0.0303
0.22 2.875 2230.6 0.0332
0.31 3.328 2765.9 0.0382
0.41 3.172 3829.2 1.57× 10−8

Experiment 2D2

0.0 1.986 1145.4 0.0160
0.07 2.425 1692.3 0.0249
0.15 2.815 2086.0 0.0295
0.23 3.484 2672.9 0.0358
0.32 3.792 3140.9 0.0372
0.41 3.391 4142.7 5.21× 10−9
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Figure 8. Observed dependency of the Brooks–Corey parameters on the porosity reduction λ (left),
entry pressure pe (right), and residual saturation Sr (bottom) for Experiment 2D1.
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Figure 9. Observed dependency of the Brooks–Corey parameters on the porosity reduction λ (left),
entry pressure pe (right), and residual saturation Sr (bottom) for Experiment 2D2.

As can be seen in Table 2 and Figures 10 and 11, both 2D experiments show similar
behavior of the fitted Van Genuchten-relation parameters: m increases with increasing
porosity reduction, while n and α decrease. Using Van Genuchten capillary pressure–
saturation relations, the determined residual saturations are again very low and increase
slightly with increasing porosity reduction, behaving very similarly to the fitted Brooks–
Corey capillary pressure–saturation relations, see Table 1. Again, the highest porosity
reduction of 41% presents a kind of exception with Sr ≈ 0 for Experiment 2D1, and
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Sr = 0.01 for Experiment 2D2, as this is lower than all other fitted residual saturations.
Interestingly, the residual saturation for Experiment 2D2 at ∆φ = 41%, Sr = 0.01, is
surprisingly different from the one determined for the same geometry when fitting a
Brooks–Corey-type relation. Further, the residual saturations of Experiment 2D1 seem to
be relatively similar, independent of the choice of the fitted capillary pressure–saturation,
while the values for Sr vary more for Experiment 2D2 depending on the relation used (see
Tables 1 and 2).

Table 2. Parameters of the Van Genuchten capillary pressure–saturation relation (Equation (5)) for
various porosity reductions ∆φ due to EICP.

∆φ [-] α [1/Pa] m [-] n [-] Sr [-]

Experiment 2D1

0.0 7.53× 10−4 0.0397 56.87 0.0191
0.06 5.94× 10−4 0.0375 64.62 0.0254
0.13 5.17× 10−4 0.0632 41.15 0.0303
0.22 4.38× 10−4 0.1235 23.92 0.0338
0.31 3.56× 10−4 0.1910 17.80 0.0388
0.41 2.63× 10−4 0.3105 10.11 3.08× 10−8

Experiment 2D2

0.0 7.13× 10−4 0.0409 57.09 0.0196
0.07 5.60× 10−4 0.0517 49.42 0.0262
0.15 4.77× 10−4 0.0831 34.05 0.0296
0.23 3.70× 10−4 0.1688 20.92 0.0361
0.32 3.08× 10−4 0.2665 15.00 0.0384
0.41 2.29× 10−4 0.3974 9.723 0.0107
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Figure 10. Observed dependency of the Van Genuchten parameters on the porosity reduction: from
top left to bottom right, α, m, n, and residual saturation Sr for Experiment 2D1.
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Figure 11. Observed dependency of the Van Genuchten parameters on the porosity reduction: from
top left to bottom right, α, m, n, and residual saturation Sr for experiment 2D2.

To better quantify the effect of the porosity reduction ∆φ by EICP on the parameters of both
the Van Genuchten and Brooks–Corey parameterizations for the capillary pressure–saturation
relation for porous media, see Equations (4) and (5), in which the observed parameters p at
various porosity reductions ∆φ are fitted using a second-order polynomial expression:

p = a · ∆φ2 + b · ∆φ + c, (8)

where a, b, and c are the fitted coefficients of the polynomial expression, and the coefficients
have the same unit as the parameter being fitted. The motivation for choosing a quadratic
expression is that it is the simplest non-linear expression. The values for the coefficients are
shown in Table 3.

Table 3. Parameters of the second-order polynomial expression describing the effect of porosity
reduction due to EICP on the capillary pressure–saturation relations, see Equation (8).

Parameter a b c

Experiment 2D1

λ2D1 −4.8389 4.6779 2.1494
pe,2D1 8963.3 2056.8 1400.4
Sr,2D1 −0.6398 0.2377 0.0150

λ2D2 −14.228 9.8493 1.8770
pe,2D2 4619.1 5043.8 1218.0
Sr,2D2 −0.6651 0.2562 0.0124

Experiment 2D2

α2D1 1.48× 10−3 −1.71× 10−3 7.26× 10−4

m2D1 1.5901 0.0169 0.0361
n2D1 127.61 −187.05 63.887
Sr,2D1 −0.6443 0.2392 0.0153

α2D2 1.59× 10−3 −1.78× 10−3 7.00× 10−4

m2D2 1.9645 0.0788 0.0377
n2D2 186.22 −197.95 59.077
Sr,2D2 −0.4855 0.19585 0.0166
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3.2. 3D Experiments

The 3D experiments have much larger numbers of pores and pore throats compared
to the 2D experiments. Due to the significant numbers of pores and pore throats, the pore
networks were evaluated for 13 sections of each column, consisting of 100 slices of the
segmented µXRCT images each. Effects of mineralization similar to the 2D setups can be
observed for the 3D setups, as shown in Figure 12. However, the results are more complex
for the 3D setups. We observe differences not only between the sample columns themselves
but also heterogeneity along the length of each of the columns.
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Figure 12. Capillary pressure–saturation curves for 13 sections of the mineralized and unmineralized
3D experiment columns each with Brooks–Corey (Equation (4)) (left) and Van Genuchten relations
(Equation (5)) (right) fitted to each ensemble of capillary pressure–saturation curves obtained for
each column in unmineralized and mineralized states.

The capillary pressure increases with mineralization. However, the changes in the
capillary pressure–saturation relations are not as straightforward as for the initially identical
2D setups. While the unmineralized capillary pressure–saturation relations of both the
high- and medium-mineralization columns are relatively similar, the unmineralized low-
mineralization column’s capillary pressure is significantly lower for the same saturation.
As expected of the low amount of mineralization, the low-mineralization column’s capillary
pressure is the lowest of all mineralized columns; it is approximately equal to those of the
unmineralized high- and medium-mineralization columns. However, after mineralization,
the medium-mineralization column has by far the highest capillary pressure. During the
mineralization of the 3D experiments, the differential pressure was the only indication of
the progress of mineralization (see Section 2.2). The initial unmineralized porosities of
the 3D samples are not completely identical but relatively similar 36.2% < φ0 < 39.1%
(see Table 4). The difference between the final mineralized porosity and the porosity
reduction in the high- and medium-mineralization 3D samples is quite small, even though
we aimed at mineralizing the samples to various degrees. The volume fraction of CaCO3
is identical for the high- and the medium-mineralization samples, but, due to the lower
initial unmineralized porosity, the high-mineralization sample still has the highest porosity
reduction at ∆φ = 59.5%.

In addition to the porosities, Table 4 gives the mineralized permeability, normalized
with the unmineralized permeability, which can be used together with the mineralized and
unmineralized porosities of the samples to calculate the Leverett-scaling factor according to
Equation (7). Due to the significant reduction in permeability of several orders of magnitude
measured in the experiments, Leverett scaling according to Equation (7) predicts significant
increases in capillary pressure by factors from 7.3 to 43.6 with mineralization due to EICP.
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Table 4. Unmineralized (φ0) and mineralized porosities (φ), average CaCO3 volume fraction (φc),
porosity reduction (∆φ), the normalized permeabilities of the mineralized sample (K/K0), and the
Leverett-scaling factor (pc/pc,0) computed according to Equation (7) of the 3D experiments.

Sample φ0 [-] φ [-] φc [-] ∆φ [-] K/K0 pc/pc,0

low 0.391 0.309 0.082 0.211 0.015 7.3
medium 0.382 0.167 0.215 0.563 0.002 14.8

high 0.362 0.147 0.215 0.595 0.000214 43.6

One reason for the differences in capillary pressure–saturation relations, especially
those of the unmineralized samples, might be that the matrix of porous glass beads was not
perfectly homogeneous for all columns, leading to pore volume and, likely, connectivity
variations along the length of the columns (see Figure 13). The volume fractions shown
in Figure 13 were determined within a circular mask excluding the irregular edge of the
sample and the area outside the actual sample to avoid artifacts. This variation complicates
the parameterization and quantification of the impact of mineralization on the capillary
pressure–saturation relations for the 3D samples and denies a simple parameterization of
the impact of mineralization on the parameters of capillary pressure–saturation relations.
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Figure 13. Volumes of the segmented phases (glass, void, and CaCO3) for the 3D experiments and
their distribution along the height of the three sample columns: low (left), medium (right), and high
mineralization (bottom).

Upon close inspection of the segmented images, as shown in Figure 4, for selected cross
sections of the columns, the precipitation pattern of the high- and medium-mineralization
columns is different. For the medium-mineralization column, the precipitation is dis-
tributed in numerous, small, individual precipitates, while for the high-mineralization
column most precipitates are much larger, though less numerous, and often completely fill
the spaces between glass beads. Such distributions of precipitates result in larger, but fewer,
remaining pores for the high-mineralization column and smaller, but more numerous,
pores and pore throats for the medium-mineralization column, which could explain the
observed differences in the capillary pressure–saturation curves and the fitted capillary
pressure–saturation relations.

Due to the significant heterogeneity along the length of the columns, pore networks
were evaluated for the 13 sections of each column, consisting of 100 slices of the segmented
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µXRCT images each. Tables 5 and 6 give the parameters for the Brooks–Corey and the Van
Genuchten relations as fitted to the determined capillary pressure–saturation curves of
each of the 13 sections of the 3D samples as well as the parameters for the average relations
fitted to the curves of all 13 sections of each column combined, as shown in Figure 12.

Table 5. Parameters of the Brooks–Corey capillary pressure–saturation relation (Equation (4)) for the
initial and mineralized 3D experiments as fitted to each of the 13 sections along the column length.

Initial Mineralized
Column Section λ [-] pe [Pa] Sr [-] λ [-] pe [Pa] Sr [-]

high

1 1.9198 3071.1 0.0129 1.9093 4588.9 0.0288
2 1.9416 3164.6 0.0137 1.8904 4443.3 0.0305
3 1.9381 3244.5 0.0139 1.7862 4587.8 0.0228
4 1.9584 3368.2 0.0142 1.7180 4708.6 0.0156
5 1.9463 3284.1 0.0136 1.7357 4624.4 0.0194
6 1.9492 3367.1 0.0134 1.6171 5057.2 0.0042
7 1.9252 3616.9 0.0150 1.4828 4777.9 1.09× 10−8

8 1.9681 3480.7 0.0137 1.6805 4932.8 0.0076
9 1.9734 3591.2 0.0142 1.6274 4834.9 0.0132

10 1.9675 3629.4 0.0142 1.7802 4755.2 0.0216
11 1.9870 3669.7 0.0141 1.6393 4800.2 0.0053
12 1.9683 3636.3 0.0143 1.7214 4843.6 0.0123
13 1.9606 3558.7 0.0142 1.7325 4722.7 0.0108

avg. 1.8316 3267.5 0.0102 1.6106 4631.5 0.0061

medium

1 1.9147 4177.1 0.0139 1.5122 6674.8 1.35× 10−9

2 1.9255 4043.9 0.0144 1.5694 6458.6 4.83× 10−9

3 1.9353 3973.19 0.0143 1.5826 6302.2 4.91× 10−10

4 1.9061 3683.6 0.0130 1.6342 6027.1 5.77× 10−10

5 1.9308 3730.3 0.0138 1.5920 5932.7 7.05× 10−9

6 1.9521 3709.0 0.0149 1.5421 5821.9 7.02× 10−10

7 1.9346 3644.2 0.0140 1.6711 5977.9 2.52× 10−9

8 1.9398 3589.2 0.0156 1.6162 5592.9 4.04× 10−9

9 1.9194 3450.6 0.0134 1.6726 5536.0 1.65× 10−9

10 1.9147 3400.2 0.0138 1.6612 5442.3 1.89× 10−9

11 1.8947 3289.2 0.0124 1.6824 5247.4 6.48× 10−10

12 1.8741 3235.7 0.0128 1.6787 5170.6 4.94× 10−9

13 1.9127 3273.5 0.0136 1.6922 5078.5 2.03× 10−9

avg. 1.7394 3395.3 0.0065 1.8162 6492.8 3.96× 10−9

low

1 1.8671 2776.2 0.0128 1.9440 4010.7 0.0133
2 1.8622 2747.8 0.0123 1.9511 3916.4 0.0143
3 1.8591 2687.6 0.0119 1.9518 3800.5 0.0142
4 1.8464 2634.8 0.0125 1.9443 3723.8 0.0140
5 1.8348 2589.7 0.0116 1.9654 3711.3 0.0143
6 1.8037 2506.4 0.0112 1.9438 3574.6 0.0142
7 1.8096 2483.2 0.0111 1.9327 3502.3 0.0134
8 1.8122 2476.8 0.0111 1.9440 3484.7 0.0138
9 1.8269 2560.7 0.0120 1.9279 3439.4 0.0137

10 1.8182 2517.6 0.0112 1.9385 3468.6 0.0137
11 1.8103 2487.7 0.0114 1.9409 3447.6 0.0141
12 1.8175 2489.8 0.0115 1.9239 3352.0 0.0130
13 1.8047 2456.5 0.0112 1.9238 3288.1 0.0131

avg. 1.7857 2506.4 0.0107 1.8332 3449.6 0.0100

As for the 2D experiments, the residual saturation is relatively small, Sr < 4%,
and mostly increases minimally with mineralization. For the fitted Brooks–Corey rela-
tions, values for λ decrease with mineralization for both the medium-mineralization
and high-mineralization columns, contrary to the behavior of the 2D samples and the
low-mineralization column, for which λ increases with mineralization. However, pe
shows similar behavior to the 2D samples and increases by up to 50%, more for the
medium-mineralization column and a bit less for the high-mineralization column. For
the Van Genuchten relations, the fitted parameter values behave as expected based on
the 2D samples, with the values for m increasing and the values for α and n decreasing
with mineralization.
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Table 6. Parameters of the Van Genuchten capillary pressure–saturation relation (Equation (5)) for
the initial and mineralized 3D experiments.

Initial Mineralized
Column Section α [1/Pa] m [-] n [-] Sr [-] α [1/Pa] m [-] n [-] Sr [-]

high

1 3.21× 10−4 0.2492 7.7823 0.0131 1.92× 10−4 0.3917 5.5995 0.0355
2 3.10× 10−4 0.2878 6.8494 0.0140 2.00× 10−4 0.3978 5.3525 0.0361
3 3.02× 10−4 0.2699 7.2993 0.0143 1.94× 10−4 0.3490 5.8283 0.0305
4 2.90× 10−4 0.2609 7.6448 0.0147 1.79× 10−4 0.4188 5.0003 0.0290
5 2.98× 10−4 0.2760 7.1750 0.0141 1.84× 10−4 0.4106 5.0920 0.0314
6 2.89× 10−4 0.2902 6.8597 0.0140 1.75× 10−4 0.2350 7.9835 0.0170
7 2.67× 10−4 0.2730 7.2652 0.0159 1.86× 10−4 0.2851 5.9652 0.0133
8 2.79× 10−4 0.2883 7.0018 0.0144 1.68× 10−4 0.4181 5.0448 0.0246
9 2.69× 10−4 0.2871 7.0772 0.0151 1.75× 10−4 0.3499 5.7250 0.0305

10 2.66× 10−4 0.2710 7.4726 0.0151 1.88× 10−4 0.3008 6.7191 0.0296
11 2.61× 10−4 0.3164 6.5108 0.0152 1.76× 10−4 0.3729 5.4156 0.0220
12 2.65× 10−4 0.2973 6.8378 0.0152 1.75× 10−4 0.3790 5.5501 0.0267
13 2.70× 10−4 0.3243 6.2505 0.0152 1.76× 10−4 0.4574 4.6769 0.0245

avg. 3.01× 10−4 0.2303 8.0613 0.0106 1.92× 10−4 0.2942 6.2804 0.0173

medium

1 2.20× 10−4 0.3571 5.8343 0.0175 1.30× 10−4 0.2619 6.6258 0.0065
2 2.31× 10−4 0.3324 6.1855 0.0170 1.24× 10−4 0.3978 5.2982 0.0288
3 2.36× 10−4 0.3178 6.4595 0.0165 1.29× 10−4 0.3812 5.4375 0.0259
4 2.59× 10−4 0.2979 6.6594 0.0144 1.34× 10−4 0.4446 4.8571 0.0242
5 2.55× 10−4 0.3298 6.1256 0.0153 1.30× 10−4 0.4877 4.6750 0.0340
6 2.57× 10−4 0.3232 6.2992 0.0163 1.42× 10−4 0.3767 5.2589 0.0250
7 2.63× 10−4 0.3067 6.5422 0.0152 1.30× 10−4 0.5525 4.1624 0.0250
8 2.68× 10−4 0.2990 6.7040 0.0167 1.45× 10−4 0.4906 4.2322 0.0201
9 2.82× 10−4 0.2678 7.3348 0.0141 1.55× 10−4 0.3954 5.0102 0.0124

10 2.86× 10−4 0.2595 7.5419 0.0145 1.48× 10−4 0.4415 5.0140 0.0244
11 2.98× 10−4 0.2498 7.7142 0.0129 1.53× 10−4 0.4774 4.6613 0.0219
12 3.03× 10−4 0.2535 7.5161 0.0133 1.58× 10−4 0.4521 4.7626 0.0195
13 3.00× 10−4 0.2333 8.3231 0.0140 1.67× 10−4 0.3849 5.3922 0.0157

avg. 2.88× 10−4 0.2175 8.1521 0.0073 1.28× 10−4 0.5193 4.0577 1.60×
10−13

low

1 3.59× 10−4 0.1885 9.9331 0.0128 2.32× 10−4 0.3540 5.8745 0.0158
2 3.62× 10−4 0.1739 10.745 0.0124 2.41× 10−4 0.3148 6.5318 0.0162
3 3.71× 10−4 0.1805 10.323 0.0119 2.49× 10−4 0.3391 6.0447 0.0158
4 3.78× 10−4 0.1925 9.6110 0.0125 2.55× 10−4 0.3357 6.0589 0.0155
5 3.85× 10−4 0.1690 10.868 0.0116 2.57× 10−4 0.3173 6.4465 0.0155
6 3.98× 10−4 0.1665 10.8496 0.0112 2.69× 10−4 0.3100 6.4836 0.0152
7 4.02× 10−4 0.1531 11.833 0.0111 2.76× 10−4 0.2988 6.6550 0.0143
8 4.03× 10−4 0.1801 10.072 0.0111 2.77× 10−4 0.3097 6.4609 0.0146
9 3.89× 10−4 0.1794 10.2049 0.0120 2.81× 10−4 0.3101 6.3960 0.0145

10 3.96× 10−4 0.1682 10.8315 0.0112 2.78× 10−4 0.3227 6.1956 0.0145
11 4.01× 10−4 0.1777 10.1999 0.0114 2.81× 10−4 0.2926 6.8033 0.0149
12 4.01× 10−4 0.1670 10.9039 0.0116 2.91× 10−4 0.2557 7.6698 0.0136
13 4.06× 10−4 0.1826 9.9037 0.0112 2.96× 10−4 0.2898 6.7747 0.0136

avg. 3.98× 10−4 0.1633 10.9521 0.0108 2.82× 10−4 0.2587 7.2504 0.0108

The parameter values for the Brooks–Corey and the Van Genuchten relations of the
sections vary from a few to 50% along the sections of the columns, not taking into account
the residual saturations, which are at times very small, and, thus, even small absolute value
changes result in a large relative variation. Mineralization increases the parameter-value
variation between sections, except for the high-mineralization Brooks–Corey parameter
pe, for which the variation between the parameter values of the sections decreases slightly.
For the Brooks–Corey relations, the column-average Sr and λ are each smaller than for the
individual sections, with the exception of the medium-mineralization column, which for
all sections as well as the average has Sr < 10−8, and λ is larger than each of the individual
sections. The pe of the column-average Brooks–Corey relations are in the range of the pe of
the individual sections, usually slightly higher than the lowest values. Again, the averaged
mineralized medium-mineralization column is the exception with pe = 6493 Pa, which
is close to the highest values of the sections (6675 Pa) of this column. What can also be
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seen in Table 5 is that the Leverett-scaling factors given in Table 4, calculated based on the
experimentally measured porosities and permeabilities, greatly overestimate the increase
in capillary pressure due to EICP. The mineralized entry pressures of the 3D samples are in
no case even close to being twice the value of the unmineralized entry pressure and, thus,
the capillary pressure, in general, for the mineralized samples is never as high as predicted
by the Leverett-scaling factors from 7.3 to 43.6.

For the Van Genuchten relations, the column-average parameter values are also rel-
atively often the minimal or maximal values when compared to the parameter values of
the individual sections of each column. The column-average Sr has the lowest values
for all samples except the mineralized high-mineralization column, where two individ-
ual sections have slightly lower residual saturations. The column-average α is mostly
bound by the α values of the different column sections, except for the mineralized medium-
mineralization column, for which the column-average α is slightly lower than the lowest
of the sections. The column-average m values are lower than those of the sections for the
initial high- and medium-mineralization samples and second-lowest for both the initial
and mineralized low-mineralization sample. For the mineralized high–mineralization
sample, the column-average m value is the third lowest of the samples’ m values, and,
for the mineralized medium-mineralization samples, the column-average m value is the
second highest. The column-average n values are higher than those of most of the sections,
respectively, of both the initial and mineralized samples, but only higher than any section
value for the initial high-mineralization sample. An exception is, again, the mineralized
medium-mineralization sample, where the n value is actually lower than any of the sections’
n values of the sample.

4. Discussion

Both the 2D and 3D experiments investigated showed a noticeable increase in capillary
pressure for a given saturation due to the precipitation of calcium carbonate during EICP.
Qualitatively, both the 2D and the 3D experiments show similar tendencies, but, for the
3D systems, the effects are more difficult to quantify and parameterize. We suspect that
this is mainly due to two reasons: the initial unmineralized 3D samples not being as
identical as the 2D samples and having only the initial and the final geometries without
further temporal resolution. However, the 2D samples are limited to a 2D geometry, which
results not only in high initial porosity, much higher than the porosities of most field-
relevant porous media but also in an artificially constricted 2D flow field in which even
a few pore throats reduced in diameter may already significantly reduce flow or increase
the sample’s capillary entry pressure. Thus, the relations fitted to the 2D samples are
likely not representative of realistic porous media; however, they provide insight into
development during mineralization over time, data that were not available for our more
realistic 3D samples.

The changes in capillary pressure–saturation relations due to EICP manifest in an
increase in the entry pressure pe of up to a factor of almost 2 for the 3D and 3.6 for the 2D
samples. For the 2D samples, the parameter λ increased with reducing porosity; for the 3D
samples, λ increased for two samples, while it decreased for the third sample. Similarly,
for a Van Genuchten-type parameterization, the parameter m is increased by EICP for the
2D samples by up to a factor of 10. The parameter α decreased by factors of up to 2.2 for
the 3D and 3.1 for the 2D samples, while n decreased by a factor of up to 2.0 for the 3D
and 5.8 for the 2D samples. For both parameterizations, the residual saturation Sr changes
only slightly. However, for all samples investigated, Sr is small even for highly mineralized
geometries. This could be an artifact of the relatively regular, homogeneous initial porous
media studied, with the 2D samples having a constant height and the 3D samples consisting
of sintered, monodisperse-sized glass beads. The low residual saturations obtained in this
study using PNM can be confirmed using direct numerical pore-scale modeling directly on
the segmented images to avoid potential artifacts due to the simplification in pore geometry
that PNM relies on. Especially for the initial unmineralized samples, the 13 sections seem to
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be sufficiently large to be considered an REV, as the parameters determined for the average
over the entire 3D sample are relatively similar compared to the parameters determined
for the individual sections. Even for mineralized samples, the amount of heterogeneity
is still relatively low, at least that which can be captured by the resolutions used. Further,
disconnected pore volumes cannot be accounted for in the pore-network model used
due to the numerical instabilities resulting from disconnected networks, due to which
any disconnected pores needed to be removed. Such disconnection of pores was not
observed for the 2D samples and only for a limited amount of pores for the 3D samples.
However, for the 3D samples, where some pores became disconnected, the Sr may likely be
underestimated, but, to complicate the issue further, disconnection in our study may also
be an artifact of the resolution in the case that the remaining pore throats were reduced
to diameters smaller than the resolutions of the µXRCT scans, which would result in an
assumption of disconnection in our analysis while remaining connected in reality. While
the changes in the parameter values of the Van Genuchten relation with reducing porosity
have identical trends with reducing porosity for both the 2D and 3D column samples,
the differences between, e.g., the high- and medium-mineralization 3D samples make
a description of this change based solely on the porosity change impossible. Including
the effect of ICP on pore-scale parameters, such as, e.g., pore-size distributions, would
likely help explain the effects of ICP on the capillary pressure–saturation curves observed.
However, pore-size distributions and other pore-scale parameters are not available on the
REV scale, at which real ICP applications will ultimately have to be modeled, adding not
only an additional layer of complexity but also the need to upscale the effects of ICP from
the pore scale to the REV scale. Including an increased number of REV-scale parameters,
such as, e.g., specific surface areas, may potentially improve the predictability of relations
for REV-scale capillary pressure–saturation relations of porous media being mineralized
using ICP. Then again, such parameters, or their change due to ICP, are themselves difficult
to define on the REV scale alone and must be upscaled themselves from the pore scale.
Surface areas can directly determine the specific surface areas or similar parameters based
on the segmented images.

With our current experimental data, we are reluctant to claim that we determined
the final parameterization of the effect of ICP on REV-scale capillary pressure–saturation
relations. However, what we can show is that Leverett scaling is not accurate in describing
the changes in the capillary pressure–saturation relations due to ICP, especially for the 2D
samples, for which ICP completely alters the capillary pressure–saturation relations (see
Tables 1 and 2). As seen in Equation (7), Leverett scaling results in a scaling of the capillary
pressure–saturation relation by a constant factor, which does not fit the experimental
observations of a changing Brooks–Corey parameter λ or Van Genuchten parameters
m and n (see Tables 5 and 6). To some extent, however, Leverett scaling may still be a
simple and good enough parameterization of the effect of ICP on the capillary pressure–
saturation relations. In the 3D samples, which provide a more realistic initial geometry,
the change in, e.g., the Brooks–Corey relation’s parameters λ is small, <10%, and, for
some samples, λ increased, while, for others, λ decreased with reducing porosity, creating
some uncertainty about how to reliably predict the effect of ICP on a porous medium’s
λ. Thus, only the parameter pe changed significantly, which can be represented using
Leverett scaling. However, the changes in capillary pressure and pe, in particular, are
much smaller than predicted by Leverett scaling based on experimentally determined
porosities and permeabilities. For the high-mineralization sample, Leverett scaling using
Equation (7) overestimates the increase in capillary pressure by more than one order of
magnitude. To some extent, relations similar to Leverett scaling might still be a simple and
good enough parameterization of the effect of ICP on the capillary pressure–saturation
relations, as pe seems to be the parameter most influenced by ICP. The changes in pe are,
however, variable and, for the 3D samples, cannot be described solely based on the porosity
reduction, which further complicates the description. Looking at the data of individual



Minerals 2022, 12, 1186 22 of 26

sections of the 3D samples, the variability increases, and the porosity reduction has even
less predictive potential.

5. Conclusions

Using our workflow, we show that the combination of mineralization experiments with
imaging and numerical analysis of the effect of the observed changes in geometry using
PNM is able to quantify the resulting changes in the capillary pressure–saturation curves
due to ICP. Brooks–Corey and Van Genuchten capillary pressure–saturation relations were
fitted to the obtained capillary pressure–saturation curves for both the 2D and 3D samples.
However, the change in the parameters of the capillary pressure–saturation relations due to
ICP can be parameterized depending on the porosity change only for the 2D samples, while
the relations obtained by mineralizing the 3D samples were too variable to be described
solely based on porosity change. With the current data, it is difficult to determine whether
this variability in the effect of ICP on the capillary pressure–saturations of the 3D samples
is a fundamental issue in bridging the scale between the resolved pore geometry and
the upscaled, averaged REV. Additional experimental investigations of setups similar to
the 3D columns used in this study, but with, e.g., a temporal resolution of the imaging
during mineralization and more homogeneous initial pore-space distribution are likely to
be beneficial.

Our samples are, by design and for the ease of observation, not representative of,
e.g., bulk cap-rock materials, which so far have much higher initial permeability and pore
sizes. Smaller pore sizes, however, quickly become challenging as they require an equally
reduced resolution for imaging the system to sufficiently resolve the smaller geometries
accurately. Investigating samples with properties closer to porous media with more real-
world relevance, or, in the next step, even directly using samples made of such porous media
will likely increase the real-world application relevance of the results of future studies.
However, real-world-relevant porous media, such as, e.g., sand, sand-, or limestone, are
less homogeneous in material and pore-structure composition and the resulting hydraulic
properties, likely increasing the difficulty in evaluating and parameterizing the effect of
ICP on the hydraulic properties compared to ICP in more uniform glass-bead columns or
microfluidic cells.
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ICP Induced Carbonate Precipitation
EICP Enzymatically Induced Carbonate Precipitation
PN Pore Network
PNM Pore-Network Modeling
REV Representative Elementary Volume
µXRCT Micro X-ray Computed Tomography
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