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Abstract

Liquid fuels are used extensively in industry and transportation, with spray combustion
being the predominant feature. At a short distance from the injection nozzle, the liquid
jet is atomized, and the fuel is present as a fine mist of dispersed droplets that evaporate
and burn. This regime can be well described by an Euler-Lagrange approach for two-
phase flows, where the carrier gas is solved in an Eulerian framework while the liquid
droplets are treated as point particles and traced in a Lagrangian manner. However,
since evaporation and combustion take place at the smallest scales, these effects as well as
their interactions with turbulence cannot be fully resolved in practical simulations, and
additional modeling is required. Within the present work, the sparse-Lagrangian multiple
mapping conditioning (MMC) model is used to model the interactions between chemistry,
droplet evaporation and turbulence, in combination with a large eddy simulation (LES)
of the turbulent flow field. The stochastic variant of MMC is used, which employs a
Monte Carlo solution of the reactive scalars by means of stochastic particles that represent
instantaneous and local realizations of the composition field. The major advantage of this
approach is that the chemical source term appears in closed form, while the interactions
between the stochastic particles need to be represented by a mixing model. The MMC
model utilizes the concept of localness of the mixing operator by conditioning the particle
selection on a reference space, where in non-premixed flames mixture fraction is used.
This allows MMC to be implemented with significantly fewer particles, which is referred
to as a sparse particle method. The main challenge lies in modeling the heat and mass
transfer between the two phases by coupling the fuel droplets with the gas phase. Since the
gas phase is represented by a sparse set of particles, the conventional techniques cannot
be readily applied. In the present work, a one-to-one coupling strategy with particle
selection conditional on a set of reference variables is introduced to ensure localness of the
two-phase coupling in composition space. The objective of the present work is to provide
an in-depth analysis and validation of the two-phase coupling in the context of the sparse-
Lagrangian MMC-LES modeling framework. To this end, the MMC-LES model is coupled
with a carrier-phase direct numerical simulation (CP-DNS), where LES-like input data
are obtained by post-filtering the DNS fields.

For the CP-DNS to provide an accurate reference solution, it is necessary to know
the error that is introduced by the two-way coupling between the droplets and the gas
phase based on the particle-source-in cell (PSI-cell) model in conventional Euler-Lagrange
simulations. Therefore, an in-depth analysis of the cell-size dependence of the PSI-cell
model is performed. In a first step, closed-form expressions are derived to describe the
error of the evaporation rate and time of an isolated droplet. It is found that the error
depends mainly on three parameters: the ratio of cell size to droplet diameter, a modified
liquid-to-gas mass ratio, and the cell Péclet number, which includes the effect of relative
droplet motion. Furthermore, it is shown that in practical cases the relation for the
error of the evaporation time often reduces to the simple relation ϵτ = (∆x/d0)−1, the
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universal validity of which is further confirmed by CFD simulations involving the effects
of turbulence and multiple droplets. The second part of the analysis examines the effect
of the cell size on the resolved mixture fraction variance. It turns out that the variance is
accurately reproduced regardless of the computational cell size, provided that the inter-
droplet space is resolved by the numerical grid. The findings of the analysis eventually lead
to the formulation of criteria for performing grid-independent Euler-Lagrange simulations.

The second part of the thesis presents a systematic analysis of various two-phase
coupling models in the context of intensive and sparse particle distributions of the gas
phase using statistically homogeneous turbulence with different droplet loadings. Good
agreement of unconditional mean and rms of the reactive scalars is found for both, sparse
particle methods utilizing the MMC mixing model and a one-to-one coupling technique
between the droplets and the stochastic particles, and conventional intensive particle meth-
ods, where the droplet mass is distributed equally to all particles within the computational
cell. While the conditional fluctuations are underestimated in both models, the preferen-
tial distribution of the evaporated mass to particles closest to saturation conditions leads
to improved predictions of the conditional mean temperature and its conditional variance,
but significantly overpredicts the unconditional variance. Attempts are presented to incor-
porate the latter approach into the sparse-Lagrangian one-to-one coupling strategy, which
allow for some control of gas-phase variance generation due to droplet evaporation. Fur-
thermore, a time delay model is proposed, in which the source terms are partially rather
than entirely transferred to the gas-phase particles in order to overcome the artificial mix-
ing induced by the large particle volume in a sparse method. However, improvements are
obtained only for short periods but not for the entire duration of the spray combustion
process, which raises the need for further research.

In the third part of the thesis, the sparse-Lagrangian two-phase MMC-LES model
is validated by means of a priori and a posteriori analyses using a temporally evolving
droplet-laden double shear layer. The simulations show that the unconditional mean and
rms of mixture fraction are accurately reproduced and are largely independent of the
specific form of two-phase coupling. In contrast, the conditionally and unconditionally
averaged temperatures show strong sensitivity and are significantly underestimated if the
reference mixture fraction is used for particle selection. This is due to a lack of correlation
between temperature and mixture fraction caused by local flame extinction. The intro-
duction of temperature as an additional conditioning variable for two-phase coupling leads
to improved predictions of evaporation rates and droplet size distributions with partial
improvements also for the gas phase temperature, but overall the temperatures remain
too low. The remaining discrepancies are attributed to modeling errors associated with
the application of the MMC mixing model to spray flames. Further, it is shown that
the anisotropic mixing time model recently proposed for gaseous flames also provides a
reasonable mixing time for spray flames, but may require an adjustment of the model
constant.
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Kurzfassung

Flüssige Kraftstoffe werden in der Industrie und im Verkehrswesen in großem Umfang
verwendet, wobei die Sprayverbrennung das vorherrschende Merkmal ist. In geringer Ent-
fernung von der Einspritzdüse ist der Flüssigkeitsstrahl zerstäubt und der Kraftstoff liegt
als feiner Nebel aus kleinen Tröpfchen vor, die verdampfen und verbrennen. Dieser Be-
reich kann gut durch einen Euler-Lagrange-Ansatz für Zweiphasenströmungen beschrie-
ben werden, bei dem das Trägergas mit einem Eulerschen Ansatz gelöst wird, während die
Flüssigkeitströpfchen als Punktteilchen behandelt und in einer Lagrangeschen Darstellung
beschrieben werden. Da Verdampfung und Verbrennung jedoch auf den kleinsten Skalen
stattfinden, können diese Effekte und ihre Wechselwirkungen mit der Turbulenz in prak-
tischen Simulationen nicht vollständig aufgelöst werden, sodass eine zusätzliche Modellie-
rung erforderlich ist. In der vorliegenden Arbeit wird das Multiple Mapping Conditioning
(MMC) Modell verwendet, um die Wechselwirkungen zwischen Chemie, Tropfenverdamp-
fung und Turbulenz zu modellieren, in Kombination mit einer Large Eddy Simulation
(LES) des turbulenten Strömungsfeldes. Es wird die stochastische Variante des MMC-
Modells verwendet, bei welchem eine Monte-Carlo-Lösung für die reaktiven Skalare mit-
tels stochastischer Partikel angewendet wird, die momentane und lokale Realisierungen der
Stoffzusammensetzung darstellen. Der große Vorteil dieses Ansatzes besteht darin, dass der
chemische Quellterm in geschlossener Form vorliegt, während die Wechselwirkungen zwi-
schen den stochastischen Teilchen durch ein Mischungsmodell abgebildet werden müssen.
Das MMC-Modell nutzt das Konzept der Lokalisierung des Mischungsoperators, indem es
die Partikelauswahl auf einen Referenzraum konditioniert, wobei in nicht-vorgemischten
Flammen der Mischungsbruch verwendet wird. Dadurch kann das MMC-Modell mit deut-
lich weniger Partikeln implementiert werden, was als dünnbesetzte Partikelmethode be-
zeichnet wird. Die größte Herausforderung liegt in der Modellierung des Wärme- und Stof-
fübergangs zwischen den beiden Phasen durch Kopplung der Brennstofftröpfchen mit der
Gasphase. Da die Gasphase durch eine geringe Anzahl von Partikeln repräsentiert wird,
können die herkömmlichen Techniken nicht ohne weiteres angewandt werden. In der vor-
liegenden Arbeit wird hierzu eine Eins-zu-Eins-Kopplungsstrategie eingeführt, bei der die
Partikel durch Minimierung des Abstandes in einem Referenzraum ausgewählt werden,
um die Lokalität der Zweiphasenkopplung im Stoffzusammensetzungsraum zu gewähr-
leisten. Ziel der vorliegenden Arbeit ist es, eine umfassende Analyse und Validierung der
Zweiphasenkopplung im Rahmen von dünnbesetzten Partikelmethoden unter Verwendung
des MMC-LES Modells durchzuführen. Zu diesem Zweck wird das MMC-LES-Modell mit
einer direkten numerischen Simulation der Trägerphase (carrier-phase direct numerical si-
mulation, CP-DNS) gekoppelt, bei der LES-ähnliche Eingangsgrößen durch Filterung der
DNS-Felder gewonnen werden.

Damit die CP-DNS eine genaue Referenzlösung liefern kann, muss der Fehler bekannt
sein, der durch die wechselseitige Kopplung zwischen den Tröpfchen und der Gasphase
auf der Grundlage des PSI-cell-Models in konventionellen Euler-Lagrange-Simulationen
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entsteht. Aus diesem Grund wird eine detaillierte Analyse der Abhängigkeit des PSI-cell-
Models von der Zellgröße durchgeführt. In einem ersten Schritt werden geschlossene Aus-
drücke hergeleitet, um den Fehler der Verdampfungsrate und -zeit eines isolierten Tropfens
zu beschreiben. Der Fehler hängt hauptsächlich von drei Parametern ab: dem Verhältnis
zwischen Zellgröße und Tropfendurchmesser, einem modifizierten Massenverhältnis, und
der Péclet-Zahl, gebildet mit der Zellgröße, die den Effekt der relativen Tropfenbewegung
berücksichtigt. Darüber hinaus wird gezeigt, dass sich die Beziehung für den Fehler der
Verdunstungszeit in praktischen Fällen oft auf die einfache Beziehung ϵτ = (∆x/d0)−1

reduziert, deren universelle Gültigkeit durch CFD-Simulationen unter Einbeziehung der
Effekte von Turbulenz und mehreren Tropfen bestätigt wird. Im zweiten Teil der Analyse
wird die Auswirkung der Zellgröße auf die aufgelöste Varianz des Mischungsbruches unter-
sucht. Es stellt sich heraus, dass die Varianz unabhängig von der Größe der Berechnungs-
zelle genau wiedergegeben wird, sofern der Raum zwischen den Tropfen durch das numeri-
sche Gitter aufgelöst wird. Die Ergebnisse der Analyse führen schließlich zur Formulierung
von Kriterien für die Durchführung gitterunabhängiger Euler-Lagrange-Simulationen.

Im zweiten Teil der Arbeit wird eine systematische Analyse verschiedener Zweiphasen-
Kopplungsmodelle im Kontext von dichten und dünnbesetzten Partikelverteilungen der
Gasphase anhand von statistisch homogener Turbulenz mit unterschiedlichen Tröpfchen-
beladungen vorgestellt. Eine gute Übereinstimmung des unbedingten Mittelwerts und des
quadratischen Mittels der reaktiven Skalare wird sowohl für dünnbesetzter Partikelmetho-
den gefunden, die das MMC-Mischungsmodell und eine Eins-zu-Eins-Kopplung zwischen
den Tropfen und den stochastischen Partikeln verwenden, als auch für konventionelle dich-
te Partikelmethoden, bei denen die Tropfenmasse gleichmäßig auf alle Partikel innerhalb
der Berechnungszelle verteilt wird. Während die bedingten Fluktuationen in beiden Mo-
dellen unterschätzt werden, führt die bevorzugte Verteilung der verdampften Masse auf
Partikel, die den Sättigungsbedingungen am nächsten sind, zu einer verbesserten Vorher-
sage der bedingten mittleren Temperatur und ihrer bedingten Varianz, überschätzt aber
die unbedingte Varianz erheblich. Daraufhin werden Ansätze vorgestellt, welche die Ver-
teilung auf Partikel nahe Sättigungsbedingungen in die Eins-zu-Eins-Kopplungsstrategie
einbeziehen, was eine gewisse Kontrolle der durch die Tröpfchenverdampfung verursach-
te Varianz in der Gasphase ermöglicht. Darüber hinaus wird ein Zeitverzögerungsmodell
vorgeschlagen, bei dem die Quellterme nicht vollständig, sondern nur teilweise auf die
Gasphasenpartikel übertragen werden, um die künstliche Vermischung zu überwinden,
die durch das große Partikelvolumen in einer dünnbesetzten Partikelmethode verursacht
wird. Allerdings werden Verbesserungen nur für kurze Phasen erzielt, nicht aber für die
gesamte Dauer des Sprayverbrennungsprozesses, was weiteren Forschungsbedarf aufwirft.

Im dritten Teil der Arbeit wird die dünnbesetzte Zweiphasen-MMC-LES-Methode
mittels a priori- und a posteriori-Analysen unter Verwendung einer sich zeitlich ent-
wickelnden, tropfenbeladenen Doppelscherschicht validiert. Die Simulationen zeigen, dass
der unbedingte Mittelwert und das quadratische Mittel des Mischungsbruchs genau wie-
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dergegeben werden und weitgehend unabhängig von der spezifischen Form der Zweipha-
senkopplung sind. Im Gegensatz dazu zeigen die unbedingt und bedingt gemittelten Tem-
peraturen eine starke Empfindlichkeit und werden deutlich unterschätzt, wenn der Refe-
renzmischungsbruch für die Partikelauswahl verwendet wird. Dies ist auf eine mangelnde
Korrelation zwischen Temperatur und Mischungsbruch zurückzuführen, die durch lokale
Flammenlöschung verursacht wird. Die Einführung der Temperatur als zusätzliche Kon-
ditionierungsvariable für die Zweiphasenkopplung führt zu verbesserten Vorhersagen von
Verdampfungsraten und Tröpfchenengrößenverteilungen, mit teilweisen Verbesserungen
auch für die Gasphasentemperatur, aber insgesamt bleiben die Temperaturen zu niedrig.
Die verbleibenden Diskrepanzen sind auf Modellierungsfehler im Zusammenhang mit der
Anwendung des MMC-Mischungsmodells auf Sprühflammen zurückzuführen. Des Weite-
ren wird gezeigt, dass das kürzlich für gasförmige Flammen vorgeschlagene anisotrope
Mischungszeitmodell auch für Sprühflammen eine angemessene Mischungszeit liefert, aber
gegebenenfalls eine Anpassung der Modellkonstante erfordert.
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Chapter 1

Introduction

1.1 Motivation

Liquid fuels have been the largest source of energy for decades, as illustrated in
Fig. 1.1, and still account for about 30 % of the world’s primary energy consump-
tion nowadays [175]. Compared to other fuels, liquid fuels offer a number of deci-
sive advantages, such as their high calorific value, their good transportability and
storability without energy losses, and their high combustion efficiency without the
formation of residues such as ash. These features make them particularly attractive
for the transportation sector, where liquid fuels account for more than 90 % of the
energy consumption in 2021 [91]. Typical applications of liquid-fueled combustion
devices are internal combustion engines in passenger cars, trucks and ships, gas-
turbine engines used in aviation and marine applications, liquid-rocket engines and
oil-fired furnaces.

The vast majority of liquid fuels, including gasoline, diesel and kerosene, are
derived from fossil fuels by refining naturally occurring crude oil. The burning of
fossil fuels releases large amounts of carbon dioxide (CO2) as well as other pollu-
tants such as NOx into the air, making them largely responsible for air pollution
and global warming, with petroleum accounting for about 32 % of the global CO2

emissions [174]. The negative consequences on humanity and the environment are
becoming increasingly clear, so that a rethinking of the energy market is currently
taking place with the aim of replacing fossil fuels by alternative energy sources with
low-carbon fuels.

The International Energy Agency (IEA) has developed projections for future
energy markets based on three scenarios, which are shown in Fig. 1.2 for the trans-
portation sector, which has traditionally been the core of oil consumption. In the
stated policies scenario (Fig. 1.2(a)), which reflects current policy settings, liquid
fuels remain the predominant energy source for the next decades. However, the sce-
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Figure 1.1: World primary energy consumption by source. Traditional biomass (including mainly
wood fuels) is not shown. The data is provided by Ritchie et al. [175] and based on [153, 191].

nario would lead to an increase in global average temperatures of about 2.5 ◦C by
2100, posing a serious threat to the well-being of humans and global ecosystems. In
the announced pledges scenario (Fig. 1.2(b)), which assumes that all climate com-
mitments announced by governments around the world are met in full and on time,
conventional petroleum-based fuels are increasingly displaced by alternative forms
of energy such as electricity and liquid biofuels, but still remain the largest source
of energy in the transportation sector through 2050. The third scenario shows a
pathway to achieve net zero CO2 emissions by 2050 and limit global warming to
1.5 ◦C while ensuring universal access to modern energy by 2030 (Fig. 1.2(c)). Here,
global oil consumption in the transportation sector will drop drastically by 2050,
as passenger cars will increasingly be replaced by electric vehicles, but also liquid
biofuels and hydrogen-based fuels will gain in importance, especially in road freight,
aviation and shipping. Regardless of which scenario will come to pass, the transi-
tion to clean energy alternatives will take several more decades, leaving conventional
petroleum-based fuels as the dominant energy source in the transportation sector
until at least 2040. Furthermore, liquid-fueled combustion systems will continue
to play an important role in the future through renewable low-carbon fuels. It
is therefore more important than ever to develop modern and more efficient com-
bustion systems that make optimal use of fossil and alternative fuels in order to
significantly reduce pollutant emissions.

In most liquid-fueled combustion devices, including diesel engines and gas-
turbine engines, turbulent spray combustion is the predominant feature, where the
liquid fuel jet is injected into the combustion chamber and atomizes into a dispersed
spray of small droplets that undergo evaporation and subsequent combustion. Tur-
bulent spray combustion is a typical multiscale problem due to the presence of a
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Figure 1.2: World energy consumption in the transportation sector for years 2000 to 2050 assum-
ing different scenarios developed by the IEA [91]. The stated policies scenario shows the evolution
resulting from today’s policy settings. The announced pledges scenario assumes that all climate
commitments announced by governments around the world are met in full and on time. The net
zero emissions scenario shows a way to achieve net zero CO2 emissions by 2050 and to limit global
warming to 1.5 ◦C while ensuring universal access to modern energy by 2030.

wide range of length and time scales, and the complex interactions between the tur-
bulent flow field, the combustion processes and the evaporating droplets are still not
fully explored. With the increasing availability of computational resources in the
last decades, computational fluid dynamics (CFD) has become a valuable tool for
gaining insight into the complex spray phenomena as well as for the design and op-
timization of modern combustion systems. An efficient simulation tool, as required
by the industry, cannot resolve all the details of spray combustion phenomena, since
the resolution down to the smallest scales would drastically increase the computa-
tional costs. Accordingly, sophisticated models are required to describe the strongly
nonlinear interactions between turbulence, chemistry, and droplet evaporation at
the subgrid level, where higher efficiency is usually accompanied by sacrifices in
accuracy. The present work aims to develop and validate a modeling framework
for the simulation of turbulent spray combustion that achieves both an accurate
representation of the underlying physics and a relatively low computational cost.

1.2 State of the Art

Large eddy simulation (LES) holds the greatest potential for predicting the turbulent
flow field, as it computes the large energy-containing turbulent motions directly and
only models the small scales that behave more universally. Combustion, however, is
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a molecular process that occurs almost exclusively at the smallest scales that are not
resolved by the computational grid in LES, and thus requires a model for the corre-
lations between combustion and turbulence at subgrid level. Since chemical kinetics
are highly nonlinear and depend on a large number of reacting species, modeling of
the turbulence-chemistry interactions is a challenging task and cannot be achieved
solely based on information from the resolved fields. A promising approach is given
by the transported probability density function (PDF) method [45, 79, 145, 158],
which employs a probabilistic description of the reactive scalars (i.e., species mass
fractions and enthalpy) by means of their joint scalar PDF, whose evolution is usu-
ally determined by a Monte Carlo particle method [156, 161]. The major advantage
of the transported PDF method is that the highly nonlinear chemical source terms
appear in closed form. Furthermore, the method is not confined to a specific combus-
tion regime and thus has the ability to successfully predict complex phenomena such
as extinction and re-ignition [134, 218, 230]. While the turbulence-chemistry interac-
tions are accurately captured by the transported PDF method, modeling is required
for the effect of molecular diffusion, which is represented by a particle interaction
model that emulates mixing. Conventional mixing models [38, 44, 46, 94, 203, 216]
require a relatively high number of stochastic particles in each computational cell
and thus increasing the computational cost, while often failing to satisfy important
properties of the mixing operator such as localness in composition space, which is
crucial for combustion to prevent unphysical mixing [56, 163, 203]. The sparse-
Lagrangian multiple mapping conditioning (MMC) model [28, 30, 31, 108] has been
proposed as a highly efficient alternative to the classical mixing models, which sat-
isfies all of the desired properties of a good mixing model. In particular it enforces
localness in composition space by conditioning the selection of mixing partners on
an independent reference space. This allows the model to be implemented with a
significantly lower number of particles, typically less than the number of LES cells,
which reduces the computational cost and thus enables the use of detailed finite-rate
chemical kinetics. The MMC-LES model has been successfully applied to a num-
ber of non-premixed [69, 89, 142, 177, 205, 218], partially premixed [60, 70, 186]
and premixed [90, 200, 201] flames, demonstrating its superior performance over
the classical combustion models. Recently, the MMC-LES model was extended to
turbulent spray flames by Khan et al. [101, 102] and to solid fuel combustion by
Zhao et al. [240].

The extension of transported PDF methods to spray flames requires additional
modeling for the coupling of mass and energy between the gas phase, whose compo-
sition is represented by stochastic particles, and the liquid phase, which is modeled
as spherical droplets following a Lagrangian formulation [54, 96]. The two-phase
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coupling requires the distribution of the evaporated mass and associated energy (in
general the evaporation source terms) to the gas phase. Several models are available
for the conventional particle methods utilizing a large number of stochastic parti-
cles per cell, including an even distribution of the source terms among the particles
within each cell [66, 67], preferential distribution to individual particles [83, 140],
as well as the generation of new gas-phase particles [47, 93, 113]. An evaluation
of various two-phase coupling models is presented in Tang et al. [208], revealing
qualitative differences between the models in particular for conditionally averaged
quantities. If a sparse particle distribution is used, as is the case with the MMC-
LES mixing model, the coupling between the gas phase and the dispersed droplets
is more challenging, as there is not always a stochastic particle close to each droplet.
Therefore, more sophisticated models are required, which may use concepts from
the MMC mixing pair selection by conditioning the two-phase coupling on a set of
reference variables [102, 197]. Although there are already several applications of the
two-phase MMC-LES model to spray flames [102, 103, 184, 185], little research has
been done on the sparse-Lagrangian two-phase coupling so far. For this reason, the
scope of the present work is to provide a detailed systematic analysis and validation
of the two-phase MMC-LES model in the context of dilute spray flames.

1.3 Objectives

The primary objective of the present work is to provide an in-depth analysis and
validation of the two-phase MMC-LES model by means of a carrier-phase direct
numerical solution (CP-DNS), which fully resolves the turbulent reacting gas phase
while treating droplets as point particles. In contrast to experiments, the CP-DNS
provides high-quality time- and space-resolved data, and allows for an unbiased
comparison of the results, since finite rate chemistry, droplet evaporation modeling
and thermophysical properties are exactly known and identical in the CP-DNS and
the MMC-LES. The model validation can be done using a priori and a posteriori
analyses [210]. In an a priori analysis, the MMC-LES model is coupled with the
CP-DNS (so no actual LES is performed), making use of explicitly filtered quantities
from the CP-DNS. This eliminates uncertainties from LES subgrid modeling and
allows errors to be directly associated with the MMC model. In an a posteriori anal-
ysis, a real, independent MMC-LES is performed, and the results are subsequently
compared with the (filtered) CP-DNS data. This provides a more realistic approach
to testing the two-phase MMC-LES model but does not allow separation between
individual modeling errors. Therefore, an in-depth validation usually requires both,
a priori and a posteriori analyses.
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The main building blocks of the present analysis along with the specific key
questions are as follows:

(1) Quantification of the cell-size dependence of the particle-source-in-cell (PSI-
cell) model in the context of Euler-Lagrange simulations of dilute sprays.
For the CP-DNS to provide an accurate reference solution, it is necessary to
have knowledge of the error introduced by the PSI-cell model, which is used to
couple the droplets with the gas phase. This requires answering the following
questions:

How can the error of the evaporation rate and time be estimated prior to
the simulation?
How does a lack of resolution of the near-droplet fields affect the mixture
fraction variance?

(2) Evaluation of various two-phase coupling models by means of CP-DNS.
Based on a simplified configuration assuming homogeneous isotropic turbu-
lence, several two-phase coupling models are to be evaluated in the context of
intensive and sparse particle methods, where all input data for the stochastic
particle methods are extracted from the CP-DNS. The following questions are
to be addressed:

What is a suitable mixing time scale for dilute spray flames?
How can the evaporated mass be distributed among stochastic particles in
order to mimic real evaporation?
How does the relative performance of the sparse-Lagrangian MMC-LES
model compare to conventional intensive particle methods?

(3) Performing an in-depth analysis and validation of the sparse-Lagrangian two-
phase MMC-LES model.
The MMC-LES model is applied to a temporally evolving droplet-laden double
shear layer and tested using a priori and a posteriori analyses. The following
questions are in the focus:

How can the evaporation rate be determined if the gas phase is represented
by a sparse distribution of stochastic particles?
How robust is the two-phase MMC-LES model with respect to the modeling
parameters?
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1.4 Thesis Outline

Chapter 2 covers the fundamental aspects of modeling turbulent spray combustion,
allowing a better classification of the methods and models used in the present work.
The mathematical description of dilute spray flames is given in Ch. 3, and involves
the specification of the instantaneous balance equations for the gas phase as well
as a detailed derivation of the Lagrangian equations governing the fuel droplets.
Chapter 4 presents the two-phase MMC-LES model for dilute spray combustion
along with details on the numerical implementation. Special emphasis is given to
the presentation of models for two-phase coupling, including a discussion of their ba-
sic properties. An in-depth analysis of the grid dependence of the PSI-cell model is
provided in Ch. 5, where closed-form expressions describing the cell-size dependence
of the evaporation rate and time are derived. Further, the effect of the cell size on
the mixture fraction variance is discussed. Chapter 6 provides a systematic analysis
of various two-phase coupling models in the context of both dense and sparse parti-
cle distributions based on homogeneous isotropic turbulence, and outlines possible
options to improve the model predictions. This is followed by a detailed analysis
and validation of the sparse-Lagrangian two-phase MMC-LES model using a priori
(Ch. 7) and a posteriori (Ch. 8) analyses based on a temporally evolving double
shear layer. In addition to discussing the need for conditioning of the two-phase
coupling, the influence of the MMC modeling parameters is examined. Finally,
Ch. 9 summarizes the work and the main findings and provides suggestions for fu-
ture work. The extensive appendix contains additional derivations and analyses
accompanying the main text.





Chapter 2

Fundamentals of Turbulent Spray
Combustion

This chapter provides fundamental knowledge of turbulent spray combustion and its
modeling as required for the subsequent chapters. The chapter is divided into the
topics of turbulent flows, turbulent combustion and spray characteristics, where for
each topic the basic theory is summarized and the numerical modeling is addressed.

2.1 Turbulent Flows

Flows are classified to be either laminar or turbulent. Laminar flows are character-
ized by a well-ordered motion, with layers “sliding” past one another at different
velocities without fluid elements being exchanged perpendicular to the flow direc-
tion. In contrast, turbulent flows are inherently three-dimensional and unsteady,
and exhibit a chaotic and seemingly random behavior, resulting in strongly in-
creased mixing among the fluid elements. Turbulent flows are frequently observed
in everyday phenomena (e.g., smoke from a chimney, atmospheric streams, water in
a waterfall) and play an important role in most industrial applications. A character-
istic feature of turbulent flows is the occurrence of eddies in a wide range of length
scales. The largest eddies, whose size is comparable to the dimensions of the flow,
extract kinetic energy from the mean flow. These energy-containing eddies, which
are highly inertial and anisotropic, tend to be unstable and break up, transferring
kinetic energy to smaller eddies. The smallest eddies, whose size is described by
the Kolmogorov length scale η, have a universal character independent of the flow
geometry and conditions, and dissipate their energy into heat through the molecular
viscosity of the fluid. This process is known as the energy cascade, as depicted in
Fig. 2.1.

Whether a fluid flow is laminar, transitional or turbulent is characterized by
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Figure 2.1: Schematic sketch of the turbulent kinetic energy spectrum Ek(κ) as a function of the
wavenumber κ. The characteristic length scales are the integral length scale lint, the Taylor length
scale λ, and the Kolmogorov length scale η.

the Reynolds number, which relates inertial forces (i.e., forces that resist a change
in the velocity) to viscous forces (i.e., forces due to friction between the fluid layers).
It is defined as

Re = UL

ν
, (2.1)

where U and L are the characteristic velocity and length scale, respectively, and ν

is the kinematic viscosity of the fluid. For Re ≪ 1, viscous forces dominate and the
flow is laminar and steady, which is referred to as Stokes flow or creeping flow. As
the Reynolds number increases, transient effects and separation of boundary layers
may occur, while the flow still remains laminar. The transition to turbulence occurs
when the Reynolds number exceeds a certain threshold called the critical Reynolds
number, whose value depends on the particular problem. For Reynolds numbers
above the critical value, any disturbance leads to the development of a turbulent
flow with the aforementioned characteristics.

The dynamics of a fluid flow are described mathematically by the Navier-Stokes
equations, which are generally valid for both laminar and turbulent flows. A direct
solution, which is referred to as direct numerical simulation (DNS), requires the reso-
lution of all length and time scales occurring in the flow up to the Kolmogorov length
scale. Assuming homogeneous isotropic turbulence, it can be shown that the total
number of grid cells in a three-dimensional simulation scales with Ntotal ∼ Re9/4,
where Re is the turbulent Reynolds number based on the root-mean-square velocity
and the integral length scale [55, 163]. The computational cost is proportional to
the number of grid cells and the number of time steps, and thus grows with Re3.
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These high requirements on computational resources limit the application of DNS
to simple configurations for fundamental research, and make it virtually impossible
to be used as a tool for industrial applications with high Reynolds numbers.

The computational complexity can be significantly reduced if the Reynolds-
averaged Navier-Stokes (RANS) equations are solved. This involves a decomposition
of the instantaneous flow quantities into their time-averaged and fluctuating compo-
nents, which is referred to as Reynolds decomposition. The time-averaged quantities
are solved directly, while the effects of the fluctuations, which are represented by
the nonlinear Reynolds stress term, must be modeled. Many different turbulence
models are available, which can be classified into the two groups of eddy viscosity
models and Reynolds stress models. In eddy viscosity models, the Reynolds stress
term is linked to the mean rate-of-strain tensor via the turbulent eddy viscosity,
which is obtained either from an algebraic model (mixing length models) or from
the solution of additional transport equations (Spalart-Allmaras model, k-ε model,
k-ω model). A more complete modeling approach is given by the Reynolds stress
model, where additional transport equations are solved for the individual compo-
nents of the Reynolds stress tensor. While this approach allows to solve the mean
flow equations directly (i.e., without a model), the transport equations for the com-
ponents of the Reynolds stress tensor introduce new unknown correlations that must
be modeled (second-order closures). All turbulence models in the RANS context
have in common that all turbulent fluctuations and thus the entire kinetic energy
spectrum is modeled, as shown in Fig. 2.1. For this reason, RANS is preferred for
large-scale industrial devices with focus on average or integral quantities such as
body forces or mass flow rates, where the high degree of modeling leads to a quick
availability of results.

Large eddy simulation (LES) is motivated by the limitations of RANS and
DNS, and represents a compromise between accuracy and efficiency. In LES, the
large-scale anisotropic and three-dimensional unsteady turbulent motions are di-
rectly represented, whereas the effects of the small-scale dissipative motions are
modeled due to their universal character (cf. Fig. 2.1). The scale separation is
achieved by applying a spatial filter operator to the Navier-Stokes equations, de-
composing the flow quantities into a filtered (or resolved) component and a residual
(or subgrid) component. The filtered equations contain an additional subgrid-scale
stress tensor representing the effects of the unresolved scales, which is usually mod-
eled using an eddy viscosity model similar to RANS. Several models are available
for the turbulent viscosity, most of which are simple algebraic models, such as the
Smagorinsky model [190], the Vreman model [221], or the σ-model [143]. Compared
to RANS, LES provides a more accurate and reliable representation of the turbu-
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lent flow field, and has now become a popular tool for the simulation of practical
engineering systems with complex geometry or flow configurations in a variety of ap-
plications, including combustion, multiphase flows, aeroacoustics, and atmospheric
and oceanic flows [242].

2.2 Turbulent Combustion

The main challenge in modeling turbulent reacting flows arises from the closure of
the chemical reaction rates, which account for the chemical conversion of the react-
ing species. Since combustion is a process that is mainly determined by molecular
mixing on the smallest turbulent scales, and since the reaction rate is a highly non-
linear function of the species mass fractions and temperature, a first-order closure
that evaluates the filtered (or averaged) reaction rate with filtered (or averaged)
quantities is generally not valid and leads to poor results,

ω̇k(Y, T ) ̸= ω̇k(Y, T ). (2.2)

Therefore, more sophisticated combustion models have been developed in the last
decades, which are summarized in a number of review articles [11, 152, 159, 165, 215]
and text books [48, 56, 72, 150, 154]. These models generally take similar forms in
the LES and RANS modeling context, but LES offers significant advantages over
RANS in that it predicts scalar mixing processes, which are of crucial importance
in turbulent combustion, with considerably improved accuracy [152]. Turbulent
combustion models are often based on a conserved scalar that is independent of the
chemistry, where a distinction is made between premixed and nonpremixed combus-
tion. For premixed flames, the combustion process is characterized by the reaction
progress variable, while for nonpremixed flames the rate of mixing of fuel and oxi-
dizer is described by the mixture fraction. These quantities then form the basis for
most of the turbulent combustion models. In the following, the essential combustion
models are briefly presented. Since spray combustion is predominantly nonpremixed,
the focus here is on the modeling of nonpremixed turbulent combustion.

One of the first models for closure of the chemical source term are the eddy
breakup (EBU) model [199], which was derived for premixed combustion, and the
eddy dissipation model (EDM) [124], which can be applied to both premixed and
nonpremixed flames. The models are based on the assumption that the chemistry is
infinitely fast and therefore the reaction rates are determined by the characteristic
turbulent mixing time provided by the turbulence model. The resulting models are
simple and robust, but they rely on the use of single-step chemistry and do not ac-
count for finite-rate chemistry and non-equilibrium effects (such as local extinction).
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An extension of the EBU model that incorporates detailed and finite-rate chemistry
effects is the eddy dissipation concept (EDC) [52, 123], which assumes that the
chemical reactions take place in small turbulent eddies (so-called fine structures)
that occupy a small fraction of the actual gas volume and are treated as well-stirred
reactors.

An alternative approach for modeling turbulent nonpremixed flames is the lam-
inar flamelet model [149, 150], which is based on the assumption that the chemical
time scales are much shorter than the turbulence time scales (high Damköhler num-
ber), so that reactions occur in a thin layer around the stoichiometric mixture on
scales smaller than the smallest scales of turbulence. As a consequence, the turbu-
lent flame can be described as an ensemble of laminar flamelets that are governed
by the one-dimensional flamelet equations with mixture fraction as an independent
coordinate. The steady-state flamelets are computed prior to the simulation and
are tabulated as a function of the mixture fraction and the scalar dissipation rate,
where the latter incorporates the effects of turbulence on the flame, resulting in
a deviation from chemical equilibrium. During the CFD computation, only the
transport equations for the turbulent flow field and other characteristic variables
(such as mixture fraction) are solved, while the thermochemical state (species mass
fractions and temperature) is retrieved from the precalculated flamelet tables. The
evaluation of mean quantities in the LES or RANS context requires knowledge of
the statistical distribution of mixture fraction and scalar dissipation, usually assum-
ing a beta and log-normal distribution, respectively. The laminar flamelet model
represents a simple and efficient way to include complex chemical kinetic models
in turbulent flame calculations, and enjoys great popularity in both research and
industry. However, a major limitation of pretabulated chemistry is the description
of the flame structure by a greatly reduced number of characteristic variables, which
particularly complicates the application to spray flames [7, 85, 86].

The conditional moment closure (CMC) method [9, 105, 106, 141] incorpo-
rates concepts of the laminar flamelet model, but does not generally rely on the
assumption of thin reaction zones. The basic idea of CMC is that in non-premixed
combustion the reactive scalars are strongly correlated with mixture fraction, and
that the fluctuations with respect to the averages conditioned on mixture fraction
are often small (in contrast to the unconditional fluctuations in physical space or
time). In CMC, transport equations are derived for the conditional averages of the
reactive scalars, which mainly require closure of the conditional scalar dissipation
rate and the conditionally averaged reaction rates. Since conditional fluctuations are
often small, the conditionally averaged reaction rates are well approximated using a
first-order closure based on the conditional averages of the reactive scalars. In flames
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with significant local extinction and re-ignition or in spray combustion applications,
the lack of correlation between the reactive scalars and mixture fraction requires
a second-order closure of the reaction rates or alternatively the introduction of an
additional conditioning variable [212, 213]. However, both approaches increase the
number of unclosed terms and thus the complexity of the CMC model.

A more general modeling framework that is, in principle, independent of the
combustion regime is given by the transported probability density function (PDF)
method [45, 79, 145, 158], which employs a direct solution for the one-point one-
time joint PDF of the reactive scalars rather than using a pre-assumed shape, as
is the case with flamelet and CMC methods. The method was originally developed
in the RANS context but later extended to LES using the filtered density function
(FDF) [33, 62, 92, 159], which represents the PDF of the subgrid scalar quantities. A
transport equation for the joint scalar PDF/FDF of the reactive scalars is derived,
where the chemical reaction rates appear in closed form while molecular mixing,
which depends on multipoint information, has to be modeled. Due to the high
dimensionality of the joint scalar PDF/FDF, its transport equation is usually solved
using a Monte Carlo particle method, where stochastic particles (also referred to as
notional or gas-phase particles) emulate the evolution of the reactive scalars [156,
161]. The Monte Carlo solution generally requires a sufficiently high number of
particles per computational cell (up to 100), which is referred to as an intensive or
dense particle method. The effect of mixing is implemented as a particle interaction
model, where a large number of mixing models is available, most dominantly the
IEM model [46, 216] and Curl’s coalescence/dispersion model [38, 44, 94]. More
recently, the sparse-Lagrangian multiple mapping conditioning (MMC) model [28,
30, 31, 108] has been proposed as an alternative to the classical mixing models,
which allows to use substantially fewer particles. This is achieved by conditioning
the mixing operator on the mixture fraction space, which avoids unphysical mixing
and thus ensures localness during combustion. Due to these advantages, the sparse-
Lagrangian MMC model combined with an LES of the turbulent flow field is the
method of choice for the present work, and further details will be presented in Ch. 4.

2.3 Spray Characteristics

In practical spray combustion devices, the liquid fuel jet is injected into the combus-
tion chamber, breaks up, atomizes and produces a dispersed spray of small droplets,
as illustrated in Fig. 2.2. The breakup process is generally classified into primary
breakup, which refers to the breakup of the liquid core into distinct liquid lig-
aments and larger drops due to instabilities at the gas-liquid interface, and sec-
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Figure 2.2: Schematic representation of the spray breakup, indicating the different flow regimes
and atomization processes.

ondary breakup, which describes the further breakup of the primary fuel particles
into smaller spherical droplets due to aerodynamic forces. The corresponding models
are described in the literature [6, 117]. The various phenomena that occur inside the
dispersed spray can be characterized based on the dispersed phase volume fraction
ϕd, and are grouped into three regimes [49, 96]. The dense regime, correspond-
ing to ϕd > 10−3, is dominated by atomization processes, where droplet collisions
and coalescence (i.e., the process by which two or more droplets collide and merge)
occur frequently. In the dilute regime, where the liquid volume fraction is in the
range between 10−6 and 10−3, the effect of the dispersed phase on the gas-phase
turbulence is significant, while droplet collisions can usually be neglected. Here, the
liquid phase is represented predominantly by spherical droplets, which evaporate
and release fuel into the gas phase, where mixing of the fuel with the ambient air
eventually leads to combustion in the gas phase. Depending on the spacing between
the droplets, single droplet combustion or group combustion occurs [25, 26, 189].
Finally, the very dilute regime with ϕd < 10−6 characterizes the region where the in-
fluence of the dispersed phase on the continuous phase is insignificant. The different
regimes of interaction between the dispersed particles and the continuous gas phase
are summarized in Tab. 2.1, which also translates volume fraction into a nominal
distance between spherical particles.

For the numerical modeling of two-phase sprays, the gas phase is generally
considered as a continuum using an Eulerian framework, while the dispersed liquid
phase can be treated with either an Eulerian or a Lagrangian approach, which is
referred to as Euler-Euler or Euler-Lagrange modeling, respectively. If an Eulerian
representation of the dispersed phase is used, the two phases interpenetrate and
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Table 2.1: Regimes of interaction between dispersed particles and the continuous flow field [49,
96]. For each regime, the table lists the dispersed phase volume fraction ϕd and the equivalent
nominal particle distance ∆L normalized by the particle diameter d assuming spherical particles.

Regime Dispersed phase volume fraction Nominal particle distance Modeling

Dense ϕd > 10−3 ∆L/d < 8 4-way coupling
Dilute 10−6 < ϕd < 10−3 8 < ∆L/d < 80 2-way coupling
Very dilute ϕd < 10−6 ∆L/d > 80 1-way coupling

are identified by the volume fraction of the dispersed phase. A distinction must be
made whether the two phases are treated as different fluids with two separate sets
of transport equations (two-fluid approach), or as a mixed fluid that is governed
by a single set of transport equations (mixed-fluid or homogeneous approach) [97].
A more accurate description of the dispersed phase is obtained if an interphase
tracking algorithm is used. In this approach, the different phases are treated as a
single fluid with phase-specific material properties, and a phase indicator function is
introduced from which the liquid-gas interface can be reconstructed (e.g., by using
the volume of fluid method). The Eulerian representation of the liquid phase is
useful if the dispersed phase volume fraction is high, or if the size of the dispersed
particles is significantly larger than the smallest scales of the flow so that they are
resolved by the numerical grid. These criteria are met in the atomization regime of
the jet, but not in the dilute regime, where the liquid phase is represented by a fine
mist of spherical droplets (cf. Fig. 2.2). Here, a Lagrangian representation of the
dispersed phase is more appropriate, where the individual droplets are treated as
point particles using a Lagrangian particle tracking algorithm. Since the droplets
are not resolved, models are required to describe the heating and evaporation of
the individual droplets, which are usually based on semi-analytical solutions of an
isolated droplet in an infinite environment. Depending on the nominal droplet
distance, a one-way coupling (gas → droplets), two-way coupling (gas ↔ droplets)
or four-way coupling (gas ↔ droplets, droplets ↔ droplets) is applied (cf. Tab. 2.1),
where the backward coupling from the droplets to the carrier gas is done via source
terms. The Lagrangian representation of the dispersed phase allows the use of a
large number of particles, which then provides an accurate representation of the
droplet distribution in the spray at a relatively low computational cost.



Chapter 3

Mathematical Description of
Reacting Two-Phase Flows

This chapter presents the instantaneous governing equations for chemically reacting
two-phase flows in the context of Euler-Lagrange simulations of dilute sprays, and
thus provides the basis for the derivation of the two-phase MMC-LES model. The
first part introduces the transport equations of the carrier gas phase along with
the thermodynamic relations and expressions for the diffusive fluxes and chemical
kinetics. No models for turbulence and combustion are applied at this point. In
the second part, the equations for the Lagrangian fuel droplets are formulated and
models for the evaporation rate and the droplet heating term are derived based on
the isolated droplet theory.

3.1 Gas-Phase Description

3.1.1 The Conservation Equations

The governing equations of chemically reacting flows are given by the Navier-Stokes
equations, which are extended by the conservation of species mass and energy [72,
114, 154, 209, 226]. Source terms account for the production and consumption
of mass due to chemical reactions as well as for the mass, momentum and heat
exchange between the evaporating droplet field and the carrier gas in the Euler-
Lagrange approach. The instantaneous balance equations for overall mass, species
mass, momentum and absolute enthalpy in the absence of volume forces (such as
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gravity) and radiation are given in Cartesian coordinates by

∂ρ

∂t
+ ∂(ρuj)

∂xj

= ṠM , (3.1)

∂(ρYk)
∂t

+ ∂(ρujYk)
∂xj

= −∂jkj

∂xj

+ ω̇k + ṠM,k, (3.2)

∂(ρui)
∂t

+ ∂(ρuiuj)
∂xj

= − ∂p

∂xi

+ ∂τij

∂xj

+ Ṡu,i, (3.3)

∂(ρh)
∂t

+ ∂(ρujh)
∂xj

− ∂p

∂t
− uj

∂p

∂xj

= − ∂qj

∂xj

+ τij
∂ui

∂xj

+ Ṡh, (3.4)

where ρ is the density, Yk the mass fraction of species k, ui the velocity components,
and h the absolute enthalpy. The expression τij denotes the components of the
viscous stress tensor, jkj is the diffusional mass flux of species k in j direction,
and qj is the heat flux in j direction. The term ω̇k denotes the chemical reaction
rate of species k and represents the production and consumption of species mass.
The source terms ṠM , ṠM,k, Ṡu,i and Ṡh account for the mass, momentum and heat
transfer between the droplets and the carrier gas, with the total mass source term in
the continuity equation given by ṠM = ∑Ns

k=1 ṠM,k. The expressions for these terms
will be presented in Sec. 3.2.4.

Note that the equations for the species mass fractions, which are given by
Eq. (3.2), are additionally subject to the condition ∑Ns

k=1 Yk = 1, resulting in Ns + 1
equations for the Ns unknowns Yk. To eliminate possible inconsistencies in global
mass conservation arising from the modeling of the diffusion coefficients, it is com-
mon to solve Eq. (3.2) for only Ns −1 species and to calculate the remaining species
mass fraction, usually that of the inert species such as N2, from the condition∑Ns

k=1 Yk = 1 [154].

3.1.2 Thermodynamic Relations

An additional equation is required to relate density to pressure and temperature in
order to close the system of balance equations. For a mixture of ideal gases, this
relation is given by the ideal gas law,

p = ρRT
Ns∑

k=1

Yk

Mk

, (3.5)

where R is the universal gas constant, and Mk is the molar mass of species k.
The temperature that is required to calculate the pressure using the ideal gas

law is not a direct result of the solution of the transport equations, and has to be
calculated from the energy variable. The enthalpy of the gas mixture is defined as
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the mass-weighted average of the pure species enthalpies,

h =
Ns∑

k=1
Ykhk. (3.6)

The pure species enthalpy hk is the sum of the enthalpy of formation at a reference
state and the sensible enthalpy that represents the integral over the specific heat
capacity at constant pressure,

hk = h◦
f,k + hs,k, hs,k =

∫ T

Tref
cp,k(T ′)dT ′. (3.7)

The reference temperature is given by Tref = 298.15 K, and the superscript ◦ indi-
cates that the enthalpy is evaluated at standard-state pressure p◦ = 105 Pa [130].

3.1.3 Diffusive Transport

Viscous Stress Tensor

Assuming a Newtonian fluid and Stokes’ hypothesis, the components of the viscous
stress tensor are given by

τij = 2µ
(
Sij − 1

3δijSkk

)
, (3.8)

where µ is the dynamic viscosity, δij denotes the Kronecker delta, and Sij are the
components of the rate-of-strain tensor, which are given by

Sij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (3.9)

Heat Flux

The heat flux vector per unit area for a multicomponent gas mixture is given by [154]

qj = −λ ∂T
∂xj

+
Ns∑

k=1
hkjkj. (3.10)

The first term on the right-hand side of the equation describes heat conduction by
Fourier’s Law with λ being the thermal conductivity of the mixture, and the second
term is associated with the diffusion of species with different enthalpies.

Diffusional Mass Flux

There are several approaches of different complexity and accuracy to model the
phenomena of multicomponent diffusion. A commonly used approach is the ap-
proximate method of Hirschfelder and Curtiss [84] that calculates equivalent binary
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diffusion coefficients of the species into the rest of the mixture analogous to Fick’s
law,

jkj = −ρDk
∂Yk

∂xj

. (3.11)

The effective binary diffusion coefficients Dk can be calculated from the individual
binary diffusion coefficients [211]. Note that the Hirschfelder and Curtiss approx-
imation generally requires a correction term to satisfy overall mass conservation,
in particular if diffusion coefficients vary strongly [72, 154, 211]. An advantage of
this method is that the diffusion coefficients Dk can be linked to the heat diffusivity
α = λ/(ρcp) via the Lewis number, Lek = Dk/α, which often has a constant value
even across the flame [154].

Note that there are other modes of diffusion besides ordinary diffusion due to
concentration gradients, such as thermal diffusion resulting from temperature gradi-
ents (also known as Soret effect), pressure diffusion resulting from pressure gradients,
and forced diffusion due to unequal body forces among the species. However, these
additional modes of diffusion modes can often be neglected and are therefore not
considered here.

3.1.4 Simplified Forms of the Conservation Equations

In many combustion systems, flame and flow speeds are small compared to the speed
of sound, leading to low Mach numbers. In these cases, the material derivative of
pressure, ∂p/∂t + uj ∂p/∂xj , can be set to zero, provided there are no significant
pressure changes over time. Furthermore, the viscous heating term τij ∂ui/∂xj ,
which describes the conversion of kinetic energy into internal energy, can be ne-
glected [72, 154]. Accordingly, the balance equation for absolute enthalpy, Eq. (3.4),
simplifies to

∂(ρh)
∂t

+ ∂(ρujh)
∂xj

= − ∂qj

∂xj

+ Ṡh. (3.12)

Another assumption that is often made is to neglect differential diffusion (i.e.,
assuming equal diffusion coefficients Dk = D in Eq. (3.11)). The components of
the heat flux vector that are given by Eq. (3.10) can then be expressed in terms of
gradients of enthalpy as

qj = − µ

Pr
∂h

∂xj

+
(
µ

Pr − µ

Sc

) Ns∑
k=1

hk
∂Yk

∂xj

, (3.13)

where Pr = µcp/λ is the Prandtl number and Sc = µ/(ρD) the Schmidt number.
Assuming a Lewis number equal to one such that Sc = Pr, the heat flux further
simplifies to

qj = − µ

Pr
∂h

∂xj

= −ρα ∂h
∂xj

, (3.14)
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where α denotes the thermal diffusivity, which is equal to the diffusion coefficient
D for Le = 1.

Applying both the assumption of low-Mach numbers and Lewis numbers equal
to one, the balance equation for absolute enthalpy can be written as

∂(ρh)
∂t

+ ∂(ρujh)
∂xj

= ∂

∂xj

(
ρα

∂h

∂xj

)
+ Ṡh, (3.15)

which represents a convection-diffusion equation with evaporation source term. The
equation for absolute enthalpy, Eq. (3.15), can be transformed into an equivalent
equation based on sensible enthalpy,

∂(ρhs)
∂t

+ ∂(ρujhs)
∂xj

= ∂

∂xj

(
ρα
∂hs

∂xj

)
−

Ns∑
k=1

h◦
f,kω̇k + Ṡhs . (3.16)

As the sensible enthalpy does not take into account the energy associated with
chemical bonds, an additional source term arises from chemical reactions, which
represents the heat released by combustion. Note that the expression for the evapo-
ration source term has also changed and is now denoted as Ṡhs . Details will be given
in Sec. 3.2.4. From the simplified balance equation of sensible enthalpy, Eq. (3.16),
one can further derive an energy equation based on temperature,

cp

(
∂(ρT )
∂t

+ ∂(ρujT )
∂xj

)
= ∂

∂xj

(
λ
∂T

∂xj

)
− ∂T

∂xj

Ns∑
k=1

cp,kjkj −
Ns∑

k=1
hkω̇k + ṠT . (3.17)

Note that the heat release term now includes the absolute enthalpy instead of the
enthalpy of formation, which gives rise to different definitions of the heat release
rate [154]. Compared to the balance equation for sensible enthalpy, Eq. (3.16), an
additional term occurs, which results from the diffusion of species with different
enthalpies.

The fact that the transport equations for species mass fractions and for absolute
enthalpy are formally equivalent under the assumptions of low Mach numbers and
unity Lewis numbers gives reason to express Eqs. (3.2) and (3.15) in a general form
according to

∂(ρϕα)
∂t

+ ∂(ρujϕα)
∂xj

= ∂

∂xj

(
ρD∂ϕα

∂xj

)
+ ρWα + ρΠα, (3.18)

where ϕ = (Y, h)T is referred to as the composition vector, which contains Ns + 1
scalar fields comprising the species’ mass fractions and mixture enthalpy. In combi-
nation with the pressure, the composition vector uniquely determines the thermo-
chemical gas state. The generalized chemical source term in Eq. (3.18) is defined as
Wα = ω̇α/ρ for ϕα ∈ Y and Wα = 0 for ϕα = h. The generalized evaporation source
term is given by Πα = ṠM,α/ρ for ϕα ∈ Y and Πα = Ṡh/ρ for ϕα = h.
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3.1.5 Chemical Kinetics

The chemical mechanism, which consists of Nr elementary reversible (or irreversible)
reactions involving Ns chemical species denoted as Sk, can be represented in the
general form

Ns∑
k=1

ν ′
ikSk

kf,i−−−⇀↽−−−
kr,i

Ns∑
k=1

ν ′′
ikSk, i = 1, ..., Nr, (3.19)

with ν ′
ik and ν ′′

ik being the stoichiometric coefficients on the reactants and products
side of the equation, respectively, for the i-th reaction and species k. The reaction
rate of species k is then given by

ω̇k = Mk
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(ν ′′
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ik)
kf,i

Ns∏
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(
ρYj

Mj

)ν′
ij

− kr,i

Ns∏
j=1

(
ρYj

Mj

)ν′′
ij

 . (3.20)

The forward rate constant kf,i of reaction i is usually obtained from the modified
Arrhenius law,

kf,i = AiT
βi exp

(
−EA,i

RT

)
, (3.21)

with pre-exponential factor Ai, temperature exponent βi and activation energy EA,i.
The reverse rate constants kr,i are calculated from the equilibrium constant. More
details can be found in the literature [72, 99, 154, 211, 226].

3.1.6 Thermophysical Properties

The species enthalpies and heat capacities are typically expressed as a function
of temperature, where NASA polynomials with coefficients taken from Burcat and
Ruscic [20] are used in the present work. The corresponding mixture properties
are given by their mass-weighted average. The viscosity of the species is calculated
using Sutherland’s law [206], and the viscosity of the mixture is obtained using the
method of Herning and Zipperer [80, 155]. The thermal conductivity of the species
is obtained from the modified Eucken equation [155], and the mixture-averaged
value is determined using a linear mixing rule [127]. The effective binary diffusion
coefficients Dk are calculated based on the Chapman-Enskog theory [155]. In the
case of equal diffusion coefficients and constant Schmidt and Prandtl numbers, the
diffusion coefficient is instead obtained from D = ν/Sc with ν = µ/ρ being the
kinematic viscosity, and the thermal conductivity is given by λ = µcp/Pr.
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3.2 Liquid-Phase Description

3.2.1 Lagrangian Equations

The Lagrangian treatment of the liquid fuel droplets assumes inertial point particles
that are transported by the turbulent flow field and carry distinct properties of
the droplets such as mass and (mean) temperature. The position xd, velocity ud,
mass md and temperature Td of each droplet are obtained from the solution of the
following equations:

dxd

dt = ud, (3.22)
dud

dt = 1
md

F, (3.23)

dmd

dt = −ṁ, (3.24)

dTd

dt = Q̇d

mdcl

. (3.25)

Here, F represents the sum of all forces acting on the droplet, ṁ is the evaporation
rate, Q̇d denotes the droplet heating term, and cl is the specific heat capacity of
the liquid. Although Eq. (3.23) reflects the momentum equation for particles of
constant mass, it also applies to evaporating droplets if the mass flux is uniform
over the droplet surface and thus the net thrust generated by the mass release is
zero [37]. The droplet diameter d can be calculated from the droplet mass via
d = ( 6

π
md

ρl
)1/3, where ρl is the liquid density. Expressions for the mass and heat

transfer rates describing the evaporation and heating of the liquid fuel droplets,
as well as for the forces that drive the droplet motion are derived in the next two
sections.

3.2.2 Mass and Heat Transfer Rates

Modeling Assumptions

Closed-form expressions for the heat and mass transfer rates of the droplets are
derived based on a semi-analytical solution describing the heating and evaporation
of an isolated droplet in an infinite environment. The corresponding theory is sum-
marized in a number of review articles, including the classic ones [53, 54, 115, 187]
and the more recent and comprehensive ones mainly by Sazhin [179, 180], as well
as in several text books [8, 178, 181, 188]. Within the present work, the following
assumptions are applied:
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(1) The droplet has a spherical shape that is retained throughout the evaporation
process.

(2) The droplet is composed of a single-component liquid with zero solubility for
gases.

(3) Only subcritical heating and evaporation with a well-defined boiling tempera-
ture are considered.

(4) Liquid-vapor equilibrium at the droplet surface is assumed, neglecting the effect
of surface tension.

(5) The droplet temperature is uniform but time-varying (infinite liquid conduc-
tivity model).

(6) The processes in the gas phase are assumed to be quasi-steady.
(7) The ambient gas is treated as an ideal gas. Chemical reactions are not consid-

ered at this point and are only accounted for in the equations of the carrier gas
(see Sec. 3.1). Radiation is neglected.

(8) Low Mach numbers and a uniform pressure are assumed.
(9) Thermophysical properties do not vary in space and are evaluated at a suitable

reference gas state between the droplet surface and the far field.

The neglect of chemical reactions in the evaporation model (assumption 7) requires
that the mixing of the fuel vapor with the environment is fast and that no local
flame structure influences the evaporation process [96]. While this is true for a
CP-DNS, where the Eulerian cell size and thus the region of interactions with the
gas phase is of the order of the droplet size (cf. Sec. 5.3.2), the two-phase MMC-
LES model cannot per se account for local flame structures around the droplets
and thus generally requires modeling of an envelope flame. However, as the use of
different model formulations in the CP-DNS and the MMC-LES does not allow for
a consistent and unbiased comparison of the results, the present work refrains from
using an envelope flame model in the MMC-LES. This constraint does not affect the
results, as the evaporation rate is taken from the CP-DNS (Ch. 6), or the droplets
are located in a fuel-rich and non-burning environment (Chs. 7 and 8).

Stagnant Droplets

In the absence of relative motion between the droplet and the gas, a spherically
symmetric gas field exists around the droplet, reducing the governing equations
to their one-dimensional form. The fuel mass fraction and temperature profiles of
the spherically symmetric system as well as the corresponding heat and mass flows
are sketched in Fig. 3.1. Fuel vapor is transported by convection (Stefan flow)
and diffusion from the droplet surface to the ambient gas, while heat is conducted
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Figure 3.1: Sketch of fuel mass fraction and temperature profiles in the liquid phase (gray region)
and gas phase along with heat and mass flows. The arrows indicate the mass and energy balance
at the droplet surface.

radially against the convection towards the droplet surface. At the droplet surface,
the heat from the gas is partially used for the phase change, while the remainder
is transferred into the interior of the liquid droplet and is responsible for heating of
the droplet, which is indicated by the droplet heating term Q̇d.

The expression for the evaporation rate is derived based on a mass perspective.
Conservation of total mass is represented by the continuity equation, which takes
the form

1
r2

d
dr
(
r2ρur

)
= 0. (3.26)

Integrating the equation in radial direction shows that the total mass flow, which is
equivalent to the evaporation rate, is constant in radial direction,

ṁ = 4πr2ρur = const. (3.27)

The governing equation of the fuel mass fraction under the given assumptions can
be written as

1
r2

d
dr (ṁYF ) = 1

r2
d
dr

(
4πr2ρDF

dYF

dr

)
, (3.28)

where the radial velocity was replaced by the evaporation rate using Eq. (3.27).
Multiplication of the equation by r2, integration in radial direction and re-arranging
the terms results in

dYF

ṁYF + C1
= dr

4πr2ρDF

, (3.29)

where C1 is an integration constant. A second integration leads to

1
ṁ

ln(ṁYF + C1) = − 1
4πrρDF

+ C2. (3.30)
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Applying the boundary conditions at the droplet surface, YF (r = rs) = YF,s, and
far from the droplet, YF (r → ∞) = YF,∞, finally leads to

YF (r) = YF,∞ + (YF,s − YF,∞)
1 − exp

(
− ṁ

4πrρDF

)
1 − exp

(
− ṁ

4πrsρDF

) . (3.31)

This equation describes the fuel mass fraction profile from the droplet surface to
infinity for given values of YF,s and YF,∞ and evaporation rate ṁ. An additional
relation is required to find an expression for the yet unknown evaporation rate.
Formulating a mass balance at the droplet surface (see Fig. 3.1(a)) gives

ṁYF,l = ṁYF,s − 4πr2
sρDF

dYF

dr

∣∣∣∣∣
s

, (3.32)

with YF,l = 1 for single-component liquids. Substituting the expression for the
derivative, which is obtained from Eq. (3.31), into the surface mass balance and
solving for the evaporation rate finally yields

ṁ = 4πrsρDF ln(1 +BM), (3.33)

with Spalding mass transfer number BM defined as

BM = YF,s − YF,∞

1 − YF,s

. (3.34)

Inserting the expression for the evaporation rate, Eq. (3.33) into Eq. (3.31) the
solution for the fuel mass fraction profile can also be written as

YF (r) = 1 − (1 − YF,∞) exp
(

− ṁ

4πrρDF

)
. (3.35)

Note that these relations are also valid for the case of condensation with YF,s < YF,∞.
In that case, the evaporation rate is negative, corresponding to a mass flux from the
ambient gas to the droplet surface.

Equation (3.31) can also be used to describe the profiles of the non-evaporating
species, as it is solely based on the general conservation equation and the fixed-
value boundary conditions. Assuming equal diffusion coefficients, the surface mass
balance for non-evaporating species k ̸= F takes the form

0 = ṁYk,s − 4πr2
sρDF

dYk

dr

∣∣∣∣∣
s

. (3.36)

By inserting the expression for the derivative that is derived from the respective
mass fraction profile one finally finds

Yk,s

Yk,∞
= 1 − YF,s

1 − YF,∞
= const, k ̸= F. (3.37)
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This relation shows that the ratio of surface values to far-field values is constant for
non-evaporating species, and therefore their surface values are equal to the corre-
sponding far-field values but scaled by a normalization constant to ensure that the
sum of mass fractions is equal to one. As Eq. (3.37) is based on ratios, it also holds
if mass fractions are replaced by mole fractions, which then allows the calculation of
the surface mole fractions from their respective far-field values and the given surface
mole fraction of the fuel species,

YF,s = XF,sMF

XF,sMF + (1 −XF,s)Ma

, Ma = 1
1 −XF,∞

∑
k ̸=F

Xk,∞Mk. (3.38)

This relation is also reported in Darabiha et al. [39] and Yang et al. [234]. The
mole fraction of the fuel species at the droplet surface is obtained from liquid-vapor
equilibrium via XF,s = psat,s/p∞, where psat,s is the saturated vapor pressure at
the droplet surface, which is evaluated using an appropriate theoretical (Clausius-
Clapeyron) or experimental relation (see Sec. 3.2.5 for details).

The expression for the droplet heating term is derived based on an energy
perspective. Using the given assumptions, and neglecting the term associated with
the diffusion of species with different enthalpies (see Eq. (3.17)), the energy equation
of the spherically symmetric system can be written as

1
r2

d
dr (ṁcpT ) = 1

r2
d
dr

(
4πr2λ

dT
dr

)
, (3.39)

where the radial velocity was again replaced by the evaporation rate using Eq. (3.27).
Note that there are contradictory opinions in the literature regarding the specific
heat capacity in the energy equation. Several publications use the (suitably aver-
aged) value of the gas mixture here [54, 114, 211], while Sazhin [179] argues that
the value of pure vapor should be used, which is also consistent with the model
formulation of Abramzon and Sirignano [2]. Due to the widespread use of the latter
two works, the present study adopts the use of the specific heat capacity of the
pure vapor species in the energy equation. Accordingly, cp is replaced by cp,F in
Eq. (3.39). Introducing the Lewis number of the fuel species, Le = λ/(ρDF cp), the
conservation of energy can be written as

1
r2

d
dr (ṁT ) = 1

r2
d
dr

(
4πr2ρDF

ϕ

dT
dr

)
, (3.40)

with

ϕ =
(
cp,F

cp

)
1
Le . (3.41)



28 Mathematical Description of Reacting Two-Phase Flows

This equation is equivalent to the equation for the fuel mass fraction, Eq. (3.31),
but with additional parameter ϕ. The temperature profile is then given by

T (r) = T∞ + (Ts − T∞)
1 − exp

(
− ṁϕ

4πrρDF

)
1 − exp

(
− ṁϕ

4πrsρDF

) , (3.42)

with Ts = Td due to the assumption of a uniform temperature profile inside the
droplet. To find an expression for the heat flux into the liquid droplet, which is
responsible for the heating of the droplet and is represented by the droplet heating
term Q̇d, the energy balance at the droplet surface is considered (see Fig. 3.1(b)),

4πr2
sλ

dT
dr

∣∣∣∣∣
s

= ṁLv,s + Q̇d, (3.43)

where Lv,s is the latent heat of vaporization at droplet surface conditions. Note that
this energy balance is also valid for the case of condensation, where the negative
evaporation rate leads to a reversed sign of the latent heat term, which is then
associated with heat release at the droplet surface. By inserting the expression for
the temperature gradient at the droplet surface, which is obtained from Eq. (3.42),
into the surface energy balance, one finally finds the expression for the droplet
heating term,

Q̇d = ṁ

(
cp,F (T∞ − Ts)

BT

− Lv,s

)
, (3.44)

with Spalding heat transfer number defined as

BT = (1 +BM)ϕ − 1. (3.45)

For Le = 1 and cp = cp,F the Spalding heat and mass transfer numbers are the same.
The case ṁ = 0 (if YF,s = YF,∞) requires special treatment, as the previous

derivations are not valid in that situation. Setting the radial velocity to zero, the
energy balance, Eq. (3.39), takes the form of the pure heat equation,

1
r2

d
dr

(
4πr2λ

dT
dr

)
= 0 (3.46)

Its solution is given by

T (r) = T∞ + (Ts − T∞)
(
r

rs

)−1
. (3.47)

The droplet heating term is derived from the surface energy balance in an analo-
gous way, where now the entire heat from the gas conducts into the liquid droplet,
resulting in

Q̇d = 4πrsλ(T∞ − Ts). (3.48)
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Convective Environments

The presence of a relative velocity between the droplet and the gas will affect mass
and heat transfer rates, and hence corrections to the previous relations are necessary.
Although the existence of a flow field leads to a loss of spherical symmetry, the
common approach is to introduce semi-empirical correction factors for the transfer
rates of a symmetrical gas field based on the film theory [15]. According to that, the
boundary conditions at infinity are moved inward to the film radii, which steepens
mass fraction and temperature gradients and therefore increases mass and heat
transfer rates. For non-evaporating droplets, the thicknesses of the diffusional and
thermal films are given by

δM

rs

= 2
Sh − 2 ,

δT

rs

= 2
Nu − 2 , (3.49)

with Sh and Nu being the Sherwood and Nusselt number, respectively. These non-
dimensional parameters are evaluated using the following correlations [32]:

Sh = 1 + (1 + Re Sc)1/3 max
(
1,Re0.077

)
, (3.50a)

Nu = 1 + (1 + Re Pr)1/3 max
(
1,Re0.077

)
, (3.50b)

with Sc = µ/(ρDF ) being the Schmidt number, Pr = cpµ/λ the Prandtl number,
and Re the Reynolds number (based on the slip velocity). These relations are valid
for Re < 400 and 0.25 ≤ {Sc,Pr} ≤ 100.

The presence of the Stefan flow will influence the values of δM and δT , since a
surface blowing results in the thickening of the laminar boundary layer [183]. To
take into consideration this effect, Abramzon and Sirignano [2] introduced modified
film thicknesses according to

δ∗
M = FMδM , δ∗

T = FT δT , (3.51)

where the correction factors FM and FT are given as functions of their correspond-
ing Spalding transfer numbers BM and BT by the universal functions FM and FT ,
respectively,

FM = (1 +BM)0.7 ln(1 +BM)
BM

, FT = (1 +BT )0.7 ln(1 +BT )
BT

. (3.52)

Note that this function reproduces the classical film theory in the limiting case of a
vanishing evaporation rate, as {FM , FT } → 1 if {BM , BT } → 0. A similar relation
to Eq. (3.49) is now defined for modified film thicknesses using a modified Sherwood
and Nusselt number, respectively,

δ∗
M

rs

= 2
Sh∗ − 2 ,

δ∗
T

rs

= 2
Nu∗ − 2 , (3.53)
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which results in the following relation between the modified and unmodified non-
dimensional parameters,

Sh∗ = 2 + Sh − 2
FM

, Nu∗ = 2 + Nu − 2
FT

. (3.54)

Integrating the balance equation for the fuel mass fraction and applying the bound-
ary condition at the modified film radii rs + δ∗

M finally leads to a new expression for
the evaporation rate,

ṁ = 2πrsρDF Sh∗ ln(1 +BM). (3.55)

In an analogous way, the energy perspective gives a new expression for the parameter
ϕ that is required to calculate the Spalding heat transfer number,

ϕ =
(
cp,F

cp

)(
Sh∗

Nu∗

)
1
Le . (3.56)

For a stagnant medium (Re = 0), the presented correlations result in Sh∗ = Nu∗ = 2
and therefore reproduce the previously derived solution for stagnant droplets. For
the case of pure heat transfer without evaporation, the classical film theory can be
used, which gives

Q̇d = 2πrsλNu(T∞ − Ts). (3.57)

Evaluation of Thermophysical Properties

The assumption of constant thermophysical properties within the gas phase is com-
pensated by the use of average values, which are evaluated at a reference gas state
defined as

Yk,ref = γYk,∞ + (1 − γ)Yk,s, (3.58a)
Tref = γT∞ + (1 − γ)Ts, (3.58b)

where γ is an averaging parameter. By comparison with variable properties calcu-
lations, Hubbard et al. [88] found best agreement for γ = 1/3. This value, which
is known as the 1/3 rule, is the most common choice and will also be used in the
present work, although other studies suggest different values [245]. All thermody-
namic and transport properties such as the gas density ρ, fuel vapor diffusivity DF ,
thermal conductivity λ, viscosity µ and specific heat capacities cp and cp,F are then
evaluated at the reference gas state that is defined by Eqs. (3.58a) and (3.58b).

3.2.3 Particle Forces

A particle that is moving through a turbulent flow field is subject to several fluid
dynamic forces, such as forces due to pressure gradients and shear stresses of the
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undisturbed flow, the steady-state drag, the virtual mass effect (due to acceleration
of the displaced fluid), the Basset force (due to the temporal delay in the boundary
layer development), and the Saffman and Magnus lift (due to velocity gradient and
rotation of the particle, respectively) [37, 128]. For particles with a high density
ratio (as is the case with liquid droplets in a gaseous flow), the forces other than the
steady-state drag do not contribute to the particle motion [4, 50, 96]. Therefore,
only the drag force is considered within the present work, which is given by [37]

FD = 1
2ρ∞CDAd∥u∞ − ud∥ (u∞ − ud) , (3.59)

where ρ∞ and u∞ are the free-stream density and velocity, respectively, CD is the
drag coefficient, and Ad = πr2

s is the cross-sectional area of the droplet. Note that
the net thrust generated by evaporation is zero, as mass is expelled from the surface
uniformly in all directions [37]. The drag coefficient is usually expressed as a function
of the Reynolds number. Yuen and Chen [237] showed that the drag coefficient of
an evaporating droplet can be approximated by the standard drag curve for solid
spheres, provided that the Reynolds number is based on the free-stream density and
the viscosity is evaluated using the 1/3 rule,

Re = ρ∞∥u∞ − ud∥d
µ

. (3.60)

A widely used relation for the drag coefficient of a sphere is given by Putnam [169],

CD = max
[ 24
Re

(
1 + 1

6Re2/3
)
, 0.424

]
, (3.61)

which is valid for Re < 3 ·105. The drag coefficient is often expressed as a correction
to Stokes drag, CD = f1CD,Stokes, with CD,Stokes = 24/Re [37]. Using the relation of
Putnam, the correction factor f1 takes the form

f1 = max
[
1 + 1

6Re2/3, 0.0177Re
]
. (3.62)

By inserting the expression for the drag force, Eq. (3.59), into the equation of motion
for the fuel droplet, Eq. (3.23), and replacing the drag coefficient by the correction
factor f1, the equation of motion can be written as

dud

dt = f1

τd

(u∞ − ud) , (3.63)

with τd = (ρld
2)/(18µ) being the response time of the droplet.
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3.2.4 Two-Way Coupling

A two-way coupling between the carrier gas and the fuel droplets is employed, where
the local cell values provide the ambient conditions for the dispersed droplets (i.e.,
u∞ = u(xd), p∞ = p(xd), Yk,∞ = Yk(xd) and T∞ = T (xd)), while the effect of the
fuel droplets onto the carrier gas is accounted for via source terms in the balance
equations of the gas phase [37, 54, 96, 168]. This approach is known as the particle-
source-in-cell (PSI-cell) model [36].

The expressions for the source terms that appear in the transport equations
of the carrier gas (see Sec. 3.1) are derived based on the conservation of mass,
momentum and energy between a finite gas volume and the liquid droplets, and are
given by

ṠM = − 1
V

∑
d

dmd

dt , (3.64)

Ṡu,i = − 1
V

∑
d

d(mdud,i)
dt , (3.65)

Ṡh = − 1
V

∑
d

d(mdhd)
dt . (3.66)

Here, V denotes the gas volume that receives the source terms (typically the com-
putational cell, but other options are also possible) and hd is the enthalpy of the
liquid droplet. The summation is performed over all droplets within the volume
under consideration. Due to the assumption of single-component liquids, the source
term in the transport equation for the fuel mass fraction is given by ṠM,F = ṠM ,
whereas it is zero for non-evaporating species, ṠM,k = 0 for k ̸= F . If the energy
equation is expressed in terms of sensible enthalpy or temperature, the evaporation
source terms take the form

Ṡhs = − 1
V

∑
d

(
d(mdhd)

dt − h◦
f,F

dmd

dt

)
, (3.67)

ṠT = − 1
V

∑
d

(
d(mdhd)

dt − (hF − cpT )dmd

dt

)
, (3.68)

where hF and h◦
f,F denote the absolute enthalpy and enthalpy of formation of the

gaseous fuel, respectively, and cp and T are the specific heat capacity and tempera-
ture of the carrier gas. Note that it is still the absolute enthalpy that is conserved
between the droplet and the gas, even though an energy equation for sensible en-
thalpy or temperature is solved. For details on the derivation the reader is referred
to Appendix A.1.

It should be noted that the use of local cell values as the ambient conditions
for the droplets requires a large enough cell size to represent the state far from the
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droplet. This condition imposes a limit on the use of the PSI-cell model, which will
be discussed in detail in Ch. 5.

3.2.5 Liquid Properties

Liquid properties, such as density, specific heat capacity, absolute enthalpy, and
latent heat of vaporization, are expressed as functions of the temperature and
are calculated using correlations from the Design Institute for Physical Properties
(DIPPR) [41, 148]. For the saturated vapor pressure, which is required to determine
the liquid-vapor equilibrium at the droplet surface (i.e., the fuel mole fraction), an
empirical relation from the same database is used instead of the theoretical Clausius-
Clapeyron equation.

3.2.6 Solution Procedure

The calculation of the evaporation rate, the droplet heating term and the drag force,
which are required to calculate the right-hand side of the Lagrangian droplet equa-
tions, Eqs. (3.22) to (3.25), is summarized in the following step-by-step procedure:

1. Determine the fuel mole fraction at the droplet surface from the saturated va-
por pressure via XF,s = psat(Td)/p∞, The surface mole fractions of the non-
evaporating species are calculated using the mole-based equivalent of Eq. (3.37),
Xk,s = Xk,∞(1−XF,s)/(1−XF,∞). Then convert mole fractions to mass fractions
using Yk,s = Xk,sMk/

∑
i Xi,sMi.

2. Evaluate the average gas properties ρ, cp, cp,F , µ, λ and DF using the 1/3 rule
that is given by Eqs. (3.58a) and (3.58b).

3. Calculate the non-dimensional parameters Sc = µ/(ρDF ), Pr = cpµ/λ, Le =
Sc/Pr = λ/(ρDF cp) and Re = ρ∞∥u∞ − ud∥d/µ. Then calculate the Sherwood
and Nusselt number using the relations given by Eqs. (3.50a) and (3.50b).

4. Calculate the droplet response time τd = (ρld
2)/(18µ) and the correction factor

to Stokes drag using Eq. (3.62).
5. Calculate the Spalding mass transfer number BM from Eq. (3.34), and the mod-

ified Sherwood number using Eqs. (3.52) and (3.54).
6. Iterate the Spalding heat transfer number BT using Eqs. (3.45), (3.52), (3.54)

and (3.56).
7. Calculate the evaporation rate ṁ from Eq. (3.55), and the droplet heating term

Q̇d from Eq. (3.44).

Note that in the case of ṁ = 0, steps 6 and 7 are not required, and the droplet
heating term is calculated from Eq. (3.57).
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The time evolution of the droplet properties (xd, ud, md, Td) is obtained by
numerically solving the set of ordinary differential equations governing the droplet
motion, evaporation and heating, Eqs. (3.22) to (3.25). To avoid stability problems
that occur when the droplet diameter approaches zero (resulting in stiffness of the
equations, in particular the temperature equation), an implicit method must be
used. Here, the equations are discretized using the second-order implicit trapezoidal
rule (in the context of partial differential equations the method is also known as the
Crank-Nicolson method), which is a combination of the forward Euler method and
the backward Euler method [138]. It can be written in general form as

qn+1 − qn − ∆t
2
[
F(qn) + F(qn+1)

]
= 0, (3.69)

where q = (xd,ud,md, Td)T is a vector containing the droplet properties, F(q)
indicates the right-hand side of the Lagrangian droplet equations, the superscript
n denotes the time step index, and ∆t is the time step width. Equation (3.69)
represents a system of eight nonlinear scalar equations (position xd = (xd, yd, zd)T,
velocity ud = (ud, vd, wd)T, mass md, temperature Td) that must be solved in each
time step. The standard approach is to use Newton’s method, which provides fast
convergence but also involves a high computational cost as it requires the evaluation
and inversion of the Jacobian matrix. This makes a solution impractical for systems
containing thousands or millions of droplets. Alternative iteration methods that
do not rely on the evaluation of the Jacobian matrix, such as fixed-point iteration,
generally show poorer convergence behavior and often fail when they are used to
solve the entire set of equations in a coupled way. However, it is possible to com-
bine both methods to significantly reduce the size of the Jacobian matrix and thus
the computational cost without compromising convergence. Accordingly, Newton’s
method will only be used to solve for droplet mass and temperature. The result-
ing size of the Jacobian matrix is two, which allows for an analytical calculation of
the inverse matrix. The entries of the Jacobian matrix are approximated by finite
differences [211], where forward differences are used for derivatives with respect to
droplet mass and backward differences for derivatives with respect to droplet tem-
perature. This ensures that the physically reasonable ranges (md > 0, Td < Tboil)
are not exceeded during the calculation. Further, since the droplet mass is several
orders of magnitude smaller than the droplet temperature, a normalization based
on the values at the beginning of each time step is employed. The vector quantities
position and velocity of the droplet are found based on fixed-point iteration, where
the rather simple form of the equations allows for a direct solution of the new quan-
tities based on the values from the previous iteration. Assuming that the ambient
conditions are constant over ∆t, the discretized versions of Eqs. (3.22) and (3.63)
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are rewritten as

xk+1
d = xn

d + ∆t
2
(
un

d + uk
d

)
, (3.70)

uk+1
d =

un
d

(
1 − ∆t

2
fn

1
τn

d

)
+ u∞

∆t
2

(
fn

1
τn

d
+ fk

1
τk

d

)
1 + ∆t

2
fk

1
τk

d

, (3.71)

where k is the iteration number. The initial values that are used to start the iteration
are given by the values at time level n, and the converged state represents the values
at the new time level n+ 1. Typically around three to four iterations are necessary
to reach residuals at machine precision.

The limit d → 0 requires special treatment to prevent the droplet mass from
becoming negative. The common approach is to remove the droplet when its mass
falls below a user-defined threshold value [122, 140]. However, if an accurate es-
timation of the evaporation time is required (see Ch. 5), this approach cannot be
used, and the entire time history of the droplet properties up to d = 0 needs to be
predicted accurately. Therefore, the present work adopts an alternative approach
that is based on the d2-law and thus provides an analytical solution. The d2-law
is obtained by assuming a constant droplet temperature, such that the droplet sur-
face conditions and the average thermophysical properties of the gas phase remain
constant. Under these assumptions, and neglecting the temporal variation of the
Sherwood number and the ambient conditions, the instantaneous evaporation rate is
only a function of the droplet diameter, resulting in a linear variation of the squared
droplet diameter with time,

d2(t) = d2
0 −Kt, (3.72)

where the subscript 0 denotes the initial value and K is the evaporation constant
(see Turns [211] for details). The evaporation time is then given by

τevap = d2
0
K
. (3.73)

Replacing the evaporation constant by the evaporation rate allows to write the
evaporation time in terms of the initial droplet mass and evaporation rate,

τevap = 3
2
md,0

ṁ0
. (3.74)

The proposed procedure for calculating the droplet evaporation time in a CFD
code is as follows. At the beginning of each time step, the remaining evaporation
time is calculated based on Eq. (3.74) by inserting the current droplet properties
(i.e., by replacing md,0 and ṁ0 by mn

d and ṁn, respectively). If the remaining
evaporation time is close to the time step width (τevap < 2∆t is recommended),
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it is likely that the droplet will disappear in the current or next time step. In
that case, the analytical solution based on the d2-law is used in place of solving
the droplet equations numerically. In detail this means that the droplet mass is
explicitly set to zero, while the droplet temperature is kept constant. As the droplet
has no appreciable inertia in the limiting case of vanishing droplet mass, the droplet
velocity is set equal to the gas velocity, and the final position of the droplet can be
calculated using the known droplet velocity and the remaining evaporation time.
The total evaporation time is then obtained by adding the remaining evaporation
time to the time at the beginning of the time step.

The numerical solution procedure described above is implemented in a MATLAB
code, which is used for validation purposes (see next section) and for the analysis
presented in Ch. 5, as well as in the OpenFOAM-based two-phase MMC-LES solver
(see Sec. 4.7 for details). It should be noted that the present evaporation model
differs from the standard models available in OpenFOAM in both the theoretical
formulation and the numerical solution procedure.

3.2.7 Model Validation

Validation of the Numerical Method

To demonstrate the robustness and accuracy of the numerical method, three sets of
different fuel species and initial conditions are considered, as reported in Tab. 3.1.
The first set describes a millimeter-sized water droplet in a quiescent environment
and is referred to as WAT-500K, while the other two sets, denoted as ETH-1500K
and HEP-2500K, represent typical spray combustion conditions. In all three cases,
the numerical solver accurately predicts droplet properties up to d = 0 without any
numerical instabilities, and the proposed treatment of d → 0 preserves the slope
according to the d2-law, leading to an accurate prediction of the evaporation time
(not shown). In Figs. 3.2(a) to 3.2(c) the relative errors of droplet diameter, droplet
temperature and velocity at time t/τevap ≈ 0.1 are plotted versus the number of
time steps per evaporation time. The reference solution was generated using the
classical 4th-order Runge-Kutta method with a very small time step width. The
plots show that the order of convergence is two for droplet diameter, temperature
and velocity, which confirms the iterative solution consisting of Newton’s method
and fixed-point iteration. Finally, Fig. 3.2(d) shows the effect of the time step width
on the calculated evaporation times. For large to moderate time step sizes, the
error decays quadratically as a refinement of the time step causes an improvement
in the overall solution. Note that already a coarse resolution of the time history
yields errors on a relatively low level (about 1 % for τevap/∆t = 10, and 0.01 %
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Table 3.1: Definition of different scenarios of droplet evaporation in an infinite environment to
validate the numerical method. The ambient gas is pure nitrogen at atmospheric pressure. The
droplet is initially at rest with an initial temperature of Td,0 = 300 K.

Name Fuel d0 T∞ u∞

WAT-500K Water 1 mm 500 K 0 m/s
ETH-1500K Ethanol 50 µm 1500 K 1 m/s
HEP-2500K n-Heptane 20 µm 2500 K 10 m/s
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(b) Droplet temperature.

101 102 103 104

Nt = =evap="t

10!10

10!8

10!6

10!4

10!2

R
el
a
ti
v
e

er
ro

r
o
f
u

d

O2

ETH-1500K
HEP-2500K

(c) Droplet velocity.
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(d) Evaporation time.

Figure 3.2: Relative errors (L2 norm) of droplet diameter, droplet temperature and droplet
velocity at time t/τevap ≈ 0.1 as well as of the evaporation time. The reference solution was
generated using the classical 4th-order Runge-Kutta method with a very small time step width.

for τevap/∆t = 100). With further refinement of the time step, the error of the
evaporation time is determined by the treatment of d = 0. Using the closure based
on the d2-law results in a linear decay of the error, as it represents a first-order
approximation. It should be noted that the existence of a relative velocity between
the gas and the droplet (cases ETH-1500K and HEP-2500K) leads to a deviation
from the d2-law, but this does not affect the error behavior as demonstrated by
Fig. 3.2(d).
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Comparison With Experimental Data and Comprehensive Model
Results

The models describing the heating and evaporation of droplets are often validated
by comparison with experimental data [102, 104, 121, 132, 182]. Most experiments
have been conducted in a hot furnace with the droplet supported on a fiber system
to allow for an accurate measurement of the time variation of the droplet size. The
droplet size is usually of the order of millimeters, and therefore much larger than
droplet sizes in typical spray combustion applications. As a result, additional effects
play a role that are usually not considered in the evaporation model, which can lead
to discrepancies between theoretical and experimental results. In detail, these are:

Effect of support fiber: Several studies, experimentally and numerically, have
shown that the additional heat input through fiber conduction is often not negli-
gible, and can affect the droplet heat and mass transfer processes [24, 232, 233].
Further, the fiber affects the symmetrical shape of the droplet and the flame if
combustion takes place.
Effect of radiation: At high temperatures and large droplet sizes (as used in the
experiments), thermal radiation becomes important, and the emission from the
furnace wall must be taken into account [232]. The additional heat input will
decrease the evaporation time.
Buoyancy effects: According to Sirignano [188], buoyancy effects are relevant if
the droplet size is of the order of millimeters, but can be neglected for droplet sizes
of the order of micrometers. As a result, natural convection must be taken into
account for experiments with millimeter-sized droplets conducted under normal
gravity.

Yang and Wong [232] have incorporated the effects of heat conduction into the
droplet through the fiber and the liquid-phase absorption of the radiation from
the furnace wall into their comprehensive numerical model. They showed that these
effects enhance the evaporation rate significantly, and a match with the experimental
results of Nomura et al. [144] could only be achieved if radiative absorption and fiber
conduction were included in the model.

Since both the effect of the support fiber and thermal radiation are not con-
sidered in the present evaporation model, the validation is not done on the basis
of experimental data, but rather by using the results of the comprehensive model
of Yang and Wong [232] that are obtained by ignoring both fiber conduction and
radiative absorption. Note that their model includes unsteady mass and heat trans-
port in the liquid and gas phase and thus provides a suitable reference solution
for validation. The initial and ambient conditions are given by the experimental
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Figure 3.3: Comparison of the present evaporation model with results from the comprehensive
model of Yang and Wong [232] ignoring both fiber conduction and radiative absorption. The
setup is based on the experiments of Nomura et al. [144], where the case at atmospheric pressure
is chosen.

setup of Nomura et al. [144], where the case at atmospheric pressure is selected
here. Droplets are composed of liquid n-heptane and evaporate in a quiescent envi-
ronment consisting of nitrogen at microgravity conditions. In the experiments, the
initial droplet diameter ranges from 0.6 mm to 0.8 mm and is set to d0 = 0.7 mm in
the numerical calculations. The initial droplet temperature is not reported by No-
mura et al. nor by Yang and Wong. As the droplet is reported to be initially at room
temperature its initial temperature is set to Td,0 = 300 K. Figure 3.3 shows the time
evolution of the squared droplet diameter for different ambient temperatures. There
is very good agreement between the present model and the comprehensive model by
Yang and Wong, although the present model contains a number of simplifications,
such as using a simplified energy equation and assuming quasi-steady processes and
constant thermophysical properties in the gas phase. This proves that the present
model formulation is capable of correctly predicting the time evolution of the droplet
properties, and it is expected that it would also reproduce the experimental data of
Nomura et al. if the effects of fiber conduction and radiative absorption were taken
into account.





Chapter 4

MMC-LES Modeling of Dilute
Spray Combustion

In the following chapter, the two-phase MMC-LES model for dilute spray combus-
tion is presented. The starting point are the instantaneous transport equations as
derived in the previous chapter. By applying a spatial filter operator, the filtered
transport equations describing the turbulent flow and reference mixture fraction field
are derived and models for the closure of the subgrid terms are presented. Subse-
quently, the filtered density function describing the evolution of the reactive scalars
is introduced and its transport equation is derived. The corresponding solution
is represented by a set of stochastic differential equations employing the sparse-
Lagrangian MMC mixing model. Afterwards, models for the coupling between the
Eulerian and Lagrangian fields are presented, with special focus on the two-phase
coupling between the fuel droplets and the stochastic particles. Finally, the numer-
ical implementation in OpenFOAM is briefly discussed.

4.1 Preliminary Remarks

4.1.1 General Modeling Approach and Assumptions

The two-phase MMC-LES model employs a hybrid Eulerian/Lagrangian/Lagrangian
method, as shown in Fig. 4.1. An Eulerian LES of the turbulent flow and reference
mixture fraction field is performed, the latter of which is required for the MMC
model, where standard models are used for the closure of the subgrid terms (see
Sec. 4.2). The turbulent composition field is modeled using the filtered density func-
tion (FDF) approach, whose solution is obtained from a set of equivalent stochastic
differential equations describing the transport of notional particles in physical and
composition space (Sec. 4.3). A mixing model is required to account for the inter-
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Figure 4.1: Overview of the two-phase MMC-LES model with schematic of the coupling relations.

actions between the stochastic particles, with the sparse-Lagrangian MMC model
used in the present work (Sec. 4.4). The liquid fuel droplets are treated as La-
grangian point particles and follow the deterministic formulation that was presented
in Sec. 3.2. In order to account for subgrid turbulent fluctuations, stochastic disper-
sion terms are often added to the droplet equations [12–14, 166]. However, as LES
resolves the dynamics of the large-scale motions and a large portion of the turbulent
kinetic energy (typically up to 80 % [163, 164]), the role of the stochastic dispersion
terms is often minor [5]. Therefore, these terms are not considered in the present
work.

The mass and momentum coupling between the Eulerian LES and the dispersed
fuel droplets follows conventional modeling as described in Sec. 3.2.4. The heat and
mass transfer between the droplets and the gas phase is accounted for by coupling
the fuel droplets with the stochastic particles, which is referred to as two-phase
coupling. The corresponding models will be presented in Sec. 4.5. The stochastic
particles feed back their density to the Eulerian LES in order to accommodate the
effect of chemical reactions in the Eulerian field. Details will be given in Sec. 4.6.

As already mentioned in Sec. 3.1, radiation and gravity are not considered in
this work. Furthermore, low Mach numbers and Lewis numbers equal to one as well
as constant Schmidt and Prandtl numbers are assumed, where Sc = Pr = 0.7 is
used throughout the present work.

4.1.2 Definition of Mixture Fraction

Mixture fraction describes the mixing between the fuel stream and the oxidizer
stream and hence plays a key role in the modeling of nonpremixed combustion.
In single-phase flows, mixture fraction is a strictly conserved and bounded scalar
that obeys a scalar transport equation without source terms, where the boundary
conditions are one in the fuel stream and zero in the oxidizer stream. In two-phase



4.1 Preliminary Remarks 43

flows, the definition of mixture fraction is not trivial, as the balance equation for
mixture fraction contains a source term to account for the fuel originating from the
evaporating droplet field. As a result, evaporation will lead to an increase of the
maximum mixture fraction value over time, so that mixture fraction is no longer
a conserved and bounded scalar. In order to keep mixture fraction between two
well-defined limits also for two-phase flows, the upper bound is defined here as pure
fuel as given by the liquid droplets (which cannot be exceeded), while the lower
bound is still given by the conditions of the oxidizer stream.

From a mathematical point of view, mixture fraction is defined on the basis of
the conservation of chemical elements. The mass fraction of element i is given by

Zi =
Ns∑

k=1

aikMi

Mk

Yk, (4.1)

where aik is the number of atoms of element i in a molecule of species k, and Mi

and Mk denote the molar mass of element i and molecule k, respectively [150]. By
adding the transport equations for mass fractions Yk, which are given by Eq. (3.2),
in the same way as indicated by Eq. (4.1), and assuming equal diffusion coefficients,
the balance equation for the mass fraction of element i can be written as

∂(ρZi)
∂t

+ ∂(ρujZi)
∂xj

= ∂

∂xj

(
ρD∂Zi

∂xj

)
+ aiF Mi

MF

ṠM , (4.2)

where the subscript F denotes the fuel species. Note that no chemical source term
appears in the transport equation, as elements are conserved during combustion.
Details on the derivation (for single-phase flows) can be found in Peters [150]. Mix-
ture fraction is defined as a normalized element mass fraction according to

f = Zi − Zi,Ox

Zi,Fu − Zi,Ox
, (4.3)

where the subscripts Ox and Fu indicate the oxidizer and fuel stream, respectively
(not to be confused with the fuel species denoted as F). By inserting the definition of
mixture fraction, Eq. (4.3), into the balance equation for the element mass fraction,
Eq. (4.2), and making use of the continuity equation, the balance equation for
mixture fraction is derived,

∂(ρf)
∂t

+ ∂(ρujf)
∂xj

= ∂

∂xj

(
ρD ∂f

∂xj

)
+ ṠM , (4.4)

which is equivalent to the general scalar transport equation that is given by Eq. (3.18)
but without the chemical source term. Note that the derivation is based on the as-
sumption that the fuel stream consists of pure fuel (otherwise, a prefactor would
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remain in front of the source term). The balance equation for mixture fraction is
valid regardless of which element is chosen to define mixture fraction. However,
the absolute values of the mixture fraction depend on the choice of the element i
in Eq. (4.3). This is in contrast to single-phase flows, where mixture fraction is
identical for all elements. To ensure monotonicity, it is generally required that the
element mass fraction has its minimum in the oxidizer stream and its maximum in
the fuel stream. Therefore, mixture fraction is defined here based on the conser-
vation of carbon. This definition is common in single-phase combustion processes
involving hydrocarbons or alcohols, and also provides a reasonable definition for
spray flames with pre-evaporation while fulfilling the requirements of monotonicity
and boundedness between zero and one.

4.2 Large Eddy Simulation of the Flow and
Mixture Fraction Field

4.2.1 Definition of the Filter Operator

In LES, a spatial filter operator is applied in order to separate the flow variables into
a large-scale (filtered) part and a small-scale (residual or subfilter) contribution,

q(x, t) = q(x, t) + q′(x, t), (4.5)

where q(x, t) denotes the filtered part of a space-time variable q(x, t), and q′(x, t)
represents the subfilter fluctuation. The spatial filter operator is defined formally as

q(x, t) =
∫ +∞

−∞
G(x′ − x)q(x′, t)dx′, (4.6)

where G is a kernel function of characteristic width ∆LES. The specific form of the
kernel function is not required for the derivation of the filtered transport equations,
but it is assumed that the filter satisfies the fundamental properties of conservation
of constants (consistency), linearity and commutation with differentiation [64]. Fur-
thermore, only positive (G(x) ≥ 0) and symmetric (G(x) = G(−x)) kernel functions
are considered.

In flows with density variations, it is common to use a density-weighted filter
analogous to Favre averaging,

q̃ = ρq

ρ
, (4.7)

which is often referred to as a Favre filter. This results in filtered equations that are
structurally similar to their corresponding non-filtered equations, and reduces the
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number of unclosed terms. The decomposition of any variable can then be written
as

q(x, t) = q̃(x, t) + q′′(x, t), (4.8)

where fluctuations q′′(x, t) are now defined with respect to the density-weighted
filtered variable q̃(x, t).

It should be noted that practical LES calculations usually do not use an ex-
plicit filter operator. Instead, the model filtered equations (which result from the
formal application of a filter operator) are solved numerically on a mesh that is sig-
nificantly larger than the smallest scales of turbulence using standard discretization
techniques. In that case, the numerical grid acts as an effective filter while the model
for residual stress tensor provides the required stability of the numerical solution,
which is referred to as implicit filtering [119]. In that sense, the terms ‘resolved’ and
‘subgrid’ are commonly used equivalently with ‘filtered’ and ‘subfilter’.

4.2.2 Filtered Transport Equations

By applying the filter operator that is given by Eq. (4.6) to the instantaneous trans-
port equations from Sec. 3.1 and using the definition of density-weighted variables,
the transport equations for the filtered variables are derived. Note that the MMC-
LES model employs LES only for the turbulent flow field (velocity and pressure) and
the reference mixture fraction field (the latter is required for the MMC model), while
the reactive scalars are obtained from the filtered mass density function method
(Sec. 4.3).

The calculation of the turbulent flow field requires the continuity equation and
the momentum equation, whose instantaneous equations are given by Eq. (3.1) and
Eq. (3.3), respectively. The filtered continuity equation takes the form

∂ρ

∂t
+ ∂(ρũj)

∂xj

= ṠM , (4.9)

where no unclosed term appears due to the use of density-weighted variables. Ap-
plying the filter operator to the momentum equation results in

∂(ρũi)
∂t

+ ∂(ρũiũj)
∂xj

= − ∂p

∂xi

+ ∂τ ij

∂xj

−
∂τ sgs

ij

∂xj

+ Ṡu,i, (4.10)

where τ sgs
ij is the subgrid-scale (SGS) stress tensor, which represents the effect of the

subgrid fluctuations on the resolved scales. It is defined as

τ sgs
ij = ρ (ũiuj − ũiũj) , (4.11)

and its modeling will be described in the next section. The filtered viscous stress
tensor appears in unclosed form due to the nonlinearity that is introduced by the
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temperature dependence of the viscosity. However, the effect of temperature fluc-
tuations on the thermophysical properties is usually small, such that the term can
be approximated by its computable part [64, 220],

τ ij = 2µ
(
S̃ij − 1

3δijS̃kk

)
, (4.12)

where the viscosity µ is evaluated using the filtered temperature, and S̃ij denotes
the rate-of-strain tensor based on the resolved velocity field.

Applying the filter operator to the instantaneous transport equation of mixture
fraction that is given by Eq. (4.4) yields

∂(ρf̃)
∂t

+ ∂(ρũj f̃)
∂xj

= ∂

∂xj

(
ρD ∂f̃

∂xj

)
−
∂jsgs

j

∂xj

+ ṠM , (4.13)

where the nonlinearity that results from the temperature dependence of the thermo-
physical properties (here the diffusion coefficient) has been neglected. The subgrid
scalar flux is defined as

jsgs
j = ρ

(
ũjf − ũj f̃

)
, (4.14)

and requires closure by a subgrid model.

4.2.3 Subgrid Modeling

The modeling of the SGS stress tensor in the filtered momentum equation is based
on the Boussinesq hypothesis [18], which states that the subgrid-scale stresses can
be modeled in analogy to the viscous stress tensor, with the molecular viscosity
being replaced by a turbulent viscosity. In these kind of eddy viscosity models, the
deviatoric (traceless) part of the SGS stress tensor, which is obtained by subtracting
the isotropic part 1

3δijτ
sgs
kk , is expressed as

τ sgs
ij − 1

3δijτ
sgs
kk = −2ρνt

(
S̃ij − 1

3δijS̃kk

)
, (4.15)

with νt being the turbulent viscosity [64]. The isotropic part of the SGS stress tensor
must generally be modeled separately (see for example Yoshizawa [236]). However,
for incompressible flows it is usually added to the filtered pressure to avoid modeling,
while for compressible flows it can be argued that its contribution is small compared
to the thermodynamic pressure and can therefore be neglected [51]. Accordingly,
the modeled form of the filtered momentum equation can be written as

∂(ρũi)
∂t

+ ∂(ρũiũj)
∂xj

= − ∂p

∂xi

+ ∂

∂xj

[
µeff

(
2S̃ij − 2

3δijS̃kk

) ]
+ Ṡu,i, (4.16)



4.2 Large Eddy Simulation of the Flow and Mixture Fraction Field 47

where µeff = µ+µt is the effective viscosity, with the turbulent component given by
µt = ρνt.

The most popular model for estimating the turbulent viscosity is the Smagorin-
sky model [190], which reads as

νt = (Cs∆LES)2
√

2S̃ijS̃ij, (4.17)

where Cs is the Smagorinsky constant and ∆LES is the filter width. The Smagorinsky
constant can be calculated theoretically as Cs ≈ 0.17 [163], but practically it takes
values ranging from 0.1 to 0.2 depending on the flow [64]. The filter width is
generally associated with the computational grid and is evaluated as the cubic root of
the cell volume, ∆LES = V

1/3
cell . Note that the Smagorinsky model is implemented here

using a more general and compressible formulation [58], which reduces to Eq. (4.17)
in the limit of incompressible flows.

An alternative and more recent subgrid model is the σ-model that was proposed
by Nicoud et al. [143]. It calculates the turbulent viscosity based on the singular
values of the resolved velocity gradient tensor according to

νt = (Cσ∆LES)2 σ3 (σ1 − σ2) (σ2 − σ3)
σ2

1
, (4.18)

with singular values σ1 ≥ σ2 ≥ σ3 ≥ 0 given by the square roots of the eigenvalues
of the matrix Gij = ∂ũk/∂xi ∂ũk/∂xj . For the model constant, a value of Cσ = 1.5
has shown to provide good agreement with results from direct numerical simulation
and experimental data [143, 173].

The subgrid scalar flux in the filtered transport equation for mixture fraction
is modeled by a gradient diffusion model [176],

jsgs
j = −ρDt

∂f̃

∂xj

, (4.19)

where Dt is the turbulent diffusivity, which is linked to the turbulent viscosity via
the turbulent Schmidt number,

Dt = νt

Sct

. (4.20)

By inserting the model into Eq. (4.13), the filtered mixture fraction transport equa-
tion can be written as

∂(ρf̃)
∂t

+ ∂(ρũj f̃)
∂xj

= ∂

∂xj

(
ρDeff

∂f̃

∂xj

)
+ ṠM , (4.21)

with Deff = D+Dt being the effective diffusivity in analogy to the effective viscosity.
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4.3 The Filtered Density Function (FDF)
Approach

4.3.1 Definition and Properties of the FDF

To overcome the closure problem associated with the filtered reaction rates in LES,
the turbulent composition field ϕ = (Y, h)T is represented probabilistically by the
filtered mass density function (FMDF) [92], defined as

FL(ψ; x, t) =
∫ +∞

−∞
ρ(x′, t)ζ[ψ,ϕ(x′, t)]G(x′ − x)dx′, (4.22)

where ψ denotes the sample space for the composition vector ϕ, ρ is the gaseous
density, and G is the kernel function of the filter. The term ζ[ψ,ϕ(x′, t)] is called
the fine-grained density [145, 158], and is given by the (Ns + 1)-dimensional Dirac
delta function,

ζ[ψ,ϕ(x, t)] = δ[ψ − ϕ(x, t)] =
Ns+1∏
α=1

δ[ψα − ϕα(x, t)]. (4.23)

Note that for constant-density flows, the FMDF reduces to the filtered density
function (FDF). In the present work, the term FDF is used to describe both the
FDF and the FMDF.

Filtered quantities are derived from the FMDF by integration in the scalar
composition space. By design, the zeroth moment corresponds to the filtered density,∫ +∞

−∞
FL(ψ; x, t)dψ = ρ(x, t), (4.24)

and the first moment of the FMDF yields the density-weighted filtered composition
variables, ∫ +∞

−∞
ψαFL(ψ; x, t)dψ = ρ(x, t)ϕ̃α(x, t). (4.25)

More general, the Favre-filtered value of any arbitrary random function q(x, t) is
obtained from ∫ +∞

−∞
⟨q(x, t)|ψ⟩FL(ψ; x, t)dψ = ρ(x, t)q̃(x, t), (4.26)

where the density-weighted conditionally filtered value of the variable q(x, t) is de-
fined as

⟨q(x, t)|ψ⟩ =
∫+∞

−∞ ρ(x′, t)q(x′, t)ζ[ψ,ϕ(x′, t)]G(x′ − x)dx′

FL(ψ; x, t) . (4.27)

Note that angle brackets are used in place of the tilde symbol for better readability.
In the case where the variable q(x, t) can be completely described by the composition
space ϕ(x, t) (such as the composition variables themselves or the chemical source
term), the conditional filtered value takes the form ⟨q(x, t)|ψ⟩ = q(ψ).
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4.3.2 The FDF Transport Equation

The transport equation for the temporal and spatial evolution of the FDF with
application to two-phase flows is reported in a number of previous works [43, 67,
68, 82, 102, 136, 208], but will be repeated here for the sake of completeness and
uniformity of notation. Note that in some of the works, including the recent two-
phase MMC-LES formulation of Khan et al. [102], a phase indicator is introduced to
distinguish between the gas phase and the liquid phase. Since only dilute sprays are
considered in the present work, where all the liquid fuel is stored in the dispersed
droplets, the phase indicator is omitted here. Accordingly, the two-phase FDF
transport equation differs from its single-phase formulation only in the existence of
the evaporation source terms.

Exact Form of the FDF Transport Equation

The derivation of the FDF transport equation is usually based on the fine-grained
density utilizing the method developed by Lundgren [120]. Using the chain rule and
the properties of the Dirac delta function, the derivative of the fine-grained density
can be expressed as [106, 163]

∂ζ

∂η
= − ∂ζ

∂ψα

∂ϕα

∂η
= − ∂

∂ψα

(
ζ
∂ϕα

∂η

)
, (4.28)

where the variable η indicates space (xj) or time (t). The second step is valid because
ϕα is independent of the sample space variable ψα. Multiplication of Eq. (4.28) with
η = t by the gaseous density ρ and using the chain rule results in

∂(ρζ)
∂t

− ζ
∂ρ

∂t
= − ∂

∂ψα

[
ζ

(
∂(ρϕα)
∂t

− ϕα
∂ρ

∂t

)]
, (4.29)

where it was used that density ρ is independent of the independent sample space
variable ψα [72, 106]. Inserting the scalar transport equation, Eq. (3.18), and the
continuity equation, Eq. (3.1) with ṠM = ρΠF , yields

∂(ρζ)
∂t

− ζ

(
−∂(ρuj)

∂xj

+ ρΠF

)

= − ∂

∂ψα

[
ζ

(
− ∂(ρujϕα)

∂xj

+ ∂

∂xj

(
ρD∂ϕα

∂xj

)
+ ρWα + ρΠα

− ϕα

(
−∂(ρuj)

∂xj

+ ρΠF

))]
. (4.30)
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With some further manipulations involving the chain rule and using Eq. (4.28) with
η = xj, the equation for the fine-grained density takes the form

∂(ρζ)
∂t

+ ∂(ρujζ)
∂xj

= − ∂

∂ψα

[
∂

∂xj

(
ρD∂ϕα

∂xj

)
ζ + ρWαζ + ρΠαζ − ϕαρΠF ζ

]
+ ρΠF ζ.

(4.31)
Weighting the equation by the filter kernel and integrating over the physical space
according to Eqs. (4.22) and (4.26) finally yields the FDF transport equation,

∂FL

∂t
+ ∂(⟨uj|ψ⟩FL)

∂xj

= − ∂

∂ψα

[〈
1
ρ

∂

∂xj

(
ρD∂ϕα

∂xj

)∣∣∣∣∣ψ
〉
FL

]
− ∂(⟨Wα|ψ⟩FL)

∂ψα

− ∂

∂ψα

[
⟨Πα − ϕαΠF |ψ⟩FL

]
+ ⟨ΠF |ψ⟩FL. (4.32)

This is an exact transport equation that describes the evolution of the FMDF due
to transport in physical and composition space. The left-hand side of the equation
contains the time derivative of the FMDF and a conditional convective term. The
first term on the right-hand side accounts for molecular diffusion, and the second
term is the chemical source term, which appears in closed form via ⟨Wα|ψ⟩ =
Wα(ψ). The final two terms on the right-hand side describe the effects of heat
and mass transfer due to evaporation. Note that there are different versions of the
FDF transport equation for spray flames in the literature, mainly due to different
definitions of the evaporation source terms. The form presented here is consistent
with the works of Tang et al. [207, 208] and Zhao and Haworth [241], but has minor
differences compared to the work of Khan et al. [102]. Details can be found in
Appendix A.2.

Modeled Form of the FDF Transport Equation

Modeling is required for the conditional convection, molecular diffusion and evap-
oration terms. The conditional velocity term is decomposed into its resolved and
subgrid-scale components, where the latter is modeled using a gradient diffusion
model [92],

⟨uj|ψ⟩FL = ũjFL + (⟨uj|ψ⟩ − ũj)FL = ũjFL − ρDt
∂(FL/ρ)
∂xj

, (4.33)

with turbulent diffusivity Dt. The conditional diffusion term is reformulated accord-
ing to [30, 33, 72, 106]

− ∂

∂ψα

[〈
1
ρ

∂

∂xj

(
ρD∂ϕα

∂xj

)∣∣∣∣∣ψ
〉
FL

]

= ∂

∂xj

[
ρD∂(FL/ρ)

∂xj

]
− ∂2

∂ψα∂ψβ

[〈
D∂ϕα

∂xj

∂ϕβ

∂xj

∣∣∣∣∣ψ
〉
FL

]
. (4.34)
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The first term on the right-hand side represents the resolved-scale molecular diffusion
in physical space, while the second term is linked with mixing processes on subgrid
scale (also referred to as micro-mixing term) and is closed by a mixing model. The
mixing model is usually formulated as a particle interaction model in the context of
a Monte Carlo solution of the FDF transport equation (see the following sections),
where the equivalent modeling expression in the Eulerian form of the FDF transport
equation is given by

∂2

∂ψα∂ψβ

[〈
D∂ϕα

∂xj

∂ϕβ

∂xj

∣∣∣∣∣ψ
〉
FL

]
= − ∂

∂ψα

[
Cmix

τL

(ψα − ϕmean
α )FL

]
. (4.35)

Here, Cmix is a modeling constant, τL is the (Lagrangian) mixing time scale, and
ϕmean

α denotes a mean composition, the determination of which depends on the choice
of the mixing model. The classical mixing models for dense particle methods are
summarized in Sec. 4.3.4, and the sparse-Lagrangian MMC mixing model is pre-
sented in Sec. 4.4. The modeling of the conditional evaporation term is discussed
in detail in Sec. 4.5, and therefore the conditionally filtered expressions are retained
here. By incorporating the aforementioned closures into the exact transport equa-
tion of the FMDF, one finally obtains

∂FL

∂t
+ ∂(ũjFL)

∂xj

= ∂

∂xj

[
ρ(D + Dt)

∂(FL/ρ)
∂xj

]
− ∂(Wα(ψ)FL)

∂ψα

+ ∂

∂ψα

[
Cmix

τL

(ψα − ϕmean
α )FL

]

− ∂

∂ψα

[
⟨Πα − ϕαΠF |ψ⟩FL

]
+ ⟨ΠF |ψ⟩FL. (4.36)

The terms in the first row of the equation are conventional for FDF methods and
appear in closed form, while the terms in the second and third row represent mixing
and evaporation and require further modeling details (see Secs. 4.4 and 4.5).

4.3.3 Monte Carlo Solution

The FDF transport equation is (Ns + 3)-dimensional with Ns ≫ 1 for a realistic
treatment of the chemical kinetics, thus making an Eulerian solution (e.g., by using
a finite-difference method) impractical. Therefore, the FDF transport equation
is replaced by a set of equivalent stochastic differential equations that govern the
evolution of notional particles in physical and composition space, each of them
representing an instantaneous and local realization of the composition field [156,
158, 161]. By comparison of the FDF transport equation with the Fokker-Plank
equation [63], the set of stochastic particle equations that emulate the solution of
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Eq. (4.36) is found,

dxsp
i =

[
ũi + 1

ρ

∂(ρDeff)
∂xi

]sp

dt+
[√

2Deff

]sp

dωi, (4.37)

dϕsp
α =

[
Wα − Cmix

τL

(ϕα − ϕmean
α ) + ⟨Πα − ϕαΠF |ψ⟩

]sp

dt, (4.38)

dmsp = msp ⟨ΠF |ψ⟩sp dt, (4.39)

where the superscript sp indicates properties that are evaluated on or assigned to
the stochastic particles. Equation (4.37) describes the transport of the notional
particles with the turbulent flow field and superimposed by a random walk, with
dωi being the increment of an independent Wiener process. The additional drift
term containing the gradient of the effective diffusivity results from a decomposition
of the diffusion term that is required for the comparison with the Fokker-Plank
equation. The filtered velocity and density as well as the effective diffusivity and
its gradient that appear in Eq. (4.37) are interpolated from the Eulerian LES fields
to the respective particle positions. Equation (4.38) represents the transport in
composition space and describes the change of the gas composition of the notional
particles due to chemical reactions, mixing and evaporation. Equivalent to the
FDF transport equation, the chemical source term Wα appears in closed form and
can be evaluated directly from the composition vector of the notional particles.
Finally, Eq. (4.39) accounts for the change of the stochastic particle mass due to
evaporation. The set of stochastic differential equations is supplemented with the
equation of state, Eq. (3.5) that is used here to calculate the density, where the
pressure is obtained from the Eulerian LES field and interpolated to the respective
particle positions.

It should be noted that, unlike single-phase flows, the two-phase FDF transport
equation is strictly speaking not a Fokker-Planck equation due to the existence of
the last evaporation term in Eq. (4.36). However, as this term is accounted for in the
particle mass equation, it can be ignored for the comparison with the Fokker-Plank
equation, thus allowing to find the stochastic differential equations for transport in
physical and composition space.

The Monte Carlo solution generally requires a sufficiently high number of par-
ticles per computational cell (typically 10 to 100) to accurately reproduce the lower
moments (such as mean values and subfilter fluctuations) locally and instanta-
neously, which is referred to as an intensive particle method. In contrast, sparse
particle simulations do not aim to reproduce the statistics of the reactive scalars
locally and instantaneously, but rather predict unconditionally and conditionally
averaged quantities while still accounting for subfilter fluctuations [205], which al-
lows significantly fewer particles to be used.
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4.3.4 The Classical Mixing Models

The Mixing Substep

Using the stochastic form given by Eq. (4.38), the effect of mixing on the composition
of a notional particle can be written as

dϕsp
α

dt = −Cmix

τL

(ϕsp
α − ϕmean

α ) . (4.40)

By integrating Eq. (4.40) over the time interval ∆t, the following relation for the
particle composition after mixing is obtained,

ϕsp
α (t+ ∆t) = ϕsp

α (t) + γ (ϕmean
α − ϕsp

α (t)) , (4.41)

with the mixing extent γ given by

γ = 1 − exp(−Cmix∆t/τL). (4.42)

It describes the degree of mixing and is bounded between zero and one, where
γ = 0 indicates no mixing at all and γ = 1 is equivalent to complete mixing.
While Eq. (4.41) forms the basis for the mixing substep, the specific form of the
interactions between the notional particles and with the mean is the subject of
the mixing model. In the following, the conventional mixing models for intensive
Lagrangian simulations are briefly presented, where mixing is usually limited to the
computational cell. The sparse-Lagrangian MMC mixing model, which is the focus
of the present work, will be discussed in more detail in the subsequent section.

The IEM Model

The simplest mixing model is the interaction by exchange with the mean (IEM)
model [216], which is also known as the linear mean-square estimation (LMSE)
model [46]. It employs a deterministic relaxation of the scalar values of the notional
particles towards their unconditional mean, ϕmean

α = ⟨ϕα⟩. The mean composition
is calculated locally from the instantaneous particle compositions weighted by their
mass,

⟨ϕα⟩ =
∑

sp m
spϕsp

α∑
sp msp

, (4.43)

where summation is performed over all particles that are located within the LES
cell. The modeling constant in Eq. (4.42) takes the value Cmix = 0.5. Due to its
simplicity, the IEM model is widely used in combustion simulations, although it
has some well-known limitations, such as that it preserves the shape of the scalar
PDF [22, 45, 131, 134, 167].
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Coalescence/Dispersion Models

Another class of mixing models is based on Curl’s coalescence/dispersion model [38],
which employs pairwise particle mixing. For a pair of particles denoted as p and q,
the mixing step given by Eq. (4.41) is expressed as

ϕp
α(t+ ∆t) = ϕp

α(t) + γ (⟨ϕα⟩p,q − ϕp
α(t)) , (4.44a)

ϕq
α(t+ ∆t) = ϕq

α(t) + γ (⟨ϕα⟩p,q − ϕq
α(t)) , (4.44b)

where the mean value ϕmean
α = ⟨ϕα⟩p,q is calculated from the scalars of the particle

pair using the mass-weighted average,

⟨ϕα⟩p,q = mpϕp
α +mqϕq

α

mp +mq
. (4.45)

The mixing pairs are selected randomly in each time step from the ensemble of
particles within each LES cell. The following three variants of Curl’s mixing model
are common:

Original Curl model: In the original model formulation of Curl [38], a subset
of the particle pairs formed mixes completely (γ = 1), whereas the remaining
particle pairs do not change their values. The number of mixing pairs is deter-
mined from the mixing probability, which is given by pmix = Cmix∆t/τL with
Cmix = 2 [157].
Modified Curl model: In the modified Curl model [44, 94], the subset of
particle pairs that are selected for mixing mix partially towards their particle pair
mean, where the mixing extent is given by a uniform random variable ξ ∈ [0, 1].
Due to partial mixing, the mixing probability needs to be increased by setting
Cmix = 3 [157].
Continuous Curl model: The variant where all particle pairs mix partially
towards their weighted particle pair mean is referred to as the continuous Curl
model [87], as it attempts to overcome the problem of time discontinuity of the
particle compositions. In the original model formulation of Hsu and Chen [87],
the mixing extent is given by γ = 2ξ∆t/τL, where ξ ∈ [0, 1] is a uniform random
variable. A slight modification of this model is obtained by using a deterministic
mixing extent given by Eq. (4.42) with Cmix = 1.

A comparison of properties fulfilled by the three variants of Curl’s mixing model is
provided in Tab. 4.1. Both the original and the modified Curl model converge to a
Gaussian-like (but not exactly Gaussian) PDF, which is desirable in homogeneous
isotropic turbulence [22, 45, 134, 158]. In contrast, the continuous Curl model fea-
tures similarities with the IEM model, since all particles are mixed partially with
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Table 4.1: Summary of properties fulfilled by the conventional mixing models [22, 45, 134] and
the sparse-Lagrangian MMC mixing model [29, 108, 231]. For details on the respective properties
the reader is referred to the literature [56, 163, 203].

IEM Orig. Curl Mod. Curl Cont. Curl MMC

Conservation of the means ✓ ✓ ✓ ✓ ✓
Boundedness of scalar values ✓ ✓ ✓ ✓ ✓
Linearity and independence ✓ ✓ ✓ ✓ ✓
Decay of scalar variances ✓ ✓ ✓ ✓ ✓
Relaxation to Gaussian PDF - (✓) (✓) - ✓
Localness in composition space - - - - ✓

a rather small mixing extent, and is therefore not able to reproduce a Gaussian
PDF [231]. Note that more advanced mixing models exist that employ pairwise
mixing based on Curl’s coalescence/dispersion model, such as the Euclidean mini-
mum spanning tree (EMST) model [203], which selects particle pairs in such a way
that their separation in composition space is minimized, and the sparse-Lagrangian
MMC mixing model, which is discussed in detail in Sec. 4.4.

Mixing Time Scale

For the intensive Lagrangian particle methods, the mixing model controls the dis-
sipation of the subgrid fluctuations of the reactive scalars. The corresponding La-
grangian time scale is found by analogy with the time scale of the Eulerian subgrid
fluctuations, which is justified since mixing is restricted to the LES cell and thus
the filter scale associated with the Lagrangian particle method is the same as in the
Eulerian LES [218]. Since the turbulent fluctuations of reactive scalars are strongly
correlated with mixture fraction, the time scale of the Eulerian subgrid scalar fluc-
tuations is modeled according to [150, 163],

τE = fV /χ̃, (4.46)

where fV = f̃ 2 − f̃ 2 denotes the subgrid-scale mixture fraction variance (see Ap-
pendix B for details on the variance definition), and χ̃ = 2ρD∇f∇f/ρ is the filtered
scalar dissipation rate. In order to obtain a closed-form expression for the mixing
time in LES, these quantities need to be replaced by algebraic models. The subgrid-
scalar mixture fraction variance is modeled according to [151]

fV = Cf∆2
LES∇f̃ · ∇f̃ , (4.47)

with model constant Cf = 0.1. The closed-form expression for the filtered scalar
dissipation rate is derived by assuming local equilibrium between dissipation and
production (see Appendix B for details), and is given by [151]

χ̃ = 2(D + Dt)∇f̃ · ∇f̃ . (4.48)
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By inserting these models into Eq. (4.46) and using the relation τL = τE, the
expression for the Lagrangian mixing time scale becomes

τL = Cf∆2
LES

2(D + Dt)
. (4.49)

The modeling constant is usually determined such that the mixing model predicts
the correct decay rate of the variance of a passive scalar, though the default value
Cf = 0.1 was found to work well for most single-phase flames.

4.4 The MMC Mixing Model

4.4.1 Background

The multiple mapping conditioning (MMC) model was originally introduced by
Klimenko and Pope [108] as a modeling framework for turbulent reacting flows
that combines concepts of the conditional moment closure (CMC) [9, 105, 106,
141] and generalized mapping closure [160], with both deterministic and stochastic
implementations in RANS and LES [29]. The stochastic implementation, which is
used nowadays, converts the MMC modeling framework into a transported PDF
approach employing a Monte Carlo solution, where MMC plays the role of a mixing
model that incorporates ideas from the flamelet-like approaches by conditioning the
mixing operator on a mathematically independent reference space. The conditioning
achieves localness of the mixing model [203] and allows MMC to be implemented
with a significantly reduced number of particles, thus giving it a computational
advantage over intensive Lagrangian methods, in particular if realistic chemical
kinetics are involved. Accordingly, the MMC model fulfills all requirements for an
ideal mixing model (cf. Tab. 4.1).

Cleary and Klimenko [28, 30, 31] have developed a generalized sparse-Lagrangian
MMC model in the context of LES of turbulent nonpremixed flames, which forms
the basis for all MMC-LES applications to date. The reference space is selected
to be the mixture fraction f̃ , which is obtained from the Eulerian LES by solv-
ing Eq. (4.21). Unlike the particle mixture fraction zsp, which is calculated from
the mass fractions via Eqs. (4.1) and (4.3), the Eulerian mixture fraction is math-
ematically independent of the instantaneous composition ϕsp

α , thus making mixing
independent and linear for all scalars [30]. Mixing is realized using a modified Curl’s
model, in which particle pairs are selected conditionally on the reference mixture
fraction space rather than randomly to enforce localness of the mixing operator (note
that this requires a high correlation between f̃ and zsp). Accordingly, the mean value
of the particle pair is to be interpreted as a conditional mean, ϕmean

α = ⟨ϕα|f̃⟩p,q, so
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that the MMC variant of Curl’s mixing formula, Eq. (4.44), is written as

ϕp
α(t+ ∆t) = ϕp

α(t) + γ
(
⟨ϕα|f̃⟩p,q − ϕp

α(t)
)
, (4.50a)

ϕq
α(t+ ∆t) = ϕq

α(t) + γ
(
⟨ϕα|f̃⟩p,q − ϕq

α(t)
)
. (4.50b)

Note that mixing is no longer restricted to the LES cell but typically occurs across
several LES cells due to the sparse particle distribution, with particle pairs usually
selected from the entire computational domain. The mixing extent γ is given by
Eq. (4.42) with Cmix = 1 and is evaluated locally and instantaneously for each mixing
pair. Once the particle pairs are chosen, the evaluation of the conditional mean is
equivalent to the unconditional particle pair mean that is given by Eq. (4.45). In
the following, details on the MMC variant of Curl’s mixing model are presented,
which includes the conditional selection of the particle pairs and the modeling of
the mixing time scale that determines the mixing extent.

4.4.2 Particle Pair Selection

Localness of the MMC mixing model in reference space is achieved by selecting
particle pairs in such a way that mixing partners are close to each other in both
physical space and reference mixture fraction space, as illustrated in Fig. 4.2. This is
achieved by the minimization of the effective square distance defined as [28, 30, 31],

d̂2
p,q =

3∑
i=1

(
dp,q

xi

rm/
√

3

)2

+
(
dp,q

f

fm

)2

, (4.51)

where dp,q
xi

= |xp
i −xq

i | is the distance between two particles p and q in physical space
and dp,q

f = |f̃(xp) − f̃(xq)| is the distance in reference mixture fraction space, which
is interpolated from the Eulerian LES to the respective particle positions. The pa-
rameters rm and fm represent the characteristic mixing distances in physical and
reference mixture fraction space, respectively, and the factor

√
3 results from the as-

sumption that the mixing distance is isotropic in each spatial direction, ri = rm/
√

3.
Although the actual mixing distances vary locally, the parameters rm and fm are
treated as global input parameters and can, in principle, be adjusted individually
to control the level of localness in reference mixture fraction space. Cleary and
Klimenko [30] derived an algebraic relation between rm and fm through the concept
of an isoscalar sliver with fractal-like turbulent stretching, thus reducing the choice
of mixing parameters to a single-parameter problem. The relation is given by

rm = Cm

(
df̃
dn

∆3
L

r
2−Df
c

1
fm

)1/Df

, (4.52)
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Figure 4.2: Schematic sketch of the MMC particle pair selection. The contour plot shows a
2D region of the instantaneous reference mixture fraction field, where the orange line indicates
the stoichiometric value and thus the flame position. Points A to D denote the locations of four
stochastic particles, with emphasis on selecting a mixing partner for particle A. Particle B is closest
in physical space but has a large separation in composition space (indicated by mixture fraction),
which may result in unphysical mixing across the flame front. In contrast, selecting particle C,
which is closest in reference mixture fraction space, imposes a flamelet-like closure on the mixing
model. The MMC model selects particle D, which is close in both physical and composition space,
and thus reflects real mixing.

where Cm = 0.5 is a scaling constant, df̃/dn is the gradient of the filtered mixture
fraction normal to the isoscalar sliver, ∆L = (V/N sp)1/3 is the nominal distance
between the stochastic particles, rc is the inner cutoff scale of the fractal surface
given by the LES cell size, and Df = 2.36 is the fractal dimension. For a given fm,
Eq. (4.52) allows the calculation of rm, where ∆L, rc and df̃/dn, all of which are
spatially variable, are evaluated at a characteristic location in the flow. Based on
several studies [60, 60, 70, 89, 205, 218] it was found that the value fm = 0.03 works
well in most single-phase flames, but may need to be adjusted for two-phase flows.
A detailed discussion on this will be given later in Secs. 7.1.2 and 7.3.2.

4.4.3 Models for the Mixing Time Scale

In the MMC mixing model, particles mix towards mean values conditionally aver-
aged on the reference mixture fraction space. As a result, the mixing time scale pri-
marily controls the dissipation of composition fluctuations with respect to averages
conditioned on the reference variable, and only indirectly determines the uncondi-
tional fluctuations. Models for the mixing time scale in sparse-Lagragian methods
are derived by analogy to the characteristic Eulerian time scale (cf. Eq. (4.46)) but
using equivalent Lagrangian expressions for the subfilter variance and dissipation
rate. Cleary and Klimenko [30] derived a model on the basis of simple geometrical
reasoning, which reads

τL = C−1
L

βCf (dp,q
f )2

2Deff∇f̃ · ∇f̃
, (4.53)
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with model parameters CL = 1, β = 3 and Cf = 0.1. This model is referred
to as the Cleary & Klimenko (C&K) model and has been used in many MMC-LES
simulations of practical flames. Vo et al. [218] developed a new model for the mixing
time scale that takes a more rigorous anisotropic view of the turbulent structures
at the subfilter scale. It is referred to as the anisotropic (a-ISO) model and is given
by [61, 218]

τL = C−1
L

Cf (dp,q
x )2

2(D + Dt,L) , (4.54)

where the model constants CL and Cf are the same as in Eq. (4.53), and Dt,L =
dp,q

x

∆LES
Dt is a turbulent subgrid-scale diffusivity that acts at the relevant Lagrangian

length scales. This model shares similarities with the Eulerian model for the mix-
ing time scale, Eq. (4.49), but with the Eulerian filter width being replaced by a
Lagrangian filter width associated with the distance between mixing particles. Re-
cently, Sharma et al. [186] proposed a dynamic version of the a-ISO model, where
the modeling constants are evaluated locally using a test filter. However, such a
procedure will not be used in the present work.

The mixing time is evaluated per mixing pair, where the Eulerian quantities
(such as ∇f̃ and Deff) are interpolated to the respective particle positions. As
mixing typically occurs with particles located in different LES cells, the interpolated
quantities of the selected particles p and q may vary significantly. Therefore, the
mixing time scale of the mixing pair is taken as the harmonic mean of the individual
time scales of the mixing partners, τL = 2/(1/τ p

L+1/τ q
L). Note that this is equivalent

to taking the arithmetic mean of the interpolated quantities, since the Eulerian
quantities appear in the denominator of the mixing time and the numerator is the
same for both particles of a pair.

4.5 Two-Phase Coupling

4.5.1 General Modeling Strategy

The two-phase coupling between the liquid droplets and the gas phase that is rep-
resented by the stochastic particles follows the concept of the particle-source-in cell
model introduced in Sec. 3.2.4, and consists essentially of two steps:

1. The ambient conditions required for the Lagrangian droplet evaporation model
to calculate the heat and mass transfer rates must be determined from the
ensemble of the notional particles representing the gas phase.
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2. Once the droplet properties have been updated, heat and mass are transferred
to the stochastic particles via source terms in the transport equations (or, alter-
natively, by creating new stochastic particles).

For intensive particle methods, where each computational cell includes several
notional particles, the determination of the ambient conditions (step 1) is not dif-
ficult and is usually done by interpolating the gas-phase properties of the Eulerian
field, sampled from the stochastic particles, to the respective droplet positions. The
closure of the conditional evaporation term that appears in the stochastic differ-
ential equations, Eqs. (4.38) and (4.39), requires a model to distribute the source
terms among the stochastic particles (step 2). In the context of intensive particle
methods, several models are available, which will be summarized in Sec. 4.5.2.

In sparse particle methods, the difficulty arises that there are no gas-phase
particles in the immediate vicinity of the droplets, so it is not clear how the ambient
conditions for the evaporation process can be determined from the sparse set of gas-
phase particles (step 1) and how the source terms should be distributed among the
particles (step 2). A new model is formulated in Sec. 4.5.3 that adopts the concept
of the MMC particle pair selection by applying a one-to-one coupling technique
between the liquid fuel droplets and the notional gas-phase particles with the particle
pair selection conditional on a set of suitable conditioning variables.

4.5.2 Conventional Two-Phase Coupling Models

The EQUAL Model

The EQUAL model [66, 67] distributes the evaporation source terms evenly to all
stochastic particles within the computational cell in proportion to their particle
mass, as illustrated in Fig. 4.3(a). This is equivalent to an approximation of the
conditional evaporation term by its unconditional filtered average,

⟨ΠF |ψ⟩sp ≈ Π̃sp
F , ⟨Πα − ϕαΠF |ψ⟩sp ≈ Π̃sp

α − ϕsp
α Π̃sp

F . (4.55)

For the fuel mass fraction, ϕα = YF , the filtered average is given by

Π̃sp
F = −

∑
d

dmd

dt∑
sp msp

, (4.56)

while it is zero for the non-evaporating species. For the enthalpy, ϕα = h, the filtered
evaporation term is given by

Π̃sp
h = −

∑
d

d(mdhd)
dt∑

sp msp
. (4.57)
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(a) EQUAL model. (b) NEW model. (c) SAT model. (d) One-to-one coupling
conditional on f̃ .

Figure 4.3: Schematic sketch of the two-phase coupling models. Gray dots mark droplets, and
red dots indicate the stochastic particles.

The summation is performed over all notional particles and fuel droplets within the
computational cell. Since all particles within the cell receive the same source term,
the model features similarity with the particle-source-in-cell model that would be
used in an Eulerian simulation of the composition field, and is not able to gener-
ate any subfilter fluctuations that would arise from composition-evaporation rate
correlations. Nevertheless, due to its simplicity and robustness, the EQUAL model
has been used in numerous transported PDF studies of turbulent spray combus-
tion [67, 82, 113, 146].

The NEW Model

Another approach to maintain mass and energy conservation between the gas phase
and the fuel droplets is to generate new gas-phase particles at the positions of the
liquid droplets (see Fig. 4.3(b)) [47, 93, 113]. These new gas-phase particles are
characterized by unity fuel mass fraction and contain the evaporated mass and en-
thalpy. This allows the model to capture the high levels of local gas-phase fuel
concentration and temperature fluctuations in the regions interacting with evapora-
tion. However, the use of the NEW model is also associated with some difficulties.
To keep the number of gas-phase particles per cell within reasonable bounds, a par-
ticle number control algorithm [172] is required. Furthermore, the assignment of
the enthalpy source term to the new gas-phase particles can lead to unrealistically
low temperatures [113, 208, 229]. Due to these difficulties, the NEW model will not
be used in the present work, but according to previous studies [208], the results are
likely to be similar to those of the SAT model presented below.

The SAT Model

In order to overcome the limitations of the EQUAL model, Naud [140] proposed
a model based on the idea that gas-phase conditions in the immediate vicinity of
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a droplet are close to saturation conditions. Accordingly, the evaporation source
terms are distributed preferentially to notional particles that are close to the sat-
uration state (see Fig. 4.3(c)). The SAT model thus exhibits similarities with the
NEW model by allowing locally high fuel concentrations, but without exceeding the
saturation limit. The algorithm is as follows. For each droplet, a gas-phase particle
within the same computational cell is selected that is closest to but still below the
saturation state, i.e., that has the smallest value of (YF,s − Y sp

F ) with Y sp
F < YF,s.

The selected particle then receives the evaporation source terms from the droplet.
If the particle becomes supersaturated during the heat and mass transfer, it re-
ceives sources until it reaches saturation, and the remaining sources are added to
the next particle following the same procedure. The corresponding closed-form ex-
pressions are the same as for the one-to-one coupling technique and are presented
there (cf. Sec. 4.5.3). Since most gas-phase particles in spray combustion applica-
tions have a fuel mass fraction far from the saturation limit, the SAT model often
leads to a distribution of the source terms among only a few selected stochastic
particles. Similar to the NEW model, the SAT model can lead to unrealistically
low temperatures, which is due to the fact that the source terms are transferred to
a different gas state than was used to calculate the heat and mass transfer rates of
the liquid droplets. Therefore, the additional condition that the temperature of the
gas-phase particle must be above a user-defined value (here the boiling temperature)
is imposed when selecting the particles.

4.5.3 Sparse-Lagrangian Two-Phase Coupling

The use of a sparse set of stochastic particles requires a different strategy for the
coupling between the liquid fuel droplets and the notional particles, since there is
not always a gas-phase particle in the vicinity of the droplet. In a real spray, the
evaporating droplets interact with the surrounding gas, thus making the two-phase
coupling inherently local in composition space. Accordingly, the two-phase coupling
model should emulate that localness in the same way that mixing models emulate
the localness of molecular diffusion. In analogy to the MMC reference variables, a
set of suitable conditioning variables that are obtained from the Eulerian LES and
denoted as ξ̃ are introduced to serve as a proxy for localness of the two-phase cou-
pling in composition space. Note that the conditioning variables generally do not
encompass the entire composition space but rather individual characteristic vari-
ables representing the gas composition, and details on the selection of appropriate
conditioning variables are given later. The evaluation of the conditional evaporation
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terms is then approximated by an evaluation conditional on ξ̃,

⟨ΠF |ψ⟩sp ≈ ⟨ΠF |ξ̃⟩sp, ⟨Πα − ϕαΠF |ψ⟩sp ≈ ⟨Πα − ϕαΠF |ξ̃⟩sp. (4.58)

This modeling features similarities with spray closures from CMC methods [16, 212]
as well as with the doubly-conditioned distribution model proposed by Tang [207].
The conditional evaluation of the evaporation terms is implemented at the particle
level by adopting the concept of minimizing the effective square distance,

d̂2
d,sp = λx

3∑
i=1

(
dd,sp

xi

r∗
m/

√
3

)2

+
Nξ∑
i=1

λξi

(
dd,sp

ξi

ξ∗
i,m

)2

, (4.59)

where dd,sp
xi

= |xi,d − xsp
i | and dd,sp

ξi
= |ξ̃i(xd) − ξ̃i(xsp)| are the distances between

the droplets and the stochastic particles in physical space and conditional space,
respectively, with the conditioning variables being interpolated from the filtered
Eulerian field to the respective particle and droplet positions. The terms λx and
λξi

are Boolean variables that are used to enable or disable individual terms in the
effective square distance, e.g., setting λξi

= 0 for all i leads to a particle selection in
pure physical space. The coupling parameters r∗

m and ξ∗
i,m are marked by an asterisk

to distinguish them from the mixing parameters in Eq. (4.51). Their estimation will
be discussed later in Sec. 7.1.2.

The conditioning variables should be chosen so that the minimization of the
effective square distance selects a gas-phase particle that represents a gas state
similar to that found at the droplet position even if they are several cells apart, as
illustrated in Fig. 4.3(d). Using the entire composition vector, i.e., ξ = ϕ, would
give the most accurate results but is not practically feasible as it would require
the solution of a number of additional transport equations and thus significantly
increase the computational cost. In MMC-LES of non-premixed flames, the reference
mixture fraction obtained from the LES is usually used as a proxy for localness in
composition space, and thus may also provide a suitable conditioning variable for
two-phase coupling, as proposed by Khan et al. [102]. Setting ξ = f in Eq. (4.59),
the effective square distance between the droplets and the stochastic particles can
be written as

d̂2
d,sp = λx

3∑
i=1

(
dd,sp

xi

r∗
m/

√
3

)2

+ λf

(
dd,sp

f

f ∗
m

)2

, (4.60)

which bears resemblance to the MMC mixing pair selection that is given by Eq. (4.51).
In contrast to the work of Khan et al. [102], the physical space is included here, since
a particle that is close in both physical space and reference mixture fraction space
provides a suitable gas phase reflecting the composition in the vicinity of the droplet.
Furthermore, this is consistent with the particle pair selection of the MMC mixing
model and is numerically advantageous, as will be explained in Sec. 4.7.2.
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Once a droplet is assigned to a stochastic particle, the heat and mass trans-
fer rates of the liquid droplet are calculated using the properties of the stochastic
particle as ambient conditions. It is natural to return the evaporation source terms
entirely to the selected gas-phase particle, which provides a consistent one-to-one
(or pairwise) coupling technique. The evaporation source terms are then given by
their instantaneous evaluation,

Πsp
F = − 1

msp

dmd

dt , Πsp
h = − 1

msp

d(mdhd)
dt . (4.61)

Note that each droplet is assigned to only one stochastic particle, but it is possible for
a stochastic particle to receive the source terms of more than one droplet, depending
on the ratio of droplet number to stochastic particle number.

The one-to-one coupling approach is not confined to sparse-Lagrangian particle
methods, but can equally be applied to intensive particle methods. In this case,
however, the conditioning on the reference mixture fraction field is not useful, since
the coupling partners are typically selected within the LES cell. Instead, particles
may be selected by minimizing their distance in pure physical space or by random
selection in analogy to Curl’s mixing model. The latter approach was used by Heye
et al. [83] in order to prevent artificial mixing that would result from the use of the
EQUAL model, where the pairing between the droplet and the gas-phase particle
was retained as long as both were in the same computational cell. Note that a
similar effect is achieved automatically by selecting the closest particle in physical
space, although the pairing time is likely to be shorter.

Finally it should be noted that the SAT model also implements a one-to-one
coupling strategy between the droplets and the stochastic particles. However, within
the present work it is treated as a separate model, with the one-to-one coupling
referring only to models that are based on the minimization of the effective square
distance, Eq. (4.59).

4.5.4 Properties of Two-Phase Coupling Models

Similar to the properties of a mixing model (cf. Tab. 4.1), one can formulate re-
quirements that should be fulfilled by an ideal two-phase coupling model. In the
following, such requirements are presented and their fulfillment by the two-phase
coupling models is discussed. A summary is provided in Tab. 4.2.

Conservation of Mass and Energy

The two-phase coupling model must ensure that mass and energy are conserved
between the liquid and the gas phase. This requirement is obvious, but is not
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strictly fulfilled by all coupling models, for example if an artificial limitation of the
gas-phase temperature is necessary [208].

Consistency

A consistent coupling technique is required in order to avoid unrealistic values of
the gas composition. This is achieved by the EQUAL model, where interactions
between the droplets and the gas phase take place in terms of the cell averages,
and by the one-to-one coupling strategy, where the same gas-phase particle is used
to determine the ambient conditions and to receive the source terms. This limits
the transfer rates of the liquid droplets to the mass and energy available in the gas
phase. In contrast, both the NEW and SAT models can lead to unrealistically low
gas-phase temperatures due to lack of correlation between the gas state that provides
the ambient conditions (usually the local cell averages) and thus determines the size
of the source terms, and the gas state that eventually receives the evaporation source
terms (new gas-phase particles or particles close to the saturation state).

Independence From Numerical Parameters

The coupling model should be independent of the numerical time step and the num-
ber of stochastic particles. These requirements are fulfilled by the EQUAL model,
where the coupling between the fuel droplets and the gas phase is a function of the
Eulerian cell size, thus emphasizing the numerical robustness of the model. For the
NEW and SAT models, a dependence on the numerical parameters emerges through
the interaction with the mixing model. Both models generate gas-phase particles
with high fuel concentrations. Since saturation is reached earlier on particles having
a smaller mass of gas, a higher number of particles results in more fuel-rich parti-
cles, which then requires more mixing by the mixing model as discussed in Naud
[140]. For the one-to-one coupling strategy, a distinction must be made as to how
the particles are selected. With random selection, the generated scalar variance
depends on the number of gas-phase particles and the numerical time step, since
both a higher number of particles and a smaller time step result in the source terms
being distributed among a larger set of potential coupling partners. In contrast, a
particle selection based on the minimization of the effective square distance provides
pairing of the particles with the same droplets for a given time interval and thus
largely independence from the numerical parameters. Note that a dependence on the
stochastic particle number may remain, since the change in the gas-phase properties
due to the evaporation source terms depends on the local gas volume, analogous to
the particle-source-in-cell model (see Sec. 3.2.4). This effect is particularly evident
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if a dense particle distribution is used, whereas it is likely to be small for a sparse
particle method due to the relatively large gas-phase volume represented by each
particle.

Generation of Subfilter Variance

Evaporation leads to high levels of local gas-phase fuel concentration and tempera-
ture fluctuations, thus increasing the subfilter variance (see Appendix B for details
on the mechanisms of variance generation). Accordingly, this effect should be repro-
duced by the two-phase coupling model. With the exception of the EQUAL model,
which employs a homogeneous distribution of the source terms, all models presented
here are capable of generating subfilter variance by distributing the source terms
to individual gas-phase particles only. However, the amount of variance generated
varies, where it is expected that the NEW and SAT models lead to the highest
variance due to the generation of particles with high fuel concentration.

Localness

Evaporation and thus the coupling between the droplets and the gas-phase par-
ticles should be local in composition space, as discussed previously. Localness is
particularly important in the case of a sparse particle distribution, where the near-
est particle in physical space may represent a different gas composition. Both the
NEW and SAT models can be considered as models that are fully local in com-
position space, while the EQUAL model is local in pure physical space [208]. The
one-to-one coupling strategy with particle selection conditional on the reference mix-
ture fraction provides localness in both physical and composition space, and thus
may combine concepts from the EQUAL and the NEW or SAT models.

Table 4.2: Summary of the properties fulfilled by the two-phase coupling models.

EQUAL NEW SAT One-to-one coupling
random Eq. (4.60)

Conservation of mass and energy ✓ (✓) ✓ ✓ ✓
Consistency (no unrealistic values) ✓ - - ✓ ✓
Independent of ∆t ✓ - - - ✓
Independent of Nsp ✓ - - - (✓)
Generation of subfilter variance - ✓ ✓ ✓ ✓
Localness - ✓ ✓ - ✓
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4.6 Density Coupling

The stochastic particles provide the gas density (as a function of the composition
vector) to the Eulerian field, where density is required for the solution of the filtered
transport equations. However, the density is also part of the Eulerian solution
and results from the continuity equation. To ensure mass consistency between the
Lagrangian stochastic particle field and the Eulerian LES field, an accurate and
consistent coupling technique is required, which is referred to as thermophysical
coupling or density coupling. The density feedback from the stochastic particle field
to the Eulerian LES field uses an adaptation of the equivalent enthalpy concept [139,
170], where additional Eulerian transport equations for an equivalent composition
field, denoted as ϕE

α , are solved. Note that it is not necessary for the equivalent
composition to include all species but only the major ones, so that solving the
additional transport equations does not add a significant computational cost. For a
known pressure, the density in the Eulerian field can then be calculated algebraically
from the equivalent composition field using the equation of state.

The equivalent composition field obeys a conventional scalar transport equation
similar to Eq. (3.18). Using the same subgrid closures as presented in Sec. 4.2.3,
the filtered form is given by

∂(ρϕ̃E
α )

∂t
+ ∂(ρũjϕ̃

E
α )

∂xj

= ∂

∂xj

(
ρDeff

∂ϕ̃E
α

∂xj

)
+ ρW̃E

α . (4.62)

In contrast to the real composition, the transport equation for the equivalent compo-
sition does not contain source terms for chemical reactions and evaporation. Instead,
these effects are implicitly taken into account by implementing the source term in
Eq. (4.62) as a relaxation towards the real composition, in the following denoted as
target composition ϕtarget

α , according to [30]

W̃E
α = ϕtarget

α − ϕ̃E
α

τrelax
. (4.63)

The relaxation time scale τrelax is a numerical parameter and must be chosen to
produce smooth equivalent composition fields. Small values of τrelax can cause in-
stabilities, while large values lead to a deviation of ϕ̃E

α from ϕtarget
α . Typically, τrelax

is set to ten times the numerical time step [30, 61].
The calculation of the relaxation source term requires an evaluation of the

target composition ϕtarget
α from the notional particles in each LES cell. Unlike dense

particle methods, where each cell contains a number of particles, a direct evaluation
is not possible with sparse particle methods, as not every LES cell contains a notional
particle and scalar variations in physical space may be large. Therefore, the target
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composition is evaluated as a conditional mean that is calculated from an ensemble
of notional particles in the nearby surroundings of the computational cell. This is
realized either by using precomputed flamelet tables [30], or based on the concept
of smoothed particle hydrodynamics [135], which is referred to as kernel estimation.
The kernel estimation provides a more general solution approach and is therefore
used here. In that approach, the interpolation of a variable ϕα is based on the
integral interpolation [61, 135],

ϕinterp
α (r) =

∫ +∞

−∞
ϕα(r′)G(r′ − r)dr′, (4.64)

where G is a kernel function of characteristic width ∆r, and r denotes the space
over which the integration is performed (conventionally the physical space). Due
to the finite number of notional particles, the integral interpolation is replaced by
a summation over the entire ensemble of notional particles, which results in the
following expression for the estimation of the target value [61, 135],

ϕtarget
α (r) =

∑
sp

mspϕ
sp
α

ρsp
G(rsp − r), (4.65)

with r evaluated at the cell centers of the LES cell. Due to the sparse distribution
of the notional particles, the interpolation cannot be based solely on the physical
space, and therefore the integration is additionally performed over the mixture frac-
tion space, i.e., r = (x, f̃) and rsp = (xsp, zsp). As a result, the target value can be
interpreted as a conditionally interpolated quantity. The kernel function is given
by the product of one-dimensional kernel functions, each given by a cubic spline
kernel [135] with appropriate normalization factor, which gives more weight to par-
ticles that have a smaller distance rsp −r. The characteristic length scale in mixture
fraction space, ∆f , is fixed, while the characteristic length scale in physical space,
∆x, is computed dynamically to ensure that the kernel function reduces to a Delta
function in the limit of an infinite number of particles [61].

4.7 Numerical Implementation

4.7.1 Implementation of Stochastic MMC in OpenFOAM

OpenFOAM (short for open field operation and manipulation) is an open-source
library for the numerical solution of problems in the field of continuum mechan-
ics, most prominently including computational fluid dynamics. Its initial version
has been developed at Imperial College London in the late 1990s [95, 227] with
the intention of making the top-level syntax of the code as close as possible to the
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conventional mathematical notation for tensors and partial differential equations,
which is realized by the extensive use of object-orientated programming techniques
provided by the C++ programming language. The OpenFOAM toolbox implements
a second-order finite volume method that allows for the use of unstructured meshes
and complex boundary conditions in combination with an efficient parallelization
technique, and provides a variety of well-established solvers for a wide range of ap-
plications, including turbulent flows, chemically reacting flows, multiphase flows and
particle-laden flows. For a detailed documentation of the numerical methods and
algorithms used in OpenFOAM the reader is referred to the books of Greenshields
and Weller [75] and Moukalled et al. [137]. Due to its free availability along with
the possibility to access, modify and extend the source code, OpenFOAM enjoys a
broad user community and has developed into a powerful software package that is
widely used in both research and industry.

The aforementioned advantages of OpenFOAM have led to the implementation
of the stochastic MMC model for single-phase flows in an OpenFOAM-compatible
code called mmcFoam, which then provides a comprehensive LES and RANS mod-
eling framework for turbulent reacting flows allowing for both sparse and inten-
sive particle methods. The computational implementation is described in detail
in Galindo-Lopez et al. [61] and is only briefly summarized here. In general, the
MMC solver consists of an Eulerian LES or RANS solver and a Lagrangian solver
for the evolution of the stochastic particles. The Eulerian solver is derived from
the OpenFOAM solver reactingFoam, thus forming a compressible pressure-based
solver, and is extended by the MMC-specific features such as the solution of the
transport equations for the MMC reference fields and the density coupling. The
implementation of the stochastic particles is based on OpenFOAM’s native particle
tracking algorithm and is extended by the physical features of the stochastic MMC
model such as mixing and reaction using several nested template class layers [61].
The OpenFOAM implementation of the MMC model has been validated against
numerous experimental investigations and several DNS studies, showing good to
excellent agreement as described in Galindo-Lopez et al. [61].

For the present work, the single-phase MMC-LES solver is extended to include
the effect of droplet evaporation, forming a new solver called mmcDropletFoam that
implements the two-phase MMC-LES model presented earlier. For model exami-
nation, an additional solver called mmcDropletDNSFoam is created that couples the
two-phase MMC-LES model with a CP-DNS. Details on the two solvers are given
in the following sections.
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4.7.2 Two-Phase MMC-LES Solver

The extension of the single-phase MMC-LES solver by the effect of droplet evapo-
ration involves the implementation of a second Lagrangian solver for the liquid fuel
droplets, following the formulation given in Sec. 3.2, as well as the two-phase cou-
pling between the fuel droplets and the stochastic particles, as described in Sec. 4.5.
The newly implemented two-phase MMC-LES solver is called mmcDropletFoam, and
the sequence of the individual computational steps of the solver is illustrated in
Fig. 4.4. First, the Eulerian and the Lagrangian fields are initialized. Then the
time loop is initiated, in which the stochastic particles are evolved first, followed
by the fuel droplets. Based on the solutions of the Lagrangian fields, the evapora-
tion source terms are calculated and the density coupling is applied. Afterwards,
the filtered transport equations of the Eulerian fields are solved in an iterative way
using a combination of the PISO and SIMPLE algorithms for the pressure-velocity
coupling [55, 137, 214], which is referred to as the PIMPLE algorithm [75]. This
sequence of solution steps is repeated until the final simulation time is reached.

The transport of the notional particles in physical and composition space, as
described by Eqs. (4.37) to (4.39), is carried out sequentially utilizing a first-order
operator splitting technique for the composition equation, Eq. (4.38), which divides
the change in particle compositions into the three subproblems of chemical reactions,
mixing, and evaporation. This allows to treat the physical processes independently
from each other and enables the use of different numerical solution methods for
each subproblem. Although the particle mixture fraction, zsp, can be calculated
from the transported mass fractions Y sp

k , it is incorporated here into the composition
vector and solved on the notional particles. The corresponding stochastic differential
equation is the same as for the fuel mass fraction but without the chemical source
term. The numerical solution of the stochastic differential equations governing the
transport of the notional particles in physical and composition space deserves further
attention and will be discussed in the following.

Particle Initialization and Management

In addition to the standard finite volume mesh for solving the filtered transport
equations of the Eulerian field, a mesh referred to as super mesh is defined, which
is used for the initialization of the stochastic particles and to control the particle
resolution. In sparse-Lagrangian particle methods, the super cells are typically
much larger than the LES cells, as illustrated in Fig. 4.5, whereas in dense particle
methods, where mixing is restricted to the LES cell, the two meshes are usually
the same. At the beginning of the simulation, the gas-phase particles are randomly
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Figure 4.4: Flow chart of the two-phase MMC-LES solver mmcDropletFoam.
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Figure 4.5: Sketch of the meshes used by the hybrid Eulerian/Lagrangian/Lagrangian method.
Gray lines indicate the LES mesh that is used to solve the Eulerian transport equations, while black
dashed lines mark the super cells that are used to control the particle resolution. The background
shows contour lines of the reference mixture fraction field obtained from the LES, black dots mark
the fuel droplets, and red crosses indicate the stochastic particles.

distributed within each super cell, with the number of notional particles per super
cell being specified by the user. The initial values of the composition vector of
the notional particles are then set to the corresponding mean values of the local
LES cell. The initial mass of the stochastic particles is obtained from the mass of
the super cell and weighted by the density of the local LES cell. This allows for
the resolution of initial gradients in the LES field, while ensuring mass consistency
between the Lagrangian and Eulerian fields even if there are fewer notional particles
than LES cells.

During the simulation, the number of particles within the super cell is subject to
fluctuations, as particles may leave and enter the cell at different rates. For instance,
the effect of the random walk, which is proportional to the effective diffusivity, is
stronger in hot regions than in cold regions, causing particles to jump out of the
flame. To keep the particle resolution within reasonable bounds, a particle number
control algorithm can be applied, in which stochastic particles are cloned or deleted
in a mass-conserving way if the number of particles within the super cell falls below
or above the lower and upper limits specified by the user.

Transport in Physical Space

Equation (4.37), which describes the transport of the notional particles in physical
space, is solved numerically using the Euler-Maruyama method [109], which is the
extension of the first-order explicit Euler method to stochastic differential equations.
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Accordingly, the discretized form of Eq. (4.37) is expressed as

xsp
i (t+ ∆t) = xsp

i (t) +
[
ũi + 1

ρ

∂(ρDeff)
∂xi

]sp

∆t+
[√

2Deff

]sp

∆ωi, (4.66)

where the terms in square brackets are interpolated from the Eulerian field to the
respective particle positions. The increment of the Wiener process is given by ∆ωi =
ξ
√

∆t with ξ being a normally distributed random variable with zero mean and
standard deviation of one.

Chemistry Substep

For the chemistry substep a direct integration can be used, since the chemical source
term appears in closed form. The stiffness and high nonlinearity of the chemical
reaction rates lead to chemical time scales that are orders of magnitude smaller
than the characteristic flow time scales, and thus require the use of dedicated stiff
ODE solvers in combination with adaptive time stepping to provide an efficient
solution and to avoid numerical problems. The OpenFOAM toolbox offers a variety
of stiff ODE solvers, including several Rosenbrock solvers of variable order and a
semi-implicit extrapolation method known as SEULEX [76], the latter of which is
used in the present work.

Mixing Substep

The OpenFOAM framework mmcFoam implements two mixing models, the sparse-
Lagrangian MMC mixing model and the continuous Curl model with deterministic
mixing extent that is used in intensive particle methods. The selection of the mixing
pairs for the MMC mixing model is realized using a computationally efficient algo-
rithm based on the k-d tree [57], which recursively divides the list of particles based
on their separation in the multidimensional (x, f̃) space. Details on the algorithm
can be found in Appendix C. The particle selection is usually performed globally
within the entire domain, but can also be limited to the super cell. The continuous
Curl model selects mixing pairs randomly within the super cell, which is equal to
the LES cell in intensive particle methods.

Evaporation Substep

The evaporation substep of the notional particles is incorporated into the solution
procedure of the liquid droplets, i.e., the properties of the gas-phase particles are
updated immediately after solving the equations of a single droplet. In contrast to
a segregated treatment, where the properties of the stochastic particles are updated
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after all droplets have evolved, the coupled approach ensures that the properties of
the gas phase are instantly adapted to the local evaporation process, thus ensuring
that the saturation conditions are not exceeded, which is particularly important if
the SAT model is used. For coupling models that result in fuel mass fractions that
are far from saturation conditions (such as the EQUAL model or the one-to-one
coupling), tests have shown that the differences between the two approaches are
negligible.

Both the SAT model and the one-to-one coupling strategy require the mini-
mization of distances between the fuel droplets and the stochastic particles, either
in saturation space or in physical and reference mixture fraction space. This is
achieved by employing a direct search, since the k-d tree algorithm, which is used
by the MMC mixing model for selecting the mixing pairs, cannot be readily applied
to the case with two particle clouds. To reduce the high computational costs asso-
ciated with a direct search method, the minimization of the distances between the
droplets and the gas-phase particles is performed locally within each super cell. Note
that this may affect the particle selection if particles are selected in pure composition
space (saturation space or reference mixture fraction space), since the super mesh
artificially limits the maximum possible distances in physical space. If particles are
selected by (partially) minimizing their distance in physical space (i.e., λx ̸= 0 in
Eq. (4.59)), the effect of the super mesh is usually negligible, since distances in
physical space are kept small so that droplets are often coupled with particles that
are located within the same super cell.

4.7.3 Two-Phase MMC-LES Model Coupled With
CP-DNS

The primary objective of Chs. 6 and 7 is to provide an in-depth analysis of the
two-phase coupling between the gas-phase particles and the liquid fuel droplets. In
order to eliminate possible modeling errors associated with the turbulence model,
a new solver called mmcDropletDNSFoam is created based on the MMC-LES solver
mmcDropletFoam, in which the Eulerian LES is replaced by an Eulerian DNS of
the carrier gas (CP-DNS). This allows discrepancies between the Lagrangian FDF
method and the CP-DNS to be directly attributed to the modeling of particle mixing
and two-phase coupling. Previous studies [112, 208, 218] have demonstrated the
success of this a priori analysis for combustion modeling, and it has been shown
that this approach may produce results similar to those obtained with a real LES
utilizing the MMC model [219].

The schematic diagram of the mmcDropletDNSFoam solver is shown in Fig. 4.6.
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The CP-DNS solves the Eulerian transport equations for density, species mass frac-
tions, velocity, sensible enthalpy and reference mixture fraction without any models
for turbulence and combustion, as specified in Sec. 3.1 and shown in Fig. 4.6, along
with the set of Lagrangian equations governing the motion, heating and evapora-
tion of the liquid fuel droplets, following the formulation presented in Sec. 3.2. A
two-way coupling between the Eulerian DNS and the Lagrangian fuel droplets is
applied, with exchange of heat, mass, and momentum, as described in Sec. 3.2.4.
To ensure consistency with the MMC-LES model, the assumptions of low Mach
numbers and unity Lewis numbers with constant Schmidt and Prandtl numbers are
applied in the CP-DNS. The solution of the Lagrangian FDF is represented by the
set of stochastic particles that are transported in physical and composition space,
employing the models for mixing and evaporation introduced earlier. Since the two-
phase coupling with the notional particles generally leads to a different evaporation
rate than predicted by the CP-DNS, the Lagrangian droplet fields are extended to
include two additional fields for droplet mass and temperature that evolve based on
the evaporation process determined by the stochastic particles, which then provides
a consistent Lagrangian FDF solution. Note that a second solution of the reactive
scalar fields and droplet mass and temperature is redundant, but allows for a di-
rect comparison between the (modeled) stochastic particle solution and the (exact)
CP-DNS solution. Quantities normally provided by the Eulerian LES, such as the
instantaneous velocity and diffusivity, are interpolated here from the DNS fields to
the respective particle positions. Since the flow field is fully resolved by the DNS,
the turbulent diffusivity is set to zero in the transport equation in physical space,
while it is retained for the mixing model and the two-phase coupling model [218].
Here, LES-like input data are required for the particle selection based on the ref-
erence mixture fraction space as well as for the mixing time scale model. These
quantities are obtained by explicitly filtering the instantaneous DNS fields, and the
turbulent diffusivity is calculated from Eq. (4.20), with the turbulent viscosity given
by the Smagorinsky model using the filtered velocity field. The filtering of the DNS
fields is realized using a box filter and requires the definition of an additional LES
mesh, resulting in a total of three meshes in the simulation (DNS mesh, LES mesh,
super mesh). Since the CP-DNS is an independent solution that contains all the
information about the composition field, no backward coupling in the form of a
density feedback from the stochastic particles to the Eulerian DNS is applied.

Although OpenFOAM is only second-order accurate, several studies [125, 217,
218, 222, 224, 238, 243, 244] have demonstrated its good capabilities for DNS
of turbulent reacting flows, and a detailed analysis of the numerical accuracy of
OpenFOAM’s discretization schemes is provided in Appendix D. Accordingly, the
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DNS of the carrier gas provides an accurate reference solution for validation of the
Lagrangian FDF method. As for the Lagrangian treatment of the fuel droplets, the
point-particle assumption imposes further requirements on the grid resolution for
an accurate simulation, which will be quantified in the next chapter.





Chapter 5

Resolution Requirements for
Grid-Independent Euler-Lagrange
Simulations

The following chapter addresses the grid dependence of the particle-source-in-cell
(PSI-cell) model, which is used in Euler-Lagrange simulations of dilute sprays, but
also forms the basis for many two-phase coupling models in Lagrangian FDF meth-
ods, as presented in the previous chapter. The analysis is split into two parts. First,
the error of the evaporation rate and time of the liquid droplets that results from
the cell-size dependence of the PSI-cell model is analyzed in detail and closed-form
expressions for the error are derived, reproducing the study published by Sontheimer
et al. [196]. Afterwards, the effect of the cell size on the resolution of the gaseous
fields in the vicinity of the droplets is examined, with focus on the mixture fraction
variance. The chapter concludes with a brief summary of the main outcomes and
the formulation of guidelines for performing grid-independent CFD simulations of
dilute sprays.

5.1 Objectives of the Study

The particle-source-in-cell (PSI-cell) model [36], as introduced in Sec. 3.2.4, is the
standard model for the two-way coupling between the dispersed droplets and the
Eulerian gas phase in Euler-Lagrange simulations of dilute sprays, where local cell
values provide the ambient conditions for the evaporation model and droplets return
mass, momentum and energy to the gas phase via source terms. The model also
forms the basis for the development of two-phase coupling models in Lagrangian
FDF methods, as discussed in Sec. 4.5. Although the PSI-cell is widely used in CFD
of dilute sprays, it has some known limitations. On the one hand, the use of local
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Error

Optimum?

Figure 5.1: Schematic sketch of the effect of the computational cell size on evaporation rate (blue
line) and mixture fraction variance (orange line) for calculations employing a two-way coupling
based on the PSI-cell model.

cell values as ambient conditions in combination with the backward coupling via
source terms introduces a dependence of the droplets’ heat and mass transfer rates
on the computational cell size [77, 121, 171, 188, 196, 229]. This effect is particularly
evident for cell sizes of the order of the droplet size, as local gas properties are more
strongly affected by the source terms with decreasing cell size. In that case, the
point-source approximation of the droplets is no longer valid, and local cell values
do no longer represent the conditions far from the droplet surface, which provides
the basis for the derivation of the evaporation model (see Sec. 3.2.2). As a result,
the calculated heat and mass transfer rates are subject to errors. On the other hand,
the distribution of the source terms to the computational cell, which is usually larger
than the droplet size, implies artificial mixing of the fuel vapor with the surrounding
gas, and thus eliminates the variance generation due to the evaporating droplets on
subgrid level. This lack of resolution increases with increasing cell size and therefore
conflicts with the requirement of large cell sizes for an accurate determination of
the evaporation rate, as illustrated in Fig. 5.1, such that the optimal cell size that
keeps both errors low can be expected to be at moderate ∆x/d.

Although the numerical error induced by the cell-size dependence of the PSI-
cell model has received more attention in recent years, since the increase in available
computing power allows CP-DNS and LES with much smaller cell sizes to be used,
there are only a few studies to date that have attempted to quantify this error.
A first error assessment of the PSI-cell model was conducted in the late 1980s by
Rangel and Sirignano [171] and is reviewed in Sirignano [188]. For the case of steady-
state evaporation of isolated droplets in quiescent and convective environments they
showed that errors in the evaporation rate can be of the order of 10 % to 50 % if the
cell size is comparable to the droplet size. However, as their study focuses on steady-
state processes only and as their analytical solution involves additional assumptions
for the case of stagnant droplets, some uncertainty persists how their results can
be transferred to practical and time-dependent spray calculations. More recently,
Luo et al. [121] discussed the cell-size dependence of single droplet evaporation in
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an infinite environment for a setup based on the experiments of Nomura et al.
[144], and established that the cell size must be at least ten times the droplet
diameter to achieve cell-size independence. Although this criterion has become
widely established, it suffers from the fact that it was only derived for one specific
set of process conditions, and therefore the application to further configurations
is uncertain. Further studies exist that have discussed the validity of the PSI-cell
approach by comparison with droplet-resolved simulations [77, 223, 245]. These
a posteriori analyses show that the PSI-cell model is a reasonable approximation
under some circumstances, but do not provide any reliable method for estimating
the error for arbitrary process conditions in advance. Finally, there are techniques
that attempt to eliminate the effect of the cell size by distributing the source terms
to the surrounding grid nodes in a grid-independent way [17, 129, 204, 229, 239].
However, the efficiency of such methods depends on a set of modeling parameters,
and they are also more complex to implement and require more computational effort.
Therefore, these techniques are not in the focus of the present work.

The present chapter provides a detailed analysis of the numerical error induced
by the use of the PSI-cell model in Euler-Lagrange simulations of dilute sprays, with
the following objectives:

(1) Quantify the effect of the cell size on the evaporation rate and time, and derive
relations that allow for an a priori estimate of the error induced by the PSI-cell
model in CFD simulations of dilute sprays.

(2) Quantify the effect of the cell size on the resolution of the gaseous fields near the
droplet, and discuss the impact on the subgrid-scale mixture fraction variance.

Objective (1) is the topic of Sec. 5.2, while objective (2) is addressed in Sec. 5.3. It
should be noted that the present analysis does not intend to improve the existing
models for droplet evaporation or the prediction of subgrid variance, and only focuses
on the numerical error that is introduced by the PSI-cell model and how it can be
quantified. The analysis is performed in the context of an Eulerian representation of
the gas phase, but the results are equally applicable to Lagrangian FDF methods if
the volume of the computational cell size is replaced by the volume of the individual
gas-phase particles.
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5.2 Grid Dependence of Evaporation Rates

5.2.1 Computational Setup

Since dilute sprays are considered here, where the interactions between the droplets
can be neglected, the analysis of the grid dependence of the evaporation rate is based
on an isolated droplet in an infinite environment, as illustrated in Fig. 5.2. Later,
it will be discussed how the analysis can be applied to moderately dense systems,
where the surroundings of the droplet can no longer be assumed to be infinitely large
(cf. Appendix E.5). The gas consists of two species, fuel vapor and air denoted as
F and a, and is governed by the equations presented in Sec. 3.1 using the assump-
tion of low Mach numbers. Chemical reactions are not considered in the analysis.
Instead, the effect of heat release from combustion is accounted for by prescribing a
high temperature for the ambient gas. The equations governing the liquid droplet
follow the formulation given in Sec. 3.2, where the position of the droplet is fixed in
the present analysis (ud = 0). More advanced models incorporating non-equilibrium
effects and a non-uniform droplet temperature [132] have also been tested, but did
not show any significant deviations from the reported trends. A discussion of the
main results obtained from other evaporation models can be found in Appendix E.2.
The ambient conditions that are required for the evaporation model are usually ob-
tained from the gas-phase properties in an appropriate neighborhood of the droplet.
To keep the analysis simple, the local cell values are used without interpolation,
and source terms are transferred entirely to the cell that contains the droplet. For
other approaches, in which the coupling is done using the neighboring grid points,
the reader is referred to Appendix E.3.

The governing equations of the gas phase are discretized using the finite-
volume method utilizing standard second-order schemes in combination with an
implicit second-order time integration method, and the droplets are evolved using
the method described in Sec. 3.2.6. In the case of quiescent environments, the gas
field around the droplet is spherically symmetric and therefore allows for a one-
dimensional solution in a radial coordinate system. However, as conventional CFD
typically has a Cartesian mesh, the spherical treatment of the cell containing the
droplet does not seem to be appropriate. Therefore, a Cartesian treatment of the
droplet cell is employed, while the surrounding cells are still assumed to be spherical.
This allows to obtain results very similar to a three-dimensional Cartesian solution
while maintaining the one-dimensional formulation of the governing equations and
thus low computational costs at high accuracy. More details are provided in Ap-
pendix E.1. Simulations involving a convective environment are performed using a
three-dimensional Cartesian mesh.



5.2 Grid Dependence of Evaporation Rates 83

Figure 5.2: Sketch of the computational setup that is used for the analysis of the PSI-cell model,
showing cell averages of the fuel mass fraction in the surroundings of the liquid droplet.

To assess the error of the evaporation process that is introduced by the PSI-cell
model, a relative error based on the evaporation time is defined,

ϵτ = |τevap − τevap,ref |
τevap,ref

. (5.1)

For steady-state calculations the error is based on the evaporation rate,

ϵṁ = |ṁ− ṁref |
ṁref

. (5.2)

The reference solution is given by the grid-independent solution of the evaporation
process, i.e, the solution that is obtained if the cell size approaches infinity, thus
ensuring that the error is eliminated. For the isolated droplet in an infinite environ-
ment considered here, this is achieved by inserting the true ambient conditions (i.e.,
the values far from the droplet instead of the local cell values) into the evaporation
model. Note that the choice of the reference solution only affects the definition of
the error but does not represent a limit of the validity of the relationships derived
within this study (cf. Appendix E.5).

5.2.2 Dimensional Analysis

A dimensional analysis based on the Buckingham Π theorem [19] is performed to
identify a set of physically independent non-dimensional quantities from the given
variables. Here, the objective is to find the characteristic parameters that determine
the droplet evaporation time and thus the error defined by Eq. (5.1) for the setup
shown in Fig. 5.2. To keep the analysis simple and to focus on the essential parame-
ters, only mass transfer with the assumption of a constant gas density is considered
at this point. Note that these assumptions are relaxed later. The droplet has an
initial diameter d0 with liquid density ρl, and the fuel mass fraction at the droplet
surface is given by YF,s. The ambient gas is characterized by fuel mass fraction YF,∞,
density ρ, dynamic viscosity µ, and fuel vapor diffusivity DF , and the free-stream
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velocity is u∞. The characteristic cell size is denoted by ∆x. Note that the local
cell values are not included in the dimensional analysis, since they are not known
prior to the simulation and result from the given far-field conditions and cell size.
Accordingly, the evaporation time of the droplet shown in Fig. 5.2 is expected to be
a function of nine parameters,

τevap = F(d0, ρl, YF,s, YF,∞, u∞, µ,DF , ρ,∆x). (5.3)

The number of parameters can be reduced by defining non-dimensional groups,

Π1 = ∆x
d0
, Π2 = ρl

ρ
, Π3 = YF,∞, Π4 = YF,s,

Π5 = ρu∞d0

µ
, Π6 = µ

ρDF

, Π7 = τevapDF

d2
0

, (5.4)

which obey the functional relationship

Π7 = F(Π1,Π2,Π3,Π4,Π5,Π6). (5.5)

Parameter Π1 represents the ratio of cell size to initial droplet diameter, while
parameter Π2 denotes the ratio of liquid to gaseous density. They can be combined
to form a new parameter,

φ = π

6 Π−3
1 Π2 =

π
6ρld

3
0

ρ∆x3 = md,0

mg

, (5.6)

which indicates the initial ratio of droplet mass to gaseous mass in the computa-
tional cell. The definition of the mass transfer number, Eq. (3.34), allows to merge
parameters Π3 and Π4. As the mass transfer number is based on the true ambient
condition, it represents the reference value BM,ref . Parameters Π5 and Π6 are equal
to Reynolds and Schmidt number, respectively, and are usually combined to the
Péclet number,

Pe = Re Sc = Π5Π6 = u∞d0

DF

, (5.7)

which represents the ratio of convective to diffusive transport rates. Since the focus
is on numerical errors introduced by the computational grid, it is more convenient
to define a Péclet number based on the cell size,

Pe∆x = Π1Π5Π6 = u∞∆x
DF

, (5.8)

which is called the cell Péclet number. Finally, parameter Π7 indicates a normalized
evaporation time with reference time being the diffusive time scale, defined as τD =
d2

0/DF . Since the diffusive time scale is a constant, it can be substituted by a
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general reference time. To be consistent with the definition of the error, Eq. (5.1),
the evaporation time in an infinite environment is chosen as reference time, such
that Π7 = τevap/τevap,ref . The relative error of the evaporation rate, which is directly
related to the normalized evaporation time via ϵτ = |Π7 − 1|, can then be expressed
as a function of four non-dimensional parameters,

ϵτ = F (∆x/d0, φ,BM,ref ,Pe∆x) . (5.9)

This shows that the relative error of the evaporation time is a function of the length
ratio ∆x/d0, the mass ratio φ, the reference mass transfer number BM,ref , and the
cell Péclet number Pe∆x. The effect of these parameters on the error will be briefly
discussed in the following. A smaller cell size leads to more significant changes of
properties within the droplet’s cell with earlier saturation, and therefore increases
the evaporation time and thus the error. The mass ratio φ is a direct function of
the length ratio ∆x/d0 but additionally involves the density ratio, and is therefore
expected to have a similar effect on the error. The reference mass transfer number
quantifies the driving force for the evaporation process itself as it includes the dif-
ference between surface and ambient fuel mass fraction, yet it is unclear how this
affects the error. The cell Péclet number characterizes the effect of a convective flow
relative to the droplet. A higher cell Péclet number indicates stronger convection,
and thus a smaller error, as the accumulated vapor is replaced by fresh gas at a
faster rate. The exact relation between the parameters in Eq. (5.9) cannot be ob-
tained from dimensional analysis alone and must be determined by the underlying
equations. This will be the topic of the next two sections, starting with steady-state
solutions (Sec. 5.2.3) and followed by the transient case (Sec. 5.2.4).

5.2.3 Steady-State Investigations

Pure Mass Transfer With Constant Density

As the evaporation model involves the quasi-steady assumption, it is natural to start
with the steady-state solution for the governing equations. In a first step, quiescent
environments and pure mass transfer are considered to retrieve the results of Rangel
and Sirignano [171], and later the analysis is extended to the case of heat transfer
and convective environments. Accordingly, the temperature and pressure fields are
assumed to be uniform, and density is also initially kept constant, implying equal
molar masses (cf. Eq. (3.5)). Further, all gaseous and liquid properties (including
the droplet surface conditions) are assumed to be constant and known.

The assumptions made allow for an analytical solution of the vapor field around
the droplet, which is given by Eq. (3.35). This analytical solution was used in
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the study of Rangel and Sirignano [171] to discuss the error that is introduced
if the mass transfer number is evaluated in an appropriate neighborhood of the
droplet, i.e., using a local value YF (r) instead of the far-field value YF,∞ in the
expression for the mass transfer number. They showed that the resulting error of
the evaporation rate follows the relation ϵṁ = (1+r/rs)−1 and thus only depends on
the normalized distance from the origin. As the study of Rangel and Sirignano relies
on the analytical solution, effects of the numerical discretization are not included,
and it is expected that in particular the vapor mass fraction value in the cell that
contains the droplet and thus determines the evaporation rate will deviate from the
analytical solution.

To be consistent with practical calculations, the present study does not rely on
the analytical solution and instead employs a numerical solution utilizing the PSI-
cell model. Considering only mass transfer, the set of gas-phase equations, which
are solved in their spherically symmetric form, is given by

∂ρ

∂t
+ 1
r2

∂

∂r

(
r2ρur

)
= ṠM , (5.10)

∂(ρYF )
∂t

+ 1
r2

∂

∂r

(
r2ρurYF

)
= 1
r2

∂

∂r

(
ρDF

∂YF

∂r

)
+ ṠM , (5.11)

where the transient terms are set to zero due to the assumption of steady-state
processes. The source term ṠM is given by Eq. (3.64) and is non-zero only in the
cell that contains the droplet placed at r = 0. Note that the steady-state equation
system requires an iterative solution, where the velocity field results solely from the
Stefan flow and is obtained from the continuity equation. In order to examine the
dependence on the characteristic parameters predicted by the dimensional analysis,
a large number of calculations is performed with varying gas and droplet properties.
Figure 5.3(a) shows the calculated errors of the evaporation rate and plotted versus
the ratio of cell size to droplet diameter. Similar to the results of Rangel and
Sirignano [171], where the error was a function of the ratio r/rs, the error is now a
function of the ratio ∆x/d, and can be described by an equivalent relation,

ϵṁ = 1
1 + α(∆x/d) , (5.12)

with parameter α ≈ 2/3 found by least-squares fitting. It is remarkable that the
other parameters found by dimensional analysis such as the reference mass transfer
number do not affect the error here. This is probably a result of the assumptions
made and will be discussed later.
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(a) Constant density.
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(b) Variable density.

Figure 5.3: Relative error of the steady-state evaporation rate in a quiescent environment ob-
tained from numerical calculations (gray dots) based on pure mass transfer with (a) constant
density and (b) variable density with molar masses MF = 100 kg/kmol and Ma = 30 kg/kmol
(approximately the values of n-heptane and air) and compared to Eq. (5.12) (solid line).

Variable Density Effects

In general, the molar masses of fuel and air are not equal, resulting in a spatially
variable density field. Accordingly, the equation of state, Eq. (3.5), is now used
to calculate the density, where velocity and vapor mass fraction are obtained from
Eqs. (5.10) and (5.11), respectively. Note that the temperature as well as the ther-
modynamic properties are still assumed to be constant at this point. The variable
density is also taken into account in the evaporation model using an average density
value that is based on the mixture composition given by the 1/3 rule (cf. Eq. (3.58a)).
The calculation of density requires the specification of molar masses, for which val-
ues similar to those of air and n-heptane are used here to account for the effect of
having widely different molar masses.

Figure 5.3(b) shows the results that are obtained with variable density being
taken into account. It can be seen that the relative error of the evaporation rate
largely follows the relation from the constant-density solution given by Eq. (5.12),
although there is now some scatter, which tends to reduce the errors and which
increases if the ratio between the molar masses of fuel and air is further increased
(not shown). The existence of the scatter can be explained by inserting the expres-
sion for the evaporation rate, Eq. (3.33), into the definition of the error, Eq. (5.2),
leading to

ϵṁ =
∣∣∣∣ ṁṁref

− 1
∣∣∣∣ =

∣∣∣∣ ln(1 +BM)
ln(1 +BM,ref)︸ ︷︷ ︸

f1

· ρ

ρref︸︷︷︸
f2

−1
∣∣∣∣. (5.13)

The first factor, f1, is a function of the mass transfer numbers BM and BM,ref and is
independent of the density. Its effect can be described as a function of the ratio ∆x/d
as shown previously. The second factor, f2, accounts for the variable density and is
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calculated based on the equation of state and the 1/3 rule, and thus depends addi-
tionally on the ratio of molar masses and the averaging parameter γ (cf. Eq. (3.58)).
According to Eq. (5.13), for a fixed ratio of molar masses and averaging parameter,
the error can tend to zero not only if the cell size is sufficiently large (and thus the
local cell values match the true ambient conditions), but also for a certain value of
BM,ref corresponding to the singularity f1f2 = 1. This singularity explains why the
error is generally smaller than predicted by Eq. (5.12) and is associated with the
scatter in Fig. 5.3(b). Furthermore, values above the singularity (f1f2 > 1) can be
associated with evaporation rates larger than the reference value, resulting in faster
evaporation than in infinite environments. However, the calculations showed that
the singularity arises at rather large mass transfer numbers that rarely occur for
practically relevant conditions. As the following section will show, the effect of a
variable density is generally small if the effect of heat transfer is taken into account,
and therefore variable density effects are expected to be second-order effects only.

Extension to Heat Transfer

The analysis is now extended to include the effect of heat transfer, where the spa-
tially variable temperature field is obtained from the solution of the energy equation.
The energy equation is expressed here in terms of the absolute enthalpy using the
assumption of low Mach numbers, and thus takes the form given by Eq. (3.12),
where the heat flux vector reduces to Eq. (3.13) since only two species are con-
sidered. In contrast to the case of pure mass transfer, the vapor mass fraction at
the droplet surface is no longer specified and results from liquid-vapor equilibrium,
where the unknown steady-state droplet temperature (referred to as the wet-bulb
temperature) is calculated from the condition that there is no heat flow into the
liquid droplet, Q̇d = 0 (Eq. (3.44)). Since the temperatures at the droplet sur-
face and far from the droplet can differ greatly for combustion-relevant conditions,
temperature-dependent and mixture-averaged thermophysical properties are used
for both the gas and the liquid phase, as described in Secs. 3.1.6 and 3.2.5.

A set of calculations is performed using various process conditions and cell
sizes. The gas around the droplet is composed of nitrogen and fuel vapor, where
n-heptane and ethanol are chosen to serve as representative fuels for the analysis
due to their relevance for spray combustion and because of their different molar
masses (MC2H5OH = 46.07 kg/kmol, MC7H16 = 100.20 kg/kmol). Other fuels were
also tested but did not show any significant deviations from the reported results.
The far-field conditions are selected randomly within T∞ ∈ [500 K, 3000 K] and
p∞ ∈ [0.1 atm, 10 atm]. To include the effect of pre-evaporation the ambient fuel
vapor mass fraction is also varied within YF,∞ ∈ [0, 0.5]. The droplet diameter
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(a) Ethanol droplet.
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(b) n-Heptane droplet.

Figure 5.4: Relative error of the steady-state evaporation rate in a quiescent environment ob-
tained from numerical calculations based on heat and mass transfer (gray dots) and compared to
Eq. (5.12) (solid line). The ambient gas is a mixture of nitrogen and fuel, with fuel species (a)
ethanol and (b) n-heptane.

ranges from d = 1 µm to d = 1 cm, and the ratio of cell size to droplet diameter is
selected within the range ∆x/d ∈ [1, 50].

Figure 5.4 shows the calculated errors of the evaporation rate and plotted ver-
sus ∆x/d. Although the constant-density relation given by Eq. (5.12) does not
include the additional effect of heat transfer, it can still approximate the error
quite accurately. Compared to the case of pure mass transfer with variable density
(cf. Fig. 5.3(b)), the scatter is smaller now for similar molar masses of gas and fuel
(Fig. 5.4(b)). This is because the droplet surface conditions are no longer (arbi-
trarily) selectable but result from liquid-vapor equilibrium according to the given
ambient conditions, which generally leads to a smaller range for the mass transfer
numbers. As the scatter around the constant-density relation, Eq. (5.12), is related
to the mass transfer number, as discussed previously, a smaller range of BM directly
leads to lower dispersion of the results.

Effect of Free-Stream Velocity

The previous investigations have assumed that there is no droplet motion relative
to the gas. While this is true for droplets in a quiescent environment, it is not
realistic for spray combustion where a liquid fuel is injected into the combustion
chamber, leading to a relative velocity between droplets and the carrier gas phase.
The relative velocity replaces accumulated vapor in the surroundings of the droplet
with fresh gas, and it is expected that errors induced by the accumulation of fuel
vapor within a cell of finite size are reduced.

To allow for an analytical treatment of the effects of an external flow field on
the error, the case of pure mass transfer with constant density and constant proper-
ties is considered, which seems justified following the preceding investigations that
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demonstrated small effects of heat transfer and variable thermophysical properties
on the error estimate. Further, it is assumed that convective fluxes dominate over
diffusive fluxes, so the latter can be ignored. Assuming a laminar flow aligned with
the x-axis, the fuel mass balance for the cell containing the droplet can be written
as

ρu∞∆x2YF,∞︸ ︷︷ ︸
Inflow

+ ṁ︸︷︷︸
Evaporation

= ρu∞∆x2YF︸ ︷︷ ︸
Outflow

. (5.14)

The evaporation rate is given by Eq. (3.55) and evaluated using the cell value YF ,
which is equal to the fuel mass fraction at the outflow. By inserting the expression
for the evaporation rate, it is possible to rewrite Eq. (5.14) in non-dimensional form,

ln(1 +BM) = 1
π

Pe∆x

Sh∗
∆x
d

(YF − YF,∞), (5.15)

with the cell Péclet number defined by Eq. (5.8). This shows that the solution of the
fuel mass balance equation is governed by the non-dimensional parameters Pe∆x/Sh∗

and ∆x/d and by the difference between the fuel mass fractions associated with the
ambient state, the droplet surface condition and the cell value. The assumption of
a small mass transfer number, implying YF,s ≪ 1 and thus leading to ln(1 +BM) ≈
BM ≈ YF,s − YF , in combination with the assumption of a constant Sh∗ allows
to solve Eq. (5.15) analytically for the unknown cell value YF that determines the
error of the evaporation rate. If the solution is inserted into the equation for the
evaporation rate given by Eq. (3.55), the expression for the relative error is found,

ϵṁ =
(

1 + 1
π

Pe∆x

Sh∗
∆x
d

)−1

. (5.16)

Details on the derivation can be found in Appendix E.4.1. This relation has a similar
form as the relation for quiescent environments, Eq. (5.12), but now the prefactor is
no longer constant but a function of the cell Péclet number and modified Sherwood
number and thus depends on the cell size and the free-stream velocity. Due to
these facts, the error can be much smaller than in quiescent environments. As the
prefactor is now a function of the cell size, the error effectively shows a quadratic
dependence on the cell size. Numerical calculations confirm that the analytical
solution is also valid if the assumptions of small vapor mass fractions and constant
Sh∗ are relaxed (not shown).

The error relation given by Eq. (5.16) is a good approximation if convective
fluxes dominate over diffusive fluxes, that is, if the cell Péclet number is large.
However, the equation is not valid for smaller values of Pe∆x associated with smaller
velocities or smaller cell sizes, where it predicts too large an error due to the omission
of the diffusive fluxes. In that case, the error relation for quiescent environments,
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Eq. (5.12), provides a better approximation. This fact gives reason to quantify the
error in the whole range of Péclet numbers and cell sizes by taking the minimum of
both relations,

ϵṁ = min
[(

1 + 2
3

∆x
d

)−1

︸ ︷︷ ︸
Eq. (5.12)

,

(
1 + 1

π

Pe∆x

Sh∗
∆x
d

)−1

︸ ︷︷ ︸
Eq. (5.16)

]
. (5.17)

With this blending function, the relation based on pure convection, Eq. (5.16), is
used for Pe∆x > 2πSh∗/3 ≈ 4, while for smaller values the relation for quiescent
environments, Eq. (5.12), is used. Note that the fuel vapor diffusivity that ap-
pears in the definition of the cell Péclet number refers to the gas state far from the
droplet, and the modified Sherwood number is evaluated in the same way as in the
evaporation model (see Sec. 3.2) using the true ambient conditions.

To assess the applicability of the simplifying assumptions and therefore the va-
lidity of Eq. (5.17), the equations governing the evaporation of the single droplet in
an infinite environment are solved numerically in their three-dimensional form. To
be consistent with the analytical investigations, the case of pure mass transfer with
constant density is considered first, where the velocity field around the droplet is
approximated by a potential flow solution that results from the superposition of a
uniform flow, a doublet and a point source, as proposed by Rangel and Sirignano
[171]. In a second step, the effects of heat transfer and variable thermophysical
properties are added, and the velocity field is obtained from the solution of the mo-
mentum equation to include viscous effects. Similar to the preceding investigations,
all gas and droplet properties are selected randomly within a large range of typical
conditions, with free-stream velocities ranging from 0.001 m/s to 100 m/s. The ratio
of cell size to droplet diameter is varied within 1 ≤ ∆x/d ≤ 50, resulting in cell Pé-
clet numbers between 10−3 and 105. Figure 5.5(a) compares calculated errors with
error predictions based on Eq. (5.17) for the case of pure mass transfer and shows
overall good agreement. This confirms the applicability of the simplifying assump-
tions as well as the choice of the blending function. The color in Fig. 5.5(a) indicates
which of the two relations in Eq. (5.17) is used to calculate the error. It can be seen
that the relation for quiescent environments, Eq. (5.12), is generally associated with
larger errors, whereas the relation for convective environments, Eq. (5.16), is asso-
ciated with smaller errors. However, some overlap of the errors exists which is due
to the fact that the same error value can be achieved by both relations by changing
either ∆x/d alone, or ∆x/d and u∞. Finally, Figs. 5.5(b) and 5.5(c) demonstrate
that Eq. (5.17) also holds for the case of combined heat and mass transfer with
variable thermophysical properties, where the trends are essentially the same as for
the case of pure mass transfer.
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ethanol droplet.

10!6 10!4 10!2 100

Calculated 0 _m (-)

10!6

10!4

10!2

100

P
re

d
ic
te

d
0

_m
(-
)

Eq. (5.12)
Eq. (5.16)

(c) Heat and mass transfer, n-
heptane droplet.

Figure 5.5: Comparison of predicted and calculated errors of the steady-state evaporation rate
in convective environments. The calculated error is obtained from the numerical solution of the
three-dimensional governing equations. In (a) only the effect of mass transfer with constant density
is considered, while in (b) and (c) heat and mass transfer are taken into account, where the ambient
gas is a mixture of nitrogen and fuel with fuel species (b) ethanol and (c) n-heptane. The predicted
error is obtained from Eq. (5.17), where the color indicates which of the two relations, Eq. (5.12)
or Eq. (5.16), determines the error.

Discussion

The focus of the previous investigations was on steady-state solutions. Starting with
the very simple case of pure mass transfer and constant density, the analysis was
successively extended by adding further effects such as variable density effects, heat
transfer and convective environments. Two error relations were derived, which are
given by Eqs. (5.12) and (5.16), corresponding to the limits of Pe∆x = 0 and Pe∆x ≫
1, respectively. These are combined by Eq. (5.17), which then provides an adequate
error prediction for arbitrary cell Péclet numbers. For quiescent environments, the
error is only a function of ratio ∆x/d, which is consistent with the study of Rangel
and Sirignano [171]. Based on Eq. (5.12) one finds that the ratio ∆x/d = 10, as
established by Luo et al. [121], leads to an error in the evaporation rate of about
13 %, where doubling the cell size approximately halves the error. The existence of
a relative velocity between the droplet and the gas can greatly reduce the error and
introduces the cell Péclet number as an additional parameter. To demonstrate that
behavior, values typical for spray combustion applications with ethanol droplets, d =
20 µm and DF = 10−4 m2/s, are inserted into the error relation given by Eq. (5.17),
and the ratio of cell size to droplet diameter is kept at ∆x/d = 10. While for
u∞ = 1 m/s the predicted error is still the same as in a quiescent environment
(13 %), it decreases to only 3 % for u∞ = 10 m/s. To achieve this error in a quiescent
environment, a ratio of ∆x/d ≈ 50 would be necessary.

In addition to parameters ∆x/d and Pe∆x, the dimensional analysis has pro-
vided other parameters such as the reference mass transfer number BM,ref and the
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mass ratio φ (cf. Eq. (5.9)). For the mass transfer number it was shown that it
has only a secondary effect in steady-state calculations, which can be neglected if
only realistic values that result from phase equilibrium are chosen. The mass ratio
φ differs from parameter ∆x/d only by incorporation of the density ratio ρl/ρ. As
the liquid density solely appears in the conversion of droplet mass to volume, it is
not part of the steady-state equation system (where the droplet mass is constant),
and therefore the mass ratio φ is irrelevant here. However, it is expected that this
parameter becomes important for the case of transient droplet evaporation, which
will be the topic of the next section.

5.2.4 Transient Droplet Evaporation

Pure Mass Transfer

The error analysis is continued with the practically more relevant case of transient
droplet evaporation, where the error is now expressed in terms of the evaporation
time, as defined by Eq. (5.1). The sequence of investigation is the same as in
the preceding steady-state analysis, starting with the case of pure mass transfer
at constant density in quiescent environments and successively adding the effects
of heat transfer and convective environments. The governing equations of the gas
phase are given by Eqs. (5.10) and (5.11), now including the transient terms, and
the droplet mass evolves according to Eq. (3.24) with the evaporation rate given by
Eq. (3.33).

It is possible to transfer the known error relation for the steady-state evap-
oration rate into a relation for the relative error of the evaporation time. As-
suming quasi-steady conditions for the modeling of the evaporation rate and using
Eq. (5.12), the instantaneous evaporation rate can be estimated by

dmd

dt = −ṁ = −f1ṁref , f1 = α(∆x/d)
1 + α(∆x/d) . (5.18)

The factor f1 represents a correction to the reference evaporation rate, which is
obtained by using the true ambient conditions, and depends on the ratio of cell size
to droplet diameter. Since f1 < 1, the correction factor leads to an increase of the
evaporation time. Substituting the time derivative of the droplet mass by the time
derivative of the squared droplet diameter results in

dd2

dt = −f1Kref , (5.19)

with the evaporation constant Kref = (8ρDF/ρl) ln(1 +BM,ref) based on the ref-
erence solution. Since the correction factor f1 is a function of the instantaneous
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droplet diameter, an analytical solution of Eq. (5.19) is complicated. Therefore, the
correction factor is approximated by a suitable average value, which is determined
from the mean droplet diameter based on the d2-law given by ⟨d⟩ = 2

3d0. With
the right-hand side being a constant now (representing a modified evaporation con-
stant), Eq. (5.19) can be solved analytically to obtain the evaporation time. The
relative error of the evaporation time is then given by

ϵτ = τevap

τevap,ref
− 1 = 2

3α

(
∆x
d0

)−1

=
(

∆x
d0

)−1

, (5.20)

where the value α = 2/3 found from the steady-state calculations was inserted. A
detailed derivation including all substeps can be found in Appendix E.4.2. This
simple relation states that the relative error of the evaporation time is given by the
inverse of the ratio of cell size to initial droplet diameter.

Since Eq. (5.20) is based on the quasi-steady assumption, it cannot be valid for
arbitrary process conditions. An analysis of the terms in the vapor mass fraction
equation, evaluated in the cell that contains the droplet, shows that for cell sizes
similar to the droplet diameter, the convective and diffusive fluxes are of the same
order of magnitude as the source term but of opposite sign, such that the time
derivative is relatively small, justifying the use of steady-state relationships. Note
that the time derivative is still large in absolute terms and therefore leads to a large
variation of the vapor mass fraction value. In contrast, for cell sizes being much
larger than the droplet diameter, the convection and diffusion terms are negligible
compared to the other terms, so that the dominant terms are the time derivative
and the source term. This is equivalent to treating the cell containing the droplet
as a closed system, which then allows for an analytical approach. Appendix E.4.3
provides a detailed analysis of the single droplet in a finite and closed environment,
with the result that the evaporation time is governed by the parameter

φ∗ = φ

ln(1 +BM,ref)
= π

6
ρl

ρ∞

(
∆x
d0

)−3 1
ln(1 +BM,ref)

, (5.21)

which represents a modified mass ratio that incorporates the effect of the mass
transfer number. For sufficiently small φ∗ (corresponding to large ∆x/d0), the error
of the evaporation time follows the simple linear relation

ϵτ = 0.6φ∗. (5.22)

With Eqs. (5.20) and (5.22) there now exist two relations describing the error of the
evaporation time, corresponding to the limits of small and large ∆x/d0, respectively.
Since both error relations overestimate the error in the range where they are not
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Figure 5.6: Relative error of the evaporation time for single droplet evaporation in quiescent
environment based on pure mass transfer with constant density, as a function of (a) ∆x/d0, (b)
mass ratio φ, and (c) modified mass ratio φ∗. The color indicates the reference mass transfer
number BM,ref ∈ [0.01, 100] (logarithmic scale).

valid, the minimum of the two relations is taken to describe the error in the entire
range of ∆x/d0,

ϵτ = min
[(

∆x
d0

)−1

︸ ︷︷ ︸
Eq. (5.20)

, 0.6φ∗

︸ ︷︷ ︸
Eq. (5.22)

]
. (5.23)

To assess the validity of Eqs. (5.20) and (5.22) as well as their combination given
by Eq. (5.23), the governing equations of the gas phase, Eqs. (5.10) and (5.11), and
the equation for droplet mass, Eq. (3.24), are solved numerically as described in
Sec. 5.2.1. Similar to the previous investigations, a set of calculations is performed
with varying gas and droplet properties, covering a wide range of typical values, to
examine the dependence on the characteristic parameters. The ratio of cell size to
initial droplet diameter is varied within 1 ≤ ∆x/d0 ≤ 100, resulting in modified
mass ratios in the range 10−5 ≲ φ∗ ≲ 104. Figure 5.6(a) shows the calculated errors
of the evaporation time plotted versus the length-scale ratio ∆x/d0. For cell sizes
of the order of the initial droplet diameter (∆x/d0 ≲ 5), there is good agreement
between calculated errors and Eq. (5.20) (dashed line), whereas a large deviation
exists for cell sizes much larger than the initial droplet diameter, which is due to
the reasons explained above. The deviation at larger ∆x/d0 shows that the error
must depend on at least one further characteristic quantity that have previously
been identified using dimensional analysis. In particular the reference mass transfer
number BM,ref introduces a systematic deviation from Eq. (5.20), as indicated by
the color. However, since some scatter exists, further parameters need to be taken
into account. If the error is plotted against the mass ratio φ, the scatter associated
with the mass transfer number at larger ∆x/d0 (smaller φ) is eliminated, as shown
in Fig. 5.6(b), but the strong dependence on the mass transfer number persists.
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Figure 5.7: Comparison of predicted and calculated errors of the evaporation time in quiescent
environments. In (a) only the effect of mass transfer with constant density is considered, while in
(b) and (c) heat and mass transfer are taken into account, where the ambient gas is a mixture of
nitrogen and fuel with fuel species (b) ethanol and (c) n-heptane. The predicted error is obtained
from Eq. (5.23), where the color indicates which of the two relations, Eq. (5.20) or Eq. (5.22),
determines the error.

Only the use of the modified mass ratio φ∗ can largely eliminate the influence of the
reference mass transfer number, as can be seen in Fig. 5.6(c), where good agreement
with Eq. (5.22) (dashed line) is obtained for sufficiently large cells (φ∗ ≲ 10−2).
Finally, Fig. 5.7(a) compares calculated errors with the suggested combination of
the two relations based on Eq. (5.23), showing very good agreement. Only in the
transition region between the two respective relations there is a small deviation,
where the error is slightly overpredicted. Again, color is used to distinguish between
the relations determining the error, where it can be seen that the relation based on
the quasi-steady assumption is associated with larger errors due to its validity for
smaller ∆x/d0 only.

Heat and Mass Transfer

Since the previous section has only focused on pure mass transfer with constant
density, the analysis is now extended by the effect of heat transfer, including the
effects of variable density and variable thermophysical properties. The same initial
droplet diameters and ambient gas conditions are used as in the corresponding
steady-state analysis, and the ratio of cell size to droplet diameter is varied within
the range 1 ≤ ∆x/d0 ≤ 100, leading to modified mass ratios within 10−4 ≲ φ∗ ≲ 103.
Figures 5.7(b) and 5.7(c) compare the calculated error with the predicted error
based on Eq. (5.23) for fuel species ethanol and n-heptane, showing overall good
agreement. This confirms that the relationships found based on pure mass transfer
also hold for the case of combined heat and mass transfer, as was the case in the
steady-state investigations. Compared to the results based on pure mass transfer
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(Fig. 5.7(a)), some increased scatter is present, in particular in the relation for the
closed system, Eq. (5.22), resulting in slightly underpredicted errors. Note that the
reference mass transfer number is no longer constant, since the initial heating phase
of the droplet leads to time-varying droplet surface conditions. For the calculation
of the modified mass ratio φ∗, the value of BM,ref that corresponds to the wet-bulb
conditions is used. In contrast, the liquid density is evaluated using the initial
droplet temperature, as φ represents the initial ratio of liquid to gaseous mass in
the computational cell.

Convective Environments

Finally, the effect of a relative velocity between the droplet and the gas on the
error in the transient case will be investigated. Again, the relation for the steady-
state evaporation rate that incorporates the effect of convection, Eq. (5.16), can be
transferred to an error relation for the evaporation time, finally leading to

ϵτ = 2π
3

(
Pe∆x

Sh∗

)−1 (∆x
d0

)−1

. (5.24)

Details on the derivation can be found in Appendix E.4.4. The extension of Eq. (5.23)
to convective environments is then given by

ϵτ = min
[(

∆x
d0

)−1

︸ ︷︷ ︸
Eq. (5.20)

, 0.6φ∗

︸ ︷︷ ︸
Eq. (5.22)

,
2π
3

(
Pe∆x

Sh∗

)−1 (∆x
d0

)−1

︸ ︷︷ ︸
Eq. (5.24)

]
. (5.25)

The relation is validated by numerical calculations using the same setup as for
the corresponding steady-state analysis. Gas and droplet properties are selected
randomly within the same ranges as reported previously, and the ratio of cell size
to initial droplet diameter is varied within 1 ≤ ∆x/d0 ≤ 100. For the case of
pure mass transfer with constant density, the mass transfer number of the reference
solution lies within BM,ref ∈ [10−2, 102], and the resulting modified mass ratio and
cell Péclet number are within φ∗ ∈ [10−5, 102] and Pe∆x ∈ [10−3, 106], respectively.
The calculations including the effect of heat transfer show a significantly lower range
of mass transfer numbers, as discussed earlier, resulting in φ∗ ∈ [10−3, 103]. The
cell Péclet numbers are similar to those obtained from calculations based on pure
mass transfer. Figure 5.8(a) compares the calculated errors resulting from the pure
mass transfer problem with the predicted errors based on Eq. (5.25) and shows good
agreement. As before, color is used to highlight the usage of the individual error
relations that comprise Eq. (5.25). It can be seen that Eq. (5.20), which is based
on the quasi-steady assumption, is again prone to somewhat larger errors, whereas
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Figure 5.8: Comparison of predicted and calculated errors of the evaporation time in convec-
tive environments. The calculated error is obtained from the numerical solution of the three-
dimensional governing equations. In (a) only the effect of mass transfer with constant density is
considered, while in (b) and (c) heat and mass transfer are taken into account, where the ambient
gas is a mixture of nitrogen and fuel with fuel species (b) ethanol and (c) n-heptane. The predicted
error is obtained from Eq. (5.25), where the color indicates which of the three relations, Eq. (5.20),
Eq. (5.22), or Eq. (5.24), determines the error.

Eq. (5.22), which corresponds to the assumption of a closed cell, is associated with
medium to small errors. The relation for convective environments, Eq. (5.24), can
dominate the error estimate throughout the entire error range, as was discussed
earlier. Finally, Figs. 5.8(b) and 5.8(c) compare the error relation with errors that
are obtained from calculations involving heat transfer and using fuel species ethanol
and n-heptane. Again, the trends are essentially the same as for the case of pure
mass transfer, confirming that Eq. (5.25) also holds for the case of combined heat
and mass transfer with variable thermophysical properties.

Discussion

Following the same procedure as established for steady-state conditions, the error
has been investigated for the case of transient droplet evaporation. Again, the
analysis has been started with the simplest case of pure mass transfer and constant
density, with other effects such as heat transfer and convective environments added
step by step. While for steady-state calculations only the length ratio ∆x/d and the
cell Péclet number Pe∆x determine the error, now the mass ratio φ and the reference
mass transfer number BM,ref gain importance. Their influence can be combined by
introducing the modified mass ratio φ∗. This is consistent with the dimensional
analysis, which, however, could not predict the specific form of φ∗. The error of
the evaporation time is therefore a function of the three parameters ∆x/d0, φ∗ and
Pe∆x, and obeys the functional relationship given by Eq. (5.25).

In practical applications, the cell size is often of the order of ∆x/d0 ≲ 20.
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Assuming a density ratio of ρl/ρ∞ ≈ 1000 and a mass transfer number of BM,ref ≈ 1
in combination with Pe∆x ≲ 4, the error relation given by Eq. (5.25) reduces to
Eq. (5.20). This provides a very simple estimate for the error, in which the error is
inversely proportional to the ratio of cell size to initial droplet diameter. According
to that, a ratio of ∆x/d0 = 10 corresponds to an error of 10 %, and doubling the cell
size halves the error. Since errors in the range of 5 % to 10 % are often within the
accuracy of the evaporation model and hence acceptable, this study recommends
cell sizes of the order of 10 to 20 droplet diameters for practical calculations. This
is in agreement with the criterion proposed by Luo et al. [121], although the present
study tends to require slightly larger cell sizes. Note that this requirement can often
not be realized due to the resolution requirements of turbulence and chemistry,
which require smaller cell sizes. Also note that the requirements on the cell size can
be relaxed if there are other effects such as a relative velocity between the gas and
the droplet, as discussed before, or if the source term is distributed to multiple grid
nodes (see Appendix E.3). A universally valid estimate of the error for all cell sizes,
droplet and gas conditions is given only by the complete relationships as derived
within this study.

5.3 Grid Dependence of Mixture Fraction
Variance

5.3.1 Outline of the Analysis

After having discussed the dependence of the evaporation process on the computa-
tional cell size, the focus is now on the effects in the gas phase resulting from the
use of the PSI-cell model. Here, the distribution of the source terms to the com-
putational cell, as imposed by the PSI-cell model, implies infinitely fast mixing in
the surroundings of the droplets and eliminates any variance on subgrid level. This
lack of resolution is then expected to reduce the variance of the resolved fields, as
illustrated in Fig. 5.1.

In a first step, the analytical solution of a single droplet in an infinite and
quiescent environment is used to quantify the characteristic mixing time scale in
the vicinity of the droplet, which can then provide insight into the validity of the
assumption of infinitely fast mixing within the computational cell. Afterwards, a
numerical solution of the gas-phase equations is employed in order to discuss the
dependence of the resolved mixture fraction variance on the cell size, where the
analytical solution serves as a reference solution.
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5.3.2 Assessment of Infinitely Fast Mixing Within the Cell

Immediately at the droplet surface, the gradients and thus the diffusive transport are
large. This suggests that the characteristic mixing time near the droplet surface is
small, and infinitely fast mixing can be assumed. This hypothesis will be examined
in the following in more detail on the basis of the analytical solution of a single
droplet in an infinite and quiescent environment, as was derived in Sec. 3.2.2.

In the absence of chemical reactions, mixture fraction as defined in Sec. 4.1.2 is
identical to the fuel mass fraction. Assuming quasi-steady processes and constant
properties (specifically the product ρDF ), the fuel mass fraction field around the
droplet is given by Eq. (3.35), which is expressed here in terms of mixture fraction,

f(r) = 1 − (1 − f∞) exp
(

− ṁ

4πrρDF

)
. (5.26)

In the spherically symmetric coordinate system, the scalar dissipation rate is ex-
pressed as χ = 2DF (df/dr )2, and given based on Eq. (5.26) in analytical form
by

χ(r) = 2DF (1 − f∞)2
(

ṁ

4πρDF

)2 1
r4 exp

(
− ṁ

2πrρDF

)
. (5.27)

Since the scalar dissipation rate decreases with r−4, mixing effects are expected to
be limited to the immediate vicinity of the droplet. The mixing time is defined as
τmix = fV /⟨χ⟩ (cf. Eq. (4.46)), where fV = ⟨f 2⟩ − ⟨f⟩2 denotes the mixture fraction
variance. Averages, denoted by the angle brackets, are calculated by integrating
the corresponding expressions in the spherically symmetric coordinate system from
the droplet surface, denoted as rs, to a radius R in the surroundings of the droplet,
which is associated here with the computational cell size, R/rs ∼ ∆x/d. The
integration must be performed numerically and therefore does not provide a closed-
form expression for the mixing time. However, by considering the limiting case of
small mass transfer numbers, thus neglecting the Stefan flow, an analytical solution
of the (simplified) integral equations can be found, where the expression for the
variance is given by

fV

(fs − f∞)2 = 3
4

(R/rs − 1)2

((R/rs)2 +R/rs + 1)2 , (5.28)

and the expression for the spatially averaged and normalized scalar dissipation rate
takes the form

⟨χ⟩τD

(fs − f∞)2 = 6
(R/rs)3 + (R/rs)2 + (R/rs)

, (5.29)

with the diffusive time scale defined as τD = r2
s/D. The numerical calculations along

with the analytical solution (assuming small mass transfer numbers) are shown in
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Figure 5.9: Analytical solution for mixture fraction variance, mean scalar dissipation rate and
mixing time defined as τmix = fV /⟨χ⟩ in a spherical region around the droplet with r ∈ [rs, R].
Gray dots denote the results obtained from a numerical solution of the integrals using various gas
and droplet properties, while the black line corresponds to the approximation that assumes small
mass transfer numbers and neglects the Stefan flow (Eqs. (5.28) and (5.29)). The diffusive time
scale used for normalization is given by τD = r2

s/DF .

Fig. 5.9, where the mixture fraction variance, mean scalar dissipation rate and mix-
ing time are plotted versus the normalized radius R/rs. It can be seen that the
numerical solution of the integral equations agrees quite well with the simplified
analytical solution. As the domain size is increased, the variance first increases due
to the approximately linear decay of the mixture fraction profile near the droplet
surface, and then decreases as the mixture fraction profile becomes flatter with in-
creasing distance from the droplet surface, with the maximum value occurring at
about R/rs ≈ 2.7. In contrast, the mean scalar dissipation rate decreases con-
tinuously due to the large gradient at the droplet surface, while the mixing time
increases continuously. For sufficiently large R/rs, the normalized quantities exhibit
an asymptotic region, where the variance decays with (R/rs)−2 (cf. Eq. (5.28)) and
the average dissipation rate with (R/rs)−3. The asymptotic behavior of the nor-
malized mixing time is then given by τmix/τD ∼ R/rs. This relation is valid for
R/rs ≳ 10, and can be expressed in dimensional form as

τmix ∼ rsR

DF

. (5.30)

The result is remarkable, since it represents the geometric mean of the time scales
of the smallest and the largest scales, which are given by τD,rs = r2

s/DF and
τD,R = R2/DF , respectively. Accordingly, the mixing time is a function of both,
the droplet size and the domain size, and increases linearly with both parameters.
The dependence on the droplet size can be explained by the fact that smaller droplets
produce larger gradients and thus enhance the diffusive transport in the vicinity of
the droplet, while the domain size is an indicator for the time required to transport
the vapor to the surroundings of the droplet. The proportionality constant corre-
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sponding to Eq. (5.30) is determined analytically from Eqs. (5.28) and (5.29) to be
1/8 for the pure diffusion case, whereas it takes values between 0.1 and 1 if the
Stefan flow is included.

In numerical simulations employing the PSI-cell model, the size of the spheri-
cal domain, R, can be associated with the computational cell size, ∆x. To assess
the assumption of infinitely fast mixing within the computational cell, the derived
mixing time is related to the time scales found in CFD of dilute sprays. By com-
paring the time scale given by Eq. (5.30) with the time scale of the resolved scales,
τD,R = R2/DF (considering only diffusion), the ratio of time scales can be expressed
as

τmix

τD,R

∼
(
R

rs

)−1
∼
(

∆x
d

)−1

. (5.31)

Since ∆x/d > 1, the ratio is less than one, indicating that the mixing of the evapo-
rated fuel vapor within the surroundings of the droplet is faster than the diffusion
processes on the resolved scales. This behavior is induced by the large gradients at
the droplet surface and shows that infinitely fast mixing within the computational
cell can be a valid assumption. In particular in CP-DNS, where all scales are re-
solved except for the droplets, the PSI-cell model is therefore a good approximation.
With increasing cell size, as found in LES, the ratio of time scales further decreases,
so that the mixing near the droplets generally becomes less significant with respect
to the resolved scales, thus enhancing the assumption of infinitely fast mixing. How-
ever, other effects may become important in that case, such as turbulence-chemistry
interactions, which usually exhibit much smaller time scales as associated with the
resolved scales. These effects are not captured by the analysis, and therefore the
present findings should be viewed with caution if applied to the LES of turbulent
reacting flows.

5.3.3 Effect of the Cell Size on the Resolved Variance

Computational Setup

In order to incorporate discretization effects into the analysis, a numerical solution
of the gas-phase equations is employed, where the focus is now on the variance
of the resolved mixture fraction field. Although the evaporation process and thus
the generated variance is generally a function of time, stationary conditions are
assumed to simplify the problem. This is justified, since the large gradients at
the droplet surface lead to the establishment of quasi-steady conditions after a
short time. Furthermore, pure mass transfer with the assumption of small mass
transfer numbers is assumed, following the preceding investigations. The variance
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(a) Source terms are transferred entirely to the
cell that contains the droplet.

(b) Source terms are distributed homogeneously
to multiple cells within a cube of length ∆.

Figure 5.10: Computational setup for the numerical analysis of the grid dependence of the
mixture fraction variance.

is calculated within a cubic domain of length L that is discretized by computational
cells of size ∆x with the droplet placed in the center of the domain, as shown
in Fig. 5.10. The domain length L represents the region of influence of the droplet
that is associated with the calculation of the variance. In systems involving multiple
droplets, it is convenient to use the nominal distance between the droplets and set
L = ∆L, which then allows to break down a system involving multiple droplets to
the single-droplet problem. It can be shown that the single-droplet system reflects
the variance of the multiple-droplet system, provided that the droplet distribution is
homogeneous and the local mean values associated with the characteristic volume of
each droplet do not differ significantly. Periodic boundary conditions are applied to
eliminate the effect of numerical boundary conditions, which is particularly crucial
for a coarse discretization, and to mimic the possible existence of further droplets.
To allow for the establishment of a stationary state, the evaporated mass must be
removed from the system, which is achieved here by subtracting the volume-averaged
source term in each cell. Note that this does not affect the gradients and thus the
calculation of the variance, but only the mean value, which now remains constant
and is given by the initial conditions, which are equal to the prescribed far-field
conditions. The evaporation rate is calculated using the mean fuel mass fraction
in the domain, which eliminates the error that would result if the evaporation rate
is evaluated based on the local cell values. Source terms are either transferred to
the cell that contains the droplet (standard PSI-cell model, cf. Fig. 5.10(a)), or
distributed to multiple cells within a cube of length ∆ surrounding the droplet, as
illustrated in Fig. 5.10(b).
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Changing the Computational Cell Size

The most obvious approach to discuss the grid dependence of the mixture fraction
variance is to change the computational cell size directly, while the evaporation
source terms are transferred entirely to the cell that contains the droplet, as visual-
ized in Fig. 5.10(a). An increase of the cell size thereby implies that the source terms
are distributed among a larger volume and thus a reduction of the variance is to be
expected, as sketched in Fig. 5.1. To verify this hypothesis, a set of calculations is
performed with varying gas and droplet properties, and using different domain sizes
and cell sizes. The results are shown in Fig. 5.11. In Fig. 5.11(a) the normalized
variance is plotted as a function of the domain size normalized by the droplet diam-
eter. The analytical solution given by Eq. (5.28), which is evaluated here using an
equivalent radius corresponding to a sphere of equal volume, R = ( 3

4π
)1/3L, is also

shown for comparison. It can be seen that the normalized variance is mainly a func-
tion of the normalized domain size and decays proportional to (L/d)−2. Contrary
to expectations, it does not show a significant dependence on other parameters, in
particular on the computational cell size. Good agreement between the numerical
results and the analytical solution is obtained in the asymptotic region (L/d ≳ 10),
demonstrating the capability of the PSI-cell model to predict the correct variance of
an isolated droplet. For smaller domain sizes there are different trends, where the
numerical results continue to show the asymptotic behavior, whereas the analytical
solution predicts a decrease of the variance when approaching the limit L/d → 1.
Note that this trend is also obtained if the analytical solution is mapped to a Carte-
sian domain instead of using a sphere of equal volume.

In order to quantify the (weak) dependence on the computational cell size, the
normalized variance is multiplied by (L/d)−2 and plotted versus ∆x/L (using ∆x/d
does not lead to a clear correlation). The corresponding plot is shown in Fig. 5.11(b),
which indicates that the variance generally increases with an increasing cell size, but
the changes remain in a relatively small range, thus making the variance almost in-
dependent of the cell size. This result contradicts the initially formulated hypothesis
that the variance decreases with increasing cell size, and indicates that the variance
is accurately reproduced regardless of the computational cell size, provided that
the characteristic volume around the droplet is resolved by the numerical grid (i.e.,
∆x < L). An explanation is that as the cell size increases, the local cell values
become smaller since the source term is transferred to a larger volume, but at the
same time the number of cells decreases so that each cell is weighted more strongly
when calculating the variance in the domain. The reason why these effects cancel
each other out is due to the fact that the mass flow, which determines the gradients,
is imposed by the given source term and is thus independent of the cell size.
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Figure 5.11: Effect of cell size on mixture fraction variance. The variance is calculated in a
cubic domain of length L, as illustrated in Fig. 5.10(a). Calculations are performed for a set of
varying gas and droplet properties with ρ ∈ [0.1 kg/m3, 10 kg/m3], DF ∈ [10−6m2/s, 10−1m2/s],
YF,∞ ∈ [0, 0.5], d ∈ [1 µm, 1 cm], YF,s ∈ [YF,∞, 1] as well as for different domain sizes and cell
sizes. Pure mass transfer with the assumption of small mass transfer numbers (no Stefan flow) is
considered.

Changing the Source Term Distribution

The previous section has demonstrated that there are two counteracting mechanisms
that affect the variance when the cell size is increased. In order to examine the effect
of distributing the source terms to a larger volume separately from other effects
(such as discretization effects), the source terms are now distributed homogeneously
to multiple cells within a cube of length ∆ surrounding the droplet, as illustrated in
Fig. 5.10(b). The length of the cube is determined by ∆ = (1 + 2δ)∆x, where δ =
0, 1, 2, ... indicates the number of cell layers around the cell that contains the droplet.
This approach is also expected to more accurately reflect the effects associated with
the distribution of the source terms among the stochastic particles, where there is
no such discretization effect. Again, a set of calculations is performed with varying
gas and droplet properties, and using different domain sizes, cell sizes and source
term distributions indicated by the parameter ∆. As can be seen from Fig. 5.12(a),
the normalized variance not only decreases proportional to (L/d)−2, but also with
an increasing value for ∆/L, where again the cell size has no significant effect on
the variance. To eliminate the effect of the domain length and to focus on the
dependence on the parameter ∆/L, Fig. 5.12(b) shows the normalized variance
multiplied by (L/d)2 and plotted versus ∆/L, revealing two branches with different
trends. For the case where the source term is distributed only to the cell that
contains the droplet (∆ = ∆x, blue dots in Fig. 5.12(b)), the variance increases
slightly with increasing ∆, reflecting the results shown in Fig. 5.11(b). In contrast,
if the source term is distributed to multiple cells (∆ > ∆x, gray dots in Fig. 5.12(b)),
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Figure 5.12: Effect of source term distribution on mixture fraction variance. The variance is
calculated in a cubic domain of length L, and source terms are distributed homogeneously to
multiple cells within a cube of length ∆, as illustrated in Fig. 5.10(b). Calculations are performed
for a set of varying gas and droplet properties (see caption of Fig. 5.11) as well as different domain
sizes, cell sizes and source term distributions, considering pure mass transfer with the assumption
of small mass transfer numbers (no Stefan flow).

an exponential decay of the variance with increasing ∆/L is observed, as originally
assumed and illustrated in Fig. 5.1. A simple approximation can be found to describe
the effect of ∆/L on the variance, which is given by

fV

(fs − f∞)2 = 0.42
(

1 − ∆
L

)2.4(L
d

)−2
, (5.32)

and shown by the black line in Fig. 5.12(b). The limit ∆ → 0 in Eq. (5.32) represents
the reference solution that is obtained with sufficiently small ∆ = ∆x, which also re-
produces the analytical solution of an isolated droplet for L/d ≳ 10 (cf. Fig. 5.11(a)).
Using this reference solution and keeping all parameters constant except for ∆/L,
the normalized and scaled variance has decreased to 60 % of the reference value for
∆/L = 0.2, and only 30 % of the variance is captured for ∆/L = 0.4.

As mentioned earlier, the results can be readily applied to systems involving
multiple droplets if the domain length is replaced by the nominal distance between
the droplets, L = ∆L, as well as to Lagrangian FDF methods, where source terms
are transferred to the gas-phase particles and thus ∆ is associated with the volume
represented by the particles, ∆L = (V sp)1/3. Equation (5.32) then provides a simple
estimate of the loss in the resolved variance for a given ∆/∆L and ∆L/d.
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5.4 Summary and Discussion

The purpose of the present chapter was to examine the grid dependence induced by
the standard PSI-cell model when using an Euler-Lagrange approach in the context
of dilute spray evaporation and combustion. Based on an isolated droplet in an
infinite environment, several criteria were derived to quantify the numerical error
resulting from the use of the PSI-cell model, thus providing guidelines for performing
grid-independent CFD simulations of dilute sprays. The analysis was split into two
parts, first examining the grid-dependence of the evaporation process of the liquid
droplets (Sec. 5.2), and followed by a discussion of the effect of the cell size on the
resolution of the gas-phase fields in the vicinity of the droplets, characterized by the
mixture fraction variance (Sec. 5.3).

Focusing on the error of the evaporation rate and time of the liquid droplets,
closed-form expressions were derived based on analytical solutions of simplified se-
tups, whose universal validity has been subsequently validated. The main outcomes
are as follows:

The error of the evaporation rate and time is generally a function of four char-
acteristic parameters: the length ratio ∆x/d0, the mass ratio φ representing the
initial ratio of liquid to gaseous mass in the computational cell, the reference
mass transfer number BM,ref , and the cell Péclet number Pe∆x. Further, it was
shown that the effect of BM,ref can be incorporated into a modified mass ratio
φ∗, reducing the number of characteristic parameters to three.
Assuming steady-state conditions, the error of the evaporation rate depends on
only two parameters, ∆x/d and Pe∆x, and follows the relation given by Eq. (5.17).
In the transient case, the error of the evaporation time is a function of all three
parameters ∆x/d0, φ∗ and Pe∆x, and can be described by Eq. (5.25).
In the practically relevant case (∆x/d0 ≲ 20) and assuming a small relative
velocity (Pe∆x ≲ 4), the relation for the error of the evaporation time, Eq. (5.25),
reduces to the simple relation ϵτ = (∆x/d0)−1, which states that the error is
inversely proportional to the ratio of cell size to initial droplet diameter.

The error due to lack of resolution of the gaseous fields in the vicinity of
the droplet was analyzed assuming steady-state conditions and pure mass trans-
fer. First, the assumption of infinitely fast mixing within the computational cell as
induced by the PSI-cell model was examined, followed by an investigation of the
effect of the cell size on the resolved mixture fraction variance. The results can be
summarized as follows:
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The characteristic mixing time near the droplet is fast compared to the resolved
scales of the Eulerian field, justifying the use of the PSI-cell model, which implies
infinitely fast mixing within the computational cell.
The variance predicted by the PSI-cell model agrees well with the analytical
solution for sufficiently large domain sizes L/d ≳ 10, and decays proportional to
(L/d)−2. For L/d ≲ 10, the PSI-cell model overestimates the variance.
The cell size was found to have no significant effect on the resolved variance,
as the effects of distributing the source term to a larger volume and numerical
discretization cancel each other out. Accordingly, the variance is accurately repro-
duced regardless of the computational cell size, provided that the characteristic
volume of each droplet is resolved by the numerical grid.
By distributing the source term to a given gas-phase volume larger than the cell
size, the variance decreases exponentially and can be approximated by Eq. (5.32).

To conclude, the results of the analysis state that in order to minimize both
the error of the evaporation rate and the error of the scalar variance, the cell size
should be as large as possible but at the same time ensure that the inter-droplet
space is still resolved by the numerical grid. However, it is not always possible to
meet both criteria, and often a compromise must be made. Depending on the type
of simulation, the following guidelines for performing grid-independent simulations
using the PSI-cell model can be formulated:

CP-DNS: Here, the largest possible cell size is usually determined by the resolu-
tion requirements of turbulence and chemistry, so that the error of the evaporation
rate cannot be completely avoided. The derived error relations then allow for an
estimate of the expected error prior to the simulation. The scalar variance around
the droplets is reproduced by the PSI-cell model regardless of the cell size, pro-
vided that the inter-droplet space is resolved (∆x < ∆L), albeit overestimated
for ∆L/d ≲ 10.
LES/RANS: These kind of simulations are characterized by larger cell sizes, so
that the error of the evaporation rate is often not a problem. The inter-droplet
space is usually not resolved by the numerical grid (∆x > ∆L), meaning that the
variance of the individual droplets is not taken into account. Equation (5.32) with
∆ = 0 and L = ∆L may help to assess the importance of the variance resulting
from the individual droplets in order to decide whether modeling is required or
not.
Lagrangian FDF methods: Here, the variance resulting from the evaporating
droplets is determined by the way how source terms are transferred to the notional
particles and by the volume of each gas-phase particle. If the selected stochastic
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particles receive source terms from only one droplet each (which is approximately
fulfilled by the one-to-one coupling technique), Eq. (5.32) with ∆ = (V sp)1/3 and
L = ∆L can be used to provide a simple estimate of the loss of variance compared
to the reference value (∆ = 0).

The effectiveness of the derived relations in practical simulations involving multiple
droplets and including the effects of turbulence and chemistry is demonstrated in
Appendix E.5 by comparing a priori estimates with a posteriori errors from Euler-
Lagrange simulations, and the usage of the relations will also be addressed in the
following chapters.





Chapter 6

A Comparative Study of
Two-Phase Coupling Models

The present chapter provides a detailed a priori analysis of various two-phase cou-
pling models in the context of dense and sparse particle methods based on the
work published by Sontheimer et al. [198]. All required input data, including the
evaporation rate, are extracted from the CP-DNS, with focus on the distribution of
the source terms among the stochastic particles. After discussing the strengths
and weaknesses of the different models, potential improvements for the sparse-
Lagrangian two-phase coupling are presented by combining concepts of the SAT
model with the one-to-one coupling technique. This eventually leads to the devel-
opment of a time delay model, in which the source terms are transferred partially
to the gas-phase particles using a characteristic mixing time.

6.1 Computational Setup

To assess the two-phase coupling models presented in Sec. 4.5, an idealized regime
is considered where the entire spray has been atomized and the liquid phase can
be represented by an ensemble of spherical droplets (cf. Fig. 2.2). The droplet dis-
tribution is assumed to be homogeneous as is the turbulence such that statistically
homogeneous and isotropic turbulence can be used. This allows to examine the com-
plex spray combustion phenomena by means of spatially averaged statistics, where
the generation and destruction of variance is determined solely by the evaporation
process and scalar dissipation, respectively (cf. Appendix B). The various two-phase
coupling models are examined by using the a priori modeling strategy introduced in
Sec. 4.7.3, where a CP-DNS provides LES-like input data to the Lagrangian FDF
method.

The computational domain consists of a cubic box of length L = 12 mm with
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periodic boundary conditions. The initial gas is composed of nitrogen and oxygen
with mass fractions YN2 = 0.767 and YO2 = 0.233 similar to those of air. The
initial temperature is set to T0 = 1500 K to allow for spontaneous ignition once the
evaporation and mixing process has started, and the initial pressure is p0 = 1 atm.
The chemistry is modeled using a global single-step reaction for ethanol combustion
in air [228]. The velocity field is initialized with homogeneous isotropic turbulence,
which was generated with a preceding non-reacting and incompressible simulation
without droplets using the linear forcing method described in Carroll and Blanquart
[21]. The corresponding Taylor Reynolds number is Reλ = 40 and the eddy turnover
time has a value of τ0 = 0.16 ms. The chosen Reynolds number corresponds to fully
developed turbulence and ensures that the largest and smallest relevant scales of
fluid motion are well resolved on the computational mesh (more details will be given
below). The droplets are composed of liquid ethanol and are distributed randomly
in the domain with an initial diameter of d0 = 20 µm and an initial temperature of
Td,0 = 300 K. The initial velocity of the droplets is equal to the local gas velocity,
and the Stokes number is St = (ρld

2
0)/(18µ)/τ0 ≈ 2.2. Three droplet loading ratios

are considered, covering dilute sprays as well as moderately dense sprays. The
corresponding parameters are reported in Tab. 6.1.

For the CP-DNS, the computational domain is discretized by Nx ×Ny ×Nz =
256 × 256 × 256 ≈ 16.8 M uniform grid cells, resulting in a cell size of ∆x ≈ 47 µm.
This grid resolution ensures sufficient resolution of the Kolmogorov length scale
(∆x/η ≈ 1), and resolves the inter-droplet space by at least five grid cells with a ratio
of cell size to initial droplet diameter of ∆x/d0 ≈ 2.3. The accurate resolution of the
near-droplet fields conflicts with the requirement for a grid-independent estimation
of the evaporation rate, as discussed in Ch. 5. According to the error relation
given by Eq. (5.25), the cell size of the CP-DNS would result in errors of the order
of 40 %, which is not justifiable. For this reason, appropriate far-field conditions
are estimated by averaging the gas state within the characteristic volume of each
droplet (V = ∆3

L), which largely eliminates the dependence of the evaporation rate
on the computational cell size. Note that the evaporation source terms are still
transferred to the cell that contains the droplet to capture the large gradients at
the positions of the droplets. As demonstrated in Sec. 5.3, this will accurately
reproduce the variance that is generated by the evaporation of each droplet (since
∆L/∆x > 1 and ∆L/d0 > 10). LES-like input data required for the Lagrangian
FDF method are obtained by post-filtering the CP-DNS data using an LES cell size
of ∆LES = 8∆x. The turbulent diffusivity is calculated from Eq. (4.20) assuming
a turbulent Schmidt number of Sct = 0.4, and the turbulent viscosity is obtained
from the Smagorinsky model with Cs = 0.1. The different two-phase coupling
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Table 6.1: Droplet loading ratios for the simulations of spray combustion in statistically homo-
geneous turbulence. The table lists the normalized nominal droplet distance ∆L/d0, the number
of droplets Nd, the initial liquid volume fraction ϕd, the initial liquid-to-gas mass ratio ml,0/mg,0
and the global equivalence ratio Φ.

Case ∆L/d0 Nd ϕd ml,0/mg,0 Φ

low 35 4913 1.2 · 10−5 0.04 0.4
mid 20 27 000 6.5 · 10−5 0.22 2.0
high 12 125 000 3.0 · 10−4 1.02 9.1

models presented in Secs. 4.5.2 and 4.5.3 are examined in the context of both dense
and sparse particle methods. The dense particle simulations involve 20 particles
per LES cell, giving a total of 655 360 stochastic particles, and the sparse particle
simulations are performed with a particle number density of one particle per LES
cell, resulting in 32 768 notional particles within the computational domain. To
eliminate possible modeling errors associated with an evaluation of the evaporation
rate based on the stochastic particle solution, the evaporation rate and the droplet
heating term for the Lagrangian FDF method are extracted from the CP-DNS data.
This allows for an unbiased comparison of the effects of the fuel droplets on the gas
phase between the CP-DNS and the stochastic particle method.

The variance equation (see Appendix B for its derivation) reveals a strong
interaction between mixing and evaporation, with the result that different two-phase
coupling models may require different mixing models to yield the correct variance.
The preferred approach for the analysis is to leave the mixing model unchanged
and use the available conventional models that work well in single-phase flows, so
that the performance of the Lagrangian FDF method is mainly determined by the
two-phase coupling model. For the dense particle simulations, the continuous Curl
model with a deterministic mixing extent is used (cf. Sec. 4.3.4), where the mixing
time is given by Eq. (4.49) with Cf = 0.1. The sparse particle methods employ the
MMC mixing model with the a-ISO mixing time scale using the model constants
as reported in Sec. 4.4.3. A discussion of the mixing time modeling in spray flames
will be given later in Sec. 6.2.3.

The MMC mixing model requires the specification of appropriate mixing pa-
rameters rm and fm, representing typical distances between the particles in physical
and reference mixture fraction space, respectively. Due to the initial homogeneous
mixture fraction field and the fact that different droplet loadings result in widely
varying mixture fraction ranges, the isoscalar sliver relation (cf. Sec. 4.4.2) cannot
be used for the present setup, and a different strategy is required. Here, the values
for the mixing parameters are determined (iteratively) in such a way that the pa-
rameters match the real distances subsequently calculated from the simulation data.
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Table 6.2: MMC parameters for the simulations of spray combustion in statistically homogeneous
turbulence. The table lists values for the mixing parameters rm and fm as well as for the coupling
parameters r∗

m and f∗
m required for the one-to-one coupling strategy based on the minimization of

the effective square distance, Eq. (4.60).

Case Mixing, Eq. (4.51) Two-phase coupling, Eq. (4.60)
rm (m) fm (-) r∗

m (m) f∗
m (-)

Low 8.0 · 10−4 2.0 · 10−4 4.8 · 10−4 1.2 · 10−4

Mid 8.0 · 10−4 7.2 · 10−4 4.8 · 10−4 4.3 · 10−4

High 8.0 · 10−4 1.5 · 10−3 4.8 · 10−4 9.0 · 10−4

Note that by changing the droplet loading, only the parameter fm is changed, since
the number of notional particles and thus the distances in physical space remain the
same. The same procedure is used to find the values for the two-phase coupling pa-
rameters r∗

m and f ∗
m, which are required for the one-to-one coupling strategy based

on the minimization of the effective square distance between the fuel droplets and
the stochastic particles, Eq. (4.60). The values found are reported in Tab. 6.2. The
next chapter will provide details on how these parameters can be estimated prior to
the simulation for practically relevant configurations with pre-evaporation.

The governing equations of the CP-DNS and the Lagrangian FDF are solved
numerically using the OpenFOAM-based mmcDropletDNSFoam solver, as introduced
in Sec. 4.7.3. To minimize the numerical dissipation, the solution of the Eulerian
transport equations in the CP-DNS employs cubic interpolation schemes while using
a TVD scheme for mixture fraction and species mass fractions to ensure bounded-
ness, in combination with a second-order backward time discretization scheme (see
Appendix D for details on the numerical schemes). Simulations are performed for
two eddy turnover times, where the time step is adjusted dynamically to ensure a
maximum Courant number of CFLmax = 0.4.

6.2 Analysis of the CP-DNS Data

6.2.1 Baseline Results

Fuel evaporates and mixes with the ambient gas, with auto-ignition of the mixture
eventually leading to combustion in the gas phase, while turbulence decays over
time. The amount of evaporated fuel and the combustion characteristics depend on
the droplet loading, as illustrated in Fig. 6.1. With the lowest droplet loading (case
low), mean mixture fraction values remain small and do not reach the stoichiometric
value (fst ≈ 0.12), and mainly isolated droplet burning with relatively low flame
temperatures can be observed. For case mid, mixture fraction values are higher and
close to the stoichiometric value, resulting in the highest temperatures. Due to the



6.2 Analysis of the CP-DNS Data 115

(a) Case low. (b) Case mid. (c) Case high.

(d) Case low. (e) Case mid. (f) Case high.

Figure 6.1: Contour plots (x-y slice for z = Lz/2) of mixture fraction (top) and temperature
(bottom) of the CP-DNS at time t = τ0. The droplets (black dots) are magnified by a factor of 5.

reduced inter-droplet distance, isolated droplet burning as well as group combustion
occurs. Finally, case high exhibits the highest mixture fraction values with both
regions of stoichiometric and rich mixtures, where in the latter the excessive cooling
of the droplets prevents combustion to take place.

The time evolution of the spatially averaged mixture fraction and temperature
as well as the corresponding root-mean-square (rms) is plotted in Fig. 6.2 (solid
lines). Both the mean and rms of the mixture fraction are proportional to the
amount of evaporated fuel and increase once the evaporation process has started,
but partially show a decline in the increase at later times as the fuel concentration
in the domain rises. The mean temperature increases continuously for case low and
mid, whereas for case high it increases strongly at the beginning but then declines
after t/τ0 ≈ 0.6. This is attributable to the fact that the high amount of evaporation
leads to an early ignition of the gas mixture, followed by an intense combustion in
which the available oxygen is almost completely consumed after a short time due to
the high equivalence ratio (cf. Tab. 6.1). The rms of the temperature mainly follows
the trends reported for the rms of the mixture fraction.
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Figure 6.2: Temporal evolution of mean and rms of mixture fraction and temperature of the CP-
DNS for different droplet loadings and source term distributions. The legend and color indication
is the same in each subfigure. The reference case, where source terms are transferred entirely to
the cell that contains the droplet, is given by δ = 0.

6.2.2 Significance of the Near-Droplet Fields

To quantify the importance of the generation of variance by the individual droplets,
additional simulations are performed in which the droplet source terms are grad-
ually distributed to a larger volume of length ∆ = (1 + 2δ)∆x with parameter
δ = 0, 1, 2, ..., as explained in Sec. 5.3.3. This imposes artificial mixing in the sur-
roundings of the droplets and shall emulate the effect of the source term distribution
towards larger LES cells or stochastic particles in a sparse particle method. Accord-
ing to Eq. (5.32), which describes the variance of an individual droplet, a value of
δ = 1 reduces the variance to 58 % of the value associated with the reference solution
(δ = 0) for case low, to 35 % for case mid, and to 12 % for case high, while a value of
δ = 3 eliminates the variance of the individual droplets completely except for case
low. Note that in simulations involving multiple droplets, the total variance does
not drop to zero, as the inhomogeneous distribution of the evaporation source terms
due to random droplet positions leads to the formation of large-scale structures,
whose variance is not described by Eq. (5.32).



6.2 Analysis of the CP-DNS Data 117

(a) δ = 0 (reference). (b) δ = 1. (c) δ = 2. (d) δ = 3.

Figure 6.3: Scatter plots of temperature versus mixture fraction obtained from the CP-DNS with
different source term distributions (case mid, time t = τ0). For better clarity, the plots show only
a sample of the simulation data. The black line denotes the conditional mean temperature.

The results of the simulations with different values of δ are shown in Fig. 6.2
along with the results of the reference case (δ = 0). While the spatially averaged
mixture fraction is almost unaffected, the rms of the mixture fraction field is re-
duced if source terms are distributed to a larger volume, as expected. The average
temperature profiles shown in Fig. 6.2(b) exhibit a slightly higher mean tempera-
ture, which is because an increasing value of δ artificially increases the mixing in
the surroundings of the droplet and thus enhances the reactions. Looking at the
rms of the temperature, the effects are more complex and no clear trend of the
parameter δ can be seen. On the one hand, a similar effect as for the rms of mixture
fraction is expected, where a larger δ increasingly eliminates the large gradients at
the droplet positions and thus reduces the variance. This effect can be observed at
the very beginning of the simulation, where the reference solution (δ = 0) exhibits
a pronounced increase of the temperature rms due to the strong local cooling of
the gas by the evaporating droplets, which no longer occurs if δ is increased. On
the other hand, the complex interactions between evaporation and combustion can
also lead to a temporary increase of the variance for a larger δ, as can be seen in
Fig. 6.2(b) in particular for case mid.

Finally, Fig. 6.3 shows scatter plots of temperature versus mixture fraction at
time t/τ0 = 1 exemplary for case mid. The reference case with δ = 0 (Fig. 6.3(a))
indicates that a considerable amount of the gas-phase elements is not fully burning,
which is attributable to the strong local cooling effect of the evaporating droplets,
preventing the gas phase in the immediate vicinity of the droplets from ignition.
With increasing δ, this scattering disappears as source terms are distributed across
a larger volume, resulting in a more homogeneous distribution of fuel mass and
temperature in the gas phase and thus producing more cells with an ignitable mix-
ture. This trend can also be observed for the other droplet loadings considered here
(not shown for brevity). Finally it should be noted that the region associated with
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the source term distribution for δ = 3 represents a volume similar to an LES cell.
Therefore, it is expected that the dense particle method using the EQUAL model as
well as the sparse particle method utilizing the one-to-one coupling model (assuming
a particle number density of one particle per LES cell) will give similar results as
shown in Fig. 6.3(d).

6.2.3 Assessment of Mixing Time Modeling in Spray
Flames

The modeling of the mixing time scale for the Lagrangian FDF methods is based
on an analogy with the time scale of the Eulerian subgrid scalar fluctuations that
is given by τE = fV /χ̃ (cf. Sec. 4.3.4). Since the models for the mixture fraction
subgrid variance and filtered scalar dissipation rate were derived in the context of
single-phase flows, it is not clear whether the conventional models for the Lagrangian
mixing time scale can be readily applied to spray flames.

The relationship between variance and scalar dissipation, taking into account
the effect of droplet evaporation, is provided by the balance equation for the mix-
ture fraction subgrid variance, which is derived in Appendix B. Focusing on the
leading terms that are relevant for modeling of the mixing time, the equation can
be expressed as

∂(ρfV )
∂t

= − ρχ̃︸ ︷︷ ︸
Dissipation

+ 2
(
fṠM − f̃ ṠM

)
−
(
f 2ṠM − f̃ 2ṠM

)
︸ ︷︷ ︸

Production due to evaporation

. (6.1)

The right-hand side contains the filtered scalar dissipation rate, which inherently
reduces the variance, as well as the source terms due to droplet evaporation, which
generally increase the variance. In stochastic particle methods, the mixing model re-
places the scalar dissipation term, and the two-phase coupling model determines the
evaluation of the evaporation sources and thus the amount of variance generated by
the evaporating droplets. Due to the separate treatment of mixing and evaporation
in modeling, the role of the mixing model is still to dissipate the scalar fluctuations.
An inclusion of the evaporation source terms into the expression for the mixing time
scale with the intention of counteracting the dissipation, as indicated by Eq. (6.1),
is therefore not appropriate.

Despite the fact that evaporation is accounted for exclusively by the two-phase
coupling model, mixing is implicitly affected by the evaporation process in terms
of a modification of the subgrid variance and filtered scalar dissipation rate. This
is demonstrated in Fig. 6.4, where predictions of the conventional models given by
Eqs. (4.47) and (4.48), which were derived for single-phase flows, are compared to
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Figure 6.4: Temporal evolution of spatially averaged subfilter variance fV = f̃2 − f̃2 and filtered
scalar dissipation rate χ̃ normalized by the eddy turnover time. The exact quantities are extracted
from the DNS data using explicit filtering, while the modeled quantities are determined using the
standard models for single-phase flames given by Eqs. (4.47) and (4.48).

post-filtered data from the CP-DNS. Since the subgrid fluctuations resulting from
the evaporating droplet field are not represented by these models, they lead to a
significant underprediction of the subgrid variance and filtered dissipation rate. The
discrepancies between the model predictions and the CP-DNS data are particularly
large for the present configuration, since scalar fluctuations are generated exclusively
at the smallest scales, resulting in relatively homogeneous filtered fields. Neverthe-
less, the models are able to reproduce the qualitative behavior correctly, so that an
adjustment of the model constants can provide an adequate description for spray
flames. It can also be seen that the droplets affect the variance and the dissipation
rate to the same extent, so that the mixing time, which is defined as the ratio of both
quantities, remains largely unaffected. Although the simulation data show that this
is not equally true for all cases considered here, the present work refrains from a
case-specific altering of the model constants in the present chapter, and employs the
existing models without modification. Further, it should be noted that the model
for the mixing time scale was found to have only a small effect on the results of the
stochastic particle methods for the present setup, where variation of the modeling
constant affects the unconditional fluctuations only moderately and the conditional
fluctuations hardly at all.
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6.3 Evaluation of the Two-Phase Coupling
Models

6.3.1 Global Statistics

Figure 6.5 shows the temporal evolution of mixture fraction rms and temperature
mean and rms predicted by the stochastic particle methods using different two-
phase coupling models and compared to the CP-DNS data using the reference case
with δ = 0. Since the evaporation rate is taken from the CP-DNS, the mean
mixture fraction is exactly reproduced by all models and is therefore not shown. In
Fig. 6.5(a), the results of the sparse-Lagrangian MMC model utilizing a one-to-one
coupling strategy between the droplets and the stochastic particles with particle
selection conditional on the reference mixture fraction space is compared to the
EQUAL model, which is the standard model in a dense particle method. While
the EQUAL model is able to reproduce the evolution of the mean temperature
(albeit temperatures are slightly too high), it consistently underestimates the rms of
mixture fraction and temperature. This is because the evaporation source terms are
distributed equally among the notional particles within the LES cell, preventing the
generation of composition fluctuations at subgrid level. These results are consistent
with the trends previously reported for the CP-DNS with source terms distributed
to a larger volume (cf. Fig. 6.2). In contrast, the one-to-one coupling model that is
used by the sparse-Lagrangian MMC-LES model shows overall very good agreement
with the CP-DNS data for both mixture fraction and temperature. Although the
distribution of source terms in the sparse-particle method is subject to the same
volume as in the EQUAL model, the one-to-one coupling strategy shows much
better agreement of the rms profile with the CP-DNS, although a slight deviation
remains. This is attributable to the fact that the conditioning on the reference field
causes some particles to be favored and thus receive more mass from the evaporating
droplets, resulting in an inhomogeneous distribution of the evaporation source terms
among the notional particles and thus increasing the variance in the stochastic
particle field. Figure 6.6 quantifies this hypothesis, where the number of droplets
per stochastic particle during two-phase coupling is shown for the three different
droplet loadings. For case mid (Fig. 6.6(b)), which is chosen here for explanation, the
number of droplets and stochastic particles is approximately the same (cf. Tab. 6.1),
so that, without conditioning, each stochastic particle is paired on average with a
single stochastic particle. This is indicated by the dashed line in Fig. 6.6. The
conditioning of the particle selection now results in some particles receiving the
source terms of more than one droplet, while about half of the particles receive none
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(a) EQUAL model (dense particle method) versus one-to-one coupling with particle selection
conditional on the reference mixture fraction space in a sparse particle method.
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(b) One-to-one coupling in a dense particle method using either a random particle selection within
the LES cell or a selection of the closest particle in physical space.
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(c) SAT model in a dense and sparse particle method.

Figure 6.5: Temporal evolution of mixture fraction rms and temperature mean and rms obtained
from the stochastic particle methods using different two-phase coupling models and compared to
the CP-DNS data (δ = 0). The color indication is the same as in Fig. 6.2.
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Figure 6.6: Probability distribution for the number of droplets coupled per stochastic particle
using the one-to-one coupling model with a sparse particle distribution at time t = τ0. The
probability that a stochastic particle is not coupled with a droplet is marked in light gray. The
dashed line indicates the average number of droplets per stochastic particle, corresponding to an
equal distribution of the evaporation source terms among the stochastic particles.

at all, leading to an uneven distribution of source terms. Further, it was found that
the assignment of the particles to the droplets is maintained for a certain time (until
the random walk and the inertia of the droplet have caused them to drift away),
which reflects real droplet evaporation and also contributes to variance generation.
The non-uniform distribution of the source terms among the stochastic particles is
also observed for the other droplet loadings, making the model independent of the
droplet loading.

The capability of the one-to-one coupling strategy to predict an adequate
amount of variance in a sparse particle method is now tested for a dense parti-
cle distribution, as this may overcome the limitations of the EQUAL model. Since
a conditioning on the LES-filtered mixture fraction field is not reasonable in the
case of a dense particle distribution, the assignment of the stochastic particles to
the droplets is done either randomly within the LES cell or by selecting the closest
particle in physical space (λf = 0). The corresponding mean and rms profiles of
mixture fraction and temperature are shown in Fig. 6.5(b). For a random selection,
the results are very similar to the EQUAL model. This is because a different particle
is selected in each time step for each droplet, so that over time the source terms are
distributed evenly among the stochastic particles in the LES cell, implying artificial
mixing. In contrast, if the particle that is closest in physical space is selected to
receive the source terms, each droplet is paired with the same particle for a certain
period of time, while the remaining particles do not receive any mass. The model
thus reflects the effects observed in the CP-DNS, where the fuel mass is initially
transferred to a small gas volume (i.e., the DNS cell that contains the droplet) and
is then mixed with the surrounding gas to produce an ignitable gas mixture. As
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shown in Fig. 6.5(b), this produces a higher variance compared to the random se-
lection, and leads to excellent agreement with the CP-DNS. However, it should be
noted that the performance of the model may depend on the number of stochastic
particles, as discussed in Sec. 4.5.4.

If the SAT model is used, in which source terms are distributed preferentially
to particles near the saturation state, one obtains rms values that are clearly too
high, and also the mean temperature deviates considerably from the CP-DNS, as
shown in Fig. 6.5(c). This is a result of concentrating the evaporation source terms
on a small number of gas-phase particles, resulting in high mixture fraction and low
temperature values on these individual particles. Unlike dense particle methods,
mixing and two-phase coupling are not restricted to the LES cell in a sparse particle
method. In combination the larger volume represented by each gas-phase particle,
this results in particles receiving source terms from a significantly larger number
of droplets (several hundred for case mid), thus amplifying the effects. The large
variance in the mixture fraction and temperature fields requires more mixing to be
done by the mixing model, so improvements can be expected by adjusting the mixing
time scale. However, this is not the objective of the present work, and Sec. 6.4.1
presents an alternative approach to overcome the high mixture fraction and low
temperature values predicted by the SAT model in a sparse particle method.

6.3.2 PDFs of Mixture Fraction and Temperature

The two-phase coupling model should not only predict the correct global statistics
but also accurately model the evolution of the higher moments, such as the distribu-
tion of mixture fraction and temperature within the domain. Figure 6.7 shows the
PDFs of mixture fraction exemplary for case mid, which are obtained from the dif-
ferent two-phase coupling models and compared to the CP-DNS. Both the EQUAL
model (Fig. 6.7(a)) and the one-to-one coupling technique with a random particle
selection (Fig. 6.7(b)) using a dense particle distribution lead to reasonable predic-
tions, but predict a slightly too thin shape of the mixture fraction PDF. This is a
result of artificial mixing induced by the models, as mentioned earlier. The one-to-
one coupling with a selection of the nearest particle in physical space (Fig. 6.7(c))
leads to slight improvements, but the shape of the PDF is still not correct. Excellent
agreement with the CP-DNS data is obtained by the sparse particle method utiliz-
ing a one-to-one coupling technique conditional on the reference mixture fraction
space (Fig. 6.7(d)), which shows that mixing of the fuel vapor with the ambient gas
is accurately described by the model. In contrast, the SAT model leads to larger
deviations from the CP-DNS, with mixture fraction values being generally too low.
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Figure 6.7: PDF of mixture fraction obtained from the stochastic particle methods using different
two-phase coupling models (case mid, time t = τ0). The black line denotes the CP-DNS.
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Figure 6.8: PDF of temperature obtained from the stochastic particle methods using different
two-phase coupling models (case mid, time t = τ0). The black line denotes the CP-DNS.
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While the shape of the PDF is still reasonably well reproduced if a dense particle
distribution is used (Fig. 6.7(e)), the sparse particle method predicts a completely
incorrect shape of the PDF, where a significant portion of the particles is close to
the initial state and thus not affected by the evaporation process (Fig. 6.7(f)). Note
that the SAT model produces high mixture fraction values close to the saturation
value for a few stochastic particles, but these are not visible in the PDF because
their probability is low in relation to the overall PDF (O(10−3) for the dense particle
method and O(10−1) for the sparse particle method).

The PDFs of the temperature, which are shown in Fig. 6.8, generally reveal the
same trends as those reported for the mixture fraction. However, some models show
a peak at higher temperatures, which is most pronounced in the one-to-one coupling
model using a sparse particle distribution (Fig. 6.8(d)). This is attributable to the
fact that the evaporation source terms are distributed over a larger volume, which
implies artificial mixing and produces more particles with an ignitable mixture. This
effect will be discussed in more detail in the following section.

6.3.3 Conditional Statistics

The correlation between mixture fraction and temperature predicted by the stochas-
tic particle methods using different two-phase coupling models is shown in Fig. 6.9
exemplary for case mid. The corresponding reference solution provided by the CP-
DNS is given by Fig. 6.3(a).

Using a dense particle distribution, both the EQUAL model and the one-to-
one coupling model with a random particle selection significantly underestimate
the conditional fluctuations, resulting in an overprediction of the conditional mean
temperature, as indicated by the black line (Figs. 6.9(a) and 6.9(b)). This is because
the evaporation source terms are effectively distributed over a larger gas volume, as
mentioned earlier, reflecting the trends already observed in the CP-DNS study with
variable source term distributions (cf. Fig. 6.3). In contrast, a considerable amount
of conditional variance is generated if the closest particle in physical space is selected
(Fig. 6.9(c)). Here, the distribution of the fuel mass to only a few selected particles
within the LES cell in combination with the small volume of the gas-phase particles
resulting from the dense particle distribution leads to a fuel-rich mixture and a low
temperature on these particles, which prevents ignition. However, the agreement
with the CP-DNS is only moderate, and the conditional mean temperature is still
too high.

Although the one-to-one coupling in a sparse particle method shares similarities
with the one-to-one coupling in a dense particle method in that it ensures pairing



126 A Comparative Study of Two-Phase Coupling Models

(a) EQUAL (dense). (b) One-to-one, rand (dense). (c) One-to-one, dx (dense).

(d) One-to-one, dx-df (sparse). (e) SAT (dense). (f) SAT (sparse).

Figure 6.9: Scatter plots of temperature versus mixture fraction obtained from the stochastic
particle methods using different two-phase coupling models (case mid, time t = τ0). For better
clarity, the plots show only a sample of the simulation data. The black line denotes the conditional
mean temperature.

of the same particles and droplets for a certain time interval and generates a similar
amount of unconditional variance, the corresponding scatter plot exhibits almost
no conditional fluctuations (Fig. 6.9(d)). This is a result of the large gas volume
represented by each particle in the sparse particle method, which causes only moder-
ate changes in the gas-phase properties, in particular eliminating the locally strong
cooling effect of the droplets, and thus produces too many burning particles.

The results obtained from the SAT model using dense and sparse particle dis-
tributions are shown in Figs. 6.9(e) and 6.9(f), respectively. In both cases, much
higher mixture fraction and lower temperature values are produced than with the
other models due to the concentration of the source terms on a small number of par-
ticles, where in particular the sparse particle method features a significant amount of
gas-phase particles located near saturation conditions. These high mixture fraction
and low temperature values cannot be observed in the CP-DNS (cf. Fig. 6.3(a)).
Although the existence of values close to saturation is physical as they reflect the
conditions at the droplet surface, it is not reasonable to expect such extreme values
in the simulations since they are limited to the immediate vicinity of the droplets.
As shown by Bilger [10], the probability for mixture fraction to take values at sat-
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uration conditions is proportional to the volume fraction of the liquid droplets and
thus often negligible in dilute sprays, which is also in agreement with the simple
estimate presented in Sontheimer et al. [195]. For case mid, the analytical solution
of Bilger for the mixture fraction PDF, evaluated at saturation conditions, predicts
values of the order of 10−4, whereas the PDF resulting from the SAT model is larger
by a factor of ten for the dense particle distribution and by a factor of thousand for
the sparse particle distribution. However, focusing on the mixture fraction range
that is covered by the reference CP-DNS (Fig. 6.3(a)), the SAT model leads to
a clearly more accurate approximation of the conditional temperature fluctuations
than predicted by the EQUAL model and the one-to-one coupling strategy, with
reasonable agreement of the conditional mean temperature.

6.4 Potential Improvements to
Sparse-Lagrangian Two-Phase Coupling

In sparse particle methods, the one-to-one coupling strategy between the droplets
and the stochastic particles has shown to slightly underestimate the unconditional
fluctuations, while significantly underestimating the conditional fluctuations due
to artificial mixing on the gas-phase particles. In contrast, the SAT model has
demonstrated that pairing a larger number of droplets with a stochastic particle can
provide an adequate description of the conditional fluctuations, but it significantly
overestimates the conditions at the saturation state, resulting in a considerable
deviation of the unconditioned variables. This suggests to combine concepts from
both models in order to improve the existing two-phase coupling models in the
framework of a sparse particle method, which is the focus of the present section.
The results will only be reported for case mid in the following, but the trends are
essentially the same for the other droplet loadings.

6.4.1 SAT Model With Restriction on Droplet Number

The generation of the excessively high mixture fraction and low temperature values
by the SAT model in a sparse particle method can be avoided by artificially limiting
the number of droplets that are paired with each stochastic particle in each time
step. This prevents the gas-phase particles from reaching saturation conditions and
leads to a more homogeneous distribution of the fuel mass and the temperature
in the gas phase, as source terms are distributed to a larger number of stochastic
particles. Note that a similar effect could be obtained by limiting the maximum
distance in physical space between the droplets and the stochastic particles.
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(a) Mixture fraction rms and temperature mean and rms.

(b) Scatter plots of temperature versus mixture fraction at time t = τ0. The black line denotes
the conditional mean temperature.

Figure 6.10: Results of the SAT model with a prescribed maximum number of droplets per
stochastic particle using a sparse particle distribution (case mid).

Figure 6.10 shows the results that are obtained from the sparse particle method
using the SAT model with different maximum numbers of droplets per stochastic
particle. Without restriction (denoted as N sp,d

max = ∞), the SAT model leads to the
pairing of several hundred droplets with each selected gas-phase particle for the given
particle number density and droplet loading, resulting in a significant overprediction
of the mixture fraction variance. From about N sp,d

max ≲ 50, the variance is noticeably
reduced, with the results of the stochastic particle methods increasingly approaching
the CP-DNS data (Fig. 6.10(a)). The predictions for the mean temperature show
essentially the same trend, where in particular the case with N sp,d

max = 10 leads to very
good agreement with the CP-DNS at the beginning of the simulation (t/τ0 ≲ 0.6).
For the time history of the temperature rms, no clear trend can be seen, with
N sp,d

max = 20 giving the best results at the earlier times. Scatter plots of temperature
versus mixture fraction along with the conditional mean temperature are shown in
Fig. 6.10(b). As expected, restricting the number of droplets per particle reduces the
range of mixture fraction and temperature values, where N sp,d

max = 10 and N sp,d
max = 20

yield a similar range as observed in the CP-DNS (cf. Fig. 6.3(a)). The conditional
mean temperature remains almost unaffected, and also the conditional fluctuations
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remain on a similar level for N sp,d
max ≳ 20, but are reduced if the number of droplets

is limited to N sp,d
max = 10.

The results show that in particular at the beginning of the simulation, where
the one-to-one coupling model underestimates the variance, the coupling of a larger
number of droplets with each stochastic particle can compensate for the larger vol-
ume of the notional particles, resulting in a larger variation of the gas-phase proper-
ties and preventing their ignition. Nevertheless, there are still significant deviations
from the reference solution at later times, making the overall agreement unsatisfac-
tory.

6.4.2 Blending Between One-To-One Coupling and SAT
Model

Good predictions of unconditional averages and conditionally averaged quantities by
the one-to-one coupling technique and the SAT model, respectively, suggest some
potential for the combination of the two approaches. A relatively simple remedy
is to introduce a weighted combination of the one-to-one coupling and the SAT
model, and to control their respective influence by adjustment of the weighting
factor. Figure 6.11 shows the mixture fraction rms for case mid using two different
weighting factors for the SAT model. The term 10 % SAT indicates that 10 % of the
evaporated mass of a droplet is distributed according to the SAT model, while the
remaining mass is distributed using the one-to-one coupling technique. It can be
seen that this approach allows to generate profiles between the pure one-to-one and
SAT model, respectively, as a function of the weighting factor. A weighting of the
SAT model by 10 % leads to good agreement with the CP-DNS at the beginning of
the evaporation process, where the one-to-one coupling underpredicts the variances,
but yields too large rms values at later times. Here, a time-dependent weighting
factor would be required to achieve good agreement over the entire simulation time,
which, however, is not easy to determine and not in the sense of a universally
valid model. The same trends can also be observed for the mean and rms of the
temperature (not shown). As can be seen from the scatter plots in Fig. 6.11(b), the
increased variance is a result of the wider mixture fraction range that arises from the
influence of the SAT model, but the probability of high mixture fraction values is
much reduced compared to the pure SAT model. However, the conditional variance
stays too low and the conditional mean temperature continues to be too high.
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Figure 6.11: Results for a weighted combination of the one-to-one coupling strategy and the
SAT model using a sparse particle distribution (case mid).

6.4.3 Inclusion of Saturation Space in the Effective Square
Distance

Preferential mass transfer to particles with higher fuel vapor concentrations can
also be effectuated for the one-to-one coupling strategy by extending the effective
square distance between the droplets and the stochastic particles, Eq. (4.60), by the
distance in saturation space (with all Boolean variables set to unity for simplicity),

d̂2
d,sp =

3∑
i=1

(
dd,sp

xi

r∗
m/

√
3

)2

+
(
dd,sp

f

f ∗
m

)2

+
(
dd,sp

s

s∗
m

)2

. (6.2)

The distance in saturation space is represented here by the separation of the fuel
mass fraction of the stochastic particle to the saturated fuel mass fraction associ-
ated with the conditions at the droplet surface, dd,sp

s = |YF,s − Y sp
F |, and s∗

m is a
normalization parameter.

Figure 6.12(a) shows the time evolution of the mixture fraction rms for different
values of parameter s∗

m. A small value of s∗
m leads to a strong weighting of the

distance in saturation space and hence produces similar results as with the pure SAT
model, whereas a larger value yields a low weighting of the distance in saturation
space and thus reduces the effect of the preferential pairing with particles close to
saturation conditions. In contrast to the simple weighting of both models that was
discussed previously, one does not obtain results that lie in between the limits of the
respective models. Instead, the results are equivalent to one-to-one coupling at the
beginning, but start to diverge after a certain time, with the increase in variance
being similar to the pure SAT model. This behavior can be explained as follows.
At the beginning, all particles have a similar fuel mass fraction value and hence
exhibit the same distance in saturation space. The selection of particles is therefore
equivalent to the minimization of Eq. (4.60). However, due to irregular particle
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Figure 6.12: Results for a one-to-one coupling based on the minimization of the effective square
distance with incorporation of the saturation space, Eq. (6.2), using a sparse particle distribution
(case mid).

positions and turbulent dispersion, the coupling will eventually lead to an uneven
distribution of the evaporated mass among the stochastic particles. As a result,
some particles will have higher fuel mass fractions and are therefore closer to the
saturation limit. These particles are then preferentially selected, increasing the fuel
mass fraction even further, which in turn favors preferential selection. After a certain
time, the same few particles are continuously selected and the model resembles
the SAT model. The parameter s∗

m controls the weighting between the respective
distances and only affects the time of transition from the one-to-one coupling to
the SAT model. The use of Eq. (6.2) correctly reduces the high probability of
large mixture fraction values close to saturation conditions but does not prevent
their existence. The unconditional variance is still too high while the conditional
variance continues to be too low.

To avoid the sudden transition from the one-to-one coupling model to the SAT
model, a modification of the model is necessary. The modification should allow for
enhancing the pairing of droplets with particles that have higher fuel mass fraction
values (as this increases the conditional variance) but it should prevent pairing
solely with particles at saturation conditions, as this generates the (unphysical)
pronounced peak at high fuel mass fractions and strongly increases the unconditional
variance. For these reasons, a stretching of the distance in saturation space is
applied, i.e., dd,sp

s is replaced by w ·dd,sp
s in Eq. (6.2), where w is a stretching function.

The stretching function must increase faster than ds decreases when approaching
the saturation limit. Accordingly, an exponential stretching of the form

w = exp
(
C
Y sp

F

dd,sp
s

)
(6.3)
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is suggested. This scaling ensures that small and moderate distances remain unaf-
fected, while larger distances in saturation space are exponentially amplified, leading
to a strong increase of the effective square distance and preventing selection of these
particles for two-phase coupling. The constant in Eq. (6.3) controls the exponential
increase and hence determines the position of the peak in the mixture fraction distri-
bution that would otherwise occur at saturation conditions. Results with different
values of C and using s∗

m = 0.05 are shown in Fig. 6.12(b). It is clear to see how a
larger value of C reduces the variance, as the peak that would occur at saturation
conditions is now shifted to lower mixture fraction values due to the scaling function,
but a match with CP-DNS data that is clearly superior to the one-to-one coupling
is still not achieved.

6.4.4 Time Delay Model

The main drawback of the one-to-one coupling strategy in a sparse particle method
is the artificial mixing in the surroundings of the droplets, which is a result from
distributing the evaporation source terms to the relatively large volume represented
by each gas-phase particle. The model therefore cannot reproduce the local cooling
effect of the droplets, leading to earlier ignition of the gas mixture and a lack of
conditional fluctuations. A simple test provides insight into whether accounting
for the local cooling effect of the droplets can improve the model predictions. To
this end, a sparse-Lagrangian simulation with the one-to-one coupling model is
performed, where in each time step the chemistry substep is not conducted for
those particles that are selected to pair with a droplet. This should prevent the gas
mixture that receives the evaporation source terms from ignition, and thus allow
the droplets to cool down the gas state associated with the surroundings of the
droplets, as is the case with real droplet evaporation. The results are shown in
Fig. 6.13, demonstrating excellent agreement of the mean temperature with the
CP-DNS data, and also slight improvements of the conditional statistics. While the
case where chemistry is solved on all particles has exhibited almost no conditional
fluctuations (cf. Fig. 6.9(d)), the scatter is now slightly increased, leading to a
reduction of the conditional mean temperature. Although the agreement with the
CP-DNS is not yet satisfactory, the test shows that a delay in chemistry yields
the desired effects and is able to improve the model predictions. The conditional
fluctuations can be further enhanced by increasing the delay time for the chemistry,
where in general the delay time should be represented by the characteristic time
scale describing the mixing of the fuel vapor with the ambient gas on the stochastic
particles. Such a time delay model will be formulated in the following.
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(a) Temperature mean and rms. The red line denotes the case
where chemistry is not solved for particles coupled with droplets.

(b) Scatter plot of temperature
versus mixture fraction (t = τ0).

Figure 6.13: Results of the one-to-one coupling strategy (sparse particle method, case mid),
whereby the chemistry substep is not performed during the particular time step for particles that
are selected for pairing with a droplet.

The suppression of chemical reactions on the particles coupled with droplets
represents a significant interference with the physics, and will therefore be replaced
by a delayed (or partial) transfer of the source terms to the gas-phase particles. This
shall account for a finite mixing time associated with the mixing of the evaporated
fuel mass within the gas volume represented by the stochastic particles, and achieve
the same effect as a delay in chemistry. The model requires to split the volume of the
stochastic particle into two subvolumes, where one subvolume receives the source
terms from the droplets, thus reflecting the high fuel concentrations at the droplet
position, while the other subvolume represents the gas state in the surroundings of
the droplet where chemical reactions take place. Between the two subvolumes there
is an exchange of heat and mass, representing the mixing of the fuel vapor with the
ambient gas. Accordingly, the model shares similarities with the eddy dissipation
concept that is used in (pure gas-phase) combustion modeling (cf. Sec. 2.2). The
division of the volume raises a number of modeling issues that need to be addressed,
such as the definition of a suitable ratio between the two subvolumes. Therefore, a
simplified version of the model will be used within the present work, in which the
volume associated with the source terms is assumed to be infinitely small. This is
motivated by the fact that the size of the droplets is small in relation to the volume
that is represented by a stochastic particle. The evaporation source terms are stored
in additional fields on the stochastic particles and are accumulated over time, where
in each time step a portion of the total sources is mixed with the gas phase. Note
that these additional fields must be taken into account for the mass and energy
balance between the droplets and the gas phase.

The partial transfer of the source terms to the gas phase is subject to the
following requirements:
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The amount of transferred heat and mass should depend on the total size of the
accumulated source terms. The larger the source terms are, the more fuel mass
should be mixed with the gas phase.
Further, the amount of transferred heat and mass must depend on the computa-
tional time step.
It must be ensured that no more heat and mass is transferred to the gas phase
than is stored in the source terms.
The transfer of heat and mass is modeled using a characteristic time scale that
describes the mixing of the fuel vapor with the ambient gas.

Based on these requirements, the following model is suggested. The amount of mass
and heat that is transferred in each time step to a stochastic particle is given by

δm = γmtotal, δH = γHtotal, (6.4)

where mtotal and Htotal are the accumulated source terms of the stochastic particle
for mass and heat (expressed in terms of enthalpy), respectively, and γ ∈ [0, 1]
denotes the fraction of the total source term that is transferred to the gas phase at
the current time step. This fraction is modeled similarly to the mixing extent in the
particle interaction model, and is given by

γ = 1 − exp
(

− ∆t
τ d,sp

mix

)
, (6.5)

where τ d,sp
mix is the characteristic time scale that describes the mixing of the fuel vapor

originating from the droplet with the ambient gas represented by the stochastic
particle. For ∆t = 0 and τ → ∞, the expression yields γ = 0, resulting in no mass
and heat being transferred to the gas phase, while ∆t → ∞ and τ → 0 lead to
γ = 1 and thus source terms are transferred entirely to the gas phase during the
time step. In Sec. 5.3.2, a mixing time based on an isolated droplet in a quiescent
environment was derived (Eq. (5.30)). An alternative choice for the mixing time,
which takes into account the effect of turbulent mixing, is given by Eq. (4.49). To
account for both laminar and turbulent mixing, the minimum of the two time scales
is taken,

τ d,sp
mix = min

(
Clam

d(V sp)1/3

D
, Cturb

(V sp)2/3

Deff

)
, (6.6)

where the characteristic length has been replaced by the cube root of the volume
represented by the stochastic particle and given by V sp = msp/ρsp. Values for the
modeling constants Clam and Cturb can be found by comparison with the original
models. The analytical solution derived in Sec. 5.3.2 leads to a value of the order
of Clam ≈ 0.1 for the laminar mixing time, and using the standard value for the
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modeling constant in Eq. (4.49) results in Cturb = 0.05 for the turbulent mixing
time. Whether these theoretical values are also suitable for the time delay model
must be verified by simulations.

Figure 6.14 shows the results of the time delay model used in combination with
the one-to-one coupling strategy with particle selection conditional on the reference
mixture fraction space. Simulations have been performed with different values for
the modeling constants. Using the default values Clam = 0.1 and Cturb = 0.05,
the laminar time scale determines the overall mixing time according to Eq. (6.6),
and a value of approximately γ ≈ 0.1 is obtained, meaning that only 10 % of the
total source term is transferred to the gas phase in each time step. Nevertheless,
the effects on the mean mixture fraction are rather small (not shown). This is due
to the fact that the assignment between the droplets and the stochastic particles
changes over time, so there are time steps in which a particle does not receive source
terms, which then allows the remaining heat and mass stored on the particle to be
transferred to the gas phase. The rms of mixture fraction and temperature as well as
the spatially averaged temperature become slightly smaller if the time delay model
is used (Fig. 6.14(a)). While this increases the deviation from the CP-DNS for
the mixture fraction rms, it leads to slightly better agreement of the temperature
predictions. An increasing value of Clam increases the mixing time and thus the
delay time for the transfer of the source terms to the gas phase, thus causing a
further decrease of the rms values and the mean temperature. For Clam = 1, the
laminar and turbulent time scales are about the same size, while for Clam = 10
solely the turbulent time scale determines the mixing time. Consequently, there is
no significant difference in the results between Clam = 1 and Clam = 10. Looking
at the scatter plots shown in Fig. 6.14(b), the effect of the time delay model is
rather small and does not lead to significant improvements. The conditional mean
temperature remains on a too high level, while there are hardly any conditional
fluctuations. In fact, the conditional fluctuations are even slightly reduced if a
larger value for Clam and thus a larger delay time is used.

The unsatisfactory results require a reassessment of the time delay model.
While the partial transfer of the source terms to the gas-phase particles is able
to slightly delay the chemistry, it cannot solve the problem of artificial mixing, since
source terms are still transferred to a larger volume. As a result, the droplets cause
only moderate changes in the gas-phase properties and do not produce significant
conditional fluctuations. To overcome this issue, source terms need to be transferred
to a smaller volume, which could be realized by using two subvolumes on the par-
ticles, as discussed earlier. However, this would require a complete revision of the
time delay model, with additional modeling challenges to overcome.
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(a) Mixture fraction rms and temperature mean and rms.

(b) Scatter plots of temperature versus mixture fraction at time t = τ0. The black line denotes
the conditional mean temperature.

Figure 6.14: Results of the time delay model (TDM) with different modeling constants in com-
bination with the one-to-one coupling strategy in a sparse particle method. (case mid). The
simulations with Clam = 1 and Clam = 10 lead to almost identical results.

6.5 Summary and Discussion

The performance of various two-phase coupling models in the context of dense and
sparse particle methods was evaluated by comparison with CP-DNS data using sta-
tistically homogeneous and decaying turbulence with varying droplet loadings. The
EQUAL model used in dense particle methods has led to good agreement of the
mean temperature, but unconditional and conditional variances were consistently
too low as the model does not generate any composition fluctuations at subgrid
scale. The sparse-Lagrangian MMC-LES model employing a one-to-one coupling
between the droplets and the stochastic particles showed good agreement of un-
conditional mean and rms and is superior to the EQUAL model in predicting the
mixture fraction variance and PDF, since source terms are not distributed evenly
among the gas-phase particles but preferentially to individual particles. However,
the model also suffers from the fact that the conditional variance is too low, which is
attributable to the relatively large particle volume resulting from the sparse particle
distribution, implying artificial mixing and thus enhancing chemical reactions. The
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one-to-one coupling strategy was also applied to a dense particle method, where a
selection of the closest particle in physical space has led to significant improvements
compared to the EQUAL model for both unconditional and conditional statistics.
Nevertheless, due to the smaller volume of gas-phase particles, the performance of
the model is expected to exhibit a dependence on the number of stochastic particles.
Naud’s SAT model, which was originally derived for dense particle methods, pro-
vides alternative coupling and was applied to the sparse-Lagrangian MMC model
for the first time. It has produced a reasonable match of the conditional statistics,
but significantly overestimated the unconditional variances, as source terms are con-
centrated on a small number of gas-phase particles, resulting in an overprediction of
the conditions at the saturation state. If was found that these effects are enhanced
by the sparse particle number, so that the model cannot be recommended to be
used in combination with the MMC-LES model.

To improve the model predictions in the context of a sparse particle method,
possible modifications and combinations of the one-to-one coupling strategy with
the SAT model were proposed. Limiting the number of droplets coupled with a
stochastic particle could decrease the overpredicted range of mixture and temper-
ature values, thus reducing the unconditional variance, but significant deviations
from the CP-DNS data remained. A simple blending between the one-to-one cou-
pling and the SAT model allowed to generate arbitrary variances in between the two
models, giving partial improvement of the results in particular at the beginning of
the simulation, but generally requires a time-dependent weighting factor to achieve
agreement throughout the entire simulation. A model extension that is more consis-
tent with the MMC philosophy was obtained by adding the distance in saturation
space to the effective square distance for two-phase coupling. However, this model
produced results similar to the SAT model after a certain transitional period, as
the preferential selection of particles close to saturation conditions was amplified
during the evaporation process. To overcome the artificial mixing induced by the
large particle volume, a time delay model was proposed, where source terms are
transferred partially instead of entirely to the gas-phase particles using a finite mix-
ing time. Although the results showed that chemistry was slightly delayed, leading
to minor improvements of the unconditional temperature predictions, the present
model formulation could not solve the problem of artificial mixing on the gas-phase
particles, as source terms are still transferred to the entire volume of the particles.

An ideal two-phase coupling should predict both the correct amount of un-
conditional variance and the conditional fluctuations resulting from the interaction
between evaporation and chemistry. The results presented in this chapter have
shown that for a sparse particle distribution the latter can be taken into account by
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either coupling a larger number of droplets with a stochastic particle (which signif-
icantly increases the unconditional fluctuations), or by distributing the evaporated
mass to a smaller volume (which is not trivial in a sparse particle method). Two
possible solutions should be mentioned here. First, one could introduce a set of
smaller gas-phase particles that are selected to receive the source terms, with the
fuel mass subsequently transferred gradually to the larger particles by mixing. This
could reflect the locally high fuel concentrations found at the droplet positions, while
the unconditional variance would not be biased due to low mass of these particles.
Secondly, a revision of the time delay model using two subvolumes and incorporating
ideas from the eddy dissipation concept (EDC) could achieve a similar effect, since
evaporation and combustion take place in separate subvolumes. However, none of
these approaches is easy to implement, and introduces additional complexity to the
MMC-LES model. Accordingly, the one-to-one coupling technique appears to be the
most appropriate closure for the sparse-Lagrangian MMC-LES model at present due
to its simplicity and similarity with the MMC mixing pair selection. Further, the
next chapter will show that the model limitations identified here often play a minor
role in practical applications.



Chapter 7

A Priori Testing of the Two-Phase
MMC-LES Model

The following chapter provides an in-depth a priori analysis and validation of the
sparse-Lagrangian two-phase MMC-LES model using a temporally evolving droplet-
laden double shear layer. The analysis is based on the work published by Sontheimer
et al. [197], but is adapted and extended to the current state of research. Since
the previous chapter has demonstrated the superior performance of the one-to-one
coupling strategy, the method is further examined here, where the focus is now on
the selection of suitable gas-phase particles to evaluate the conditional evaporation
rate. Results are presented for different conditioning variables with the intention of
enforcing localness in composition space of the two-phase coupling, introducing also
the concept of double conditioning. Furthermore, the sensitivity of the two-phase
MMC-LES model towards MMC modeling parameters is evaluated.

7.1 Computational Setup

7.1.1 Description of the CP-DNS

A temporally evolving droplet-laden double shear layer is considered, as illustrated
in Fig. 7.1, which approximates the spatial evolution of a turbulent planar spray
flame. The central fuel jet carries the liquid droplets and is surrounded by two
oxidizer streams consisting of air and streaming in the opposite direction. The
initial velocity and mixture fraction fields are based on the setup of Hawkes et al.
[78] (case L), with length and velocity scales altered to adjust the characteristic
flow time scale to the time scales of evaporation and combustion while keeping
the Reynolds number constant. The computational domain extends across Lx ×
Ly × Lz = 12H × 14H × 8H with H = 2.88 mm being the height of the central
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Figure 7.1: Visualization of the temporally evolving droplet-laden double shear layer at time
t/tj = 30, showing the instantaneous mixture fraction (left) and temperature (right) field of the
CP-DNS as well as the liquid fuel droplets (gray dots, scaled by a factor of ten for better visibility).

jet. The characteristic jet velocity, describing the relative difference between the
fuel and the oxidizer streams, is U = UFu − UOx = 30 m/s, corresponding to a
cold-jet Reynolds number of Re = UH/νFu = 2510, and the characteristic jet time
scale is tj = H/U = 96 µs. Turbulent fluctuations with an integral length scale of
lint = H/3 and a turbulence intensity of I = 5 % are superimposed on the mean
velocity field in the jet region in order to trigger the evolution of shear-generated
turbulence (cf. Fig. 7.2(a)). The gaseous part of the central fuel jet is composed
of nitrogen and pre-evaporated ethanol with a temperature of TFu = 500 K and an
initial mixture fraction of two times the stoichiometric value (fFu = 2fst ≈ 0.23).
The oxidizer stream is composed of pure air with mass fractions YN2 = 0.724 and
YO2 = 0.276 and a temperature of TOx = 500 K. The spatial distribution of the
species mass fractions and the temperature is initialized using a laminar flamelet
solution, leading to the existence of a thin laminar flame in the shear region to
ignite the gas mixture once the two streams have mixed. The resulting initial
mixture fraction and temperature profiles are shown in Fig. 7.2(b). Chemistry is
governed by a global single-step mechanism for ethanol combustion in air [228], and
the pressure is set to the atmospheric value.

The liquid droplets consist of pure ethanol and are randomly distributed within
the central jet with −0.5H ≤ yd,0 ≤ 0.5H. The droplets have an initial diameter
of d0 = 30 µm and an initial velocity equal to the local gas velocity. The initial
droplet temperature is chosen to match the wet-bulb temperature according to the
initial jet conditions and is set to Td,0 = 315 K. The number of droplets in the jet is
Nd ≈ 80 000, corresponding to an overall equivalence ratio of Φ = 0.5 and an initial
nominal droplet distance of ∆L/d0 ≈ 10.

The computational domain is discretized by Nx × Ny × Nz = 288 × 336 ×
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Figure 7.2: Initial profiles of the droplet-laden double shear layer configuration, plotted versus
the normalized cross-stream direction. Symbols denote the cell values of the DNS mesh.

192 ≈ 18.6 M grid cells, resulting in a uniform cell size of ∆x = 120 µm. This grid
resolution has proven to be sufficient for the original single-phase configuration [40,
217, 218], and a grid convergence study for the present droplet-laden configuration
has revealed little effect of the mesh on the unconditional and conditional statistics
(cf. Appendix F). Periodic boundary conditions are applied in streamwise (x) and
spanwise (z) directions, and non-reflecting boundary conditions are used in the
cross-stream (y) direction. An additional LES mesh is defined for post-filtering the
CP-DNS data to provide input data for the MMC-LES model. The LES cell size
is set to ∆LES = 4∆x, which ensures that 80 % of the turbulent kinetic energy is
resolved by the LES field throughout the entire simulation time, as is common in
LES [163, 164]. The calculation of the turbulent diffusivity, which is required for
the mixing model, from the post-filtered DNS fields follows the same procedure as
described in Sec. 6.1. As shown in Fig. 7.3, this leads to reasonable agreement
between the models and the exact data extracted from the CP-DNS, where the
discrepancies are largest in the central jet region and attributed to the effect of the
droplets.

Simulations are run for 40 characteristic jet time scales, where the time step
is adjusted dynamically to ensure a maximum Courant number of CFLmax = 0.4.
The numerical solver and the discretization schemes are the same as described in
Sec. 6.1, and computing times are reported in Appendix F.

7.1.2 Description of the MMC-LES Model

The sparse-Lagrangian MMC-LES model is used in combination with the a-ISO
model for the mixing time scale and the one-to-one coupling strategy for two-phase
coupling according to Eq. (4.60). In contrast to Ch. 6, where the evaporation rate for
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Figure 7.3: Comparison of modeled and exact turbulent diffusivity, mixture fraction subgrid vari-
ance and filtered scalar dissipation rate at time t/tj = 30. The data are averaged in homogeneous
directions x and z and plotted versus the normalized cross-stream coordinate y/H. The modeled
quantities are calculated using the models presented in Ch. 4, while the exact data are extracted
from the CP-DNS using explicit filtering.

the stochastic particle solution was extracted from the CP-DNS, it is now calculated
based on the properties of the stochastic particles, as described in Sec. 4.5. This
allows for a comparison of the evaporation quantities predicted by the stochastic
particle method with those of the CP-DNS, as explained in Sec. 4.7.3, thus enabling
further validation of the two-phase MMC-LES model. The stochastic particles are
distributed uniformly across the entire domain with a particle number of N sp =
36 288, which corresponds to one (Lagrangian) particle per eight (Eulerian) LES
cells and is denoted as 1L/8E. This resolution was found to provide sufficient data
to obtain convergent statistics while representing a sparse particle distribution that
generally requires conditioning. The effect of the stochastic particle number density
will be discussed later in Sec. 7.3.1.

The MMC mixing model requires the specification of suitable mixing param-
eters rm and fm, representing characteristic distances between mixing particles in
physical and reference mixture fraction space, respectively. Previous works [60, 60,
70, 89, 205, 218] have established fm = 0.03 as a standard parameter for single-phase
flows, where mixture fraction ranges from zero to one. In flows involving droplet
evaporation, mixture fraction is below unity (cf. Sec. 4.1.2), resulting in a smaller
separation of the mixing pairs in mixture fraction space. For this reason, a scaling
of fm is suggested in order to keep the relative weighting between distances in phys-
ical and mixture fraction space unchanged (cf. Eq. (4.51)). Assuming a maximum
mixture fraction of about fmax ≈ 0.4 for the present setup (cf. Fig. 7.4(a)), scaling
of the standard value yields fm = 0.012. The corresponding value rm = 1 mm is cal-
culated from the isoscalar sliver relation, which is given by Eq. (4.52) and evaluated
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using the maximum filtered gradient of the initial mixture fraction field. Analysis of
the simulation results will show whether these parameters are appropriately chosen,
and the effect of fm will be examined in more detail later in Sec. 7.3.2.

Similar to the MMC mixing model, the two-phase coupling based on Eq. (4.60)
requires the specification of suitable coupling parameters r∗

m and f ∗
m, which represent

characteristic distances between the droplets and the stochastic particles in physical
and reference mixture fraction space, respectively. Appendix C provides a detailed
analysis of distances between particles of two independent particle clouds, with the
result that the average distance between the fuel droplets and the stochastic particles
is identical to the mean inter-particle distance of the stochastic particle cloud. This
generally allows to use the same parameters for two-phase coupling (r∗

m, f ∗
m) as used

for mixing (rm, fm). However, since different algorithms are employed for the mini-
mization of the respective effective square distances (Eqs. (4.51) and (4.60)), the real
mean inter-particle distances are different. As demonstrated in Appendix C, a direct
search method, which is used for two-phase coupling, yields on average smaller dis-
tances between droplets and stochastic particles than the k-d-tree algorithm, which
is used to form mixing pairs, would provide. Accordingly, the two-phase coupling
parameters are estimated based on the relation rm/r

∗
m = fm/f

∗
m = 1.66, where the

specific ratio was found by numerical calculations assuming a four-dimensional space
comprised of physical space and mixture fraction space (see Appendix C for details).
This scaling, which results in f ∗

m = 0.0072 and r∗
m = 0.6 mm, will be confirmed later

by comparison of the two-phase coupling parameters with real distances calculated
from the simulation data (cf. Sec. 7.3.2).

7.2 Detailed Analysis of the Sparse-Lagrangian
Two-Phase Coupling

7.2.1 Two-Phase Coupling Conditional on Mixture
Fraction

The conditional evaporation rate that appears in the transport equations of the
stochastic particles (Eqs. (4.38) and (4.39)) is evaluated by minimizing the effective
square distance between the droplets and the stochastic particles in physical and
reference mixture fraction space (Eq. (4.60)). To assess the importance of condi-
tioning the droplet-particle pairing on the composition space, additional simulations
are performed using a particle selection in either pure physical space (λf = 0) or
pure reference mixture fraction space (λx = 0), the latter of which was used in the
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two-phase MMC-LES model of Khan et al. [102]. The three cases are denoted as
(x, 0) for a particle selection in pure physical space, (x, f̃) for a particle selection in
both physical and reference mixture fraction space, and (0, f̃) for a particle selec-
tion in pure reference mixture fraction space. Note that only the particle selection
for the two-phase coupling is changed, but not the selection of particle pairs for
the MMC mixing model, which is always based on physical and reference mixture
fraction space according to Eq. (4.51).

Figure 7.4 shows the mean and root-mean-square (rms) of temperature and
mixture fraction predicted by the stochastic particle method and compared to the
CP-DNS at different times. The data are averaged in homogeneous directions x
and z and plotted versus the normalized cross-stream coordinate y/H (cf. Fig. 7.1).
There is very good agreement of the MMC model predictions with the CP-DNS
data for the mean and rms of mixture fraction, and the profiles are hardly affected
by the particle assignment. Only the particle selection in pure reference mixture
fraction space, case (0, f̃), shows a slight reduction of the peak maximum mixture
fraction, and an explanation will be given later. The good agreement of the mixture
fraction rms in the jet region indicates that the variance generated by the evapo-
rating droplets is accurately reproduced, as was discussed in detail in the previous
chapter. Looking at the temperature predictions shown in Figs. 7.4(c) and 7.4(d),
some differences between the stochastic particle results can be observed. In all three
simulations, the maximum mean temperature is underpredicted by about 100 K to
200 K, where again case (0, f̃) exhibits the largest deviations from the CP-DNS.
Possible reasons for the consistent underprediction of the temperatures will be dis-
cussed in more detail in the following. It is noteworthy that a particle selection in
pure physical space, (x, 0), leads to similar predictions of the unconditional averages
as a particle selection conditional on physical and reference mixture fraction spaces,
(x, f̃), so that conditioning does not seem to be necessary here. However, typical
MMC applications often have an even lower particle number density, and therefore
a particle selection without conditioning is not always expected to be successful.

Scatter plots of temperature versus mixture fraction along with the conditional
mean temperature are shown in Fig. 7.5 at time t/tj = 30, indicating a considerable
amount of local flame extinction and re-ignition. Both the conditional mean tem-
perature and the amount of conditional fluctuations are adequately represented in
all three cases, although a particle selection in pure reference mixture fraction space
produces a slightly lower conditional mean temperature and thus more gas-phase
particles well below the equilibrium temperature. It should be noted that the con-
sistent underprediction of the conditional fluctuations that was reported in Ch. 6
and attributed to the large particle volume cannot be observed here, which is a
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(a) Mixture fraction mean at times t/tj = {20, 30, 40} (from left to right).
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(b) Mixture fraction rms at times t/tj = {20, 30, 40} (from left to right).
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(c) Temperature mean at times t/tj = {20, 30, 40} (from left to right).
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(d) Temperature rms at times t/tj = {20, 30, 40} (from left to right).

Figure 7.4: Mean and rms of mixture fraction and temperature obtained from the sparse-
Lagrangian MMC-LES model using the one-to-one coupling strategy and a particle number density
of 1L/8E.
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(a) CP-DNS. (b) (x, 0). (c) (x, f̃). (d) (0, f̃).

Figure 7.5: Scatter plots of temperature versus mixture fraction at time t/tj = 30 obtained from
the sparse-Lagrangian MMC-LES model using the one-to-one coupling strategy and a particle
number density of 1L/8E. For better clarity, the plots show only a sample of the simulation data.
The black line denotes the conditional mean temperature.

result of the different physical configurations. While Ch. 6 assumed a homogeneous
distribution of turbulence and droplets, with combustion occurring in the immedi-
ate vicinity of the droplets, the present double shear layer configuration exhibits a
distinct separation between evaporation, which takes place in the central jet, and
combustion, which occurs in the shear region. As a result, most of the droplets do
not interact with the flame, and the conditional fluctuations in the present config-
uration are mainly caused by the interactions between turbulence and chemistry.

A comparison of droplet properties obtained from the stochastic particle meth-
ods and the CP-DNS is depicted in Fig. 7.6 by showing the PDF of the droplet
diameter at different times. It can be seen that a particle selection in pure reference
mixture fraction space leads to a larger deviation from the CP-DNS with a more
narrow distribution of droplet diameters. In contrast, particle selections that take
into account the distance in physical space, i.e., cases (x, 0) and (x, f̃), give very
good agreement, which shows that the evaporation process is accurately reproduced
by the sparse particle method.

Analysis of the two-phase coupling relations between the fuel droplets and
the gas-phase particles provides explanations for the trends described above. Fig-
ure 7.7 visualizes the two-phase coupling relations for the three simulations in a
two-dimensional slice, showing the filtered reference mixture fraction field super-
imposed by the fuel droplets and the stochastic particles, with lines indicating the
assignments of the droplets to the stochastic particles. If particles are selected in
pure physical space, as shown in Fig. 7.7(a), each droplet is paired with its near-
est gas-phase particle, resulting in the smallest distances in physical space. For
sufficiently high particle number densities, proximity in physical space also implies
proximity in composition space. However, the particle selection in pure physical
space cannot prevent coupling of droplets with gas-phase particles across the flame
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Figure 7.6: PDF of the droplet diameter obtained from the sparse-Lagrangian MMC-LES model
using the one-to-one coupling strategy and a particle number density of 1L/8E.

(highlighted by the blue circle in Fig. 7.7(a)), with the result that the gas compo-
sitions found at the position of the droplet and that represented by the stochastic
particle may differ greatly. A particle selection that explicitly minimizes distances
in both physical and reference mixture fraction space according to Eq. (4.60) is
shown in Fig. 7.7(b). The coupling relations generally look similar to the particle
selection in pure physical space (Fig. 7.7(a)), but a closer look reveals some dif-
ferences. As the distance in mixture fraction space is taken into account, droplets
are often no longer paired with their nearest gas-phase particles, which increases
the distances in physical space (but still keeps them moderate). Furthermore, the
minimization of the effective square distance is able to largely prevent droplets from
being paired with particles across the flame. Finally, Fig. 7.7(c) shows the coupling
relations for a particle selection in pure reference mixture fraction space. This leads
to significantly increased distances in physical space, which are limited only by the
underlying super mesh (cf. Sec. 4.7.2). Moreover, it can be observed that droplets
are primarily coupled with the particles in the streamwise direction, but not in the
cross-stream direction, where the gradients of mixture fraction are large. Finally,
it should be noted that in all three cases some particles are coupled with a larger
number of droplets, while some particles are not coupled with any droplet even if
they are located in the central jet region. In Fig. 7.7, the number of droplets per
particle is indicated by the size of the red dots, while particles that are not coupled
with a droplet are marked by red crosses. This inhomogeneity leads to an increase of
the scalar variance in the stochastic particle field, as discussed earlier (cf. Fig. 6.6).

An alternative visualization of the coupling relations is obtained by plotting
them in the composition space, as shown in Fig. 7.8. It can be seen that the two-
phase coupling mainly takes place at high mixture fraction and low temperature
values, which are associated with the jet conditions. However, some droplets are
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(a) Two-phase coupling with particle selection in pure physical space. The blue circle marks
unphysical coupling across the flame.

(b) Two-phase coupling with particle selection in physical and reference mixture fraction space.

(c) Two-phase coupling with particle selection in pure reference mixture fraction space.

Figure 7.7: Visualization of the two-phase coupling relations at time t/tj = 30 using the one-
to-one coupling strategy and a particle number density of 1L/8E. The background shows the cell
values of the filtered reference mixture fraction field in the x-y slice through the origin, and the
orange line indicates the flame position (stoichiometric mixture fraction value). Black dots mark
the droplets and red symbols the stochastic particles, both of which are shown within the layer
−∆LES/2 ≤ y ≤ ∆LES/2. Stochastic particles are scaled by the number of droplets coupled with
them, or indicated by a cross if no droplets are coupled with them. Black lines indicate the
droplet-particle pairs if both are inside the specified layer (not every droplet shown is connected
to a gas-phase particle, as the coupling partner can also be found outside the specified layer).
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(a) (x, 0). (b) (x, f̃). (c) (0, f̃).

Figure 7.8: Visualization of the two-phase coupling relations in composition space at time t/tj =
30 using the one-to-one coupling strategy and a particle number density of 1L/8E. The black lines
show a random selection of droplets (black dots) coupled with stochastic particles (red dots), which
are plotted using their interpolated LES values. Gray dots in the background show the scatter
plot of the CP-DNS for reference (Fig. 7.5(a)).

also located in regions with lower mixture fraction values, where the different parti-
cle selections show qualitative differences. A selection of gas-phase particles in pure
physical space (Fig. 7.8(a)) can result in large distances in both mixture fraction
and temperature space, since it does not enforce localness in composition space.
The increased separation in composition space can be largely reduced by using a
particle selection that minimizes distances in both physical and reference mixture
fraction spaces (Fig. 7.8(b)). In contrast, if particles are selected in pure mixture
fraction space (Fig. 7.8(c)), large distances in temperature space (up to 1000 K)
can be observed between the droplets and the gas-phase particles. This is due to a
lack of correlation between mixture fraction and temperature caused by the effect
of local extinction. As a result, the same mixture fraction value may be associated
with different temperatures, so that minimizing distances in pure mixture fraction
space does not necessarily imply localness in composition space. The coupling of
droplets, which are typically located in regions of low temperature, with hot gas-
phase particles can lead to flame extinction, thus reducing the unconditionally and
conditionally averaged temperatures (cf. Figs. 7.4(c) and 7.5(d)), as well as to an en-
hanced evaporation process, which explains the deviation of the PDF of the droplet
diameter (cf. Fig. 7.6).

7.2.2 Double Conditioning on Mixture Fraction and
Temperature

Improvements may be obtained by introducing additional conditioning variables
for the two-phase coupling. As the evaporation process is mainly controlled by
the gas-phase temperature and mixture fraction does not perfectly correlate with
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it, a conditioning of the particle selection on both Eulerian mixture fraction and
temperature is introduced,

d̂2
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, (7.1)

which is referred to as double conditioning. Here, dd,sp
T = |T̃ (xd)−T̃ (xsp)| denotes the

distance between the droplets and the stochastic particles in the temperature space,
with temperature being interpolated from the filtered Eulerian field to the respective
particle positions, and T ∗

m is a suitable normalization parameter analogous to f ∗
m.

The parameter could in principle be determined using an equivalent isoscalar sliver
relation based on the characteristic temperature gradient, or alternatively using an
analogy between the characteristic temperature and mixture fraction ranges. Both
approaches have shown to yield similar values, with T ∗

m = 40 K used in the present
work. It should be noted that the additional reference variable will alter the coupling
distances and thus their relative weighting, so that an adjustment of the coupling
parameters is generally required (see Straub et al. [202] for a discussion). However,
for simplicity, the values determined on the basis of single conditioning are retained
in the present work. Again, boolean variables λx, λf and λT are used to realize
different particle selections, e.g., a particle selection in pure mixture fraction and
temperature space, which is denoted as (0, f̃ , T̃ ).

Figures 7.9 and 7.10 show the unconditionally and conditionally averaged mix-
ture fraction and temperature that are obtained with the proposed double condi-
tioning using different combinations of the effective square distance, and the PDF
of the droplet diameter is shown in Fig. 7.11(a). The results with single condi-
tioning on the filtered reference mixture fraction field, case (x, f̃ , 0), are also shown
for comparison. Although slight improvements are obtained for the evaporation
process, particularly if conditioning on physical space is omitted (Fig. 7.11(a)), the
temperatures remain too low and at a similar level as that obtained with single
conditioning on mixture fraction alone.

An explanation can be found by looking at the temperatures that are “seen”
by the droplets, and which mainly determine the evaporation rate. In the CP-DNS
the ambient temperature for the evaporation model is given by the local cell value,
whereas in the stochastic particle method it is given by the temperature of the
stochastic particle that is coupled with the droplet. Figure 7.12 shows a comparison
of both quantities for different conditioning variables. If particles are selected con-
ditionally on the reference mixture fraction field (Fig. 7.12(a)) there is only a weak
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Figure 7.9: Mixture fraction rms and temperature mean and rms at time t/tj = 30 obtained
from the sparse-Lagrangian MMC-LES model (1L/8E) using the one-to-one coupling strategy with
double conditioning on the Eulerian mixture fraction and temperature. The mean mixture fraction
is not significantly affected and therefore not shown.
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Figure 7.10: Conditional mean and rms of temperature at time t/tj = 30 obtained from the
sparse-Lagrangian MMC-LES model (1L/8E) using the one-to-one coupling strategy with double
conditioning on the Eulerian mixture fraction and temperature.

correlation between the two temperatures, as indicated by the strong scatter around
the conditional mean. This is attributable to the insufficient correlation between
mixture fraction and temperature, as shown in Fig. 7.5. If the Eulerian temperature
is used for the particle selection, Fig. 7.12(b), the correlation is slightly improved,
but strong dispersion persists. This shows that there is no clear correlation between
the temperatures solved in the CP-DNS and on the stochastic particles, which makes
a conditioning on the Eulerian temperature field questionable. It should be noted
that this is mainly an effect that occurs if MMC is coupled with DNS, where two
independent solutions for the gas-phase temperature exist. In real MMC-LES, the
gas-phase temperature is calculated exclusively on the stochastic particles and sub-
sequently mapped to the Eulerian field, which leads to an improved correlation
between the two temperatures.
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Figure 7.11: PDF of the droplet diameter at time t/tj = 30 obtained from the sparse-Lagrangian
MMC-LES model (1L/8E) using the one-to-one coupling strategy with double conditioning on
either Eulerian fields or stochastic particle properties.

(a) (x, f̃ , 0). (b) (x, 0, T̃ ). (c) (x, 0, T sp).

Figure 7.12: Scatter plots of temperature “seen” by the droplets in the CP-DNS and the MMC
using different conditioning variables for two-phase coupling at time t/tj = 30. The black line
denotes the conditional mean.

7.2.3 Conditioning on Stochastic Particle Properties

As the droplet interacts with the gas phase that is represented by the stochastic
particle, the properties of the stochastic particle may be better suited as conditioning
variables. Accordingly, a new conditioning procedure is proposed that is based on
the distance between the filtered Eulerian temperature at the droplet position and
the temperature of the stochastic particle, i.e., using dd,sp

f = |f̃(xd) − zsp)| and
dd,sp

T = |T̃ (xd) − T sp)| in Eq. (7.1). As shown in Fig. 7.12(c), this yields a much
improved correlation between the temperatures “seen” by the droplets, and thus
eliminates a decorrelation of the evaporation rates in the CP-DNS and the stochastic
particle solution. The remaining scatter is due to differences between the resolved
temperature that is used to calculate the evaporation rate in the CP-DNS and the
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Figure 7.13: Mixture fraction rms and temperature mean and rms at time t/tj = 30 obtained
from the sparse-Lagrangian MMC-LES model (1L/8E) using the one-to-one coupling strategy
with double conditioning on the stochastic particle mixture fraction and temperature. The mean
mixture fraction is not significantly affected and therefore not shown.
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Figure 7.14: Conditional mean and rms of temperature at time t/tj = 30 obtained from the
sparse-Lagrangian MMC-LES model (1L/8E) using the one-to-one coupling strategy with double
conditioning on the stochastic particle mixture fraction and temperature.

filtered temperature that is interpolated to the droplet positions and used for the
particle selection.

Mean and rms profiles of temperature and mixture fraction as well as condi-
tional averages are shown in Fig. 7.13 and Fig. 7.14, respectively, and the PDF
of the droplet diameter is shown in Fig. 7.11(b). As expected, the conditioning
on stochastic particle properties leads to further improvements of the evaporation
process, where in particular case (x, 0, T sp) gives excellent agreement with the CP-
DNS. Looking at the temperature predictions, it is apparent that conditioning on
the mixture fraction leads to a persistent underestimation of the temperature field
for the reasons stated above. In contrast, the conditioning on the stochastic particle
temperature yields remarkable improvements of the unconditionally and condition-
ally averaged temperature, giving reasonable agreement with the CP-DNS data.
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(a) (x, zsp, 0). (b) (x, 0, T sp). (c) (0, zsp, T sp).

Figure 7.15: Visualization of the two-phase coupling relations in composition space at time
t/tj = 30 using the one-to-one coupling strategy with double conditioning on stochastic particle
mixture fraction and temperature (1L/8E). The black lines show a random selection of droplets
(black dots) coupled with stochastic particles (red dots), where droplets are plotted using their
interpolated LES values and stochastic particles are plotted based on their particle properties.
Gray dots in the background show the scatter plot of the CP-DNS for reference (Fig. 7.5(a)).

The double conditioning on mixture fraction and temperature does not lead to im-
provements compared to conditioning on mixture fraction alone, and the results
remain almost unchanged. This might be due to the fact that the two-phase cou-
pling parameters were estimated based on single conditioning and require further
adjustment for the case of double conditioning, as mentioned earlier.

Finally, Fig. 7.15 shows a visualization of the coresponding two-phase coupling
relations in the composition space. It is clear to see how a particle selection in
pure mixture fraction space (Fig. 7.15(a)) minimizes the separation between the
droplets and the particles in mixture fraction space, but results in large distances
in the temperature space. The opposite is the case with a particle selection in
pure temperature space (Fig. 7.15(b)). The best proximity in composition space
is achieved by selecting particles in both mixture fraction and temperature space,
as depicted in Fig. 7.15(c). Accordingly, this should minimize the error resulting
from the two-phase coupling model. However, the persistent discrepancy in the
temperature predictions indicates that there may be additional errors resulting from
the MMC modeling, which will be examined in more detail in the following section.

7.3 Influence of the MMC Modeling Parameters

7.3.1 Effect of the Stochastic Particle Number

While in intensive particle methods the number of stochastic particles is usually
sufficiently high to keep the stochastic error low and to ensure an accurate repre-
sentation of the local flame structures, this is not necessarily the case if a sparse
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particle distribution is used. For this reason, the influence of the particle number
density will now be investigated. The simplest and most obvious approach is to
increase the particle number globally. While this reduces the stochastic error and
improves the flame resolution, the Monte Carlo solution progressively converges to
an intensive particle method as the number of particles is increased, thus making the
conditioning of mixing and two-phase coupling questionable above a certain particle
number density. In sparse particle methods, numerical convergence is defined by in-
creasing the number of particles in a way that preserves the sparse character of the
mixing model [107, 205]. There are several techniques to achieve this numerically,
such as the method suggested by Sundaram et al. [205] and used by Vo et al. [218],
in which the ensemble of notional particles is divided into smaller subgroups for
mixing in order to keep the mixing distances constant and sparse, with the number
of subgroups given by the factor by which the number of particles is increased com-
pared to the base case. In the following, both approaches (increasing the particle
number globally and using multiple clouds) will be used to examine the effect of the
stochastic particle number.

First, the numerical convergence of the two-phase MMC-LES model is evalu-
ated by increasing the number of particles while preserving the sparse character of
mixing and two-phase coupling. If the method proposed by Sundaram et al. [205]
is applied to two-phase flows, several issues arise that need to be addressed. First,
not only the mixing model but also the two-phase coupling model requires that the
ensemble of particles is divided into subgroups in order to preserve the sparse char-
acter of both mixing and two-phase coupling. Second, the smaller volume of each
particle resulting from a higher particle number density introduces a dependence
of the evaporation process on the number of stochastic particles (cf. Sec. 5.2), and
prevents the Monte Carlo solution from convergence if the number of particles is
increased. Therefore, an alternative approach is used here, in which the number
of particles is increased by introducing additional particle clouds. Each cloud con-
tains the number of particles of the base case and is solved independently, which
preserves the sparse character of the mixing model. The same strategy is used for
the fuel droplets, i.e., for each particle cloud an additional set of droplet mass and
temperature is introduced (see Sec. 4.7.3). Accordingly, each cloud represents an in-
dependent realization of the turbulent composition field, with mixing and two-phase
coupling distances kept constant and sparse in each cloud. For the calculation of
unconditional and conditional averages the data of all clouds is used, which reduces
the stochastic error as the number of clouds is increased. Figures 7.16 and 7.17
show the results that are obtained for an increasing number of particle clouds using
case (x, f̃) with a particle number density of 1L/8E as base case. The equivalent
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Figure 7.16: Mixture fraction rms and temperature mean and rms at time t/tj = 30 obtained
from the sparse-Lagrangian MMC-LES model using multiple particle clouds (case (x, f̃) with 1L/8E
per cloud).
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Figure 7.17: Conditional mean and rms of temperature at time t/tj = 30 obtained from the
sparse-Lagrangian MMC-LES model using multiple particle clouds (case (x, f̃) with 1L/8E per
cloud).

particle number densities, calculated with the total number of particles, are given
by 1L/4E and 1L/2E if two and four clouds are used, respectively. Remarkably, the
results do not show any influence of the number of clouds, which proves that the
particle number density of the base case is sufficiently high to keep the stochastic
error low. As an alternative to using multiple clouds one could expand the domain
size in the homogeneous directions, which would also increase the total number of
particles while keeping the distances for mixing and two-phase coupling constant.
The results obtained with this method reveal the same trends (not shown).

The previous approach has demonstrated that the stochastic error is small,
but it does not indicate whether the local flame structure is accurately represented,
since each cloud exhibits the same sparse particle distribution. For this reason, the
particle number is now increased globally, making the particle method less sparse.
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Table 7.1: MMC parameters for the simulations of the droplet-laden temporally evolving double
shear layer using different particle number densities. The table lists values for the mixing param-
eters rm and fm as well as for the two-phase coupling parameters r∗

m and f∗
m as a function of the

number of stochastic particles.

Nsp Nsp per Mixing, Eq. (4.51) Two-phase coupling, Eq. (4.60)
LES cell rm (m) fm (-) r∗

m (m) f∗
m (-)

36 288 1L/8E 1.0 · 10−3 0.012 6.0 · 10−4 0.0072
72 576 1L/4E 7.4 · 10−4 0.012 4.5 · 10−4 0.0072

145 152 1L/2E 5.5 · 10−4 0.012 3.3 · 10−4 0.0072
290 304 1L/1E 4.1 · 10−4 0.012 2.5 · 10−4 0.0072

Starting with a particle number density of 1L/8E the number of particles is increased
by a factor of two, resulting in particle number densities of 1L/4E, 1L/2E and
1L/1E. Note that even the highest particle number density considered here is still
much lower than in a conventional intensive particle method [208], so all simulations
can be considered to be sparse. The change in the stochastic particle number density
requires an adjustment of the mixing and two-phase coupling parameters, where the
mixing parameters are calculated based on the isoscalar sliver relation presented in
Sec. 4.4.2 and the two-phase coupling parameters are scaled accordingly, as discussed
in Sec. 7.1.2. For two simulations with identical flow properties but different numbers
of particles, denoted as N sp

1 and N sp
2 , the isoscalar sliver relation can be written as

rm,1

rm,2
=
(

∆L,1

∆L,2

)3/Df

=
(
N sp

2
N sp

1

)3/Df

, (7.2)

where parameter fm is kept constant. The values for the mixing parameters rm and
fm as well as for the corresponding two-phase coupling parameters r∗

m and f ∗
m of the

simulations with different particle numbers are reported in Tab. 7.1. The results
shown in Figs. 7.18 and 7.19 reveal a strong effect of the number of particles on the
temperature predictions, whereas the mixture fraction profiles are hardly affected
(mean profile does not show an effect and is therefore not shown). It can be seen that
an increase in the particle number results in higher temperatures, where case 1L/4E
leads to almost perfect agreement with the CP-DNS data, while larger particle
number densities overestimate the temperatures and underpredict the conditional
fluctuations. This trend is attributable to the ambiguity of the correlation between
mixture fracture and temperature, where a low number of particles can lead to global
extinction due to nonlocal mixing, while the statistical significance of inadequate
mixing decreases as the number of particles is increased [205]. The fact that the
case with 1L/4E gives the best agreement with the CP-DNS is therefore rather
coincidental, and a further increase in the number of particles seems to produce
a converged solution, the accuracy of which may depend on additional parameters
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Figure 7.18: Mixture fraction rms and temperature mean and rms at time t/tj = 30 obtained
from the sparse-Lagrangian MMC-LES model (case (x, f̃) with 1L/8E) using a varying number of
stochastic particles.
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Figure 7.19: Conditional mean and rms of temperature at time t/tj = 30 obtained from the
sparse-Lagrangian MMC-LES model (case (x, f̃) with 1L/8E) using a varying number of stochastic
particles.

such as the model for the mixing time scale. This effect will be investigated later.
Note that an improved resolution of the local flame structures could in principle also
be achieved by using a non-uniform super mesh, in which particles are concentrated
in the shear region where combustion takes place. However, if the MMC-LES model
is coupled with the CP-DNS, such a grid stretching is not readily realizable, since
three meshes are involved (DNS mesh, LES mesh, super mesh) whose cell faces must
coincide.

7.3.2 Sensitivity Towards fm

In Sec. 7.1.2 a scaling of the standard value fm = 0.03 was suggested to account
for the smaller mixture fraction range in two-phase flows. This scaling will now
be verified by performing simulations of case (x, f̃) using different values of fm. In
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Table 7.2: MMC parameters for evaluating the sensitivity towards fm. The table lists values for
the mixing parameters rm and fm as well as for the two-phase coupling parameters r∗

m and f∗
m

using a particle number density of 1L/8E.

Mixing, Eq. (4.51) Two-phase coupling, Eq. (4.60)
rm (m) fm (-) r∗

m (m) f∗
m (-)

1.5 · 10−3 0.0048 8.6 · 10−4 0.0029
1.0 · 10−3 0.012 6.0 · 10−4 0.0072
6.8 · 10−4 0.03 4.1 · 10−4 0.0181

addition to the default value fm = 0.03 and the scaled value fm = 0.012, a simulation
with a further reduced value of fm = 0.0048 (applying the same ratio) is also
performed. The corresponding values for rm are calculated based on the isoscalar
sliver relation, Eq. (4.52), and are reported in Tab. 7.2 along with the corresponding
two-phase coupling parameters. Although the previous section has demonstrated
that a higher particle number is required to improve the model predictions, the
particle number density is kept at 1L/8E here, since conditioning and thus the effect
of fm becomes less important at higher particle numbers. Figure 7.20 shows the
results for the unconditional averages, while the conditional averages are plotted in
Fig. 7.21. The results indicate that there is a considerable dependence of the results
on the parameter fm, in particular for the temperature predictions. The standard
value for single-phase combustion, fm = 0.03, gives quite good agreement with the
CP-DNS for both unconditional and conditional averages, while the smaller values
for fm underestimate the temperatures. In general, a smaller value of fm enforces
smaller distances in reference mixture fraction space, thus amplifying the effect of
conditioning. However, due to the insufficient correlation between mixture fracture
and temperature, a particle selection in reference mixture fraction space causes flame
extinction by pairing the wrong particles with each other and with the droplets, and
is thus responsible for the underpredicted temperatures. In contrast, a larger value
of fm reduces the effect of the conditioning and thus prefers particles that are close
in physical space, which may provide better proximity in composition space. Note
that a variation of fm affects both the particle selection for mixing and for two-phase
coupling, and therefore different trends are obtained here compared to Sec. 7.2.1,
where only the particle selection for two-phase coupling was changed. In fact, the
results show only a weak dependence if only the two-phase coupling parameters
r∗

m and f ∗
m are changed while the mixing parameters rm and fm are kept constant,

which is consistent with the trends reported in Sec. 7.2.1.

To assess whether the proposed scaling of fm is reasonable, the mixing pa-
rameters are compared with the real mixing distances that are calculated from the
simulation data. Figure 7.22 shows instantaneous values for the distances dp,q

x and
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Figure 7.20: Mixture fraction rms and temperature mean and rms at time t/tj = 30 obtained
from the sparse-Lagrangian MMC-LES model (case (x, f̃) with 1L/8E) using different values of
fm for both mixing and two-phase coupling.
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Figure 7.21: Conditional mean and rms of temperature at time t/tj = 30 obtained from the
sparse-Lagrangian MMC-LES model (case (x, f̃) with 1L/8E) using different values of fm for both
mixing and two-phase coupling.

dp,q
f between mixing particles, normalized by the corresponding mixing parameters
rm and fm, along with their spatial averages (thick black solid line) and plotted ver-
sus the normalized cross-stream coordinate. A value of dp,q

x /rm = 1 and dp,q
f /fm = 1

(marked by the thin black line) indicates that the parameters are consistent with
the real distances and thus appropriately chosen. Looking at the plots obtained
from the default value fm = 0.03, it can be seen that the average distance in phys-
ical space is approximately constant and larger than the parameter rm, while the
average distance in reference mixture fraction space is smaller than the prescribed
parameter fm = 0.03. In fact, one finds that the average distance in physical space
agrees well with the distance that results from a particle selection in pure physical
space (marked by the black dashed line, see Appendix C for details), which reveals
that the conditioning of the mixing pair selection is ineffective. This indicates the
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(a) Distances in physical space.

(b) Distances in reference mixture fraction space.

Figure 7.22: Distances between mixing particles in physical space and reference mixture fraction
space, normalized by the mixing parameters, at time t/tj = 30 (case (x, f̃) with 1L/8E). Gray dots
show the instantaneous particle data (random subset), while the thick black solid line denotes the
average distance. The black dashed line marks the physical distance corresponding to a particle
selection in pure physical space. The thin black line indicates an optimal choice of parameters.

that the mixing parameters are not chosen consistently. If the value of fm is de-
creased, the conditioning in mixture fraction space becomes more important, which
leads to an increase of distances in physical space, in particular in the shear region,
where gradients of mixture fraction are largest and thus particles must be selected
from a wider range to maintain the prescribed distances. Note that the parameter
rm that results from the isoscalar sliver relation is also increased, and therefore the
normalized distances do not increase. For fm = 0.012 the effect of a conditional
particle selection is still relatively small, whereas for fm = 0.0048 a significant in-
crease in the shear region can be observed. In both cases, the normalized distances
in mixture fraction space remain relatively unchanged (while the actual distances
decrease) and show good agreement with the mixing parameter fm. This demon-
strates that a scaling of the standard value for fm is indeed necessary for two-phase
flows, with the reported results suggesting even further reduction of fm than used
in the present work.

Similar to the mixing distances between the stochastic particles, Fig. 7.23 shows
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(a) Distances in physical space.

(b) Distances in reference mixture fraction space.

Figure 7.23: Distances between droplets and stochastic particles in physical space and reference
mixture fraction space, normalized by the mixing parameters, at time t/tj = 30 (case (x, f̃)
with 1L/8E). Gray dots show the instantaneous particle data (random subset), while the thick
black solid line denotes the average distance. The black dashed line marks the physical distance
corresponding to a particle selection in pure physical space. The thin black line indicates an
optimal choice of parameters.

a comparison of the two-phase coupling parameters with the real distances between
droplets and stochastic particles calculated from the simulation data. Here, essen-
tially the same trends are observed as reported earlier for the mixing distances. For
fm = 0.03, the real distances in physical space are larger than the corresponding
coupling parameter r∗

m and agree well with the distances resulting from a particle
selection in pure physical space (dashed line), which is due to the fact that fm and
thus f ∗

m is chosen too large. With decreasing value for fm, the physical distances ap-
proach the coupling parameter r∗

m, while dd,sp
f /f ∗

m remains approximately constant.
The results demonstrate the analogy between mixing distances and two-phase cou-
pling distances and confirm the estimation of suitable coupling distances between
the droplets and the stochastic particles, as derived in Appendix C.
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7.3.3 Effect of the Mixing Time Scale

The analysis of mixing times on the basis of the CP-DNS data, as was presented
in Sec. 6.2.3, has demonstrated that the conventional models derived for single-
phase flames can also be used for spray flames, although some uncertainty remained
with respect to the modeling constants. For this reason, the effect of mixing time
scale modeling will now be discussed. To this end, simulations of case (x, f̃) with a
particle number density of 1L/8E are performed using different values of the model
constant Cf in combination with either the anisotropic (a-ISO) model, which has
been used in all previous simulations, or the Cleary and Klimenko (C&K) model.
For details on the model formulations the reader is referred to Sec. 4.4.3. Based
on the default value Cf = 0.1, the model constant is decreased and increased by a
factor of two, resulting in Cf = 0.05 and Cf = 0.2, respectively. Note that the same
effect could be achieved by variation of the constant in the model for the turbulent
diffusivity, but changing Cf provides a more direct control of the mixing time.

Results for the a-ISO model are shown in Figs. 7.24 and 7.25. While the effects
on the mixture fraction are rather small (mean profile is not affected and therefore
not shown), the averaged temperature profile shows a clear influence of the model
constant. Here, a smaller value of Cf , corresponding to a smaller mixing time
and thus enhanced mixing (cf. Eq. (4.54)), produces higher temperatures, with in
particular the value Cf = 0.05 leading to remarkably good agreement with the CP-
DNS data. This is in agreement with the results shown in Fig. 7.3, as a smaller
value for Cf is equivalent to the use of a larger turbulent diffusivity (cf. Eq. (4.54)).
The conditional profiles (Fig. 7.25) show essentially the same trends, where again
Cf = 0.05 gives the best agreement with the CP-DNS. Minor further improvements
for the temperature predictions are achieved if a particle selection conditional on
the stochastic particle temperature is employed (not shown).

Results obtained from the C&K model using different values of Cf are shown
in Figs. 7.26 and 7.27. In contrast to the a-ISO model, the C&K model shows only
a weak dependence on the model constant. However, both the unconditionally and
conditionally averaged temperatures are overpredicted, while the conditional fluctu-
ations are significantly underestimated. This is due to the significantly lower mixing
time scales produced by the C&K model. Note that the same underprediction of
conditional variance of the C&K model was found by Vo et al. [218, 219] for single-
phase flames using both MMC coupled to DNS [218] and MMC in combination with
a real LES [219], as well as by Sharma and De [184] in MMC-LES of dilute spray
flames.
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Figure 7.24: Mixture fraction rms and temperature mean and rms at time t/tj = 30 obtained
from the sparse-Lagrangian MMC-LES model (case (x, f̃) with 1L/8E) using different values of
Cf in the a-ISO mixing time scale model.
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Figure 7.25: Conditional mean and rms of temperature at time t/tj = 30 obtained from the
sparse-Lagrangian MMC-LES model (case (x, f̃) with 1L/8E) using different values of Cf in the
a-ISO mixing time scale model.
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Figure 7.26: Mixture fraction rms and temperature mean and rms at time t/tj = 30 obtained
from the sparse-Lagrangian MMC-LES model (case (x, f̃) with 1L/8E) using different values of
Cf in the C&K mixing time scale model.
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Figure 7.27: Conditional mean and rms of temperature at time t/tj = 30 obtained from the
sparse-Lagrangian MMC-LES model (case (x, f̃) with 1L/8E) using different values of Cf in the
C&K mixing time scale model.
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7.4 Summary and Discussion

The sparse-Lagrangian two-phase MMC-LES model was tested using an a priori
strategy based on a temporally evolving droplet-laden double shear layer. The two-
phase coupling between the droplets and the gas-phase particles was realized by
utilizing the one-to-one coupling technique with particle selection conditional on a
set of suitable reference variables. Using the filtered mixture fraction as a condi-
tioning variable, as is conventional in MMC-LES modeling of non-premixed flames,
good agreement was achieved for the mean and rms of mixture fraction, whereas
the unconditionally and conditionally averaged temperatures were underestimated
by about 100 K to 200 K. No significant differences were found between a parti-
cle selection in pure physical space and in physical and mixture fraction space. In
contrast, a particle selection in pure reference mixture fraction space has led to
somewhat larger deviations, in particular for the evaporation process. This was
due to a lack of correlation between mixture fraction and temperature, with the
latter being the predominant driving force for evaporation. The introduction of
temperature as an additional conditioning variable for two-phase coupling has given
improved predictions of evaporation rates and droplet size distributions, and par-
tial improvements were also obtained for the temperature predictions. Further, it
was outlined that there is not always a good correlation between the temperature
in the Eulerian field, which is used for conditioning, and the temperature that is
transported by the stochastic particles, and therefore conditioning on the stochastic
particle mixture fraction and temperature was proposed. While this has improved
the localness of the two-phase coupling in the DNS-based analysis, the importance
of this approach is likely to be smaller in stand-alone LES, where the gas-phase
temperature is solved exclusively on the stochastic particles.

Subsequent analysis of the influence of the MMC modeling parameters revealed
a strong effect on the unconditional and conditional temperature predictions. Simi-
lar to the two-phase coupling, the reference mixture fracture field does not provide
sufficient localness of the mixing operator, which can cause excessive flame extinc-
tion due to unphysical mixing. Increasing the stochastic particle number density
and increasing the value for fm have both led to improved temperature predictions.
This is attributable to the fact that the importance of conditioning is reduced and
particles are increasingly selected in pure physical space, which may provide better
localness, in particular at high particle numbers. Further, a comparison of mixing
and coupling parameters with distances calculated from the simulation data has
demonstrated that a scaling of the standard value fm = 0.03 is required to account
for the smaller mixture fraction range in two-phase flows. Results with different
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models for the mixing time scale have established that the a-ISO model provides a
reasonable mixing time for spray flames, but requires an adjustment of the model
constant to account for the effect of the evaporating droplets. In contrast, the C&K
model has led to large discrepancies between the predicted conditional fluctuations
and the CP-DNS data.

Based on the findings of the present chapter, two major refinements of the MMC
mixing model are required to obtain reliable predictions for dilute spray flames with
a significant amount of extinction and re-ignition. First, the concept of double
conditioning should also be applied to the MMC mixing pair selection to ensure
localness of the mixing operator, where the reaction progress variable or alternatively
the temperature could be used as an additional reference variable [202]. Second,
further research is required to incorporate the effect of droplet evaporation into the
model for the mixing time scale. Alternatively, the a-ISO model combined with
a dynamic procedure for estimating the model constant may be used to provide
sufficiently accurate predictions for spray flames [184, 186].





Chapter 8

MMC-LES of an Evolving
Droplet-Laden Double Shear Layer

The following chapter presents results of the sparse-Lagrangian two-phase MMC-
LES model coupled with a stand-alone LES. The computational setup is the same as
used in the previous chapter, but now additionally involves the effects of LES mod-
eling of the turbulent flow field and density coupling from the stochastic particles
back to LES. The results of this a posteriori study are compared with the CP-DNS
data as well as with the model predictions of MMC coupled with the CP-DNS.

8.1 Computational Setup

The physical configuration is the same as used in Ch. 7 and describes the tempo-
ral evolution of a droplet-laden double shear layer. LES is used to compute the
turbulent flow field, which requires additional modeling of the subgrid fluctuations.
Here, the σ-model with Cσ = 1.5 is used (cf. Sec. 4.2.3), which has been shown
to provide a more accurate description of the turbulent flow field compared to the
Smagorinsky model and has exhibited a low dependence on the model constant. In
a posteriori LES testing, a major challenge arises in determining an appropriate
grid resolution [210]. On the one hand, the mesh must be fine enough to accu-
rately represent the larger turbulent motions, where a resolution of about 80 % of
the turbulent kinetic energy is recommended for LES [163]. On the other hand, the
mesh should be sufficiently coarse in order to be able to draw reliable conclusions
about the performance of the subgrid combustion model. Tests have shown that a
mesh resolution of Nx ×Ny ×Nz = 72 × 84 × 48 = 290 304 grid cells (i.e., the same
resolution as used for filtering in the a priori analysis) provides qualitatively good
predictions of the averaged velocity and reference mixture fraction profiles, while
a lower grid resolution was not able to capture the larger turbulent motions and
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Figure 8.1: Illustration of the MMC-LES setup for the temporally evolving droplet-laden double
shear layer at time t/tj = 30. The gray lines indicate the LES cells (left) and super cells (right).

resulted in a significantly delayed jet breakup. Note that the same mesh resolution
has been used in previous LES studies of a similar configuration [219, 235]. A grid
stretching in cross-stream direction is applied, where the cell sizes of the LES mesh
and the super mesh are reduced in the jet region and increased towards the domain
boundaries, as depicted in Fig. 8.1. This improves the resolution of the gradients
in the shear region, in particular at the beginning of the simulation. Furthermore,
the use of a non-uniform super mesh enables a higher particle number density in
the flame zone, where a particle number control algorithm is employed to keep the
particle number approximately constant within each super cell. The LES passes the
velocity, the turbulent diffusivity and the reference mixture fraction to the stochastic
particles, which in turn feed back their density to the Eulerian LES using the cou-
pling method described in Sec. 4.6. The total number of stochastic particles within
the domain is set to N sp = 36 288, corresponding to an average particle number
density of 1L/8E. Although the clustering of stochastic particles towards the shear
region leads to locally higher particle number densities, the globally determined val-
ues for the mixing and two-phase coupling parameters, as reported in Tab. 7.1, are
retained for the present MMC-LES. Unless otherwise stated, the a-ISO mixing time
with Cf = 0.1 is used, and the two-phase coupling utilizes a particle selection in
physical and reference mixture fraction space according to Eq. (4.60).

The simulations are performed using the two-phase MMC-LES solver called
mmcDropletFoam, which is described in Sec. 4.7.2. Linear interpolation schemes
are used, as is common in LES, in combination with the backward method for time
discretization. The MMC-LES simulations require about 35 CPUh on a workstation
with 24 cores, which is a reduction of the computing time of the CP-DNS by a factor
of more than 50 (cf. Tab. F.1).
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8.2 Results

Accurate predictions of the MMC model for the reactive scalars require an accu-
rate representation of the jet breakup by the LES subgrid model. To this end, the
temporal evolution of the reference mixture fraction field that is obtained from the
LES is compared with the CP-DNS data from the previous chapter. As shown in
Fig. 8.2(a), there is very good agreement throughout the entire simulation. This
indicates that the LES predicts the correct jet breakup, which enables comparability
between the present MMC-LES predictions and the results of the DNS-based anal-
ysis that were presented in the previous chapter. A slight deviation exists at later
times, which may be due to differences in the temperature fields in combination
with density-weighted averaging or due to differences in the evaporation process,
both of which will be examined later. Good agreement is also obtained for the
mean streamwise velocity (not shown). Differences can be observed by looking at
the turbulent kinetic energy, which is shown in Fig. 8.2(b). Here, the LES leads to
larger turbulent fluctuations despite the lower grid resolution and the lack of subgrid
fluctuations. The rms of reference mixture fraction is also overpredicted, albeit not
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Figure 8.2: Mean of the Eulerian reference mixture fraction and turbulent kinetic energy obtained
from the LES and compared to the CP-DNS. Black dots mark the cell values.
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(a) Scatter plot of target temperature T̃ target

versus equivalent temperature T̃ E in the LES.
(b) Scatter plot of particle mixture fraction zsp

versus filtered reference mixture fraction f̃(xsp).

Figure 8.3: Proof of consistency between the stochastic particle field and the Eulerian LES at
time t/tj = 30. The black line denotes the conditional mean.

as strongly (not shown). This is attributable to the efficiency of the subgrid model,
whose role is to emulate the dissipation of the resolved turbulent fluctuations in
the absence of subfilter fluctuations. Obviously, the dissipation is not high enough,
despite the fact that the mean profiles show good agreement.

Next, the consistency between the stochastic particle field and the Eulerian
LES is demonstrated. Figure 8.3(a) shows a scatter plot of the instantaneous target
temperature, which is obtained by mapping the stochastic particle temperature to
the Eulerian field using the method described in Sec. 4.6, versus the equivalent tem-
perature, which is obtained from the solution of an additional transport equation
that applies a relaxation towards the target temperature and which is used to eval-
uate the density and thermophysical properties in the LES. There is a good linear
correlation between the two temperatures with a low level of fluctuations, which
verifies the density coupling between the stochastic particle field and the Eulerian
LES. Figure 8.3(b) shows the correlation between the mixture fraction solved on
the stochastic particles and the reference mixture fraction solved in the LES and
interpolated to the particle positions. Again, there is a clear correlation, which is
required for conditioning of the mixing operator to ensure localness in composition
space. The scatter in the f̃ -z correlation is due to the stochastic movement of the
particles and reflects subfilter fluctuations, which are not resolved by the reference
mixture fraction field.

Figure 8.4 provides a comparison of results obtained from the stand-alone
MMC-LES with the CP-DNS data and with results obtained from MMC coupled
with the CP-DNS, which were presented in the previous chapter and are here de-
noted as MMC-DNS. Note that the MMC-DNS uses exactly the same MMC mod-
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Figure 8.4: Comparison of results obtained from the CP-DNS, MMC coupled with the CP-DNS
(denoted as MMC-DNS), and the stand-alone MMC-LES. All results are shown at time t/tj = 30.
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eling parameters as the present MMC-LES to ensure comparability of the results.
The mean mixture fraction profile is accurately predicted by the MMC-LES, while
fluctuations are somewhat too large (Fig. 8.4(a)). This is due to the insufficient
dissipation of the subgrid model, as mentioned above, and is therefore an effect of
the LES subgrid model and not the MMC model. In contrast, the gas-phase tem-
peratures are significantly underestimated by the MMC-LES, where the deviations
to the CP-DNS are larger than in the MMC-DNS (Fig. 8.4(b)). As discussed in
the previous chapter, this may be attributable to an inadequate mixing time scale,
where the effects are amplified in the stand-alone MMC-LES due to the additional
modeling of the turbulent diffusivity. Furthermore, the increased fluctuations result
in intensified mixing of the cold gas of the central jet with the hot gas of the shear
region, as indicated by the overpredicted temperature mean and rms in the center
of the domain (Fig. 8.4(b)), which additionally contributes to flame extinction. A
comparison of droplet properties is shown in Fig. 8.4(c). It can be seen that the
droplet dispersion is slightly smaller in the MMC-LES, which is due to the lack
of subgrid fluctuations in the LES. The PDF of the droplet diameter shows very
good agreement with the CP-DNS, although the temperatures, which substantially
determine the evaporation rate, have exhibited a considerable deviation from the
CP-DNS. Obviously, the effects of a higher temperature in the jet region and a lower
temperature in the shear region cancel each other, so that the evaporation rate takes
on average similar values as in the CP-DNS.

Using double conditioning on mixture fraction and temperature for the two-
phase coupling did not lead to significant improvements of the results (not shown
for brevity), which suggests that the deviations of the temperature predictions are
attributable to the mixing model, as discussed in Sec. 7.3. For this reason, the
influence of the MMC mixing parameters on the MMC-LES model predictions will
be briefly discussed. The results are shown in Fig. 8.5 exemplary for the condi-
tional mean temperature, but the trends are essentially the same for the uncondi-
tionally averaged temperature, while mixture fraction is not significantly affected.
Figure 8.5(a) shows results obtained using an varying number of stochastic par-
ticles. In contrast to the MMC-DNS, the number of stochastic particles has no
influence here, as the grid stretching leads to a sufficiently high particle number
density in the flame region even with the lowest particle number. A variation of
the mixing parameter fm (Fig. 8.5(b)) and the constant Cf in the mixing time scale
(Figs. 8.5(c) and 8.5(d)) generally shows the same trends as reported in Sec. 7.3. It
can be seen that both the scaled value fm = 0.012 and the default value fm = 0.03
can reproduce the conditional mean temperature of the CP-DNS, provided that
the modeling constant Cf is adjusted properly. Using fm = 0.012, the best match
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Figure 8.5: Effect of the MMC modeling parameters on the conditional mean temperature at
time t/tj = 30.

with the CP-DNS data is obtained for Cf = 0.025 (cf. Fig. 8.5(c)), while a value
of Cf = 0.05 is required for fm = 0.03 (cf. Fig. 8.5(d)). A final comparison of the
CP-DNS and the MMC-LES using these two sets of “tuned” modeling parameters
is provided in Fig. 8.6, which shows the corresponding scatter plots of temperature
versus mixture fraction at time t/tj = 30. In both cases, the MMC-LES shows qual-
itatively good agreement of the conditional mean temperature and the conditional
fluctuations with the CP-DNS, which demonstrates the good predictive capabilities
of the two-phase MMC-LES model for spray flames with extinction and re-ignition
if adjusted parameters are used.
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(a) CP-DNS. (b) fm = 0.012, Cf = 0.025. (c) fm = 0.03, Cf = 0.05.

Figure 8.6: Comparison of scatter plots obtained from the CP-DNS and the MMC-LES with
adjusted modeling parameters fm and Cf at time t/tj = 30.

8.3 Summary and Discussion

A stand-alone MMC-LES of the droplet-laden double shear layer configuration was
performed, and the results were compared with the CP-DNS data and with results
obtained from MMC coupled with the CP-DNS. Emphasis was made on the impor-
tance of accurately predicting the jet breakup to ensure comparability of the results,
which was achieved by utilizing a grid stretching in the cross-stream direction. In
addition, the grid stretching has led to a local increase in particle number density
in the flame zone. The MMC-LES has shown good predictions of the mean mixture
fraction and the evaporation process, but significantly underestimated the temper-
atures. The deviations were larger than in the MMC-DNS, which was attributed to
additional modeling errors associated with subgrid modeling in stand-alone MMC-
LES. Analysis of the sensitivity of the MMC-LES model towards the modeling
parameters has essentially revealed the same trends as reported earlier for the DNS-
based analysis, where in particular an adjustment of the mixing time constant has
eventually led to excellent agreement with the CP-DNS. This again points out the
need for further studies regarding the modeling of the mixing time in spray flames
in order to achieve accurate prediction of the reactive scalars.



Chapter 9

Conclusions and Outlook

9.1 Summary and Conclusions

The present work has performed an in-depth analysis and validation of the sparse-
Lagrangian two-phase MMC-LES model for dilute spray flames. The model employs
an Eulerian LES for the turbulent flow field and reference mixture fraction field, a
Monte Carlo particle method for the reactive scalars, and a Lagrangian solver for
the liquid fuel droplets. While the chemical source term is closed in this approach,
molecular diffusion is not and is represented by a mixing model. The MMC model
utilizes the concept of localness of the mixing operator by conditioning the parti-
cle selection on the reference mixture fraction space, which allows the number of
stochastic particles to be significantly reduced compared to a conventional parti-
cle method. While this is a key benefit to the efficiency of the model, the sparse
representation of the gas phase poses a challenge in coupling the droplets with the
stochastic particles. In the present work, a one-to-one coupling strategy with par-
ticle selection conditional on a set of suitable conditioning variables was proposed
in order to ensure localness in composition space. This two-phase coupling was fur-
ther examined and validated by comparison with a reference solution provided by a
CP-DNS using a priori and a posteriori strategies.

In the first part of the thesis, the grid dependence of the two-phase coupling
in conventional Euler-Lagrange simulations based on the PSI-cell model has been
extensively studied, which is of direct relevance for the CP-DNS to serve as an ac-
curate reference solution. Based on an isolated droplet in an infinite environment,
relations were derived that describe the effect of the cell size on the evaporation
rate and time as well as on the resolved mixture fraction variance. The second part
of the thesis was devoted to the analysis and validation of the two-phase coupling
in a sparse particle method. The analysis was organized in three steps, where each
step extended the analysis by additional modeling aspects, such as the modeling
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of the conditional evaporation rate on the stochastic particles or the modeling of
turbulence in the Eulerian field. In a first step, a rather simple configuration with
homogeneous turbulence and droplet distribution was considered, where all input
data for the two-phase MMC-LES model, such as velocity, turbulent diffusivity and
evaporation rate, were extracted from the CP-DNS. This allowed for an unbiased
comparison of different techniques to distribute the evaporation source terms among
the stochastic particles and to focus on the immediate effects on variance generation
and combustion. In addition, the predictions of the sparse-Lagrangian MMC model
were compared with results obtained from conventional intensive particle methods.
The second step added the evaluation of the conditional evaporation rate to the
stochastic particle solution, and focused on the identification of suitable condition-
ing variables for the two-phase coupling using a temporally evolving droplet-laden
double shear layer. Further, the influence of the MMC modeling parameters was
discussed. Finally, in the third step, a stand-alone MMC-LES of the same configu-
ration was performed to establish the findings from the DNS-based analysis.

The scientific contributions of this work can be formulated as answers to the
key questions posed in Sec. 1.3.

How can the error of the evaporation rate and time be estimated prior
to the simulation?
Based on an isolated droplet in an infinite environment, it was shown that the er-
ror of the steady-state evaporation rate depends on only two parameters, namely
the ratio of cell size to droplet diameter, ∆x/d, and the cell Péclet number defined
as Pe∆x = u∞∆x/DF . The specific relationship for the error of the steady-state
evaporation rate is given by

ϵṁ = min
[(

1 + 2
3

∆x
d

)−1

,

(
1 + 1

π

Pe∆x

Sh∗
∆x
d

)−1 ]
.

The error of the evaporation time additionally depends on the modified mass
ratio φ∗, which is defined as φ∗ = (md,0/mg,0)/ ln(1 +BM,ref) with md,0 = π

6ρld
3
0

and mg,0 = ρ∞∆x3, and follows the relation

ϵτ = min
[(

∆x
d0

)−1

, 0.6φ∗,
2π
3

(
Pe∆x

Sh∗

)−1 (∆x
d0

)−1 ]
.

In the practically relevant case of ∆x/d0 ≲ 20 and assuming a small relative
velocity with Pe∆x ≲ 4, the relation for the error of the evaporation time simplifies
to ϵτ = (∆x/d0)−1, which provides a very convenient way to estimate the error
of the evaporation time prior to the simulation.
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How does a lack of resolution of the near-droplet fields affect the mix-
ture fraction variance?
Contrary to expectations, the variance of a single droplet has been found to be ac-
curately reproduced by the PSI-cell model regardless of the cell size, provided that
the inter-droplet space is resolved by the numerical mesh (albeit overestimated
for ∆L/d ≲ 10). This is because the effects of discretization and distributing
source terms to a larger volume cancel each other. In contrast, if the source term
is distributed to a larger volume while the mesh remains unchanged, the variance
decays exponentially, as expected.
What is a suitable mixing time scale for dilute spray flames?
The mixing time is usually modeled by analogy with the Eulerian time scale,
which is defined as the ratio of scalar subgrid variance to filtered dissipation rate.
Analysis of the mixture fraction subgrid variance and dissipation rate by means
of CP-DNS data has shown that the conventional models derived for single-phase
flames also lead to qualitatively correct predictions for spray flames, but may
require an adjustment of the model constants. Consistent with this, the a-ISO
model with adjusted model constant has led to an accurate description of the
conditional temperature fluctuations and thus provides a reasonable mixing time
also for spray flames.
How can the evaporated mass be distributed among stochastic particles
in order to mimic real evaporation?
A one-to-one coupling strategy between the droplets and the stochastic particles,
where each droplet is coupled with a single gas-phase particle that provides the
ambient conditions and receives the source terms, has been shown to fulfill most
of the properties of an ideal two-phase coupling model. The mutual interaction of
droplets and gas-phase particles prevents the occurrence of unphysical values and
the approach is able to generate the correct amount of scalar variance. To avoid
a dependence on numerical parameters, the coupling must not be random in each
time step but subject to a specific rule, e.g., by selecting the closest particle in
physical space, which ensures pairing with the same particle for a certain period
of time. The method is not confined to sparse particle methods and can equally
be applied to intensive particle methods.
How does the relative performance of the sparse-Lagrangian MMC-
LES model compare to conventional intensive particle methods?
MMC combined with the one-to-one coupling strategy for two-phase coupling was
superior to the conventional particle methods in both efficiency and accuracy.
The mixture fraction predictions were in excellent agreement with the CP-DNS
data, while the EQUAL model has underestimated the variance due the even
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distribution of source terms among the particles in the computational cell, and
the SAT model, which distributes source terms preferably to particles close to
saturation conditions, has significantly overestimated the scalar fluctuations. The
temperature predictions were comparable to that of the EQUAL model, since
source terms are transferred to a relative large gas volume represented by each
particle in a sparse particle method, which implies artificial mixing. This gives
rise to further improvements, which will be outlined in the next section.
How can the evaporation rate be determined if the gas phase is repre-
sented by a sparse distribution of stochastic particles?
A particle selection conditional on a set of suitable conditioning variables, which
is realized by adopting the concept of minimizing the effective square distance,
can provide localness of the two-phase coupling, and thus overcome the difficulties
associated with a sparse representation of the gas phase where a particle is not
always present close to the droplet. In MMC-LES of non-premixed flames, the
reference mixture fraction is usually used as a proxy for localness in composition
space, and the simulations have shown that it also serves as an adequate condi-
tioning variable for two-phase coupling in spray flames. It was outlined that the
inclusion of the distance in physical space is beneficial and thus recommended.
For sprays with a considerable amount of extinction, double conditioning is re-
quired, which was presented here based on temperature. Further, it was argued
that conditioning on stochastic particle properties may provide better localness
if there is not sufficient correlation between the stochastic particle properties and
their Eulerian equivalents.
How robust is the two-phase MMC-LES model with respect to the
modeling parameters?
The two-phase coupling based on the one-to-one coupling strategy showed little
dependence on the MMC modeling parameters, while the MMC mixing model
showed a strong influence of the parameters, such as the number of particles
and the mixing parameter fm. This was attributed to the lack of correlation
between mixture fracture and temperature, and is therefore case-dependent and
not universally valid.

In summary it can be said that the sparse-Lagrangian two-phase MMC-LES model
combined with the one-to-one coupling strategy provides a powerful and efficient
prediction method for dilute spray flames. The present work has provided valuable
insights into the two-phase coupling in dense and sparse-Lagrangian FDF methods
and has made major contributions to the DNS-based model validation.
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9.2 Outlook

In the following, proposals are presented for future analyses and to further improve
the existing two-phase coupling between the droplets and the stochastic particles:

Configuration for future a priori analyses
The droplet-laden double shear layer has proven to be a suitable setup for the a
priori analysis of the two-phase MMC-LES model, as it reproduces the essential
effects of a real spray while keeping the computational effort manageable. For fu-
ture simulations, it is recommended to calculate the turbulent diffusivity required
by the mixing time scale model directly, i.e., based on Eqs. (4.14) and (4.19), in-
stead of using a turbulence model. This eliminates the dependence on the specific
form of the model used, which may have limited validity for spray flames, and
the influence of the associated modeling parameters. Further, it is recommended
to use a higher Reynolds number in order to increase the relevance of subfilter
fluctuations, where the other cases presented in Hawkes et al. [78] could serve as
suitable baseline configurations. Another limitation of the present setup may be
the use of single-step chemistry, which should be extended to a reduced mech-
anism involving multiple reaction equations as well as intermediate species. To
reduce the computational cost of the CP-DNS, one could use tabulation tech-
niques [34, 162], which are available in both the base distribution of OpenFOAM
and the MMC libraries.
Time delay model
To overcome the artificial mixing that results from the distribution of the evapo-
ration source terms to the larger volume represented by each stochastic particle,
a time delay model was suggested in Sec. 6.4.4 that transfers the source terms
to the particles with a certain delay. However, no significant improvements were
obtained, which is attributable to the simplicity of the model formulation used
in the present work. Therefore, additional work is required to revise the model,
e.g., by splitting the volume into two subvolumes using concepts from the eddy
dissipation concept (EDC), as discussed in Sec. 6.5.
Improved particle selection algorithm
The minimization of the effective square distance between the droplets and the
stochastic particles is realized using a direct search algorithm, in which the com-
putational cost increases proportional to Nd · N sp. While this was not a short-
coming in the CP-DNS, where the chemistry calculation and the solution of the
Eulerian transport equations was the most time-consuming part, the LES showed
that a significant amount of computing time can be spent on minimizing the dis-
tances between the droplets and the particles, especially when a higher particle
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number was used. It is therefore recommended to implement an optimized algo-
rithm. A possible implementation could be to divide the set of stochastic particles
into smaller subgroups using a k-d tree algorithm [57] similar to the mixing pair
selection. Knowing the subgroup in which a droplet is located, one only needs to
search for the nearest particle in that subgroup (and, if required, also in the ad-
jacent subgroups). With such an approach, significantly fewer distances need to
be computed, thus reducing the computing time. Note that the droplet-particle
pairs found (and thus the distances between droplets and gas-phase particles) are
generally the same as those obtained with a direct search algorithm.

To improve the performance of the sparse-Lagrangian mixing model in spray flames
with a significant amount of extinction and re-ignition, the following recommenda-
tions are made:

Double conditioning for MMC mixing pair selection
The present droplet-laden double shear layer configuration has shown a consid-
erable amount of extinction, which can also be observed in real spray flames [74].
Under these conditions, a single reference variable such as mixture fraction may
not provide adequate localness in composition space and cause excessive flame
extinction due to unphysical mixing. This problem has been addressed in the
present work by introducing a double conditioning approach for the two-phase
coupling, and further improvements may be obtained by adopting the same strat-
egy to the mixing operator using the reaction progress variable (or temperature)
as a second reference variable, as outlined by Straub et al. [202].
Mixing time modeling in dilute spray flames
The present work has shown that the a-ISO model generally provides a suitable
mixing time scale for MMC-LES of dilute spray flames. However, some uncer-
tainty exists regarding the model constant, and an adjustment was required to
improve the model predictions. This gives rise to the use of a dynamic procedure
for estimating the model constant in the mixing time scale [186], which eliminates
the need to adjust the model constant in two-phase flows and thus may provide
the desired amount of mixing. Such a dynamic procedure in combination with
the a-ISO model was used recently by Sharma and De [184] for a series of dilute
spray flames, where improved results were obtained compared to the static a-ISO
model. However, such an approach cannot be expected to represent all of the
physical effects associated with the evaporation process, and therefore a detailed
analysis of how to incorporate the effects of the evaporating droplets into the
model for the mixing time scale is still required. Inspiration for the development
of a new model could be provided by the work of Pera et al. [147]. Validation
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requires extraction of the “exact” mixing time from the CP-DNS data, which has
not yet been demonstrated for the sparse-Lagrangian MMC model with mixing
conditional on the reference space.

Suggestions for further implementations that extend the applicability of the two-
phase MMC-LES model are provided below:

Spray modeling
The simulation of a real spray requires additional modeling of the breakup and
atomization processes along with the incorporation of droplet collisions and coa-
lescence (cf. Fig. 2.2). These aspects have not been covered in the present work,
since only the dilute region has been considered. Due to the high volume fraction
of the liquid phase in the region close to the nozzle, the breakup of the fuel jet is
more properly described using an Eulerian approach. The incorporation of such
an approach into the sparse-Lagrangian MMC model would then require a new
model for the coupling between the Eulerian solver for the liquid phase and the
stochastic particles representing the gas phase.
Application to real spray flames
In the present work, the sparse-Lagrangian two-phase MMC-LES model has been
validated based on rather simple configurations at relatively low Reynolds num-
bers. The next step should be to apply the model to real spray flames at high
Reynolds numbers and to compare the results with experimental data, such as
the Sydney piloted spray flame series [74]. There are already applications of the
two-phase MMC-LES model to spray flames [102, 103, 184, 185], but they mostly
use the model formulation of Khan et al. [102]. The present work has elaborated
further improvements such as the double conditioning and the findings may help
to improve the model predictions.
Extension to coal and biomass combustion
The numerical modeling of the combustion of pulverized solid fuels, particularly
coal and biomass, uses similar concepts as for spray combustion in that the fuel
particles are treated as point particles. Accordingly, the two-phase MMC-LES
model can be readily applied to solid fuels by extending the models describing the
evolution of the fuel particles by the effects of devolatilization and char conversion.
There is already work on this topic [240], and the present study may provide
valuable insights for modeling the coupling between the fuel particles and the
stochastic particles. Furthermore, the analysis of the cell-size dependence of the
PSI-cell model provides guidelines for deriving equivalent error relations for solid
fuel particles, which is particularly important since the size of pulverized solid fuel
particles is typically larger than that of droplets in spray combustion applications.





Appendix A

Derivation of the Evaporation
Source Terms

A.1 Evaporation Source Terms in the Eulerian
Transport Equations

The expressions for the evaporation source terms in the Eulerian transport equations
of the carrier gas are derived based on the conservation of mass, momentum and
energy between a finite gas volume and the liquid droplets. For the derivation
it is assumed that the conserved quantities (mass, momentum and energy) only
change due to the evaporation process, which is equivalent to the assumption of a
closed system. Accordingly, the equations of the gas phase reduce to their zero-
dimensional form, containing only the time derivative and the evaporation source
term. Furthermore, only a single droplet is considered for the sake of simplicity.
For systems with multiple droplets, the total source terms are simply obtained by
performing a summation over all droplets within the volume under consideration.
Droplet properties are marked with subscript d, while properties of the gas phase
are written without index.

The conservation of total mass states that the temporal change of the sum of
gaseous mass and droplet mass is zero,

dmtotal

dt = d(ρV )
dt + dmd

dt = 0, (A.1)

where V is the gas volume. Solving the equation for the time derivative of density
gives the expression for the mass source term,

dρ
dt = ṠM = − 1

V

dmd

dt . (A.2)

Since only single-component liquids are considered within the present work, the
change of gaseous fuel mass is equal to the change of droplet mass, while the change
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of the gaseous masses of the remaining species is zero,

d(ρYk)
dt = ṠM,k =

ṠM , k = F,

0, k ̸= F.
(A.3)

Momentum is a vector quantity, where in a closed system the momentum is
conserved in each physical direction. Accordingly, the conservation of the total
momentum vector Itotal can be expressed component-wise,

dItotal,i

dt = d(ρuiV )
dt + d(mdud,i)

dt = 0, (A.4)

resulting in
d(ρui)

dt = Ṡu,i = − 1
V

d(mdud,i)
dt . (A.5)

The conservation of energy is expressed in terms of absolute enthalpy H = mh,
meaning that the sum of absolute enthalpy of the gas and the liquid droplet remains
constant. By differentiating with respect to time one obtains

dHtotal

dt = d(ρhV )
dt + d(mdhd)

dt = 0. (A.6)

The corresponding evaporation source term is then given by

d(ρh)
dt = Ṡh = − 1

V

d(mdhd)
dt . (A.7)

The expression for the evaporation source term in the balance equation for
sensible enthalpy is obtained by inserting the decomposition of absolute enthalpy
into enthalpy of formation and sensible enthalpy. Using Eqs. (3.6) and (3.7), the
absolute enthalpy can be written as

h =
Ns∑

k=1
Ykhk =

Ns∑
k=1

Ykh
◦
f,k +

Ns∑
k=1

Ykhs,k =
Ns∑

k=1
Ykh

◦
f,k + hs. (A.8)

The time derivative of absolute enthalpy can then be expressed as

d(ρh)
dt = d(ρhs)

dt + d
dt

(
ρ

Ns∑
k=1

Ykh
◦
f,k

)
= d(ρhs)

dt +
Ns∑

k=1
h◦

f,k

d(ρYk)
dt . (A.9)

Inserting Eqs. (A.2) and (A.3) results in

d(ρh)
dt = d(ρhs)

dt + h◦
f,F ṠM = d(ρhs)

dt − h◦
f,F

1
V

dmd

dt . (A.10)

Using Eq. (A.7), the evaporation source term in the sensible enthalpy equation
finally takes the form

d(ρhs)
dt = Ṡhs = − 1

V

(
d(mdhd)

dt − h◦
f,F

dmd

dt

)
. (A.11)
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The expression for the source term in the energy equation based on temperature
is derived from Eq. (A.11) by inserting the expression for the sensible enthalpy,
Eq. (3.7). The time derivative of sensible enthalpy can be written as

d(ρhs)
dt = d

dt

(
Ns∑

k=1
ρYkhs,k

)
=

Ns∑
k=1

hs,k
d(ρYk)

dt +
Ns∑

k=1
ρYk

dhs,k

dt . (A.12)

Using the chain rule and the first fundamental theorem of calculus, the time deriva-
tive of the sensible enthalpy of the species is given by

dhs,k

dt = d
dt

(∫ T

Tref
cp,kdT ′

)
= d

dT

(∫ T

Tref
cp,kdT ′

)
dT
dt = cp,k

dT
dt , (A.13)

where cp,k is evaluated at temperature T . With this relation and by inserting the
expression for the species mass source term, Eq. (A.3), one obtains

d(ρhs)
dt =

Ns∑
k=1

hs,kṠm,k +
Ns∑

k=1
ρYkcp,k

dT
dt = hs,F ṠM + ρcp

dT
dt . (A.14)

For the time derivative of temperature the following relation holds:
d(ρT )

dt = ρ
dT
dt + T

dρ
dt ⇒ ρ

dT
dt = d(ρT )

dt − T
dρ
dt = d(ρT )

dt − T ṠM . (A.15)

With this relation the temporal change of sensible enthalpy can be expressed as
d(ρhs)

dt = hs,F ṠM + cp
d(ρT )

dt − cpT ṠM . (A.16)

Solving the equation for the time derivative of temperature and inserting the ex-
pressions for the mass source term, Eq. (A.2), and sensible enthalpy source term,
Eq. (A.11), finally gives

cp
d(ρT )

dt = ṠT = d(ρhs)
dt − (hs,F − cpT )ṠM

= − 1
V

(
d(mdhd)

dt − (h◦
f,F + hs,F − cpT )dmd

dt

)

= − 1
V

(
d(mdhd)

dt − (hF − cpT )dmd

dt

)
. (A.17)

The derived expressions are validated by solving the Lagrangian droplet equa-
tions along with the zero-dimensional equations of the gas phase, where the source
terms account for mass, momentum and heat transfer between the liquid phase and
the gas phase. The setup is identical to case ETH-1500K as described in Tab. 3.1,
and the volume of the gas is set to V = (15d0)3. As shown in Fig. A.1, the total
mass, momentum and absolute enthalpy remain constant versus time, which con-
firms the derived expressions for the evaporation source terms. The mass of the
individual species is also conserved (not shown). Note that the results are indepen-
dent of the energy variable that is used in the energy equation for the gas phase
(absolute enthalpy, sensible enthalpy or temperature).
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(b) Momentum conservation.
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(c) Enthalpy conservation.

Figure A.1: Proof of conservation of mass, momentum and absolute enthalpy based on a single
droplet in a finite gas environment for the Eulerian fields. The initial conditions are given by case
ETH-1500K (see Tab. 3.1), and the gas volume is V = (15d0)3. The results are independent of
the energy variable in the energy equation (absolute enthalpy, sensible enthalpy or temperature).

A.2 Evaporation Source Terms in the Stochastic
Particle Equations

The derivation of the closed-form expressions for the evaporation source terms in the
stochastic particle equations is based on the assumption that the assignment of the
fuel droplets to the stochastic particles is known as part of the two-phase coupling
model, such that the conditional evaporation source term can be replaced by an
instantaneous evaluation. Accordingly, the stochastic particle equations, considering
only the evaporation substep, are given by (cf. Eqs. (4.38) and (4.39)),

dϕsp
α = (Πsp

α − ϕsp
α Πsp

F ) dt, (A.18)
dmsp = mspΠsp

F dt, (A.19)

with the composition vector ϕsp = (Ysp, hsp)T containing the species mass fractions
and absolute enthalpy. In analogy to the derivation of the source terms for the
Eulerian solution, the pairing of a single droplet with a single stochastic particle is
considered, with the change of mass and enthalpy of the droplet within a certain
time interval given by dmd and d(mdhd), respectively.

By substituting the expression for the generalized source term Πsp
F , which can

be expressed as (cf. Secs. 3.1.1, 3.1.4 and 3.2.4)

Πsp
F = 1

ρsp
Ṡsp

M = − 1
ρspV sp

dmd

dt = − 1
msp

dmd

dt , (A.20)

the equation for the mass of the stochastic particle, Eq. (A.19), reduces to

dmsp = −dmd. (A.21)
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As expected, the change in the stochastic particle mass is equal to the negative
change in the droplet mass, which preserves the total mass. Equation (A.18), eval-
uated for the fuel mass fraction, ϕsp

α = Y sp
F , takes the form

dY sp
F = (Πsp

F − Y sp
F Πsp

F ) dt = (1 − Y sp
F )Πsp

F dt. (A.22)

Inserting the expression for Πsp
F , Eq. (A.20), the equation for the fuel mass fraction

finally becomes
dY sp

F = − 1
msp

(1 − Y sp
F )dmd. (A.23)

Note that the same equation is obtained from the condition d(mspY sp
F ) = −dmd,

which provides an alternative way for the derivation. In a similar way one obtains
the following equation for the non-evaporating species,

dY sp
k = − 1

msp
(0 − Y sp

k )dmd, k ̸= F. (A.24)

Finally, using the expression for the generalized enthalpy source term Πsp
h , which is

given by
Πsp

h = 1
ρsp

Ṡsp
h = − 1

ρspV sp

d(mdhd)
dt = − 1

msp

d(mdhd)
dt , (A.25)

the equation for the absolute enthalpy of the stochastic particle, Eq. (A.18) with
ϕsp

α = hsp, takes the form

dhsp = − 1
msp

(d(mdhd) − hspdmd) . (A.26)

Again, it is possible to achieve the same expression with the condition d(msphsp) =
− d(mdhd).

Khan et al. [102] adopted a different notation for their two-phase MMC-LES
formulation, in which the enthalpy source term, Eq. (A.25), is split according to

Πsp
h = − 1

msp

(
mdcl

dTd

dt︸ ︷︷ ︸
=Q̇d

+hd
dmd

dt︸ ︷︷ ︸
=−mspΠsp

F

)
. (A.27)

The first term can be identified with the right-hand side of the droplet temperature
equation (droplet heating term, cf. Eq. (3.25)), while the second term is related to
the mass source term. By introducing a droplet heating term per unit evaporative
mass, qd = Q̇d/ṁ, the enthalpy source term can be expressed as a function of the
fuel mass source term,

Πsp
h = (hd − qd)Πsp

F . (A.28)

This allows further generalization, since now all components of the composition
vector contain the fuel mass source term in the expression for the evaporation source
term. The equation for the composition vector, Eq. (A.18), can then be written as

dϕsp
α = (ϕ∗

α,d − ϕsp
α )Πsp

F dt, (A.29)
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(b) Fuel mass conservation.
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(c) Enthalpy conservation.

Figure A.2: Proof of conservation of total mass, fuel mass and absolute enthalpy based on the
coupling between a single droplet and a single stochastic particle. The initial conditions are given
by case ETH-1500K (see Tab. 3.1, the gas velocity is set to zero here), and the volume of the
stochastic particle is V sp = (15d0)3.

with ϕ∗
α,d = ϕα,d for ϕα ∈ Y, and ϕ∗

α,d = hd − qd for ϕsp
α = hsp. Note that the droplet

heating term per unit evaporative mass (qd) is not defined if the evaporation rate
becomes zero (pure heat transfer), which may cause numerical difficulties.

The derived expressions are validated using the setup from the previous section
but with the gas velocity set to zero, as momentum transfer is not part of the two-
phase coupling between the Lagrangian fields (cf. Fig. 4.1). As shown in Fig. A.2,
total mass, species mass and absolute enthalpy are conserved between the droplet
and the stochastic particle. It should be noted that the numerical discretization
of the presented equations is not necessarily mass and energy conserving, as the
composition vector includes the variables in non-conservative form (i.e., Yk instead
of ρYk). Using the explicit Euler method, the discretized form of the fuel mass
fraction equation, Eq. (A.23), is given by

Y sp
F (t+ ∆t) = (msp(t) + dmd)Y sp

F (t) − dmd

msp(t) . (A.30)

A discretely mass-conserving formulation follows from the discretization of the con-
dition d(mspY sp

F ) = −dmd and is given by

Y sp
F (t+ ∆t) = msp(t)Y sp

F (t) − dmd

msp(t) − dmd

. (A.31)

The two expressions differ by the prefactor of the fuel mass fraction at the old time
level and by the denominator. Note that this error also occurs if another numerical
method is used. Since the evaporated mass per time step is usually several orders of
magnitude smaller than the mass of the stochastic particle, the error is negligible and
both expressions can be used equivalently in practice (the absolute error in Fig. A.2
at t = τevap is 0.04 % for the fuel mass and 0.07 % for the absolute enthalpy).



Appendix B

Mixture Fraction Variance
Equation

B.1 Variance Definition

The balance equation for the mixture fraction variance is derived here in the LES
context, where the variance is associated with the subgrid-scale variance, but is
equally valid in the RANS context if the filter operator is replaced by an averaging
operator. The variance is typically defined as the mean square of the fluctuations.
However, as discussed in Cook et al. [35] and Jiménez et al. [98], the application of
this definition to LES, fV = f̃ ′′2, was found to cause problems in practical calcula-
tions. Therefore, the subgrid-scale variance is usually defined as the filtered-mean-
of-the-square minus the square-of-the-filtered-mean,

fV = f̃ 2 − f̃ 2. (B.1)

This definition is also consistent with the filtered density function approach [98].
Note that for Reynolds operators, for which ˜̃f = f̃ , both definitions are equivalent.

B.2 Derivation of the Variance Equation

B.2.1 Exact Form

Starting with the instantaneous transport equation for mixture fraction, which is
given by Eq. (4.4) and repeated here for the sake of completeness,

∂(ρf)
∂t

+ ∂(ρujf)
∂xj

= ∂

∂xj

(
ρD ∂f

∂xj

)
+ ṠM , (B.2)

transport equations for the filtered squared mixture fraction, f̃ 2, and the squared
filtered mixture fraction, f̃ 2, are derived in order to obtain the balance equation for
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the subgrid-scale variance according to the variance definition, Eq. (B.1). Using the
following relations,

∂(ρf 2)
∂t

= 2f ∂(ρf)
∂t

− f 2∂ρ

∂t
, (B.3a)

∂(ρujf
2)

∂xj

= 2f ∂(ρujf)
∂xj

− f 2∂(ρuj)
∂xj

, (B.3b)

∂

∂xj

(
ρD∂f 2

∂xj

)
= 2f ∂

∂xj

(
ρD ∂f

∂xj

)
+ 2ρD ∂f

∂xj

∂f

∂xj

, (B.3c)

the multiplication of the instantaneous mixture fraction equation by 2f and incor-
porating the continuity equation, Eq. (3.1), yields the transport equation for the
squared mixture fraction,

∂(ρf 2)
∂t︸ ︷︷ ︸

Temporal change

+ ∂(ρujf
2)

∂xj︸ ︷︷ ︸
Convection

= ∂

∂xj

(
ρD∂f 2

∂xj

)
︸ ︷︷ ︸

Diffusion

− 2ρD ∂f

∂xj

∂f

∂xj︸ ︷︷ ︸
Dissipation

+ (2f − f 2)ṠM︸ ︷︷ ︸
Evaporation source

. (B.4)

Compared to the transport equation for the mixture fraction, Eq. (B.2), the balance
equation for the squared mixture fraction contains an additional dissipation term,
which is linked to the scalar dissipation rate,

χ = 2D ∂f

∂xj

∂f

∂xj

, (B.5)

with unit s−1. Note that the scalar dissipation rate is always positive, making the
term in Eq. (B.4) a dissipation term due to the negative sign. The evaporation
source term appears with a prefactor that is between zero and one since mixture
fraction is below unity. By applying the density-weighted filter operator to the
transport equation for the squared mixture fraction, Eq. (B.4), one obtains

∂(ρf̃ 2)
∂t

+ ∂(ρũj f̃ 2)
∂xj

= ∂

∂xj

ρD∂f̃ 2

∂xj

− ρχ̃− ∂

∂xj

(
ρũjf 2 − ρũj f̃ 2

)
+ 2fṠM − f 2ṠM .

(B.6)
Similar to the derivation of the transport equation for the non-filtered squared mix-
ture fraction described above, an equation for the squared filtered mixture fraction
can be derived. Starting from the exact transport equation for the filtered mixture
fraction given by Eq. (4.13), one obtains

∂(ρf̃ 2)
∂t

+ ∂(ρũj f̃
2)

∂xj

= ∂

∂xj

(
ρD∂f̃ 2

∂xj

)
− ρχ̌− 2f̃ ∂

∂xj

(
ρũjf − ρũj f̃

)
+ (2f̃ − f̃ 2)ṠM ,

(B.7)
where the scalar dissipation rate appears here as a function of filtered variables,

χ̌ = 2D ∂f̃

∂xj

∂f̃

∂xj

. (B.8)
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The balance equation for the subgrid-scale variance of mixture fraction is finally
obtained by subtracting Eq. (B.7) from Eq. (B.6), leading to

∂(ρfV )
∂t

+ ∂(ρũjfV )
∂xj

= ∂

∂xj

(
ρD∂fV

∂xj

)
− ρ(χ̃− χ̌)︸ ︷︷ ︸

(1)

− ∂

∂xj

(
ρũjf 2 − ρũj f̃ 2

)
︸ ︷︷ ︸

(2)

+ 2f̃ ∂

∂xj

(
ρũjf − ρũj f̃

)
︸ ︷︷ ︸

(3)

+ 2
(
fṠM − f̃ ṠM

)
︸ ︷︷ ︸

(4)

−
(
f 2ṠM − f̃ 2ṠM

)
︸ ︷︷ ︸

(5)

. (B.9)

This equation describes the temporal change of the subgrid-scale mixture fraction
variance due to the effects of resolved convection and molecular diffusion, dissipation
and production, subgrid-scale turbulent fluxes, and evaporation sources. There are
five unclosed terms in Eq. (B.9) denoted as (1) to (5), which require modeling. The
evaporation sources, terms (4) and (5), appear with both positive and negative sign
and thus lead to variance production and destruction. Typically, term (5) has a
smaller absolute value than term (4) and can often be neglected [147]. Accordingly,
evaporation generally leads to an increase of the subgrid-scale variance.

If the filter operator is replaced by an averaging operator in a homogeneous
system, where the mean gradients vanish, the variance equation reduces to

∂(ρfV )
∂t

= −ρχ̃+ 2
(
fṠM − f̃ ṠM

)
−
(
f 2ṠM − f̃ 2ṠM

)
. (B.10)

This equation clearly shows the destruction and generation of variance due to the
mechanisms of scalar dissipation and evaporation, respectively. Note that this equa-
tion is often approximately fulfilled also in inhomogeneous systems, since the scalar
dissipation term and the evaporation source terms are typically the dominant terms
in the variance equation.

B.2.2 Modeled Form

The subgrid-scale turbulent fluxes, terms (2) and (3), are closed by the classical
gradient diffusion model using a turbulent diffusivity [98],

− ∂

∂xj

(
ρũjf 2 − ρũj f̃ 2

)
= ∂

∂xj

ρDt
∂f̃ 2

∂xj

 , (B.11)

and

2f̃ ∂

∂xj

(
ρũjf − ρũj f̃

)
= −2f̃ ∂

∂xj

(
ρDt

∂f̃

∂xj

)
= − ∂

∂xj

(
ρDt

∂f̃ 2

∂xj

)
+ 2ρDt

∂f̃

∂xj

∂f̃

∂xj

,

(B.12)
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where Eq. (B.3c) was used to reformulate the resolved diffusion term. By insert-
ing these models into the balance equation for the subgrid-scale mixture fraction
variance, Eq. (B.9), the following modeled balance equation is obtained,

∂(ρfV )
∂t

+ ∂(ρũjfV )
∂xj

= ∂

∂xj

(
ρ(D + Dt)

∂fV

∂xj

)

− ρχ̃+ 2ρ(D + Dt)
∂f̃

∂xj

∂f̃

∂xj

+ 2
(
fṠM − f̃ ṠM

)
−
(
f 2ṠM − f̃ 2ṠM

)
. (B.13)

The remaining terms that need modeling are the filtered scalar dissipation rate χ̃ and
the evaporation source terms. The common model for the filtered scalar dissipation
rate that is given by Eq. (4.48) cannot be used for closure of the variance equation, as
it is based on local equilibrium between dissipation and production (in the absence of
evaporation sources), and thus the variance equation would reduce to a convection-
diffusion equation in which the subgrid-scale variance is conserved. Instead, the
filtered scalar dissipation rate is often modeled in terms of a characteristic mixing
time scale that is assumed to be proportional to the characteristic turbulent time
scale, as proposed by Jiménez et al. [98]. The modeling of the evaporation source
terms is discussed in Pera et al. [147], where an algebraic model for term (4) in
Eq. (B.9) is derived using dimensional arguments, while term (5) is neglected.

B.3 Some Remarks on the Numerical Evaluation

Care must be taken when analyzing the magnitude of the terms in the variance
equation, e.g., by using post-filtered DNS data. The final form of the variance
equation is based on reformulations of the spatial derivatives as given by Eqs. (B.3b)
and (B.3c), which require a smooth and differentiable mixture fraction field to be
valid. In Euler-Lagrange simulations of dilute sprays, the two-way coupling between
the liquid droplets and the gas phase typically produces discrete source terms leading
to large gradients at the droplet positions, which can cause numerical inaccuracies in
the evaluation of the spatial derivatives. As a result, the derived variance equation,
Eq. (B.9), may not be fulfilled by the numerical method.

To demonstrate the possible inconsistency of the variance equation if the terms
are evaluated using numerical data, a simplified mixture fraction equation is con-
sidered, neglecting the effect of convection and assuming a constant density and
diffusion coefficient,

∂f

∂t
= D∂2f

∂x2
j

+ Ṡ, (B.14)
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where Ṡ = ṠM/ρ is the evaporation source term. Multiplication of the equation by
2f gives the equation for the squared mixture fraction,

∂f 2

∂t
= 2Df ∂

2f

∂x2
j

+ 2fṠ. (B.15)

Note that the reformulation of the diffusion term according to Eq. (B.3c) is not
yet applied. The corresponding balance equation for the mixture fraction variance,
fV = f 2 − f

2, then takes the form

∂fV

∂t
= 2Df ∂

2f

∂x2
j

− 2Df ∂
2f

∂x2
j

+ S+, (B.16)

where the term S+ is used for the evaporation source to indicate that it has a
positive sign,

S+ = 2
(
fṠ − fṠ

)
. (B.17)

Note that the second evaporation source, term (5) in Eq. (B.9), which has a negative
sign, does not appear here because density is assumed to be constant and convection
is neglected, eliminating the need for the continuity equation. By applying the
reformulation of the diffusion term given by Eq. (B.3c), the usual form of the variance
equation is obtained,

∂fV

∂t
= D∂2fV

∂x2
j

− 2D ∂f

∂xj

∂f

∂xj

+ 2D ∂f

∂xj

∂f

∂xj

+ S+. (B.18)

Note that both variance equations, Eqs. (B.16) and (B.18) are mathematically equiv-
alent, but their numerical evaluation may be different, as will be shown shortly. To
further simplify the problem, a homogeneous system is considered, where the mean
gradients vanish. This yields the following equivalent equations for the mixture
fraction variance,

dfV

dt = −χ∗ + S+, χ∗ = −2Df ∂
2f

∂x2
j

, (B.19a)

dfV

dt = −χ+ S+, χ = 2D ∂f

∂xj

∂f

∂xj

. (B.19b)

Figure B.1 compares the magnitude of the terms on the right-hand side of the two
variance equations with the time derivative of the mixture fraction variance based on
a cubic domain filled with evaporating droplets and utilizing the particle-source-in-
cell approach (cf. Sec. 3.2.4). First, the case is considered where the evaporated mass
is transferred to the cell that contains the droplet, which results in discrete source
terms that are non-zero only at the droplet positions. As shown in Fig. B.1(a), the
usual form of the variance equation, Eq. (B.19b), produces an inconsistency between
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the right-hand side of the equation and the time derivative of the variance. This
is because the mixture fraction field is non-smooth due to discrete source terms,
and therefore the reformulation of the diffusion term is not valid. In contrast,
the evaluation of the right-hand side of the original form of the variance equation,
Eq. (B.19a), coincides with the time derivative of the variance. If the source terms
are distributed to a larger volume around each droplet in a way to produce a smooth
mixture fraction field (see Sec. 5.3.3 for details), the right-hand side and the left-
hand side of both variance equations agree, as shown in Fig. B.1(b). Although the
exact form of the mixture fraction variance equation is often not fulfilled by the
numerical method due to the occurrence of non-smooth source terms, it can still be
used to study the different mechanisms of variance production and dissipation.
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Figure B.1: Proof of validation of the variance equation based on evaporating droplets in a
cubic domain (closed system) considering only mass transfer. The nominal droplet distance is
∆L/d0 = 20, and the cell size is ∆x/d0 = 2. Droplets evaporate according to the volume-averaged
mixture fraction of the gas phase, and the evaporated mass is either transferred to the cell that
contains the droplet (a) or distributed over a larger volume to create smooth fields (b).



Appendix C

Inter-Particle Distances: Direct
Search vs. k-d Tree Algorithm

C.1 Description of the Problem

The estimation of appropriate mixing and coupling parameters for the two-phase
MMC-LES model requires knowledge of the expected mean distances between the
stochastic particles and the droplets, which result from the minimization of the ef-
fective square distances (cf. Eqs. (4.51) and (4.60)). In Sec. 4.4.2, the isoscalar sliver
relation was presented, which provides a relation between the mixing distances rm

and fm in physical and reference space, respectively. However, it does not con-
tain information about the absolute values of the mixing parameters as well as the
numerical algorithm used to find the nearest neighbors. Furthermore, there is no
such relationship for estimating the two-phase coupling parameters. Therefore, the
following questions arise, which will be clarified in the present chapter:

(1) What is the average mutual distance between randomly distributed particles
that results from the use of a direct search method?

(2) What is the average mutual distance between randomly distributed particles
that results from the use of the k-d tree algorithm (as used in MMC)?

(3) What is the average distance between two independent particle clouds (as re-
quired for two-phase coupling between the droplets and the notional particles)?

To answer these questions, a random distribution of particles in a multidimensional
space is considered, with ν = {1, 2, 3, ...} denoting the dimension of the space.
Note that dimensions higher than three can be associated with the MMC reference
variables that are used for the particle selection in addition to the three-dimensional
physical space. A key quantity to characterize the particle distribution is the particle
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number density, which specifies the number of particles per unit volume,

n = N

V
, (C.1)

where N is the number of particles and V = Lν is the volume occupied by the
particles with L being the length of the domain in each dimension. From the particle
number density the nominal particle distance is derived,

∆L = n−1/ν =
(
V

N

)1/ν

, (C.2)

which represents the distance between the particles in a regular arrangement. Since
the particles have random positions, the nominal particle distance does not reflect
the real distances between the particles, but serves as a reference length. The
distance between a particle p and its nearest neighbor q is denoted as dp,q, and by
taking the average over all particle pairs the mean inter-particle distance ⟨dp,q⟩ is
obtained. A closed-form expression for the mean inter-particle distance of randomly
distributed particles exists, which is given by [23, 81]

⟨dp,q⟩
∆L

= 1√
π

[
Γ
(
ν

2 + 1
)]1/ν

Γ
(

1 + 1
ν

)
, (C.3)

where Γ denotes the gamma function. The corresponding values for dimensions
ν = 1 to ν = 5 are reported in Tab. C.1. It can be seen that the ratio ⟨dp,q⟩ /∆L

increases with increasing dimension, but is smaller than one for practical cases
(ν ≤ 14).

When solving the nearest neighbor search problem with a computer code, the
simplest solution is to calculate for each point the distance to every other point and
keep the minimum distance found. This algorithm, which is referred to as direct
search, reproduces the analytical solution given by Eq. (C.3). However, it is not
suitable for high particle numbers, as the computing time increases quadratically
with the particle number.

C.2 The k-d Tree Algorithm

C.2.1 Properties of the k-d Tree Algorithm

The MMC mixing model uses an approximate nearest neighbor search method [31]
based on the k-d tree [57] to minimize the effective square distance between the
stochastic particles, which is referred to as k-d tree algorithm in the present work.
As illustrated in Fig. C.1, the k-d tree algorithm differs from a direct search by the
following properties:
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Particles are grouped in unique pairs, which is desirable for pairwise mixing, in an
attempt to minimize the mean inter-particle distance (in MMC this is the effective
square distance), whereas a direct search can lead to chain-like assignments. As
a result, not every particle can be paired with its nearest neighbor, such that the
mean inter-particle distance is larger compared to a direct search.
The algorithm features an approximately linear scaling of the computing time
with the number of particles and is therefore much more efficient than a direct
search, in particular for higher particle numbers.

C.2.2 How the Algorithm Works

The procedure of selecting particle pairs for mixing based on the k-d tree algorithm
is described in Cleary et al. [31]. The implementation in C++ makes use of pointers
and recursive function calls, and can be summarized as follows:

1. Calculate the scaled spans of each dimension. For the effective square distance
given by Eq. (4.51) the scaled spans are given by

lxi
= max(xsp

i ) − min(xsp
i )

ri

, lf = max(f sp) − min(f sp)
fm

, (C.4)

where f sp denotes the reference mixture fraction at the particle positions.
2. Sort the particles along the direction of the dimension that has the largest span.
3. Divide the sorted list of particles into two sections of equal size, where the

number of particles in at least one section must be divisible by two.

These steps are repeated for each section until the number of particles in each section
is equal to or lower than two.

Direct search k-d tree algorithm

(a) Nearest neighbors, connected by a line, in a 2D domain
obtained from direct search and the k-d tree algorithm.
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Figure C.1: Comparison of direct search and k-d tree algorithm for finding the nearest neighbors
in a random distribution of particles.
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C.2.3 Mean Inter-Particle Distances

In order to find the mean inter-particle distances obtained from the k-d tree algo-
rithm, a multidimensional space of dimension ν with length L = 1 per dimension is
considered and filled with N particles at random positions. The k-d tree algorithm
is then used to divide the set of particles into pairs minimizing the mutual distances.
For each pair the inter-particle distance dp,q is calculated and the average of all pairs,
⟨dp,q⟩, is taken. The results of the calculations with different numbers of particles
and dimensions are shown in Fig. C.2. For small numbers of particles (N ≲ 104),
there are larger fluctuations (±10 %), which decrease as the number of particles is
further increased. In contrast to the one-dimensional case, where the mean inter-
particle distance converges to a single value, there is no convergence in the higher
dimensions and the mean inter-particle distance shows a wave pattern as a function
of the number of particles. For each dimension investigated here, the average value
of the mean inter-particle distance is calculated using the results with N > 105.
The corresponding values are reported in Tab. C.1, where they are compared to
the results of the direct search method. It can be seen that the k-d tree algorithm
yields mean inter-particle distances close to the nominal particle distance and thus
larger than those obtained from a direct search. In a one-dimensional space the
mean inter-particle distance determined by the k-d tree algorithm is exactly equal
to the nominal particle distance, whereas it is slightly smaller in two- and three-
dimensional problems and slightly larger in higher dimensions. The trend that the
mean inter-particle distance increases with increasing dimension is the same as for
the direct search. By calculating the ratio of the respective mean inter-particle dis-
tances, one obtains a value that is almost constant and close to 5/3, except for the
one-dimensional case, where it is two.
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Figure C.2: Mean inter-particle distances obtained from the k-d tree algorithm, normalized by
the nominal particle distance and plotted versus the number of particles, for different dimensions
ν. The solid line marks the average value that is calculated using the results with N > 105.
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Table C.1: Mean inter-particle distances for different dimensions ν obtained from direct search
and k-d tree algorithm.

ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

⟨dp,q⟩ /∆L, direct search, Eq. (C.3) 0.5000 0.5000 0.5540 0.6081 0.6587
⟨dp,q⟩ /∆L, k-d tree algorithm 1.0000 0.8811 0.9372 1.0119 1.0896
Ratio k-d tree algorithm to direct search 2.00 1.76 1.69 1.66 1.65

C.3 Distances Between Two Particle Clouds

The two-phase coupling between the fuel droplets and the stochastic particles based
on a one-to-one coupling strategy involves the determination of minimum distances
between two independent particle clouds (cf. Sec. 4.5.3). In order to find appropri-
ate coupling parameters, knowledge of the expected distances between the droplets
and the notional particles is required. Therefore, the present investigation is ex-
tended by a second particle cloud, where only direct search will be considered in
the following. Both particle clouds occupy the same volume, but may have differ-
ent numbers of particles, denoted as N1 and N2. As illustrated in Fig. C.3, four
different inter-particle distances can be defined: dp,q

1,1 and dp,q
2,2 are the inter-particle

distances of cloud 1 and 2, respectively, considering only one cloud each (Figs. C.3(a)
and C.3(b)), dp,q

1,2 denotes the distance between a particle from cloud 1 and its near-
est neighbor in cloud 2 (Fig. C.3(c)), and dp,q

2,1 denotes the reverse case (Fig. C.3(d)).
The figure suggests that the average distance ⟨dp,q

1,2⟩ is comparable to ⟨dp,q
2,2⟩, and ⟨dp,q

2,1⟩
to ⟨dp,q

1,1⟩. This assumption is verified by comparing the PDFs of the aforementioned
inter-particle distances, as shown in Fig. C.4(a), and its validity is generalized by
numerical calculations with varying particle numbers N1 and N2 (cf. Fig. C.4(b))
and different dimensions (not shown). Consequently, the average distance between
a particle from cloud 1 and its nearest neighbor in cloud 2 is equivalent to the mean
inter-particle distance of cloud 2, and does not depend on the mean inter-particle
distance of cloud 1. The application of this finding to the MMC two-phase coupling
indicates that the distance between the droplets and the stochastic particles is in
principle the same as the inter-particle distance of the stochastic particles, and does
not depend on the number of droplets. However, as the two-phase coupling employs
a direct search while the MMC mixing pair selection utilizes the k-d tree algorithm,
the distances differ by a constant factor as given by Tab. C.1.



202 Inter-Particle Distances: Direct Search vs. k-d Tree Algorithm

(a) dp,q
1,1 (b) dp,q
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Figure C.3: Nearest neighbor search within and between two particle clouds (cloud 1 is marked
in gray, and cloud 2 in black) using direct search. The term dp,q

α,β denotes the distance of a particle
p in cloud α to its nearest neighbor q in cloud β.
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Figure C.4: Analysis of inter-particle distances within and between two particle clouds using
direct search in a three-dimensional domain with length L = 1.



Appendix D

Quasi-DNS Capabilities of
OpenFOAM for Reacting Flows

D.1 Background

OpenFOAM [75, 95, 227] is one of the most widely used open-source libraries for
computational fluid dynamics and offers a variety of well-established solvers for a
wide range of applications, including simple incompressible flows as well as complex
multiphase flows with turbulence and chemical reactions. Although OpenFOAM is
conceived for RANS and LES, its great flexibility also makes OpenFOAM attrac-
tive as a tool for the direct numerical simulation (DNS). A DNS generally requires
high-order (third order or higher [225]) schemes, whereas the ability of OpenFOAM
to handle arbitrary meshes limits its accuracy to second order. However, if sim-
ple configurations with structured meshes are considered, OpenFOAM provides a
higher-order interpolation scheme (referred to as cubic), which minimizes the nu-
merical dissipation, though without increasing the overall order. In this context,
the term quasi-DNS is often used, which refers to a model-free simulation that does
not fulfill the strict requirements of a DNS but is accurate enough [243]. Although
several studies have confirmed the quasi-DNS capabilities of OpenFOAM for both
non-reacting flows [3, 27, 110, 111, 116] and reacting flows [125, 217, 218, 222, 224,
238, 243], a detailed quantification of the numerical accuracy of OpenFOAM with
focus on turbulent reacting flows was not available until now [244].

The numerical accuracy and parallel performance of OpenFOAM and its react-
ing flow extension EBIdnsFoam [238] have recently been evaluated by Zirwes et al.
[244] using the benchmark suite of Abdelsamie et al. [1] and comparing OpenFOAM
with well-established high-fidelity DNS solvers. The purpose of the present chap-
ter is to provide complementary investigations that are not included in the paper,
whereby single studies are repeated to ensure completeness of the present chapter.
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The outline is as follows. First, the accuracy of OpenFOAM’s spatial discretization
schemes is evaluated using simple validation cases with analytical solutions. This is
followed by a detailed analysis of the operator splitting technique used to evaluate
the reaction rates in OpenFOAM. Finally, more complex benchmark cases involving
turbulence-like motion and combustion are presented, providing a direct comparison
between OpenFOAM and a high-order DNS solver.

D.2 Accuracy of OpenFOAM’s Discretization
Schemes

D.2.1 Overview and Properties of the Numerical Schemes

OpenFOAM employs an implicit solution of the governing equations based on the
finite volume method, where the partial differential equations are discretized in
their integral form to enforce conservation of mass, momentum and energy. Volume
integrals are converted to surface integrals using the divergence theorem, where
an interpolation scheme is required for the evaluation of the fluxes at the faces
of each computational cell. The interpolation schemes available in OpenFOAM
are summarized in Tab. D.1 along with their basic properties, and can be mainly
classified into the three groups of central schemes, upwind-based schemes and total
variation diminishing (TVD) schemes.

The central schemes are usually the most accurate schemes due to their low
dissipative error, but they can lead to stability problems, in particular if large gra-
dients occur. In addition to the linear interpolation, which is often the default
method, OpenFOAM provides a cubic interpolation scheme that makes use of ex-
plicitly calculated gradients in the adjacent cells (see Zirwes et al. [243, 244] for
implementation details).

Upwind-based schemes take the flow direction into account during interpolation
and thus have a higher stability compared to the central schemes especially for
strong convective flows, but they exhibit a larger dissipative and dispersive error.
OpenFOAM offers here the classical first-order upwind scheme and a second-order
accurate linearUpwind scheme, which applies an explicit correction to the first-
order upwind scheme based on the gradient in the upstream cell.

TVD schemes are designed to produce solutions that are free of oscillations,
which is achieved by introducing a flux limiter function to preserve monotonic-
ity, but they lead to a higher dissipative error and decrease to first-order accuracy
in regions of large gradients and at local extrema. In addition to the classical
flux limiter functions (vanLeer, Minmod, SuperBee, ...), OpenFOAM offers TVD-
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Table D.1: Surface interpolation schemes in OpenFOAM along with their strengths and weak-
nesses.

Central schemes Upwind-based schemes TVD schemes

linear, cubic upwind, linearUpwind limitedLinear, limitedCubic,
QUICK, MUSCL, vanLeer,
Minmod, SuperBee, ...

+⃝ Low dissipative error +⃝ Higher stability +⃝ Solution remains bounded
-⃝ Dispersive error -⃝ Dissipative error +⃝ No spurious oscillations
-⃝ Potential stability problems -⃝ Dispersive error +⃝ Low dispersive error

-⃝ Dissipative error
-⃝ Problems with local extrema

versions of the central interpolation schemes, which are known as limitedLinear
and limitedCubic. These schemes basically employ a linear and cubic interpola-
tion, respectively, but afterwards limit the interpolated value to satisfy the TVD
property.

An alternative to TVD schemes are weighted essentially non-oscillating (WENO)
schemes, which have been recently implemented in OpenFOAM [65, 126]. Gärtner
et al. [65] showed that the WENO scheme leads to improved results if the flow con-
tains discontinuities or if unstructured meshes are used, whereas the accuracy on
structured meshes, which are usually used for DNS, is not better than for the cen-
tral interpolation schemes. For this reason and because of the higher computational
cost, the WENO scheme is not considered in the present work.

Transient problems additionally require a discretization of the time derivative
term, where OpenFOAM offers the first-order Euler method, the Crank-Nisolson
method and a second-order multistep method referred to as backward method.
While the first-order Euler method generally provides higher stability, a second-
order discretization must be used for an accurate time-resolved simulation. It was
found that both the backward discretization and the Crank-Nicolson method gen-
erally produce similar results, and therefore the time discretization schemes will
not be examined here. For more details on the spatial and temporal discretization
schemes the reader is referred to the text books [55, 137, 214].

D.2.2 One-Dimensional Transport of a Sine Wave

The first validation case is the one-dimensional transport of a sine wave with con-
stant velocity and periodic boundaries, which involves only the solution of the trans-
port equation of a passive scalar. The domain size is set to L = 1 m with a velocity
of u = 1 m/s, and the initial field is given by f(x) = sin(κx) with wavenumber
κ = 2πm−1. The diffusivity is set to zero so that the convection term is the only
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Figure D.1: Numerical solution of the one-dimensional transport of a sine wave after one cycle
over the domain using different discretization schemes. The number of grid cells is Nx = 16 and
the Courant number is CFL = 0.1. The gray line denotes the exact solution.

spatial term that requires a discretization. The cell size is given by ∆x = L/Nx,
and a small time step is used in order to eliminate the error resulting from the time
discretization method. Simulations are run for one cycle over the domain using
the OpenFOAM solver scalarTransportFoam, with the exact solution given by the
initial field.

The numerical solutions that are obtained after one cycle over the domain
are shown in Fig. D.1 for different spatial discretization schemes. The linear
scheme has almost no dissipative error but shows a dispersive error, while the cubic
scheme minimizes both errors due to the use of a higher-order interpolation polyno-
mial (Fig. D.1(a)). The first-order upwind scheme is clearly too dissipative, which
makes it useless for practical problems (Fig. D.1(b)). In contrast, the second-order
linearUpwind scheme leads to quite good predictions but exhibits a slight dissi-
pative and dispersive error. The TVD schemes limitedLinear and limitedCubic
have a low dispersive error, but significantly flatten the local extrema, since the
limiter function reduces the solution there to first-order accuracy (Fig. D.1(c)).
The limitedCubic scheme is slightly less dissipative, but the differences to the
limitedLinear scheme are relatively small.

Figure D.2 shows the calculated L2 errors obtained from different grid resolu-
tions and discretization schemes. In Fig. D.2(a), the linear interpolation scheme
is compared with the cubic interpolation scheme. It can be seen that the cubic
scheme leads to smaller errors, but still shows a second-order convergence of the
error, although the interpolation has a formal order of four. This has generally two
reasons. First, the overall order of accuracy of the numerical solution is limited by
the second order of the face flux integration, which, however, is irrelevant in the
one-dimensional case. Second, the cubic scheme uses an interpolation polynomial
that is based on point values, whereas the finite-volume discretization is based on
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Figure D.2: L2 error obtained from the numerical solution of the one-dimensional transport of a
sine wave after one cycle over the domain using different discretization schemes and plotted versus
the cell size.

cell values. This inconsistency results in the discretization of the convection term
being only second-order accurate. It is possible to achieve a fourth-order discretiza-
tion of the convection term by modifying the coefficients for the cubic interpola-
tion scheme, but test have shown that in three-dimensional simulations involving a
pressure-velocity coupling the overall order is still two due to the aforementioned
reason, so no improvements are obtained. The results of the upwind-based schemes
are shown in Fig. D.2(b), where the simple upwind scheme reflects a first-order
accuracy, while the linearUpwind scheme shows a second-order convergence with
an accuracy comparable to the cubic scheme. Finally, Fig. D.2(c) shows the re-
sults of the TVD schemes, where the limitedLinear scheme is compared with the
limitedCubic scheme. Due to the effect of the limiter function, the order of accu-
racy is no longer two but takes a value between one and two (here 1.7) depending
on the smoothness of the solution.

D.2.3 Two-Dimensional Taylor-Green Vortex

The second validation case is an incompressible two-dimensional Taylor-Green vor-
tex at a Reynolds number of Re = 1600, which requires the coupled solution for
velocity and pressure while still featuring an analytical solution. The setup is de-
scribed in Abdelsamie et al. [1] and in Zirwes et al. [244] and is not repeated here.
Simulations are run for ten characteristic time scales with a Courant number of
CFL = 0.03 using the incompressible solver pimpleFoam. The L2 errors of the ve-
locity (x-component) are shown in Fig. D.3. Again, the upwind scheme shows a
first-order convergence of the error, while the limitedLinear scheme exhibits al-
most second-order accuracy. In contrast, the results obtained from the linear and
cubic schemes do not show a clear trend. For coarse to moderate meshes, both
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Figure D.3: L2 error of the velocity (x-component) obtained from the numerical solution of the
incompressible two-dimensional Taylor-Green vortex using different discretization schemes and
plotted versus the cell size.

schemes exhibit a convergence order of more than second order, while the cubic
scheme shows only a first-order convergence if the mesh is sufficiently fine. These
trends are attributable to the pressure-velocity coupling and the iterative solution of
the equation system, which also affects the convergence of the error. In fact, it was
found that the convergence behavior of the linear and cubic schemes depends not
only on the numerical parameters (e.g., time step width, matrix solver), but also on
the flow parameters (e.g., domain size, characteristic velocity, Reynolds number).
This sensitivity also explains the differences to the trends reported in Zirwes et al.
[244]. However, it can still be observed that the cubic scheme leads to overall much
smaller errors than obtained with the linear scheme and thus provides a more
accurate solution of the flow field.

D.3 Operator Splitting Technique for Evaluating
the Reaction Rates

D.3.1 Description of the Splitting Methods

In turbulent reacting flows, the characteristic chemical time scales are typically
orders of magnitude smaller than the characteristic time scales of the flow and
turbulence, which makes a coupled solution of the flow and chemistry with a direct
evaluation of the reaction rates infeasible. For this reason, an operator-splitting
technique is usually applied, which decouples the evaluation of the chemical reaction
rates from the solution of the flow equations, enabling the use of optimized numerical
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methods and time steps for each subproblem and thus reducing the computational
cost. However, the splitting approach also introduces an error, which often reduces
the numerical discretization to first-order accuracy.

The Classical Operator Splitting Methods

The discretized form of a scalar transport equation with a chemical source term is
represented here by the general ordinary differential equation (ODE) given by

dq
dt + F(q) = R(q), (D.1)

where q denotes the solution variable, F is the operator that results from the dis-
cretization of the spatial terms (i.e., the convection and diffusion terms), and R
denotes the chemical source term.

The application of the classical first-order operator-splitting method, sometimes
also known as “Godunov splitting” [118], to Eq. (D.1) is given by the sequential
solution of the following subproblems:

Substep 1: dq
dt = R(q), qn ∆t−−→ q∗, (D.2a)

Substep 2: dq
dt + F(q) = 0, q∗ ∆t−−→ qn+1. (D.2b)

Both subproblems are solved over one full time step using standard methods for
each subproblem (i.e., a stiff ODE solver in substep 1 and the finite volume method
in substep 2), where q∗ represents an intermediate solution. One can show that this
method is generally first-order accurate no matter how well each step is approxi-
mated, since the splitting method introduces an error proportional to the time step
if operators F and R do not commute [118].

A slight modification of the above splitting technique yields a second-order
accurate splitting method (provided that each subproblem is solved with a method
of at least second-order accuracy) [118]:

Substep 1: dq
dt = R(q), qn ∆t/2−−→ q∗, (D.3a)

Substep 2: dq
dt + F(q) = 0, q∗ ∆t−−→ q∗∗, (D.3b)

Substep 3: dq
dt = R(q), q∗∗ ∆t/2−−→ qn+1. (D.3c)

This method is called “Strang splitting” and is often the preferred splitting approach
due to its second-order accuracy for general problems. The order of solving the
individual subproblems is in principle arbitrary, but it is advantageous to solve
the flow equations only once in the second step, since the computational cost for
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evaluating the operator F , representing the spatial discretization of the transport
equations, is proportional to the number of grid points, whereas the time integration
of the chemical source term solely depends on the time interval (which is the same
if the integration is performed over two half time steps or one full time step). Note
that multistep methods, i.e., methods that use values of previous time steps such as
OpenFOAM’s backward method, cannot be used for these kind of splitting methods,
as different equations are solved in each substep. More details will be given later.

Another possibility to obtain higher-order splitting methods are iterative split-
ting methods, where the individual subproblems are solved sequentially and itera-
tively until a converged state is reached [71]. However, such an iterative procedure
is not practical in the context of chemically reacting flows due to the high compu-
tational cost of each subproblem.

Operator Splitting Technique in OpenFOAM

In OpenFOAM, a different splitting technique is used to decouple the chemistry cal-
culation from the solution of the transport equations. The first substep is equivalent
to the classical first-order splitting method, solving the pure chemistry problem,

Substep 1: dq
dt = R(q), qn ∆t−−→ q∗. (D.4)

In the second substep, the full transport equation is solved, where the chemical
source term is approximated by its time-averaged value resulting from the solution
of the first substep,

Substep 2: dq
dt + F(q) = q∗ − qn

∆t , qn ∆t−−→ qn+1. (D.5)

Note that the initial value for substep 2 is given here by the value at the beginning
of the time step, in contrast to the classical splitting methods, which use the in-
termediate solution of the previous substep. As will be shown in the next section,
the splitting technique used by OpenFOAM is first-order accurate and allows to use
multistep methods for the discretization of the transport equation without compro-
mising consistency. In the special case that the implicit Euler method is used to
discretize substep 2, the method reproduces the classical first-order splitting method.

D.3.2 Detailed Analysis of the Splitting Methods

Model Equation and Numerical Discretization

To analyze the accuracy and consistency of the operator splitting methods using
different time discretization methods, a simplified model equation is considered with
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constant coefficients α and β,
dq
dt = αq + βq. (D.6)

The exact solution of this ODE after one time step is given by

qn+1 = qn exp((α + β)∆t), (D.7)

and the corresponding characteristic polynomial, expressed as a Taylor series, is
given by

P = qn+1

qn
= 1 + (α + β)∆t+ 1

2(α + β)2∆t2 + 1
6(α + β)3∆t3 + ... (D.8)

An operator splitting method treats the two terms on the right-hand side of Eq. (D.6)
separately, resulting in subproblems A and B, respectively. Subproblem A, which is
given by dq/dt = αq and which represents the solution of the transport equation,
is discretized by either the second-order trapezoidal rule,

qn+1 − qn

∆t = 1
2
(
αqn + αqn+1

)
, (D.9)

or a second-order implicit multistep method,

3qn+1 − 4qn + qn−1

2∆t = αqn+1. (D.10)

Both schemes are available in OpenFOAM and are referred to as CrankNicolson and
backward. For subproblem B, which is given by dq/dt = βq and which represents
the evaluation of the chemical reaction rates, the analytical solution is used, which
can be seen as a “perfect” ODE integration. Accordingly, the error of the numerical
solution results solely from the splitting method and the discretization of the first
subproblem.

Unsplit Method

If the full equation is solved without the use of an operator splitting method, the
discretization of Eq. (D.6) based on the trapezoidal rule results in the following
characteristic polynomial,

P = 2 + (α + β)∆t
2 − (α + β∆t) = 1 + (α+ β)∆t+ 1

2(α+ β)2∆t2 + 1
4(α+ β)3∆t3 + ... (D.11)

Using the multistep method, one obtains the following expression,

P =
2 +

√
1 + 2(α + β)∆t

3 − 2(α + β)∆t = 1 + (α + β)∆t+ 1
2(α + β)2∆t2 + 1

2(α + β)3∆t3 + ...,

(D.12)
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where the relations qn+1 = P 2qn−1 and qn = Pqn−1 have been used. By comparing
the characteristic polynomial of the numerical discretizations with the analytical
solution given by Eq. (D.8), one finds that the O(∆t) and O(∆t2) terms are repro-
duced correctly, making the discretizations second-order accurate.

Classical First-Order Splitting

Subproblem B (representing the chemistry evaluation) is solved first using an ana-
lytical integration over one full time step, which gives an intermediate value of

q∗ = qn exp(β∆t). (D.13)

Afterwards, subproblem A is solved using either the trapezoidal rule or the multistep
method. Combining the two substeps, the trapezoidal rule leads to

P = 2 + α∆t
2 − α∆t exp(β∆t) = 1 + (α + β)∆t+ 1

2(α + β)2∆t2

+ 1
12(3α3 + 6α2β + 6αβ2 + 2β3)∆t3 + ... (D.14)

For the present model equation with scalar coefficients, the method exhibits a
second-order accuracy, although it is first-order accurate for general problems due
to the splitting error [118]. Using the multistep method, one obtains the following
expression for the characteristic polynomial

P =
2 exp(β∆t) +

√
4 exp(2β∆t) − (3 − 2α∆t)
3 − 2α∆t

= 1 + (α + 2β)∆t+ 1
2(α2 − 2β2)∆t2 + ... (D.15)

In contrast to the trapezoidal rule, the multistep method does not lead to a consis-
tent discretization, which has a formal order of zero. This shows that discretizations
that use values from previous time steps cannot be used in combination with the
classical splitting methods, as different equations are solved in each substep.

Strang Splitting

The Strang splitting method consists of three steps, where the analytical integration
of subproblem B will be used in the second step. Utilizing the trapezoidal rule to
discretize subproblem A one finally obtains

P =
(

4 + α∆t
4 − α∆t

)
exp(β∆t)

= 1 + (α + β)∆t+ 1
2(α + β)2∆t+ 1

48(9α3 + 24α2β + 24αβ2 + 8β3)∆t3 + ...

(D.16)
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This discretization is second-order accurate, but since the third-order term is very
similar to the exact solution given by Eq. (D.8) it is to be expected that the nu-
merical error is small. Again, the multistep method does not lead to a consistent
discretization and is therefore not reported here.

OpenFOAM Splitting

Similar to the classical first-order splitting, subproblem B is solved first using an an-
alytical integration, which results in the expression given by Eq. (D.13). Afterwards,
the full equation is solved using an approximation for subproblem B,

dq
dt = αq + q∗ − qn

∆t . (D.17)

If the trapezoidal rule is used to discretize the equation, one finally finds

P = 2 exp(β∆t) + α∆t
2 − α∆t = 1 + (α + β)∆t+ 1

2(α2 + αβ + β2)∆t2

+ 1
12(3α3 + 3α2β + 3αβ2 + 2β3)∆t3 + ... (D.18)

The discretization is first-order accurate even for the linear problem, although the
error may be small as the second-order term is similar to the exact solution. Using
the multistep method, the characteristic polynomial takes the following form,

P =
(exp(β∆t) + 1) +

√
(exp(β∆t) + 1)2 − (3 − 2α∆t)
3 − 2α∆t

= 1 + (α + β)∆t+ 1
2α

2∆t2 + 1
6(3α3 + 6α2β + 9αβ2 + 4β3)∆t3 + ... (D.19)

In contrast to the classical splitting techniques, the multistep method leads here to
a consistent discretization, which is first-order accurate.

D.3.3 Validation

Linear ODE

The theoretical findings will now be validated by numerical calculations utilizing
the discretization and splitting methods discussed in the previous section. The
coefficients of the model equation, Eq. (D.6), are set to α = −1 and β = −0.5, and
the solution is calculated until a time of t = 1 with an initial value of q0 = 1.

The results are shown in Fig. D.4, showing the L2 error plotted versus the time
step. If the trapezoidal rule is used to discretize subproblem A (Fig. D.4(a)), both
the classical and the Strang splitting methods lead to a second-order convergence of
the error, whereas the OpenFOAM splitting technique shows a first-order accuracy,



214 Quasi-DNS Capabilities of OpenFOAM for Reacting Flows

10!3 10!2 10!1

"t

10!12

10!10

10!8

10!6

10!4

10!2

100

L
2

er
ro

r
O1

O2

Unsplit method
Classical splitting
Strang splitting
OpenFOAM splitting

(a) Trapezoidal rule (CrankNicolson).
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(b) Multistep method (backward).

Figure D.4: L2 error obtained from the numerical solution of the linear model equation, Eq. (D.6),
using different time discretization methods and operator splitting techniques.

which is in agreement with the theoretical findings. It is noticeable that the classical
splitting and the Strang splitting methods result in smaller errors than the unsplit
method, which can be attributed to the fact that the corresponding error term is
closer to the exact solution than that of the unsplit method. If the multistep method
is used for time discretization (Fig. D.4(b)), the classical splitting method exhibits
a constantly high error (zero-order accuracy), whereas the splitting technique of
OpenFOAM still shows a first-order convergence of the error.

One-Dimensional Diffusion Flame

While the linear ODE has allowed for an analytical proof of the accuracy and con-
sistency of the different splitting techniques, it does not exhibit a splitting error
and is therefore not suitable for an universal validation. For this reason, a more
complex text case based on a one-dimensional diffusion flame is now considered.
The chemically reacting system is described in Mitarai et al. [133, 134] and is gov-
erned by the mixture fraction and a normalized temperature. Here, only molecular
diffusion and chemical reactions are considered, with the diffusion coefficient set to
D = 0.01. The reaction parameters take the values that are reported in Mitarai
et al. [133, 134] (case r = 8), with the pre-exponential factor set to A = 7.5 · 104.
The physical domain has a length of L = 1 with periodic boundaries. Mixture
fraction is initialized using a smoothed top-hat profile (hyperbolic tangent profile)
such that fuel and oxidizer are initially in separated regions, and the temperature
is initially taken to be in chemical equilibrium. As time progresses, molecular dif-
fusion induces mixing of the fuel and the oxidizer, resulting in spatial propagation
of the flame. The mixture fraction and temperature equations are discretized by
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(b) Multistep method (backward).

Figure D.5: L2 error obtained from the numerical solution of the one-dimensional diffusion flame
using different time discretization methods and operator splitting techniques.

a finite difference method using Nx = 200 grid points in combination with either
the trapezoidal rule or the multistep method for time integration. The integration
of the chemical source term is performed using a stiff ODE solver. The reference
solution that is required to calculate the error is generated using a coupled solution
with a sufficiently small time step.

Figure D.5 shows the L2 error of the maximum temperature at time t = 1
as a function of the computational time step using different time discretization
methods and splitting techniques. If the trapezoidal rule is used for time integration
(Fig. D.5(a)), the Strang splitting is the only splitting method that exhibits a second-
order convergence with an accuracy comparable to the unsplit method. The classical
splitting method shows a first-order convergence, since the splitting error is not zero
here. The OpenFOAM splitting technique also exhibits a first-order convergence of
the error, with similar accuracy than the classical splitting method. If the multistep
method is used (Fig. D.5(b)), again only the splitting technique used by OpenFOAM
gives a consistent first-order discretization, whereas the classical splitting technique
exhibits a constantly large error.

D.3.4 Further Remarks

Besides the issue with multistep methods, there are further situations in which
an operator splitting technique must be used with caution. One example is the
calculation of steady-state solutions (e.g., flamelet curves) by employing a time-
marching method until a steady-state is reached. The steady state results from
a balance between two dynamic processes (e.g., diffusion and chemistry), which
are treated separately if an operator splitting method is used. This can cause
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oscillations around the correct solution and, in the worst case, prevent convergence.
Furthermore, the use of a splitting technique results in a dependence of the steady-
state solution on the computational time step even in the converged state. Often,
the size of the time step is chosen relatively large to enable faster convergence,
making the splitting error, which is directly proportional to the time step width
if a first-order splitting method is used, the dominant error and resulting in an
inaccurate solution.

Another example is the use of an operator splitting method in combination
with the PIMPLE loop for pressure-velocity coupling (cf. Fig. 4.4). Since chemistry
is handled separately from the solution of the flow field, the reaction rates must
be evaluated outside the PIMPLE loop to achieve a consistent discretization, and
must not be updated within the iterative pressure-velocity coupling. An evaluation
of the reaction rates outside the PIMPLE loop and thus once per time step is also
preferable since it reduces the computational cost.

D.4 Comparison With a High-Order DNS Solver

D.4.1 Description of the DNS Solver

A high-order finite difference solver was developed to provide a reference solution
when evaluating the quasi-DNS capabilities of OpenFOAM’s standard solvers. The
DNS solver employs a solution of the three-dimensional compressible Navier-Stokes
equations in their conservative form using a density-based fully explicit solution
procedure. Spatial derivatives are approximated by central finite differences of 8th-
order accuracy for all derivatives, and time integration is performed using an explicit
4-stage low-storage Runge-Kutta method [100]. While the lack of dissipation of cen-
tral differences is desirable for the accuracy of turbulent simulations, these schemes
are not stable for an explicit time integration method without some form of damping,
since the nonlinear terms in the Navier-Stokes equations generate higher harmonics
that cause instabilities. To ensure a stable solution without affecting the resolved
flow field, a compact 8th-order filter [59] is applied to the conserved variables at the
end of each time step in order to remove the unresolved high-wavenumber structures.

The DNS solver is written in Fortran 90 and is parallelized using OpenMPI
and the concept of domain decomposition, where each process is assigned to one
subdomain. To reduce the excessive data communication that would result from the
iterative solution required by the compact filter formulation, the boundary points
of the subdomains are treated in an explicit way, which allows all subdomains to be
solved simultaneously and independently once the data has been exchanged at the
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beginning of the filter substep.
Two versions of the DNS solver exist, one for non-reacting flows and one for

reacting flows. The non-reacting flow solver solves the compressible Navier-Stokes
equations assuming a calorically perfect gas with constant heat capacities and trans-
port properties. The reacting flow solver employs the solution of additional trans-
port equations for the species mass fractions, as described in Sec. 3.1, and involves
the calculation of the chemical reaction rates based on a fully coupled approach.
A single-step reaction equation with five species is used, and all thermophysical
properties are assumed to be constant assuming unity Lewis numbers.

D.4.2 Non-Reacting Flows

A three-dimensional Taylor-Green vortex is considered, which represents a canon-
ical test case to study vortex dynamics, the decay of turbulence and the energy
dissipation process [42, 225]. It is characterized by a simple setup with well-defined
initial conditions while featuring several effects of real turbulent flows, making it to
an excellent benchmark case for the evaluation of numerical discretization schemes.
The computational domain is a cubic box with size −πL ≤ {x, y, z} ≤ πL, where
all boundaries are periodic. The initial velocity field is given by

u(x, y, z) = U0 sin
(
x

L

)
cos
(
y

L

)
cos
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)
, (D.20)
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w(x, y, z) = 0, (D.22)

and the pressure is initialized according to

p(x, y, z) = p0 + ρ0U
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. (D.23)

The initial temperature field is assumed to be constant and the density is calculated
using the equation of state. The gas constant is set to R = 300 J/kgK and the
heat capacity is cp = 1000 J/kgK. The reference temperature and pressure are
given by T0 = 300 K and p0 = 105 Pa, respectively, and the dynamic viscosity is
µ = 1.8 · 10−5 kg/ms with a Prandtl number of Pr = 0.7. The characteristic length
is set to L = 7.2 · 10−4 m and the characteristic velocity is U0 = 36 m/s, leading to
a characteristic flow time scale of tc = L/U0 = 2 · 10−5 s. The Reynolds number
is Re = ρ0U0L/µ = 1600, which is a typical value for this benchmark, and the
Mach number is M0 = 0.1 so that the flow can be assumed to be incompressible.
Simulations are performed up to a time of t = 20 tc.
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When dealing with the Taylor-Green vortex benchmark case, primary interest
is on the kinetic energy dissipation rate. The volume-averaged kinetic energy within
the domain is given by

⟨Ek⟩ = 1
ρ0V

∫
V

ρ

2∥u∥2dV, (D.24)

and the dissipation rate of kinetic energy is obtained by calculating the time deriva-
tive of the volume-averaged kinetic energy,

ε(Ek) = −d⟨Ek⟩
dt . (D.25)

For incompressible flows, it can be shown that the kinetic energy dissipation rate is
related to the volume-averaged enstrophy ⟨ς⟩,

ε(ς) = 2µ
ρ0

⟨ς⟩, ⟨ς⟩ = 1
ρ0V

∫
V

ρ

2∥ω∥2dV, (D.26)

with ω denoting the vorticity. For compressible flows, there is an additional pressure
dilatation-based dissipation rate, which, however, is negligible for flows at low Mach
numbers [42]. Theoretically, Eqs. (D.25) and (D.26) should give identical results,
but in practice they will differ due to the effect of the numerical dissipation. While
the total dissipation rate given by Eq. (D.25) is a result of both the physical and
the numerical dissipation, the enstrophy-based dissipation rate given by Eq. (D.26)
only includes the physical dissipation based on the resolved velocity field. Accord-
ingly, the comparison of both quantities provides an estimation of the dissipation
introduced by the numerical method.

The OpenFOAM simulations are performed using the incompressible solver
pimpleFoam, and the results are compared with the high-order DNS solver and with
a reference solution that is generated by a de-aliased pseudo-spectral code on a
5123 grid [225]. Different grid resolutions with 643, 1283, 2563 and 5123 grid cells
are considered, where for the OpenFOAM simulations either the linear or cubic
interpolation scheme is used in combination with a backward time discretization.

Figure D.6 shows the time evolution of the flow field obtained from the high-
order DNS solver on the finest mesh, which is visualized using iso-surfaces of the
vorticity that are colored by the velocity magnitude. Starting with the initial field,
the large and well-shaped vortices begin to evolve and roll up. With advancing
time, the smooth vortical structures become smaller and change their structure. At
t/tc ≈ 9, the coherent structures break down and the flow becomes more irregular,
exhibiting a pseudo-turbulent behavior. Beyond this point, the dissipation causes
the structures to slowly decay until the flow comes to rest.

The time evolution of the volume-averaged kinetic energy that is obtained from
the OpenFOAM simulations and the high-order DNS solver is shown in Fig. D.7 for
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(a) t/tc = 0. (b) t/tc = 3. (c) t/tc = 5. (d) t/tc = 7.

(e) t/tc = 9. (f) t/tc = 11. (g) t/tc = 15. (h) t/tc = 20.

Figure D.6: Time evolution of the flow field of the three-dimensional Taylor-Green vortex,
visualized by iso-surfaces of the z-component of vorticity colored by the velocity magnitude.

different grid resolutions and compared to the reference solution provided by the
pseudo-spectral code. Overall there is quite good agreement, and only the linear
scheme on the coarsest mesh shows larger deviations. A closer look at 5 ≲ t/tc ≲ 10
reveals that the coarser the mesh, the less kinetic energy is contained due to an
increased numerical dissipation. The accurate prediction of the time history of the
kinetic energy implies that the directly calculated dissipation rate, Eq. (D.25), is
also adequately reproduced (not shown). In contrast, the enstrophy-based dissipa-
tion rate given by Eq. (D.26) and shown in Fig. D.8, which is associated with the
resolved dissipation, shows qualitative differences between the different discretiza-
tion schemes and grid resolutions. In general, it can be observed that for coarse
grids the predicted dissipation rate is too low but converges to the reference solu-
tion as the grid is refined. This indicates that the turbulent structures are not fully
resolved on coarse to moderate meshes, with numerical dissipation contributing sub-
stantially to the total dissipation. While the OpenFOAM simulations utilizing the
linear interpolation scheme do not match the reference solution even at the highest
grid resolution (Fig. D.8(a)), the cubic scheme leads to very good results already
at a grid resolution of 2563 and provides excellent agreement on the finest mesh
(Fig. D.8(b)). A direct comparison reveals that the linear scheme requires about
twice the grid resolution to achieve an accuracy comparable to the cubic scheme.
The results obtained from the high-order DNS solver are shown in Fig. D.8(c) for
comparison. It is remarkable that, despite the considerably higher discretization
order, a similar accuracy to the cubic scheme is achieved, which is also reported
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Figure D.7: Time evolution of the volume-averaged kinetic energy obtained from OpenFOAM
and the high-order DNS solver using different grid resolutions. The reference solution is given by
a pseudo-spectral code on a 5123 grid [225].
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(c) High-order DNS solver.

Figure D.8: Time evolution of the enstrophy-based dissipation rate obtained from OpenFOAM
and the high-order DNS solver using different grid resolutions. The reference solution is given by
a pseudo-spectral code on a 5123 grid [225].

in Zirwes et al. [244] by comparison with a different high-order DNS solver. In the
present DNS solver, the numerical dissipation can be directly related to the spatial
filter, which selectively adds dissipation to damp the high-wavenumber structures.
As the mesh is refined, more and more structures are resolved by the mesh and the
effect of the filter decreases, reducing the numerical dissipation. In OpenFOAM, no
spatial filter is required, as the implicit solution procedure introduces the desired
amount of numerical dissipation required to stabilize the simulation.

Figure D.9 shows instantaneous contour lines of the normalized vorticity mag-
nitude predicted by OpenFOAM and compared to the reference solution. There is a
reasonable agreement for the 2563 mesh, but the structures are jagged and not well
defined. If the mesh is refined, the structures become smoother and more defined
and converge to the reference solution. While the linear scheme still shows minor
deviations on the 5123 mesh, the cubic scheme leads to excellent agreement with
the reference solution, which is consistent with the trends reported in Fig. D.8.
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2563 5123

(a) OpenFOAM, linear scheme.

2563 5123

(b) OpenFOAM, cubic scheme.

Figure D.9: Contour lines of the normalized vorticity magnitude ∥ω∥tc = {1, 5, 10, 20, 30} on the
y-z plane through x/L = −π in the region 0 ≤ y/L ≤ π

2 and π
2 ≤ z/L ≤ 4π

5 at time t/tc = 8.
Black lines denote the OpenFOAM results, and the thick gray line marks the reference solution
given by the pseudo-spectral code on a 5123 grid [225].

The ability of OpenFOAM to resolve the entire range of turbulent structures is
evaluated by looking at the kinetic energy spectra, which are shown in Fig. D.10 for
a grid resolution of 2563. At time t/tc = 10 (Fig. D.10(a)), the energy in the smallest
scales is maximum, whereas at later times (Fig. D.10(b)) the energy decays for all
wavenumbers [42]. Overall, there is very good agreement of the OpenFOAM results
with the reference solution in the entire range of wavenumbers. Slight differences
between the results can be observed at the highest wavenumbers, which are asso-
ciated with the smallest structures of the flow. Here, the linear scheme provides
excellent agreement with the reference solution up to the maximum wavenumber
resolved by the numerical grid, whereas the cubic scheme slightly overestimates the
kinetic energy of the highest wavenumbers due to its low dissipation. In contrast,
the high-order DNS solver increasingly dampens the highest wavenumbers due to
the effect of the spatial filter (here from about κ∆x ≳ 2, corresponding to κL ≳ 80),
which results in a slight deviation of the spectrum from the reference solution, but
at the same time produces smoother fields and thus increases the stability.

Having demonstrated that OpenFOAM can accurately reproduce the entire
range of wavenumbers in a turbulent flow, the question arises as to which cell size
is required for an accurate simulation. To this end, the Kolmogorov length scale
is calculated from the reference data and compared with the grid resolutions of
the respective simulations. As shown in Fig. D.11, the Kolmogorov length decreases
strongly at the beginning and reaches its minimum at t/tc ≈ 9, where the dissipation
rate is highest (cf. Fig. D.8), and then increases again as the flow decays. If the cubic
scheme is used, excellent agreement is achieved on the 5123 mesh (cf. Fig. D.8(b)),
corresponding to ∆x/ηmin ≈ 1. However, good predictions are also obtained at half
the grid resolution, resulting in ∆x/ηmin ≈ 2. This confirms that the usual criterion
of ∆x ≲ 2η [55] is also valid for OpenFOAM despite the lower discretization order.
However, if the linear scheme is used, the accuracy is reduced, and ∆x/ηmin ≲ 1
is required for an accurate simulation.
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Figure D.10: Kinetic energy spectrum Ek(κ) as a function of the wavenumber κ normalized
by the reference length L for a mesh resolution of 2563 at times t/tc = 10 and t/tc = 20. The
reference solution was generated with the DNS solver on the 5123 mesh. The dotted line marks
the maximum wavenumber resolved by the grid, which is given by κmax = π/∆x.
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Figure D.11: Temporal evolution of the Kolmogorov length for the three-dimensional Taylor-
Green vortex. The Kolmogorov length is calculated as η = (ν3/ε)1/4, where the dissipation rate ε
is given by the solution of the pseudo-spectral code on a 5123 grid [225] (cf. Fig. D.8).

D.4.3 Reacting Flows

The DNS of chemically reacting flows involving realistic chemistry requires an ac-
curate modeling of molecular transport coefficients in a multicomponent mixture as
well as a computationally efficient time integration of the chemical reaction rates.
The standard reacting solvers available in OpenFOAM often do not fulfill these re-
quirements and rely on additional modeling assumptions such as the assumption of
unity Schmidt or Lewis numbers, so that in general custom solvers that are coupled
with external chemistry libraries are required. Such a reacting flow extension is given
by the custom solver EBIdnsFoam [238], which couples OpenFOAM’s functionality
to solve partial differential equations with the open-source library Cantera [73] for
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calculating detailed thermophysical and transport properties, in combination with
an optimized computation of the chemical reaction rates. The accuracy and perfor-
mance of the reacting flow extension EBIdnsFoam is investigated in detail in Zirwes
et al. [244] based on the benchmark suite of Abdelsamie et al. [1], where the results
are compared with four well-established high-fidelity low-Mach combustion solvers.
For non-reacting conditions, excellent agreement is found between OpenFOAM and
the other solvers, while some discrepancies remain in the reacting case, which are
attributable to differences between low-Mach and compressible solvers and uncer-
tainties in the calculation of thermophysical properties. For this reason, the present
analysis further simplifies the validation benchmark of Abdelsamie et al. [1] in order
to eliminate the additional uncertainties and provides an unbiased comparison of two
compressible solvers, namely OpenFOAM’s standard reacting solver reactingFoam
and the reacting flow extension of the compressible high-order DNS solver intro-
duced in Appendix D.4.1. Since both solvers rely on exactly the same mathematical
equations, discrepancies between the results are directly attributable to the under-
lying numerical method.

A two-dimensional domain of size −πL ≤ {x, y} ≤ πL with characteristic
length L = 1 mm and periodic boundaries is considered. The velocity field is ini-
tialized using a Taylor-Green vortex solution,

u(x, y) = U0 sin
(
x

L

)
cos
(
y

L

)
, (D.27)

v(x, y) = −U0 cos
(
x

L

)
sin
(
y

L

)
, (D.28)

with characteristic velocity U0 = 10 m/s, resulting in a characteristic flow time scale
of tc = L/U0 = 10−4 s. The reacting scalars are initialized based on a mixture-
fraction-like variable given by

f(x, y) = 1
2 + 1

2 tanh
(
H/2 − |x|

δ

)
, (D.29)

which separates the initial gas field into an oxidizer and a fuel region. The width
and thickness of the fuel region are set to H = 1.5L and δ = 0.15H, respectively,
and the initial mass fraction fields are calculated according to

Yk(x, y) = Yk,Ox + (Yk,Fu − Yk,Ox)f(x, y), k = 1, ..., Ns, (D.30)

where Ns is the number of species. A single-step reaction equation with five species
is used [228], where the fuel is n-heptane. The conditions of the oxidizer and the
fuel stream are given by

Ox : YC7H16 = 0, YO2 = 0.25, YCO2 = 0, YH2O = 0, YN2 = 0.75.
Fu : YC7H16 = 0.2, YO2 = 0, YCO2 = 0, YH2O = 0, YN2 = 0.8.
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(a) Fuel mass fraction YF ∈ [0, 0.2] at times t/tc = {0, 1, 5, 10, 20} (from left to right).

(b) Temperature T ∈ [500 K, 2500 K] at times t/tc = {0, 1, 5, 10, 20} (from left to right).

Figure D.12: Visualization of the temporal evolution of the two-dimensional reacting Taylor-
Green vortex. The plots show contours of the fuel mass fraction and the temperature at different
times, and arrows indicate the flow field.

The temperature field is initialized by calculating the chemical equilibrium assuming
constant enthalpy and constant pressure and using the initial mass fraction fields
and a temperature and pressure of T = 300 K and p = 105 Pa, respectively. Note
that the initial mass fractions are not adjusted to chemical equilibrium to trigger
the ignition of the gas mixture. The specific heat is set to cp = 1500 J/kgK for
all species and the viscosity is µ = 1.8 · 10−5 kg/ms, assuming a constant Prandtl
number Pr = 0.7 and equal diffusion coefficients with Le = 1.

The OpenFOAM simulations are performed using the solver reactingFoam,
which employs a pressure-based solution and utilizes the operator splitting technique
for evaluating the chemical reaction rates as described in Appendix D.3.2. Note
that the solver is modified here to satisfy Pr = 0.7 (in its default version the solver
assumes Sc = Pr = 1). Unless otherwise stated, the cubic interpolation scheme is
used for spatial discretization while the corresponding TVD scheme limitedCubic
is employed for reactive scalars, in combination with the backward scheme for time
discretization. Simulations are performed using different grid resolutions up to a
time of t/tc = 20, where the time step is adjusted dynamically to ensure a maximum
Courant number of CFLmax = 0.3. The reference solution is generated on a 5122

mesh using the high-order finite difference solver as described in Appendix D.4.1,
which employs a fully explicit and coupled solution of the flow and the chemistry.

The time evolution of the reacting Taylor-Green vortex is visualized in Fig. D.12,
showing the instantaneous fuel mass fraction and temperature fields at different
times. The initially rectangular fuel layer is distorted by the flow field and pushed
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(b) No multivariate convection scheme.

Figure D.13: Time evolution of the maximum temperature in the domain for the reacting Taylor-
Green vortex. The plots show results obtained using different grid resolutions with and without
the multivariate convection scheme for the reactive scalars utilizing the limitedCubic scheme for
the reactive scalars.

outward, where it eventually moves with the vortices. During the transport process,
molecular diffusion causes the fuel to mix with the ambient air, resulting in ignition
and combustion in the gas mixture.

By default, OpenFOAM uses a multivariate convection scheme for the dis-
cretization of the species mass fraction equations and the energy equation, which
applies the same limiter to all reactive scalars using the strongest limiter. The time
history of the maximum temperature obtained with the multivariate convection
scheme is shown in Fig. D.13(a) for different grid resolutions. While the coarsest
grid resolution shows significant deviations from the reference solution, a refinement
of the grid resolution improves the agreement, but a very good match is not achieved
even with the finest grid considered here. Note that these trends are also observed
for non-reacting conditions (not shown). For this reason, simulations are repeated
but without the multivariate convection scheme, where each transport equation is
now discretized separately and independently. It should be noted that the multivari-
ate convection scheme is implemented directly in the application solver and cannot
be disabled by an entry in the input files, and disabling thus requires a modification
of the solver. As shown in Fig. D.13(b), the calculation of separate limiters for each
scalar leads to significant improvements of the results and to largely independence
from the grid. Even the coarsest grid resolution now gives good agreement with the
reference solution, and an excellent match is achieved on the 2562 and 5122 meshes.

Finally, the use of TVD schemes for the reactive scalars will be investigated.
Figure D.14 shows contour plots of fuel mass fraction and temperature at time t/tc =
5 obtained from different schemes used for the discretization of the scalar transport
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(a) limitedLinear. (b) linear. (c) limitedCubic. (d) cubic.

(e) limitedLinear. (f) linear. (g) limitedCubic. (h) cubic.

Figure D.14: Contour plots of fuel mass fraction (top) and temperature (bottom) in the region
0 ≤ {x, y} ≤ πL at time t/tc = 5 obtained from OpenFOAM using different interpolation schemes
for the reactive scalars (black lines) and compared to the reference solution (thick gray line).
The contour levels for the fuel mass fraction are YF = {0.05, 0.1, 0.15, 0.18, 0.19} and for the
temperature T = {600, 800, 1100, 1600, 2200, 2400}. The grid resolution is Nx × Ny = 100 × 100,
and no multivariate convection scheme is used.

equations. The grid resolution is set to Nx ×Ny = 100×100, which gives sufficiently
accurate results while still showing an effect of the numerical discretization. The
best accuracy is obtained when the cubic interpolation scheme is used for all terms
including the reacting scalars (Figs. D.14(d) and D.14(h)), but it also produces slight
instabilities if the fields are not well resolved. Although the cubic interpolation
scheme is not bounded, no unphysical values occur since the mass fractions are
limited to their physical range after solving the transport equations (however, the
artificial truncation may affect the calculation of the inert species). The use of the
TVD scheme limitedCubic for the reactive scalars gives similar results, but does not
produce spurious oscillations and is therefore preferable (Figs. D.14(c) and D.14(g)).
The linear and limitedLinear schemes exhibit essentially the same trends but are
less accurate and therefore show some larger deviations from the reference solution
for the present grid resolution. As the mesh is refined, the agreement is improved,
where already the 1282 grid leads to an almost perfect agreement with the reference
solution. For the 2562 and 5122 grid resolutions, there is no apparent difference in
the contour plots regardless of the discretization scheme.
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D.5 Conclusions

A detailed analysis of OpenFOAM’s quasi-DNS capabilities for turbulent reactive
flows using structured meshes with hexahedral cells was performed, focusing on low
Mach number flows as often encountered in combustion applications. The analysis
provides complementary investigations to the work of Zirwes et al. [244] and con-
tained three steps. First, simple validation cases with analytical solutions were con-
sidered to examine the accuracy and order of OpenFOAM’s discretization schemes.
Afterwards, a detailed analysis of the operator splitting technique used to evaluate
the reaction rates was presented. Finally, results of OpenFOAM’s standard solvers
were compared to a high-order DNS solver using more complex validation cases
involving turbulence and combustion. The following conclusions were made:

The cubic interpolation scheme offers the highest accuracy in OpenFOAM, which
is often comparable to that achieved with a high-order DNS solver, and should
therefore be used for DNS on structured meshes by default.
For bounded scalars, such as mixture fraction or mass fractions, the TVD scheme
limitedCubic is recommended, which employs a cubic interpolation but limits
the value afterwards to satisfy the TVD property. It was found that the scheme
does not contaminate the results and only slightly reduces the accuracy.
The overall formal order of accuracy of OpenFOAM is two, although the cubic
scheme employs an interpolation that is fourth-order accurate. In some cases, a
convergence order higher than two can occur due to the pressure-velocity coupling.
The central interpolation schemes (linear, cubic) provide an accurate solution
down to the smallest scales without damping of the highest wavenumbers.
For an accurate simulation, the cubic scheme requires a cell size of ∆x ≲ 2η,
which reflects the usual criteria, whereas the linear scheme requires ∆x ≲ η.
The DNS of chemically reacting flows usually requires a modification of the stan-
dard solvers to account for proper species transport. The use of the multivariate
convection scheme for scalars is not recommended, as it introduces additional
dissipation and leads to a stronger grid dependence.
The operator splitting technique used in OpenFOAM to evaluate the reaction
rates was shown to be first-order accurate and fully compatible with the backward
time discretization. The calculation of the reaction rates should be done once
before the PIMPLE loop is entered, and not within the iterative solution.
Provided the initial conditions and thermophysical models are exactly known,
OpenFOAM can lead to excellent agreement with high-fidelity solvers for both
non-reacting and reacting conditions.

In summary, following these guidelines, OpenFOAM is well suited to be used as a
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tool for the DNS of non-reacting and reacting flows at low Mach numbers and using
hexahedral cells. For the cases investigated here, the lower discretization order of
OpenFOAM was not a significant constraint, leaving the mesh resolution require-
ments equivalent to those of a high-order DNS solver. It should be noted that other
situations than those considered here, such as simulations on unstructured meshes
or simulations of flows involving discontinuities (e.g., multiphase flows or transonic
flows), do not allow the use of the cubic interpolation scheme and thus require
further extensions to perform DNS. Here, the recently developed WENO library
for OpenFOAM [65, 126] could provide the required higher-order alternative to the
cubic interpolation scheme. Finally, there are situations in which a high-order dis-
cretization is strictly required, such as the transport of vortices over large distances
(e.g., computational aeroacoustics), where the mesh resolution requirement for a
second-order method makes the simulation too expensive [225].
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Supplementary Material to
Chapter 5

E.1 Discretization of the Spherically Symmetric
Gas-Phase Equations

For the case of quiescent environments, the gas-phase equations are solved in their
one-dimensional spherically symmetric formulation. In order to be able to accurately
represent numerical errors of real CFD in the analysis, the cell that contains the
droplet is treated as a cube of length ∆x, while the surrounding cells are assumed to
be spherical, as illustrated in Fig. E.1. The importance of the correct treatment of
the cell containing the droplet is demonstrated in Fig. E.2, which compares results
obtained from a fully three-dimensional Cartesian solution (which would be the
standard approach in CFD) with results that are obtained from one-dimensional
solutions in a spherical coordinate system. Both, spheres with the same volume
(dotted line) and spheres with the same surface area (dashed line) as the Cartesian
cell, can lead to significant deviations of the fuel mass fraction in the cell containing
the droplet (Fig. E.2(a)), and thus the evaporation time (including the associated
error) is notably different (Fig. E.2(b)). In contrast, if the droplet cell is treated as
a cube (solid line), the one-dimensional solution leads to results very similar to the
Cartesian solution.

The discretized form of the gas-phase equations is obtained by performing a
volume integration over the computational cell and applying Gauss’s theorem to
convert volume integrals into surface integrals. Using the equation for the fuel mass
fraction given by Eq. (5.11) as an example, the discretized equation for the inner
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Figure E.1: Sketch of the numerical grid for the one-dimensional solution of the spherically
symmetric problem (quiescent environments) with Cartesian treatment of the droplet cell. The
gray dot denotes the evaporating droplet, which is placed in the origin, while cell centers are
marked by black dots and cell faces by crosses.

grid cells in a spherically symmetric coordinate system is expressed as

d(ρYF )i

dt = − 1
Vcell,i

[
Fi+ 1

2
Si+ 1

2
− Fi− 1

2
Si− 1

2

]
, i = 2, ..., N − 1, (E.1)

where Vcell,i is the volume of the cell, Si± 1
2

denotes the surface area of the cell faces,
and Fi± 1

2
is the face flux, which is given by

Fi± 1
2

=
[
ρurYF − ρDF

dYF

dr

]
i± 1

2

, (E.2)

with ur being the radial velocity obtained from the continuity equation. Note that
the equation for the inner grid cells does not contain a source term, since these
cells do not contain any droplets. Quantities at the cell faces, denoted as i ± 1

2 ,
are obtained by linear interpolation, and the gradient is approximated using central
differences of second-order accuracy. For the cell that contains the droplet, the
discretized equation becomes

d(ρYF )i

dt = − 1
Vcell,i

Fi+ 1
2
Si+ 1

2
+ ṠM , i = 1. (E.3)

Note that this formulation is also valid if the cell that contains the droplet is assumed
to be a cube of length ∆x, as shown in Fig. E.1, since the approximation of the
surface integral using the midpoint rule reduces the summation of three-dimensional
surface fluxes to a one-dimensional flux in radial direction. The volume and surface
area of the cubic cell are given by Vcell = ∆x3 and S = 6∆x2, respectively. If the cell
is treated as a sphere with radius ∆r/2, the corresponding values are Vcell = π

6 ∆r3

and S = π∆r2. The boundary condition at r → ∞ is realized by applying an
exponential grid stretching and using a fixed-value boundary condition.
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(a) Fuel mass fraction in the droplet cell.

0 0.5 1 1.5 2 2.5

t==evap;ref

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d
=d

0
)2

3D, Cartesian
1D, sphere, V = "x3

1D, sphere, S = 6"x2

1D, cube

(b) Squared droplet diameter.

Figure E.2: Comparison of the three-dimensional Cartesian solution with one-dimensional solu-
tions in a spherical coordinate system using different treatments of the cell containing the droplet.
The plots show the time evolution of (a) fuel mass fraction in the cell containing the droplet and
(b) squared droplet diameter for a ratio of ∆x/d0 = 1.

E.2 Impact of the Evaporation Model on the
Error Analysis

To study the dependence of the error analysis on the specific form of the evaporation
model, calculations are repeated using representative evaporation models from a list
presented in Miller et al. [132]. These models include non-equilibrium effects and
a non-uniform droplet temperature, and the reader is referred to that reference for
further details. Results are presented here for the case of transient droplet evapo-
ration with heat and mass transfer, as this is the most relevant case for practical
spray calculations and implicitly includes the relations obtained from steady-state
solutions. Figure E.3 shows that the actual form of the evaporation model has only
a very moderate influence on the error, and the general trends are still valid. The
simplest model that does not involve any heat transfer correction due to evapora-
tion (classical rapid mixing model, “M1”) leads to an increased scatter compared
to the other models. In contrast, the more advanced Langmuir-Knudsen models
that include non-equilibrium effects (“M7” and “M8”) and a non-uniform droplet
temperature (“M8”) yield very similar errors as the Abramzon and Sirignano model
that has been used in the present error analysis (cf. Fig. 5.7(c)). Therefore, it can be
concluded that the derived relationships are largely independent of the evaporation
model and respect all the essential physical effects that are captured by the different
forms of the models.
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(a) Classical rapid mixing
model (M1).
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(b) Langmuir-Knudsen (M7).
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(c) Langmuir-Knudsen with
non-uniform droplet tempera-
ture (M8).

Figure E.3: Comparison of predicted and calculated errors for transient droplet evaporation
with heat and mass transfer in quiescent environments using different evaporation models (fuel is
n-heptane). The model implementations and names are taken from Miller et al. [132]. For more
details on the legend see the caption of Fig. 5.7.

E.3 Modified Relations for Node-Wise Source
Term Distribution

If a finite difference method is used where the flow variables are stored at grid points
instead of grid cells, the source terms are distributed to the surrounding grid points
using the same geometrical weighting factors as used for interpolation of the ambient
conditions [168]. As a consequence, the error can be smaller, since the effective cell
volume for the droplet is increased. This is illustrated in Fig. E.4, which shows
the relative error of the steady-state evaporation rate as a function of the droplet
position relative to the grid nodes. The maximum error is obtained if the droplet
coincides with one of the grid points, resulting in source terms being distributed
entirely to the corresponding node. In that special case, the derived relations can
be used without modification. With increasing distance between the droplet and the
grid nodes the error is reduced, as the source term is increasingly evenly distributed
among the neighboring grid points. In the following the case is considered in which
the droplet is located in the center between the grid points, and modified error
relations are presented, which then allows to predict the minimum and maximum
error.

The governing equations are solved in their three-dimensional form using a
finite difference method of second-order accuracy, and trilinear interpolation is used
to determine the geometrical weighting factors. All gas and droplet properties are
varied within a wide range of typical values, where the same ranges are used as
described in the main text. Assuming steady-state conditions, one finds that the
error of the evaporation rate is still governed by the known error relation, but with
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Figure E.4: Relative error of the steady-state evaporation rate as a function of the droplet
position relative to the surrounding grid nodes (black dots). The error is obtained from a finite-
difference solution of the three-dimensional equations with ∆x/d = 2 and is normalized by the
maximum error that occurs for droplets coinciding with the grid nodes.

the actual cell size being replaced by an effective cell size,

ϵṁ = min
[(

1 + 2
3

∆xeff

d

)−1

,

(
1 + 1

π

Pe∆xeff

Sh∗
∆xeff

d

)−1 ]
, (E.4)

with ∆xeff =
√

8∆x ≈ 2.8∆x. This prefactor results from the fact that the ge-
ometrical weighting factor of the source term (which is 1/8 if the source term is
distributed to the eight surrounding grid points) can equivalently also be included
in the surface integrals. For the case of transient droplet evaporation, the modified
version of the error relation is given by

ϵτ = min
(∆xeff

d0

)−1

, 0.6φ∗(2∆x), 2π
3

(
Pe∆xeff

Sh∗

)−1 (∆xeff

d0

)−1
 . (E.5)

The effective cell size is the same as in Eq. (E.4), with the exception of the relation
for the closed system, which must be evaluated using twice the cell size, which is
denoted by φ∗(2∆x). This is because the underlying equations do not contain any
surface integrals and only the volume is relevant in that case.

E.4 Details on the Derivations of the Error
Relations

E.4.1 Relation for Convective Environments
(Steady-State)

The derivation of the error relation given by Eq. (5.16) is based on the assumption
that convective fluxes dominate over diffusive fluxes, which implies a large cell Pé-
clet number. Furthermore, pure mass transfer with constant density and constant
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properties is considered to allow for an analytical solution. A fuel mass balance for
the cell that contains the droplet is formulated, assuming a one-dimensional flow
aligned with the x-axis. Fresh gas with the conditions of the free stream enters the
cell, and inside the cell fuel mass is released due to the evaporation of the liquid
droplet, resulting in the outflow containing a higher fuel mass fraction equal to the
conditions inside the cell. Accordingly, the fuel mass balance is expressed as

ρu∞∆x2YF,∞︸ ︷︷ ︸
Inflow

+ ṁ︸︷︷︸
Evaporation

= ρu∞∆x2YF︸ ︷︷ ︸
Outflow

. (E.6)

Note that the velocity of the outflow is equal to the velocity of the inflow, neglecting
the effect of the droplet on the momentum balance. The evaporation rate is given
by Eq. (3.55) and evaluated using the cell value YF ,

ṁ = πdρDF Sh∗ ln(1 +BM), BM = YF,s − YF

1 − YF,s

. (E.7)

By inserting the expression for the evaporation rate into the fuel mass balance one
obtains

ln(1 +BM) = 1
π

1
Sh∗

u∞∆x
DF︸ ︷︷ ︸

=Pe∆x

∆x
d

(YF − YF,∞). (E.8)

An analytical solution for the unknown cell value YF is possible by assuming a small
mass transfer number, which implies YF,s ≪ 1 and leads to ln(1 +BM) ≈ BM ≈
YF,s − YF . Using the approximation and assuming a constant modified Sherwood
number, a closed-form expression for the local cell value YF that determines the
error of the evaporation rate is obtained,

YF = YF,s + CYF,∞

1 + C
, C = 1

π

Pe∆x

Sh∗
∆x
d
. (E.9)

This solution is now inserted into the equation for the evaporation rate (using the
approximation for the mass transfer number from above), leading to

ṁ = πdρDF Sh∗(YF,s − YF ) = πdρDF Sh∗(YF,s − YF,∞)︸ ︷︷ ︸
=ṁref

C

1 + C
, (E.10)

where the reference evaporation rate is determined by the conditions of the fresh
gas. Finally, the relative error of the evaporation rate, as defined by Eq. (5.2), can
be calculated, where ṁ < ṁref and therefore

ϵṁ = 1 − ṁ

ṁref
= 1 − C

1 + C
= 1

1 + C
. (E.11)

By inserting the expression for the constant C, the error relation presented in
Sec. 5.2.3 is obtained,

ϵṁ =
(

1 + 1
π

Pe∆x

Sh∗
∆x
d

)−1

. (E.12)
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E.4.2 Relation for Quasi-Steady Processes (Transient
Case)

Assuming quasi-steady conditions, knowledge of the error allows the instantaneous
evaporation rate to be calculated from the reference evaporation rate,

ϵṁ = 1 − ṁ

ṁref
⇒ ṁ = (1 − ϵṁ)ṁref , (E.13)

where it was assumed that ṁ < ṁref . Inserting the error relation for the steady-state
evaporation rate, which is given by Eq. (5.12), results in

ṁ = f1ṁref , f1 = α(∆x/d)
1 + α(∆x/d) . (E.14)

The factor f1 < 1 can be seen as a correction to the evaporation in an infinite
environment and reduces the evaporation rate, thus leading to an increase in the
evaporation time. The time evolution of the droplet mass is then given by

dmd

dt = −f1ṁref , (E.15)

and can be transformed into an equation for the squared droplet diameter,

dd2

dt = −4f1ṁref

πρld
. (E.16)

By inserting the reference evaporation rate given by ṁref = 2πdρDF ln(1 +BM,ref),
one finally obtains

dd2

dt = −f1Kref , Kref = 8ρDF

ρl

ln(1 +BM,ref). (E.17)

Assuming constant thermodynamic properties, the evaporation constant Kref is a
constant, whereas the correction factor f1 depends on the instantaneous droplet
diameter, which makes an analytical solution complicated. Therefore, the correction
factor is approximated by a suitable average value determined from the mean droplet
diameter based on the d2-law. Note that the d2-law is not strictly fulfilled if the
evaporation rate is evaluated using the local cell value, but can still provide a suitable
approximation for the correction factor. Assuming d2-law behavior, the droplet
diameter evolves according to [211]

d(t) = d0

√
1 − t/τevap, (E.18)

and its time averaged value is given by ⟨d⟩ = 2
3d0. The approximation of the

correction factor is then given by an evaluation using the time averaged droplet
diameter,

f1 ≈ α(∆x/⟨d⟩)
1 + α(∆x/⟨d⟩) =

3
2α(∆x/d0)

1 + 3
2α(∆x/d0)

= const. (E.19)
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Using the average of d to approximate f1 instead of averaging f1 directly utilizing
Eq. (E.18) results in a much simpler expression with a maximum deviation of about
3.7 % for ∆x/d0 ≥ 1. With the right-hand side being a constant now, Eq. (E.17)
can be solved analytically, resulting in the following expression for the evaporation
time,

τevap = d2
0

f1Kref
. (E.20)

With the reference evaporation time given by τevap,ref = d2
0/Kref , the relative error

of the evaporation time is found to be

ϵτ = τevap

τevap,ref
− 1 = 1

f1
− 1 = 2

3α

(
∆x
d0

)−1

. (E.21)

E.4.3 Relation for a Closed System (Transient Case)

Pure Mass Transfer

A single droplet in a finite environment with volume V is considered. There is no
net flux across the boundaries, representing a closed system, and inside the volume
a homogeneous distribution is assumed. Following the procedure in Sec. 5.2, only
mass transfer is considered in a first step, and later the analysis is extended to the
case of combined heat and mass transfer. Note that for a closed system the density
must be variable to satisfy mass conservation. According to these assumptions, the
governing equations reduce to a set of coupled ordinary differential equations,

dρ
dt = ṠM , (E.22)

dYF

dt = (1 − YF )ṠM/ρ, (E.23)
dmd

dt = −ṁ, (E.24)

with the source term providing the coupling between the gas phase and the liquid
droplet via ṠM = − 1

V
dmd

dt
. Note that the equation for the fuel mass fraction has

been reformulated using the continuity equation. The evaporation rate is given by
ṁ = 2πdρDF ln(1 +BM), where the mass transfer number is evaluated using the
instantaneous fuel mass fraction of the finite environment. Although the gas density
is allowed to change, a constant ρDF is assumed in the expression for the evaporation
rate to simplify the problem. As the system is closed, total mass is conserved, so
that knowledge of either liquid or gaseous mass can be used to directly infer the
other. It is therefore only necessary to solve for one variable. In analogy to the
d2-law, the squared droplet diameter is chosen as solution variable, with the time
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evolution given by
dd2

dt = −8ρDF

ρl

ln(1 +BM). (E.25)

As mentioned before, the density that appears on the right-hand side of Eq. (E.25)
is assumed to be constant, so that only the mass transfer number is a function of
time. Using the initial droplet diameter and the evaporation time in an infinite
environment equal to the initial state as reference length and time, respectively, the
equation can be normalized, yielding

dd̂2

dt̂
= − ln(1 +BM)

ln(1 +BM,0)
, (E.26)

with d̂ = d/d0 and t̂ = t/τevap,ref . By formulating balance equations for the total
mass and the fuel mass in the system according to

ρ0V +md,0 = ρV +md, ρ0YF,0V +md,0 = ρYFV +md, (E.27)

the fuel mass fraction can be expressed as

YF = YF,0 + φ(1 − d̂3)
1 + φ(1 − d̂3)

, (E.28)

where φ = md,0/(ρ0V ) denotes the initial ratio of droplet mass to gaseous mass in
the system. Using this expression it is possible to express the instantaneous mass
transfer number as a function of the normalized droplet diameter,

1 +BM = 1 +BM,0

1 + φ(1 − d̂3)
. (E.29)

By inserting this relation into Eq. (E.26) one obtains

dd̂2

dt̂
= −1 + ln(1 + φ(1 − d̂3))

ln(1 +BM,0)
. (E.30)

The first term on the right-hand side reflects the d2-law for an infinite environment,
while the second term acts as a correction factor to account for the effect of the
finite environment. It increases with increasing mass ratio φ and decreasing mass
transfer number BM,0, and counteracts the evaporation process (positive sign). By
separating the variables in Eq. (E.30) and performing an integration, an expression
for the normalized evaporation time is found,

τ̂evap =
∫ 1

0

(
1 − ln(1 + φ(1 − s3/2))

ln(1 +BM,0)

)−1

ds. (E.31)

The integration variable indicates the third power of the non-dimensional droplet
diameter, s = d̂3, and the integration is performed from the initial state (s = 1)
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to complete evaporation (s = 0). Note that the integration limits are flipped to
give the integrand a positive sign. The integral contains a singularity for φ = BM,0

where the evaporation time approaches infinity. This corresponds to the case when
the environment reaches saturation conditions and thus complete evaporation is no
longer possible. Using the definition of the error given by Eq. (5.1), which can be
expressed as ϵτ = τ̂evap − 1, one finally obtains the expression for the relative error
of the evaporation time,

ϵτ =
∫ 1

0

(
ln(1 +BM,0)

ln(1 + φ(1 − s3/2)) − 1
)−1

ds. (E.32)

The integral has no analytical solution and must be solved numerically. However,
an approximate solution can be found by introducing a Taylor series expansion of
the integrand assuming small φ,

(
ln(1 +BM,0)

ln(1 + φ(1 − s3/2)) − 1
)−1

≈ φ(1 − s3/2)
ln(1 +BM,0)

. (E.33)

Using the approximation allows for an analytical solution of the integral,

ϵτ ≈
∫ 1

0

φ(1 − s3/2)
ln(1 +BM,0)

ds = 0.6φ
ln(1 +BM,0)

= 0.6φ∗. (E.34)

This shows that the error depends linearly on the modified mass ratio parameter
φ∗, and is valid for φ∗ ≲ 0.1, as shown in Fig. E.5. For larger φ∗ the error deviates
from the linear relation, and has a different dependence on the initial mass transfer
number.
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Figure E.5: Relative error of the evaporation time for a single droplet in a finite environment
(closed system, pure mass transfer). The error is plotted versus the modified mass ratio φ∗ and
colored by the initial mass transfer number BM,0 ∈ [0.01, 100] (logarithmic scale).
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Heat and Mass Transfer

To include the effect of heat transfer, the full evaporation model is used, as de-
scribed in Sec. 3.2. The gas-phase equations are given by Eqs. (3.1), (3.2) and (3.4)
with only time derivatives and source terms remaining due to the assumption of a
homogeneous system with no net flux across the boundaries. The time derivative
of the pressure, which appears in the balance equation for the absolute enthalpy,
Eq. (3.4), is also neglected, which is consistent with the assumption of low Mach
numbers. The equations are solved numerically for a set of different initial gas and
droplet properties and different gas volumes, and the resulting evaporation times are
compared to the reference evaporation time in an infinite environment constituted
by the initial gas state. Figure E.6 shows that the error mainly depends linearly
on the modified mass ratio φ∗, as was demonstrated for the case with pure mass
transfer. However, the effect of heat transfer introduces an additional scatter. From
the results shown in Fig. E.6 it can be seen that the relation found on the basis of
pure mass transfer, ϵτ = 0.6φ∗, serves here as a lower limit for the error, while the
upper limit is given by ϵτ ≈ 2φ∗. Furthermore, the mass transfer number now takes
a much smaller range of values. Nevertheless, its inclusion in the error relation (i.e.,
the use of φ∗ instead of φ) leads to a more accurate estimate of the error.
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(a) Ethanol droplet, BM,ref ∈ [0, 3].
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(b) n-Heptane droplet, BM,ref ∈ [1, 5].

Figure E.6: Relative error of the evaporation time for a single droplet in a finite environment
(closed system, heat and mass transfer). The error obtained from fuel species ethanol and n-
heptane is plotted versus the modified mass ratio φ∗ and colored by the reference mass transfer
number.
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E.4.4 Relation for Convective Environments (Transient
Case)

The derivation of the error relation given by Eq. (5.24) from the corresponding
relation for the steady-state evaporation rate, Eq. (5.16), follows the same procedure
as presented in Appendix E.4.2. By setting

α = 1
π

Pe∆x

Sh∗ , (E.35)

the error relations given by Eqs. (5.12) and (5.16) have exactly the same form.
Following the derivations from Appendix E.4.2, the relation for the relative error of
the evaporation time is given by

ϵτ = 2
3α

(
∆x
d0

)−1

. (E.36)

Inserting the expression for α given by Eq. (E.35) directly leads to Eq. (5.24).

E.5 Application of the Error Relations to CFD
Simulations

E.5.1 Computational Setup

Having derived the error relations based on a single droplet in an infinite environ-
ment, their usage and effectiveness in practical CFD of turbulent reacting flows
will now be demonstrated by comparing a priori estimates with a posteriori errors
from Euler-Lagrange simulations. To this end, simulations of evaporating droplets
in statistically homogeneous turbulence are performed at different grid resolutions,
considering both non-reactive and reactive conditions. The computational setup is
similar to the setup used to examine the two-phase coupling between the stochastic
particles and the fuel droplets (cf. Sec. 6.1), and is only briefly summarized here. The
computational domain is a cubic box with length L = 15 mm and periodic boundary
conditions. The initial gas is pure nitrogen in the non-reactive case and a mixture
of nitrogen and oxygen with mass fractions similar to those of air in the reactive
case, with an initial temperature and pressure of T0 = 1500 K and p0 = 1 atm, re-
spectively. The velocity field is initialized with statistically homogeneous turbulence
with a Taylor Reynolds number of Reλ = 16, which ensures sufficient resolution of
the turbulence even at the lower grid resolutions (see Tab. E.1). The fuel droplets
are composed of pure ethanol with initial properties d0 = 20 µm and Td,0 = 300 K,
and are distributed randomly within the domain. Different droplet loadings are
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Table E.1: Grid resolution characteristics of the simulations for demonstrating the use of the
error relations in practical CFD. The table relates the cell size to the Kolmogorov length scale η,
the initial droplet diameter d0, and the nominal droplet distance ∆L.

Nx ∆x/η ∆x/d0 ∆L(= 50d0)/∆x ∆L(= 20d0)/∆x ∆L(= 15d0)/∆x

64 1.0 11.7 4.3 1.7 1.3
96 0.7 7.8 6.4 2.6 1.9

128 0.5 5.9 8.5 3.4 2.6
192 0.3 3.9 12.8 5.1 3.8
256 0.2 2.9 17.1 6.8 5.1

considered, and the relevant mesh-droplet characteristics are reported in Tab. E.1.
Note that values smaller than ∆L/d0 ≈ 15 cannot be used here, since this would
lead to saturated conditions in the gas and thus prevent complete evaporation.

E.5.2 Non-Reacting Case

First, the non-reacting case is considered. Figure E.7(a) shows the average evapo-
ration times obtained from the respective simulations and normalized by the evapo-
ration time of an isolated droplet in an infinite environment given by the initial gas
state. It can be seen that the evaporation time not only increases with decreasing
∆x/d0 (as expected), but also increases with decreasing ∆L/d0. This is because no
mass can leave the computational domain, and the higher the droplet loading, the
higher the average fuel concentration in the domain, so the ambient conditions can
no longer be assumed to be constant. Accordingly, the evaporation in an infinite
environment no longer provides a suitable reference solution, and the effect of the
surrounding droplets must be taken into account. A more appropriate choice of
the grid independent reference solution is given here by the evaporation of an iso-
lated droplet in a finite environment with the characteristic volume of each droplet,
V = ∆3

L, which is treated as a closed system that preserves mass and energy be-
tween the gas and the liquid phase. The gas state in this system is characterized
by a single composition vector (representing the mean composition) that evolves in
time, and serves as the ambient condition for the evaporation model. The solution
of this zero-dimensional problem was discussed in detail in Appendix E.4.3, where
analytical solutions were derived describing the asymptotic regime for sufficiently
large ∆L/d0. Here, the reference solution is obtained through a numerical solution
of the corresponding gas and droplet equations to eliminate the scatter around the
asymptotic solution. It should be noted that the calculation of the reference solution
does not require data from the simulations and can be done prior to the simulation
without significant effort (e.g., by placing the droplet in a single computational cell
of volume ∆3

L with periodic boundary conditions, and running the CFD solver until



242 Supplementary Material to Chapter 5

0 5 10 15

"x=d0 (-)

1

1.5

2

2.5

3

3.5
= e

va
p
=
= e

va
p
;1

(-
)

"L=d0 = 50
"L=d0 = 20
"L=d0 = 15

(a) Normalized evaporation
time (quiescent environment).

0 5 10 15

"x=d0 (-)

0

0.1

0.2

0.3

0.4

0.5

0 =
(-
)

Eq. (5.20)
"L=d0 = 50
"L=d0 = 20
"L=d0 = 15

(b) Relative error (quiescent
environment).

0 5 10 15

"x=d0 (-)

0

0.1

0.2

0.3

0.4

0.5

0 =
(-
)

Eq. (5.20)
"L=d0 = 50
"L=d0 = 20
"L=d0 = 15

(c) Relative error (with turbu-
lence).

Figure E.7: Comparison of predicted and calculated errors from the non-reactive simulations.
The grid-independent reference solution for the error definition is given by the evaporation of a
single droplet in a finite and homogeneous environment with V = ∆3

L.

the droplet has disappeared).
Simulations are first performed without an initial velocity field to focus exclu-

sively on the effect of multiple droplets, adding the effect of turbulence in a second
step. Figure E.7(b) shows the calculated errors from the simulations with quiescent
environment and compared to the error relation given by Eq. (5.25), which reduces
to Eq. (5.20) for the present setup. The case with ∆L/d0 = 50 features excellent
agreement with the error relation, since droplets do not interact with each other
and can be treated as isolated droplets with constant ambient conditions. For the
higher droplet loadings there is a slight deviation from the error relation that be-
comes more significant as ∆L/d0 and ∆x/d0 decrease, but overall the agreement
is still good, indicating that the error relation can be used for systems involving
multiple droplets, provided an appropriate reference solution is used. A possible
reason for the (slight) deviation could be the nonlinearity of the evaporation model,
which implies that the average evaporation time (which is used for comparison with
the error relation) is not equivalent to the evaporation time that results from the
mean gas state (which is used as reference solution). Another reason could be the
fact that the inter-droplet space is increasingly poorly resolved as ∆L/d0 and ∆x/d0

decrease, and therefore discretization effects around the cell containing the droplet
might not be captured accurately. Finally, Fig. E.7(c) shows the results for the
simulations involving homogeneous turbulence, demonstrating that the errors de-
termined from the simulations still follow the error relation reasonably well. Note
that the effect of turbulence is also taken into account in the reference solution by
using the characteristic rms velocity as the free-stream velocity.

The case with Nx = 64 grid cells per dimension (∆x/d0 ≈ 11.7) and ∆L/d0 = 20
is chosen to give further details on the usage of the error relation given by Eq. (5.25),
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which is composed of the three individual relations represented by Eqs. (5.20),
(5.22) and (5.24). The first relation, Eq. (5.20), is only a function of the cell
size, and directly leads to an error estimate of ϵτ = (∆x/d0)−1 ≈ 8.5 %. The
second relation, Eq. (5.22), requires the calculation of the modified mass ratio ac-
cording to Eq. (5.21). The density ratio is evaluated using the initial conditions,
ρl,0/ρg,0 ≈ 3450, and for the mass transfer number the value associated with the
wet-bulb conditions of the reference solution is used, giving BM,ref ≈ 1.5. This
gives a modified mass ratio of φ∗ ≈ 1.225, and finally leads to an error estimate
of ϵτ = 0.6φ∗ ≈ 74 %. The relation for convective environments, Eq. (5.24), is a
function of the cell Péclet number, which is evaluated here using the rms velocity,
leading to Pe∆x ≈ 2.3. Assuming Sh∗ ≈ 2, Eq. (5.24) predicts an error of ϵτ ≈ 15 %.
The actual error is then given by the minimum value of the three relations, here
ϵτ ≈ 8.5 %. From the simulation an error of ϵτ ≈ 8.6 % is obtained, which is in very
good agreement with the error prediction. Note that the nominal droplet distance,
∆L/d0, does not appear explicitly in the error relations, but is accounted for by the
definition of the reference solution.

E.5.3 Reacting Case

Simulations are now performed including chemical reactions. In that case, the previ-
ously used reference solution can no longer be used, as it does not take into account
the effects of combustion in the gas phase. A simple approach to prove the validity
of the error relations, which implicitly incorporates chemistry effects into the refer-
ence solution, would be to feed the evaporation model with the time-varying mean
gas state from the simulation. However, this approach has been found to underesti-
mate the evaporation rates, resulting in evaporation times being larger than those
obtained from the simulations. This is attributable to the fact that local flame struc-
tures around the droplets enhance the evaporation process, which is not reflected by
the use of global averages. A suitable reference solution should therefore incorporate
the effects of envelope flames on the evaporation process while ensuring consistency
with the numerical solution in the limit ∆x → ∞. Since the reference solution does
not need to be explicitly known for the application of the error relations, and since
the focus here is on verifying the functional description of the error, the reference
solution is determined such that the errors from the simulations fit the given error
relation. The results are plotted in Fig. E.8, showing excellent agreement between
the calculated errors and the error relation given by Eq. (5.20), except for the largest
cell size. This proves that the derived error relations remain valid also in the case
of chemically reacting turbulent flows.
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Figure E.8: Comparison of predicted and calculated errors from the reactive simulations. The
reference solution that is required for the calculation of the error was determined such that the
errors from the simulations fit the error relation.

E.5.4 Conclusions

The validity of the error relations in practical CFD of turbulent reacting flows was
demonstrated by comparing a priori estimates with a posteriori errors from the
simulations, where good to excellent agreement was found. This proves that the
functional description of the error induced by the PSI-cell model is also valid for
practical applications of spray combustion, despite the fact that it was derived based
on an isolated droplet in a non-reacting infinite environment.

In practical simulations, the definition of a suitable reference solution is often
complicated by the fact that the ambient conditions change in time (caused, for ex-
ample, by droplet interactions and chemical reactions). However, for an estimation
of the numerical error, the reference solution does not need to be explicitly known.
The error is then to be interpreted as the error related to a grid-independent solution
that is obtained if the cell size approaches infinity.



Appendix F

Grid Convergence Study of the
Droplet-Laden Double Shear Layer

A grid convergence study of the temporally evolving droplet-laden double shear
layer is performed. The computational setup is described in detail in Sec. 7.1. Three
different grid resolutions are considered, and the characteristic grid parameters are
reported in Tab. F.1. Compared to the reference case (18 M) that is used for the
a priori analysis in Ch. 7, the grid resolution is refined and coarsened by 50 %,
respectively. The numerical time step is set to ∆t = 1.2 µs in all three simulations,
resulting in a maximum Courant number of CFLmax = 0.6 for the finest mesh
resolution. Note that a variable time step was used in Ch. 7, resulting in slight
differences in the CP-DNS data. Table F.1 also lists the corresponding CPU hours.
Cases 5 M and 18 M are run on a server with a dual Intel Xeon Gold 6226 CPU
using 16 and 24 cores, respectively, while case 62 M is run on three servers, each
with a dual AMD EPYC 7543 CPU, using 168 cores in total.

A comparison of the mean streamwise velocity and the turbulent kinetic energy
at different times is shown in Fig. F.1. Both quantities are calculated by averaging
the data in homogeneous directions, and are plotted versus the normalized cross-
stream direction. While the mean streamwise velocity is accurately reproduced by
all grids, the turbulent kinetic energy exhibits some sensitivity towards the mesh
resolution. However, no clear trends can be observed, with both the 5 M and the

Table F.1: Parameters for the grid convergence study of the droplet-laden double shear layer
configuration. Note that the simulations were run on different computers, so CPU hours are not
directly comparable.

Case Nx Ny Nz Ntotal ∆x ∆x/d0 # cores CPU hours

5 M 192 224 128 5 505 024 180 µm 6.0 16 834
18 M 288 336 192 18 579 456 120 µm 4.0 24 1968
62 M 432 504 288 62 705 664 80 µm 2.7 168 17 235
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(b) Turbulent kinetic energy at times t/tj = {20, 30, 40} (from left to right).

Figure F.1: Mean streamwise velocity and turbulent kinetic energy obtained from the CP-DNS
using different grid resolutions.

18 M meshes giving partially better agreement with the finest grid resolution, so a
grid refinement does not generally lead to improvements here. Further, it can be
seen that the turbulent kinetic energy profiles are not fully symmetric, which is a
result of the initial turbulent perturbations (cf. Fig. 7.2(a)).

Mean and rms profiles of mixture fraction and temperature at different times
are shown in Fig. F.2. Overall, the influence of the grid resolution is very small, and
all three cell sizes considered here lead to very similar results. Only the temperature
distribution shows a slightly higher sensitivity towards the grid resolution, where in
regions of the maximum mean temperature differences of the order of about 100 K
can be observed (Fig. F.2(c)). Again, the averaged profiles are not fully symmetric,
as already observed for the turbulent kinetic energy.

Conditional averages are shown in Fig. F.3. At t/tj = 20, there is a very
good match of the conditionally averaged temperatures, whereas at later times the
two lower grid resolutions slightly overpredict the conditional mean temperature by
about 100 K. For the conditional fluctuations (Fig. F.3(b)) no clear trend can be
seen, where both the 5 M and 18 M meshes partially lead to the best agreement with
the highest grid resolution (62 M). However, the deviations remain on a relatively
small level (about 50 K at maximum).
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(a) Mixture fraction mean at times t/tj = {20, 30, 40} (from left to right).
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(b) Mixture fraction rms at times t/tj = {20, 30, 40} (from left to right).
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(c) Temperature mean at times t/tj = {20, 30, 40} (from left to right).
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(d) Temperature rms at times t/tj = {20, 30, 40} (from left to right).

Figure F.2: Mean and rms of mixture fraction and temperature obtained from the CP-DNS using
different grid resolutions.
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(b) Conditional rms of temperature at times t/tj = {20, 30, 40} (from left to right).

Figure F.3: Conditional mean and rms of temperature obtained from the CP-DNS using different
grid resolutions.

Finally, Fig. F.4 provides a comparison of the characteristic droplet proper-
ties. Again, the differences between the three mesh resolutions are very small, and
the droplet dispersion is accurately described by all three meshes (cf. Fig. F.4(a)).
Looking at the distribution of the droplet diameter (Fig. F.4(b)), a clear trend can
be observed, where a finer mesh leads to a slight delay of the evaporation process,
resulting in larger droplet sizes. This is due to the dependence of the evaporation
rate on the local cell size, as discussed in detail in Sec. 5.2. The distribution of
the droplet temperature exhibits very good agreement of case 18 M with case 62 M,
while the lowest grid resolution leads to slight deviations (cf. Fig. F.4(c)).

The analysis in Sec. 5.2 has elaborated relationships for estimating the error
of the evaporation rate and time in Euler-Lagrange simulations, which will now be
applied to the shear layer setup. The error of the evaporation time is described
by Eq. (5.25), and consists of three individual relations. For the present setup,
the relation that treats the computational cell as a closed system, Eq. (5.22), turns
out to predict much larger errors than the other two relations and is therefore
irrelevant here. Accordingly, the error is mainly determined by Eq. (5.20) as a
function of ∆x/d0, while the effect of convection that is represented by Eq. (5.24) can
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Figure F.4: Droplet properties obtained from the CP-DNS using different grid resolutions.

reduce the error depending on the cell Péclet number. The application of Eq. (5.24)
requires the definition of suitable ambient conditions for the evaporation process,
which is not straightforward due to the temporal development of turbulence and
combustion in the shear layer. Here, averaged values for the relative velocity between
the droplets and the gas as well as for the diffusivity are used, which are extracted
from the CP-DNS and evaluated at the positions of the droplets, while the modified
Sherwood number is approximated as two. This results in errors of the order of
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9 % ≲ ϵτ ≲ 16 % for case 5 M, 20 % ≲ ϵτ ≲ 25 % for case 18 M, and ϵτ ≈ 38 % for
case 62 M. Due to the fact that the evaporation time is not completely covered by
the simulation time (droplets still have about 60 % of their initial diameter at the
end of the simulation, cf. Fig. F.4(b)), it is to be expected that the errors occurring
in the simulations are smaller, as the error of the evaporation time represents an
accumulated error of the instantaneous evaporation rate. This could explain why
the effect of the cell size is rather small in the simulations as shown by the grid
convergence study, in addition to the uncertainty in the definition of suitable ambient
conditions for the evaluation of the error relations.
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Data Storage

The following table provides details on data storage for the publications that are part of
the present work as well as for the present thesis itself.
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