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This publication introduces the PERMEATED framework 
for the diagnosis and condition monitoring of industri-
al assets. PERMEATED recognizes that the usability of 
a diagnostic system hinges critically on the trust that 
a responsible decision-maker, the addressee of health 
assessments, predictions, uncertainty quantifications and 
recommendations, has in its capabilities. To foster the 
generation of trust, PERMEATED prescribes the usage of 
explainable recommendations. Its usability is demonstra-
ted by implementations as fuzzy recommender system, 
inherently interpretable machine-learning models and as 
opaque machine-learning models aided by explainers. 
PERMEATED‘s performance is validated on real-world 
data of various types and series of machine tools as part 
of a quality control process in the production line, and as 
support tool for service missions in the field.
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Preface 
 
 
The German economy is well-known throughout the world for its plant and 
mechanical engineering. With its two mechanical engineering faculties housing 42 
institutes, the University of Stuttgart is the largest university institution for 
mechanical engineering in Germany. Our scientific excellence in this field is based on 
our numerous doctoral students and their outstanding dissertations. Many of these 
dissertations arise out of local, national and international collaborations with 
renowned universities and non-university research institutions, such as the German 
Aerospace Center, the Fraunhofer-Gesellschaft and the Max Planck Society. The fields 
covered by the dissertations range from Bio-Engineering, Energy Engineering, 
Automotive Engineering, Cybernetics and System Engineering, Product Development 
and Design, and Production Engineering to Process Engineering, and are based on the 
six main research areas of Advanced Systems Engineering, Autonomous Production, 
Software-Defined Manufacturing, Resilient Supply, Biointelligence and 
Decarbonization of Industry. The research findings from the dissertations aim to 
develop customer-specific, product-, process- and employee-oriented technologies in 
a targeted and timely manner. 
 
Many of the dissertations written within the framework of the research work at the 
institutes are published in this series »Beiträge zum Stuttgarter Maschinenbau«. Our 
wish for the doctoral candidates at the two faculties of Stuttgarter Maschinenbau is 
that their dissertations in the field of mechanical engineering will be recognized by 
the wider professional community as authoritative contributions and thus contribute 
to establishing a new standard of knowledge. 
 
For Stuttgarter Maschinenbau 
 

    
 
Stefan Weihe   Oliver Riedel 
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a constant exchange between basic research and application-oriented development, 
ensuring a continuous transfer of technology into practice.  
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Abstract

The first chapter introduces the topic of condition-based maintenance and con-
textualizes the importance of this technique, especially for critically important,
complex and costly systems like machine tools.

Condition-based maintenance can be seen as a special case of diagnosis and
data analysis. Consequently, the second chapter introduces terms and defini-
tions, which serve as foundation for the following discussion.

The third chapter presents the state of research and a detailed review of pub-
lications in the context of data-driven diagnostics for condition-based mainte-
nance. Different ideas behind and the purpose of model-based diagnostics, as
well as signal-based diagnostics are outlined.

Chapter 4 focuses on uncertainty, which is the main challenge in condition-
basedmaintenance. Recommending amaintenance action has potentially costly
real-world impacts. It is therefore necessary be aware of the risks of decisions.
Uncertainty about the real state of the system seems to be inherent to the

task of condition-monitoring. The lack of interpretability and auditability of
decisions and the reasons for them are identified as main obstacles for a more
widespread adoption of data-driven techniques. Subsequently chapter 5 in-
troduces a diagnostics framework called PERMEATED, which embraces these
results and is designed to deal with the existing uncertainties by incorporating
them and emphasizing the importance of trust. The application of this frame-
work to a real world application for machine tools is presented.

Chapter 6 discusses some existing machine learning approaches for
condition-monitoring applications and a applies them to a particular
task regarding the dynamic behavior of a machine tool drive axis. Their
performance is compared to an alternative, PERMEATED-compatible method,
called SLIM. A different approach to satisfy the principles of the PERMEATED

iii



Abstract

diagnostics process is given in the last section of the chapter. Instead of using
inherently interpretable machine learning models, this chapter uses so-called
explainers to retrieve explanations from opaque machine learning models.
Chapter 7 summarizes the results of this thesis with regards to the task of

condition monitoring for industrial assets and concludes with the identifica-
tion of areas, where further research is necessary to make the application of
techniques of machine learning more applicable for the task of condition-based
maintenance.
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Kurzfassung

Das erste Kapitel führt in das Thema zustandsbasierte Wartung ein und kon-
textualisiert die Wichtigkeit der Methoden für produktionskritische, komplexe
und kapitalintensive Systeme wie Werkzeugmaschinen.
Die zustandsbasierte Wartung kann als eine spezielle Form der Diagnose

und Datenanalyse gesehen werden. Dieser Intention folgend, gibt das zweite
Kapitel einen Abriss über die relevanten Definitionen und Konzepte, die als
Diskussionsgrundlage der Arbeit dienen.

Im dritten Kapitel wird der Stand der Wissenschaft und Technik präsentiert
und hierbei insbesondere auf Arbeiten im Kontext der datengetriebenen Di-
agnose zum Zweck der zustandsbasierten Wartung eingegangen. Dabei wird
der Unterscheidung von modell- und signal-basierten Ansätzen zur Diagnose
besonderes Augenmerk gewidmet.
Unsicherheit ist Thema des vierten Kapitels, welche die dominante Heraus-

forderung für alle Ansätze der zustandsbasierten Wartung darstellt. Da eine
fälschliche Wartungs- oder Reperaturempfehlung kostspielige Auswirkungen
haben kann, müssen die Risiken integraler Bestandteil jeglicher Abwägung
einer solchen Empfehlung sein.
Unsicherheit über den realen Zustand eines Systems scheint inhärenter Be-

standteil des Problems der Zustandsrekonstruktion zu sein. Das Fehlen von In-
terpretationsmöglichkeiten für Entscheidungen wird als Hinderungsgrund für
eine Verbreitung daten-getriebener Methoden identifiziert. Das fünfte Kapitel
führt einen neuen Rahmen für Diagnosen namens PERMEATED ein, welcher
auf dieser Erkenntnis gründet und dergestalt ist, dass Unsicherheiten in den
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Kurzfassung

Entscheidungsprozess eingebunden werden können. Das „Vertrauen“ der An-
wender in das System wird dabei durch die Verwendung interpretierbarer
Methoden gewährleistet. Dieses Rahmenwerk wird für Werkzeugmaschinen
angewandt.
In Kapitel sechs wird die Eignung einiger weitverbreiteter Machine Learn-

ing Methoden für die Diagnose des dynamischen Verhaltens einer Werkzeug-
maschine untersucht und mit einem alternativen, interpretierbaren Ansatz,
SLIM, verglichen. Anschließend werden nicht inhärent interpretierbare Ma-
chine Learning Methoden, sondern sogenannte Explainer verwendet, um in-
terpretierbare Proxies aus opaken Modellen zu generieren.

Das siebte Kapitel fasst die Resultate derThesismitHinblick auf die zustands-
basierte Wartung von industrieller Ausrüstung zusammen und identifiziert
Bereiche für zukünftige Forschung, um den Mehrwert von Machine Learning
für die zustandsbasierte Wartung zu steigern.
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1 Introduction

While the first industrial revolution was about augmenting brawn with steam
power, the fourth revolution is about augmenting brainswith computerized sys-
tems. This digital transformation of the manufacturing industry poses daunt-
ing challenges and exceptional opportunities simultaneously. The drivers of
this transformation are multi-faceted: manufacturers’ demand for increased
productivity, shorter time-to-consumer and thus time-to-market and increased
predictability of their manufacturing capacities, consumers’ demand for price
competitive individualized goods–preferably instantaneously–and the strug-
gle of producers of manufacturing systems, such as machine tools, for unique
selling points and alternative businessmodels in increasingly globalmarkets. A
promising route towards such unique selling points and new business models
is thought to be the creation of services that create continuous revenue streams
after the sale of investment products such as manufacturing equipment. To
be valuable a service has to solve a problem. And this is where the second
law of thermodynamics enters the picture: everything decays and eventually
stops working. It is an inescapable feature of existence. What is not inescapable,
however, is what effect the failure of a particular production system has on the
output of that production line. Theworst case scenario is the unexpected failure
of some critical asset that stops the complete production process and where it
takes a long time to identify and repair or replace the broken component or sub-
system. A collection of techniques that is commonly referred to as "Condition
Monitoring", tries to mitigate that worst case scenario altogether or ease its im-
pact at least somewhat. All of these techniques are driven by different amounts
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1 Introduction

of information. In the context of drive-based condition monitoring, the main
topic of this thesis, the sources of information are restricted to the set of signals
that are available within the control of the drive under consideration anyway,
which is hoped to make it into a good candidate for an after sale service. There
are three main functions a condition monitoring system can fulfill

• fault detection,
• fault identification,
• fault prognosis.

If within the set of monitored signals an anomaly can be detected, the Condi-
tion Monitoring System (CMS) is said to fulfill the function of fault detection.
The information about the presence of a fault in the system can be useful for
preventing the continued production of possibly substandard products or to
trigger an immediate shutdown in case of safety critical faults. The usefulness
of the fault detection function, however is not as high as that of fault identifi-
cation. If instead of simply detecting the presence of a fault in a system, the
affected component or subsystem or even their fault mode can be identified,
the downtime of a system can be reduced significantly. Although this is highly
useful, especially for maintenance and quality management personal, the most
significant contribution of a CMS is thought to be the function of fault progno-
sis. Fault prognosis deals with predicting the occurrence of a fault and tries to
eliminate unplanned downtimes by taking preventive maintenance actions on
components identified to be critical–but still working–either during the next
scheduled maintenance shutdown or, if the critical component is not expected
to survive until that date, during an opportune time in the production schedule.
Techniques that are concerned with this set of problems are often referred to
as "Prognostic and Health Management (PHM)". All three of these techniques
require knowledge about the system under consideration. Heuristically, it can
be stated that the more useful the function, the more knowledge is required.
A core component for providing these functions is widely thought to be ma-
chine learning, which is still conspicuously absent in manufacturing industries.

2



1.1 Problem

Among the obstacles for a more thorough adoption of machine learning meth-
ods in the industrial context are the deployment ofmodels and their integration
into existing MES, the robustness of deployed models against variations in the
real plants, the explainability and interpretability of the models, connectivity
to edge computing sites and of course the availability of statistically significant
amounts of relevant data for the initial training of models. In the context of
fault detection, fault identification and fault prediction, the generation of data
of plants in a faulty state can be prohibitively expensive or even infeasible due
to ethical and safety concerns. It is the goal of this thesis to investigate oppor-
tunities and challenges for the adoption of certain forms of machine learning
algorithms in an industrial setting.

1.1 Problem
Machine tools represent major investments for the majority of their typical cus-
tomers and are expected to last for at least a decade. The realized useful life is
dependent on the specific usage patterns, operating and environmental condi-
tions as well as contaminants on functional surfaces and in lubricants, which
can adversely affect the useful life and lower it significantly below initial expec-
tations. Systems are therefore needed to identify failures as soon as possible to
prevent potentially costly consequences of a fault. The subject of this work is the
measurement and especially analysis of the condition of the electromechanical
components of the drives of a machine tool as basis for a condition monitor-
ing tool that exclusively uses already built-in resources of the drives. The lack
of additional sensors qualifies this approach as drives-based or "sensorless".
This approach is intended to keep the additional complexity and integration
expenditures to a minimum as well as to maintain maximum backwards com-
patibility. Economical considerations of every condition monitoring systems
will also take the impact of that solution on the productivity of the machine
into account; the longer the solutions demands the machines to remain in a
non-productive state, the more negative its impact on customer acceptance and
its return on investment will be. Additionally, the diagnostic system’s output
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have to be actionable to the addressees, who have to assume responsibility and
sometimes liability for the consequences of their decisions.

1.2 Requirements and Goals
This work is supposed to contribute to an increase in the availability of machine
tools by developing a condition monitoring framework for industrial assets us-
ing some methods from the explainable artificial intelligence realm to improve
the efficiency and effectiveness of maintenance actions. To achieve this goal, the
condition of the drives of machine tools is to be automatically analyzed as part
of an integrated methodology for downtime prevention. This necessitates the
detection and identification of incipient faults due to long-term degradation
processes. The system’s complexity is supposed to be held roughly constant.
This is achieved by focusing primarily on measurements of system variables
that are already available in the machine tool at the level of the numerical con-
trol. Previous works have shown that faults caused by wear and tear can be
detected using the drives’ sensors. But in most cases, there are unfortunately
only measurements of signals available, which are the sum of component spe-
cific fault signals.

To satisfy these general needs, a systematic way to analyze the machine tools
is needed. A primary concern is the availability of data which satisfies certain
quality standards. The available data has to be reviewed and classified by the
domain’s quality experts, who also define requirements for indicators. While
reactive maintenance schemes can passively wait for the violation of at least
one of the quality-related indicators, predictive maintenance schemes rely on
the active forecast of the point of time at which a component or system enters a
fault mode. Therefore, a major component of the value of an indicator for these
purposes is its behavior over time. This changes the question from whether a
signal is indicative of a certain fault to how good this fault is predictable by the
measured signal.

Complex systems, like the controllers of machine tools’ drives, also measure
signals that are not necessarily used for the control of themachine tools. They of-
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ten help to prevent acute damages in machines, like temperatures that are held
in certain bounds to protect for example electronics from permanent damage.
The fundamental principle of a drive is the conversion of torque-producing

current into a force that is utilized for the positioning of the respective axis of the
machine tool. Modern machine tools are typically controlled by CNCs. In most
machine tools, either the resulting velocity or the position itself is measured.
Some drives are equippedwithmeasurement systems for both physical entities.
The derivative of speed with respect to time results in the acceleration of the
movement, the derivative of the acceleration with respect to time results in the
jerk of movement. Programming systems for modern machine tools often offer
the possibility of generating jerk-limited trajectories for the drives. Information
about the usage of any unit under consideration is therefore available at this
level in the information system architecture; position, velocity, acceleration and
jerk of each individual program can be mapped to a load integral as a measure
of actually experienced stress of components of the drives of machine tools. [1]

The state of degradation ofmachines tools can also bemeasured by the differ-
ence of the current observation relative to either historical records or to simula-
tions of the unit under consideration. For this purpose a quantitative-parametric
model of the component or machine has to be available and specific enough to
warrant the detection and identification of certain fault modes in the outputs
that are measurable for the real plant. The precondition for this sort of compar-
isons is the availability of a deterministicmodel covering time frames of interest.
These models can also help to investigate the effects of different operating con-
ditions on the measured outputs. Models of the behavior of a system over time
can be regarded as a form of highly compressed domain-specific knowledge
about the system.
Most analysis methods of control theory assume linear-time invariant sys-

tems as the mathematical foundation for the modeling of machines. While this
assumption is convenient with respect to the possibilities of the methods it
opens up, the validity of it has to be checked for the specific unit under consid-
eration. Backlash in a rack-pinion system for example introduces a non-trivial
non-linearity that impacts for example frequency response measurements of
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the drive. Depending on the type of drive, transient operating conditions like
the behavior of a drive during reversal of the direction of movement can be
especially useful for diagnostic proposes. For ball-screw drives the tracking
error between set point and actual position of the drive during positioning can
give valuable insights into the degradation state of the drive.

Of special interest in the context of condition monitoring systems is the effect
of operating conditions on wear and tear and of course the reverse–the effect
of wear and tear on the observable behavior of the system. A loss of stiffness in
a drive for example will have an influence of certain eigenfrequencies and can
therefore negatively impact the performance of the drives’ control system. In
order to extract the degradation signals from the sum of such signals, which
are often the only available measurement, filters are commonly chosen in an
attempt to amplify the signal components associated with degradation of cer-
tain components. Bearings are a particularly good example for this approach.
The characteristic frequencies of bearings are mostly determined by the geo-
metrical properties and can often be obtained from the manufactures of these
components or the technical documentation. For certain events, like the ball
passing the outside of the cage, characteristic frequencies can be given, i.e. the
so-calledBall Passing FrequencyOutside (BPFO). If the fundamental frequency
is known or can be determined from the measured signals, these frequencies
can be checked for signs of change, indicating either a fault or a change in the op-
erating conditions. The sensitivity of these characteristic frequencies has to be
investigated for the fault or degradation modes of interest. Their statistical and
stochastic properties are of special importance for determining the suitability
of these signals for condition monitoring purposes.

Thiswork’s focus on the economical realization of actionable and "sensorless"
condition monitoring systems for drives in machine tools has certain implica-
tions: A frequently used method for machine diagnostic is the diagnosis of
vibrations that result from machine operations. These measurements contain
information about the mechanical properties of the machine tool as well as
degradation conditions. But as this form of measurement necessitates the inte-
gration of additional sensors into the machine tool, this route is not pursued
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here because of the associated increase in complexity and cost. The analyses
will use only information contained in measurements of the available sensors
or information from already existing databases. Another implication is that
there are additional constraints on frequently used diagnostic methods that
produce "inexplicable" results.

To summarize the desired characteristics for a condition monitoring systems
with respect to the presented considerations:

• Integration in a ConditionMonitoring Framework: The developed anal-
yses shall be integrated into a Condition Monitoring Framework that is
usable for managing the quality of machine tools and their output. In
principle other sources of data like visual or acoustical impressions could
be used for the analysis. Given that the automation of the analysis process
relies on indicators that are easily processed by an information processing
system, the focus will be on quantifiable variables.

• Usage of available measurements devices: Only signals of sensors that
are already integrated into the machine tools as well as information in
already existing databases are used. Additional sensors are disregarded
for the impact on costs and complexity.

• Modularity of the diagnostic system: Diagnostic modules are software
components that could be executed in principle on any machine that
meets the minimum requirements with regard to data storage, connectiv-
ity and processing power. An integration of the software into themachine
tool itself is desirable but introduces certain problems like updatability
and possible performance issues. A cloud-native solution appears to offer
significant advantages.

• Robustness of the analysis: This requirement is paramount for the ap-
plicability of any analysis method in an industrial setting. Variations in
the operating conditions, the environment, noise in the measurements,
huge and inconsistent time spans in between measurements and rather
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small sample sizes for the configuration of the analysis pose a challenging
setting for any data processing and analysis scheme.

• Identification of the affected component: The goal of the diagnosis is
aimed at least at the identification of the component affected by a fault.
The mere detection of some fault in the machine, while valuable for the
start of an investigation, does probably not offer the tangible advantages
a condition monitoring system has to have to justify its development and
implementation.

• Actionable analyses: The results of the diagnostic system have to be ac-
tionable for its addressees. This implies that the results are presented in
the form of recommendations and a rationale for the given recommenda-
tions.

• No decrease in productivity:A low sensitivity of a measurement necessi-
tates frequent measurements. This impacts the economics of the solution
adversely. Ideally, a measurement should not increase the downtime of
machines.

For industrial assets like machine tools, the impact of maintenance in terms
of costs and loss of productivity has become a major part in the assessment
of the total cost of ownership. Future machine tools will probably have to be
designed with serviceability and diagnosability in mind to remain competi-
tive. This requirement will most probably impact the software and hardware
architecture of future machine tools in a substantial way.
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2 Terms, Foundations and
Systematization of Diagnosis

2.1 Definitions
Process and condition monitoring, although closely related, are two different
processes and should be treated as such. The focus of this thesis will not be put
on process monitoring. The definitions of maintenance in [2] will be used as
basis for further discussions. A fault in a machine is a condition of a machine
when any of its components or their assembly is degraded and exhibits an
abnormal behavior. Additionally to the definition of a fault, the concept ofwear
limit is useful, which allows a given component of systems to be considered
worn down, without it having to exhibit unwanted or even unsafe behaviors.
A definition of failure is critical for condition monitoring systems. In general
failure can be defined as the loss of the ability to perform at least one required
function. Depending on the needs of different applications, failure can also be
further distinguished into

• a hard failure, e.g. broken parts in the system,
• a soft failure, the system fails to meet the requirement of reliability.

The failure time can be decided either explicitly by a mathematically-defined
failure criteria, e.g. a threshold, or, implicitly based on the historical cases that
are considered to have failed. In the first case, the failure can be defined as exact
thresholds on individual variables or a function of them, or it can be defined
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as a probabilistic threshold based on requirements of system reliability. The
failure criteria can be given as design specification or it can be estimated from
historical cases of failure. In the second case, the failure time of the monitored
system is not decided based on a single or multiple measurements or health
state predictions, instead it is estimated from the failure time of historically
failed cases of other instantiations of the system. In some cases the failure time
is decided by subjective judgement. For example, the recorded time of system
overhaul, or the time of a certain major maintenance action can be logged as
the failure time.
A failure can be said to have occurred, if a monitored state of a system passes
the threshold for the first time or only after multiple detections in consecutive
measurements. If a failure condition is reached irreversibly, the system is said
to have reached its end of life.
Wear is a mostly gradual damaging mechanism that starts with the com-

missioning of a system and will ultimately lead to its failure. The main driver
of wear is a movement that creates a load on the system. External factors like
overloads or adverse environmental conditions contribute to the damaging of
a system and can be much less gradual.
Monitoring of a system is a rather common practice that has been used

since at least the introduction of steam driven equipment, to keep people and
machine out of harm’s way. Normally, a critical variable of the system in contin-
uously measured and compared to certain preset limits to trigger predefined
actions. In this context the limits are immutable and do not evolve dynamically.
Checking against those limits results is a binary condition and can trigger ac-
tions, that span the spectrum from issuing a warning to the initiation of an
emergency shutdown.

Certain phenomena, or detectable patterns of behavior, allow for the identi-
fication of faults of components or the effect of wear on the system.
The term indicator usually refers, but not necessarily, to a unitless relative

number that is used to describe one or many attributes of the system under
consideration. Indicators are the basis for the identification of the system’s state.
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Diagnostics is amore complex and farther reaching concept thanmonitoring.
It uses checks on and classifications of indicators or sets of indicators with the
goal of obtaining a general view of the system.
Prognosis is the scientifically informed prediction about the evolution of

states or the occurrence of events that will happen at a future time instant.
The basis for a prognosis is the state of the system resulting from the prior
diagnostics step. Dependent on the estimate of the current state and certain
assumptions about the future loading of the system, probabilities about certain
future events can be derived.
Performance is the capability of a machine defined by one or more charac-

teristic quantities such as power, flow, efficiency or speed.
Thebaseline of a system are parameters or derived quantities obtainedunder

specific equipment configurations and specified operating conditions and can
be used as reference values for the system.

2.2 Transfer to machine tools with focus on drives
In the context ofmachine tools, themonitoring of readily available drive signals
might not be sufficient for an accurate diagnosis of its condition. Especially the
change of certain characteristics during the life-cycle of a machine is of high
importance for an assessment of its condition. The definition of the already
experienced damage is different for a complete system than for its components.
While a permanent change in thematerialmake-up of a component can indicate
the end of life of a component, this event may be of no or only little relevance
to the functionality of the complete system. Only a significant change in the
transfer behavior of commands of a machine tool can be regarded as a severe
fault or, when significant enough, failure. Wear and tear in machine tools can
normally be regarded as rather slow process. Collisions can induce a sudden
drop in the expected remaining useful life, as the damage for a system will gen-
erally be not linear in the magnitude of the shock: a collision at full speed with
a sturdy measurement apparatus for example will tend to have a more imme-
diate and severe impact on the system health than even a prolonged operation
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under normal conditions. The total load a component has experienced is more
promising as an indicator for the status of a component than the chronological
age of a component [1]. Non-linearity in the damage induced by stress also
need to be accounted for.

For a complex system, it might be infeasible to understand and model every
detail of the system’s behavior. What’s modeled therefore has necessarily to
be limited to the overall operating mechanisms of the system and some more
detailed models for critical components constituting the system under consid-
eration. The diagnostic and prognostic capability to cover more of the system’s
failuremodes is limited to the amount of available information about the system
or the respective subsystem. A complex system may exhibit highly non-linear,
stochastic behavior due to various reasons, such as manufacturing variations of
the vast number of components, their assembly, the simultaneous occurrence
and evolution of numerous fault and failure mode and non-linear relations be-
tween those factors and themeasured signals. These characteristics pose a great
challenge to basically all modeling methods. Additionally, the system behavior
from different time instances may behave inconsistently even under identical
operational conditions, due to time-variance of the system, which adds to the
hardness of the problem.

2.3 Modes of Diagnosis
Machine diagnosis can be categorized into the following groups

• Observation by the operator,
• Measuring instrumentation/Inspection procedures,
• Benchmark workpieces,
• External Sensors,
• Drive-based diagnostics.

There are also certain techniques that cannot be fitted easily into one of these
categories.
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2.3.1 Observation by the operator

One of the most common ways of monitoring a manufacturing system is the
monitoring by an operator of the machine. As the typical operator will spend
multiple hours a day near a manufacturing system, the operator will have an
intimate knowledge of the system and will thus be able to detect a variety of
changes in the system’s behavior ranging from sound emissions to the detec-
tion of vibrations or the detection of an unusual number of warnings of the
monitoring system.

2.3.2 Measuring instrumentation/Inspection procedures

Inspection procedures are mostly used to test single components and can be
associated with the need for complex measurement equipment. Their main
area of application is in highly safety-critical environments like aviation or
power plants. During routine maintenance procedures in these sectors single
components will be tested intensively to detect incipient faults like material
fatigue or cracks. During the inspections the systems under consideration can
be disassembled, checked, replaced if needed and reassembled. Measuring in-
strumentation in the context of machine tools are more commonly used during
manufacturing or the commissioning procedure. The instrumentation is not a
part of the machine but is only added for the duration of the measurements
and removed afterwards.

2.3.3 Benchmark workpieces

Workpieces that are only manufactured for the purpose of checking certain ge-
ometries for diagnostics are benchmark workpieces. Certain information about
the state of the machine tool can be inferred from the workpiece. Additionally,
not only information about the machine tool itself, but also about the oper-
ational processes can be gathered from a benchmark piece. It is a common
practice, though, to minimize the influence of the process to maximize the in-
formation content about the state of the drives.
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2.3.4 External Sensors

External sensors for the monitoring of manufacturing equipment are already a
readily available commodity. Ball screws are probably among the components
with the most advanced monitoring solutions offered commercially. Their bear-
ings are typically monitored with vibration sensors and the obtained signals
are processed in proprietary software. The external sensors are typically not
used for any additional task.

2.3.5 Drive-based diagnostics

Drive-based diagnostics uses already available signal sources in a machine
tool, like information about currents, accelerations, speeds and positions of the
drives. Additionally, the drive-based diagnostics can be divided into two differ-
ent conceptual ideas: model-based and signal-based approaches. The available
knowledge about systems can be a determining factor for the feasibility of cer-
tain approaches. Signal-based approaches do not assume a level of knowledge
about the system far beyond basic equations of movement that can be inferred
from information about the geometry of the systems and the general ability to
record data. The proportionality constants of bearing elements relative to the
speed of rotation of the motor can be seen as an example of this basic knowl-
edge.

2.4 Diagnostics approaches
The diagnostic process is generally triggered by detection of an anomaly during
routine monitoring, routine analysis, randomized analysis or human percep-
tion. This detection is carried out by making comparison between the present
descriptor of the machine and baseline values that are either chosen by experi-
ence, frommanufacturer’s specifications, commissioning tests or are computed
from statistical data, e.g. long term averages. Twomain approaches can be used
for the diagnosis of machine tools:
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• Data-driven approaches (trending, neural networks, statistical etc.).
These methods are generally automated and do not require deep
knowledge of the mechanism or fault initiation and propagation but do
require training of the algorithms using large sets of observed fault data.

• Model-based approaches, which rely on an explicit representation fault
behavior or symptoms, e.g. through faultmodels or correct behaviormod-
els.

The utilization of a combination of both approaches is possible and even war-
ranted for some use cases.

The describedmethods can also be divided into online/offline capablemeth-
ods. Online methods work during the regular operation of the machine tool,
while offlinemethods necessitate an interruption of the regular operation. Some
measurements can also conceivably be integrated into the regular operation of
the machine tool without any disturbance of its productivity.
Another differentiating category is the domain in which the assessment of

the system’s state is taking place in. Most sensors will sample data with a fixed
sampling rate in the time domain. These signals can be post-processed to enable
the analysis of system characteristics in the frequency, order or time-frequency
domain.
[3] advises to consider the following questions to decide on a suitable diag-

nostic approach:

• application of the equipment,
• end user for the diagnostic approach,
• monitoring technique,
• complexity of the knowledge to be modeled,
• need to haven an explanatory model,
• availability of existing data with known faults and normal operation.
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2.4.1 Model-Based Diagnostics

There are at least two different concepts offered by model-based diagnostics
for the task at hand. One is to create a model of the machine tool, the other is
to create a model of the failure.
If a model of the machine tool is created, there is again a differentiation to

be made between models that are based on physical-mathematical fundamen-
tal equations and models that try to recreate the input-output behavior of the
system without any additional layer of interpretation being inferable from the
resulting model parameters. The physics-based approach will in general re-
quire a greater amount of work and system knowledge to arrive at the same
approximation quality as a black-box model, but also allows for an easier in-
terpretation and a far better parametrization. A problem with physics-based
models is that their approximation quality can suffer during the life-span of a
system, when effects start to occur in the real systems that cannot be captured
by a simple parameter adjustments of the fixed model. While black-box models
may suffer from the same performance degradation, a retraining using newly
acquired data might suffice in fixing that problem.
A model-based approach can be seen as an indirect method for the prob-

lem of system monitoring. While it is not strictly necessary to have a model
for the detection or even identification of an incipient fault in a machine tool,
knowledge about the relationship between a system component and its effect on
measurements can allow for the detection of gradual changes in specific com-
ponents. A sufficiently good machine model or digital twin might also allow
for the detection of not yet problematic changes in system components.

Machine-Learning algorithms, like neural networks, support vector machine
or extreme learning machines can be and have been used to create a mapping
from inputs of a system to outputs.
Another approach is to use an observer to infer the state of a simulation

model. If the difference between the simulated output of a physics-basedmodel
and the real model deviates too much, a change in the real system will be the
most likely culprit. Also, repeated system identification with fixed dimension
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and model classes can be seen a type of model-based diagnostics, as changes
in the inferred parameters can be attributed to changes in the system under
consideration.
Creating a model of the failure itself is another interesting alternative, as it

does not assume intimate knowledge of the complete system, but only about
the effect of the failure on the system. These models do typically comprise a
much smaller number of equations and states.
Failure modeling is usually applied at the material or component level and

derived from wear or failure mechanism. A typical model for mechanical com-
ponents is a fault propagationmodel, such as crack or spall propagationmodels.
Fault propagation models usually have to incorporate the loading condition
as an input to correctly estimate the cumulative damage over time. The more
constant the usage over the life span of an engineering system is, the easier it
seems to be to detect faults and estimate their progression. Many characteristic
parameters for failure models have to be identified using experimental data.
Backed up by the first principles regarding relations of the measured data and
experimental setting, it is possible to use a fewer number of experiments to
identify the characteristics of the system compared to what is needed for data-
driven methods. However, due to modeling assumptions, modeling errors and
unforeseeable uncertainty in the application, the model may not be as accurate
for the real application as it is in the experimental setup. A mitigating strategy
is to accommodate the model by online parameter updating methods based
on the measured condition data at runtime [4]. One of their main drawbacks
can be seen in the fact that they are a rather narrowly focused description of
only one part of the system at hand; non-modeled failures will thus remain
undetectable.

2.4.2 Signal-based Diagnostics

As most damages to a system component will consist of changes in the func-
tional surfaces, a change in the emitted signals of these components can be
detected. Bearings, for example, will emit impulse-like excitations, every time
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the damaged surface of a bearing is passed by a rolling element. These impulse-
like signals are generated periodically, if the base-frequency of the drive is kept
constant and the resulting frequency can be inferred from the geometry of
the components. This characteristic frequency can be detected at measuring
locations that are spatially separated from the damaged bearing. Signals of
this type can be gathered either with external or drive-internal sensors. The
signal-based approach can be seen as the more direct approach compared to
the model-based techniques. The idea behind signal-based diagnostics is to use
various processing methods to tease out information that is already present
in the measured signals, but not necessarily obvious without some form of fil-
tering. Signal-based diagnostics typically comprises the creation of indicators,
the selection of relevant features and the construction of some form of either
classification or regression on the selected features. The creation of indicators
can involve the application of certain transformation like the short-time Fourier
or wavelet transformation on the raw signal to infer information in another
domain. It could also involve various steps, like denoising the signal or resam-
pling the time signal with a measured or inferred fundamental frequency of a
rotational drive, to obtain a signal that behaves as if it was measured at fixed
angular increments instead of at fixed temporal increments. After applying
suitable transformations it is common to extract characteristic features of the
resulting signals and to consider these as potential indicators. The next step
in signal-based diagnostics typically involves the selection of relevant features
that are used in the resulting statistical model, which can either be some sort
of detector of novelty for the fault detection case, some sort of classifier for the
fault identification case or some form of regression for the fault prediction task.

2.5 Maintenance
Highly integrated production processes and the tight schedules used in
manufacturing today put a premium on the reliability and efficiency of the
equipment. Maintenance is supposed to keep equipment operating at or
near their peak capacity. More formally, maintenance can be defined as the
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"combination of all technical, administrative and managerial actions during
the life-cycle of an item intended to retain it in, or restore it to, a state in which
it can perform the required function." [5]

Historically, maintenance consisted mostly of cleaning, lubricating and cal-
ibrating the equipment. Repairs were mostly triggered after a failure had oc-
curred. The equipment was designed with larger margins of error than is com-
mon today, breakdowns were relatively rare and repairs were rather easy due
to the simple design of the equipment. A single equipment failure had only
limited effect on production, because of the lack of integrated production pro-
cesses.

The second world war had a large impact on production processes. To meet
the larger production requirements of war industry, the level of automation
and integration was increased considerably. Production lines were created by
connecting equipment sequentially. But this also affected the severity of equip-
ment failure, since a single failure could bring the whole production line to a
hold. Preventive maintenance process, consisting mainly of scheduled equip-
ment overhauls, started to emerge as a countermeasure to reduce the number
of breakdowns and a way of reducing costs for maintenance [6].
Modern communication technology and the global competition of markets

have made the modern degree of integration both possible and necessary. The
increase in usable technologies is also reflected in an increase in the availability
of maintenance processes which try to improve upon corrective and schedules
maintenance strategies. In [5] maintenance processes are divided into differ-
ent categories, which are depicted in Fig. 2.1. The main categories are preven-
tive maintenance, which is done before a specific fault has been detected and
triggered a maintenance call, and corrective maintenance that is done after a
specific fault has been detected. Preventive maintenance is further divided into
condition-basedmaintenance andpredeterminedmaintenance. Predetermined
maintenance does not rely on any sort of investigation into the actual state of
the unit under consideration.
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Maintenance

Preventive Maintenance Corrective Maintenance

Predetermined
Maintenance

Condition Based
Maintenance

Predictive
Maintenance

Figure 2.1: Taxonomy of maintenance actions. [5], adapted.

Preventive maintenance makes it possible to raise the reliability level of the
production equipment. Effective preventive or even predictive maintenance
enables the reduction of unplanned downtimes and the avoidance of penalties
for delayed deliveries. The cost of preventive maintenance can rise dramati-
cally, however, if the desired level of reliability is set too high. This necessitates
the maintenance organization to decide on their preferred level of preventive
maintenance as a function of the effects of equipment failure and the efficiency
of preventive maintenance. For a more thorough introduction to maintenance
and repair strategies, the reader is referred to the literature, for example [7].

2.5.1 Causes for degradation

There are two principal causes for the degradation of components with rolling
contacts, like bearing and guide ways. One is the usage of the component ac-
cording to their specifications during normal operations.Wear and tear is in this
regard a special case of damage inflicted to the system. The second main cause
for degradation is improper or unsuitable use or excessive workloads, which
can lead to localized damages like plastic deformations of functional surfaces.
The drives of a machine tool transform positioning signals into force or torque.
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This causes a transmission of mechanical power via mechanical contacts and
is thus the cause for the damage.
Degradation is also influenced by operating and environmental conditions.

Aging is a further component of degradation that can influence the properties
of lubricants and surfaces, i.e. through oxidation. Only effects of the normal
operating regime can ever be used for predicting the condition of a machine
tool or component in the future. The effects of other sources of damage, for ex-
ample plastic deformations caused by improper usage,might be detectable by a
condition monitoring system, but could only be predicted, if improper usage of
a machine tool was assumed in a forecast. Damage modes that occur randomly,
like pitting, can by their very nature only be considered probabilistically.
Tear is the loss of surface material primarily caused by mechanical interac-

tions, i.e. by the application of forces and relative movement. If there exists
friction in such a system, it is a tribological system and has to be analyzed with
respect to the energy transformation processes by friction and to the loss of
material that leads to changes in the geometry of the affected components and
ultimately to a loss of functionality. [8, p.105]

Often, tribological systems are classified by their structure and the collective
of their stresses. The structure consists of all bodies, solids and media of the
system, the collective of stresses consists of load, relative velocities and tempera-
ture. Two frictional wear and tear mechanisms can be identified: body-to-body
contact with or without lubricant and wear under the influence of abrasive
particles. There are basically four damage types:

• abrasion by hard ridges on one of the bodies or by granules between them,
• fatigue of the microstructure by repeated application of mechanical stress

in the border region,
• adhesion caused by molecular reactions of media in the zone of contact,
• ablation of material caused by excessive energy densities at the surface.
Most components of interest in machine tools have rolling contacts. For this

type of contact abrasion and fatigue are the dominant types of damages the
system will experience.
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For a drive, this implies that the Hertzian contact pressure between rolling
elements and guidance will introduce damages in the microstructure of the
metallic building materials. Repeated application of stress to this area will fa-
cilitate the occurrence of pittings. Once these larger damages appear on the
contact surfaces, the loss of functionality of this rolling contact becomes immi-
nent. The very same damage phenomenon can be caused by improper usage
and excessive stresses as well as by environmental conditions.

2.5.2 Types of damages

To cluster certain phenomena of damages, a finer differentiation of types of
damages is useful. There are two additional classes of degradation phenomena
that are of special interest in the context of detecting damages: their periodicity.

Periodic Damages

Periodic types of damages necessitate the presence of a mechanic contact be-
tween several moved components. A rolling contact is the most classic and
common example of this type of structure. A small, localized damage to the
geometry, i.e. pitting, causes a jolt or localized change in the friction of the bod-
ies while the damaged location on the surface is passed over. The impulse-like
excitation is produced with every passing and is thus periodic with respect
to the geometry of the components and, if the relative speed of the bodies is
constant, also periodic with respect to time. In the latter case, the characteristic
frequency of the train of impulses can be identified with tools of the frequency
analysis. This frequency can be attributed directly to a mechanical component,
if the geometrical characteristics of the components are taken into account. The
frequency is a function of these characteristics and the fundamental rotational
frequency or the translational speed, which is often known or inferable from
measurements. It is not always possible to measure the effect of the impulse
train directly, because vibrations in the surrounding material can be excited by
it. The material will vibrate with its eigenfrequency, driven by the energy that
is periodically extracted form the drive system [8].
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Aperiodic Damages

Aperiodic damages do exhibit phenomena that are not periodic, neither spa-
tially nor temporally. They are therefore not associated with a characteristic,
speed-proportional frequency. This type of damage can affect the drive at all
positions. A typical example is a change in the friction of a bearing or the loss
of stiffness of a component. Aperiodic types of damages exhibit a wide range
of effects on the characteristics of the components. Aperiodic damages can be
interpreted as ranging from slow to almost instantaneous changes of relevant
linear or non-linear mechanical characteristics of the system. [8]

2.5.3 Condition-based maintenance

The intent of all types of preventivemaintenance, such as condition basedmain-
tenance, is "to reduce the probability or the degradation of the functioning of
an item" [5] and to prevent the irreversible damage to equipment. Failure modes
are the effects that cause equipment failures such as adverse changes in the ma-
terial of components or cracks. Some causes of such failure modes have been
discussed in section 2.5.1.
As a general rule, the more complex a system is, the more complex its fail-

ure modes tend to be. In simple equipment, time-dependent failure modes
dominate. In complex systems, the number of possible failure modes and their
complex interactionsmake it unlikely that relying on regularly scheduled equip-
ment overhauls suffices to keep such equipment reliable. The more knowledge
about failure modes and their ensuing phenomena exists, the more likely it is
to detect impeding failures with one of the measurement types discussed in
Section 2.3.
The deterioration of equipment can be visualized conceptually with the Po-

tential Failure curve, Fig. 2.2,with the two dominant points of "potential failure"
(P) and "failure" (F).

The ability to generate an index of health for the equipment and of creating a
large enough temporal gap between these two points determines the feasibility
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Figure 2.2: Potential Failure Curve. [5], adapted.

of condition-based maintenance strategies. If there is no health index or the
timespan is too short to react, preventive maintenance cannot be used produc-
tively. Of course there is a multitude of attempts for generating such health
indexes and for maximizing the timespan by the use of diverse mathematical
methods that contribute to an increase in usability of condition based mainte-
nance strategies. The state of research in this field and conceptual challenges
to these attempts will be presented in Chapter 3 and 4, respectively.
Here, it is sufficient to note that these systems are always a function of the

available information about the system: If there is no system expert that is able
to correctly label the condition of a possibly very complex system, there are
only statistical tools that can be used to detect anomalies, but there is no prin-
cipled way to better categorize them. The relevance of these anomalies has to
remain unclear until further investigation has been conducted. If there is no
data available about whether or how a certain failure mode influences the ob-
served signals of a system and no expert knowledge can provide a sufficiently
accurate estimate of the effect, there is no way to create a trusted automated
system for the identification of that specific failure. If there is no data available
about the trajectory of the observed signals related to a specific failure mode,
and no expert knowledge that could substitute it, there is no way to systemati-
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cally build an accurate predictor of the fault. Different algorithms might utilize
available data to different degrees of efficiency, none of them can work without
any data.

An example of a systemworking with very little data is case-based reasoning.
Case-based reasoning aims at providing actionable suggestions for situations
or problems that are similar by some measure to an already experienced and
solved problem. What worked for a historically solved case is suggested as solu-
tion for the "similar" case at hand. A root-cause analysis is typically conducted
for each failure mode. On the other side of the spectrum are methods of deep
learning, which have shown state-of-the-art performance in a wide range of
tasks. Methods of deep learning, when deployed on systems with a lot of com-
putational power, can handle - but also require - amounts of data that arewidely
considered to be "big" in volume, variety and velocity. These methods map the
specifics of every training instance during training to some set of parameters
with respect to some constructed measure of success, e.g. mean error rate. In
most cases, there is no easy way of telling why a specific test gets mapped to a
specific output.

2.5.4 Prioritizing diagnostics needs from a maintenance
perspective

[3] specifies what components a monitoring system should be devised for. It
could be thought of a guide for the respective owner of the engineering solu-
tion. The idea is straight forward: devise a measure for the severity of a fault,
find those components for which faults have the highest negative impact and
construct a condition monitoring solution to the extent that the available or
obtainable information allows to be realized economically. Another important
practical question is how to prioritize the development and implementation
efforts for a condition monitoring solution. A seemingly natural approach is
described in [3], the Failure Mode Symptoms Analysis, which advises to:
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1. analyze the availability, maintainability and criticality of the system with
respect to the whole production process;

2. list the major components and their functions;
3. analyze the failure modes and their causes as component faults;
4. determine the criticality, taking into account the gravity (safety, availabil-

ity, maintenance costs, production quality) and the occurrence frequency;
5. decide accordingly which faults should be covered by diagnostics;
6. analyze under which operation conditions the different faults can be best

observed and define reference conditions;
7. express the symptoms that can serve in assessing the condition of the

machine and that will be used for diagnostics;
8. list the descriptors that will be used to evaluate the different symptoms,
9. identify the necessary measurements and transducers from which the

descriptors will be derived or computed.

The process is essentially a modification of the FMEA process with a focus
on the symptoms produced by each identified failure mode and the subsequent
selection of the most appropriate detection and monitoring strategies. Corre-
spondingly, this tool should be used in conjunction with an existing FMEA
analysis that has already identified and ranked possible failure modes. During
the Failure Mode Symptoms Analysis, the symptoms of each failure mode have
been ranked by detection rate, severity of the fault, diagnosis and prognosis
confidence. The Monitoring Priority Number (MPN) is the result of the mul-
tiplication of the four preceding rankings and results in an overall rating of
each failure mode. A high MPN value indicates that the nominated technique
is suitable for the detection, diagnosis and prognosis of the associated failure
mode. A low MPN value does not imply that monitoring is not necessary but
rather that a low confidence for the accuracy of detection, analysis and progno-
sis can be expected with the nominated monitoring technique and frequency.
The least favorable case is a failure mode with high severity, low detectability,
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and low diagnostic and prognostic confidence. The most favorable case is of
course a failure mode with low severity, easily detectable, with known failure
modes and associated patterns and therefore a high diagnosis and prognosis
confidence level.
The more complex a system under consideration, the more difficult it becomes
to apply the Failure Mode Symptoms Analysis thoroughly. It is highly unlikely
to be able to predict all failuremodes and to have access to all signals thatwould
be needed to detect even the already identified ones. Where this information
is available, however, this method seems like a reasonable approach to guide
the development process of a diagnostics system.
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The topic of preventive maintenance, ranging from condition-based mainte-
nance to predictive maintenance, has attracted a lot of research over the last
decades. The applications reach from the detection of faults in ball bearings,
gears, valves and ball screw drives to induction motors, batteries, and engines
for Mars rovers. There exist a few overview articles about methods and devel-
opments in the realm of conditionmonitoring [9]–[13], some of those overview
articles focus more on certain components of drives, such as the electric mo-
tors [14]–[18]. [19] gives an overview of even broader frameworks for factories
in the context of Industry 4.0, in which data-based applications like condition
monitoring are an integral part of the overall production system. This chapter
will look at work done in the realm of condition monitoring and its overlap
with methods of the realm of machine learning, that have been used to provide
the functions of a condition monitoring system described in Chapter 1.

3.1 Model-based Diagnostics
One of the approaches mentioned in Section 2.4 is a model-based approach,
where there are at least two different concepts, the modeling of the damage,
which is often non-linear in nature, and the modeling of the system, which is
often approximatedwith using linear state equations. While there are of course
white-box models of systems, that are built up from basic physical equations to
create a model of the system, in this section only work on data-driven methods
is reviewed.
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3.1.1 Damage Processes

There has been some research that tries to offer generalmethods tomodel faults
of a system. [20] uses a General PathModel,which assumes an underlying func-
tional for the degradation path of a specific fault mode to estimate a time of
failure distribution. A similar approach is used in [21],where the parameters of
the system are tuned with a genetic algorithm. An alternative for the modeling
of the damage process is described in [22], where the rate of degradation of a
system’s components are related to the irreversible entropy produced by the
underlying dissipative physical processes. An approach that simplifies degra-
dation phenomena into three characteristic categories, namely linear, concave
and convex, is presented in [23]. Each such category can be modeled by one
of the passive elements of a bond graph, namely by a resistor, a capacitor or
an inductor, respectively. A degradation phenomenon of a system is assumed
to be nothing but a continuous drift in one of the parameters of a system. The
system fails, when the evolution of any set of parameters of interest violated at
least one predefined threshold. [24] used a similar approach to decompose a
system and assign generic damage evolution characteristics to the components
of a system.

3.1.2 System Identification

The proper identification of system parameters is a problem that has attracted
a lot of research interest over the years. In machine tools, almost all of the time
the drives will be operated in a closed-loop mode, due to either unstable be-
havior of the plant, or safety and efficiency concerns. This necessitates the use
of techniques that are designed to create an estimate of the system from data
that was acquired under closed-loop conditions. The main problem with data
from closed-loop experiments is the lack of statistical independence between
the disturbances entering the process and the input of the system, which puts
a fundamental limitation to the use of standard open-loop identification meth-
ods [25], [26]. There exist several closed-loop parametric model identification
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methods that make different assumptions about model structure or knowledge
about the controller model. The model-based condition monitoring approach
assumes the availability of a model of sufficiently high accuracy to compare
either the predictions of this model to the actually measured values, or, alter-
natively, to detected changes in the coefficients of the models over time, which
are interpreted to be at least correlated to degradation phenomena. The topic
of closed-loop identification has attracted an increase in interest due to efforts
creating and integrated identification and control framework. The key idea is
to jointly identify the plant and design a control strategy with the objective
of optimizing a control performance criterion. For such tasks, it would be ad-
vantageous, if the system identification could be done with routine operating
data, as this would not decrease the performance of the system due to an in-
crease in downtimes. [27], [28] showed what conditions need to apply to at
least theoretically being able to identify a system using operational data only.
Formore formal proofs of these conditions, the reader is referred to [29]. Study-
ing the InformationMatrix in the prediction error identification setup, [30] also
derived constraints on the excitation signal for the identifiability of a closed-
loop system. The persistent excitation of a signal has to be larger than some
thresholds that are functions of system lag and the order of the controller. The
persistent excitation of a discrete signal uk is equal to the largest n, for which
R(n) is invertible, where

R(n) =



γ(0) γ(1) γ(2) · · · γ(n − 1)
γ(1) γ(0) γ(1) · · · γ(n − 2)

γ(2) γ(1)
. . . . . . ...

... ... . . . . . . γ(1)
γ(n − 1) γ(n − 2) · · · γ(1) γ(0)


and γ(k) is the autocovariance function at lag k, defined as

γ(k) = lim
N→∞

1
N

N

∑
i=k

ui − ui−k.
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The identification of a model based on input-output data is a common prob-
lem in control theory [31] and methods like Nonlinear autoregressive moving
average with eXogeneous input (NARMAX) [32] have been developed for this
task and adapted to better be able to deal with uncertainties in the acquired
data [33]. While classical prediction error models have been used extensively
for the task of system identification, other works try to approximate the system
with neural nets of some form [34] or use subspace identification methods to
directly estimates a linear-time invariant state space model [26], [35], [36].

3.1.3 Bayesian Filters

If there exists a dynamical model of either the system or the fault, it is often
necessary to update the current state of the (modeled) system given some
observation. Following [37], the state is defined as

The state of a stochastic dynamic system is defined as the minimal
amount of information about the effects of past inputs applied to the
system that is sufficient to completely describe the future behavior
of the system.

In practical application, the measurement of initial conditions and subsequent
measurements are never precise, which necessitates the handling of uncertain-
ties, a topic that is of such relevance for condition monitoring systems that it
will be dealt with in Chapter 4. At this point is suffices tomention that updating
the belief about the state of a system according to Bayes theorem is probably
the most excessively used method.
While [38] shows conditions for the existence of exact finite dimensional non-
linear filters, which where applied in [39], there are basically two methods
to approximate the ideal Bayesian filter, which are used for practical applica-
tions: some version of the Kalman filter or some form ofMonte Carlo Sampling,
mostly Particle Filtering.
Kalman Filters were originally designed for linear models that are subject to
Gaussian noise. An estimate of the posterior distribution of the state is given
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directly by this approach. Although it was developed of linear systems, the
Kalman filter has been applied to linearized version of non-linear system nev-
ertheless, which enabled its use in a variety of applications in the realm of
condition monitoring. The Kalman filter can be seen as building block for any
system that tries to describe either the system or the fault as a dynamic sys-
tem [40]–[43]. An extension of the Kalman Filter, the unscented Kalman Filter
was introduced in [44] and improved in [45]. This version of the Kalman filter
does not approximate the non-linear state space model but instead uses a few
carefully chosen sample points and transforms them using original dynamical
equations of the system. This enables the accurate capturing of the posterior
mean and covariance of any nonlinearity to the 3rd order. It has been used in
a condition monitoring contexts [46]–[49]. [50] introduces another version of
the Kalman filter, which exploits the so-called spherical-radial cubature rule
to find a set of cubature points, which are sufficient to give approximations for
certain integrals, which reduces the computational complexity of this method
significantly. In [51] a constraint Kalman Filter is used, that truncates the prob-
ability density function in order to guarantee monotonicity in the models of
degradation processes.
Particle Filtering tries to approximate the posterior distribution of the state of
the system indirectly by the use ofMonte Carlo simulation tomake the Bayesian
framework computationally tractable for nonlinear systems. Random samples
of the present state are chosen with associated weights and transformed by the
system equations to get an estimate of the posterior distribution. As the esti-
mate of the posterior distribution becomes more accurate, when more samples
are used in the simulation, computational cost have to be weighed against accu-
racy for most interesting problems. Particle filtering has been used extensively
for condition monitoring applications [52]–[55]. Various combinations of the
particle filter and other methods, like blind deconvolution for a planet gear
boxes, or their application to dynamic Bayesian networks have been presented
for the monitoring of systems [56]–[60]. A comparison of the performance of
an unscented Kalman filter and a particle filter can be found in [61].
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3.2 Signal-based Diagnostics
The other of the two approaches presented in Section 2.4 is called signal-based
diagnostics. The idea is to create certain features, using transformations, fil-
ters, resampling or more advanced methods. Of course combinations of these
methods can also yield viable options. After the features have been created,
some of them are selected to be indicators for the statistical model that has to
be created to enable the conditionmonitoring system to fulfill at least one of the
functions of a condition monitoring system. It is not necessary to apply each of
these stages, nor is it necessary to apply each of these stages only once. Some
deep-learning algorithms for example work on raw data directly and apply
sequential transformations by design.

3.3 Feature Creation
Feature creation is the name for the application of certain transformation, filters,
etc. on a raw signal to create features with a high information content. This re-
duces the number of possible regressors for a statistical model. This task can be
seen as key component of every diagnostic system, as the usage of ambiguous,
noisy of uninformative features would undermine the overall performance of
a diagnostics system. A lot of applications use signal processing techniques
to extract relevant information from the raw signals. The Fourier transform is
so ubiquitously used that an account for its usage in the literature is omitted.
Other popular methods to transform a signal from the time domain to either
the frequency or even the time-frequency domain are the wavelet transforma-
tion [62], [63] and the Hilbert-Huang-Transformation [64], [65].
The wavelet and wavelet package transformation have been used quiet exten-
sively for condition monitoring task. [66]–[74] are just a small selection of
works that used this technique successfully for the creation of features from
raw signals. These transformations are often combined with other techniques
like in [75]–[78] to create features that have some beneficial properties for a
diagnostics system, like the reduction of noise for example. The other major
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transformation, that has been used repeatedly and productively for condition
monitoring tasks is the Hilbert-Huang transformation [79]–[82].
Similar to the wavelet transformation, the Hilbert-Huang transformation is
used frequently in combination with other methods like autoregressive mod-
els, which benefit from certain characteristics of the intrinsic mode functions,
into which the Hilbert-Huang transformation decomposes the raw signal [83],
[84]. Other examples for signal processing that try to decompose the measured
signal into more easily analyzable components are the intrinsic timescale de-
composition [85], the Taeger-Huang-Transformation [86] or the discrete Gabor
expansion [87], some of which have also been used for the analysis of the con-
dition of components.
Some researchers try to directly apply a filter to the measured signal in order
to directly monitor the system in real-time. [88] for example utilizes sweeping-
filters to implement a fastmethod for the health assessment of tools inmachines,
where programmable second-order filters are employed to amplify the fault
signal of a cutting tool.
Another approach for designing filters is based on the spectral kurtosis of sig-
nals of rotating machines in possibly non-stationary operating conditions [89],
[90]. The spectral kurtosis is a fourth-order spectral cumulant and signifies the
peakedness of a probability function, which can be interpreted to signify the
temporal dispersion of the time-frequency energy distribution or alternatively
the peakedness of the squared envelope of the signal. The spectral kurtosis can
be used to detect transient signals. Given the spectral kurtosis of a sum signal,
a matched filter for the maximization of the kurtosis of the filtered signal can
be devised. The derived filters have been applied to the problem of bearing
monitoring [91].
There are also works that focus on the utilization of other higher order spectra
of signals, like the bispectrum. The idea is that all cumulant spectra of order
greater than 2 are identically zero for Gaussian random variables, which are
assumed to be a good model of noise. If noise tends to be distributed normally
and additive, it should therefore not influence the higher order spectra.

35



3 State of Research

[92]–[95] are only a small selection of the application of these techniques to
condition monitoring tasks.
Another signal processing technique that is used in the field of mechanical sig-
nature analysis is cyclostationarity [96]. A cyclostationary signal is one that ex-
hibits some periodicity of its energy flow that is hidden. It is applied to rotating
machines and specifically geared towards applications that produce signals that
are not stationary according to the mathematical definition of that term. This
concept has also been applied to the monitoring of components, like bearings
and gears. [82] introduces a method based on characteristic distances for the
monitoring of ball screw drives. Geometrical properties of the ball-screw drive
are used to find characteristic distances associated with components. Measure-
ments of a ball screw drive with induced degradation are taken with samples
that are equidistant in space, not in time. Some advantages of this approach
compared to vibrations-energy based features [97] have been demonstrated
[98]. This can be seen as an application of the concept of the instantaneous
frequency, which has been used to amplify fault signals of rotating machinery
[99]–[103]. Typically, it is attempted to resample a signal that has been mea-
sured equidistantly in time to a signal that behaves similar to the type of signal,
which [82] measured directly. All of these approaches attempt to make signals
from machinery in non-stationary conditions usable. [104] presents a method
of rescaling vibration-based features to also account for non-stationary operat-
ing conditions.
Fuzzy sets and systems were introduced in [105] and [106], respectively, which
are a method for information granulation [107], which is likened to the way
humans reason [108]. Fuzzy membership functions are often used to map an
observation to a measure of similarity. These measures are then used as an
input for diagnostic systems instead of the original measurements. Examples
of the application of methods from the fuzzy set theory are given in the subse-
quent sections. Rough Set theory has been introduced in [109] and is, like fuzzy
set theory, a method to granularize information by providing approximations
of instances that are suited for similarity comparisons and providing a way to
reason about uncertainties rigorously [110], [111]. As is the case with fuzzy
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methods, rough set theory has been used as a preprocessing tool in the realm
of condition monitoring, which yet again maps observations to a measure for
similarity [112]–[114]. Despite sharing many characteristics, fuzzy and rough
sets can be shown to not be equivalent [115]. Combinations of fuzzy and rough
descriptions of observation have also been used successfully [116].

3.4 Feature Selection
Features extracted from raw signals are typically prone to containing large
amounts of redundant information, which might impede the practical appli-
cation of automated machine condition monitoring. For a lot of applications
the demands for processing power and storage capacity grow far faster than
linearly with the problem dimension, which can be taken as number of features
that are used. For this reason, various works focus on selecting from among
the available features a subset of relevant ones.
Artificial Neural Networks have been used to find optimized feature sets from
many feature parameter types of vibration signals [117]. Another way of de-
termining the relevance of certain features is to use a method called automatic
relevance detection. It uses a probabilistic setup to find components of a feature
vector that are irrelevant to a generative model y = Φx + ϵ, where Φ ∈ Rn×m

is a dictionary of features and x ∈ Rm is a vector of unknown weights, y is an
observation vector and ϵ is uncorrelated noise ϵ ∽ N (0, λI) [118]. Instead of
identifying the "most important" features, unimportant features are removed.
The technique has been used for a condition monitoring system for rotating
machinery [119].
Originally developed for linear regression models, but later extended to more
general models, the Lasso algorithm is another form for detecting relevant fea-
tures. By introducing a constraint on the absolute value of the sum of coeffi-
cients, some coefficients are produced that are exactly zero [120] The resulting
models can be viewed as belonging to the class of interpretable models. Chap-
ter 6 will focus on interpretability more closely.
[121] introduces a method for the detection of relevant features that is based
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on their predictive capabilities. An approach to select features based on their
monotonicity and trendability is presented in [78].
STRASS(STrongRelevantAlgorithmof Subset Selection) is an algorithm,which
produces 3 categories of features: "strong relevant", "weak relevant" and "re-
dundant". This algorithm has been used in [122] for the improvement of the
performance of different classifiers on a variety of data sets.
A method that aims specifically at selecting the most important component
state for maintenance decision is described in [123].
If certain assumptions about the mathematical geometrical properties of the
data points themselves aremade, data-points can be described as noisy samples
of an underlying manifold, which in fact enables the reduction of the problem
dimension and has also been applied to fault diagnosis tasks [124]. Generative
Topographic Mapping is another approach utilizing similar assumptions and
has been used for the health quantification and selection of relevant features
[125]. [126] uses Dominant Feature Identification based on principal compo-
nent analysis and clustering to determine dominant features.

3.5 Regularization
Regularization is a term describing the addition of information to an ill-posed
problem in order to solve it, increase its robustness to noisy samples or to avoid
overfitting issues [127]–[129]. In a lot of the algorithms that are to be presented
in the following sections, regularizers are intrinsically employed to limit for
example the complexity of the solution space or to smooth the input data in
some form. It can be shown that training with noisy examples can be seen as
a form of regularized learning [130]. Constraining the data to be regarded as
samples from an underlying low-dimensional manifold has some interesting
properties, like a linear time complexity to find themapping onto the generating
manifold [131], [132]. Mapping data to this manifold can reduce the dimen-
sionality of the problem. It seems like there are some fundamental connections
between manifold regularization and semi-supervised learning [133], [134].
Regularizers of this type have been applied to large data sets [135]. [136] intro-
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duced a new form of regularization by randomly omitting feature detectors on
each training case. An improved version of this sort of regularization has been
introduced in [137] an is dubbed "DropConnect".

3.6 Novelty Detection
The simplest function to be accomplished in constructing a condition monitor-
ing system is the capability of detecting novel system behavior. As the system
should be in a healthy state upon delivery, this novel behavior can be seen to
indicate a fault. It might even be impossible to proceed any further on the "hi-
erarchy" of condition monitoring systems, because there is simply not enough
data from "abnormal" cases in training sets to construct explicitmodels of excep-
tional cases. The main idea is to construct a model of normalcy frommore read-
ily available data under regular operation conditions. [138] gives an overview
over different novelty detection schemes. Novelty detection can be seen as the
task of recognizing that test data differs in some respect from data that was
available during learning and which is assumed to represent normal behavior.
The practical importance of this task has led to many proposed approaches.
According to [138], there are at least five general categories:

i) probabilistic,
ii) distance-based,
iii) reconstruction-based,
iv) domain-based and
v) information-theoretic

techniques.
Approach (i) often uses probabilistic methods that try to create a probability

density estimation for the "normal" class. The underlying assumption is that
low density areas in the training data set indicate that there is only a low prob-
ability of containing representations of "normal" data. Interesting methods in
this realm include attempts to estimate the underlying generative probability
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distribution function (pdf) of the data. The pdf estimate can then be used to de-
fine boundaries of normality by introducing thresholds. A newdata sample can
be tested against these boundaries to determine its membership status. [139]
present a self-adaptive system for the automatic creation of such thresholds
for a condition monitoring system. There exist parametric and non-parametric
estimators for this task.
One example of the parametric approach is called extreme value theory [140],
a branch of statistics that deals with extreme deviations of a probability distri-
bution, i.e. extremely large or extremely tiny values in the tails of distributions
assumed to generate the data. This method has been applied for conditionmon-
itoring purposes example in [141]. State-Space models are another example
of parametric probabilistic methods used for novelty detection in time-series
data. Their underlying assumption is that there exists a not necessarily directly
observable state that evolves through time, possibly as a function of the inputs.
Hidden Markov Models (HMM) fall into this category. Each state is associated
with a probability distribution, the "emission probability", and each pair of
states (i, j) has associated "transition probabilities" which represents the prob-
ability of being in state q given that the system was in state p on the previous
time sample. While the features are observable, the system states are not and
are called unobservable, hidden or latent states. The parameters of HMMs are
trained using available data [142] and have been used extensively for diagnos-
tics applications [143]–[148].
Non-parametric methods often make use of kernel-density estimators [149],
where the pdf is typicallymodeled byGaussian kernels centered on data points,
for which the variance has to be trained. The sum of the contributions of nearby
kernels gives an estimate of the probability for yet unobservedpoints in the data
space. [150] gives an overview of certain types of density estimators, which
have been used repeatedly for the purpose of novelty detection [151]–[155].
Approach (ii) includes concepts like nearest-neighbor and other clustering

analyses that have also been used for the more general classification case. The
idea here is that data representing a normal mode of operation should be near
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to each other according to some measure. The Euclidean or Mahalanobis 1

distance are amongst the common choices for that underlying measure. Abnor-
mal behavior should be represented by a large distance to other data points
or clusters. The usage of a case-based reasoning process scheme is presented
in [156]. The measure of similarity does not seem to be as well-defined as for
other distance-based novelty detection schemes, though.
The third approach uses regression models of some form or another. The func-
tional relationship of these models is established by using training data from
a normal mode of operation. If data from an abnormal operational regime is
mapped using these models, the reconstruction error is expected to be large,
thus giving rise to a huge novelty score. Various versions of neural networks
have been proposed and used for this task. [157] presents a novelty detection
approach for multivariate datasets based multilayer perceptron, with the same
number of input and output neurons, and three hidden layers. This layout is
called replicator neural network (RNN). The RNN is supposed to reproduce
the input points at the output layer with the minimum reconstruction error,
after undergoing a compression through the hidden layers containing fewer
neurons. A small set of input points with large reconstruction errors are consid-
ered as outliers. [158] used autoenconders to compute the bitwise difference
between input and output to highlight novel components of the input.
Approach (iv) uses domain-based methods to characterize the training data.
The goal of these methods in general is to create a boundary around the normal
data points. This boundary is supposed to follow the outline of the underlying
distribution of the data, but they do not explicitly create an estimate of that
density. A good example of this method is Support Vector Data Description,
which tries to model an "in-group" and an "out-group" by learning a model of
normalcy [159]–[161]. This method has been used to detect faults in machines
[162]. Deep Learning on a support vector data description has also been pro-
posed [163].

1 The Mahalanobis distance of an observation x from a set of observations with mean µ and covari-
ance matrix Σ is defined as dM =

√
(x − µ)Σ−1(x − µ). In case of standard normally distributed

variables, the Mahalanobis reduces to the Euclidean distance.
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Approach (v) uses information-theoretic measures to detect huge changes in
the information content of a data set induced by the addition of "abnormal"
data. In [164] a parameter-free method for anomaly detection based on com-
pression theory is proposed. A sequence of continuous observations is divided
via a sliding window into subsequences. The subsequences are then compared
to the whole sequence by approximating their respective Kolmogorov com-
plexity, which measures information content of a signal by trying to find the
shortest computer program that produces the sequence as an output. In the
general, this metric cannot be computed exactly and the size of the compressed
file that contains the string representation of the sequences is used as a proxy
of this measure. [165] proposes a local-search heuristic to identify outliers in
categorical data based on entropy, which measures the information content of
random variables. In this measure, outliers are those observations that reduce
the entropy of the dataset significantly, when removed. The Kullback-Leibler di-
vergence has also been used successfully as metric for the detection of outliers.
[166], [167]

3.7 Case-Based Reasoning
Case-based reasoning (CBR) is a paradigm for solving problems that is inmany
respects fundamentally different from other statistical approaches. CBR is able
to utilize the specific knowledge of previously experienced, concrete problem
situations (cases). Insteadof relying exclusively on general knowledge of a prob-
lem domain or making associations along generalized relationships between
problem descriptors and conclusions, a new problem is solved by finding a
similar past case and reusing it in for the new situation. A second important
difference is that CBR also is an approach to incremental, sustained learning,
since a new experience is retained each time a problem has been solved,making
it immediately available for future problems, which solves some problems of
incremental learning common in other learning paradigms [168]. Case-based
reasoning is an example of a system that canworkwith comparatively little data.
It is aimed at recommending actionable suggestions for situations or problems
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that are similar (by some measure) to an already experienced and solved prob-
lem. To be able to provide these suggestions, it is necessary that a root-cause
analysis is conducted for each problem case. Case-based reasoning has been
used in the Overall Management Architecture for Health Analysis (OMAHA)
framework, which has been deployed in the civilian aviation industry. [169].
A central maintenance system is used to correlate failure messages from mod-
ules to observable effects like displayed messages. A fault item is generated for
every failure message and the CMS tries to correlate new failure messages and
effects to yet unexplained fault items. If they can not be correlated, a new failure
item is created and added incrementally to the knowledge database. For each
failure item a root-cause analysis is conducted. Unfortunately, not all failure
items are mono-causal and in an application of this method for airplanes, up
to ten root-causes for each fault item and up to three modules per root-cause
were identified as possible culprits [170].
An interesting conceptual difference between CBR and other data-driven meth-
ods is the point in time, when the generalization from already experienced
problem instances are drawn. CBR delays generalization of its cases until test-
ing time and therefore realizes a "lazy" generalization strategy,whilemost other
data-driven methods generalize during training time.
It has been argued that CBR is based entirely on anecdotal evidence, as there
are in general no statistically significant amounts of data available. This leaves
conclusions of a CBR-system vulnerable to random effects. Proponents counter
with the observation that inductive reasoning, the primary way of natural hu-
man learning, almost always operates on data too scarce to have statistical
relevance and still seems to work.
As it seems to be the case for most techniques from the realm of artificial intelli-
gence, there is no universal CBR method suitable for every domain of applica-
tion [168]. There are also developments trying to create a statistical framework
for CBR and formalizing case-based inference as a specific type of probabilistic
inference [171]. This enables the generation of case-based predictions equipped
with a quantifiable level of confidence.
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3.8 Classification
Classification is the task of mapping an input vector to a restricted number of
outputs. This general ability is of course useful in the realm of condition mon-
itoring to map a set of selected features from a machine to an output, which
could indicate a certain state, for example a slightly worn tool or a tool that has
to be replaced immediately.
There is a multitude of different classifiers and a comprehensive list of all of
them is well beyond the scope of this section, which is intended to only give a
general overview of the used data-driven classification tools and some of their
applications in the realm of condition monitoring.
The derivation of a learning algorithm typically assume a set of training data
{xi, yi}l

i=1,where xi is set of observed patterns, yi are their corresponding labels.
The task of a classification algorithm is to construct a function from this data
that can map a yet unseen input xnew as accurately as possible to a correspond-
ing label ynew.
Support Vector Machines (SVM) are a method that is based on the statistical
learning theory [172] and have been introduced in [173]. They can be viewed
as specifically regularized networks [129], [174], [175]. Unlike most classifiers,
SVMs do not try to minimize the empirical risk, but the structural risk. In their
original formulation, Support Vector Machines are designed as binary classi-
fiers, which can only decide to which of two classes a given instance belongs.
This was too severe a constraint and various strategies to extend the capabil-
ities of SVMs to mulit-class classification problems have been proposed. The
formulation of SVMs utilized inner products of feature vectors. This allows for
the usage of the so-called "kernel trick" [176]–[178]. By carefully choosing cer-
tain kernel functions, this trick allows to do calculations in a feature space, "as
if" the input data had undergone a possibly rather computationally expensive
transformation [179], which often improves their performance capacities [180],
[181]. The computational complexity of the SVM growth far faster than linearly
with the number problem dimension, which has prompted several attempts to
decrease the computational complexity of this method, to increase its training
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speed [182] and its applicability to very large data sets [183]. This method has
attracted considerable attention and several introductions are available for engi-
neering practitioners [184]–[187] and a lot of research has applied this method
in the context of condition monitoring [188]–[208].
Several variants of this technique exist, which try to improve the properties of
these algorithms. SVMs construct a function, which maps feature vectors to
outputs by using the combination of certain instance of the feature vectors that
were available during training, the so-called support vectors. The formulation
of the SVM imposes a certain sparsity constraint and leads to a convex quadratic
optimization problem to be solved. There are formulations called Least Squares
Support Vector Machines [209] and Weighted Least Squares Support Vector
Machines [210], Bayesian Least Squares Support Vector Machines [211] or Re-
current Least Squares Support Vector Machines [212], which use ideas of the
derivation of the SVM, but dispose of the sparsity constraint to create an algo-
rithm,which can be formulated as solving a linear program. Laplacian Support
Vector Machines exploit certain properties of manifolds, to which the training
data is assumed to belong to, and can be used for semi-supervised learning
[213], where not all learning instances are labeled. Some research utilizes cer-
tain aspects of the fuzzy set theory to construct so-called Fuzzy Support Vector
Machines [214]–[217] that have given superior classification results in certain
applications. The ν-Support Vector Machines [218] is another interesting ap-
proach, which allows controlling certain properties via the parameter ν, which
is an upper bound on the fraction of training errors and a lower bound on the
fraction of support vectors. Support Vector Machines have certain tunable pa-
rameters that control for example how sparse the resulting description of the
function will be. Methods for finding a good parametrization are presented for
example in [219], [220]. There is also some research based on particle swarm
optimization for the tuning of parameters of SVMs for condition monitoring
applications [221].
For some applications it is not sufficient to only have hard class labels as a result,
but the confidence of the classification is also an output of interest. To satisfy
that need a probabilistic extension to the Support Vector Machines, dubbed
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the Relevance Vector Machines has been formulated [222]–[224]. Other frame-
works to make the output of SVMs probabilistic also exist [225]–[229] and have
been used in condition monitoring contexts successfully [230]. Although more
frequently used for regression task, Gaussian Processes [231] can be used for
classification tasks. A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.
The same is true for Extreme Learning machines, which are usable for multi-
class classification tasks [232], [233], but aremore frequently used in regression
applications as well.

Deep Learning is the name of a collection of techniques that have shown state-
of-the-art performance for various classification tasks. Given enough input data,
multiple consecutive layers of artificial neural networks are trained efficiently to
construct a classifier [234], [235]2. Some of these techniques have been adopted
in the realm of condition monitoring [237], [238].
There are some theoretical results showing that an ensemble of different

classifiers can be able to generate better classification results. Research utiliz-
ing the idea of ensembles for condition monitoring application has also been
conducted [239]–[242], for example based on decision trees, which are also
a classical example for classifiers [243]. Of course, artificial neural networks
can also be utilized for classification tasks and have been used for condition
monitoring applications [92], [189], [190].

3.9 Regression
Regression describes techniques to create a function approximation that maps
some input values to some useful output, which is, unlike in the case of classi-
fication, not categorical. These techniques can be used for example to create an
approximation model of the dynamic behavior of some machine or to predict
the evolution of a fault. A variable of special interest in the realm of condition
monitoring and especially for predictive maintenance is the remaining useful

2 It seems like there are some interesting connections between the mathematical structure of physics
and deep learning techniques. [236]
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life (RUL) of a system. This quantity represents the expected time until a failure
occurs. Various Methods have been adopted in order to create an estimate for
the RUL.

There is a multitude of methods for the regression in the context of machine
learning andwhile a complete description of all the proposed techniques is well
beyond the scope of this thesis, this chapter is intended to give an overview of
regression techniques in the context of condition monitoring. Hidden Markov
Models, which we have visited upon in the previous chapter, are frequently
used for regression tasks. They have been used in the context of system health
diagnosis and prognosis [244]–[246]. An extension of HMMs, called Hidden
Semi Markov Models (HSMM), does not explicitly make the Markov chain
assumption [247], [248] and allows modeling the time duration of the hidden
states, which is supposed to increase the prognostic performance of the models.
These models have been applied in failure detection and prognosis tasks [249],
[250], sometimes even in enhanced versions [251].
Along the same ideas that led to the development of the Support Vector Ma-
chine, an algorithm dubbed Support Vector Regression has been developed,
which can be used for regression tasks [252]. There have been several extensions
to the original method, for example the usage of fuzzy methods to improve the
performance of the algorithm [253], [254], the introduction of incremental up-
date capacities [255] or, similar to the ν-Support VectorMachine, the ν-Support
Vector Regression, algorithm, where ν is again an upper bound on the fraction
of errors and a lower bound for the fraction of support vectors [256]. [257] gives
a rather thorough introduction to the topic. [258], [259] applied this method
for condition monitoring tasks.
Traditional artificial neural networks3 have been used for the prognosis of tool-
wear conditions [260], [261]. [262] demonstrated that probabilities can be es-
timated with certain artificial neural networks as well, which made it possible
to forecast failure probabilities. To capture the time-dependence of processes
more naturally, Recurrent Neural Networks have been developed [263] and

3 See for example [37] for an introduction of the history of the development of artificial neural
networks
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are still an active research topic [264]. These networks have feedback paths for
signals that they themselves generated. There have been successful usages in
the condition monitoring context [265]–[268].
As brieflymentioned in the previous section,Gaussian processes are often used
in regression applications [269]. They offer a lot of options to design applica-
tion specific correlation functions, which can help to improve the prediction
accuracy. A drawback of Gaussian Processes is that the computational bur-
den growth far faster than linearly with the problem dimension. To mitigate
this problem, fast implementations of Gaussian Processes have been developed
[270]–[272], which are being applied to general big data problems [273], [274]
as well as to condition monitoring applications [275], [276].
Dynamic Bayesian Nets are a special form of Probabilistic Graphical Models
[277]. They have some interesting properties, like the ability to transparently
model interactions in systems, account for inherent uncertainties due to natural
variability, the capability of integrating many types of information and updata-
bility of all distributions in a model when a new observation for at least one
variable becomes available [59]. There have been successful usages of Dynamic
Bayesian Networks for condition monitoring applications [59], [278]–[280].
Artificial Neural Fuzzy Inference systems (ANFIS) are reasoning systems that
encode fuzzy IF-THEN rules which can be tuned or rather trained like artificial
neural networks. ANFIS have been introduced in [281] and extended in [282].
Their universal approximation property [283], [284] has been shown [285],
[286]. A thorough treatment of these methods can be found in [287]. There
are some applications of this type of reasoning system to condition monitoring
tasks [288]–[293]. To tackle some problems associated with the computational
burden of too many inputs, [294] introduces a method to determine the struc-
ture of a fuzzy inference system. [295] presents a method for using fuzzy in-
ference systems on large data sets. A comparison of the performance of fuzzy
logic systems to artificial neural networks can be found in [296].
A particularly interesting regression algorithm is called Extreme Learning Ma-
chine (ELM). It has been introduced in [297] as a novel approach towards ma-
chine learning with universal approximation capability [298]. Extreme Learn-
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ingMachines are dubbed "extreme" because of the speed of their training. They
use randomly assigned biases and input-connection weights for their neurons
and only the weights of the connection layers are found via tools of linear al-
gebra, i.e. by utilizing the Moore-Penrose-Pseudo-Inverse of matrices [299]. It
shows that hidden neurons do not need to be tuned iteratively and that all their
parameters can be chosen independently of training samples from any contin-
uous probability distribution and still achieve competitive classification and
regression results. The Extreme Learning Theory also had some impact upon
alreadywell established tools like support vectormachines [300], [301]. A lot of
research interest has been spawned by the introduction of this theory and a lot
of improvements to the original algorithm have been proposed, ranging from
improvements in the numerical solution of the problem setup [302], [303] to Ex-
treme Learning Machines for Big Data applications [304]. A lot of approaches
focus on increasing the robustness of ELMs [305]–[307], introduce probabilistic
setups to build sparse regressors [308], [309], utilize various kernels to increase
the performance [310] or focus on specific types of regularizers to optimize the
algorithm for certain specialized applications [311]–[314]. Other approaches
focus on increasing the capabilities of this algorithm by extending their for-
mulation to semi- or even unsupervised problem setups [315]–[317]. An inter-
esting approach in this context actively asks for labels on instances that have
produced a high degree of uncertainty about the corresponding output [318].
Some formulations of the algorithm have been proposed, which have enough
stages to be considered "deep" [319]–[321]. There are specific formulations for
highly correlated types of input data like images [322] and the combination of
multiple regression algorithms has been used to create a more robust output
[323], [324]. [325] uses Extreme Learning Machines as an optimization stage
for the parameters of a generalized radial basis function neural network. As
with classification tasks, there are also methods utilizing the fuzzy set theory
to improve the performance of the algorithm [326]–[328]. There exist a cou-
ple of introductory articles to this sprawling topic [308], [329], [330]. Some of
these techniques have been successfully employed in the context of condition
monitoring [331]–[334].
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As was the case with classification methods, there are usages of ensembles of
regressors of either the same type [335], [336] or diverse types of regressors
[337] to create a more robust predictor that does not suffer from the bias of any
one regression function.
The relative performance of some methods mentioned in this section as well as
some omitted algorithms in predicting the RUL can also be found [338]–[341].

3.10 Method Selection
Given that the field of artificial intelligence is vast and the particular constraints
of a manufacturing setting, the choice of a suitable algorithm for the applica-
tion at hand is not trivial. To ease the burden on practitioners, [342] presents
empirical rules for the selection of the appropriate methods to use for a specific
collection of data samples. An alternative guide for the selection of suitable
methods is given in [343]. In a similar vain, [344] presents an overview specifi-
cally for conditionmonitoring applications of rotatingmachinery. The choice of
an architecture of the conditionmonitoring system, constraints the applicability
of the solution. For example, sites with a sufficiently good internet connectivity
might be suitable candidates for cloud-based analysis solutions, like presented
in [345], while for application in areas with limited connectivity embedded so-
lutions with significantly lower computational capacities have to be employed.
[346]

3.11 Summary
The toolbox for the creation and automation of condition monitoring tasks is
well suited for a multitude of tasks along the whole data processing chain.
Especially the addition of techniques of the field of machine learning for classi-
fication and regression tasks has opened new possibilities for the monitoring
and even prediction of equipment conditions. The latter capability promises
the highest additional value. The adoption of these techniques also introduces
their respective weaknesses, like a relative lack of interpretability and explain-
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ability, which are problematic for the condition monitoring context. Here, the
costs of misdetection and misattribution can prove prohibitive, which makes
an accurate characterization of the uncertainty of classification and prediction
results paramount. This challenge will be discussed in the following chapter.
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The detection and identification of faults and especially the prediction of the
remaining useful life or a specific failure mode has proved to be a challenge
for industrial assets due to the broad range of usage profiles, load situations,
operating temperature, environmental influences, lubrication and their effects
upon the different wear and tear processes.
Each component and subsystem of a complex system is only similar up to

manufacturing tolerances and the individual history of the component. Knowl-
edge about individual components can therefore only be specified up to a cer-
tain level of certainty of the respective characteristics of the components. From
a system theoretical perspective, interconnecting multiple systems with uncer-
tainties in their parameters, even assuming that the structures of these uncer-
tainties are known, poses challenges with respect to diagnostic capabilities and
even mathematical tractability.

To accurately identify a fault in a system, it is mandatory to be able to distin-
guish normal from abnormal behavior, but this task becomes increasinglymore
challenging, when the complexity of the system and the number of influences
on the systems grow. The greater the uncertainty about the state of the system
and the larger the space of tolerable behavior, the harder the task. It will be
shown in this chapter that for the task of predicting a system’s future state the
management of uncertainty is an even harder challenge. By looking into the
following questions:
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• "From where do uncertainties arise?",
• "What are uncertainties?",
• "How to cope with uncertainties?",
• "How to quantify uncertainties accurately?",

this chapter will give a more thorough understanding of uncertainties in con-
dition monitoring systems.
There are different perspectives to these questions and the underlying dif-

ferences in fundamental concepts and their relation to the problem at hand
shall be reviewed in some detail. Given that the prediction of a fault mode is
of the greatest value for such a system, the requirements on uncertainties for a
prognostic setup will guide the discussion, which follows [347].

4.1 Sources of Uncertainty
Prognostics is the discipline of predicting the future state of system or compo-
nent, identifying possible failure modes and thereby predicting the remaining
useful life of a component or the system in general. There are several influences
on the prediction of future behavior and in turn the remaining useful life. To fa-
cilitate prognostics-based decision-making, it is important to assess how these
sources of uncertainty affect prognostics. It is therefore necessary to compute
the overall uncertainty in the remaining useful life prediction. In practical ap-
plications, it can be challenging to even identify and quantify the individual
sources of uncertainty that are capable of affecting the prognostics. Or it can
be possible to identify sources of uncertainty, but it is then not straightforward
or even possible to account for the effect due to modeling issues. [347], [348]

4.1.1 Simplified show-case model

Let the health state of an engineering component at any time t be given by
x(t). Consider a simplified degradation model, where the rate of degradation
of the health is proportional to the current state of the system, ẋ ∝ x(t). The
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proportionality factor is a negative number. Put in a discrete context, the model
can be expressed as

x(k + 1) = ax(k) + b(k), (4.1)

with k representing the discretized time-index. a < 0 is the aforementioned
negative proportionality factor and can be thought of as representing a load,
while b represents action upon the system. Effective maintenance could be
represented by b > 0, shocks to the system could be represented by b < 0. The
system is globally asymptotically stable, which means that given enough time,
and a lack of maintenance, any arbitrary initial state x0 will approach the origin
of the system, which is considered as becoming dysfunctional.

In order to compute a remaining useful life, it is necessary to choose a thresh-
old function that defines the occurrence of failure. Crossing that threshold func-
tion for the first time indicates the end of the useful life of the system. Predicting
the time of this occurrence is the essence of remaining useful life estimation.

4.1.2 Present uncertainty

To estimate the evolution of the state of a system, it is critically to identify the
current state of the system. Typically, the damage or fault is expressed in terms
of the state of the system as a dynamic system of state variables. State estima-
tion then becomes equivalent to the estimation of the extent of the damage.
This state estimation is typically done by using at least one of a variety of fil-
tering techniques. Input-Output data of the system, usually collected through
internal or external sensors, is used to estimate the state and the remaining
uncertainty of this state estimation. In the conceptual example, this uncertainty
can be represented by x0 being a random variable. Longer observation periods
and more sophisticated filtering techniques can reduce the remaining uncer-
tainty in the state estimation, given the assumption that the generative system
is time-invariant. There exists a true state of the system1, but we cannot assess

1 At least in macro-scale systems. There are discussions about whether this holds true for quantum
and meso-scale systems. This true state might not be representable in the chosen model class,
though.
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this true state directly. Our uncertainty therefore clearly describes a lack of
knowledge. [347]

4.1.3 Future uncertainty

The most important source of uncertainty in the context of prognostics arises
from a rather mundane observation: the future is not known to us. There is no
information about the future evolution of loading, operation, environmental
and usage conditions that are known precisely, and there have to be certain
assumptions about these conditions, if any conclusions are to be drawn. This
kind of uncertainty can be seen in the conceptual example in a variance in the
value of a. If there were no uncertainty regarding the future, there would not be
any contribution to the overall level of uncertainty regarding the true remaining
useful life of the engineering system or component.

4.1.4 Modeling uncertainty

If the effects of different loading, environmental, operational and usage condi-
tions, however uncertain they are, are to be incorporated into an estimation of
the RUL, it is necessary to use a functional degradation model. The occurrence
of an end-of-life condition is modeled as a Boolean thresholdmodel. These two
models are used to predict the RUL and they may either be physics-based or
data-driven. It may be impossible to developmodels that accurately predict the
underlying reality in practical applications.2 Modeling uncertainty represents
the difference between the true response of the system, that is neither knowable
normeasurable, and the predicted response of themodel. It consists of different
parts: model form,model parameters and process noise. While it is conceivable
to know these characteristics of the system at the time of the prediction, it is in
general not possible to know their values for future instances. In the conceptual
model, the parameter b is representative of one form of modeling uncertainty,

2 Even a totally known and correct system of ordinary differential equations can exhibit exponential
divergence of state predictions, if there is uncertainty in the initial state
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while the linear form of themodel is another assumption thatmight be incorrect
for a real degradation process.

4.1.5 Prediction method uncertainty

Even in the unlikely case of being able to quantify all the aforementioned un-
certainties accurately, it is necessary to quantify their combined effect on the
RUL estimation to predict their influence. It might not be possible to do this.
For example, in the absence of an analytical expression for the arising uncer-
tainties, sampling-based approaches are used for predictions. The usage of any
finite number of samples causes uncertainties regarding the final probability
distribution of the state estimation.

4.2 Uncertainty-related Activities
The problem of handling uncertainty in the domain of condition monitoring,
prognostics and health management is often discussed from the points of view
of representation, quantification and management. Even though these are dis-
tinct processes, there are often used interchangeably. Following [348], four
uncertainty-related activities are specified, which are needed to accurately de-
scribe the uncertainty in the estimate of the RemainingUseful Life and to inform
the decision-maker appropriately.

4.2.1 Uncertainty representation and interpretation

To appropriately deal with uncertainty, it is important to first decide in which
way the arising uncertainties are represented. For example, the model in Sec.
4.1.1 contains three uncertain terms, the initial condition x0, as well as the degra-
dation rate a and the offset b are uncertain,whichhave to be accounted for. There
is a wide range of different tools for representing uncertainty on different levels
of granularity and detail. These include, but are not limited to probability the-
ory, fuzzy set theory, rough-set theory, imprecise probabilities, interval-form
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analysis etc. [349] for example presents work on the propagation of uncertain-
ties for mixed probabilistic-possibilistic inputs. Probability theoretic methods
seem to be used most frequently in the relevant literature, which can be re-
garded as evidence of their particular usefulness or the relative obscurity of the
other ideas. Also, the availability of fast and tested code for probabilistic prob-
lems could contribute to this phenomenon. In the probabilistic framework, the
uncertainty in the aforementioned variables of themodel would be represented
as probability distributions.

4.2.2 Uncertainty quantification

The next step consists of identifying and characterizing the sources of uncer-
tainty that do ormay have and influence on the state estimation or the prognosis
of the RUL. If the probabilistic representation is used, the quantities x0, a and b
are represented by random variables, whose statistics need to be quantified and
whose distribution types and parameters need to be estimated. The more accu-
rate these estimates are, the more accurate the models using these quantities
can become. At this stage, uncertainties are assessed individually for compo-
nents or modules of the overall system. The two most commonly used types of
Bayesian filters, the Kalman filter and particle filter can essentially be regarded
as tools of uncertainty quantification. While for example a particle filter can
deal efficiently with many probability distributions, Gaussian error distribu-
tions for the random variables and a linear model structure are often assumed
in the problem setup for the estimation of the current state of the system given
health monitoring data.

4.2.3 Uncertainty propagation

Uncertainty propagation is probably the most relevant stage for prognosis. It
accounts for the effect of all the previously identified and quantified uncertain-
ties on the future states, the RUL and the associated uncertainties that can be a
result of mixing different sources of uncertainty. The future states of the system
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are computed by propagating the various uncertainties through a degradation-
prediction model shaping the uncertainty in the estimates of the future states.
A boolean threshold function used to indicate the EOL and the predicted fu-
ture states of the system are then used to get a distribution over the RUL. It is
important to understand that future states and RUL predictions are dependent
upon the decisions that were previously made with regard to the uncertainty
characterization. This might result in significantly decreased prediction perfor-
mance of the prognostic system, if for example simplifying assumptions about
the type of uncertainty distribution of a random variable were not warranted.
Similarly, the ex-post assignment of certain types of probability distribution
to the RUL, like treating it as a Gaussian probability distribution, will proba-
bly not contribute to ensuring a satisfying performance of the RUL prediction.
Quite the contrary is likely in fact, as the propagation of possibly non-Gaussian
probability distributions through a generally non-linear state space model can
give rise to highly non-gaussian probability distributions of the RUL.

4.2.4 Uncertainty management

Uncertainty management is a term "used to refer to different activities that aid
in managing uncertainty in condition-based maintenance during real-time op-
eration" [347]. One aspect of uncertainty management attempts to minimize
uncertainties in the resulting relevant estimates by identifying the contribution
of different sources of uncertainty and implementing measures to decrease the
uncertainty about these contributors. For example, decreasing the uncertainty
related to the future loading conditions of the machine by changing its produc-
tion schedule, will most likely also decrease the uncertainty in the RUL. The
term "uncertainty management" is also often used to refer to decision-making
processes utilizing uncertainty-related information.
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4.3 Interpretation of Uncertainty as Probabilities
The interpretation of probabilities has been a viciously discussed topic for ap-
proximately 200 years. In this section both major interpretations of the discus-
sion as well as a third, more novel approach are presented. The interpretation
of the nature of the probability has direct impacts on the applicability of certain
methods of condition monitoring systems.

4.3.1 Physical probabilities

Physical probabilities, also referred to as objective or frequentist probabilities,
assume the existence of a "true" relative frequency of occurrence of a speci-
fied event in an infinite series of repeated (physical) trials, like a two on a die
roll. These probabilities are thought of as existing as an ontological property
of nature. Furthermore, there are at least two major interpretations of these
ontological features of nature, namely von Mises’s frequentist [350] and Pop-
per’s propensity interpretation [351]. The main idea is that uncertainty arises
only due to the existence and presence of physical probabilities. If a true value
of any particular quantity is deterministic, it is not thought as meaningful to
ascribe a physical probability to that quantity. This rules out the application
of the mathematical tools of probability theory to problems where the uncer-
tainty is epistemic, i.e. arising not from a fact of nature, but from a lack of
knowledge about a possibly deterministic facts. For example, the mean of any
given probability distribution will have a deterministic mean, if any at all. It
is therefore thought to be nonsensical to talk about a probability distribution
over that mean, if different samples give rise to estimates about the underlying
probability distribution differing in their mean estimate.

The lack of knowledge displayed in the different estimations about the true
probability distribution is neither to be thought of nor treated as randomness
in the frame of physical probabilities. In stochastic models, each parameter is
treated as deterministic but only estimates of them can be found. Uncertainty,
which still exists in this framework, about parameters is represented through
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confidence intervals. Uncertainty in parameters is conceptually not allowed to
be used for further uncertainty quantifications [352].

4.3.2 Subjective probabilities

In the subjective interpretation probabilities can be assigned to a broader range
of statements than in the physical interpretation. There is no need for any of
these statements to be in regard to the possible outcomes of random exper-
iments. Probabilities are thought of as degrees of belief given the available
knowledge about or evidence for a statement. As there is in principle no reason
for any of a person’s beliefs to conform to all or even any of the axioms of prob-
ability, a coherence requirement arises. This consistency requirement is called
Dutch book consistency and is the normative statement, that beliefs ought to be
such that an external agent (commonly referred to as "Nature") cannot make a
guaranteed profit off of the beliefs of the agent, given the possibility of nature
to force the agent to gamble in a specific way according to the probability as-
signments of said agent. 3 In this subjective interpretation, even deterministic
quantities can be represented by using probability distributions, reflecting the
degree of belief about that value. As a result, probability distributions can be
assigned to parameters of probability models that have to be estimated and
can then be used to propagate uncertainties in a logically consistent way in this
interpretation. The subjective interpretation of probability is often associated
with the concept of likelihood in Bayes’s theorem, which can be interpreted as
a rule to update beliefs in the presence of new evidence.

3 For example, if an agent believes that event E will happen with probability 0.7, but simultaneously
holds the belief that E will not happen with probability 0.5, "Nature" can show this agent the
incoherence of his believes by the following gamble. Assume there are tickets that pay out a fixed
amount, say 1Unit, if event E happens, and nothing, if E does not happen. "Nature" can now choose
to buy OR sell these tickets and the agent has to accept the offers of "Nature". A fair price for the
agent is the probability of occurrence times the payout, so "Nature" could sell the agent a ticket
for E to happen for 0.7Units AND sell a 0.5Units ticket for E not to happen. If E does in fact occur,
"Nature" will lose 0.3Units on the first ticket, but gain 0.5Units on the second ticket. If E does not
occur, "Nature" will gain 0.7Units on the first ticket and lose 0.5Units on the second. In both cases,
"Nature" is guaranteed a profit of 0.2Units. The onlyway to prevent this scheme is to hold consistent
beliefs, i.e. beliefs that conform to Kolmogorov’s axioms [353, p.77].
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An analytical solution of the ideal Bayesian update is almost always
intractable4 and a whole range of techniques have been developed to give an
approximate solution. Most prominent amongst these techniques are particle
filtering and the well-known Kalman filter. But these techniques are known as
Bayesian filtering not only because of their usage of the Bayesian belief update,
but because they provide uncertainty estimates that need to be interpreted
subjectively. In macro-systems, it is assumed that there is a true state at any
given time, so the uncertainty that arises for example in the Kalman filtering
process cannot be interpreted as a property of the system per se, but as an
assessment about the incomplete knowledge about the state of the system.
[352]

4.3.3 Logical probabilities

Another view on probabilities is given by the idea that probabilities are akin to
formal logic in that it is a set of rules for the consistent manipulation of truth
values between propositions [353].
In this view, any probability assignment is conditional on the evidence for it.
If there has not been a technical error in manipulation of the numerical values
of the relationships of these values towards one another, all probabilities are
considered to be local truths. Like in the subjective interpretation of probabil-
ities, probabilities are not seen as an ontic fact of reality, but as epistemic. In
this view, however, the calculus of probability is a set of rules about how to
manipulate the relationship between accepted propositions or evidence. There
is no guiding principle about which evidence ought to be accepted or is relevant
to the problem at hand.
This means of course that even the most sophisticated probabilistic argument
can be entirely without merit, if the accepted evidence is faulty or incomplete.
In this interpretation, logical consistency takes the role of a normative state-
ment and not Dutch books, because there does not exist a realizable Dutch book

4 This is due to a lack of analytical solutions to the integration in the denominator.
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for all valid logical probability assignments.5 In this view the question of rele-
vance, which is outside the realm of probability theory, is assigned imminent
importance.

4.4 Interpretation of Uncertainty via Fuzzy Set
Theory

Fuzzy sets, introduced by [105], have sparked another discussion about the
"nature" of uncertainties. While statistical uncertainty is about the occurrence of
a well-defined event6, which can be the result of any combination of the sources
ofuncertainty alreadyoutlined in Sec. 4.1. The classical tools of statistics arewell
suited to treat this kind of uncertainty, regardless ofwhich of the interpretations
discussed in Sec. 4.3 is adopted. The utility, validity and even existence of the
other kind of uncertainty handled by fuzzy sets other hand is not as clear and
has been debated. This kind of uncertainty arises, when the occurrence of the
event itself is ambiguous.7 Even for domain experts it is not always possible to
give crisp bounds on events and only qualitative assessments can be given, like
"the torque induced by friction should not be too high. x Nm is still ok." This
sort of linguistic and conceptual vagueness can hardly be handled properly
with probabilities, debatably it cannot be handled at all. Instead, instruments
from the conceptually adjacent fuzzy set theory can be used to deal with this
kind of ambiguity and uncertainty and will be introduced here briefly.

5 An example of this is given in [353, p.78]:
"To amplify that last objection, let Q= "There are exactly 100 Martians and only

one wears a hat and George is a Martian." The probability of P = "George wears a
hat" given Q is 0.01. But a subjectivist can say, "Based on my utility, it’s 83.7%!", or
whatever. How can you prove him wrong? There are no experiments that can be
run because there are no Martians. There are thus no bets that can be made, because
there is no "event" to occur or not. Unless probability is treated as logic, you have
nothing to say to the subjectivist andmust accept his probability as being right,which
is absurd."

6 An example of a well-defined event in the context could be "the motor current of drive x exceeds y
mA at a feed rate of z using the normal dynamic parameter settings"

7 The membership of a machine to certain health class, for example "The status of the machine is ok".
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Following [287], if X is a collection of objects denoted generically by x, then a
fuzzy set A in X is defined by a set of ordered pairs:

A = {(x, µA(x))|x ∈ X}

where µA is called the membership function (MF) for the fuzzy set A. The
MF maps each element of X to a membership grade between 0 and 1. That
means that elements can belong to a fuzzy set "to a degree", which is measured
by the MF.

A few examples of one dimensional membership functions are given here,
but these can easily be generalized for n-dimensional MFs. A trapeziodal MF
is specified by

trapezoid(x; a, b, c, d) =



0, x ≤ a
x−a
b−a , a ≤≤ b

1, b ≤ x ≤ c
d−x
d−c c ≤ x ≤ d

0, d ≤ x

.

a Gaussian MF is specified by

gaussian(x; m, σ2) = exp
(
− 1

2
x − m

σ2

)
and a sigmoidal MF is specified by

sig(x; a, c) =
1

1 + exp
(
− a(x − c)

) ,

Binarymembership functions or the definition of α-cuts,where only elements
x of the fuzzy set with a µA(x) ≥ α are considered, can recreate the crisp sets
that the probability measures are defined on.
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These sets do not express the relative occurrence of a well-defined event in a
sample, but express more of a degree of "subjective belief" that a certain event
has even occurred.

4.5 Remaining Useful Life
The estimation of the Remaining Useful Life can be viewed as a main challenge
for any condition monitoring system that tries to predict when a system will
cease to function. To aid the discussion of uncertainty generally andprognostics
in particular, some important terms are adopted from [354] for the remainder
of this section:

• Time Index: The variable time in a prognostic application can be mod-
eled as discrete or continuous. The time index k will be used instead of
the actual time. This enables the framework to deal with non-uniformally
sampled data. In [355] for example, a scheme based on Lebesgue Sam-
pling is proposed, which does not take samples evenly spaced in the time
but in the state dimension of the system. [356] also presents a method for
aperiodic sampling. Additionally, time indexes are chosen to be invariant
to time-scales.

• Time of Detection of Fault: kD denotes the time index of the proper time
(tD), at which the diagnostic or fault detection algorithm detected the
fault. After the detections, the execution of prognostics algorithm should
be triggered to start making RUL predictions as soon as enough data
has been collected. For some applications there may not be an explicit
declaration of fault detection, for example, when the systems are subject
to a continuous decay process, as in the case of batteries. The time of fault
detection for such systems can then be considered to be equal to the time
of system creation.

• Time to Start Prediction: The actual time instance, at which the system
actually starts to predict future instances, will be denoted with index kP.
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For certain algorithms, these time instances tD and tP will coincide, but in
general there will be some time delay to collect the necessary data before
predictions can be made.

• Prognostic Features: Let ql
n(k) be a feature at time index k, where n =

1, . . . , N is the feature number and l = 1, . . . , L is the unit under test
index. Irrespective of the analysis domain, i.e. signal-based diagnostic
entities, like time statistics, spectral characteristics or wavelet coefficients,
and model-based entities, like physically meaningful variables or system
parameters, are considered as time-series in prognostics. In general, any
quantity that can be computed from measurable variables of the system
that aides the prognosis, is potentially a prognostic feature.

• Operational Conditions: Let ul(k) be an operational condition at time
index k, where l = 1, . . . , L is the unit under test index. The operational
conditions describe how the system is being operated and are sometimes
referred to as load.

• Physical Health Indicator is directly defined by a physical parameter of
the system, such as crack length in a gear, or the vibration amplitude of a
shaft. The threshold can be decided by the design specification.

• Probability Health Indicator is commonly defined by the probability of
the current system being in a healthy condition. The value of this health
indicator is usually between 0 and 1, where a threshold can be set by a
statistical confidence level.

• MathematicalHealth Indicators are definedby a variablewithonlymath-
ematical meaning, such as a certain distance metric, e.g. Mahalanobis dis-
tance, L2 distance between two distributions, etc. A mathematical health
indicator can virtually be any scalar value transformed from a multi-
dimensional feature space. For example residuals in systems based on
model identification can be used as a mathematical health indicator. The
thresholds for this type of indicator have to be learned from training data
sets or specified heuristically.
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• Health Index: Let hl(k) be a health index at time index k for unit under
test l = 1, 2, . . . , L. h can be considered a normalized aggregate of relevant
health indicators and operational conditions.

• Historical data:Historical data encapsulates all the information we know
about a system a priori. Such information may be of the form of archived
measurements or EOL distributions and can refer to variables in both the
feature and health domains.

• Point Prediction: Let πl(k|j) be a point prediction of a variable of interest
at time index k given information up to time tj, where tj ≤ tk. For k =

EOL, πl(k|j) represents the critical threshold for a given health indicator.
Predictions can be made in the features or health domain.

• Trajectory Predictions: Let Γl(k) be the trajectory of predictions at time
index k such that Γl(k) = {πl(k|k), πl(k + 1|k), . . . , πl(EOL|k)}.

Of particular interest for the discussion of uncertainty in health assessment
and prognostics are state indicators and the Remaining Useful Life, which will
be outlined next.
A system state is characterized by a continuous health indicator or discrete

degradation stages. The health indicator is usually a continuous-value quantity
defined by one of the following methods.

4.5.1 Generating an Estimate of the Remaining Useful Life

Unfortunately, analytical expressions for quantifying uncertainty in the
RUL estimation are not ubiquitous available for general problem setups;
even simple problems involving linear models with only Gaussian random
variables, like in Sec. 4.1.1, are not always tractable. It is therefore necessary to
use different techniques to quantify the emergent distribution of the RUL.
Being a rapidly developing subject, the researchers in the field of RUL
prediction have employed a number of different techniques in multiple
research areas, such as regression analysis, time-series forecasting, statistical
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survival analysis, etc. that can roughly be clustered into model-based,
data-driven and experience-based approaches.
Model-based and data-driven approaches rely on estimating the system’s
health state and predicting or extrapolating the system’s state up to the time
when the failure criterion is satisfied. The difference is that the model-based
approach makes predictions through physics-based models or system models,
while the data-driven approaches make predictions through models learned
from the time-series of states through regression or trend analysis or stochastic
process modeling. The experience-based approaches estimate RUL directly by
modeling the relations between states, the current life and the recorded failure
time without an explicit mathematical failure criteria.
In an experience-based prognostic setting, the RUL could for example be
calculated by testing multiple specimens of the same component or system.
Once a set of run to failure experiments has been conducted, ensuring the
same usage and operating conditions, the realized RUL is measured and
resulting differences in this quantity are interpreted to represent the presence
of variability across the different specimens, or, equally as a realization of
physical probabilities. There are various ways to assign a RUL to a system
under consideration given information about such experiments. For example,
[357] uses fuzzy methods to estimate the similarity of a measurement of the
system under consideration to such historical records of runs to failure and
estimates the RUL as a similarity-weighted mean of the recorded instances.
Given that runs to failure for complete systems are costly for industrial assets,
the focus of the further discussion will not be on these approaches.
The distinctive feature of model-based and data-driven approaches to
condition-based monitoring is that each component or system is considered
by itself, and it is therefore difficult to define variability across specimens, like
in experience-based prognostics, as a meaningful concept. At any time instant
kp at which prognostics need to be performed, the existence of a specific state
of the system is assumed. The state is thought to be purely deterministic8, i.e.

8 If the idea of the Einstein-Gibbs Phase Space is to be taken seriously, however, the very idea of a
well-defined state might be erroneous for mechanical systems
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the "true" value is precise, but unknown. The arising uncertainty is therefore
epistemic in nature and rules out the use of an easy frequentist interpretation.
The goal of condition-based prognostics is to predict the RUL at the relevant
level of aggregation in the system9 at time instance kp to be used for making
decisions.
Model-based and data-driven approaches can be broken down into certain
common tasks. At first the current state and the uncertainty in the state
estimate have to be quantified. Then the degradation-prediction model is used
to generate estimates of the state at future time instances.
Operational conditions have great impact on the system behavior and
degradation processes. The general problem is that only past operational
condition patterns can be known and thus used for prognostics. This
necessitates assumptions about the future usage of the system. This adds
another layer of uncertainty regarding future meaningful environmental
conditions and usages. Typically, the future usage is assumed to be not too
different from past usages, when additional knowledge, like production
schedules, is unavailable. While it is true, as argued in [347] that the
subjectivist interpretation of probabilities is consistent with the assignment of
probabilities regarding the future use of the systems, it has to be emphasized
that the resulting probabilities are only locally true, i.e. are conditional on these
assumptions. If the assumptions are off by too much, the result will most likely
not be useful. The propagation of uncertainties through the models is stopped,
when failure or a sensible statistical definition thereof is reached.
For most engineering systems, and for mechanical systems in particular,
degradation processes are irreversible endogenous effects that result
from tribological phenomena; only effective maintenance, which has to
be considered exogenous to the system, can improve the system’s health
state. A challenge with real-world systems in the field regarding the task of
calculating a RUL is exactly that they are almost always maintained regularly
with preventive maintenance practices. These actions will, if done effectively,

9 While it is necessary to be able to ascertain the health state of each component, it is not sufficient to
be able to predict the future state of the complete system
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recover the system’s conditions and change its behavior. Even if the time of
preventive maintenance actions can be modeled, their impact is harder to
grasp, which adds another challenge for deploying prognostics solutions.
RUL estimation are only meaningful for those engineering system that can
exhibit evolving degradation behavior. For systems with stochastic failures,
like certain electronic components, predictions can necessarily not be made
for individual system instances. Stochasticity in fault modes implies that
no particular outcome, but only the aggregate behavior of large enough
collections of units or systems can be predicted.
To summarize, the derivation of the RUL can also be seen as an uncertainty

propagation problem for model-based and data-driven approaches. The task
of estimating it can be broken down into three steps,

• estimation of the current state,
• predicting future states,
• determining the EOL,

which will be discussed in the subsequent sections.

4.5.2 State Estimation

Consider the state space model

ẋ(t) = f(t, x(t), θ(t), u(t), v(t)) (4.2)

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the parameter vector, u(t) ∈
Rnu is the vector of the inputs or loading to the system, v(t) ∈ Rnv is the noise
vector and f(·) represents the state function.

The state vector at time tp, i.e. x(tp) and the system parameters θ(tp) have to
be estimated using information about the system collected until tp. Let y(t) ∈
Rny be the output vector, n(t) ∈ Rnn the measurement noise vector and g(·)
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the output equation of the model, then the observations of a model can be
described by

y(t) = g(t, x(t), θ(t), u(t), n(t)) (4.3)

Bayesian Filtering approaches, like some version of the Kalman filter or par-
ticle filtering are used to infer the current state of the system. The resulting
estimates of the states should be interpreted as subjective or Bayesian uncertain-
ties. The state and the parameters are considered to be deterministic but not
known precisely. The probabilities represent a lack of knowledge.

4.5.3 State Prediction

Having obtained an estimate of the state of the system at time tp corresponding
to time index kp, the future states are predicted using the time-discretization
of Eq. (4.2) and estimates about the future loading conditions at discrete time
indices k. Because there is no way of obtaining data from future instances,
there is no way to obtain corrective information for any error in the estimate
of the initial state. Additionally, the process noise and loading conditions at
future instances are necessarily uncertain, which will cause the uncertainty
about future states of the system to become largerwith an expanding prediction
horizon. [358] introduces a method of uncertainty quantification, that does not
make assumptions about the underlying distribution of the noise. The impact
of input uncertainty on prognostic algorithms is examined in [359].

4.5.4 Determining the End of Life

The EOL of a system is reached, when it becomes unable to fulfill at least
one requirement regarding the performance of the system. The health of
the system is expressed through the Health Index h. h consists of nh health
indicators. Each health indicator di(x(k), θ(k), u(k), y(k)) maps a given point
in the joint state-parameter-oberservation space to the right half-open real
interval Rnx × Rnθ × Rnu × Rny → R+

0 . A value of 0 indicates a failure.
These individual health indicators are aggregated in the Health Index,
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h(d1(x(k), θ(k), u(k), y(k)), . . . , dnh(x(k), θ(k), u(k), y(k))) ∈ R+
0 . This health

index can be used in the boolean threshold function TEOL, defined as

TEOL(x(k), θ(k), u(k), y(k)) =

1, h(x(k), θ(k), u(k), y(k)) = 0

0 otherwise
(4.4)

TEOL is equal to 1, if the health index reaches zero. The EOL can then be defined
as the earliest time instance at which the value of TEOL becomes equal to 1. Let
EOL(tp) be the first time instance, for which TEOL = 1 holds. The Remaining
Useful Life is the time duration between the present and EOL.
Practical problems in the health management and prognostic domain may

consist of:

• non-Gaussian random variables effecting the RUL prediction,
• a possibly non-linear multidimensional state-space model,
• uncertain future loading conditions,
• a possibly complicated Health Index function over a multidimensional

space.

The fact that the distribution of the RUL depends on the quantities indicated in
Fig. 4.1, makes it clear that it is mistaken to assign artificial probability distribu-
tion types to it. The predictability of the RUL at time tp, i.e. R(tp) necessitates
that the following conditions are met:

• Using the present state estimate (x(kp)) and the state space equation, the
future states (x(kp + 1), x(kp + 2), . . . , x(kE)) can be calculated.

• Estimates about the future loading conditions (u(kp + 1), u(kp +

2), . . . , u(kE)) are available to calculate the future states values using the
state space equation.

• Parameter values form time-index kp until time-index kE ((θ(kp), θ(kp +

1), . . . , θ(kE))) are obtainable.
• Process noise (v(kp), v(kp + 1), v(kp + 2), . . . , v(kE)) can be estimated.
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θ(kp), θ(kp+1),…, θ(kE)x(kp)v(kp), v(kp+1),…, v(kE) u(kp), u(kp+1),…, u(kE)

Compute x(k+1) TEOL

if TEOL = 1

assign k= k +1

using x(k+1)

R = tEOL - tp
calculate t from k

if TEOL = 0

R = G(Z)

y(kp), y(kp+1),…, y(kE)

Figure 4.1: Graphical Representation of G(Z). [347], adapted.

These quantities can be regarded as independent quantities with regard to
the RUL prediction. The RUL thus becomes a dependent quantity. Let Z =

{Z1, Z2, . . . , Zi, . . . , Zn} signify the vector of the above quantities, where n is
the length of the vector Z, or, equivalently, the number of uncertain quantities
influencing the RUL prediction. The calculation of the RUL R can be then be
expressed as

R = G(Z) (4.5)

The elements of Z are uncertain. They are used to compute their combined
effect on the RUL prediction. Estimating the uncertainty of R is equivalent to
propagating the uncertainty in Z through G.

The problem of estimating the uncertainty in R using uncertainty propaga-
tion techniques is non-trivial even for rather simple problems. Only in rare
cases is it possible to obtain an analytical solution. Some of these special cases
are given by [347]:

• Every quantity contained in Z is normally distributed and G can be ex-
pressed as a weighted linear combination of the quantities in Z. In this
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case, R will also be normally distributed and its statistics can be calculated
analytically.

• Every quantity contained in Z are log-normally distributed, and if the
logarithm of G can be expressed as weighted combination of the quanti-
ties in Z then log(R) follows a normal distribution, for which the relevant
statistics can be expressed analytically.

While Gaussian distributions and linear state space models may be a common
occurrence in prognostics and health management, this does not imply in and
of itself that G is linear. The use of a non-linear threshold function renders G
non-linear. These results also hold true for the simplified model introduced in
Sec. 4.1.1.
In order to compute the probability density function of R in more general cases,
it is necessary to resort to rigorous computational methods. There are differ-
ent types of sampling methods such as Monte Carlo sampling, Latin hyper-
cube sampling, importance sampling and unscented transform sampling to
tackle this task. There are also some analytical methods for the calculations of
the probability distribution of R, that use reasonably many evaluations of G
and approximate the probability distribution reasonably good. Amongst these
methods are the first-order second moment method and the first-order relia-
bility method. [347] provides references to research utilizing these methods.
Additionally, there are also hybrid methods such as the efficient global reliabil-
ity analysis method which involves sampling as well as analytical methods. All
of these methods empirically calculate the probability distribution of the RUL;
while some calculate the probability density functions, others calculate the cu-
mulative distribution function, or generate samples from the target distribution.
Due to some limitations in each of these methods, it might not be possible to ac-
curately generate the probability distribution of R and only an infinite number
of samples guarantees an accurate characterization of the true probability den-
sity function10. The choice of the propagation methods therefore introduces an

10 An even this probability density function is only accurate in amathematical sense, as its correctness
is conditional on the accepted evidence and modeling assumptions, for which there is no rigorous
mathematical criterion
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additional amount of uncertainty. This uncertainty can possibly be reduced by
more advanced sampling techniques or by an increase in computational power.

4.6 Model Validation
Model validation is the process of quantifying the extent to which a computa-
tional model is supported by available experimental data.
A particularly usefulmethods is the comparison between the predicted outputs
of the model for certain situations and the experimentally observed real out-
puts. A valuable tool in this regard is a computable measure for the comparison
of the divergence of predictions and measurements.
An important aspect ofmodel validation is of course the ability to treatmultiple
sources and types of uncertainty accurately. In the context of validation,both the
model inputs and the outputs can, if at all, only be measured contaminated by
measurement noise and are therefore uncertain in their own right. A rigorous
model assessment should account for physical variability, measurement error,
solution approximation error etc. and be able to ascertain the performance not
only qualitatively, but quantitatively to aid in gauging the justified amount of
confidence in the model’s predictions.
Model validation mirrors some the preceding debate in Sec. 4.3 about the in-
terpretation of probabilities. While the classical method of hypothesis testing,
inspired by frequentist thinking, is based on the comparison of certain statistics
of the model’s prediction, mostly mean and variance, with the same statistics of
the experimental data, the subjective interpretation of probability offers meth-
ods such as Bayesian hypothesis testing, which allow for a comparison of the
distributions of model predictions and corresponding experimental data. They
can also account for various types of uncertainty [352]. Along with develop-
ing the fundamental abilities of state estimation, uncertainty quantification
and propagation in order to be able to create an estimate of the RUL, deploy-
ing such models to real world problems poses the rather intricate question of
performance evaluation. Prognostic concepts still lack unambiguous standard
definitions and consistent interpretations. It seems likely that this is at least par-
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tially caused by the breadth of end-user requirements and domain-specificity
regarding time scales, available information, sample sizes etc. [360]. Users of
any prediction will naturally want to know "how good" prognostics estimates
are before even begin to consider changing the maintenance plan according
to the suggestions of the system. This makes it imperative that a fair amount
of trust in the prognostic system is created before their predictions are incor-
porated into the decision-making process. See Sec. 5.1 for discussion of that
aspect.

Without interpretable and rigorously derived confidence bounds,predictions
will lose a lot of their possible benefits and could cause costly misunderstand-
ings. While the confidence bounds are indicative of the ability of an algorithm
to handle uncertainty, performance metrics are supposed to be a tool to judge
the real world performance. According to [353, pp. 39 ff.], each and every prob-
ability statement is correct, bearing any mistakes in the calculus involved, but
only locally so. The probability assignments are dependent on the accepted
evidence. Only the comparison between the predictive probabilities and the ac-
tualized results will reveal whether the set of accepted evidence was a useful11

choice. There are scientific, administrative and economic reasons that make
the availability of meaningful metrics desirable: Metrics are necessary to eval-
uate the performance of an algorithm, for example to measure the influence of
a change in the available data set on prediction accuracy. Metrics are also a
necessary precondition for the formulation of requirements an algorithm has to
meet before it can be deployed to production systems. Furthermore, they can
help to ascertain the risk that is associated with decisions based on the sugges-
tions of the algorithm [354]. Despite the obvious desirability of standardized
performance metrics, there still seems to be lack of them in the literature.

Currently, there is no widely accepted performance evaluation method for
prognostics applications, despite numerous performance metrics being avail-
able. The selection of them is usually a subjective, applications specific choice.
Some metrics in use are derived from other prediction related areas such as the
Mean Squared Error from regression analysis. There is some concern that these

11 Usefulness is concept that is not well-defined in probability theory.
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metrics are not well-suited to address the special needs of prognostics systems.
[354] clusters the available performance metrics into three general groups:

• Accuracy-based metrics: These types of metrics evaluate the goodness of
the fit of the prediction and an already recorded observation. Amongst
this type of metric are for example Bias, Root Mean Square Error or Mean
Absolute Error.

• Precision-basedmetrics: These metrics evaluate the spread of the predic-
tion errors. These are invariant to bias. Amongst the more well known
metrics are for example the standard deviation or them mean absolute
deviation from the sample median.

• Robustness-Based metrics: Graphical tools like the Reliability Diagram
or the Receiver Operating Characteristic can be used, if the prediction
problem is transformed into a classification problem by repeated trials, to
depict certain characteristics of the prognostic algorithm, like the trade-
off between the false positive rate and the false negative rate. The Brier
Score or, respectively, the Area under the ROC curve (AUC) can then be
used as numerical measures derived from the diagrams.

Additional to these metrics, there are economic metrics, like the Return on
Investment (ROI) or the Mean Time Between Failure (MTBF). From an imple-
mentations point of view, the Total Value of the system is of eminent importance,
as it describes the monetary value of the implementation of the system. The
total value is given by

VTotal =
nFM

∑
i=1

TVi − A − O − (1 − Pc) · δ,

where TV is the Technical Value of a system, A is the development or acqui-
sition and implementation cost, O is the operational and maintenance cost, Pc

represents the computer resource requirements and δ is the cost of the com-
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puter system. nFM is the number of monitored failure modes, i is their index.
The Technical Value of a system is given by

TV = Pf (D · α + I · β)− (1 − Pf )(PD · Φ + PI · θ),

where Pf is the probability of the occurrence of the failuremode,D is the overall
detection confidence metric, α represents the savings realized by detecting the
fault in advance, I is the overall fault isolation confidence metric, β summarizes
the savings realized by identifying the fault in advance, PD is the probability of
a false positive detection, Φ is the average cost of a false positive detection, PI is
the probability of a misidentification and θ is the average cost of that misiden-
tification [354].
If estimates of the relevant terms can be given, the Total Value can be seen as
rather comprehensive summary of the capabilities of a monitoring systemwith
respect to its costs.
Predictions of the RUL are made based on the history of condition measure-
ments. A challenge is that the consequences of errors in the prediction of the
RUL are not symmetric with respect to the true value. If the predicted EOL is
too early, still functioning components could be replaced or unnecessary veri-
fication procedures could be triggered. If the predicted EOL is too late, there
might be too little time left to take corrective actions before the system fails. In
most cases, it is therefore preferable to err on the early side. Predictions made
early on have necessarily access to less information about the dynamics of the
fault evaluation and are required to predict farther in time, which makes the
prediction task more difficult as compared to predicting at a later stage. The
traditional performancemetrics given above seldom take this factor into consid-
eration and are therefore only to a limited extend able to capture what would
intuitively be considered the true performance of predictions. [360] attempts to
address this problem by proposing a performance evaluation framework that
consists of four performance metrics in a hierarchy. These are:
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• Prediction Horizon: evaluates the actionable time window between the
time instance when an algorithm under consideration can make predic-
tions with a specified accuracy about the EOL.

• α − λ Performance: evaluates whether the predictions at a given time
within the Prediction Horizon stays within the accuracy requirement.
The accuracy requirement is given as a percentage of the actual RUL.

• Relative Accuracy: quantitatively evaluates the absolute percentage error
of a prediction at a time within the prediction horizon, if the algorithm
has met the requirements of the previous metrics.

• Convergence: evaluates how fast the prediction performancewith respect
to any chosen accuracy-based metric improves towards the EOL of the in-
stance, if the algorithm has met the requirements of the previous metrics.

Other attempts to make predictions comparable, are for example, [361], which
presents interpretable and verifiable thresholds on the performance of predic-
tors in the form "The prognostic algorithm shall provide aminimumof<TTM>

hours time-to-maintenance such that between <Lower>% and <Upper>% of
failures of component ABCwill be avoided with<Confidence>% confidence."
To qualify prognostic algorithms with regard to their applicability to real main-
tenance systems, [362] proposes a method based on the concept of technology
readiness levels. [363] explores some existing scalar metrics like the Mean Ab-
solute Error or the Confidence Convergence Horizon for evaluating prognostic
models and claims to offer a more intuitive aggregate measure to represent the
quality of the model.

4.7 Model Calibration
Model calibration refers to the adjustment of model parameters to increase the
match between experimentally observed data and the model output. It belongs
to a rather large group of mathematical problems, namely inverse problems.
When a computational model is used to predict the outcome or effect of a par-
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ticular, a priori known phenomenon12, this is referred to as forwards problem.
The inverse problem makes use of measured effects and tries to infer some
characteristic about the underlying generative system, which are considered to
be the causes. Inverse problems could be defined as the class of problems that
seek to determine unknown causes based on observation of their effects. For
the remainder of this chapter inverse problems will be dealt with as synony-
mous with model parameter estimation or in the context of time-dependent
outputs with system identification [352, pp. 118-119]. According to Hadamard,
a well-posed problem should have the following properties: a solution exists,
that solution is unique and the solution is stable [37, p. 315]. While forward
problems are generally well-posed, inverse problems are not. As inverse prob-
lems are not well-posed, there can be no certainty about the actual cause of
a certain effect and so the confidence associated with the multiple solutions
becomes of eminent importance.
Parameter estimation, or inferring difficult to measure or even unobservable
quantities through measurements of a dependent variable, has been a signif-
icant research topic in various fields. Consider the computational model y =

G(x, θ), with x being the independent input and y the dependent output. Nor-
mally, the measurement is assumed to be unbiased, i.e. ϵi = yi − G(xi) is mod-
eled as a zeromean normally distributed variable. The quantity ϵ ∼ N (0, σ2) is
referred to as fitting error. The purpose of parameter estimation is to generate
an estimate of θ that best tunes a model to explain the observed data.

4.7.1 Least-squares methods

The method of least squares is based on minimizing the squared difference
between themodel prediction and the actually observeddata. An errormeasure
L(θ) is computed as

L(θ) =
n

∑
i=1

(yi − G(xi, θ))2. (4.6)

12 Colloquially named cause, even though there is philosophical debate about the existence of this.
To avoid some deep philosophical questions about the true nature of cause, the rather pragmatic
approach of causal relativism will be adopted
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The so-called least squares estimate of θ, symbolized as θLS is computed as

θLS = arg min
θ∈Θ

L(θ). (4.7)

Note the necessity for paired input-output values. If the model G(xi, θ) is lin-
ear with respect to inputs x and parameters θ, the procedure becomes a linear
regression problem, otherwise non-linear techniques have to be used and the
procedure becomes known as non-linear regression. Another assumption is
that the inputs are certain, i.e. there is no measurement error on them and that
the output measurement error is totally contained in ϵ. In the frequentist inter-
pretation, the parameters θ are assumed to be deterministic, and the estimate
may not coincide with the true value of them. If the size of the data sequence
becomes infinite, it can be proved that θLS tends to the true value. Uncertainty
in least squares estimates can be expressed by using confidence intervals on
the least squares estimates. They are calculated at particular significance levels
α. The confidence bounds are given as intervals [θα,min, θα,max]. For a given α,
an error Lα is defined as

Lα = L(θ∗)(1 +
p

m − p
Fα

p,m−p), (4.8)

where F refers to the F-statistic evaluated at significance level α, p refers di-
mension of the parameters vector and n is the number of data available for
calibration, as defined earlier. The confidence interval of θ is the region, where
L(θ) ≤ Lα is satisfied. Obviously, the bounds on the parameters can be found
by solving constrained minimization problems, but these will become increas-
ingly computationally expensive with an increase in the dimension of θ. Also,
the confidence intervals should not be confusedwith a probability density func-
tion of θ, since in the underlying interpretation the parameters are assumed to
be deterministic, there can be no such entity as a probability density function
for them. A propagation of uncertainties thus becomes an intellectually barren
exercise [352, p. 123].
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4.7.2 Likelihood Method

The least squares estimation procedure is in essence an optimization problem.
But it can also be shown that the least squares approach maximizes the proba-
bility that the data can actually be observed under the conditions ϵ ∼ N (0, σ2).
This probability, P(D|θ), where D denotes all the available input-output data,
is referred to as likelihood function of θ and is denoted as L(θ). Note that,
since data D has already been observed, "the probability of observing data" is
meaningless, as there is no uncertainty about the data that has already been
collected. Therefore, this quantity was renamed "likelihood". The likelihood
function does not follow the laws of probability and must not be confounded
with probability distributions or distribution function. In fact, the absolute val-
ues of the likelihood function are of no particular interest, as it is only mean-
ingful up to a proportional constant. Only the relative values are important.
The concept of likelihood is used in both interpretations of probability. From
a frequentists point of view, the likelihood function can be maximized to ob-
tain the maximum likelihood estimate of the parameters. It is also possible to
construct likelihood-based confidence intervals for the inferred parameters. In
the subjective probability interpretation the likelihood function can be viewed
as a collection of weights and there they are also only meaningful up to a con-
stant proportionality factor. Assuming that n pairs of data are independent, the
likelihood function can be constructed as

L(θ) ∝
n

∏
i=1

1
σ
√

2π
exp− (yi − G(xi, θ))2

2σi
. (4.9)

The maximum likelihood estimation tries to find those model parameters
that maximize the likelihood function over the parameter space

θ̂ = arg max
θ∈Θ

L(θ). (4.10)

or, put alternatively, to find the model parameters with the highest likelihood
of observing exactly that data that was observed.
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4.7.3 Regularizers for Model Calibration

It was already stated that parameter estimation belongs to a class of inverse
problems which are often ill-posed. To enforce unique solutions, regularizers
are often added to the problem formulation, which can introduce additional
constraints, i.e. penalties for the complexity or restrictions on the smoothness of
the function or bounds on the parameters. Some popular regularizers can also
be interpreted as priors on the parameters, while others do not have a direct
correspondence in the probabilistic framework. In the least-squares framework
this is realized by adding a regularizing term,

L(θ) = −∑
n

log(p(yn|xn, θ)) +
1
λ
R(θ), (4.11)

while in the probabilistic setup it is done by augmenting the likelihood function

log(p(y, θ)) = −∑
n

log(p(yn|xn, θ)) + log(p(θ|λ)). (4.12)

For some popular regularizers there are exact correspondences, given in Table
4.1.

R(θ) p(θ, λ)

∥θ∥2
2 N (θ|0, λ)

∥θ∥1 Lap(θ|0, λ)

∥θ∥p , p > 0 exp(−λ ∥θ∥p)

Table 4.1: Correspondence between popular regularizers in the least-squares
and the probabilistic setup

4.7.4 A Third Perspective

As was shown in the preceding sections, testing and estimation, whether fre-
quentist or subjectivist, are the backbone of classical analysis.
Some research, such as [364], considers this to be problematic, because the
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questions that tend to get answered by these tests are not necessarily what the
typical user is asking. No matter how much certainty is present in the parame-
ters of a model, the uncertainty in the observable itself must always be greater.
The goal of all probability modeling is to obtain a probabilistic model for some
set of measurable variables, like

Pr(Y ∈ y|X, D, M), (4.13)

where y are values of the observable Y which are of interest to some decision-
maker, D is the collection of past observables, M is the collection of premises,
which lead to the probability model. X is the assumed new observable. If a
parametrized model is used, (4.13) corresponds to the posterior predictive dis-
tribution in the subjectivist interpretation of probability and M incorporates
those premises or assumptions fromwhich the priors are deduced. [364] argues
that models should be rare, because according to him most probability is not
quantifiable and caution should be exercised to not enforce the quantification
of something genuinely unknown. In the "probability as logic" interpretation
of Sec. 4.3.3, even in a case of purely made up numbers for certain probability,
the resulting probabilities can be correctly induced, given the evidence. How
meaningful, or even useful they are, has to be judged by the supplied premises
for these creations. But this assessment is not a statistical concept by itself. There
is no such thing as an unconditional probability of any proposition in this in-
terpretation. If, at some later point, it is decided that the same variables in D
and X are of no interest anymore or that some variables are missing, the model
is updated accordingly, and the probabilities derived from the updated model
will also be correct. At least conditional on the given evidence, that is.
One model may be superior, however, but this can only be judged with respect
to the decisions made conditional on the models. The third way of probability
is, conditional on D and M, to vary X in the range of expected by or important
to some decision-maker and see how these change the probability of Y ∈ y.
If a particular X, as it ranges along the chosen values, do not change the

probabilities in any important way, then these X are themselves not important.
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The opposite is also true. Importance is a matter of decision, which varies by
the decision-maker. Importance is not a statistical or probability concept and
therefore cannot be ascertained within probability models.
Relevance on the other hand is a probabilistic concept. If the probability of
Y ∈ y changes in any way, while X does, then X is relevant for understanding
Y, else it is not.
There is no hypothesis testing as in the frequentist paradigm and no estimation
of parameters as in the Bayesian paradigm. There are only plain, interpretable,
andverifiable probability statements. These statements can, should andmust be
verified. This reduces over-certainty, but cannot eliminate it unless models are
deduced from a priori statements. Importance and relevance, like probability
itself, are always conditional on the accepted assumptions. Only information
presumed probative to a model should be added, if there is a plausible belief
that the information is related to the cause of the observable of interest, which
enforces a certain sparseness of the models.

4.8 Challenges
As outlined in this chapter, there are several significant conceptual and practical
challenges in using different uncertainty quantification and propagation meth-
ods for health management and especially prognostics. To facilitate decision-
making in the presence of uncertainty, it is therefore important to understand
these challenges and the requirements for a prognostics and health manage-
ment system:

• Feasibility: The chosen uncertainty quantification and propagationmeth-
ods need to be computationally feasible to be implemented in online
health monitoring. This requires timely calculations, while uncertainty
quantificationmethods can involve some rather time-consuming and com-
putationally expensive calculations (i.e. inverses of large matrices). Also,
there are rather demanding requirements on the availability of data.With-
out enough run-to-failure tests, domain knowledge, sufficientlymany sen-
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sors and high-enough sampling frequency, there simply is not enough
data to implement a prognostics scheme.

• Reproducibility: Automated verification and certification protocols
require algorithms to produce repeatable results. Several uncertainty
quantification methods are non-deterministic, however, and will produce
slightly different result for every run, due to the frequent use of random
selection or initialization techniques.

• Performance: The chosen uncertainty quantification and propagation
methods need to produce a good estimate of the probability distribu-
tion of the RUL: This implies that the entire probability distribution over
Z and the functional relationships represented by G in Eq. (4.5) need to
be accounted for. A lot of methods try to ease the problem by only using
a few statistics of the distribution of Z, like the mean or standard devi-
ation, or try to approximate G with simpler models, for example linear
ones. The chosen methods also need to be able to handle possibly multi-
modal distribution types. The existence of a suitable performance metric
for prognostic tasks it not guaranteed.

• Granularity: While the capability of accurately calculating the RUL is
important, for certain decision bounds on RUL might be sufficient. The
chosen methods have to be able to deliver these sufficiently quickly and
accurately.

[365] compares fault management policies computed with and without future
uncertainty to illustrate the limiting effects of model uncertainty on prognosis-
informed fault management policies. Some authors have tried to implement
such rigorous uncertainty propagation schemes for some select systems, like
for example lithium-ion batteries in [366], [367]. For industrial systems, which
tend to have non-linear interactions, to have only sensors necessary to fulfill
their predefined functions, to be complex and to be used application specific, the
acquisition of run-to-failure data is often, if at all feasible, either prohibitively
expensive or too dangerous for the personnel to try for ethical reasons. The
epistemic uncertainty thus induced about the current state of the system under
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consideration, problems with modeling the system and the lack of knowledge
about future loading conditions severely limits the applicability of prognostics-
based decision-making schemes.
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5 PERMEATED - Pragmatic Explainable
Relativistic Modular Extensible
Adaptive Trust-building Environment
for Decisions

Following the discussion about uncertainty in Chapter 4 in the health assess-
ment and especially the prognostic part of condition monitoring systems, it has
become clear, that it is necessary to use a systematic approach to capture the
available information about a system and use it to the extent that is possible.
There have been several attempts to standardize prognostics and health man-
agement systems. One among them is given in the appendix of [368] anddetails
are given in [369]. This norm specifies the requirements for an information and
processing model to which an open condition monitoring and diagnostics ar-
chitecture needs to conform. [370]–[373] present work on the implementation
of this OSA-CBM standard.
While the guidelines seem to be well suited to aid in the development of the
technical side of the system, it simultaneously also seems to neglect a major
component necessary for the successful implementation of a condition moni-
toring systems, namely the addressee of the diagnostic information. Humans
are a major component of any such system. They will ultimately make the deci-
sions and enabling better decision-making is what such systems are supposed
to achieve. It is important to emphasize the differences in the concepts of prob-
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ability, relevance and decision. Relevance is a choice. Different experts on the
same topic can disagree about the relevance of certain factors and whether or
how to include certain variables in the analysis of a problem. While probability
theory offers the concept of conditional independence to test for any influence
of a variable to a predicted result, it does not offer a rigorous way to test for
the relevance of that variable. This choice is up to the creator and even more
importantly the user of the model. A decision can be influenced by probabili-
ties about certain events it is concerned with, but they are not determined by
probabilities arising in their context. More often than not, a "hunch", "experi-
ence" or "intuition" is used as the basis for decisions. While this might not be
desirable from the standpoint of researchers trying to build models of human
behavior, this seems to be a constraint that condition monitoring systems have
to deal with. If decisions about maintenance are not to be strictly separated
from operators or even owners, human decision-makers are a key component
of the overall system and should be handled accordingly. Their requirements
ultimately shape how information needs to be presented to be useful, it is their
trust or lack thereof that determines how a system is used. In Sec. 5.1 will take
a closer look at the question of trust in technical systems. This chapter will
make the case for biasing the selection of machine learning algorithms to the
set of interpretable algorithms to facilitate amore rapid adoption of data-driven
decision support systems.

5.1 Trust in Technical Systems
A system that is not used, can by definition not contribute to the success of any
operation.
The dominant idea to increase the usage of a prognostics system has been to
create automatic aids that are increasingly more accurate and thus, the ratio-
nale goes, trustworthy. This strategy assumes that this unilateral increase in
performance will also increase the overall performance of the human-machine
system. This assumption, however, does not appear to be necessarily correct.
[374] for example showed that the optimization of the automated systems’ per-
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formance, measured as a high detection rate and few false alarms, did not opti-
mize the human-machine team’s performance. While it is reasonable to expect
synergies in human-machine teams [375], it is most likely only achievable by
optimizing the joint system. If an operator’s trust in a system is inappropriate,
i.e. too much trust is put into an untrustworthy system, which is called misuse,
or too little trust is put into a trustworthy one, which is called disuse, the results
can be unsatisfying. [376] provide some anecdotal evidence for the disastrous
results of disuse of automated monitoring systems, i.e. the ignoring of warning
systems. Misuse of a system is known as contributing factor for complacency,
i.e. a state of mind characterized by a low level of suspicion.
The level of trust put into an automated aid, like the trust put into a person,
is thought to be formed dynamically, mirroring the trust dynamics identified
in the interpersonal trust literature, i.e. a rapid decline of trust after a failure
event and only a slow increase in trust after an extended period of satisfying
performance [377].
It is likely that trust of AI systems will have to be gained over time, similar to
personal relationships. If things behave repeatedly as they are expected to do,
trust is earned. To facilitate the rapid increase of trust into AI systems, building
them in a way conductive to the development of trust seems like a promising
route.
A major concern with AI systems is bias, which could be an artifact of the data
used for training or of the used algorithm. This concern seems to be especially
pronounced for AI systemswhich are used tomake decisions that pertain to hu-
mans and could disadvantage certain groups of people. The tasks of assigning
credit scores or selection applicants are examples of such potentially problem-
atic applications. Bias detection and management can be seen as an element of
the larger problem of algorithmic accountability.
It is believed that AI systemsmust be able to explain how andmore importantly
why they arrive at particular conclusions so that human supervision of the ra-
tionale of the system remains possible. This intuition has led to the formulation
of the "Principles for Accountable Algorithms" [378], which are responsibility,
explainability, accuracy, auditability and fairness. While these principles are
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formulated with the idea of widespread algorithmic decision on the societal
level in mind, at least two of these principles seem to be well suited to increase
the amount of trust that users put in the decisions of algorithm itself: explain-
ability and accuracy. Responsibility and auditability are also important factors,
but focus more on the deployment and operation of the condition monitoring
system than on the algorithm itself. Trust is thus not simply confidence that a
model will perform well, which any sufficiently accurate, albeit opaque, model
could demonstrate.
Trust in algorithms also necessitates the ability to know which and why in-

stances have been correctly or wrongly identified. [379]
If themodel’s mistake tend to be in instances,where humans are also frequently
mistaken,andamodel is accurate,where humans are typically accurate, itmight
be easier to give control to such a system. Otherwise, it might always be advan-
tageous to maintain human supervision. The principles of explainability and
accuracy will be outlined next.

5.1.1 Explainability

Explainability is the name for a criterion, which means to ensure that decisions
made by algorithms aswell as anydata driving those decisions can be explained
to end-users and stakeholders in non-technical terms. [378] suggests the fol-
lowing questions as guidelines for a system that tries to satisfy the demand for
explainability:

• "Who are end-users and stakeholders?"
• "How much of your system can be explained to users and stakeholders?"
• "How much of the data sources can be disclosed?"

To be able to answer the posed questions, the system has to be designed to do
so. This involves certain design decisions:

• Design a plan for how decisions are explained to users of those decisions.
• In case of usage of machine-learning models:
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– consider using interpretable or explainable models,
– describe the training data, including how, when and why it was col-
lected or sampled.

• Disclose the sources of any data used and as much as possible about
the specific attributes of the data. Explain how the data was cleaned or
otherwise transformed.

Especially the last design choice might face legal challenges, and it will not
be possible to apply it in every situation. In those situations, it will be harder
to generate trust in the system. The requirements for explainability are also a
constraint on what tools a data scientist can choose from for creating diagnostic
systems.

5.1.2 Accuracy

In line with the discussion in Chapter 4, the identification, logging and articula-
tion of sources of error and uncertainty throughout the algorithm and its data
sources is emphasized by [378] as a major task for the deployment of algorith-
mic decision support systems. The goal is to gain an understanding about the
expected and worst case implications of this uncertainty and to use it to design
mitigation procedures. The guiding question for accuracy in this rather specific
sense are:

• "What sources of uncertainty are present andhow tomitigate their effect?"
• "How confident are the decisions made by the algorithmic system?"
• "Have alternative data sources been tested?"

Suggested starting points towards building an accurate system are:

• Assess the potential for errors in the system and the resulting potential
harm to users.

• Develop a process bywhich errors in input data, training data or decisions
can be corrected.
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• Perform a validity check by randomly sampling a portion of the data and
manually checking for its correctness. Report on the error rate publicly.

• Determine how to communicate the uncertainty of each decision.

Knowledge about the uncertainty of information that is used in decisions is
very important from a perspective of rational decision-making and to counter
tendencies to misuse or disuse of prognostic systems. It should be noted, how-
ever, that the transfer of uncertainty present or produced in the data collection
or analysis processes to a decision-maker is not always welcomed.

5.2 Interpretability of Diagnostic Systems
If the system can explain its reasoning, it can be verified whether that reason-
ing is sound with respect to auxiliary criteria. There is still little consensus on
what interpretability is with respect to machine learning and how to evaluate
or benchmark it.
Currently, evaluation typically falls into one of two categories. The first evalu-
ates interpretability in the context of an application: if the system is useful in
either a practical application or a simplified version of it, then it is assumed to
be somehow interpretable.
The second evaluates interpretability via a quantifiable proxy. It is typically
claimed that some model classes, e.g. sparse linear models, rule lists, gradi-
ent boosted trees, are interpretable and then algorithms to optimize within
that class are presented. Essentially, both evaluation approaches follow Justice
Stewart’s famous "But I know it when I see it"-criterion.1 [380] argue that this
apparent lack of rigor simultaneous is and is not a cause for concern: They ar-
gue that the notions of interpretability above appear reasonable because that
is what they are: they meet the first test of having face-validity on the correct
test set of subjects: human-beings. Unfortunately, differences in familiarity with
models in test subjects will probably have an influence on the complexity of a
model that is still deemed interpretable.

1 Although in a markedly different context.
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However, the basic notion leaves many kinds of questions unanswerable like
whether all models in the model classes defined to be interpretable are equally
interpretable. Quantifiable proxies like sparsity seem to allow comparisons, but
fail to answer questions like how to compare models sparse in features versus
a model sparse in prototypes.

5.2.1 What is Interpretability?

In the context of machine learning systems, the rather mundane definition of
interpretability will be adopted for the remainder of this discussion:

Interpretability in amachine learning system is the ability to explain
or present in understandable terms to a human.

A formal definition of the concept remains somewhat elusive, which does not
seem to be a limitation of the concept in this context in particular.
In the field of psychology explanations are defined as "[...] the currency in
which we exchanged beliefs". Questions such as what constitutes an explana-
tion, what makes some explanations better than others, how explanations are
generated and when explanations are sought, are also just beginning to be ad-
dressed in that field as well [380]. [381] makes the argument that explanations
are the very building blocks of scientific knowledge and that good explanation
have to be hard to vary to be good.

5.2.2 Why Interpretability?

Practically, interpretability is used to confirm other important desiderata of ma-
chine learning systems: There may exist many auxiliary criteria that one may
wish to optimize besides accuracy and generalization capacity. For example
notions of reliability and robustness against variations in parameters, inputs
and the environment, causality or the retrieval of additional information might
be important for an application. Interpretability can assist in qualitatively ascer-
taining whether desiderata, such as those mentioned above, are met. In indus-
trial contexts, being provided a feasible explanation that fails to correspond to

95



5 PERMEATED

a known causal structure, provides grounds to be concerned about the valid-
ity of a diagnostic module. It does not seem that all machine learning systems
require interpretability. Advertisement servers, postal code detection, etc. com-
pute their output without human intervention. Explanation is not necessary,
because either there are no significant consequences for wrong decisions or the
problem is sufficiently well-studied and validated in real applications that the
systemhas gained trust despite its imperfections [380]. In other realms however,
where the stakes for mistakes are higher, this criterion seems to be beneficial in
creating explanations for algorithmic decisions, which might ultimately create
trust in algorithmic decisions. The question thus becomes when explanations
become appropriate or even necessary. In the following subsections, criterions
for the desirability of explanations are given.

Incompleteness

Part of the answer for when explanations are needed seems to point to uncer-
tainty or more generally incompleteness, which creates a fundamental barrier
to optimization and evaluation2. Note that incompleteness is a special form
of uncertainty. While the radar localization of an aircraft might be uncertain,
there are rigorous ways to reason about and quantify the resulting variance.
Incompleteness on the other hand introduces an unquantified, maybe even un-
quantifiable, bias. So while the effect of a small data set or of only a limited
number of sensors results is a quantified bias, the effect of selecting a certain
model based on domain knowledge is generally not quantifiable. For example,
in complex systems, the complete system is only rarely testable; creating a com-
plete list of all scenarios in which the system may fail is at best a daunting task.
The enumeration of possible outputs given all possible inputs might be even
computationally intractable. Furthermore, it is not certain that there is enough
information available to identify all undesirable outputs. It might therefore
not be possible to describe the problem completely. Multi-objective trade-offs
are another example of an incomplete problem description: Two well-defined

2 See 4 for a detailed discussion
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desiderata in machine learning systems may compete with each other, such
as causality and prediction accuracy. Even if each objective is fully specified,
the exact dynamics of the trade-off may not be fully known, and the decision
may have to be made on a case-by-case basis. In the presence of incomplete-
ness, interpretability is one way to ensure that effects of gaps in the problem
formulation itself become visible.

Causality

Causality still is a hotly debated topic in statistics and mathematics. In general
there are two ways to address it. One is to fully embrace the Bayesian paradigm
of correlation and treating causation, in a sense, mathematically as an illusion.
In that paradigm, causality is not hard-coded into any formula,most of the time
not even as a constraint.
The other way, more in line with how humans tend to organize their knowl-
edge, includes causation. If the (in)famous example of the Deep Neural Net-
work, which classified huskies and wolves with a high degree of accuracy, is
considered, it becomes clear that reliance on predictive accuracy without any
principled method of ascertaining cause-effect-relationships can be deceptive
[382]. In an industrial context, less benign consequences of reliance on a faulty,
yet highly accurate predictor are easily imaginable.
While there are some methods of artificial intelligence that try to model causal
effects, the majority of supervised learning algorithms are only optimized to
work with correlations in data. Nevertheless, they are often used in the hope of
finding properties or generating hypotheses about causal properties of the real
world. The associations that are embedded by supervised learning algorithms
are not guaranteed to reflect causal relationships. Confounding variables can
still be "lurking" in the data 3 and have an influence on both associated values.
It is hoped that by the interpretation of supervised models falsifiable hypothe-
ses can be generated and tested experimentally. The task of inferring causal
relationships form observational and interventionist data has been studied ex-

3 See [383] for a treatment of confounding variables with extra-probabilistic, i.e. causal, methods.
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tensively [383]. Generally speaking, an unfortunate characteristic of thesemeth-
ods is their strong reliance on prior knowledge and the dependence of their
results on the assumptions about the causal structure of the process generating
the data.

Transferability

Typically, models are validated by training them on a randomly selected parti-
tion of the data and withholding some data of the same distribution for testing.
The gap between the accuracy of a model on the training and on the test data
is used to judge a model’s capacity for generalization. Humans tend to exhibit
a richer capacity for generalization and can often successfully transfer learned
skills to different situations.
If a machine learning algorithm is supposed to work in a non-stationary envi-
ronment, it also has to be able to exhibit this sort of behavior and be able to cope
with the change of the environment that the deployment of the model itself
causes.4 In security contexts, the environment might be actively adversarial in
trying to supply manipulated data to "fool" the learning algorithm. With small
perturbations to original sensory input, like images, adversarial attacks can de-
ceive a target model to produce completely wrong predictions. There have for
example been attacks on semi-autonomous cars to take the wrong lane. [385]
For credit scores, the variables measured to quantify the risk of default on a
loan can be manipulated by the assessed individuals. Periodically requesting
increases to credit lines while keeping spending patterns constant for example,
will contribute positively on the credit score [379]. This gaming of the rating
system may invalidate their predictive power. Interpretability of models and
their decisions can thus help to assess the effects of a change of context to the
deployed models.

4 [384] details a case, where a model was trained to predict probabilities of death from pneumonia.
For patients that also had asthma, the probabilities were lower owing to more focused treatment on
such patients in the used data sets. Deployed in an environment where asthma was not considered
a reason for more focused treatments, the model would underestimate the risk of death for such
patients.
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Informativeness

A common way to use machine learning models is to make decisions based
on the outputs of a model. In some cases, the supervised model is used to
provide additional information to human decision-makers, instead. While the
ostensible objective of the machine learning algorithms remains a reduction
in predictive error, the real-purpose is to provide useful information. In most
cases this is achieved via the model outputs, however, additional information
might be conveyed to human decision-makers via some procedure, for example
by providing similar cases in support of a diagnostic decision. This setup more
closely resembles unsupervised learning. The real goal is the exploration of
relevant data [379].

5.2.3 How could Interpretability be Measured?

In a standard machine learning setting, there exist several evaluation metrics,
that are used in different contexts, as discussed in Sec. 4.6. Applied work is
generally evaluated by showing the performance of the model on the task at
hand, while core methods are required to demonstrate their generalizability
via evaluation on several synthetic and standard benchmarks. In this section
the interpretation evaluation taxonomy according to [380] is explained.

Application-grounded Metrics

Application-grounded evaluation involves the conduction of human experi-
ments within real application. The idea is that the best way to show that a
model works is to evaluate it with respect to the task that a researcher wants
to examine. The same rationale is commonly applied in fields such as human-
computer interaction and data visualization. The quality of an explanation in
this application-focused context is evaluated on the task at hand: How good
can errors be identified? Are new insights to be gained?
Examples of experiments include domain experts testing the exact application
or domain experts testing a simpler or only partial task to decrease the neces-
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sary time for experiments and lower the barriers for participation. How well
human-produced explanations assist other humans in completing tasks is an
important baseline in both cases.
As with all experiments involving human subjects, care has to be taken to elim-
inate bias and confounding variables as much as possible.

Human-grounded Metrics

Like application-grounded evaluation, human-grounded evaluation is about
conducting human-subject experiments. The difference is that these tests are
simplified, but designed to maintain the essence of the target application. The
appeal of this form of evaluation is that it is not necessary to directly engage
the target community, which might be difficult, but to let lay people complete
these tasks. This increases the pool of potential test subjects and can also help
in lowering the expenses, because no compensation for highly trained domain
experts is necessary. This kind of evaluation is more appropriate, when less
specific notions about the quality of an explanation are to be tested, i.e. what
kind of explanation is better understandable under severe time constraints. A
major challenge in this setup is to evaluate the quality of an explanationwithout
a specific context and purpose of the application.
Ideally the evaluation of the explanations will only depend on the quality of
the explanation regardless of the correctness of the associated prediction and
the source, i.e. whether it is from the model itself or a post-hoc interpretation.
But it is hard to isolate these factors from one another. Potential experiments
include, binary forced choices, where humans most choose one of two presented
explanations for their quality, forward simulations, where humans are presented
with the task of correctly simulating a model’s output, given and explanation
and an input or counterfactual simulations, where, given an input, an output and
an explanation, the user is asked to predict, what changes are necessary to
change the method’s prediction to a desired output.
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Functionally-grounded Evaluation

Functionally-grounded evaluations are supposed to not require any human
experiments, instead some more formal definition of interpretability is used
as a proxy for the quality of explanations, like the sparseness of inputs. The
appeal for this type of experiments obviously stems from the fact that human
experiments require considerable amounts of time and money. These tests are
most appropriate, once a class of models or regularizers has already been vali-
dated by one of the other two evaluation setups or when human testing is not
appropriate. A challenge is of course to find suitable proxies. Even once a proxy
has been formalized, finding an optimal solution to the problem can also be
challenging, as it is likely to be non-convex, non-differentiable and contain cer-
tain discrete variables. Given a suitable proxy for interpretability, these can be
used to improve the system. It is for example possible to increase the prediction
performance of already validated and interpretable model given constraints on
themeasure of the proxy, or inversely by fixing the performance, but improving
the system with respect to a measure on the proxy, for example sparseness.

5.3 The PERMEATED-Framework
To facilitate decision-making in the presence of substantial amounts of uncer-
tainty, the PERMEATED-Framework is introduced. Like some of its predeces-
sors, it is a systematic approach for capturing the available information about a
system or subsystem under consideration. But it also takes into account some
special needs of the industrial context, which also include small sample sizes,
the infeasibility of conducting experiments on considerable numbers of com-
ponents, subsystems or even a whole machine tool and the need to address
human decision-makers with the result of the analyses to create the trust that is
conductive to the continued gainful usage of any condition monitoring system.

101



5 PERMEATED

Responsible
Decision-Maker

DA DM SD HA PA AG RD

Data
Acquisi�on

Data
Manipula�on

State
Detec�on

Health
Assessment

Prognos�c
Assessment

Advisory
Genera�on

External Systems, data archiving, block configura�on

AS

Asset

Figure 5.1: The PERMEATED-Framework. An approach for condition
monitoring for industrial assets.

Its features are:

• Ability to handle information on different granularity levels.
• Explainability as an essential part of the framework.
• Focusing on feedback from the relevant decision-makers to continually

improve the diagnostic capabilities.
• Stressing the generation of trust to aid implementation and continuous

usage.
• Ability to facilitate every level of analytical capacity: Case-based reason-

ing (no generalization at all), fault detection, fault identification, fault
prediction.

• Reliance onmodules to support extensibility, adaptability and permanent
improvements.

• Analyzes causes on the level of granularity they arise at.

The available information about a particular system or even unit under con-
sideration is the determinant of what level of utility a diagnostic system can
fulfill. The more information is available, the more useful functions can usually
be served. On one end of the spectrum is a purely statistical model that identi-
fies aberration from a specified norm, on the other end are highly complicated
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deep neural networks that are used as regressors. For the latter applications,
knowledge of the state of the system is not sufficient. Rather knowledge about
the dynamics of faults of individual components within a complicated system
is needed. Acquiring this knowledge is neither free nor easy. It is probably im-
possible to prevent every fault, it is very possible, however, to learn from failure.
One of the main tasks for eachmaintenance system is to facilitate learning from
errors and experimenting with different solution strategies. PERMEATED is
designed to be a learning system. By design, there is no "done date" and no
final release. It is adaptable and changes as new algorithms, monitored prod-
ucts, sensors or platforms become available. The PERMEATED-framework is
built around empirical verification. It does not claim infallibility, to the contrary,
making mistakes is seen as the most valuable opportunity for learning. It is im-
perative, though, to have the necessary feedback-loops in place, on a technical
and organizational level, to learn from mistakes. The framework represents a
shift from a "solutions" perspective to a "systems" perspective.
The following sections present the conceptual building blocks of the framework,
depicted in Fig. 5.1.

5.3.1 Guiding Ideas

The PERMEATED-Framework has been influenced by many ideas. The most
important ones are presented here for reference.

Data Presentation

Humans are influenced by the way information is presented to them. The cho-
sen representation can therefore not be neutral. Even if the same information
content is presented, the presentation itself can skewwhat recipient of the infor-
mation perceives as important. Care should be taken to present the information
relevant to different user groups appropriately. While the presentation of more
information than is appropriate for a certain user group technically sends more
information, it is possible that less is actually received and understood. This
can in fact reduce the amount of information that is effectively transmitted. If
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the information is perceived to be confusing, operators will not use a system to
its full capacity.

Pragmatism

Deterministic theories represent the majority of present day scientific theories,
with some notable exceptions such as quantum information theory. They relate
certain measurements in the physical universe through rules of interpretation
to mathematical terms. If the asserted relationships are violated, the model of
reality is falsified.
Probabilistic theories cannot be falsified as easily. Only statements of extreme
probabilities (i.e., 0 or 1) can act as potential falsifiers. Such potential falsifying
events are called Borel criteria [386]. Furthermore, two probabilistic models
P and Q cannot be distinguished, if they are mutually absolutely continuous,
that is, when they assign probability 0 to the same events. These models will
pass or fail any Borel falsifiability test together.
In this view, there is and cannot be a "true model" for the physical world. This
is akin to Popperian standpoint that the best we can hope for with regard to any
scientific theory is not to discover the ultimate truth, but that our currently un-
falsified theories are useful for understanding and predicting the world during
their limited lifespan [386]. The philosophy of taking usefulness as supreme
and only considering real world differences of theories is called pragmatism5

and adopted as governing principle for condition monitoring systems.

Causal Relativism

The world can be described at various finer or coarser levels of detail. Causality
is taken as probabilistic concept describing probabilistic invariances, which are
stable over a shifting range of environments. In agreement with [386], causality
in degradation processes in this sense can arise during analysis at any such
level of detail. It need not be the case that causality at a higher level is an indi-
cation of causal relations at a deeper level.

5 Although originally intended as a rationalization for various religious believes. [387]
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This means that a reductionist program for condition monitoring, while doubt-
less of value in most cases, cannot be universally successful: certain aspects of a
complex coarse-grained system may be emergent properties and can therefore
only be dealt with on the level of analysis where they arise.
This conception of causality is called causal relativism and will be adopted as
conception of causality for the PERMEATED framework.

5.3.2 Data Acquisition

Data acquisition represents the fundamental capability of the system to access
information about the system or the components of the system under considera-
tion. This stage implicitly or explicitly determines the capabilities of the overall
system. If a system or fault is neither observable nor detectable, there is no
information to be acquired at this stage, and it can thus not enter into a super-
vision system.6 A graphical representation of such Data Acquisition stage and
its environment can be seen in Fig. 5.2, which follows [369] closely, but closes
the feedback loop from the Responsible Decision-Makers.

5.3.3 Data Manipulation

This stage takes the raw data of the previous stage and processes it according
to the need of the application. There can be multiple data manipulation states
in series or parallel for the same set of raw data inputs, there can also be not
necessarily unique mixtures of raw data sets for different data manipulation
blocks. While there are conceptually no limitations on possible data manipula-
tions algorithms, which could range from Wavelets Package Decomposition to
Hilbert-Huang transform, results have to be explainable from the point of view
of a Responsible Decision-Maker. More classical data manipulation techniques
like a Fourier transform of a raw current signals or various filtering techniques,
like band-pass filters, might prove more valuable within this framework.

6 given that the information cannot be reconstructed or extracted from a different sensor and be
made accessible to the common data pool
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DA processing

•Collects analog, digital and manual data

•Converts analog data to digital data

analog data digital data manual data

DA data buffer/ 
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DA configuration

Block configuration
DA data

(digitalized data with timestamp 

and data quality indicator)

To other blocks

Feedback from RD

Figure 5.2: Data Acquisition Block. [369], adapted.

A graphical representation of such a Data Manipulation stage and its envi-
ronment can be seen in Fig. 5.3.

DM processing

•Performs signal processing (FFT, Wavelet, etc)

•Performs averaging

•Performce feature extraction

DA DM

DA data buffer/ 

Archive DM configuration

(DM algorithm parameters, 

etc.)

To other blocksBlock configuration
DM data

(descriptor data with

timestamp and data quality

indicator) Feedback from RD

DM data buffer/ 

Archive

Figure 5.3: Data Manipulation Block. [369], adapted.
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5.3.4 State Detection

The state of the system under consideration is the collection of at least one, but
typicallymore, outputs of the data manipulation stage. The state is a mathemat-
ical representation of certain measured facts of the real system. It is the basis
for subsequent processing steps. Components of the system can be represented
by their own state. An example output of such a stage could be the eigenfre-
quency of a mechanical structure, which can be derived from the frequency
response measurement of an axis in a machine tool or the friction within a
drive train, which can be approximated by the average current need for a non-
accelerated movement. A state vector can be composited from the individual
states of the components and subsystems, which might have their own unique
value ranges, engineering units, boundaries, etc. A graphical representation of
a State Detection stage and its environment can be seen in Fig.5.4.

SD processing

•Calculates current values for condition/statistical indicators

•Evalutates state

DA DM

DA/DM data buffer/ 

archive

SD configuration

(SD algorithm parameters, etc.)

To other blocksBlock configuration
SD data

(current state indicator, boundary

exceedances, statistical analysis data

with time stamp ) Feedback from RD

SD data buffer/ 

archive

SD

SD operational data

(load, etc.)

Figure 5.4: State Detection Block. [369], adapted.

5.3.5 Health Assessment

The Health Assessment state, represented in Fig. 5.5, is the first stage at which
information about the context of the system’s physical environment, ensembles
and "peers" becomes important. The statistical relevance of detected anomalies
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is onlymeaningful in comparison to a baseline or populations statistics.7 Knowl-
edge about the uncertainty of certain properties of the unit under consideration
has to be injected at this stage. A difference to a defined reference group is only
meaningful, if the variance of that property is small enough. This implies that
the uncertainty about certain properties of the system and consequently the
measured features is a deciding factor for the feasibility of a health assessment.

DA DM

SD/DA/DM data

buffer/ archive

HA configuration

(HA algorithm parameters, HA 

system data, etc.)

To other blocksBlock configuration
HA information

(health grade, diagnosed faults, 

recommendation, evidence, 

explanation, confidence )
Feedback from RD

HA data buffer/ 

archive

SD

HA operational data

(load, etc.)

HA

HA processing
•Estimates current health grades
•Diagnoses faults and failures
•Generates recommendations
•Generates evidence and explanation

Figure 5.5: Health Assessment Block. [369], adapted.

5.3.6 Prognostic Stage

The Prognostic stage uses information about the health condition of the system
under consideration, as well as knowledge about the trajectory of comparable
systems, to generate projections of the trajectory of the system under consid-
eration with respect to uncertainties in the usage profile and environmental
variables. A graphical representation can be seen in Fig. 5.6. Typically, the re-
sult of these projections are compressed by using the RUL metric. To achieve
this, this stage has to fulfill the tasks described in Sec. 4.5.1. Alternative usage
strategies, that can have a huge impact on the RUL can be evaluated and the
most useful strategy by some measure, e.g. revenue, can be selected. As was

7 Except for cases in which certain measurable properties exceed somewell understood and carefully
implemented threshold.
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discussed in the Chapter 4, different types of uncertainty are acting simulta-
neously on this estimate, which makes the creation of meaningful estimates
challenging.

DA DM

HA/SD/DA/

DM data buffer/ 

archive PA configuration

(PA algorithm parameters, PA 

system data, etc.)

To other blocksBlock configuration
PA information

(future health grade, predicted faults, 

RUL, recommendation, evidence, 

explanation, confidence )
Feedback from RD

PA data buffer/ 

archive

SD

PA operational data

(future load, etc.)

HA PA

PA processing
•Estimates future health grades
•Predicts faults and failures
•Generates recommendations
•Generates evidence and explanation

Figure 5.6: Prognostic Assessment Block. [369], adapted.

5.3.7 Advisory Generation

The Advisory Generation stage, depicted in Fig.5.7, is used to produce a sug-
gestion for the course of action for the responsible decision-maker. The sugges-
tions have to be specific, actionable, measurable and falsifiable. The rationale
for the suggestion should be provided transparently. Obviously, the available
information of the interaction of the components, the domain of the responsible
decision-maker and the task at hand determine the type and usability of the
generated advises, which can range from rather mundane ones, like "Don’t do
anything to machine Q435Z786" to strategies for the operation of a whole fleet
of manufacturing sites.
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Figure 5.7: Advisory Generation Block. [369], adapted.

5.3.8 Responsible Decision-Maker

The Responsible Decision-Maker is the addressee of the analysis and generated
advice. She has to make the final decision regarding any maintenance action,
whether it is the shutdown of a system for safety reasons, the interpretation
of the presented information of the Health Assessment or Prognostic Assess-
ment stages and, naturally, the implementation of any of the generated advices.
The Responsible Decision-Maker is the consumer and often customer of the
advisory system. In accordance with the ideas regarding a third way of model
calibration presented in Sec. 4.7.4, the Responsible Decision-Maker is relevant
to the probabilities, because her judgement on the importance of variables and
subsequent alterations to the models also determine the generated Health and
Prognostic Assessments. She is the sole revealer of the true usability of the sys-
tem. If she does not use or does not trust the system, the implementation effort
has not succeeded. For a condition monitoring system, the deployment of a
system is not the final stage of the development, the continued profitable usage
is. A graphical representation of a Responsible Decision-Maker stage and its
environment can be seen in Fig. 5.8.
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Figure 5.8: Responsible Decision-Maker Block

5.4 AxDiag: An Industrial Expert System
To facilitate the monitoring of the drives of machine tools, the PERMEATED-
framework was used to create the AxDiag-Sofware-Tool. It consists of different
software components. One component is executed by the control systems of
the machine tools and communicates directly with the drives. This component
triggers measurements, collects and persists the relevant signals. Another com-
ponent is executable on normal PCs. This is used by service technicians and
developers for manual analyses and for configuration purposes. A last com-
ponent is hosted by a cloud service and facilitates the automated and scalable
analysis of measurements.
The software component on the machine tool triggers measurement cycles

that excite the system sufficiently in order to get usable representations of the
dynamic behavior of the system8. The software is configurable and extensi-
ble. It allows for the inclusion of various measurement functions and ensures
reproducible measurement conditions. The component makes sure that the
parameters of the control cascades of the drives and their respective current set
point filters are in a state that allows for the observability of interesting proper-

8 See Sec. 3.1.2 for a discussion on the necessary levels of excitation
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ties. For example, if the experimenter is interested in mechanical properties of
the machine, it is often advisable to reduce the gain of the speed-control loop,
but care has to be taken to keep the control cascade stable. The AxDiag utilizes
mainly frequency response function measurements and measurements with
consistent offset speed. The configuration allows the experimenter to position
the axes relative to one another, which is especially interesting, if their cine-
matic chains are linked. The dynamic properties of several 5-axis machines for
example are highly dependent upon their relative position, mainly due to an
increase in lever length.
The manufacturers of machine tools do typically have a lot of specific do-

main knowledge about their assets. A lot of this knowledge with relevance for
condition monitoring applications exits in the form of mechanical models. A
very simplified, explanatory model of the mechanics of the machine tool un-
der consideration is depicted in Fig. 5.9. It can be seen, that a 2D laser cutting
machine can be represented by a mass-spring-damper model, where the ma-
jor components of the machine, like its crossbeam, are flexibly coupled to one
another.

Figure 5.9: A simplified mechanical model of a machine tool.
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A special simulation framework, which has been introduced in [388], has
then been used to build mechanical models of various components. The frame-
work allows for the parameterization of coupling conditions, the integration of
controllers and is used to create dynamical models of the machine, which allow
simulations in the time and frequency domain. These models can be used to
investigate the effect of changes in mass caused by the installation of various
machine options, for example of an advanced laser cutting unit, or they can
be used to investigate the trade-off of using weight reduction techniques with
associated loss of stiffness on the dynamic properties of the controlled drives.

The process of generating simulations models is depicted in Fig. 5.10. It starts
from a CAD drawing of the relevant components, which are used for prototyp-
ing, production and eventually service purposes. These drawings are the basis
for finite element models, which are primarily used during the development
process of a machine to ensure that all stresses in the components are well
within safety and functional bounds. In most cases, the granularity of these
models is too fine to use them directly in simulations. For this reason, model re-
duction techniques, like the Krylov subspace method, are used to decrease the

Figure 5.10: Depiction of the model generation process.
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Figure 5.11: Visualization of the correspondence of a peak in the frequency
response function to the first bending eigenmode of the driveshaft.

model dimension sufficiently. The reduced models can then be used to quickly
build variants of machines.

Given these models, it is possible to investigate the behavior of the mechani-
cal components of the machine at different frequencies. For example, Fig. 5.11
depicts a machine type, where a peak in the frequency response function is
closely associated with the first bending eigenmode of the drive shaft, while
Fig. 5.12 depicts the samemachine type at a frequency that is closely associated
with the second bending eigenmode.

With this simulation framework and sufficiently validated models, various
kinds of faults can also be investigated. These models can for example be used
to trace the effect of rack-pinion backlash by changing the coupling of the drive
shaft to the machine frame. The effects of these change in parameters on the
behavior in the time and frequency domain can provide valuable insights for
the engineering of features for condition monitoring applications. For example,
the vibrational energy of a drive, as defined in [97], could be confirmed to be
as a measure of health for certain components. A common problem during the
initial design and operation phase of the AxDiag condition monitoring system
has been the derivation of limits and boundaries indicating the presence of a
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Figure 5.12: Visualization of the correspondence of a peak in the frequency
response function to the second bending eigenmode of the drive-
shaft.

fault mode, as knowledge about particular fault modes can be sparse and hard
tomodel. For this reason, fuzzy sets,which have been described in Sec. 4.4,were
used to express the relative degree of certainty of domain experts regarding
the presence of a fault in a system under consideration. With the help of appro-
priately selected and parameterized fuzzy membership functions, knowledge
about different kinds of various fault modes can be encoded and operational-
ized to the different types of measurements in the AxDiag-framework.
For example measurements with consistent offset speed make it possible to

determine the effect of problems with specific components in the drive train,
like the effect of a linear bearing on the spectrum of the torque-generating cur-
rent, as shown in Fig. 5.13, where it can be seen that a defective component
introduces an excitation at a frequency that is offset speed and component
dependent. These excitations can lead to harmful vibrations, noise and a de-
crease in the quality of produced parts. Because not all statistically significant
aberrations in the spectrum indicate a real fault in the machine which might
influence its performance, fuzzy membership functions were used to encode
and operationalize the tentative knowledge of the domain experts.
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Figure 5.13: Effect of a damaged linear bearing on the spectrum of the motor
current. The damaged component is depicted in the upper figure,
while the lower one shows the same machine after a repair.

Frequency response function measurements can be used to gain a broad
range of information about the system, for example the influence of a loss of
stiffness of a motor bearing on the closed-loop frequency response function, as
depicted in Fig. 5.14. During these measurements, the drives are fed a refer-
ence signal, which is created by adding a pseudorandom binary sequence to a
static offset signal, and measuring the resulting controlled variable. This can
in principle be done on the current, speed or position control loop, which are
cascaded to create the high precision and positioning speed that is needed for
modern machine tools. It can clearly be seen that the loss of stiffness changes
the underlying plant of the cascade controller so significantly, that the preset
controller parameters become far too aggressive. Excitation of the system in
this frequency range by a disturbance or even regular inputs can lead to geo-
metrical errors of produced parts during the cutting process. The effect of a
collision protection system that has been used beyond its intended life-time
stress threshold can be seen in Fig. 5.15. It can clearly be seen that the wear
reduces the dampening effect of the coupling between the cutting head and
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Figure 5.14: Effect of lost stiffness in the motor bearing on the closed-loop fre-
quency response function.

its support structure. This weakening of the dampening coefficient introduces
a gain in the associated frequency range of the closed control loop, which the
controller is not necessarily designed for. Excitation of the system in this fre-
quency range by a disturbance or ill-chosen input can lead to geometrical errors
of produced parts during the cutting process. Again, in the previous two ex-
amples fuzzy membership functions proved essential for encoding the domain
knowledge gained by simulations, experiments and service missions about the
identified indicators into actionable threshold functions.

5.4.1 Use Case: Vibration of Cascade-controlled Axis

The software component that is installed on the machine tools has been
deployed to more than 10000 machines so far. After the introduction of the
PERMEATED-framework, machine tools undergo a mandatory quality control
process at the end of the assembly line and are subjected to the measurement
function described in Sec. 5.4. Some of these machines are configured
to regularly collect and send measurements of the drives for an ongoing
monitoring. The condition of the machine tools has been rated by quality
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Figure 5.15: Effect of a worn out collision protection system on the closed-loop
frequency response function.

control engineers and the results heave been recorded. For a certain version of
machine tools, an issue with the assembly of the pneumatic couplers between
a support bracket of an axis and a specific type of laser cutting head has been
identified. There are more than 1,250 individual machines of that type. This
issue can prevent the cutting head from locking properly to its socket, which
can lead to vibrations severe enough to be audible to even untrained operators.
Initial, small disturbances of the measured velocity get amplified into a
self-sustaining vibration of the drive. The vibration can also negatively impact
the cutting quality. The root-cause analysis of this phenomenon had been
significantly complicated by the presence of different types of uncertainties at
different stages of the diagnosis process, but can now be reliably identified by
using specifically designed fuzzy membership functions. The next subsections
will present examples of the effect of uncertainties at the different stages along
the process.

5.4.2 AxDiag: Assets

At the level of the asset, different environmental confounders can alter the mea-
sured characteristics of the system. In Fig. 5.16 the effect of temperature can be
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Figure 5.16: Influence of temperature on the open-loop frequency response
function.

seen on the open-loop frequency response function of an axis with rack-pinion
power-transmission system. If the temperature of the drive is not known, the
measurements have to be regarded as uncertain. In Fig. 5.17 the effect of fasten-
ing the machine tool by applying less than the specified torque on the screws
connecting themachine to the foundation on the open-loop frequency response
function is depicted. The effect closely resembles the effect of a wider than spec-
ified rack-pinion backlash, which can be seen in Fig. 5.18. There are no sensors
within the machine to check the apparent stiffness of the connection between
machine and foundation. Without knowledge about the actual conditions at
the installation site, it is therefore not easy to differentiate between these two
competing hypotheses for explaining the observed phenomenon. A last exam-
ple of uncertainties that arise about the very context of the measurement and
the state of the asset at the physical level is depicted in Fig. 5.19. Here, the load
of a linear-drive axis is subject to changes of control parameters of the control
cascade in anticipation of a change in the moved mass. This change in mass is
typically caused by the installation of an additional component to the machine
tool to broaden the spectrum of material shapes that can be processed. For cer-
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Figure 5.17: Effect of a worse than specified attachment to the machine tool to
the ground on the open-loop frequency response function.
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Figure 5.18: Comparison of the influence of greater than specified rack-pinion
backlash (above) to a well-adjusted backlash (below) on the open-
loop frequency response function.
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tain versions of machine tools, this change in the configuration is not sent as a
machine-readable message to the control of the machine. Instead, this feature
has to be activated and deactivated manually. If this is done incorrectly, the
subsequent analyses might mistake the effects of changing control parameters
for a change in the electromechanical components.
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Effect of misapplied dynamic paramter adaption

Figure 5.19: Effect of misapplied dynamic parameters on the closed-loop fre-
quency response function.

5.4.3 AxDiag: Data Acquisition

During the data acquisition process, the automatic frequency response mea-
surement function component of the AxDiag-software records the time sam-
ples for a specified number of cycles and averages the measured signal over the
cycles. This signal is then exported for further analysis. Measurement noise is
commonly present inmeasurement systems used in industrial applications and
therefore a source of uncertainty. In this specific application, it is known that
uncertainty is present in the data acquisition process, but information about
the uncertainty is lost by the built-in data aggregation step performed by the
numerical control. It is therefore not even available for propagation to down-
stream modules.
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5.4.4 AxDiag: Data Manipulation

The Welch estimation method for frequency spectra uses overlapping time seg-
ments of the recorded signal. Typically, the longer a time series of a system
under consideration with sustained and sufficient excitation, the more likely
it is for measurement noise to be averaged out. [389, p. 211] This makes the
application of overlapping time segments interesting for obtaining a faithful,
unbiased estimate of the transfer function. Due to the specifics of the data acqui-
sition process in this application, there are only averaged time-series available.
This introduces an algorithmic uncertainty into the estimate of the transfer func-
tion estimate, which cannot be specified easily and is by itself unsuitable for
uncertainty propagation. Additionally, window functions are used to convolve
the time-series with. This is a standard procedure to mitigate undesirable ef-
fects in the spectral domain, i.e. leakages of spectral amplitudes to neighboring
frequency bins. This introduces a trade-off between resolution in frequency
and resolution in amplitude, which leads to additional bias errors. [389, pp.
212-217]

5.4.5 AxDiag: State Detection

Automatic extraction of indicators can also be complicated by the influence
of the specifics of the Data Manipulation stage. If a spike that is an artifact of
measurement noise and a subsequent Fourier transformations happens to occur
close to a "real" resonance peak in a transfer function, it could be selected by
an automatic indicator extraction system instead of the real, meaningful value.
So the indicators themselves are uncertain to some degree. The likelihood of
such a random spike appearing near a real resonance peak is hard to specify
and therefore hard to propagate to subsequent analysis modules.

5.4.6 AxDiag: Health Assessment

In the health assessment stage, information about ensembles of systems are typ-
ically used in determining the health status of a system. The samples selected
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to create estimates of the relevant statistics, for example mean values and the
variance of the state indicators of the produced systems can be biased.
If it is not clear at the time of creation of the aggregates, whether all machines
used in their calculation are indeed members of the "normal" group, the statis-
tics will not reflect "normalcy" accurately. Labeling of the initial samples has
to be done by domain experts, which themselves might have epistemic uncer-
tainty. It seems like feedback about the usefulness of the assessments from a
Responsible Decision-Maker is needed to gradually learn about the systems,
i.e. to improve on the concept of what is normal behavior for a complex sys-
tem, given the variation in their many constituting components, and what is
indeed an aberration. Because of the difficulty to quantify the effect of a lack
of knowledge and even problems of defining the crisp boundaries of an event
of interest, it is hard to propagate the uncertainty of this stage to subsequent
analysis modules.

5.4.7 AxDiag: Prognostic Assessment

Estimating trajectories of state indicators is highly uncertain, because machine
tools are used to produce a variety of products in ways that are rather specific
to individual owners and operators of these systems. It is hard to generate
a representative load or usage profile that can be used in the estimation of
the Remaining Useful Life of an individual system. As was outlined in Sec.
4.5, given stochasticity in failure modes or state indicators, only the estimates
about the aggregate, given an assumed usage profile can be given. Individual
realization might therefore vary greatly.
It is in general not possible to induce future usage patterns from past usages
of systems. The uncertainty introduced by this is, if at all, hard to quantify and
propagate.
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5.4.8 AxDiag: Advisory Generation

During the Advisory Generation stage, given the information of the Health As-
sessment or Prognostic Assessment stages, an actionable recommendation has
to be generated. These must represent a prioritization of what action is most
likely to achieve a given goal, at least implicitly. These possible actions have
to be selected from a previously defined set of actions. The implicit partition-
ing of the state space, which is the pre-image of the mapping of the analysis
process from indicators to recommendations, introduces a compression prob-
lem. It will either be rather crisp around observed instances, thus leaving the
analysis more prone to not attributing a state to a specific class, despite it be-
longing to that class. Or it could also be loose, thus making the analysis more
prone to attribute a state to a specific class, although it does not belong to it. Yet
unknown fault modes might generate measurable changes in state indicators
that are close to the pattern of indicators of an already known fault mode. Un-
certainty in the resulting advice is introduced by enforcing an assignment of
an observed pattern to a given recommended action, i.e., by enforcing a lossy
compression of the information available in the state vector on a predefined set
of recommendations.

5.4.9 AxDiag: Responsible Decision-Maker

As already outlined in Sec. 4.7.4, the human component at this stage is relevant
in the statistical sense to the generated probabilities, because the feedback of
the Responsible Decision-Maker is used to modify the generators of subjective
probabilities during the analysis stages. What is considered to be important by
the respective Responsible Decision-Makers is an extra-statistical question. For
example, if the Responsible Decision-Maker is demanding that the underlying
systemhas to be described as linear, time-invariant system to be able to interpret
indicators, this will constrain the set of possible indicators of the system and not
allow for the handling of more than "mild" non-linearity. On the other hand
this justifies the usage of certain tools of linear system analysis, that will be
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familiar to more users and therefore probability that the system will be used,
if the performance is in an "acceptable" range. The bias that is introduced by
the incorporation of feedback from this module is hard to quantify.

5.5 Comparison to an Industrial Best Practice
The AxDiag instantiation of the PERMEATED-framework is an expert system
and uses expert judgment to design thresholds on well understood and specif-
ically crafted indicators. The problem of automatically setting thresholds has
been investigated in [390], where the authors found that setting suitable thresh-
old levels has been a dilemma for engineers in a number of science and indus-
trial fields, because the derivation of such thresholds poses a significant, yet
frequently underestimated problem. The number of necessary thresholds can
grow very quickly, because there might be several dozen, sometimes evenmore
than 100 individual indicators per drive of a machine series. Additionally, there
are different combinations of options can change the characteristics of a ma-
chine tool. For example, the installation of a smart cutting unit with several
sensors for better process control adds mass that has to be moved, or some
machine tools, which are primarily used for cut metal sheets with lasers, can
also be equipped to handle the cutting of tubes. This comes at the expense of
an elongated z-axis and an altered machine frame. Any combination of these
features might warrant the creation of a new baseline to compare the machines
against. Additionally, it is customary to define warning and error thresholds,
which might also be customized for different user groups: for example, a pro-
duction line might have a lower tolerance for deviations on newly produced
machines than a service organization, which is dealing with aging machines.
This illustrates that the cost of manual threshold setting can easily become
prohibitive.

But monitoring systems are easily capable of generating thousands of false
alarms, when they are run on default threshold levels. Unfortunately, the cost
of reacting to a false alarm can be high, given that such a reaction in a condition
monitoring setting is most likely associated with a service mission and possibly
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even with the replacement of fully functional components. But setting thresh-
olds too low will decrease the value of a monitoring system significantly. The
assessment of [390] is, that despite this problem’s relevance, there is a relative
scarcity of published research on this question.

The authors propose amethod for anynon-negative data, like vibration signal
measures and for symmetrical process values. The approach takes the differ-
ence of probability distributions between these types of signals into considera-
tion, butwill derive thresholds automatically. Their approach is developedwith
the monitoring of wind turbines in mind, which are often working under non-
stationary conditions. To circumvent the additional complexity of normalizing
non-stationary data, they define a set of operational states of interest, identify
timespans that correspond to these states and drop data from transitional peri-
ods. Similarly, the AxDiagmeasurements are designed tomitigate the handling
of non-stationary measurements by specifying the measurement setup, like the
positions of axes, offset speeds and excitation signals directly.

The next subsections will explain the automatic thresholding procedure and
compare it against the PERMEATED-framework.

5.5.1 Threshold setting procedure

The most common approach is to assume a Gaussian distribution and to deter-
mine the mean µ and the standard deviation σ of a data set. As is well known,
the theoretical probability P that data from the data set will fall within the
range ±kσ is:

P(|X − µ| < kσ) =


0.6827, k = 1

0.9545 k = 2

0.9973 k = 3

. (5.1)

While this method is simple, the basic assumption does not always apply.
[390] specifies the following steps to set thresholds: definition of operational

states, outlier removal, setting a minimum amplitude threshold, fitting of a dis-
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tribution model, setting of a reference value, and automatic threshold deriva-
tion. The authors note that some randomness in the state-definition seems
inevitable and that an explicit definition for outliers has been elusive despite
numerous attempts,which renders this task subjective to some degree. Themin-
imum amplitude threshold tries to remove data below a noise threshold. After
these preparation steps, the method tires to fit data to the distributions, which
requires relatively large data sets to converge plausibly. They recommend the
generalized extreme value probability distribution as the most suitable func-
tion after testing differentwell-known distributions, like theWeilbull or Poisson
distribution. A random variable x is said to have a generalized extreme value
probability distributionwith location parameter a, scale parameter b, and shape
parameter k ̸= 0, if its density function is given by

fa,b,k(x) = b−1 exp
(
−(1 + k

x − a
b

)−
1
k

)
·
(

1 + k · x − a
b

)−1− 1
k

. (5.2)

After fitting the distribution, the paper advices to generate a reference value
as the 96-98 percentile of the associated cumulative distribution function and
defines a warning threshold as 3dB and an error threshold as 6dB measured
from that reference.

5.5.2 Results

Using this method, it is in deed possible to automatically create thresholds.
The fitted generalized extreme value probability distribution can be seen in Fig.
5.20 The density functions are plotted so that they contain 99 percent of the
probability mass. As can be seen, for an indicator with a suitable probability
distribution, the proposed technique can be produce sensible error bounds.

But that only holds true, if the indicators are "well-behaved". For the machine
tools under consideration this condition does not hold. The automatically gen-
erated thresholds do not show acceptable performance characteristics. As can
be seen in Fig. 5.21, the automatic thresholds applied to the use case described
in Sec. 5.4.1 generates farmore false alarms compared to the fuzzymembership
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Figure 5.20: Fitted generalized extreme value distribution for amplitudes of the
cross-power spectrum in a freuqency range associated with stator
notches.

function approach. By the judgment of the Responsible Decision-Makers, too
many to be useful.

The application of the method demonstrates certain common problems:

• The removal of outliers still requires a highly technical degree of input
from the domain experts.

• The selection of outliers introduces a degree of subjectivity
• The prescribed method cannot account for relevance in the scoring.

The PERMEATED framework, instantiated in the AxDiag expert system on
the hand allows domain experts the description of relevance by using fuzzy
functions. The explanatory power of a suitably parameterized sigmoidal fuzzy
membership function is higher than a mere statistical argument and produces
a higher degree of acceptance with Responsible Decision-Makers. Moreover,
while both methods introduce a certain degree of subjectivity in the creation
of the model, either by selecting the outliers or by selecting the type of the
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Figure 5.21: Confusion Matrix of an automatic threshold method described in
[390] applied to a set of indicators of a y-axis of a machine tool
series in comparison to the confusion matrix of the PERMEATED
fuzzy recommender system.

membership function, the latter method allows for a rather intuitive way of
expressing the "internal model" of domain expert, while the flexibility of the
former method is highly constraint. These techniques are not mutually exclu-
sive, though. On the contrary, the PERMEATED framework allows to flexibly
choose different methods, as long as they allow for the generation of expla-
nations. While automatic thresholding rules like the one described here can
provide a starting point and default values, the usage of fuzzy membership
functions allows for a highly customizable specifications of the relevance of
indicators.

5.6 Discussion
The PERMEATED-framework was successfully instantiated as an industrial ex-
pert system that uses interpretable and purpose-built state indicators that are
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transparently mapped via fuzzy membership functions to different classes of
criticality. The system proved to be applicable to a rather broad spectrum ofma-
chine tool technologies: laser cutting machine tools for sheet metal processing,
laser welding machine tools for 3D application, as well as for punching ma-
chines and metal tube cutting machines. This realization of the PERMEATED
framework has already created significant saving through its application as
quality control tool in the assembly line and as diagnostic tool for service mis-
sions.
While the maintenance of this system from crafting features to optimizing pa-
rameters of fuzzy membership functions and thresholds has proved to be quite
demanding on the domain experts, the comparison against an automatic thresh-
olding scheme in 5.5 has shown its superior performance. Trust in the generated
advices has initially proved to be rather low, but has grown to high levels. This
required the distribution of explanation to the Responsible Decision-Makers. To
increase the utility of this instantiation of the PERMEATED-framework, while
simultaneously easing the burden on the domain experts, the extensibility of
the framework will be demonstrated in the subsequent chapter by integrat-
ing interpretable machine learning techniques and explanations obtained for
opaque machine learning techniques.
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Corresponding to the PERMEATED-framework, the simulation framework de-
scribed in Sec. 5.4 was used to define more than 25 indicators for the linear-
direct drive that are used to position the cutting head along the y-axis in a first
Data Manipulation stage to tackle the use case described in Sec. 5.4.1. Among
these are the eigenmodes of the motion unit’s crossbeam, the excitation caused
by different components, like magnets of the electric motor, or dynamic charac-
teristics of the closed control loop, like the bandwidth of the controlled system.
Subsequently, data sets were constructed and z-score normalized using the
statistics of nominal systems in a second Data Manipulation stage. An excerpt
of the resulting data for some indicators and machines can be seen in Tab. 6.1.
Additionally, the binary ratings of the quality engineers regarding the pres-

ence or absence of this particular fault were acquired by taking α-cuts over the
set ofmachines that have been deemed as "ok"1 and added to the corresponding
data sets. These data sets were then used to construct classifiers for the system,
which are supposed to support the quality control experts in monitoring the
products of the assembly line.

In the following sections, various classifiers are introduced that were applied
to the constructed data set and assessed with respect to their ability to actually
support the Responsible Decision-Maker. The same data set is then used for
comparison with a special form of interpretable machine learning algorithm
within the PERMEATED-framework.

1 See the discussion in 4.4 for how fuzzy membership function help to concretize this ambiguous
notion.
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6.1 Non-interpretable Machine Learning Algorithms

6.1 Non-interpretable Machine Learning
Algorithms

In this section a selection of machine learning algorithms will be introduced
and applied to the specified use case. These algorithms are not typically con-
sidered to be interpretable. The main concern of these algorithms is accuracy,
not interpretability.

6.1.1 Support Vector Machines for classification

Support Vector Machines, first introduced by Vapnik2, are a tool deeply rooted
in statistical learning theory.
Unlike most classifiers, SVMs do not try to minimize the empirical risk, but the
structural risk. They have shown their capabilities for robust classification in a
number of different applications. In [127] it has been show that the formulation
of the SVM is indeed equal to a robust optimization problem formulation,which
provides an insight into the reason of the robust performance of the SVMs. The
SVM is in its original formulation a binary classifier, i.e. only able to separate
the members of two classes. Let {xi, yi}l

i=1 be a set of observed patterns xi and
their corresponding label yi ∈ {−1, 1}. Such a set of observations is said to be
separable by a hyperplane, if there exists a vector mathb f w and a scalar b, such
that

wTxi + b ≥ 1 ∀i ∈{i|yi = 1},

wTxi + b ≤ −1 ∀i ∈{i|yi = −1}.
(6.1)

The hyperplane wT
0 x + b0 = 0 is said to be the optimal hyperplane separating

the patterns of the set of observations, if it separates the data with the maximal
margin with respect to the direction w/∥w∥.
The "critical" points, i.e. those which are the closest to the decision boundary,

2 See for example [172]
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6 Interpretable Machine Learning

are those, that will satisfy one of the inequalities with equality. The optimal
hyperplane is the unique maximizer of the distance

ρ(w0, b0) =
2

∥w0∥
=

2√
wTw

, (6.2)

which is achieved by minimizing w · w. Not all sets of observations are lin-
early separable, though. If the formulation of separability is modified by the
introduction of positive slack variables ξi, the optimal hyperplane becomes that
hyperplane, which manages the trade-off between separating the two classes
with the greatest margin and allowing the fewest misclassifications the best.

wTxi + b ≥ 1 − ξi ∀i ∈{i|yi = 1}

wTxi + b ≤ −1 + ξi ∀i ∈{i|yi = −1}

ξi ≥ 0 ∀i ∈{1, . . . , l},

Amisclassification of a pattern occurs,when the corresponding ξi has to exceed
unity and ∑i ξi can be seen as an upper bound on the number of errors. The
penalty on the error is typically introduced as C(∑i ξi)

k,which leads to a convex
optimization problem for all positive integers k, the choice of k ∈ {1, 2} renders
the problem a quadratic optimization problem [185]. The parameter C has to
be chosen by the user with a larger value corresponding to a higher penalty on
errors. k is chosen as equal to one for the remaining derivation. The Lagrangian
of the problem is given by

L(w, b, λ, ξ, µ) =
1
2

wTw + C
l

∑
i=1

ξi −
l

∑
i=1

λi[yi(wTxi + b)− 1 + ξi]−
l

∑
i=1

µiξi.

(6.3)
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6.1 Non-interpretable Machine Learning Algorithms

The Karush-Kuhn-Tucker conditions are given by

∂L(w, b, λ, ξ, µ)

∂w
= 0 =

(
w0 −

l

∑
i=1

λiyixi
)
, (6.4)

∂L(w, b, λ, ξ, µ)

∂b
= 0 =

l

∑
i=1

λiyi, (6.5)

∂L(w, b, λ, ξ, µ)

∂ξi
= 0 = C − λi − µi ∀i ∈ {1, . . . , l} (6.6)

yi(wT
0 xi + b)− 1 + ξi ≥ 0 ∀i ∈ {1, . . . , l} (6.7)

ξi ≥ 0 ∀i ∈ {1, . . . , l} (6.8)
µi ≥ 0 ∀i ∈ {1, . . . , l} (6.9)
λi ≥ 0 ∀i ∈ {1, . . . , l} (6.10)
λi[yi(wT

0 xi + b)− 1 + ξi] = 0 ∀i ∈ {1, . . . , l} (6.11)
µiξi = 0 ∀i ∈ {1, . . . , l} (6.12)

Eq. (6.6) shows µi can be substituted by C − λi. Thus, by substituting Eq. (6.4)
and Eq. (6.5) back into Eq. (6.3), the dual problem, only dependent on λ, can
be formulated as

W(λ) = λT1 − 1
2

λTMλ, (6.13)

where 1 is an l-dimensional unit vector and M is a symmetric l-by-l-matrix
whose elements are Mij = yiyj⟨xi, xj⟩. The solution to the original problem is
thus found by maximizing the dual problem Eq. (6.13) under the remaining
Karush-Kuhn-Tucker conditions

l

∑
i=1

λiyi = 0,

0 ≤ λi ≤ C ∀i ∈ {1, . . . , l}.

It is noteworthy that the solution of the minimization problem Eq. 6.3 does
neither depend upon the slack variables ξi nor their Lagrange multipliers µi,
which is an effect of setting k equal to one. In this case, only a few vectors
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6 Interpretable Machine Learning

constitute support vectors, the solution to the problem is thus considered to
be sparse. To estimate the class affiliation of a yet unseen pattern xnew, it is
sufficient to evaluate on which side of the hyperplane its projection will fall, i.e.
the result of

f (xnew) = sign(wT
0 xnew + b)

will give the estimate of the class label of the unseen pattern.
The method just derived only works for a case, where the examples are linearly
separable, but the ideas can be generalized to the nonlinear case[185]. The so-
lution to this is astonishingly easy and has been dubbed "kernel trick". First
notice, that in the formulations for the optimization problems the observed pat-
terns xi only enter via the inner product ⟨xi, xj⟩. If the data is first mapped into
a possible infinitely dimensional Hilbert space, via a possibly nonlinear map-
ping Φ(�), then the algorithm would of course only be dependent on the inner
product of the mappings, i.e. ⟨Φ(xi), Φ(xj)⟩. Evaluating this inner product is
equivalent to evaluating the kernel of the reproducing kernel Hilbert space (RKHS)
induced by the mapping Φ(·), i.e. ⟨Φ(xi), Φ(xj)⟩ = k(xi, xj), where k(�, �) is the
kernel. While computing the nonlinear transformation of xi via Φ(·) can be
computational very expensive, the evaluation of the kernel can be rather effi-
cient. The optimization problem for the separable and non-separable case can
be formulated in the dual space as

W(λ) = λT1 − 1
2

λTMλ, (6.14)

where 1 is an l-dimensional unit vector and M is a symmetric l-by-l-matrix
whose elements are Mij = yiyj⟨Φ(xi), Φ(xj)⟩ = yiyjk(xi, xj) and the same
constraints as above. For estimating the class affiliation of a yet unseen pattern
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6.1 Non-interpretable Machine Learning Algorithms

xnew, it is sufficient to evaluate on which side of the hyperplane in the RHKS
its projection will fall, i.e. the result of

f (xnew) = sign(wT
0 Φ(xnew) + b)

= sign
(( l

∑
i=1

λiyiΦ(xi)
)
· Φ(xnew) + b)

)
= sign

( l

∑
i=1

λiyi⟨Φ(xi), Φ(xnew⟩+ b)
)

= sign
( l

∑
i=1

λiyik(xi, xnew) + b
)

will give the estimate of the class label of the unseen pattern. Notice, that it is
again not necessary to evaluate the nonlinear mapping, but only the kernel.

6.1.2 Gaussian Process

Definition: A Gaussian process is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution
A Gaussian process (GP) is completely defined by its mean function and co-
variance function. The mean function m(x) and the covariance function k(x, x′)
of a real process f (x) are defined as

m(x) = E[ f (x)]

k(x, x′) = E[( f (x)− m(x))( f (x′)− m(x′))]
(6.15)

and a GP will be denoted as

f (x) ∼ GP(m(x), k(x, x′)). (6.16)

Random variables represent the values of the function f (x) at location x. Gaus-
sian Processes are often defined over time, i.e. the index set of the random
variables is time. But more generally, the index set X is the set of possible in-
puts, which could be more general, i.e. RD .
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6 Interpretable Machine Learning

AGaussian process is defined as a collection of random variables and thereby a
consistency requirement also known as marginalization property is implied.
This property simply states that if the GP specifies for example (y1, y2) ∼
N (µ, Σ) then it must also specify y1 ∼ N (µ1, Σ11), where Σ11 is the relevant
submatrix of Σ. The examination of larger sets of variables does not change the
distribution of smaller sets.
The consistency requirement is automatically fulfilled, if the covariance func-
tion specifies entries of a proper covariance matrix. A simple example of a
Gaussian process can be obtained from the Bayesian linear regression model
f (x) = Φ(x)Tw with prior w ∼ N (0, Σp).
We have for mean and covariance

E[ f (x)] = Φ(x)TE[w] = 0,

E[( f (x))( f (x′))] = Φ(x)TE[wwT ]Φ(x′) = Φ(x)TΣpΦ(x′).

A derivation of a classification strategy using Gaussian Processes, which in-
volves several approximations, can be found in [269].

6.1.3 Logistical Regression

Themain concept in a derivation of the logistical regressionmodel are so-called
odds, the fraction of the probability of a positive event P(Y = 1|X = xi) = P(Yi)

to the probability of a negative event P(Yi = 0), which is by the law of total
probability equal to 1 − P(Yi = 1). The logarithm of the odds is the so called
logit of the probability. In logistic regression, the logit is assumed to be a linear
function of the observables x

logitP(Yi = 1) = ln
P(Yi = 1)

1 − P(Yi = 1)
= θ0 + xT

i θ. (6.17)

This implies that the probability can be expressed as

P(Yi) =
exp(θ0 + xT

i θ)

1 + exp(θ0 + xT
i θ)

=
1

1 + exp(−(θ0 + xT
i θ))

= hθ(xi).
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6.1 Non-interpretable Machine Learning Algorithms

Although the observed variable is binary, logistic regression estimates the odds
as a continuous function.
To estimate the parameters of the regressors, the existence of a set of N samples
is assumed. If these samples are independently Bernoulli distributed, and an
exponentiation trick is used, then their likelihood function is given by

L(θ|x) = P(Y|X; θ) = ∏
i

P(yi|xi; θ) = ∏
i

hθ(xi)
yi (1 − hθ(xi))

1−yi . (6.18)

Typically, the logarithm of the likelihood function is normalized
N−1 log L(θ|x) = N−1 ∑N

i log P(yi|xi; θ).
It is often beneficial to have a probability associated with the output of a
classifier. To get from binary outputs to probabilities, [225] proposed on
mostly heuristic grounds to use the logistical regression on the transformed
outputs of an SVM without applying the sign-function on the outputs first to
create a probabilistic version of the algorithm.

6.1.4 Application within the PERMEATED-framework

To test the selected set of algorithms, a hold-out set was constructed. The re-
maining data was used to train the different classifiers. To find suitable hyper-
parameters of the classifiers, a grid search with 10-fold cross-validation was
used. The implementation of the Gaussian Processes Classifier automatically
tunes its parameters and does not allow for specifically setting parameters for
a grid search. To judge the general applicability of algorithms, the Receiver Op-
erator Curves of the algorithms were constructed, which is a robustness-based
metric as described in Sec. 4.6. To do this, "degrees of belief" or probabilities
have to be constructed from the results of the SVM-type classifiers, for which
Platt’s algorithm is used. The results can be seen in Fig. 6.1.

An inspection of the plots indicates that in principle all algorithms in the set
are suitable for the task, but the Gaussian Process Classifier exhibits the lowest
performance for this application, as is indicated by the lowest AUC score and
the shape of the curve. The best hyperparameters from the grid search were
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Figure 6.1: Receiver Operating Curves of selected classifiers. Where applicable,
the classifiers were trained and tuned using a grid search and 10-
fold cross validation. All classifiers are tested on a hold-out set.

selected and their classification results can be seen in the confusion matrices
in Fig. 6.2. A natural question is, as described in Sec. 5.1.1, why these classifiers
give the answers they do. It is not always easy to extract an answer to this
question from these classifiers. As an example, the resulting linear SVM is
inspectable. There are 114 instances that have been included as supporting
vectors of the resulting classifiers and of course there is an equal number of
associated non-zero weights. To get an answer to this natural question, even
for this rather easy classification task, the trained classifier itself is approaching
the limits of how many influencing variables can be handled simultaneously
by humans. Projecting a test vector on support vectors and weighing these
projections correctly to get closer to the answer is a rather challenging cognitive
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task. An algorithm, which is designed to produce simple models, is presented
in the next section.
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Figure 6.2: Confusion Matrices of certain classifiers. Where applicable, trained
and tuned using a grid search and 10-fold cross validation. Tested
on a hold-out set.
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6.2 Supersparse Linear Integer Models for
Optimized Scoring Systems (SLIM)

Scoring systems are linear classification models that require a user to only ma-
nipulate a few small numbers in order tomake predictions. Models like that are
regularly used in medical settings to assess the risk of numerous serious medi-
cal conditions since they allow physicians to make quick predictions, without
extensive training and without the need for a computational device, which can
be lifesaving. Medical scoring systems that are currently in use, are typically
hand-crafted by practitioners, with a panel of experts agreeing on its validity.
Scoring systems of the necessary sparsity have been difficult to create using
traditional machine learning methods, because they need to be accurate, sparse
and using small coprime integer coefficients. It has therefore been a common
practice to use well established and tested data-driven techniques like regres-
sion analysis and to round-off the acquired regression coefficient in order to
generate an easily usable system as an approximation.
The primary usage of such methods in medical contexts poses additional chal-
lenges regarding the need to explicitly satisfy constraints on operational quan-
tities such as the false positive rate or the number of features before they can be
deployed,which are, if at all, hard to specify in mostmachine learningmethods.
Some approaches, like sparse linear classification, such as "Lasso" or "Elastic
Net", are able to control the accuracy and sparsity of models via convex sur-
rogate functions, which typically also reduce the computational complexity,
but also utilize rounding as an approximation to yield the final models with
coprime integer coefficients. Such approximations have a negative influence
on the predictive capabilities and make it hard to impose constraints deemed
necessary.
In practice, machine learning methods are almost exclusively able to address
operational constraints through parameter tuning, which necessitates a high-
dimensional grid search process. "Supersparse Linear Integer Models for Opti-
mized Scoring Systems" (SLIM) is a data-driven method for creating scoring
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6.2 SLIM

systems and thus interpretable, sparse models. The SLIM algorithm can be re-
garded as an integer programming problem that optimizes direct measures of
accuracy and sparsity, while restricting coefficients to a small set of coprime in-
tegers and the possibility of explicitly modeling certain operational constraints.
[391]

6.2.1 Methodology

Let there be a dataset of N independent and identically distributed examples
DN = {(xi, yi)}N

i=1, where xi ∈ X denotes a vector of features [1, xi,1, . . . , xi,P]
T

and yi ∈ {−1, 1} denotes a class label. In the context of SLIM, linear models of
the form ŷ = signλTx are considered, where λ = [λ0, λ1, . . . , λP]

T represents
a vector of coefficients and λ0 represents an intercept term. The coefficients are
found by solving an optimization problem of the form:

min
λ

Loss(λ; DN) + C · ϕ(λ) s.t. λ ∈ L. (6.19)

The loss function penalizes misclassifications, the coefficient penalty ϕ(λ) induces
soft qualities that are desirable but notmandatory and can be infringedupon for
greater accuracy, while the coefficient set L encodes hard constraints that must
be satisfied. The trade-off parameter C controls the balance between accuracy and
soft qualities. As a special case of this general optimization problem, SLIM can
be formulated as

min
λ

1
N

N

∑
i=1

1[yiλ
Txi ≤ 0] + C0|λ|0 + ϵ|λ|1 s.t. λ ∈ L. (6.20)

SLIM optimizes accuracy and sparsity by minimizing the 0 − 1 loss
1
N ∑N

i=1 1[yiλ
Txi ≤ 0] and the ℓ0-norm |λ|0 = ∑

p
j=1 1[λj ̸= 0]. SLIM also

includes an ℓ1-penalty in the objective for the sole purpose of restricting
coefficients to coprime values. This formulation is designed to produce scoring
systems that achieve a pareto-optimal trade-off between accuracy and sparsity.
By minimizing the 0 − 1 loss, the resulting models are robust to outliers and
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attain the best learning theoretic guarantee of predictive accuracy. Similarly,
controlling for sparsity by means of ℓ0-regularization prevents an additional
loss in accuracy due to ℓ1-regularization. Furthermore, minimizing an
approximation-free object function over a finite set of discrete coefficients
implies that the free parameters in SLIM’s object have special properties. The
trade-off parameter C0 represents the maximum accuracy that a SLIM model
will sacrifice to remove a feature from the scoring system.

6.2.2 SLIM Integer Program

Formulated as an Integer Program [391], SLIM can be stated as

min
λ,ψ,Φ,α,β

1
N

N

∑
i=1

ψi +
P

∑
j=1

Φj (6.21)

st.Miψi ≥ γ −
P

∑
j=0

yiλjxi,j i = 1, . . . , N (6.22)

Φj = C0αj + ϵβ j j = 1, . . . , P (6.23)
−Λjαj ≤ λj ≤ Λjαj j = 1, . . . , P (6.24)

−β j ≤ λj ≤ β j j = 1, . . . , P (6.25)
λj ∈ Lj j = 0, . . . , P (6.26)
ψi ∈ {0, 1} i = 1, . . . , N (6.27)
Φj ∈ R+ j = 1, . . . , P (6.28)
αj ∈ {0, 1} j = 1, . . . , P (6.29)
β j ∈ R+ j = 1, . . . , P (6.30)

The formulation can bemodified to create certain specializedmodels. It is for
example possible to create M-of-N-tables. M − o f − N rule tables are simple
rule-based models that, given a set of N rules, predict ŷ = +1 if at least M of
the rules evaluate to true. These models have the major benefit that they do not
require the user to compute a mathematical expression.
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6.2.3 Operational Constraints

The SLIM formulation provides a high degree of flexibility over the models
allowing the encoding of a wide range of operational constraints into its IP
formulation.

Loss Constraints for Imbalanced Data

The majority of classification problems in the real world, in a medical or techni-
cal environment, are imbalanced. Handling imbalanced data can be difficult for
most classification methods since maximizing classification accuracy can result
in trivial models3. SLIM has an advantage for such problems as it does not only
avoid producing a trivial model, but can produce a model at any user-specified
point on the ROC curve without parameter tuning. That is, the designer can
encode hard constraints on the sensitivity as a loss constraint.
The solution of a single run of the IP results in the least specific ormost sensitive
model. If a maximum error rate of γ ∈ [0, 1] on negatively labeled examples is
necessary, the IP can be formulated as

min
λ

W+

N ∑
i∈I+

1[yiλ
Txi ≤ 0] +

W−

N ∑
i∈I−

1[yiλ
Txi ≤ 0] + C0|λ|0 + ϵ|λ|1

s.t. 1
N− ∑

i∈I−
1[yiλ

Txi > 0] ≤ γ

λ ∈ L,

where W+ and W− are user-defined weights that control the accuracy on the
N+ positive examples from the set I+ = {i : yi = +1} and N− examples of
the set I− = {i : yi = −1}, respectively.
Assuming W+ + W− = 1, setting, W+ > N−

1+N− , weighs the accuracy on
each positive example as heavily as all negative examples combined. This
parametrization of the formulation therefore returns a scoring system that

3 i.e. if the probability of a certain event is 1%, a model that never predicts this event will be right
99% of the time
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attains the highest sensitivity among models with a maximum error of γ on
negative examples.

Feature-Based Constraints for Input Variables

SLIM allows for a fine-grained control over the composition of input variables
in a scoring system by including feature-based constraints in its formulation.
Specifically, indicator variables can be used to encode the ℓ0-norm αj := 1[λi ̸=
0] to formulate logical constraints between features such as "either-or" con-
ditions and "if-then" conditions, which represents an alternative to creating
classification models that obey structured sparsity constraints or hierarchical
constraints. The indicator variables αj can be used to limit the number of input
variables to at most Θ by adding the constraint, ∑P

j=1 αj ≤ Θ. More complicated
feature-based constraints include "if-then" constraints to ensure that a scoring
system includes certain variables conditionally on the presence of another one,
for example αthen ≤ αi f . Hierarchical constraints, for example that a leaf feature
can only be used if the nodes above it have been included, can be encoded as
αlea f ≤ αnodes.

Feature-Based Preferences

Practitioners often have soft preferences for certain input variables. SLIMallows
to encode suchpreferences by specifying a distinct trade-offparameters for each
coefficient C0,j. When a feature j is preferred over a feature k, it is possible to
set C0,k = C0,j + δ, where δ > 0 represents the maximum additional training
accuracy that is allowed to be sacrificed to use feature j over k. Setting δ =

0.05 would ensure that feature k is only used, if an improvement of 5% can be
attained compared to using feature j. This approach is also a possible avenue
to handle missing data, as δ can be set proportionally to the number of missing
values, thus penalizing variables with a lot of missing values.
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6.2.4 Application of SLIM within the
PERMEATED-framework

Predict FAULT if SCORE ≥ 3

Indicator Weight Score
1. Y_MotionUnit3_p750 5 + . . . . . .

ADD POINTS FROM ROWS 1-1 SCORE = . . . . . .

Table 6.2: Textual form of the SLIM for the described test case.

Using an implementation in python of the SLIM algorithm and IBM’s CPLEX
optimizer, with settings tuned to high penalties for the inclusion of additional
features, a rather trivial model was obtained, as can be seen from Tab. 6.2

It is apparent from inspecting the confusion matrix of the classifier in Fig. 6.3,
that this classifier does not only perform well in comparison to the alternative
algorithms outlined in Sec. 6.1.4, but is simple enough to allow for a rather
straight forward interpretation: for the majority of cases, it is sufficient to look
at the indicatorY_MotionUnit3_p750 to be able to diagnose the status of the joint
system. A root cause analysis using mechanical models of the machine could
establish that an eigenmode of the combined system was severely influenced
by changes in the modeled stiffness of joints. Changes in that eigenmode from
"normal" were captured in this indicator. This lead to the conclusion, that the
process of controlling the joining forces was not stable.
This example, admittedly selected for its clarity, shows conclusively that the
usage of an interpretable model like this one can at least produce leads for
further investigations into the root causes of a problem. The model structure is
simple enough to lend itself to human inspection and can garner trust quickly
by producing accurate results. A downside of this method is obvious: the class
of models is restricted to a linear model. Non-linear effects cannot be handled
appropriately. Another drawback is the need for an integer program solver.
While there are excellent commercial products and free-for-research versions,
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Figure 6.3: Confusion Matrix of the supersparse linear integer model. Tested
on a hold-out set.

the SLIM algorithms was slow compared to other machine learning methods.
A possible solution to this problem is presented in Sec. 6.3.
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6.3 Explainers
As detailed in Chap. 5, the ability to generate explanations for the decisions of
a system with relevant consequences, for example for maintenance decisions
is of critical importance. The same needs arise from the application of machine
learning systems to areas of even greater consequence, like formedical decision
or aircraft collision avoidance systems.
Simultaneously,machine learning algorithms have faced some unexpected chal-
lenges when deployed in the real world, including an inability to distinguish
causal effects from mere correlation, fairness and a lack of trust by end users.
Interpretability is a promising approach to address these challenges, because
the human user can be supported in diagnosing issues and verifying the cor-
rectness of machine learning models by providing insights into how the model
arrived at its conclusions. There has been research on this field for some time,
like [392], [393].
Prominent examples of this include applications,wheremodels that are trained
without knowledge of a feature that is considered to be unfit to be included
in a model for ethical reasons, like gender or ethnicity, are still found to be
prejudiced against these protected groups, since models seem to be able to re-
construct these omitted features from other features. It has been proposed that
instead of omitting such features, models should include them and the effect
of their inclusion should be controlled for. [394]
This necessitates the ability to understand themodel’s reasoning process, i.e. an
explanation of how model predictions are affected by changing the prejudiced
feature. Similarly, a user may want to determine whether a known causal con-
nection is adequately represented in the model or understand the high-level
structure of a model to gain confidence in its correctness. A method for retriev-
ing such explanations from otherwise opaque models is discussed next. While
there are models widely regarded as being interpretable, like linear models,
decision trees, rule lists, etc., most of the algorithms that show the highest ac-
curacies at benchmarks, are hard or even impossible to interpret, like various
flavors of deep learning models.
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For "simple" models, measured as the class of the model and the number of in-
put parameters andweights, the model itself is the best explanation. The model
generated by the SLIM algorithm in Sec. 6.2 is an example of that.
For more complex models, such as ensemble methods or deep networks, the
models themselves are not suited as an explanation, because they are too com-
plex. Instead, a simpler explanation model, which is some interpretable approx-
imation of the original model has to be used. This is called an explainer.
Explaining a prediction in this context refers to the presentation of data suitable
for gaining qualitative understanding of the relationship between the compo-
nents of a particular instance and the model’s prediction.
Humans typically have some prior knowledge about the application domain
which is used to accept or to reject amodel prediction, if they understand the rea-
soning behind the prediction. While an explanation by itself might not prove to
be sufficient for garnering trust in the original model, it was discussed in Sec.5.1
and 5.2 why interpretable models can help to generate trust in suchmodels and
therefore foster their adoption, if the explanations are faithful and intelligible.
Practitioners often overestimate the accuracy of their models and thus trust
cannot solely rely on having constructed the model using cross-validation. The
clearer the causality in a given model, the easier the interpretation becomes.
Physics-based models are therefore typically more readily interpretable than
neural networks.
The insights given by explanation are particularly helpful in identifying what
must be done to convert an untrustworthy model into a trustworthy one. [382]
presents the case, where a model with higher prediction accuracy is rejected
by human users, as soon as explanations are presented. In the specific case,
the task was to differentiate pictures of huskies from pictures of wolves. The
classifier with higher accuracy was rejected as soon as the explanation of the
classification revealed that the background of the picture had a huge influence
on the classification result. The classifier was good at recognizing snow in the
background and labeled pictures as "wolf". Desirable features of an explainer
include
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• interpretability,
• local-fidelity,
• model-agnosticity.

Interpretability means the provision of qualitative understanding between
inputs and response. As already discussed, interpretability is a function of
the user of a system. A machine learning practitioner will probably be able
to interpret small Bayesian nets, but others might be more comfortable with
a small number of features and their relative weight. It should also be noted,
that features suitable for accurate predictions are not necessarily suitable for
explanations, see also Sec. 5.2.
Although it will in general not be possible to achieve complete faithfulness
unless it is a complete description of the model itself, an explanation must at
least be locally faithful, i.e. it must correspond to how the model behaves in
the vicinity of the instance being predicted. Local-fidelity of course does not
imply global-fidelity. The converse is true, but it remains a challenge to obtain
global-fidelity for complex systems.
An explainer should be able to explain any model, i.e. treat it as a black box.
This is advantageous, given the fact that many state-of-the-art classifiers are
not interpretable and also ensures applicability for future types of classifiers.

6.3.1 Local Interpretable Model-Agnostic Explanations
(LIME)

Formally, we follow [382] in defining an explanation as a model g ∈ G,
where G is a class of potentially interpretable models, such as linear models,
decision trees or falling rule lists, i.e. a model g that can readily be presented
to a user. The domain of g is {0, 1}M, i.e. g acts over absence or presence of
the interpretable components. Not every g ∈ G may be simple enough to be
interpretable - thus let Ω(g) be a measure of complexity of the explanation.
Ω(g) could be the depth of a decision tree or the number of non-zero weights
in a linear model.
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Let the model being explained be denoted f : RM → R, in classification, f (x)
is the probability that x belongs to a certain class.
Additionally, a similarity measure πx(z) is a proximity measure between an
instance z to x, so as to define locality around x. Finally, let L( f , g, πx) be a
measure of unfaithfulness of g in approximating f in the locality defined
by πx. To ensure interpretability and local-fidelity, L( f , g, πx) has to be
minimized, while Ω(g) remains sufficiently low.

The explanation ξ(x) produced by LIME is obtained by solving the optimiza-
tion problem

ξ(x) = arg min
g∈G

L( f , g, πx) + Ω(g). (6.31)

This formulation can be used to test different explanation families G, fidelity
functions L, and complexity measures Ω. While the problem setup of LIME
is rather intuitive, it lacks some generality. In the next section a more general
setup will be explained and applied to the LIME problem formulation.

6.3.2 SHapely Additive exPlanation (SHAP) Values

[395] introduces a method, called Shapely Additive Explanations (SHAP),
which can be seen as a generalization of multiple other methods of generating
explanations, one of which is LIME. This method is concerned with generating
local methods to explain a prediction f (x) based on a single input .
Explanation models often use simplified inputs x′ that map to the original in-
puts through amapping function x = hx(x′). It is noteworthy that themapping
function hx is specific for a given input x. The simplified input can thus contain
considerable less information than the original. A localmethod in this context,
is a method that tries to ensure g(z′) ≈ f (hx(z′)) whenever z′ ≈ x′.
Additive feature attribution methods have an explanation model that is a linear
function of binary variables:

g(z0) = ϕ0 +
M

∑
i=1

ϕiz′i, (6.32)
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where z′ ∈ 0, 1M, M is the number of simplified input features, and ϕi ∈ R

are real weights. Methods with explanation models matching this definition
attribute an effect ϕi to each feature, and summing over the effects of all feature
attributions approximates the output of the original model. LIME is one of at
least 6 differentmodels of this form. [395] shows that there exist a single unique
solution for this class of explanationmodels, if the problem is constraint to have
three desirable properties.
The first property is local accuracy, which requires that the explanation model
g(x′), matches the original model f (x), when x = hx(x′).

f (x) = g(x′) = ϕ0 +
M

∑
i=1

ϕix′i .

The second property, missingness, demands that features, for which x′i = 0, do
not have an attributed impact.

x′i = 0 =⇒ ϕi = 0

The last property, consistency, states that if a model changes in a manner so that
some simplified input’s contribution increases or stays the same regardless of
other inputs, that input’s attribution should not decrease.
More formally, let fx(z′) = f (hx(z′)) and z′\i denote setting z′i = 0. For any
models f and f ′, if

f ′x(z
′)− f ′x(z

′\i) ≥ fx(z′)− fx(z′\i) ∀z′ ∈ {0, 1}M,

then ϕi( f ′, x) ≥ ϕi( f , x).
The only possible explanation model g that follows the definition for additive
feature attribution methods and simultaneously satisfies the three properties
is

ϕi( f , x) = ∑
z′⊆x′

|z′|!(M − |z′| − 1)!
M!

[ fx(z′)− fx(z′\i)], (6.33)
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where |z′| is the number of non-zero entries in z′ and z′ ⊆ x′ represents all z′

vectors, where the non-zero entries are a subset of the non-zero entries in x′,
[395]. SHAP values are proposed as a unified measure of feature importance.
They are the solution to Eq. 6.33, where fx(z′) = f (hx(z′)) is the conditional
expected value of observing E[ f (z)] given zS and S is the set of non-zeros index
in z′. Thus, they can be interpreted as attributing to each feature the change in
the expectedmodel prediction when conditioning on that feature, representing
the increment from the base value E[ f (z)], that would be predicted without
knowledge of any simplified features to the current output f (x).
Implicit in this formulation is a simplified inputmapping, hx(z′) = zS,where zS

has missing values for features that are not contained in S. Since most models
cannot handle arbitrary patterns for missing input values, f (zS) is approxi-
mated by E[ f (z)|zS].
From the definition of the SHAP values, it is clear that their exact computation
is challenging. [395] provides approximation methods.
For a linear LIME model, the specific forms of πx′ ,L and Ω(g) that make the
solution of the LIME optimization problem given in Eq. 6.31 consistent with
local accuracy, missingness and consistency are:

Ω(g) = 0,

πx′(z) =
(M − 1)

( M
|z′ |)|z′|(M − |z′|)

,

L( f , g, πx′) = ∑
z′∈Z

[ f (hx(z′))− g(z′)]2πz′ ,

where |z′| is the number of non-zero elements in z′, πx′ = ∞, when |z′| ∈
{0, M}. which enforces ϕ0 = fx(∅) and f (x) = ∑M

i=0 ϕi.
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6.3.3 Application of explainers within the
PERMEATED-framework

Applying an implementation of the SHAP algorithm written in python [396] to
the test use case specified in Chap. 6, it was possible to inspect the classifications
made by the non-interpretable classifiers generated in Sec. 6.1 with the solution
of the LIME problem derived in the preceding section. As can be seen from
Fig. 6.4, the indicator with the dominant impact on the classification results
was identified and is identical to the indicator that was identified by the SLIM
algorithm of Sec. 6.2, without limiting the Responsible Decision-Maker to the
set of algorithms, that might lack from accuracy due to their inability to cope
with non-linear relationships in the training data. Explainers can thus be seen
as a valuable addition to the PERMEATED-framework’s Advisory Generation
stage, although their construction can come with significant computational
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applied to a hold-out set. The strength of the individual SHAP forces
ϕi is depicted on the y-axis,while the standardizedmagnitude of the
indicator Y_MotionUnit3_p750 is ordering the individual instances
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burdens. The burden on the domain experts on the other hand can be lowered
significantly, because they do not have to manually design fuzzy membership
functions. In fact, their input is designed to be confined to labeling instances of
measurements.
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6.4 Summary
In this chapter, the extensibility of the PERMEATED-framework was demon-
strated by integrating interpretable machine learning techniques and expla-
nations obtained from opaque machine learning models. While the usage of
opaquemachine learning techniques, as demonstrated in Sec. 6.1, yields encour-
aging results with respect to classification accuracy, the lack of explanations for
the classification results disqualifies algorithms of this class from an inclusion
in the PERMEATED-framework. In Sec. 6.2, Supersparse Linear IntegerModels
have been investigated as an example of explainable machine learning models.
For the use case under investigation, this model performed favorably in com-
parison to the opaque alternatives in terms of classification accuracy, while the
resulting model was also simple enough for domain experts to probe it for its
explanatory power. This clarity does not come without a price: the model is
restricted to linear combinations of features, which precludes the appropriate
handling of non-linear effects. Explainers were used in Sec. 6.3 to derive ex-
plainable models from opaque models. This approach enables domain experts
to utilize in principle any class of machine learning models suitable for the
problem domain, while retaining access to explanations. This approach is also
not free of drawbacks: the choices of the class of possibly interpretable models
and of the maximum allowed complexity shape in a quite literal way the depth
and breadth of the generated explanations. The generated explanatory models
are only locally faithful and a good explanation for the investigated instances
does not guarantee a good explanation for uninvestigated ones, which might
create an unjustified degree of trust in the explained model.

All of these techniques share the upside that the burden on the domain expert
is eased significantly. Instead of having to explicitly specify the shape of fuzzy
functions to map the relevance of specific indicators to error modes, using the
tools of machine learning, their input is reduced to labeling a sufficiently large
set of instances and judging the automatically produced explanations. But this
comes at the cost of having to generate a sufficiently large training set, which
might be prohibitively expensive, depending on the specific circumstances. Re-
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gardless of the specific situation, though, the PERMEATED-framework has the
capability to integrate the explicitly or implicitly modeled expert knowledge to
generate useful decision for condition monitoring applications from it.
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Digitalization poses new challenges for manufactures of drives, machine tools
and smart factories. Customers are increasingly interested in optimizing their
production processes, for which the knowledge of the state of their assets is
paramount.
Unplanned downtimes of individual machines can interrupt the complete pro-
duction process and are therefore rather costly. But adding redundancy is not
always an economical option, as spacial limitations on the factory floor and
of course capital constraints may prohibit such a mitigation strategy. Condi-
tion Monitoring offers a path to a solution for this task. It tries to minimize
unplanned downtimes by accelerating the diagnostic process by speeding up
the process of finding a solution for a fault or by giving warning of looming
faults early enough to reschedule certain production steps and converting the
possible outage into a planned maintenance mission, albeit possibly on short
notice.

In this thesis, it has been discussed that wear and tear of the machines is only
partially responsible for downtimes and that the influence of environmental
factors are also non-negligible contributors to unexpected failures. Certain
faults are readily detectable from the signals of the drives, which are available
in the numerical control of a machine tool. For some of these signals an
unambiguous mapping to a fault is possible, which was demonstrated by the
implementation of an interpretable diagnostic system at a production line and
has globally service for diagnosing machine tools.
It has also been shown theoretically and empirically that uncertainties along
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the diagnostic process pose the most severe challenge for health assessments
in general and predictions in particular. The more uncertain diagnostic results
are, the higher the risk of the decision predicated on them, which hinders the
automation of decision processes.
The PERMEATED-framework was introduced, which stresses the importance
of including the Responsible Decision-Maker, who is the addressee of
health assessments, predictions, uncertainty quantifications and advices
and ultimately decides on which course of action to take. The usability
of a diagnostic system hinges critically on the trust that this responsible
decision-maker has in its diagnostic capabilities.
To help the generation of trust in a diagnostic system, the PERMEATED-
framework prescribes the usage of explainable models.
The application of the framework for a system based on fuzzy rules was

demonstrated, which is used in the production line of a major machine tool
manufacturer as a production-grade system. The limitations posed by the pres-
ence of uncertainty on this system were discussed. It proves the feasibility of a
drives-based condition monitoring system for the detection of a broad range of
phenomena and satisfies the requirement for explainability, but relies heavily
on specifically tailored rule sets for the diagnosis of each machine series, which
puts a high burden on the developer to provide concise and current rules for
the types of assets that are subject to the diagnostic system. This increases the
operational cost and decreases the total value of the diagnostics system.
The specificity of the required skills for these kinds of tools introduce concerns
about the scalability and maintainability of such solutions. To reduce these
risks, the integration and adaption of the available tools for diagnostics to the
particular demands of drives in machine tools in an industrial setting were
explored.
The applicability of opaque machine learning algorithms and of a special

interpretable form of machine learning algorithm from the medical context to
a novel use case was demonstrated. The latter algorithm derives interpretable
models that do not depend, at least theoretically, on any more input than is
given by the set of labeled examples. While this is easing of the burden for the
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Figure 7.1: Comparison of maintenance approaches using application-
grounded metrics

programmer, it also comes with the price of constraining the available models
to linear regressors.

Finally, explainers were explored. They enable the usage of highly non-linear
and opaque models, that are for all practical purposes too complex to be inter-
preted by a human user, while still "opening the black box" of these models
wide enough to extract explanations that can lead to insights about possible
root causes and, more importantly, can serve as a route to falsify a diagnostic
result, if an explainer reveals that an unimportant feature had a huge influence
on an example for which the influences are known. This increases the range of
tools available for the PERMEATED-framework considerably, but of course also
adds the cost of creating explanations, possibly ad hoc, for instances of interest
for the Responsible Decision-Maker. A comparison of the explored methods in
the context of maintenance is given in Fig. 7.1.
Revisiting the goals laid out for this thesis in Sec. 1.2, it can be stated that

all of them have been met, with the important exception that not all diagnostic
measurement function are neutral with respect to the assets’ productivity.
The task of predicting failure modes remains somewhat elusive. Only a few of
the so far identified failure modes lend themselves to making an estimate of
the RUL.
In summary, this work presents a way to build a modular diagnostic system,
which enables reasoning about uncertainty and risk. It also shows how to foster
adoption of such a system by including on a fundamental conceptual level
the need for and the needs of a Responsible Decision-Maker in the diagnosis
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process, among which is the necessity for interpretable algorithms or at least
explanations to enable the rejection of implausible models. The usability of this
system was demonstrated for quality assurance tasks in an assembly line for
machine tools and in the handling of many service-related incidents. With this,
this thesis contributes to the solution of the task posed by the aforementioned
growing demands for predictability of production assets without a need to
retrofit existing machine tools in the field.

Possible direction for further research on this topic include:

• Online Measurements: The implementation of measurement functions
with high enough sustained excitation to reliably and robustly identify the
systems’ and components’ faults without negatively impacting productiv-
ity will increase the acceptance of data-driven maintenance methods. An
additional requirement for such online measurements is for them to work
with already installed sensors and controls to keep the effect on capital
costs low.

• Prognosis: To build the capability of predicting future outages with
enough certainty to base critical and costly maintenance decisions on the
recommendations will require further research. The presentation and
propagation of uncertainty is a computationally challenging task and
the reduction of the possible pathways of a system’s future to actionable
recommendations is still unresolved.

• Interpretable Algorithms: A gainful avenue for further research is the
development of methods to get to interpretable models that do not ne-
cessitate solving large integer programs, while maintaining a degree of
control equivalent to the one offered by SLIM. Algorithms that would al-
low for importance ranked addition of indicators into the model could be
of special interest, as the individual’s limits of interpretability capacities
could be fully utilized.
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• Explainers: The inclusion of additional sensors into diagnostic systems,
like acceleration sensors,microphones and even cameras becomes increas-
ingly more feasible, given the growing availability of low-cost prosumer-
grade devices. While the accuracy of analyses involving more specialized
sensors should reduce uncertainty about many fault modes, the genera-
tion of interpretable models and explanations over a fused set of widely
diverse types of information remains challenging.

• Deployment: Questions regarding where and how to physically host the
components of a modular diagnostic process are largely unresolved. A
deployment close to the edge offers advantages in regard to questions
of latency as well as data ownership and trade secrets. The learning and
updating process on the other hand become much more complicated.
A cloud architecture based on containerized software or linearly scal-
able architecture like Hadoop offers virtually limitless computationally
resources, but poses challenges in regard to trust in the providers with re-
gard to intellectual property, bandwidth and customer acceptance. These
are challenges that will necessitate further research on federatedmachine
learning and privacy-preserving learning techniques.

• Machine Reasoning: Another gainful route for further research regards
the application of techniques of machine reasoning. Knowledge about
systems is captured in semantic graphs, which model the relationship
between subjects and objects as well as between subjects and attributes.
There are algorithms which can infer suggestions about yet unseen in-
stances by contextualizing the observed instance and offering suggestions
that worked for cases that were similar by some measure. Training the
suggestions with methods of Reinforcement Learning seems to offer an
alternative route to combat complexity and uncertainty.
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Beiträge zum Stuttgarter Maschinenbau  

This publication introduces the PERMEATED framework 
for the diagnosis and condition monitoring of industri-
al assets. PERMEATED recognizes that the usability of 
a diagnostic system hinges critically on the trust that 
a responsible decision-maker, the addressee of health 
assessments, predictions, uncertainty quantifications and 
recommendations, has in its capabilities. To foster the 
generation of trust, PERMEATED prescribes the usage of 
explainable recommendations. Its usability is demonstra-
ted by implementations as fuzzy recommender system, 
inherently interpretable machine-learning models and as 
opaque machine-learning models aided by explainers. 
PERMEATED‘s performance is validated on real-world 
data of various types and series of machine tools as part 
of a quality control process in the production line, and as 
support tool for service missions in the field.
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