
Citation: Khalil, O.; El-Sharkawy, H.;

Youssef, M.; Baumann, G. Adaptive

Piecewise Poly-Sinc Methods for

Ordinary Differential Equations.

Algorithms 2022, 15, 320. https://

doi.org/10.3390/a15090320

Academic Editor: Dunhui Xiao

Received: 1 August 2022

Accepted: 5 September 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Adaptive Piecewise Poly-Sinc Methods for Ordinary
Differential Equations
Omar Khalil 1 , Hany El-Sharkawy 1,2, Maha Youssef 3 and Gerd Baumann 1,4,*

1 Mathematics Department, German University in Cairo, New Cairo City 11835, Egypt
2 Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia 11566, Egypt
3 Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57,

D-70569 Stuttgart, Germany
4 Faculty of Natural Science, University of Ulm, Albert–Einstein–Allee 11, D-89069 Ulm, Germany
* Correspondence: gerd.baumann@uni-ulm.de

Abstract: We propose a new method of adaptive piecewise approximation based on Sinc points
for ordinary differential equations. The adaptive method is a piecewise collocation method which
utilizes Poly-Sinc interpolation to reach a preset level of accuracy for the approximation. Our work
extends the adaptive piecewise Poly-Sinc method to function approximation, for which we derived
an a priori error estimate for our adaptive method and showed its exponential convergence in the
number of iterations. In this work, we show the exponential convergence in the number of iterations
of the a priori error estimate obtained from the piecewise collocation method, provided that a good
estimate of the exact solution of the ordinary differential equation at the Sinc points exists. We use a
statistical approach for partition refinement. The adaptive greedy piecewise Poly-Sinc algorithm is
validated on regular and stiff ordinary differential equations.

Keywords: adaptive approximation; Poly-Sinc interpolation; Sinc methods; Lagrange interpolation;
initial value problems; boundary value problems; exponential convergence; regular differential
equations; stiff differential equations

1. Introduction

Numerous phenomena in engineering, physics, and mathematics are modeled either
by initial value problems (IVPs) or by boundary value problems (BVPs) described by
ordinary differential equations (ODEs). Accordingly, the numerical solution of IVPs for
deterministic and random ODEs is a basic problem in the sciences. For a review of the
state of the art on theory and algorithms for numerical initial value solvers, we refer to the
monographs [1–7] and the references therein.

Exact solutions may not be available for some ODEs. This has led to the development
of a number of methods to estimate the a posteriori error, which is based on the residual
of the ODE [8], forming the basis for adaptive methods for ODEs. The a posteriori error
estimates have been derived for different numerical methods, such as piecewise polynomial
collocation methods [9,10] and Galerkin methods [11–14]. An a posteriori error estimate
in connection with adjoint methods was developed in [15]. Kehlet et al. [16] incorporated
numerical round-off errors in their a posteriori estimates. An a posteriori error estimate
based on the variational principle was derived in [17]. Convergence rates for the adaptive
approximation of ODEs using a posteriori error estimation were discussed in [18,19]. A
less common form is the a priori error estimate [8,20]. Hybrid a priori–a posteriori error
estimates for ODEs were developed in [21,22]. An advantage of the a priori error estimate
over the a posteriori error estimate is that the a priori error estimate does not require the
computation of the residual of the ODE. However, some knowledge about the exact solution
of the ODE is required for the a priori error estimate. It was shown in [23,24] that the a priori
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error estimate of the Poly-Sinc approximation is exponentially convergent in the number of
Sinc points, provided that the exact solution belongs to the set of analytic functions.

We propose an adaptive piecewise method, in which the points in a given partition
are used as partitioning points. This piecewise property allows for a greater flexibility of
constructing the polynomials of arbitrary degree in each partition. Recently, we developed
an a priori error estimate for the adaptive method based on piecewise Poly-Sinc interpola-
tion for function approximation [25]. In this work [25], we used a statistical approach for
partition refinement in which we computed the fraction of a standard deviation [26–28] as
the ratio of the mean absolute deviation to the sample standard deviation. It was shown

in [29] that the ratio approaches
√

2
π ≈ 0.798 for an infinite number of normal samples.

We extend the work [25] for regular and stiff ODEs. In this paper, we discuss the adaptive
piecewise Poly-Sinc method for regular and stiff ODEs, and show that the exponentially
convergent a priori error estimate for our adaptive method differs from that for function
approximation [25] by a small constant.

This paper is organized as follows. Section 2 provides an overview of the Poly-Sinc
approximation, the residual computation, the indefinite integral approximation, and the
collocation method. Section 3 discusses the piecewise collocation method, which is the
cornerstone of the adaptive piecewise Poly-Sinc algorithm. In Section 4, we present the
adaptive piecewise Poly-Sinc algorithm for ODEs and the statistical approach for partition
refinement. We also demonstrate the exponential convergence of the a priori error estimate
for our adaptive method. We validate our adaptive Poly-Sinc method on regular ODEs and
ODEs whose exact solutions exhibit an interior layer, a boundary layer, and a shock layer
in Section 5. Finally, we present our concluding remarks in Section 6.

2. Background
2.1. Poly-Sinc Approximation

A novel family of polynomial approximation called Poly-Sinc interpolation which
interpolate data of the form {xk, yk}N

k=−M where {xk}N
k=−M are Sinc points, were derived

in [23,30] and extended in [24]. The interpolation to this type of data is accurate provided
that the function y with values yk = y(xk) belong to the space of analytic functions [30,31].
For the ease of presentation and discussion, we assume that M = N. Poly-Sinc approxima-
tion was developed in order to mitigate the poor accuracy associated with differentiating
the Sinc approximation when approximating the derivative of functions [23]. Moreover,
Poly-Sinc approximation is characterized by its ease of implementation. Theoretical frame-
works on the error analysis of function approximation, quadrature, and the stability of the
Poly-Sinc approximation were studied in [23,24,32,33]. Furthermore, Poly-Sinc approxima-
tion was used to solve BVPs in ordinary and partial differential equations [31,34–38]. We
start with a brief overview of Lagrange interpolation. Then, we discuss the generation of
Sinc points using conformal mappings.

2.1.1. Lagrange Interpolation

Lagrange interpolation is a polynomial interpolation scheme [39], which is constructed
by Lagrange basis polynomials

uk(x) =
g(x)

(x− xk)g′(xk)
, k = 1, 2, . . . , m,

where {xk}m
k=1 are the interpolation points and g(x) = ∏m

l=1(x− xl). The Lagrange basis
polynomials satisfy the property

uk(xj) =

{
1, if k = j,

0, if k 6= j.
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Hence, the polynomial approximation in the Lagrange form can be written as

yh(x) =
m

∑
k=1

y(xk)uk(x), (1)

where yh(x) is a polynomial of degree m− 1 and it interpolates the function f (x) at the
interpolation points, i.e., yh(xk) = y(xk). For Sinc points, the polynomial approximation
yh(x) becomes

yh(x) =
N

∑
k=−N

y(xk)uk(x), (2)

where m = 2N + 1 is the number of Sinc points. If the coefficients y(xk) are unknown, then
we replace y(xk) with ck, and Equations (1) and (2) become

yc(x) =
m

∑
k=1

ck uk(x) (3)

and

yc(x) =
N

∑
k=−N

ck uk(x), (4)

respectively.

2.1.2. Conformal Mappings and Function Space

We introduce some notations related to Sinc methods [23,24,30]. Let ϕ : D → Dd be a
conformal map that maps a simply connected region D ⊂ C onto the strip

Dd = {z ∈ C : | Im(z)| < d},

where d is a given positive number. The region D has a boundary ∂D, and let a and b be
two distinct points on ∂D. Let ψ = ϕ−1, ψ : Dd → D be the inverse conformal map. Let Γ
be an arc defined by

Γ = {z ∈ [a, b] : z = ψ(x), x ∈ R},

where a = ψ(−∞) and b = ψ(∞). For real finite numbers a, b, and Γ ⊆ R, ϕ(x) =
ln((x− a)/(b− x)) and xk = ψ(kh) = (a + bekh)/(1+ ekh) are the Sinc points with spacing

h(d, βs) =

(
πd

βsN

)1/2
, βs > 0 [30,40]. Sinc points can be also generated for semi-infinite or

infinite intervals. For a comprehensive list of conformal maps, see [24,30].
We briefly discuss the function space for y. Let ρ = eϕ, αs be an arbitrary positive

integer number, and Lαs,βs
(D) be the family of all functions that are analytic in D =

ϕ−1(Dd) such that for all z ∈ D, we have

|y(z)| ≤ C
|ρ(z)|αs

[1 + |ρ(z)|]αs+βs
.

We next set the restrictions on αs, βs, and d such that 0 < αs ≤ 1, 0 < βs ≤ 1, and
0 < d < π. Let Mαs,βs

(D) be the set of all functions g defined on D that have finite limits
g(a) = limz→a g(z) and g(b) = limz→b g(z), where the limits are taken from within D, and
such that y ∈ Lαs,βs

(D), where

y = g− g(a) + ρ g(b)
1 + ρ

.
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The transformation guarantees that y vanishes at the endpoints of (a, b). We assume that y
is analytic and uniformly bounded by B(y), i.e., |y(x)| ≤ B(y), in the larger region

D2 = D ∪t∈(a,b) B(t, r),

where r > 0 and B(t, r) = {z ∈ C : |z− t| < r}.

2.2. Residual

The residual is used as a measure of the accuracy of the adaptive Poly-Sinc method.
The general form of a second-order ODE can be expressed as [41]

F(x, y, y′, y′′) = 0. (5)

An exact solution y satisfies (5). If the exact solution y is unknown, we replace it with the
approximation yc and Equation (5) becomes

F(x, yc, y′c, y′′c ) = R(x), (6)

where R(x) is the residual. The residual in (6) for the i−th iteration becomes

F
(

x, y(i)c ,
(

y(i)c

)′
,
(

y(i)c

)′′)
= R(i)(x), i = 1, 2, . . . , κ,

where κ is the number of iterations.
We will denote the residual for integral and differential equations with RI and RD,

respectively. The residual is used as an indicator for partition refinement as discussed
in Algorithm 4 (see Section 4).

2.3. Error Analysis

We briefly discuss the error analysis for Poly-Sinc approximation over the global
interval [a, b]. At the end of this section, we will discuss the error analysis of Poly-Sinc
approximation for IVPs and BVPs

For the Poly-Sinc approximation on a finite interval [23,24,32,33,38], it was shown that

max
x∈[a,b]

|y(x)− yh(x)| ≤ A
rm

√
Ne−β

√
N ,

where y(x) is the exact solution and yh(x) is its Poly-Sinc approximation, A is a constant
independent of N, m = 2N + 1 is the number of Sinc points in the interval, r is the radius
of the ball containing the m Sinc points, and β > 0 is the convergence rate parameter. On a
finite interval [a, b], it was shown that [24,38]

max
x∈[a,b]

|y(x)− yh(x)| ≤ A
∣∣∣∣ b− a

2r

∣∣∣∣mN3/2 tanh−4
(

η

4
√

N

)
exp

(
−π2

√
N

2η

)
, (7)

where η is a positive constant. Inequality (7) can be written as

max
x∈[a,b]

|y(x)− yh(x)| ≤ A
∣∣∣∣ b− a

2r

∣∣∣∣mNα exp
(
−γNβ

)
.

Next, we discuss the collocation method for IVPs and BVPs.

2.4. Collocation Method

A collocation method [42,43] is a technique in which a system of algebraic equations
is constructed from the ODE via the use of collocation points. Here, we adopt the Poly-Sinc
collocation method [36,44], in which the collocation points are the Sinc points and the basis
functions are the Lagrange polynomials with Sinc points.
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2.4.1. Initial Value Problem

The IVP is transformed into an integral equation. We briefly discuss the approximation
of indefinite integrals using Poly-Sinc methods ([45] § 9.3). Define

(J +w y)(x) =
∫ x

a
y(t)w(t)dt , (8)

where the weight function w(x) is positive on the interval (a, b) and has the property that
the moments

∫ b
a xjw(x)dx do not vanish for j = 0, 1, 2, . . .. Let A+ be an m× m matrix

whose entries are
[A+]k j =

∫ xk

a
uj(x)w(x)dx ,

where uj(x), j = −N, . . . , N, are the Lagrange basis polynomials stacked in a vector
L(x) = (u−N(x), . . . , uN(x))>, and (·)> is the transpose operator. The interpolation points
{xj}N

j=−N are the Sinc points generated in the interval [a, b] as discussed in Section 2.1.2.
Then, the indefinite integral (8) can be approximated as

(J +
m w y)(x) =

N

∑
j=−N

(J +
m w y)(xj)uj(x)

≈
N

∑
j=−N

[
N

∑
k=−N

y(xk)[A+]j k

]
uj(x)

=
N

∑
j=−N

uj(x)
N

∑
k=−N

y(xk)[A+]j k

= L(x)>A+Vy,

where Vy = (y(x−N), . . . , y(xN))
>. We state the following theorem for IVPs [30].

Theorem 1 (Initial Value Problem ([30] §1.5.8)). If y ∈Mαs,βs
(D), then, for all N > 1

‖J +w y−J +
m w y‖ = O(εN),

where εN =
√

Ne−β
√

N .

2.4.2. Boundary Value Problem

For a BVP, the collocation method solves for the unknown coefficients ck in (3) or (4)
by setting

RD(xk) = 0, k = −N, . . . , N.

However, we replace the two equations corresponding to x−N and xN with the boundary
conditions y(a) = ya and y(b) = yb, respectively. We state the following theorem for BVPs.

Theorem 2 (Boundary Value Problem ([30] §1.5.6)). If y ∈ Mαs,βs
(D) and c =

(c−N , . . . , cN)
> is a complex vector of order m, such that for some δ > 0,(

N

∑
j=−N

∣∣y(xj)− cj
∣∣2)1/2

< δ,

then,
‖y− L(x)>c‖ < CεN + δ.
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3. Piecewise Collocation Method

We discuss the piecewise collocation method, in which the domain I = [a, b] is
discretized into K ∈ N non-overlapping partitions In = [xn−1, xn), n = 1, 2, . . . , K − 1,
x0 = a, xK = b with IK = [xK−1, b] and ∪K

n=1 In = I = [a, b]. The space of piecewise
discontinuous polynomials can be defined as

Dk(I) = {v : v|In ∈ Pk(In), n = 1, 2, . . . , K},

where Pk(In) denotes the space of polynomials of degree at most k on In. The piecewise
collocation method solves the collocation method in Section 2.4 over partitions. The
approximate solution in the global partition [a, b] can be written as

yh(x) =
K

∑
k=1

yh, k(x)1x∈Ik =
K

∑
k=1

1x∈Ik

mk

∑
j=1

yj, kuj, k(x), (9)

where yh, k(x) = ∑mk
j=1 yj, kuj, k(x) is the Lagrange interpolation in the k−th partition. The

basis functions

uj, k(x) =
gk(x)

(x− xj, k)g′k(xj, k)
, j = 1, 2, . . . , mk, k = 1, 2 . . . , K,

where {xj, k}
mk
j=1 are the interpolation points in the k−th partition, gk(x) = ∏mk

l=1(x− xl, k),
and mk is the number of points in the k−th partition. The function 1C is an indicator
function which outputs 1 if the condition C is satisfied and otherwise 0. If the coefficients
yj, k are unknown, then we replace yj, k with cj, k, and Equation (9) becomes

yc(x) =
K

∑
k=1

yc, k(x)1x∈Ik =
K

∑
k=1

1x∈Ik

mk

∑
j=1

cj, kuj, k(x). (10)

The residual for the k−th partition can be written as

F
(

x, yc, k, (yc, k)
′, (yc, k)

′′
)
= Rk(x), x ∈ Ik, k = 1, 2, . . . , K.

The collocation method solves for the unknowns cj, k by setting Rk(xj, k) = 0, j =
1, 2, . . . , mk, k = 1, 2, . . . , K, which we discuss next for IVPs and BVPs.

3.1. Initial Value Problem

In this section, we provide examples for first-order and second-order IVPs.

Relaxation Problem

We discuss the piecewise collocation method for a first-order IVP in integral form.
Consider the following relaxation or decay Equation [46] on the interval [a, b]

dy(x)
dx

= −αy(x), y(a) = ya, (11)

where α > 0 is the relaxation parameter. The exact solution is y(x) = ya exp(−α(x− a)).
We transform the IVP (11) into an integral form

y(x) = ya − α
∫ x

a
y(t)dt .

The residual becomes
RI(x) = yc(x)− ya + α

∫ x

a
y(t)dt .
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We approximate the indefinite integral as discussed in Section 2.4.1 and the approximate
residual becomes

R̃I(x, a, ya, yc(x)) = yc(x)− ya + α(J +
m yc)(x).

The domain [a, b] is partitioned as discussed in Section 3. For the k−th partition, k =
1, 2, . . . , K, we replace a with xk−1 and ya with yc, k−1(xk−1). The approximate residual
becomes

R̃I, k(x, xk−1, yc, k−1(xk−1), yc, k(x)) = yc, k(x)− yc, k−1(xk−1) + α(J +
m yc)(x), x ∈ Ik.

We remove the equation corresponding to the leftmost Sinc point in each partition,
and replace them with the conditions

yc(x0) = ya, (12a)

yc, k(xk−1) = yc, k−1(xk−1), k = 2, 3, . . . , K, (12b)

and the set of equations

R̃I, k(xj, k, xk−1, yc, k−1(xk−1), yc, k(xj, k)) = 0, j = 2, 3, . . . , mk, k = 1, 2, . . . , K. (13)

The set of equations (12b) is known as the continuity equations at the interior bound-
aries [47]. The collocation algorithm for the IVP (11) is outlined in Algorithm 1.

Algorithm 1: Piecewise Poly-Sinc Algorithm (IVP (11)).
input : K : number of partitions

mk : number of Sinc points in the k−th partition
output : yc(x): approximate solution
Replace y(x) with the global approximate solution (10).
Solve for the mk K unknowns {cj,k}

mk , K
j=1, k=1 using the initial condition (12a),

continuity Equation (12b), and the set of equations for the residual (13).

3.2. Hanging Bar Problem

We discuss the piecewise collocation method for a second-order IVP in integral form.
Considering the following IVP on the interval [a, b]

∀x ∈ [a, b], −(K̃(x)y′(x))′ = f (x),

y(a) = ya,

y′(a) = ỹa.

(14)

where y(x) is the sought-for solution. In the context of the hanging bar problem [48],
y(x) and K̃(x) are the displacement and the material property of the bar at the position x,
respectively. For simplicity, we set K̃(x) = 1. Equation (14) can be written as a system of
first-order equations

y′ = q, q′ = − f , y(a) = ya, q(a) = ỹa. (15)

The integral form of (15) is

y(x) = ya +
∫ x

a
q(t)dt , (16)

q(x) = ỹa −
∫ x

a
f (t)dt . (17)
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Plugging (17) into (16), we obtain

y(x) = ya +
∫ x

a

[
ỹa −

∫ t

a
f (s)ds

]
dt

= ya + ỹa(x− a)−
∫ x

a

∫ t

a
f (s)ds dt .

Using integration by parts
∫

u dv = uv−
∫

v du [49] with u(t) =
∫ t

a f (s)ds,

∫ x

a

∫ t

a
f (s)ds dt = t

∫ t

a
f (s)ds

∣∣∣∣t=x

t=a
−
∫ x

a
t f (t)dt

= x
∫ x

a
f (s)ds−

∫ x

a
t f (t)dt

= x
∫ x

a
f (s)ds−

∫ x

a
s f (s)ds

=
∫ x

a
(x− s) f (s)ds ,

where we set t = s. Thus, the integral form of the solution to (14) becomes

y(x) = ya + (x− a)ỹa − x
∫ x

a
f (s)ds +

∫ x

a
s f (s)ds .

The residual can be written as

RI(x, a, ya, ỹa, yc(x)) = yc(x)− ya − (x− a)ỹa + x
∫ x

a
f (s)ds−

∫ x

a
s f (s)ds . (18)

Approximating the indefinite integral in (18), the approximate residual becomes

R̃I(x, a, ya, ỹa, yc(x)) = yc(x)− ya − (x− a)ỹa + x(J +
m f )(x)− (J +

m x f )(x). (19)

For the k−th partition, k = 1, 2, . . . , K, we replace a with xk−1 , ya with yc, k−1(xk−1), and ỹa
with y′c, k−1(xk−1). The approximate residual becomes

R̃I, k(x, xk−1, yc, k−1(xk−1), y′c, k−1(xk−1), yc, k(x)) = yc, k(x)− yc, k−1(xk−1)

− (x− xk−1)y′c, k−1(xk−1) + x(J +
m f )(x)− (J +

m x f )(x), x ∈ Ik.

We remove the equations corresponding to the leftmost and rightmost Sinc points in
each partition, and replace them with the conditions

yc(x0) = ya, (20a)

y′c(x0) = ỹa, (20b)

yc, k(xk−1) = yc, k−1(xk−1), k = 2, . . . , K, (20c)

y′c, k(xk−1) = y′c, k−1(xk−1), k = 2, . . . , K, (20d)

and the set of equations

R̃I, k(xj, k, xk−1, yc, k−1(xk−1), y′c, k−1(xk−1), yc, k(xj, k)) = 0, (21)

j = 2, . . . , mk− 1, k = 1, . . . , K. Equations (20c)–(20d) are known as the continuity equations
at the interior boundaries [47]. The collocation algorithm for the IVP (14) is outlined
in Algorithm 2.
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Algorithm 2: Piecewise Poly-Sinc Algorithm (IVP (14)).
input : K : number of partitions

mk : number of Sinc points in the k−th partition
output : yc(x): approximate solution
Replace y(x) with the global approximate solution (10).
Solve for the mk K unknowns {cj,k}m, K

j=1, k=1 using initial conditions (20a)–(20b),
continuity Equations (20c)–(20d), and the set of equations for the residual (21).

3.3. Boundary Value Problem

The collocation method for the BVP is similar to that of the IVP in Section 3.2, except
that we replace the set of equations (20) with

yc(x0) = ya, (22a)

y′c(xK) = yb, (22b)

yc, k(xk−1) = yc, k−1(xk−1), k = 2, 3, . . . , K, (22c)

y′c, k(xk−1) = y′c, k−1(xk−1), k = 2, 3, . . . , K, (22d)

and the set of equations of the residual for the BVP becomes

RD, k(xj, k) = 0, j = 2, 3, . . . , mk − 1, k = 1, 2, . . . , K, (23)

where RD, k is the residual of the differential equation in the k−th partition. The piecewise
Poly-Sinc collocation algorithm for the BVP is outlined in Algorithm 3.

Algorithm 3: Piecewise Poly-Sinc Algorithm (BVP).
input : K : number of partitions

mk : number of Sinc points in the k−th partition
output : yc(x): approximate solution
Replace y(x) with the global approximate solution (10).
Solve for the mk K unknowns {cj,k}m, K

j=1, k=1 using boundary conditions (22a)–(22b),
continuity Equations (22c)–(22d), and the set of equations for the residual (23).

4. Adaptive Piecewise Poly-Sinc Algorithm

This section introduces the greedy algorithmic approach used in adaptive piecewise
Poly-Sinc methods. The core feature used is the non-overlapping properties of Sinc points
and the uniform exponential convergence on each partition of the approximation interval.
Greedy algorithms seek the “best” candidate of possible solutions at a given step [50].
Greedy algorithms have been applied to model order reduction for parametrized partial
differential equations [51,52]. The adaptive piecewise Poly-Sinc algorithm is greedy in the
sense that it makes a choice that aims to find the “best” approximation for the solution of
the ODE in the current step [50]. The algorithm takes an iterative form in which it computes
the L2 norm values of the residual for all partitions constituting the global interval I = [a, b].
At the i−th step, the algorithm refines the partitions for which the L2 norm values of the
residual are relatively large. By refining the partitions as discussed above, it is expected
that the mean value of the L2 norm values over all partitions decreases in each step. As the
iteration proceeds, the algorithm expects to find the “best” polynomial approximation for
the solution of the ODE.
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4.1. Algorithm Description

We discuss the adaptive algorithm for the piecewise Poly-Sinc approximation. The
following steps of the adaptive algorithm are performed in an iterative loop [53]

SOLVE→ ESTIMATE→ MARK→ REFINE.

The adaptive piecewise Poly-Sinc algorithm is outlined in Algorithm 4. The refinement
strategy is performed as follows. For the i−th iteration, we compute the set of L2 norm

values
{∥∥∥R(i)

k (x)
∥∥∥

L2(I(i)k )

}Ki

k=1
over the Ki partitions, from which the sample mean Ri =

1
Ki

∑Ki
j=1

∥∥∥R(i)
j (x)

∥∥∥
L2(I(i)j )

and the sample standard deviation [54]

si =
1√

Ki − 1

√√√√ Ki

∑
j=1

(∥∥∥R(i)
j (x)

∥∥∥
L2(I(i)j )

− Ri

)2

are computed [26–28]. The residual R(i)
j (x) for the j−th partition and the i−th

iteration is discussed in Section 2.2. The partitions with the indices Ii ={
j :
∥∥∥R(i)

j (x)
∥∥∥

L2(I(i)j )
− Ri ≥ ωi si

}
are marked for refinement, where the statistic [29]

ωi =

1
Ki

∑Ki
j=1

∣∣∣∣∣∥∥∥R(i)
j (x)

∥∥∥
L2(I(i)j )

− Ri

∣∣∣∣∣
si

.

Using Hölder’s inequality for sums with p = q = 2 ([55] § 3.2.8), one can show that

ωi ≤
√

Ki−1
Ki

< 1. We restrict to second-order moments only. The points in the partitions
with the indices Ii are used as partitioning points and m = 2N + 1 Sinc points are inserted
in the newly created partitions. The algorithm terminates when the stopping criterion is
satisfied. The approximate solution y(i)c (x), i = 1, . . . , κ, for the i−th iteration is computed
using the collocation method outlined in Algorithms 1 and 2 for IVPs and Algorithm 3 for
BVPs. We note that, for partition refinement, the residual is computed in its differential
form RD(x).

The definite integral in the L2 norm [56] is numerically computed using a Sinc quadra-
ture [30], i.e.,

‖ f (x)‖2
L2([a,b]) =

∫ b

a
| f (x)|2 dx ≈ h

N

∑
k=−N

1
ϕ′(xk)

f 2(xk),

where {xk}N
k=−N ∈ [a, b] are the quadrature points, which are also Sinc points, and ϕ(x) is

the conformal mapping in Section 2.1.2. The supremum norm on an interval I = [a, b] is
approximated as ([57] Table 2.1)

‖ f (x)‖I ≈ max {| f (xk)|}N
k=−N ,

where {xk}N
k=−N are the Sinc points on I, whose generation is discussed in Section 2.1.2.

4.2. Error Analysis

We state below the main theorem.

Theorem 3 (Estimate of Upper Bound [25]). Let y be in Mαs,βs
(ϕ), analytic and bounded

in D2, and let y(i)h (x) be the piecewise Poly-Sinc approximation in the i-th iteration. Let ξi =

arg maxk

∣∣∣Len(I(i)k )
∣∣∣ be the index of the largest partition in the i−th iteration and Len(I(i)k ) be the
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length of the k−th partition in the i−th iteration. Let Ki be the number of partitions in the i−th
iteration. Then, there exists a constant A, independent of the i−th iteration, such that

max
x∈[a,b]

∣∣∣y(x)− y(i)h (x)
∣∣∣ ≤ Ki Ei,

where Ei =
A

(2rξi )
mξi

λmξi
(i−1)(b− a)mξi .

For fitting purposes, we compute the mean value of the error estimate, i.e.,

max
x∈[a,b]

1
Ki

∣∣∣y(x)− y(i)h (x)
∣∣∣ ≤ Ei.

We state the following theorem on collocation.

Algorithm 4: Adaptive Piecewise Poly-Sinc Algorithm.

input :Global partition [a, b], threshold εstop, N
output :S: set of points

κ: number of iterations
R = {Ri}κ

i=1: set of mean values of

‖R(i)
k (x)‖

L2(I(i)k )
, k = 1, . . . , Ki, i = 1, . . . , κ

y(κ)c (x): approximate solution
1 init: S = {}, P = {x0 = a, x1 = b}, R = {}
2 Start with 2N + 1 points in the global interval [a, b]. Append the points to S

and P.

(Solve). Compute y(i)c (x) for IVP (Sections 3.1 and 3.2) or BVP (Section 3.3).
3 (Estimate). Compute {‖R(1)(x)‖}K1=1

k=1 over the global interval [a, b]. Append
the mean value R1 in R.

4 (Mark). Set I1 = 1.
5 (Refine). Use the points in the partition with index I1 = 1 as partitioning

points. Insert 2N + 1 Sinc points in each of the newly created partitions.
Update S and P.

6 Set i = 2.

7 while Ri−1 > εstop do
8 (Solve). Compute y(i)c (x) for IVP (Sections 3.1 and 3.2) or BVP (Section 3.3).

9 (Estimate). Compute
{∥∥∥R(i)

k (x)
∥∥∥

L2(I(i)k )

}Ki

k=1
over Ki partitions. Compute the

sample mean value Ri and the sample standard deviation si. Append Ri in R.
10 (Mark). Identify the partitions with indices

Ii =

{
j :
∥∥∥R(i)

j (x)
∥∥∥

L2(I(i)j )
− Ri ≥ ωi si

}
, j = 1, . . . , Ki.

11 (Refine). Use the 2N + 1 points in the partitions with indices Ji as partitioning
points. Insert 2N + 1 points in each of the newly created partitions. Update S
and P.

12 i← i + 1.
13 end
14 κ ← i− 1.

Theorem 4. Let y be in Mαs,βs
(ϕ), analytic and bounded in D2, and let y(i)c (x) be the piecewise

Poly-Sinc approximation in the i-th iteration with the estimated coefficients c(i)j, k using the piecewise
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collocation method in Section 3. Let m(i)
k be the number of points in the k−th partition for the

i−th iteration and ni = ∑Ki
k=1 m(i)

k be the total number of points in the i−th iteration. Let

ci = (c(i)1,1, . . . , c(i)
1,m(i)

1

, . . . , c(i)1,Ki
, . . . , c(i)

1,m(i)
Ki

) be the ni × 1 vector of estimated coefficients in y(i)c (x)

and yi = y(x(i)j, k) be the corresponding vector of the exact values of y(x) at the Sinc points {x(i)j, k}
with

‖ci − yi‖1 < δ, i = 1, 2, . . . , κ.

Then,

max
x∈[a,b]

|y(x)− y(i)c (x)| ≤ Ki Ei + δ

(
1
π

ln
(
m
)
+ 1.07618

)
,

where m = maxk, i{m
(i)
k } and ‖ · ‖1 denotes the `1 norm ([58] Ch. 5).

Proof. The derivation follows that of ([30] § 1.5.6).

max
x∈[a,b]

|y(x)− y(i)c (x)| = ‖y(x)− y(i)c (x)‖I

= ‖y(x)− y(i)c (x) + y(i)h (x)− y(i)h (x)‖I

≤ ‖y(x)− y(i)h (x)‖I + ‖y
(i)
c (x)− y(i)h (x)‖I

≤
∥∥∥∥y(x)− y(i)h (x)

∥∥∥∥
I
+

∥∥∥∥ Ki

∑
k=1

1
x∈I(i)k

m(i)
k

∑
j=1

(c(i)j, k − y(i)j, k)u
(i)
j, k(x)

∥∥∥∥
I

≤ Ki Ei +
Ki

∑
k=1

∥∥∥∥ m(i)
k

∑
j=1

(c(i)j, k − y(i)j, k)u
(i)
j, k(x)

∥∥∥∥
I(i)k

≤ Ki Ei +
Ki

∑
k=1

∥∥∥∥ m(i)
k

∑
j=1
|c(i)j, k − y(i)j, k| · |u

(i)
j, k(x)|

∥∥∥∥
I(i)k

≤ Ki Ei +
δ

Ki

Ki

∑
k=1

∥∥∥∥ m(i)
k

∑
j=1
|u(i)

j, k(x)|
∥∥∥∥

I(i)k

≤ Ki Ei +
δ

Ki

Ki

∑
k=1

(
1
π

ln
(

m(i)
k

)
+ 1.07618

)
≤ Ki Ei +

δ

Ki
Ki

(
1
π

ln
(
m
)
+ 1.07618

)
= Ki Ei + δ

(
1
π

ln
(
m
)
+ 1.07618

)
,

where
∥∥∑

m(i)
k

j=1 |u
(i)
j, k(x)|

∥∥
I(i)k
≈ 1

π ln
(

m(i)
k

)
+ 1.07618 is the Lebesgue constant for Poly-Sinc

approximation [31,33,59]. On average, the term |c(i)j, k − y(i)j, k| <
δ
ni

< δ

Ki mink{m
(i)
k }

< δ
Ki

.

For fitting purposes, we compute the mean value of the error estimate, i.e.,

max
x∈[a,b]

1
Ki

∣∣∣y(x)− y(i)c (x)
∣∣∣ ≤ Ei +

δ

Ki

(
1
π

ln
(
m
)
+ 1.07618

)
< Ei + δ

(
1
π

ln
(
m
)
+ 1.07618

)
.

(24)
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5. Results

The results in this section were computed using Mathematica [60]. We tested our
adaptive algorithm on regular and stiff ODEs. The Sinc spacing is h = π√

e N
. For all

examples, we set e = 1/2 and the number of points per partition to be constant, i.e.,
m(i)

k = m = 2N + 1. A precision of 200 digits is used.

5.1. Norms

The supremum norm has a theoretical advantage. However, its computation is slower
than that of the L2 norm [25]. Hence, we use the L2 norm in our computations.

5.2. Initial Value Problem

We test our adaptive piecewise Poly-Sinc algorithm on regular first-order and second-
order IVPs.

Example 1 (Relaxation Problem). We start with the relaxation problem in Section 3.1. We set
a = 0 and the exact solution becomes y(x) = exp(−α x). We set the exponential decay parameter
α = 20 and confine the domain of the solution to the interval [0, 1]. The approximate solution yc(x)
is computed as discussed in Section 3.1.

We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The
stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 7 iterations and the
number of points |S| = 530.

Figure 1a shows the approximate solution y(7)c (x). A proper subset of the set of points S is
shown as red dots, which are projected onto the approximate solution y(7)c (x). This proper subset
is used to observe the approximate solution y(7)c (x). We plot the statistic ωi as a function of the
iteration index i, i = 2, 3, . . . , 7, in Figure 1b. The oscillations are decaying and the statistic ωi is
converging to an asymptotic value. The mean value ωi ≈ 0.6 is denoted by a horizontal line.

We perform the least-squares fitting of the logarithm of the set R to the logarithm of the
upper bound (24). Figure 2a shows the least-squares fitted model (24) to the set R. The dots
represent the set R and the solid line represents the least-squares fitted model (24). Figure 2b
shows the residual, absolute local approximation error, and the mean value for the last iteration.
The mean value R7 is below the threshold value 10−6. The L2 norm of the approximation error
‖y(x)− y(7)c (x)‖ ≈ 1.5× 10−7.

Example 2 (Hanging Bar Problem). We apply the collocation method on the hanging bar prob-
lem (14) and y(x) = ex(x− 1)2 [61]. The approximate solution yc(x) is computed as discussed in
Section 3.1.

We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 7. The
stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 3 iterations and the
number of points |S| = 350.

Figure 3 shows the approximate solution y(3)c (x). A proper subset of the set of points S is
shown as red dots, which are projected onto the approximate solution y(3)c (x).

We perform the least-squares fitting of the logarithm of the set R to the logarithm of the
upper bound (24). Figure 4a shows the least-squares fitted model (24) to the set R. Figure 4b
shows the residual, absolute local approximation error, and the mean value for the last iteration.
The mean value R3 is below the threshold value 10−6. The L2 norm of the approximation error
‖y(x)− y(3)c (x)‖ ≈ 5.82× 10−9.
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(a) Visualization of the approximating polynomial y(7)c (x).
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(b) Plot of the statistic ωi, i, i = 2, 3, . . . , 7. ( ) ωi ≈ 0.6.

Figure 1. (a) The approximating polynomial y(7)c (x). A proper subset of the set of points S is shown.
(b) Plot of the statistic ωi. ( ) ωi ≈ 0.6.
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(a) A = 1.2× 105, r = 4.36, λ = 0.563, δ = 6.06× 10−7.
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(b) ‖R(7)‖L2 |y(x)− y(7)c (x)| R7.

Figure 2. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error, and the mean value.
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Figure 3. The approximating polynomial y(3)c (x). A proper subset of the set of points S is shown.
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(a) A = 1.2× 105, r = 1.7× 101, λ = 0.302, δ = 2.22× 10−8.
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(b) ‖R(3)‖L2 |y(x)− y(3)c (x)| R3.

Figure 4. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error and the mean value.

5.3. Boundary Value Problem

We discuss a number of stiff BVPs [8] based on the general linear second-order BVP

− (a(x) y′)′ + b(x)y′ + c(x) y = f (x), x ∈ [0, 1], (25)

where a(x) > 0, b(x), c(x) are the coefficients, and f (x) is the source term.

Example 3. We study the BVP (25) with a(x) = x + 0.01, b(x) = c(x) = 0, and f (x) = 1. The
exact solution is

y(x) = c1ln(1 + 100x) + c2 − x,

where c1 = 1/ln(101) and c2 = 0 are obtained from the boundary conditions y(0) = y(1) = 0.
The exact solution experiences a boundary layer near x = 0.

We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The
stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 10 iterations and the
number of points |S| = 2055.

Figure 5a shows the approximate solution y(10)
c (x). A proper subset of the set of points S is

shown as red dots, which are projected onto the approximate solution y(10)
c (x). We plot the statistic

ωi as a function of the iteration index i, i = 2, 3, . . . , 10, in Figure 5b. It is observed that the
oscillations are decaying and the statistic ωi is converging to an asymptotic value. The mean value
ωi ≈ 0.64.
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(a) Visualization of the approximating polynomial y(10)
c (x).
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(b) Plot of the statistic ωi, i = 2, 3, . . . , 10. ( ) ωi ≈ 0.64.

Figure 5. (a) The approximating polynomial y(10)
c (x). A proper subset of the set of points S is shown.

(b) Plot of the statistic ωi. ( ) ωi ≈ 0.64.
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We perform the least-squares fitting of the logarithm of the set R to the logarithm of the upper
bound (24). Figure 6a shows the least-squares fitted model (24) to the set R. Figure 6b shows the
residual, absolute local approximation error, and the mean value for the last iteration. The plot of the
L2 norm values of the residual over the partitions demonstrates that fine partitions are formed near
x = 0 due to the presence of the boundary layer. The mean value R10 is below the threshold value
10−6. The L2 norm of the approximation error ‖y(x)− y(10)

c (x)‖ ≈ 1.12× 10−8. The threshold
value in [8] is 0.05.

2 4 6 8 10

10-6

10-4

0.01

1

i

R
i

A = 1.20×105, r = 4.31, λ = 0.690, δ = 4.49×10-8

(a) A = 1.2× 105, r = 4.31, λ = 0.69, δ = 4.49× 10−8.

0.0 0.2 0.4 0.6 0.8 1.0
10-16

10-14

10-12

10-10

10-8

10-6

x

(b) ‖R(10)‖L2 |y(x)− y(10)
c (x)| R10.

Figure 6. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error, and the mean value.

Example 4. We study the BVP (25) with a(x) = 0.01, b(x) = 0, c(x) = 1, and f (x) = 1/x.
Using the variation of parameters method [62], the exact solution of this problem is

y(x) = −5 Ei(−10x) exp(10x) + 5 Ei(10x) exp(−10x) + c1 exp(10x) + c2 exp(−10x),

where Ei(x) =
∫ x
−∞

exp(t)
t dt is the exponential integral function [55] and

c1 = −c2 =
−5 Ei(−10) exp(10) + 5 Ei(10) exp(−10)

exp(−10)− exp(10)
.

The exact solution y(x) experiences a boundary layer near x = 0 and a slope change at approximately
x = 0.5. Equation (25) is multiplied by the factor x so that the residual R(x) does not contain a
singularity at x = 0.

We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The
stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 9 iterations and the
number of points |S| = 1630.

We perform the least-squares fitting of the logarithm of the set R to the logarithm of the upper
bound (24). Figure 7a shows the least-squares fitted model (24) to the set R. Figure 7b shows the
residual, absolute local approximation error, and the mean value for the last iteration. The plot of the
L2 norm values of the residual over the partitions shows that fine partitions are formed near x = 0
due to the presence of the boundary layer. The mean value R9 is below the threshold value 10−6. The
L2 norm of the approximation error ‖y(x)− y(9)c (x)‖ ≈ 1.6× 10−6. The threshold value in [8] is
0.01.

The approximating polynomial y(9)c (x) and a proper subset of the set of points S are shown
in Figure 8a. The corresponding plot for the statistic ωi a is shown in Figure 8c. The oscillations
are decaying and the mean value ωi ≈ 0.66. It was mentioned that Equation (25) was multiplied
by the factor x so that the residual R(x) does not contain a singularity at x = 0. We replace the
residual R(x) with the quantity y(x)− yc(x) in Algorithm 4 and the BVP (25) contains the term
1/x. We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The
stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 8 iterations and the
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number of points |S| = 730, which is smaller than the one obtained from multiplying the residual
by x. This is expected since the exact solution y(x) is used. The approximating polynomial y(8)c (x)
and a proper subset of the set of points S are shown in Figure 8b. The corresponding plot for the
statistic ωi is shown in Figure 8d. The mean value ωi ≈ 0.61. It is observed that the statistic ωi
oscillates around the mean ωi ≈ 0.61.

2 4 6 8
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0.001

0.010

0.100
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R
i

A = 1.20×105, r = 5.03, λ = 0.692, δ = 2.21×10-7

(a) A = 1.2× 105, r = 5.03, λ = 0.692, δ = 2.21× 10−7.
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(b) ‖R(9)‖L2 |y(x)− y(9)c (x)| R9.

Figure 7. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error, and the mean value.
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(d)
Figure 8. Visualization of the approximating polynomial and statistic ωi. (a) Approximating poly-

nomial y(9)c (x) obtained by multiplying Equation (25) by x. (b) Approximating polynomial y(8)c (x)
obtained by y(x)− yc(x). (c) Plot of ωi, i = 2, 3, . . . , 9. ( ) ωi ≈ 0.66. (d) Plot of ωi, i = 2, 3, . . . , 8.
( ) ωi ≈ 0.61.

Example 5. We study a variation of Example 4, in which the source term f (x) = 1√
x . Even

though the source term has a singularity at x = 0, its definite integral over the domain [0, 1] is
finite. The exact solution [62] is
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y(x) = c1 exp(−10x) + c2 exp(10x) + exp(10x)
(
−5
(√

π

10
erf
(√

10x
)))

− exp(−10x)
(
−5
(√

π

10
erfi
(√

10x
)))

,

where

c1 = −c2 = −

√
5π
2

(
e20erf

(√
10
)
− erfi

(√
10
))

e20 − 1
,

erf(x) = 2√
π

∫ x
0 e−t2

dt ([55] § 7.1.1) is the error function, erfi(x) ≡ −ı erf(ı x) =

2√
π

∫ x
0 et2

dt [63], and ı2 = −1. The solution y(x) has a boundary layer near x = 0. Equation (25)

is multiplied by the factor
√

x so that the residual R(x) does not contain a singularity at x = 0.
We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The

stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 7 iterations and the
number of points |S| = 1183.

We performed least-squares fitting of the logarithm of the set R to the logarithm of the upper
bound (24). Figure 9a shows the least-squares fitted model (24) to the set R. Figure 9b shows the
residual, absolute local approximation error, and the mean value for the last iteration. Fine partitions
are formed near x = 0 due to the presence of the boundary layer, as seen in the plot of the L2 norm
values of the residual over the partitions. The mean value R7 is below the threshold value 10−6. The
L2 norm of the approximation error ‖y(x)− y(7)c (x)‖ ≈ 2.18× 10−7.
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i

R
i

A = 1.14×105, r = 2.81, λ = 0.670, δ = 5.02×10-8

(a) A = 1.14× 105, r = 2.81, λ = 0.67, δ = 5.02× 10−8.
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x

(b) ‖R(7)‖L2 |y(x)− y(7)c (x)| R7.

Figure 9. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error, and the mean value.

The approximating polynomial y(7)c (x) and a proper subset of the set of points S are shown in
Figure 10a. The corresponding plot for the statistic ωi a is shown in Figure 10c. The statistic ωi
oscillates around the median value ω̃i ≈ 0.49. It was mentioned that Equation (25) was multiplied
by the factor

√
x so that the residual R(x) does not contain a singularity at x = 0. We replace the

residual R(x) with the quantity y(x)− yc(x) in Algorithm 4 and the BVP (25) contains the term
1/
√

x. We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The
stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 6 iterations and the
number of points |S| = 595, which is smaller than the one obtained by multiplying the residual by
√

x. This is expected since the exact solution y(x) is used. The approximating polynomial y(6)c (x)
and a proper subset of the set of points S are shown in Figure 10b. The corresponding plot for the
statistic ωi is shown in Figure 10d. The oscillations are decaying and the statistic ωi is converging
to an asymptotic value. The mean value ωi is 0.58.
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Example 6. We study a variation of Example 4, in which the source term f (x) = exp(x)−1
x . The

source term has a removable singularity at x = 0, since lim
x→0

f (x) = 1. The algorithm can directly

solve the BVP, even though the residual contains the term exp(x)−1
x . The exact solution [62] is

y(x) = c1 exp(−10x) + c2 exp(10x)− 5 exp(10x)(Ei(−9x)− Ei(−10x))

+ 5 exp(−10x)(Ei(11x)− Ei(10x)),

where

c1 =
5
(

e20Ei(−10)− e20Ei(−9)− Ei(10) + Ei(11)− e20ln
(

10
9

)
− e20ln

(
11
10

))
e20 − 1

and

c2 =
5
(
−e20Ei(−10) + e20Ei(−9) + Ei(10)− Ei(11) + ln

(
10
9

)
+ ln

(
11
10

))
e20 − 1

.

We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The
stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 8 iterations and the
number of points |S| = 605.

Figure 11a shows the approximate solution y(8)c (x). A proper subset of the set of points S is
shown as red dots, which are projected onto the approximate solution y(8)c (x). We plot the statistic
ωi as a function of the iteration index i, i = 2, 3, . . . , 8, in Figure 11b. The oscillations are decaying
and the statistic ωi is converging to an asymptotic value. The mean value ωi ≈ 0.65.
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Figure 10. Visualization of the approximating polynomial and the statistic ωi. (a) Approximating

polynomial y(7)c (x) obtained from multiplying Equation (25) by x. (b) Approximating polynomial

y(6)c (x) obtained from y(x) − yc(x). (c) Plot of ωi, i = 2, 3, . . . , 7. ( ) ω̃i ≈ 0.49. (d) Plot of
ωi, i = 2, 3, . . . , 6. ( ) ωi ≈ 0.58.
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(a) The approximating polynomial y(8)c (x).
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(b) Plot of the statistic ωi, i = 2, 3, . . . , 8. ( ) ωi ≈ 0.65.

Figure 11. (a) The approximating polynomial y(8)c (x). A proper subset of the set of points S is shown.
(b) Plot of the statistic ωi. ( ) ωi ≈ 0.65.

We perform the least-squares fitting of the logarithm of the set R to the logarithm of the
upper bound (24). Figure 12a shows the least-squares fitted model (24) to the set R. Figure 12b
shows the residual, absolute local approximation error, and the mean value for the last iteration.
The mean value R8 is below the threshold value 10−6. The L2 norm of the approximation error
‖y(x)− y(10)

c (x)‖ ≈ 3.1× 10−7.

1 2 3 4 5 6 7 8

10-6

10-5

10-4

0.001

0.010

0.100

i

R
i

A = 1.20×105, r = 7.30, λ = 0.691, δ = 9.12×10-8

(a) A = 1.2× 105, r = 7.3, λ = 0.691, δ = 9.12× 10−8.
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10-12
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x

(b) ‖R(8)‖L2 |y(x)− y(8)c (x)| R8.

Figure 12. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error, and the mean value.

Example 7. We study the BVP (25) with a(x) = 0.02, b(x) = 1, c(x) = 0, and f (x) = 1. The
exact solution is given by

y(x) = c1 + c2 exp(50x) + x,

where c1 = −c2 = 1
−1+exp(50) . The solution y(x) has a boundary layer near x = 1.

We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The
stopping criterion εstop = 10−6 was used. The algorithm terminates after κ = 9 iterations and the
number of points |S| = 1055.

Figure 13a shows the approximate solution y(9)c (x). A proper subset of the set of points S is
shown as red dots, which are projected onto the approximate solution y(9)c (x). We plot the statistic
ωi as a function of the iteration index i, i = 2, 3, . . . , 9, in Figure 13b. The oscillations are decaying
and the statistic ωi is converging to an asymptotic value. The mean value ωi is 0.62.
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(a) Visualization of the approximating polynomial y(9)c (x).
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(b) Plot of the statistic ωi, i = 2, 3, . . . , 9. ( ) ωi ≈ 0.62.

Figure 13. (a) The approximating polynomial y(9)c (x). A proper subset of the set of points S is shown.
(b) Plot of the statistic ωi. ( ) ωi ≈ 0.62.

We perform the least-squares fitting of the logarithm of the set R to the logarithm of the upper
bound (24). Figure 14a shows the least-squares fitted model (24) to the set R. Figure 14b shows the
residual, absolute local approximation error, and the mean value for the last iteration. The plot of the
L2 norm values of the residual over the partitions shows that fine partitions are formed near x = 1
due to the presence of the boundary layer. One observation is that the mean value R9 is below the
threshold value 10−6. The L2 norm of the approximation error ‖y(x)− y(9)c (x)‖ ≈ 2.36× 10−8

and the threshold value in [8] is 0.02.

2 4 6 8
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0.1
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R
i

A = 1.20×105, r = 3.46, λ = 0.625, δ = 2.62×10-7

(a) A = 1.2× 105, r = 3.46, λ = 0.625, δ = 2.62× 10−7.
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(b) ‖R(9)‖L2 |y(x)− y(9)c (x)| R9.

Figure 14. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error, and the mean value.

In this example, we increase the number of points per partition to m = 2N + 1 = 7 to examine
the effect of the increase on the convergence of the algorithm. The algorithm terminates after κ = 5
iterations and the number of points |S| = 350. Figure 15 shows the set R for m = 2N + 1 = 5 Sinc
points and m = 2N + 1 = 7 Sinc points. It is observed that increasing the number of Sinc points
per partition leads to faster convergence and a fewer number of iterations.
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Figure 15. Plotting the set R for m = 2N + 1 = 5 Sinc points ( ) and m = 2N + 1 = 7 Sinc points ( ).

Example 8. We study the following BVP [28,64,65]

− (υ(x)y′)′ = 2[1 + α(x− x̄)(arctan(α(x− x̄)) + arctan(αx̄))] (26)

with boundary conditions y(0) = y(1) = 0, where α > 0 and

υ(x) =
1
α
+ α(x− x̄)2.

For large values of α, the BVP (26) has an interior layer close to x̄ [28]. The exact solution is
given by

y(x) = (1− x)[arctan(α(x− x̄)) + arctan(αx̄)].

We use the values reported in [64], i.e., α = 100 and x̄ = 0.36388. This value of x̄ was chosen so
that lim

α→∞
y(x̄+) ≈ 2 [64].

We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 7. The
stopping criterion εstop = 10−12 was used. The algorithm terminates after κ = 15 iterations and
the number of points |S| = 21,469.

Figure 16a shows the approximate solution y(15)
c (x). A proper subset of the set of points S is

shown as red dots, which are projected onto the approximate solution y(15)
c (x). We plot the statistic

ωi as a function of the iteration index i, i = 2, 3, . . . , 15, in Figure 16b. One finding is that the
oscillations are decaying and the statistic ωi is converging to an asymptotic value. The mean value
ωi is 0.46.
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(a) Visualization of the approximating polynomial y(15)
c (x).
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(b) Plot of the statistic ωi, i = 2, 3, . . . , 15. ( ) ωi ≈ 0.46.

Figure 16. (a) The approximating polynomial y(15)
c (x). A proper subset of the set of points S is shown.

(b) Plot of the statistic ωi. ( ) ωi ≈ 0.46.

We perform the least-squares fitting of the logarithm of the set R to the logarithm of the upper
bound (24), where the parameter δ is multiplied by 10−12 and 10−12δ = O(10−19). Figure 17a
shows the least-squares fitted model (24) to the set R. The residual, absolute local approximation
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error, and the mean value for the last iteration are shown in Figure 17b. Fine partitions are formed
near x = x due to the presence of the interior layer, as shown in the plot of the L2 norm values of the
residual over the partitions. The mean value R13 is below the threshold εstop = 10−12.

We compare the L2 norm of the approximation error of our adaptive piecewise Poly-Sinc method
with other methods in Table 1. Method [28] requires a parameter for the construction of refinement
intervals. The L2 norm value of the approximation error is smaller than those reported in [28,65].

Table 1. Comparison of the L2 norm of the approximation error for different methods.

Method Adaptive PW PS [28] ([65] Table 13(g))

‖y(x)− ymethod(x)‖ 1.104× 10−14 3× 10−5 1.9× 10−12
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10-4
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104
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R
i

A = 1.14×105, r = 9.07×10-1, λ = 0.698, δ = 2.94×10-7

(a) A = 1.14× 105, r = 0.907, λ = 0.698, δ = 2.94× 10−7.
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(b) ‖R(15)‖L2 |y(x)− y(15)
c (x)| R15.

Figure 17. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error, and the mean value.

Example 9. We consider the BVP [66,67]

−ε y′′ − x y′ = επ2 cos(πx) + πx sin(πx), x ∈ [−1, 1],

with boundary conditions y(−1) = −2, y(1) = 0 and ε > 0 is a parameter. The exact solution
follows as

y(x) = cos(πx) +
erf(x/

√
2ε)

erf(1/
√

2ε)
.

The exact solution has a shock layer near x = 0 [66]. We set ε = 10−6 [67].
We set the number of Sinc points to be inserted in all partitions as m = 2N + 1 = 5. The

stopping criterion εstop = 10−11 was used. The algorithm terminates after κ = 16 iterations and
the number of points |S| = 18530.

Figure 18a shows the approximate solution y(16)
c (x). A proper subset of the set of points

S is shown as red dots, which are projected onto the approximate solution y(16)
c (x). We plot the

statistic ωi as a function of the iteration index i, i = 2, 3, . . . , 16, in Figure 18b. The oscillations are
decaying and the statistic ωi is converging to an asymptotic value. The mean value ωi ≈ 0.55.

We perform the least-squares fitting of the logarithm of the set R to the logarithm of the
upper bound (24), where the parameter δ is multiplied by the factor 10−9 and 10−9δ = O(10−12).
Figure 19a shows the least-squares fitted model (24) to the set R. The residual, absolute local
approximation error, and the mean value for the last iteration are shown in Figure 19b. The plot of
the L2 norm values of the residual over the partitions show that fine partitions are formed near x = 0
due to the presence of the shock layer. The mean value R16 is below the threshold εstop = 10−11.

We compare the supremum norm of the approximation error of our adaptive piecewise Poly-Sinc
method with other methods in Table 2. B−splines were used as basis functions [67]. The supremum
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norm result is in the same order as that of [67]. Our adaptive method can reach a smaller value if we
set εstop < 10−11.
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(a) Visualization of the approximating polynomial y(16)
c (x).
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(b) Plot of the statistic ωi, i = 2, 3, . . . , 16.

Figure 18. (a) The approximating polynomial y(16)
c (x). A proper subset of the set of points S is shown.

(b) Plot of the statistic ωi.

Table 2. Comparison of the supremum norm of the approximation error for different methods.

Method Adaptive PW PS [67]

‖y(x)− ymethod(x)‖∞ 1.215× 10−10 4.3× 10−10

We observe that the processing times differ among the many problems we look at.
This is due to two factors: first, the fact that we are aiming for a very exact outcome; and
second, the fact that there are many sorts of challenges. Therefore, listing the computing
time in seconds is meaningless since it would only indicate the computational power used
on our machine, which will vary for various users. Overall, it is evident that using adaptive
techniques takes longer than using a simple collocation approach or finite element methods
with a lower accuracy. In our examples, we used a stopping criterion of 10−6 or less. As a
result, our goal is to complete the computation in the most accurate way feasible rather
than the quickest way possible. This will inevitably lengthen the processing time for some
problems, such as stiff or layer problems.
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(a) A = 1.2× 105, r = 2.8, λ = 0.629, δ = 2.11× 10−3.
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Figure 19. (a) Fitting the upper bound (24) with the set R. (b) Visualization of the residual, absolute
local approximation error, and the mean value.
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6. Conclusions

In this paper, we developed an adaptive piecewise collocation method based on Poly-
Sinc interpolation for the approximation of solutions to ODEs. We showed the exponential
convergence in the number of iterations of the a priori error estimate obtained from the
piecewise collocation method, and provided that a good estimate of the exact solution
y(x) at the Sinc points exists. We used a statistical approach for partition refinement, in
which we computed the fraction of a standard deviation as the ratio of the mean absolute
deviation to the sample standard deviation. We demonstrated by several examples that
an exponential error decay is observed for regular ODEs and ODEs whose exact solutions
exhibit an interior layer, a boundary layer, and a shock layer. We showed that our adaptive
algorithm can deliver results with high accuracy at the expense of the slower computation
for stiff ODEs.
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