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Abstract: Previous work has shown that floor slabs make up most of the material mass of build-
ing structures and are typically made of reinforced concrete. Considering the associated resource
consumption and greenhouse gas emissions, new approaches are needed in order to reduce the
built environment’s impact on the ongoing climate crisis. Various studies have demonstrated that
adaptive building structures offer a potential solution for reducing material resource consumption
and associated emissions. Adaptive structures have the ability to improve load-bearing performance
by specifically reacting to external loads. This work applies the concept of adaptive structures to
reinforced concrete slabs through the integration of fluidic actuators into the cross-section. The
optimal integration of actuators in reinforced concrete slabs is a challenging interdisciplinary design
problem that involves many parameters. In this work, actuation influence matrices are extended to
slabs and used as an analysis and evaluation tool for deriving actuation concepts for adaptive slabs
with integrated fluidic actuators. To define requirements for the actuator concept, a new procedure
for the selection of actuation modes, actuator placement and the computation of actuation forces is
developed. This method can also be employed to compute the required number of active elements
for a given load case. The new method is highlighted in a case study of a 2 m × 2 m floor.

Keywords: adaptive structures; slabs; integrated actuators; influence matrices; actuator placement;
multi-axial load transfer

1. Introduction
1.1. Previous Work

The construction industry is responsible for around 60% of global resource consump-
tion, 50% of global waste generation, approximately 40% to 50% of global emissions of
greenhouse gases and more than 35% of global energy consumption [1,2]. Identifying po-
tential savings and thus reducing resource consumption, energy expenditure and emissions
is essential for the sustainable development of our built environment.

Previous analyses based on [3–5] have shown that floor slabs in building structures
contribute significantly to the total mass. Reinforced concrete slabs are one of the most
widespread components due to the low cost and ease of construction [6]. Reinforced
concrete construction involves high process-related greenhouse gas emissions, which is
a cause of concern for the ongoing climate crisis. In addition, concrete structures require
considerable amounts of sand, which is becoming increasingly scarce [7,8]. The load transfer
in floor slabs takes place primarily through bending. Usually, this means that serviceability
limit states, mostly deflection limits, are the governing criteria for sizing [9]. For example,
it may be necessary to increase the thickness of a slab in order to limit bending-induced
deformations and thus prevent damage to adjacent structural and non-structural elements.
Optimisation strategies for passive reinforced concrete slabs quickly lead to a shift in the
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dead weight to live load ratio [10] increasing the significance of the variable live loads. The
design load almost never occurs during the service time of the structure, so a large part of
the material remains unused most of the time. In addition to this, conventional strategies
such as pre-cambering can only be implemented for permanent loads [9].

Structural adaptation to loading through integrated actuators offers a potential so-
lution for reducing material resource consumption and associated greenhouse gas emis-
sions [11–13]. Early investigations into the manipulation of stress, deformations and
vibrations in civil engineering structures were carried out in the 1970s [14–16]. Structural
adaption requires sensors, actuators and a control unit. Through sensors, the state of a
structure is monitored and the deviation from the desired state can be calculated. Actuators
can then be employed to manipulate the structural behaviour, for example by reducing the
displacements until the desired state is reached. One possible way is to replace a column
in a truss structure with a hydraulic jack. When the hydraulic jack extends, the structure
deforms. Well-designed adaptive structures can react to external stimuli in such a way
that the stress is homogenised [17], deformations are reduced [18–20] or vibrations are
damped [17,20,21]. For stiffness-governed designs, the ability to manipulate deflections
results in significant potential savings in materials and emissions [22–25].

The design of adaptive structures has been carried out using various methods based
on optimisation formulations and sensitivity analyses [21,24,26–28]. The work in [17,29–31]
focuses on 2-dimensional thin-walled structures including shear walls, plates and shells.
Here, the optimisation task for the actuator placement as well as the computation of
the actuation forces was done on the basis of Computer Aided Geometric Design with
sensitivity matrices, heuristic approximation methods, such as simulated annealing or
evolutionary algorithms, and an optimisation based on the Gramian compensability matrix.

The method of influence lines and surfaces makes it possible to analyse and evaluate
the load-bearing behaviour of structures for different load positions [32,33]. Similar to
the idea of this method, actuation influence matrices quantify the effect on the structural
response (e.g., forces and deformations) caused by a unit load applied through a single
actuator or, in a more abstract form, a single active element. A general form of this discrete
method is derived in [34] for truss and beam structures. Actuation influence matrices have
been employed to obtain optimal actuator placements as well as to compute actuation
forces for a desired structural state [34,35].

In the context of the Collaborative Research Centre (SFB) 1244 “Adaptive Skins and
Structures for the Built Environment of Tomorrow” at the University of Stuttgart, fluidic
actuators are integrated into the cross-section of beams and slabs which are subjected
to bending. This way of integrating actuators takes a different approach, as adaptive
structures usually have externally added actuators or are composed of truss structures in
which single bars are actuated. A fluidic actuator can be a hydraulic pressure chamber
placed in the compression zone at a certain distance to the neutral axis. When hydraulic
pressure is provided, it causes the chambers to expand, thus producing a bending moment
that counteracts the bending moment caused by the external load. This reduces deflections
and critical tensile stresses. An example of such an actuator is the fluidic actuator used
in [18,22], shown in Figure 1. It is a lens-shaped pressure chamber made of two welded
steel sheets.
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Figure 1. (a): Fluidic actuator used in [18] for a beam; (b): representation of the actuation faces (pair 
of faces) which are pushed apart by hydraulic pressure. 

The opposing steel sheets (pair of faces) are pushed apart by hydraulic pressure. Nu-
merical and experimental investigations of integrated fluidic actuators in reinforced con-
crete beams have shown potential for the manipulation of deformations [18,22,36,37]. 

1.2. New Contribution 
The generation of forces and strokes with the use of auxiliary energy can be achieved 

through a variety of functional principles. Divided into sub-functions, an actuator consists 
of an energy converter, a conductor and supplier [38,39]. The actuator concept is under-
stood as the ideal combination of these three sub-functions. 

In two-way slabs, bending moments from external loads do not just occur in the x-
direction. The actuation concept of integrated fluidic actuators presented for uniaxial load 
transfer must therefore be extended to multi-axial load transfer. For this purpose, face 
pairs in several spatial directions above the neutral plane are considered. Pushing these 
face pairs apart through actuation induces moments in the x, y and xy directions. The ac-
tuation concept is influenced by different design parameters such as the control objective, 
the actuation modes, the adaptation level, the actuator placement and the computation of 
the required actuation forces. 

The design of an adaptive structure is a multi-disciplinary and iterative process in 
which various factors have to be taken into account. In this work, actuation concepts are 
not developed as usual by employing stock actuators. The following method can be used 
to create a list of requirements for the actuator concept. Conversely, the method also al-
lows the requirements of the actuator concept to be taken into account. An optimal adap-
tive structure, in terms of material and emission efficiency, can be achieved using such an 
integrated approach whereby the actuation and actuator concept are harmonised with 
each other. 

This work builds on and extends the methods developed in [22] for the integration 
of fluidic actuators in reinforced concrete structures and [34] concerning the use of actua-
tion influence matrices for the design of the actuation concepts respectively of the indi-
vidual design parameters. New contributions offered by this work are: 
1. The elaboration of a new actuation concept based on fluidic actuators that can be 

integrated into floor slabs to control the response under loading. 
2. Extension of actuation influence matrices to two-way slabs. 
3. Computation of actuation forces and design spaces for actuator placement based on 

influence matrices. 
4. A new methodology that makes it possible to co-design actuation and actuator con-

cepts for adaptive floor slabs. 

Figure 1. (a): Fluidic actuator used in [18] for a beam; (b): representation of the actuation faces (pair
of faces) which are pushed apart by hydraulic pressure.

The opposing steel sheets (pair of faces) are pushed apart by hydraulic pressure.
Numerical and experimental investigations of integrated fluidic actuators in reinforced
concrete beams have shown potential for the manipulation of deformations [18,22,36,37].

1.2. New Contribution

The generation of forces and strokes with the use of auxiliary energy can be achieved
through a variety of functional principles. Divided into sub-functions, an actuator consists
of an energy converter, a conductor and supplier [38,39]. The actuator concept is understood
as the ideal combination of these three sub-functions.

In two-way slabs, bending moments from external loads do not just occur in the
x-direction. The actuation concept of integrated fluidic actuators presented for uniaxial
load transfer must therefore be extended to multi-axial load transfer. For this purpose,
face pairs in several spatial directions above the neutral plane are considered. Pushing
these face pairs apart through actuation induces moments in the x, y and xy directions. The
actuation concept is influenced by different design parameters such as the control objective,
the actuation modes, the adaptation level, the actuator placement and the computation of
the required actuation forces.

The design of an adaptive structure is a multi-disciplinary and iterative process in
which various factors have to be taken into account. In this work, actuation concepts are
not developed as usual by employing stock actuators. The following method can be used
to create a list of requirements for the actuator concept. Conversely, the method also allows
the requirements of the actuator concept to be taken into account. An optimal adaptive
structure, in terms of material and emission efficiency, can be achieved using such an
integrated approach whereby the actuation and actuator concept are harmonised with
each other.

This work builds on and extends the methods developed in [22] for the integration of
fluidic actuators in reinforced concrete structures and [34] concerning the use of actuation
influence matrices for the design of the actuation concepts respectively of the individual
design parameters. New contributions offered by this work are:

1. The elaboration of a new actuation concept based on fluidic actuators that can be
integrated into floor slabs to control the response under loading.

2. Extension of actuation influence matrices to two-way slabs.
3. Computation of actuation forces and design spaces for actuator placement based on

influence matrices.
4. A new methodology that makes it possible to co-design actuation and actuator con-

cepts for adaptive floor slabs.
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2. Materials and Methods
2.1. Influence Matrices

The model adopted for plate structures is based on Reissner–Mindlin Plate Theory
with bilinear shape functions on a quadrilateral element with 4 corner nodes and 4 Gauss
nodes as shown in Figure 2 and [40–42].
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not fully defined since some of the parameters are an output of the process. Therefore, only 
moment pairs and no pressurised faces will be considered in the following. 

Figure 2. (a): Element (e) with corner nodes 1–4 and (b): gauss Element (e’) with gauss nodes 1′–4′.

Therefore, the element stiffness matrix has 12 by 12 entries. The order of the entries of
the element deformation d(e) and force f(e) vectors are as follows:

d(e) =
[
w1 ϕx1 ϕy1 w2 ϕx2 ϕy2 w3 ϕx3 ϕy3 w4 ϕx4 ϕy4

]T (1)

f(e) =
[
Fz1 Mx1 My1 Fz2 Mx2 My2 Fz3 Mx3 My3 Fz4 Mx4 My4

]T (2)

Assuming a slab with DOF degrees of freedom and i# active elements, the equilibrium
and compatibility conditions of an adaptive slab can be written as (cf. [34]):

Kd = f = fpas + fact (3)

Here and in the following, the superscript # indicates the total number of the respective
counting variable. The only exception is the designation DOF, as in this work no counting
variable is used for it. K ∈ RDOF × DOF is the stiffness matrix, d ∈ RDOF is the deformation
vector, and f ∈ RDOF is the force vector which is separated into forces for the passive
state f pas and forces of the active state fact. Assuming small strains and displacements, a
distinction can be made between three system states [11,43]: the “passive” state, which is the
response of the structure to conventional loads (including self-weight and dead load), the
“active” system state, which is the response of the structure caused by the actuation forces,
and the “adaptive” state, which is taken as the superposition of passive and active states.

Using integrated fluidic actuators, forces are applied through a pair of faces located
eccentrically to the cross-section neutral plane. A certain thickness of concrete is assumed
to be covering the actuator, in order to achieve a homogeneous stress distribution and
corrosion protection for the actuator. Figure 3 shows a single floor slab element of planar
dimensions la,x, la,y. Indicated in red is the (pressurised) load application area Aa with
a height of ha. It is assumed that an actuation pushes the opposing faces pairwise apart,
resulting in a pair of moments, similarly to what is shown in [22]. At this stage, the actuator
concept is not fully defined since some of the parameters are an output of the process.
Therefore, only moment pairs and no pressurised faces will be considered in the following.
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Figure 3. Unit cell of a slab section, with pressurised faces (red area) and resulting moments in x 
and y direction. 

As long as the force pairs applied on the red faces (Figure 3) are only short-circuited 
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to counteract the bending moment caused by the external load as needed. In this case, 
short-circuiting means that the resulting reaction forces cancel each other out through a 
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crete. Three actuation modes are considered as shown in Figure 4, whereby the biaxial 
mode is a superposition of the two uniaxial modes. The labels 45° and 135° refer to the 
axis of the resulting moments with reference to the coordinate system shown in Figure 4. 
The force vector for the active state depends on the actuation mode employed (Figure 4). 

 
Figure 4. Actuation modes on single Elements—(a): uniaxial actuation 135°, (b): uniaxial actuation 
45°, (c): biaxial Actuation. 

The force vector in the active state can be written as follows (cf. [20]): 

𝒇 = 𝑨𝒖 (4)

The vector u contains the actuation input (see also Section 2.3). The matrix A ∊ ℝ   #
 

is denoted as the actuator allocation matrix. It collates the forces produced by the unit actu-
ation of each individual element through a particular actuation mode column-wise: 

𝑨 = 𝒂 𝒂 ⋯   𝒂 ⋯ 𝒂 #     𝒂 # , (5)

For example, the column vector 𝒂 °|  corresponds to the uniaxial actuation mode 
135° for element 1: 

𝑀 𝑀 𝑀 𝑀 𝑀   𝑀

𝒂 °| = [0 − cos 45 − sin 45 ⋯ 0 cos 45 sin 45 ⋯ 0 0 0]
 (6)

Figure 3. Unit cell of a slab section, with pressurised faces (red area) and resulting moments in x and
y direction.

As long as the force pairs applied on the red faces (Figure 3) are only short-circuited
along the actuator itself, the distance between the pair of moments can be varied in order
to counteract the bending moment caused by the external load as needed. In this case,
short-circuiting means that the resulting reaction forces cancel each other out through a
connecting structure without leading to forces affecting the surrounding region of concrete.
Three actuation modes are considered as shown in Figure 4, whereby the biaxial mode is a
superposition of the two uniaxial modes. The labels 45◦ and 135◦ refer to the axis of the
resulting moments with reference to the coordinate system shown in Figure 4. The force
vector for the active state depends on the actuation mode employed (Figure 4).
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Figure 4. Actuation modes on single Elements—(a): uniaxial actuation 135◦, (b): uniaxial actuation
45◦, (c): biaxial Actuation.

The force vector in the active state can be written as follows (cf. [20]):

fact = Au (4)

The vector u contains the actuation input (see also Section 2.3). The matrix A ∈ RDOF × i#

is denoted as the actuator allocation matrix. It collates the forces produced by the unit
actuation of each individual element through a particular actuation mode column-wise:

A =
[
a1 a2 · · · ai · · · ai#−1 ai#

]
, (5)

For example, the column vector a135◦ |1 corresponds to the uniaxial actuation mode
135◦ for element 1:

Mx1 My1 Mx4 My4 MxDOF MyDOF
a135◦ |1 =[0 − cos 45 − sin 45 · · · 0 cos 45 sin 45 · · · 0 0 0]T

(6)
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The force vector for the passive state can be generated in the same way, except that
the entries of the A matrix must correspond to those of an out-of-plane load. In keeping
with the concept of influence surfaces [33], only the active state is considered and fpas is
set to zero. Furthermore, only a unit actuation input is applied for all active elements.
At this stage, the actuation input vector u can be formulated as the identity matrix of
dimensions Ri#× i# , which can therefore be omitted [34]. Replacing Equation (3) in (4) yields
the equation to compute the actuation influence matrix for displacements:

Ed = K−1A (7)

Ed =
[
ed|1 ed|2 · · · ed|i · · · ed|i#−1 ed|i#

]
(8)

The column vectors ed|i ∈ RDOF quantify the influence on nodal displacements (global
coordinates) caused by unit actuation of the associated active element with the actuation
mode that is being considered. To observe only the translational displacements w, the
influence matrix of displacements Ed ∈ RDOF × i# can be reduced to Ed(w) ∈ Rn#× i# by
simply selecting every third global degree of freedom (cf. Equation (1)), n# denotes the total
number of element corner nodes. Each column vector ed(w)|i ∈ Rn#

quantifies the influence
of a single active element on the nodal translational displacements w of the whole structure.

To obtain the actuation influence matrices for stress resultants, the strain–displacement
matrices Bb ∈ R3 × 12 and Bs ∈ R3 × 12 as well as the stress–strain material matrices
Cb∈ R3 × 3 and Cs∈ R2 × 2 are required for bending and shear respectively [40,42]. The
formulation given in Equations (9)–(12) is for a single element following [40]. The coordi-
nates must be transformed to the isoparametric coordinates of the gauss element according
to [40,42].

Bb =

0 ∂N1
∂x 0

0 0 ∂N1
∂y

0 ∂N1
∂y

∂N1
∂x

0 ∂N2
∂x 0

0 0 ∂N2
∂y

0 ∂N2
∂y

∂N2
∂x

0 ∂N3
∂x 0

0 0 ∂N3
∂y

0 ∂N3
∂y

∂N3
∂x

0 ∂N4
∂x 0

0 0 ∂N4
∂y

0 ∂N4
∂y

∂N4
∂x

 (9)

Cb =
E·t3

12·(1 + µ2)

1 µ 0
µ 1 µ

0 0 1−µ
2

 (10)

Bs =

[
∂N1
∂x N1 0

∂N1
∂y 0 N1

∂N2
∂x N2 0

∂N2
∂y 0 N2

∂N3
∂x N3 0

∂N3
∂y 0 N3

∂N4
∂x N4 0

∂N4
∂y 0 N4

]
(11)

Cs =
5·E·t

12·(1 + µ)

[
1 0
0 1

]
(12)

A gauss node stress resultants vector can be calculated for the moments according to
Equation (13) and for the shear forces according to Equation (14).

m(e’) = Cb
(e’)Bb

(e’)ed|i
(e) (13)

ν(e’) = Cs
(e’)Bs

(e’)ed|i
(e) (14)

By iterating through the 4 gauss nodes while using the isoparametric coordinates (cur-
rent gauss node coordinates) ξ ′ and η′ in the strain–displacement matrices of Equations (13)
and (14), the stress resultant components (mx′ ; my′ ; mxy′ ; νx′ ; νy′) for the gaussian elements

are obtained in turn. An example for m(e′)
x and ν

(e′)
x is given in Equations (15) and (16) [40,42].

m(e′)
x =

[
mx|1′ mx|2′ mx|3′ mx|4′

]
(15)
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ν
(e′)
x =

[
νx|1′ νx|2′ νx|3′ νx|4′

]
(16)

After calculating the stress resultants for each gauss element in turn, the values at the
element corner nodes are obtained using bilinear extrapolation [42]. To avoid discontinu-
ities between adjacent elements, the nodal stresses are averaged. For the averaging, the
same weight is assigned to all elements that meet at a node [42]. Averaging reduces each
stress resultant vector to one value per node, i.e., mx|i, my|i, mxy|i, νx|i, νx|i ∈ Rn#

, where
n# denotes the total number of element corner nodes and i the respective active element.

To obtain actuation influence matrices for bending moments EM ∈ Rn#× i# or shear
forces EV ∈ Rn#× i# , the procedure in Equations (13)–(16) (including averaging) must be per-
formed for each column vector ed|i of the influence matrix Ed. The stress resultant vectors gen-
erated are then collated column-wise into matrices as expressed in Equations (17) and (18).

EMx =
[
mx|1 mx|2 · · · mx|i · · · mx|i#−1 mx|i#

]
(17)

EVx =
[
vx|1 vx|2 · · · vx|i · · · vx|i#−1 vx|i#

]
(18)

To gain an understanding of the load-bearing behaviour of two-way slabs, it is useful
to analyse the principal moments. With the calculated influence matrices EMx , EMy and
EMxy , the influence matrices Em1 and Em2 for the two principal moment directions can be
calculated. The influence matrices Em1 and Em2 for the two principal moments are obtained
by successively collating the result of Equation (19) [44] applied to each column vector of
EMx , EMy and EMxy column-wise.

em1,2 =
mx|i −my|i

2mxy|i
± 1

mxy|i

√(mx|i −my|i
2

)2
+ mxy|i2 (19)

2.2. Determining Suitable Actuation Modes

The optimal actuation mode depends on the control objective, e.g., reduction of
deformations or homogenisation of bending moments. The selection of suitable actuation
modes can be carried out on the basis of the computed influences. Summing the rows
of the corresponding influence column vectors for each actuation mode k as indicated
in Equations (20)–(21) yields a characteristic value of the influence of each element and
actuation mode on the control objective act (e.g., d(w), mx etc.) under investigation. For
example, if the control objective is displacement reduction, the rows of the individual
column vectors of the influence matrix Ed(w) are summed.

eact|k,i =
n#

∑
n=1

eact|n,i

n = 1, 2, . . . , n# (counting variable f or the element corner nodes )
i = 1, 2, . . . , i# (counting variable f or the active elements )

k(actuation principle number) (20)

eact|k =
[
eact|k,1 eact|k,2 · · · eact|k,i · · · eact|k,i#−1 eact|k,i#

]
(21)

For each actuation mode k, the row vectors eact|k,i ∈ Ri# are collated vertically into a

matrix Ẽact ∈ Rk#× i# . Each row contains the summed influence of actuation mode k while
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each column entry is the summed influence of an active element for the considered control
objective at all element corner nodes, cf. Equation (22).

Ẽact =



eact|1
eact|2
· · ·
eact|k
· · ·

eact|k#−1
eact|k#


(22)

Using Ẽact, the actuation mode with the highest influence can be determined for each
active element. The maximum value per column indicates which actuation mode has the
highest influence on the selected control objective at the respective active element (column
index). In the following, the index of the actuation mode that has maximum influence at
the respective active element i is denoted kmax.

The optimal actuation mode varies for the individual elements. Therefore, a new
influence matrix Ed,comb is assembled from the influence column vectors corresponding
to the elements and actuation modes with the highest summed influence, using Ẽact. For
further processing (Section 2.3) and to visualise the selected actuation modes, it is also
necessary to generate a new actuator allocation matrix of the combined actuation modes.
For this purpose, the columns (active elements) of Ed and A corresponding to the actuation
mode kmax on the selected control objective, are collated into the combined matrices Ed,comb
and Acomb respectively, as expressed in Equations (23) and (24).

Ed,comb =
[
ed,kmax|1 ed,kmax|2 · · · ed,kmax|i · · · ed,kmax|i#−1 ed,kmax|i#

]
(23)

Acomb =
[
akmax|1 akmax|2 · · · akmax|i · · · akmax|i#−1 akmax|i#

]
(24)

2.3. Actuation Load, Adaption Level and Adaptive State

As described in [34], influence matrices can also be used to calculate the actuation
forces required for a chosen adaptive nominal state yada. According to [33], Maxwell’s
theorem of reciprocal displacements also applies to elastic slabs. For example, consider
the deformations in the passive state at a generic point P(x,y) caused by the external load
and the deformations generated by a unit load (pair of moments) applied at a point A(x,y).
The actuation moment pair required to completely reduce the effect of the external load
can be obtained from the ratio between the deformations in the passive and active state
at point P. The approach presented in [34] to determine the actuation forces for truss and
frame structures can be extended to floor slabs:

yada = ypas + yact = K−1fpas + Ed,combu (25)

Often the deformations caused by the permanent load (self-weight + dead load) are
compensated by other means (e.g., pre-cambering). In these cases, it is possible to isolate the
effect of variable loads (e.g., live load) by excluding the permanent load from the external
load in the passive state fpas.

Since influence matrices are typically not square and are therefore not invertible, the
Moore–Penrose pseudoinverse, denoted with (·)+, is employed to compute the required
actuation input u∗. The pseudoinverse is a generalisation of the inverse matrix to singular
and non-square matrices [45]. Solving Equation (25) for u∗ gives:

u∗ = (Ed,comb)
+
(

yada − ypas

)
(26)
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The adaptive system state y∗ada achievable with the actuation input u∗ is then obtained
by substituting u∗ into Equation (25), as expressed in Equation (27). The same applies to
the vector of actuation forces. Since the actuation modes considered in this work do not
provide out-of-plane forces, there is no corresponding entry in Acomb for the translational
degree of freedom, and therefore only actuation moments are included in the vector of
actuation forces f∗act.

y∗ada = K−1fpas + Ed,combu∗ (27)

f∗act = Acombu∗ (28)

2.4. Actuator Placement

When all structural elements are actuated, the adaptive state can typically be reached
with high accuracy. However, this requires a high number of actuators. To reduce the
complexity of the actuation system, it is sensible to reduce the number of actuators as much
as possible. The reduction of actuators (i.e., the actuator placement) can be done based
on the influence of the active element towards the attainment of the target adaptive state
(Equation (20)). An iterative process is carried out by removing each element in turn and
evaluating the effect on the target adaptive state.

The elements with the lowest influences are removed first. The minimum number of
active elements is selected based on the desired control objective. For example, if vertical
displacements are to be compensated, an upper (xu) and lower (xl) limit for the translational
displacement w of each node is defined. The removal continues for elements with increasing
influence until all elements are removed. It is not aborted after the upper or lower limit is
reached in order to leave open the possibility (in a further step, which is not dealt with in
this work) of analysing and discussing the procedure (cf. Equation (29), Section 4).

Due to the local effect that characterises the actuation with integrated fluidic actua-
tors [22], it is useful to specify a removal direction. For example, if the external load is
distributed on the floor slab, low-influence elements should be removed from the outside
inwards to the diagonals and towards the centre of the slab. In cases where the external
load is only distributed over one of the quadrants, the elements of the loaded quadrant
should be removed last.

Elements are removed by filling zero entries into the corresponding column in Ed,comb.
Each time an element is removed, the adaptive state y∗ada,r (Equation (27)) is computed with

the updated Ed,comb and collated into an output matrix Y∗ada ∈ RDOF × r#
where r# denotes

the total number of removed elements.

Y∗ada =
[

y∗ada,1 y∗ada,2 · · · y∗ada,r · · · y∗ada,r#−1 y∗ada,r#

]
(29)

Due to the order of the degrees of freedom (Equation (1)), the matrix for the adaptive
state for translational displacements Y∗ada(w) ∈ Rn# × i# can be determined by filtering every
third column entry of Y∗ada. The minimum number of active elements is equal to the
total number of active elements minus the lowest column index from Y∗ada(w) in which
the target displacement bounds are exceeded. The reduced influence matrix Ed,comb,r,
which corresponds to the configuration with the minimum number of actuators, is used to
compute the adaptive state and the required actuation moments using Equations (26)–(28).

2.5. Defining Pressure Levels

As described in Section 2.1, actuation moments are produced by applying pressure
to pairs of faces, resulting in an actuation moment (cf. [22], Figure 3). Given f∗act from
Equation (28), the calculation of the pressure p∗act is based on Equation (30) which was
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formulated and experimentally validated in [22] for beams. Aa,x is the load application
area in the x direction and za is the inner lever arm (Figure 3).

p∗act =
f∗act

Aa,x·za
(30)

The moment curve between a pair of actuation moments is assumed to be con-
stant. As discussed in Section 2.1, this constant moment curve can be induced across
multiple elements.

Adjacent elements that are actuated through approximately the same pressure are
thought of as forming a pressure level. Consider the example of biaxial actuation shown in
Figure 5. Since the actuation moments at adjacent nodes cancel each other out (Figure 5a),
the combined elements are equivalent to a larger active element (cf. Figure 5b). This shifts
the pairs of faces to the outer edges of the larger active element. This means that the number
of active elements does not have to be the same as the actual number of actuators. The
active elements are employed to define the active region in which the actuators will be
placed. Furthermore, grouping active elements through pressure levels is useful for limiting
the necessary number of valves of the hydraulic unit. The number of pressure levels can
be chosen, for example, on the basis of the available hydraulic unit. The pressure levels
correspond to an even distribution of the pressures over the maximum pressure range. The
pressure range corresponds to the maximum required pressure or a selected pressure limit.
A pressure limit can be chosen, for example, on the basis of requirements from the actuator
concept as well as on the basis of material properties such as the concrete compressive
strength. When reducing the number of active elements to obtain the actuator placement
region, the remaining active elements are required to apply higher pressure to compensate
for the missing elements. In some cases, this can lead to an extraordinary increase in the
highest pressure levels. If a significantly high step occurs between individual pressures
after sorting them, all pressures beyond the selected step are limited to the nearest smaller
pressure level.
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3. Results

In the following, the application of the method formulated in Section 2 is applied to
a case study of a simply supported slab. A summary of this procedure can be found in
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Appendix A. Dimensions and material properties, indicated in Table 1, have been selected
on the basis of planned experimental testing and available resources. The control objective
is the reduction of displacements. The nodal translational displacements are constrained
along all edges. The floor slab is discretised in 400 elements as shown in Figure 6. The
element size was chosen based on the mesh convergence study shown in Figure 7. A
comparison of the numerically determined translational displacements and moments in
x- and y-direction at slab midspan with the analytically calculated values according to
Czerny [46] yields a deviation of around 10%. Due to the relatively small values (cf.
Section 3.4), this is considered to be sufficiently accurate for the presentation of the method.
The simulations have been performed in Python 3.7.8.

Table 1. Slab dimensions and material properties.

Properties Value Unit

Span lx = ly 2 m
Thickness 0.1 m

Elementsize la,x = la,y 0.1 m
E-modulus 30 GPa

Poisson’s ratio 0.2 -
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Figure 7. Mesh convergence study, red dashed line indicates the number of elements for the chosen
element size of 0.1 m × 0.1 m.

3.1. Influence Matrices

It is useful to compare the individual plots of the columns of the influence matrices
for each actuation mode in the case of the chosen control objective, the columns of the
influence matrix Ed(w). To compute the resulting displacement response in the passive
state, a similar influence matrix can be built by applying a unitary out-of-plane load at
every element corner node of a single element. Figure 8 shows an example of three plotted
columns for the passive (a–c) and active state (d–f). In this example three application points
are chosen: the centre of the slab, the centre of a diagonal and the principal axes related to
one quadrant.

In the passive system state, the highest influences are indicated in dark blue (negative
deflection) and, in the active state, they are indicated in bright yellow (positive deflection).
The response is more pronounced in the immediate vicinity of the load application points
or position of the active elements (marked with pink dots and arrows) and then decreases
rapidly. The influence extends over a smaller region when load application points (or the
position of the active element) are considered closer to the edges.
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principal axes and the diagonal related to one quadrant, for a quasi-unitary load (a–c) as well as a
biaxial actuation (d–f). Loading marked in pink.
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3.2. Combining Actuation Modes

Figure 9 shows the plot of the summed influences on translational displacements w
under biaxial actuation (a), 45◦ (b) and 135◦ (c) uniaxial actuation (cf. Section 2.2) for all
elements. In red areas, the influence on the control objective is the largest, in green areas it is
negligible and in purple areas it is negative, i.e., actuation causes downward displacements.
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Figure 9. Summed influences over all elements on the displacements w of a biaxial actuation (a), 45◦

(b) as well as 135◦ (c) uniaxial actuation.

Figure 9 shows that the biaxial actuation mode is most efficient in the centre of the slab
but has almost no effect in the corners. The uniaxial actuation modes affect the deformations
along the diagonals and mostly towards the corners, according to their alignment with the
principal moment m1. It is important to align uniaxial actuation correctly with respect to
the principal moment m1. The principal moments change sign at the corners, so actuation
has a negative effect on the displacements w. Figure 10 shows the actuation modes selected
after applying Equations (20)–(24).
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Figure 10. Distribution of actuation principles.

3.3. Actuation Load and Adaptation Level

To obtain measurable displacements under the considered dimensions and material
properties (Table 1), a distributed load of 15 kN/m2 is applied. The active moments
required to compensate displacements w as well as rotations ϕx and ϕy are computed
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with Equations (25)–(27) for a distribution of actuation modes according to Figure 10.
The required actuation pressures are indicated in Figure 11. If all the coloured elements
in Figure 10 are active, the maximum required pressure is approximately 76 bar. The
required pressure is the highest in the proximity of the sign change of the principal moment
m1. The pressure is computed with Equation (30). The chosen values Aa,x = 0.003 m2

(0.1 m × 0.03 m) and za = 0.015 m correspond to the maximum size per element to obtain
a concrete cover of 2 cm.

CivilEng 2022, 3 823 
 

 

Figure 10 are active, the maximum required pressure is approximately 76 bar. The re-
quired pressure is the highest in the proximity of the sign change of the principal moment 
m1. The pressure is computed with Equation (30). The chosen values 𝐴 , = 0.003 m² (0.1 
m × 0.03 m) and 𝑧 = 0.015 m correspond to the maximum size per element to obtain a 
concrete cover of 2 cm. 

 
Figure 11. Actuation pressures to compensate for the displacements caused by a distributed load of 
15 kN/m². 

3.4. Number of Necessary Active Elements 
If a permissible range is defined for the displacements w, not all active elements are 

required. For the case study under consideration, the application of the procedure de-
scribed in Section 2.4 leads to a required number of active elements of 232 (out of a total 
of 400). Figure 12 shows a zoomed-out view of the matrix 𝒀 ( )

∗  ∊ ℝ
#  #. The individ-

ual entries that lie within the permissible deformation range of 𝑥 = 1 × 10−5 to 𝑥 =−1 × 
10−5 are highlighted in red. The representation is structured in such a way that one element 
is removed per column from left to right. From top to bottom, the node number is listed 
in ascending order. The set permissible range can no longer be complied with when an 
active element is removed from the area where the principal moment m1 is close to zero. 

Figure 11. Actuation pressures to compensate for the displacements caused by a distributed load of
15 kN/m2.

3.4. Number of Necessary Active Elements

If a permissible range is defined for the displacements w, not all active elements are
required. For the case study under consideration, the application of the procedure described
in Section 2.4 leads to a required number of active elements of 232 (out of a total of 400).
Figure 12 shows a zoomed-out view of the matrix Y∗ada(w) ∈ Rn# × i# . The individual entries
that lie within the permissible deformation range of xu = 1 × 10−5 to xl =−1 × 10−5 are
highlighted in red. The representation is structured in such a way that one element is
removed per column from left to right. From top to bottom, the node number is listed in
ascending order. The set permissible range can no longer be complied with when an active
element is removed from the area where the principal moment m1 is close to zero.

The maximum value of the displacement in the passive state wpas is 3.4 × 10−4 m.
When all elements are active, the maximum displacement in the adaptive state wada is
0.032 × 10−4 m (a reduction of 99.9%). After removing 168 active elements (Figure 13) the
maximum displacement in the adaptive state is only 0.074 × 10−4 m (a reduction of 97.8%),
due to the strict chosen displacement bounds.
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3.5. Defining Pressure Levels

A reduction in the number of active elements can result in a large increase in the
required actuation pressure. Figure 14a shows the required actuation pressures to satisfy
the displacement bounds set in Section 3.4. Compared to the case in which all elements are
active (Figure 11), the maximum pressure increases from 76 bar to 164 bar. To further reduce
the number of actuators, elements with a similar pressure are combined through pressure
levels (Section 2.5). In addition, since the pressure only increases significantly for some
of the elements, a pressure limit is introduced. Six pressure levels are defined, since the
hydraulic unit that will be used for testing has six valves. For the general pressure levels,
this results in steps of roughly 10 bar. The pressure level of the few active elements with
extreme values is manually limited to the highest pressure level. The actuation pressure
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plot for this case is shown in Figure 14b. The maximum displacement for this variation is
0.42 × 10−4 m (wpas = 3.4 × 10−4 m, reduction of 87.6%).

CivilEng 2022, 3 825 
 

 

3.5. Defining Pressure Levels 
A reduction in the number of active elements can result in a large increase in the 

required actuation pressure. Figure 14a shows the required actuation pressures to satisfy 
the displacement bounds set in Section 3.4. Compared to the case in which all elements 
are active (Figure 11), the maximum pressure increases from 76 bar to 164 bar. To further 
reduce the number of actuators, elements with a similar pressure are combined through 
pressure levels (Section 2.5). In addition, since the pressure only increases significantly for 
some of the elements, a pressure limit is introduced. Six pressure levels are defined, since 
the hydraulic unit that will be used for testing has six valves. For the general pressure 
levels, this results in steps of roughly 10 bar. The pressure level of the few active elements 
with extreme values is manually limited to the highest pressure level. The actuation pres-
sure plot for this case is shown in Figure 14b. The maximum displacement for this varia-
tion is 0.42 × 10−4 m (wpas = 3.4 × 10−4 m, reduction of 87,6%). 

 
Figure 14. (a) Actuation pressures after reduction of the active elements. (b) Actuation pressures 
using six pressure levels, including pressure limit. 

4. Discussion 
The concept of integrated fluidic actuation has already been validated on a large-

scale beam in [18]. In this study, the underlying approach of counteracting moments 
caused by external loads with opposing active moments has been extended to floor slabs. 
The directionality of the load transfer in two-way slabs increases the complexity. Influence 
matrices are employed to determine the location of the active elements and the required 
actuation forces to satisfy a chosen control objective. 

The simplification of the 2-dimensional plate theory does not allow an evaluation of 
the stress in thickness direction since the stress curve from pressurised eccentric faces does 
not correspond to the linear stress curve of the plate theory. However, the knowledge 
gained regarding the orientation and intensity of the actuation moments, as well as the 
possibility of identifying actuator design spaces (pattern from pressure levels) with re-
duced computation time, justifies this approach. Stresses in the thickness direction can be 
evaluated separately, since individual variations still have to be checked during the de-
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4. Discussion

The concept of integrated fluidic actuation has already been validated on a large-scale
beam in [18]. In this study, the underlying approach of counteracting moments caused
by external loads with opposing active moments has been extended to floor slabs. The
directionality of the load transfer in two-way slabs increases the complexity. Influence
matrices are employed to determine the location of the active elements and the required
actuation forces to satisfy a chosen control objective.

The simplification of the 2-dimensional plate theory does not allow an evaluation
of the stress in thickness direction since the stress curve from pressurised eccentric faces
does not correspond to the linear stress curve of the plate theory. However, the knowl-
edge gained regarding the orientation and intensity of the actuation moments, as well as
the possibility of identifying actuator design spaces (pattern from pressure levels) with
reduced computation time, justifies this approach. Stresses in the thickness direction can
be evaluated separately, since individual variations still have to be checked during the
development of the actuator concept.

In general, practical implementation will have to be tested to appreciate the feasibility
of the method proposed in this paper. This includes the necessary proof that the distance
between the pairs of moments can be increased by an appropriate actuator structure. The
exact implementation (1 actuator = 1 active element or 1 pressure level field) would mean
that there is no concrete between the individual pressurised faces. In addition, the actuator
requires a construction space (enclosure, connecting elements, etc.) where no force can
be applied on the concrete. This issue can be solved by allowing gaps between the active
elements (or pressure fields). The applied pressure is distributed in plane, resulting in
actuation moments that are not just directly at the pressurised faces. The distances between
individual actuators can be selected based on the decay lengths of the applied in-plane
stresses (cf. [22]). These adjustments lead to a smaller load application area Aa. In practical
implementation, the maximum pressure required for displacement compensation will
therefore be higher, with expected values of about 100 bar. In the case study presented in
this work, the use of pressure barriers has a larger impact on the deviation from the desired
displacement bounds than the reduction of active elements. This means that if a bigger
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area (with more combined active elements) is actuated, smaller inaccuracies can also be
compensated for.

The effect of the actuation modes on actuator placement and determination of the
minimum number of active elements for different control objectives will be the subject of
future work. A review of Y∗ada(w) shows that there are still some active elements that can be
removed without affecting compliance with the deformation criteria. Further work will
also analyse and improve the removal process.

Although slabs are typically dimensioned based on deformation limits and very good
results for deformation reduction at relatively low pressures have been demonstrated in
this study, it remains to be proven that the basic goal behind the adaptive slab, i.e., savings
in mass and resources, can be achieved. Especially since no statement can be made about
the mass of the actuators at this point in the design phase.

5. Conclusions

This study presents an extension of the use of influence matrices from trusses and
beams to two-way slabs with integrated fluidic actuators. The actuation influence matrices
are employed to place the actuators as well as to determine preliminary requirements for the
actuator concept. It has been shown that the characteristic value of the summed influences
is a useful indicator to choose suitable actuation modes. Through the determination
of pressure levels, optimal position and forces of the actuators can be obtained for a
chosen control objective including the distance between the pair of faces (design space)
of the fluidic actuators. Through the load case independent analysis, it was shown that
biaxial actuation in the centre of the slab and uniaxial actuation along the diagonals is
advantageous. Furthermore, the paper illustrates that actuation in the corner areas is not
necessary for displacement compensation of a uniformly distributed load. This highlights
that adaptive slabs require specifically designed actuators instead of industry standard ones
to reduce the number of actuators and to achieve a good performance. Moreover, it was
presented that with a gradation of just six pressure levels, displacements from a uniformly
distributed load can be reduced by more than 85%. Future work will test the feasibility of
the presented method in this paper and general practical applicability of adaptive slabs
through experimental testing.
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Glossary

Sub- and Superscripts:
# indicates the total number of the respective counting variable
* indicates that the vector or matrix refers to the required target state
DOF degrees of freedom
(e) single element, evaluation at the element corner nodes
(e’) single “gauss” element, evaluation at the gauss nodes
i counting variable for the active elements

(
i = 1, 2, . . . , i#

)
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k counting variable for the actuation modes

kmax
index of the actuation mode that has maximum influence at the
respective active element

n counting variable for the element corner nodes
(
n = 1, 2, . . . , n# )

r counting variable for the number of removed elements
(
r = 1, 2, . . . , r# )

Vectors:

ai ∈RDOF
column vector of the actuator allocation matrix. Including the actuation
mode, e.g., corresponds to the uniaxial actuation mode, e.g., a135◦ |1 for
element 1

d(e). ∈ R 12 element deformation vector
d ∈ RDOF global deformation vector

eact|k ∈Ri# row vector of the summed rows of the corresponding influence column
vectors of each element and actuation mode on the control objective

ed|i ∈ RDOF column vector of the actuation influence matrix for displacements

ed(w)|i ∈Rn# column vector of the actuation influence matrix for translational
displacements w

em1,2 ∈Rn# column vector of actuation influence matrices for the two principal
moment directions

f ∈ RDOF global force vector
f(e) ∈ R12 element force vector
f∗act ∈ RDOF force vector of the required actuation moments
f∗act ∈ RDOF global force vector for the active state
fpas ∈ RDOF global force vector for the passive state
m(e’) ∈ R4 gauss node stress resultant vector for the bending moments
p∗act ∈ RDOF actuation pressure vector
u∗ ∈ RDOF required actuation input vector, for a target state
u ∈ RDOF actuation input vector
ν(e’) ∈ R4 gauss node stress resultant vector for the shear forces
yact ∈ RDOF output vector for the active nominal state

y∗ada ∈ RDOF output vector for the adaptive system state achievable with the actuation
input u∗

∈ RDOF output vector for the adaptive system state achievable with the actuation
input u∗ and the current number of active elements

yada ∈ RDOF output vector for the adaptive nominal state
ypas ∈ RDOF output vector for the passive nominal state
Matrices:
A ∈RDOF x i# actuator allocation matrix
Acomb ∈RDOF x i# actuator allocation matrix of the combined actuation modes
Bb ∈ R3 x 12 strain–displacement matrices for bending
Bs ∈ R3 x 12 strain–displacement matrices for shear
Cb∈ R3 x 3 stress–strain material matrices for bending
Cs∈ R2 x 2 stress–strain material matrices for shear

Ẽact ∈Rk#x i# actuation influence matrix for the summed influences of each element
and actuation mode on the control objective

Ed ∈RDOF x i# actuation influence matrix for displacements

Ed,comb ∈RDOF x i# actuation influence matrix for displacements of the combined actuation
modes with the highest summed influence

Ed,comb,r ∈RDOF x i#
actuation influence matrix for displacements of the combined actuation
modes with the highest summed influence and the minimum number of
active elements to stay within the target state bounds

Ed(w) ∈ Rn#x i# actuation influence matrix for translational displacements w
EM ∈ Rn#x i# actuation influence matrix for bending moments
Em1 and Em2 ∈Rn#x i# actuation influence matrices for the two principal moment directions
EV ∈ Rn#x i# actuation influence matrix for shear forces
K ∈ RDOF x DOF global stiffness matrix
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k counting variable for the actuation modes

Y∗ada ∈RDOF x i# output matrix for the adaptive system state achievable with the
actuation input u∗ and the current number of active elements

Y∗ada(w) ∈R
n# x i#

output matrix for the translational displacements in the adaptive system
state achievable with the actuation input u∗ and the current number of
active elements

Symbols:
(·)+ Moore–Penrose pseudoinverse
ϕx and ϕy rotational degrees of freedom
Aa load application area

eact|k,i
summed influence of a single element on the control objective for the
respective actuation mode

eact|n,i
influence of a single element on the control objective at the respective
element corner node

ha height of the load application area

la,x and la,y
edge length of a single slab element in x and y direction. Applies also
when using pressure levels to form a single larger active element.

lx and ly span width of the slab in x and y direction
w translational displacement
xu upper limit for the translational displacement w of each node
xl lower limit for the translational displacement w of each node
za inner lever

Appendix A

A summary of the procedure described in Section 2.1–2.5 is given in Figure A1 as a
flow chart. First of all, the influence matrices for each actuation mode need to be calculated.
Summing the rows of the influence column vectors yields a characteristic value to determine
suitable actuation modes. After assigning a load case and setting an adaptive target state,
the adaptive system state can be calculated. By removing active elements with the lowest
influence in turn the minimum number of active elements can be determined. Assigning
pressure levels and setting a pressure limit leads to possible distances for the actuation
faces.
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