
Institut für Maschinelle Sprachverarbeitung

Universität Stuttgart

Pfaffenwaldring 5B

D-70569 Stuttgart

Master Thesis

Cross-Lingual Metaphor Detection for
Low-Resource Languages

Anna Hülsing

Studiengang: M.Sc. Computational Linguistics

Prüfer*innen: Prof. Dr. Sabine Schulte im Walde

Dr. Michael Roth

Beginn der Arbeit: 02.11.2022

Ende der Arbeit: 02.07.2023

Erklärung (Statement of Authorship)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und
dabei keine andere als die angegebene Literatur verwendet habe. Alle Zitate und
sinngemäßen Entlehnungen sind als solche unter genauer Angabe der Quelle gekenn-
zeichnet. Die eingereichte Arbeit ist weder vollständig noch in wesentlichen Teilen
Gegenstand eines anderen Prüfungsverfahrens gewesen. Sie ist weder vollständig
noch in Teilen bereits veröffentlicht. Die beigefügte elektronische Version stimmt
mit dem Druckexemplar überein.1

(Anna Hülsing)

1Non-binding translation for convenience: This thesis is the result of my own independent work,
and any material from work of others which is used either verbatim or indirectly in the text is
credited to the author including details about the exact source in the text. This work has not been
part of any other previous examination, neither completely nor in parts. It has neither completely
nor partially been published before. The submitted electronic version is identical to this print
version.

Für Simon und Max.

2

Abstract

State-of-the-art metaphor detection (MD) models achieve human-like performance
for English data, while studies on MD for low-resource languages are currently miss-
ing. This thesis explores cross-lingual approaches that harness data from English, a
high-resource language, in order to classify data in the target languages of Russian,
German and Latin, either without using training data from the target languages or
with as little as 20 instances. These instances were taken from the test data, but
could also be created manually due to the small amount of annotating effort. The
experiments indicate that the neural cross-lingual models mBERT (zero- and few-
shot classification) and mBERT-based MAD-X perform well for German and Rus-
sian, while for languages where little data was used to pretrain mBERT, non-neural
cross-lingual models with vector space model and conceptual features (abstractness,
supersenses) outperform the mBERT-based models, if default hyperparameters are
used.
No validation data in the target languages was available for performing hyper-
parameter-tuning. Therefore, as a byproduct it was discovered that, while using a
source language dataset for validation leads to overfitting, using a dataset from an-
other language rather than the source language leads to decent results. This is espe-
cially true for the MAD-X model, which – with the help of successful hyperparameter-
tuning – outperforms the non-neural classifier for the low-resource language Latin.

3

Contents

1 Introduction 6

2 Related Work 10

2.1 Metaphor Detection . 10

2.2 Cross-Lingual Respresentations . 13

3 Datasets and Preprocessing 15

3.1 English . 16

3.2 Russian . 19

3.3 German . 20

3.4 Latin . 23

4 Models 25

4.1 Random Forest Classifier with Vector Space Model (VSM) 25

4.2 Zero- and Few-Shot Classification with mBERT 32

4.3 Adapter-Based Crosslingual Transfer 34

5 Experiments and Results 36

5.1 Basic Experimental Setup . 37

5.2 Performing Hyperparameter-Tuning 42

5.3 Augmenting the Amount of Training Data 45

5.4 Selecting Shots in Few-Shot Classification 46

5.5 Making Training Data More Comparable 49

5.6 Digression: Evaluating Hyperparameter-Tuning 51

4

6 Discussion 61

6.1 Answering the Research Questions . 62

6.2 Additional Insights . 66

7 Qualitative Analyses 70

7.1 German . 70

7.2 Latin . 75

7.3 Russian . 78

8 Conclusion 78

9 Future Work 80

A Appendix 88

5

1 Introduction

Song titles such as Life is a Highway are prominent examples of how we use metaphors
in our everyday life. However, songs are by far not the only habitats of metaphors:
on average metaphors are found in every third sentence across multiple domains
(Shutova and Teufel, 2010). In cognitive linguistics, a (conceptual) metaphor is “de-
fined as understanding one conceptual domain [A] in terms of another conceptual
domain [B]” (Kövecses, 2010). In the above example, the domain Life (A) is un-
derstood in terms of the domain Journey (B). The conceptual metaphor Life is a
Journey surfaces by means of a metaphorical linguistic expression. These are the
words or expressions that “come from the language or terminology of the more
concrete conceptual domain (i.e., domain B)” (Kövecses, 2010). The metaphorical
linguistic expression in the example is Highway.2

Detecting whether or not an expression is a metaphorical linguistic expression (i.e.
whether or not it is used metaphorically) is vital for many practical applications,
such as sentiment analysis, machine translation, information extraction, dialog sys-
tems, and so on (Tsvetkov et al., 2014). Here, metaphor detection (MD)3 can be one
step of an NLP-pipeline.
Many efforts have been made to tackle the task of MD, and successfully so: close-to-
human performance was seen in models using large pretrained language models like
BERT (Devlin et al., 2019) for datasets containing single sentences with a metaphor-
ical expression (Ma et al., 2021). Most MD experiments, however, are performed for
English. Research on MD in other languages, especially in low-resource languages
that are potentially typologically different from English, is missing, even though
there would be several options of exploring MD for low-resource languages, such as
data augmentation or cross-lingual knowledge transfer. In this thesis, we explore

the latter approach, namely how materials4 from high-resource languages

can be harnessed for detecting metaphors in low-resource languages. This
2While this thesis focuses on metaphors, also the broader terms figurative and non-literal are

used in the following sections. For more information on the terminology, see Appendix A.2.
3A list of abbreviations is found in Appendix A.1.
4Pretraining data, word ratings and annotated MD datasets, etc.

6

is done by investigating the following research questions:

1. Neural cross-lingual transfer methods have been shown to perform well on a
wide range of tasks (such as named entity recognition and question answering).
Are they also applicable to MD?

2. There are languages where only a small amount of pretraining data is avail-
able for large language models and/or that are typologically distant from the
source language. Can a non-neural classifier outperform neural models for these
languages?

3. It has been shown that sentences containing metaphorical language seem to
be more emotionally charged than non-figurative sentences (Mohammad et al.,
2016). Will adding emotion scores as conceptual features improve the perfor-
mance of the non-neural classifier?

4. Research has shown that mid-range abstractness ratings are unreliable, since
they exhibit a large degree of disagreement among annotators (Pollock, 2018).
Will separating mid-range abstractness ratings from truly concrete and ab-
stract ratings improve the performance of the non-neural classifier?

In order to answer these questions, the metaphor detection method (i.e. whether we
use word-based or sentence-based MD, or sequential labelling), the transfer methods
and the languages had to be chosen. As for metaphor detection method, we focus
on word-based classification, since most datasets are created in such a way that the
metaphoricity of one word – usually the verb – is annotated, as in the following
example from the metaphor dataset by Tsvetkov et al. (2014):

(1) Miranda opened her mouth to reply, but no words came out. → literal

(2) Actions talk even louder than phrases. → non-literal

The binary classification task is to detect whether the underlined words, i.e. the
target words, are used metaphorically in the given context or not. For the second

7

example, sentence-based classification could also be carried out, but in the first ex-
ample this is not possible: the combination words came out should be classified as
non-literal, whereas opened her mouth should be classified as literal. Therefore, it is
not possible to assign one label to the entire sentence. Most datasets are probably
created for word-based MD, because many sentences in real life contain more than
one expression that can be classified as literal or non-literal.
As for neural cross-lingual transfer methods, zero- and few-shot classification
with multilingual BERT (mBERT, Devlin et al. (2019)) and the adaptation method
MAD-X (Pfeiffer et al., 2020b) are used, as they have shown state-of-the-art results
for other tasks. As a non-neural classifier, a random forest classifier using a vector
space model and conceptual features (abstractness and supersenses) is used that is
based on a classifier by Tsvetkov et al. (2014), since random forest classifiers perform
well in low-resource scenarios and conceptual features in theory work well for every
language.

language branch # Wikipedia articles

English (source) Germanic ≈ 6.6m

German Germanic ≈ 2.7m

Russian Slavic ≈ 1.9m

Latin Italic ≈ 0.1m

Table 1: Table presenting the target languages for the experiments (with English as
the source language) for comparison with regard to language similarity and amount
of pretraining data (m stands for millions).

As for languages, this thesis investigates how well the classifiers perform on the
target languages German, Russian and Latin, because the amount of data used to
pretrain mBERT varies greatly across these three languages and because they stem
from different branches of the Indo-European language family (see Table 1)5. English
as a high-resource language is the source language for the cross-lingual transfer.

5Numbers taken from https://meta.wikimedia.org/wiki/List_of_Wikipedias.

8

Whereas German and Russian are not considered low-resource languages in terms of
pretraining data, they can be considered low-resource languages as we use little or no
labelled training data in this thesis; the existing MD datasets are used for evaluation
only. This way, insights gathered in this thesis can be used for languages where truly
no training data is available. Latin, on the other hand, is a low resource language
in terms of pretraining data and in terms of labelled training data. The different
degrees to which each target language is considered low-resource are illustrated in
Table 2.

language pretraining data training data

German high resource low resource (simulated)
Russian high resource low resource (simulated)
Latin low-resource low resource

Table 2: Table illustrating in what way each target language is considered a low-
resource language. Whereas testing data could be gathered for German and Russian,
we simulate that no training data is available.

The main contribution of this thesis is to identify which model performs best for
each type of the given languages in terms of pretraining data and possibly language
similarity between source and target language. This way, a suitable model can be
picked for a downstream task in a comparable language. An additional contribution
of this thesis is an insight into whether feature engineering in the areas of emotion
and abstractness improves the performance of the non-neural classifier.
We begin by depicting related work in Section 2, which places this thesis into the
broader scientific context. After that, the datasets for the source language English
and the target languages Russian, German and Latin are presented, as well as the
preprocessing steps that were necessary to make these datasets work for the differ-
ent models (see Section 3). As a next step, the models – random forest classifier,
zero-/few-shot classification with mBERT and MAD-X – are depicted in Section 4.
In Section 5 the experiments that were carried out using the different models are
presented along with the results for each experiment. The results are discussed in Sec-

9

tion 6. Qualitative analyses (see Section 7) try to answer questions that were raised
during the discussion, while the conclusion (Section 8) summarizes the findings. As
a last step, topics for future work (Section 9) are described. The code used for this
thesis is accessible here: https://github.com/AnHu2410/MD_crosslingual.git.

2 Related Work

This section presents previous work on metaphor detection and cross-lingual repre-
sentations in order to describe the scientific context of this thesis. The studies on
metaphor detection form the basis for the methods that are used during the thesis,
whereas cross-lingual representations that have so far been used for tasks like ques-
tion answering are depicted here because in the thesis they are applied for the task
of MD.

2.1 Metaphor Detection

Birke and Sarkar (2006) adapted a word-sense disambiguation approach to classify
literal and non-literal usages of verbs by redefining literal and non-literal as two dif-
ferent senses of a word. They used seed sentences that were divided into a literal and
a non-literal set and computed the similarity of a test sentence and the sentences
from the two seed sets. A higher similarity score between the test sentence and the
non-literal seed set indicated non-literal use (the opposite is true for literal use).
Turney et al. (2011) were the first to use insights from cognitive linguistics for their
model, namely the insight that metaphors transfer knowledge from a concrete do-
main to an abstract domain. For the example Life is a Highway, knowledge from the
domain Journey (involving concrete aspects like uphill and downhill slopes, road-
bends and speed) is transferred to the abstract domain of Life by the metaphor.
Since metaphoricity is therefore correlated with the degree of contextual abstract-
ness, the authors used abstractness scores of the context words as features for a
logistic regression model. This model performed on par or better than the model by
Birke and Sarkar (2006), and was in contrast able to generalize to new words due

10

to the conceptual nature of its features.
The idea of “conceptual features” also inspired Tsvetkov et al. (2014), who used
abstractness scores, imageability scores and semantic supersenses as classification
features. The latter are semantic categories originating from WordNet (Fellbaum,
1998), such as noun.body or verb.motion. Consider the following sentence:

(3) The car drinks gasoline.

Here, they would use the feature < verb.consumption, noun.substance > to repre-
sent drink gasoline, which indicates metaphorical use (while the feature
< verb.consumption, noun.food > would indicate literal use). The authors com-
bined these conceptual semantic features with vector space word representations for
a random forest classifier. Whereas Turney et al. (2011) focused on English data
only, Tsvetkov et al. (2014) trained on English data and then evaluated the model
on English, Spanish, Farsi and Russian. High evaluation scores showed that their
model can be transferred to any other language (with the help of bilingual dictio-
naries). In the thesis, this model forms the basis for our non-neural MD system.
Köper and Schulte im Walde (2016) focused on MD of German particle verbs. Con-
sider the following examples (particle verbs6 in bold):

(4) Den Lippenstift solltest du abschminken. → literal

(5) Den Job kannst du dir abschminken. → non-literal

They also used conceptual semantic features for a random forest classifier: they
used (1) abstractness and imageability ratings as well as (2) scores indicating the
distributional fit of particle verbs / base verbs and the context. For example, they
computed the distributional similarity between the base verb (schminken) and the
object of the particle verb (Job/Lippenstift). Whereas the distributional similarity
between the base verb and Lippenstift is rather high – this indicates literal usage –,
the similarity between schminken and Job is rather low, which indicates non-literal

6A particle verb consists of a base verb (in this case: schminken) and a particle (ab-).

11

usage. The similarity scores were used as features for the classifier. In addition,
they used (3) unigrams (unigram features consisted of the output of a classifier
(literal/non-literal) that takes unigrams as input) and (4) noun clusters (nouns in
the PV sentence are replaced with their corresponding cluster tag from unsupervised
learning) as features. These four feature types led to state-of-the-art performance in
2016, underlining the importance of conceptual features.
Do Dinh et al. (2018) were the first to use a neural model architecture for MD.
They used an LSTM model to encode the left and right context of the target word7

and a dense layer for the target word itself. Both the context and the target words
were represented by pre-trained word-embeddings. The outputs of the two LSTMs
and the dense layer of the target word were then concatenated and fed through
more dense layers before the softmax layer. Their approach performed better than
or comparable to existing models; however, no feature engineering was necessary.
Based on previous research in linguistics and psychology indicating that metaphor-
ical phrases tend to be more emotional, Dankers et al. (2019) explored the rela-
tionship between metaphors and emotions by building several multi-task learning
models. MD was modelled as a binary task, whereas emotion prediction was a re-
gression task predicting valence, arousal and dominance scores (i.e. scores of the
three-dimensional VAD emotion model). They used various multitask learning ar-
chitectures to predict metaphoricity and VAD-scores jointly. The best performing
architecture made use of BERT embeddings, which were not fine-tuned but instead
used as input to a multilayer perceptron or to additional attention layers. They
reached state-of-the-art results in 2019 for both metaphor and emotion prediction.
Ma et al. (2021) simplified the architecture by fine-tuning BERT for MD. To per-
form word-based binary metaphor classification, they masked the target word and
concatenated the original sentence twice – once with the masked target word, once
without masking anything. BERT then predicts whether the two sentences appear in
the same context; if BERT predicts both sentences to be in the same context, then it
is probable that the masked word is meant literally, otherwise it is meant metaphor-

7The target word is the word for which it should be decided whether it is used metaphorically
or not.

12

ically. They also performed sentence-level classification and sequential labelling of
metaphorical expressions. Their results showed a huge increase over previous state-
of-the-art models with close-to-human performance. Their word-based classification
approach is used for the mBERT-based classifiers in the thesis. However, their ap-
proach was carried out only for English and not in a cross-lingual setting.
Frassinelli and Schulte im Walde (2019) explored the pattern of abstract words cooc-
curring with abstract words and concrete words cooccurring with other concrete
words. They found that the pattern concrete verbs – concrete context and abstract
verbs – abstract context is generally confirmed for verb-noun-subcategorisation.
However, in the case of non-literal language, this pattern did not emerge. They
therefore confirmed that abstractness can be a useful feature for MD. For their
study they only used words that have a very high or very low concreteness rating,
since it has been shown, for example by Pollock (2018) that words with mid-range
ratings are hard to categorize unambiguously. In the thesis, the non-neural classifier
also treats mid-range ratings separately.

2.2 Cross-Lingual Respresentations

Vulić and Moens (2013) proposed a bootstrapping method to create bilingual vec-
tor spaces from non-parallel data. Usually, a high-dimensional vector in a feature
vector space uses context features as dimensions. For the proposed bilingual vector
space, these features consisted of translation pairs (for example, the English-German
translation pair < dog,Hund >). To initialize the vector space, the authors relied on
multilingual probabilistic topic modelling (MuPTM), which yielded confident trans-
lation pairs for high frequency words. From this method, symmetric translation pairs
were obtained and ranked by frequency. Only the most frequent pairs were used as
seed words for the vector space.
As a next step, bootstrapping was performed by (1) building a context vector for
each source and target word, (2) computing a similarity score between each source
word and all target words (this is possible because source and target words live in
the same vector space), (3) picking the most promising translation candidate (for

13

example, by comparing cosine similarity scores) and (4) adding these highly reli-
able translation pairs as new dimensions. Steps (1) to (4) were then repeated until
convergence, so that more and more new dimensions were added to the seed words.
This method can be applied to any language pair. It is suitable to produce bilingual
vector space representations for features in a cross-lingual MD model.
Lauscher et al. (2020) showed the limitations of large multilingual pretrained lan-
guage models, such as mBERT, that are currently used as a default in cross-lingual
NLP-tasks. They indicated that these models do not transfer knowledge well for
low-resource target languages (i.e. languages with small pretraining corpora) and
for distant language pairs. They investigated low-level tasks (part of speech tagging,
dependency parsing and named entity recognition) as well as high-level tasks (nat-
ural language inference and question answering). They also showed that fine-tuning
on large amounts of e.g. English data first and then continuing fine-tuning with very
few examples from the target language considerably improves results across all lan-
guages and tasks. The thesis investigates whether these findings also apply for MD.
In addition, they found that the performance of a model can be predicted for the
given tasks by taking into account the amount of pretraining data and the distance
between source and target language.
Pfeiffer et al. (2020b) tried to mitigate the problems multilingual language models
have with low-resource languages (or languages unseen during pretraining) by us-
ing an adaptation method, i.e. by inserting small amounts of trainable weights into
an existing pretrained model. For their method, the authors proposed three types
of adapters: language adapters, task adapters and invertible adapters. Firstly, they
froze the pretrained model and trained one language adapter on a masked language
modelling task in the source and one in the target language on unlabelled data. As
a second step, they plugged in only the source language adapter and injected the
task adapter and trained it on labelled data from the source language. As a third
step, they performed inference after plugging in the target language adapter and the
(language-agnostic) task adapter.
The invertible adapters were plugged in simultaneously with the language adapters,
but had a slightly different architecture, because they adapted the embeddings,

14

while the language and task adapters were inserted into each transformer layer.
This method is called Multiple ADapters for Cross-lingual transfer (MAD-X) and
is applied for MD in the thesis.
Ansell et al. (2022) combined sparse fine-tuning with a modular approach similar
to MAD-X. Based on the Lottery Ticket Hypothesis, the authors fine-tuned a pre-
trained language model on a task or a language. Then, the parameters that showed
a small absolute difference to their value before fine-tuning were masked out. The
model was reset to its original values, but only those parameters that had not been
masked out were trainable in the next step. This process of sparse fine-tuning (SFT)
was repeated to find the “winning tickets”, i.e. the subnetworks that led to good re-
sults for a given task or language.
SFT was carried out for the source and target language first. In order to perform
the SFT for the task, the source language SFT-representation was applied. For in-
ference, the task SFT-representation was combined with the target language SFT-
representation (cf. MAD-X) for zero-shot classification. They applied this method to
languages seen and unseen during pretraining for the following tasks: part-of-speech
tagging, dependency parsing, named entity recognition and natural language infer-
ence. In future work, it would be worth trying out this approach for MD, since it
seems to work well even on languages unseen during pretraining.

3 Datasets and Preprocessing

The following sections describe the datasets that were used for the languages English,
Russian, German and Latin in the experiments. They also show how each dataset
was preprocessed. Since the random forest classifier and the mBERT-based classifiers
require different outcomes of the preprocessing step, each language in this section is
depicted with two preprocessing methods: The random forest classifier used in
the experiments extracts features from the target word, i.e. the verb to be classified,
and its subject and object (if available). Therefore, as a preprocessing step, verb,
subject and object had to be extracted from the instances and lemmatized. Here is
an example for English:

15

(6) The bus eventually arrived.

In this case, subject and verb have to be extracted and lemmatized, so the goal of
the preprocessing is to find the two lemmata bus and arrive. For further details on
feature extraction from subject, verb and object and on the random forest classifier
in general, see Section 4.1.
For the mBERT-based classifiers, the data had to be preprocessed in such a
way that the target word is masked in a copy of the original sentence. For example
sentence (6), the goal of the preprocessing was to obtain the following sentence:

(7) The bus eventually [MASK].

The masked sentence and the original sentence then had to be further preprocessed
by the HuggingFace tokenizer pipeline8. For further information on how the mBERT-
based models use this input for classification see Sections 4.2 and 4.3. Whereas this
section focusses on generating the input for the classifiers, Section 4 provides a more
detailled description of the different classification models.

3.1 English

3.1.1 Dataset

As to training data for the source language English, we used the metaphor detection
dataset9 provided by Tsvetkov et al. (2014). It was collected from the TenTen Web
Corpus, which contains “linguistically valuable web content”10. It consists of 222
sentences, of which 111 are annotated as metaphorical and 111 are annotated as
literal, so the dataset is balanced. To be more specific, for each sentence it was
annotated whether the target verb is used metaphorically or literally:

(8) Her son broke my window. → literal
8https://huggingface.co/docs/transformers/main_classes/tokenizer
9https://homes.cs.washington.edu/~yuliats/#publications

10https://www.sketchengine.eu/ententen-english-corpus/

16

(9) My computer battery died. → non-literal

In addition, the subject, verb and object are given as lemmatized forms. 93 of the
sentences contain both subject and object, 94 contain a subject only and 35 contain
an object only. There are no sentences where both subject and object are missing,
and all subject and objects consist of nouns. The mean sentence length is 11 words
with a standard deviation of 3.8 words.11

3.1.2 Preprocessing

As the subjects, verbs and objects were already given in the dataset, no prepro-
cessing was necessary for the random forest classifier. For the mBERT-based

classifiers, we masked the target verb, as one can see in the following sentence:

(10) The twentieth century saw intensive development of new technologies.

However, in the dataset only the lemmata of the target verbs (here: see) were given
and not the inflected forms (here: saw) that occur in the sentences and which had
to be masked. Therefore, we tokenized the sentences first and then lemmatized all
tokens using the WordNetLemmatizer from the NLTK library (Bird et al., 2009).
Since this step produced errors (in the example, the token saw was lemmatized as
saw instead of see), we used a heuristic: Firstly, we checked whether the first two
letters of the lemmatized form (se in the example) also appear as the first two letters
in one of the sentence tokens. In some cases, this led to finding the correct token. For
words like saw, this procedure did not lead to a result (since se is not identical with
sa, the correct token was not selected). Therefore, a second round of comparison

11Tsvetkov et al. (2014) used a different dataset as their training set, namely a filtered version
of the TroFi Example Base (Birke and Sarkar, 2006); the dataset that we used for training was
used by them as their test set. Even though we want to reproduce their results, we do not use the
same training dataset as they did, because in the TroFi Example Base subject, verbs and objects
are not marked, and it would be too time-consuming to add this information. As we do not know
exactly which instances they selected in their filtering process, the training dataset would not be
fully comparable anyway.

17

was carried out where we checked whether the first letter of the lemmatized form
(s) was identical to the first letter of one of the tokens (s). In the case of see this
produced the correct token. Since especially the last step is error-prone, we checked
the final result manually (no errors occured for our data).
This procedure created two inputs for the classifier, namely the original sentence
(10) and a copy of the original sentence, where the target word is masked (11):

(11) The twentieth century [MASK] intensive development of new technologies.

However, the mBERT-based models require further preprocessing of these two input
strings, which is done automatically by the HuggingFace tokenizer pipeline12:

• As a first step, the input string is split into subword token strings using Word-
Piece (for a description of the algorithm see Appendix A.4). This is an example
for the subword tokenization of the sentence “My computer slipped into coma.”,
which is found in the English dataset:

(12) ‘My’, ‘computer’, ‘sl’, ‘##ip’, ‘##ped’, ‘into’, ‘coma’, ‘.’

• Also, special tokens are added, such as the token that indicates the beginning
of a sentence ([CLS]) or the token that indicates where one input string ends
([SEP]). For tasks such as masked language modelling, the mask token would
be added at this point, too. This is not necessary in our case, as the target word
was already masked with the mask token during the previous preprocessing
steps. Adding special tokens leads to the following representation:

(13) [CLS] My computer slipped into coma. [SEP] My computer [MASK]
into coma. [SEP]

• Each of the subtokens and special tokens is mapped to a numerical ID:
12https://huggingface.co/docs/transformers/main_classes/tokenizer

18

(14) [101, 11590, 18765, 38523, 17437, 16898, 10708, 18452, 119, 102, 11590,
18765, 103, 10708, 18452, 119, 102]

Besides these input-IDs, the tokenizer also returns an attention mask and token-
type-IDs. The attention mask indicates which input-IDs to pay attention to: in
the case of padding, some input-IDs do not contain actual information, since their
purpose is to create inputs of identical length. To these input-IDs no attention is
paid. The token-type-IDs indicate where the first sequence (in our case the first,
unmasked sentence) ends and where the second sequence (in our case the masked
version of the original sentence) begins. Input-IDs, the attention mask and token-
type-IDs are the outcome of the preprocessing and are fed to the mBERT-based
classifiers.

3.2 Russian

3.2.1 Dataset

For Russian, we used the metaphor detection dataset13 provided by Tsvetkov et al.
(2014). It consists of 240 sentences, of which 120 are annotated as metaphorical and
120 are annotated as literal, so the dataset is balanced. It is based on the ruTenTen-
corpus14. Here are two example sentences:

(15) Бедность давит на людей. (translation: “Poverty weighs on people.”) →
non-literal

(16) Повар варит суп на кухне. (translation: “The cook cooks soup in the
kitchen.”) → literal

Subject, verb and object are given as lemmatized forms. 113 of the sentences contain
both subject and object, there are 77 sentences that contain a subject only and 50

13https://homes.cs.washington.edu/~yuliats/#publications
14https://www.sketchengine.eu/rutenten-russian-corpus

19

sentences that contain an object only. There are no sentences where both subject and
object are missing. The mean sentence length is 9 words with a standard deviation
of 3 words.

3.2.2 Preprocessing

As the dataset includes subjects, verbs and objects as lemmatized forms, no prepro-
cessing was necessary for the random forest classifier. For the mBERT-based

classifiers, we carried out the same preprocessing that was described for the En-
glish dataset in Section 3.1 (i.e. we replaced the target word with the mask-token
and preprocessed the original sentence and its masked copy with the HuggingFace
tokenizer pipeline).

3.3 German

3.3.1 Dataset

For German, we used the metaphor detection dataset provided by Köper and Schulte im
Walde (2016), which is publicly available15. It contains 6436 sentences; 4174 of these
are annotated as literal and 2262 are annotated as non-literal. In addition, the
dataset contains syntactic information from dependency parsing for each word. The
dataset also indicates which token in the sentence is the target word and all words in
the sentence are given in the lemmatized form. The sentences were originally taken
from DECOW14AX, which is a German web corpus (Schäfer and Bildhauer, 2012).
Here are two example sentences from the dataset:

(17) Wer nun nicht vom Glauben abfällt dem ist wirklich nicht mehr zu helfen!
[sic] (translation: “Those who do not lose their faith now cannot be helped.”)
→ non-literal

15https://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/

pv-nonlit/

20

(18) Den Panzern fallen die Schussrohre ab. (translation: “The tanks are losing
their shooting pipes.”) → literal

To make the dataset more comparable to the Russian dataset, the number of literal
instances was reduced so that the dataset is balanced (896 metaphorical sentences
and 896 literal sentences). In this version, 307 of the sentences contain both subject
and object, 471 contain a subject only and 765 contain an object only. There are
249 sentences where both subject and object are missing. The mean sentence length
is 13 words with a standard deviation of 3.5 words.

3.3.2 Preprocessing

For the random forest model, knowing the subject and object pertaining to the
target word is necessary. The target word is indicated, but its subject and object
are not given explicitly in the dataset. The dataset contains information from de-
pendency parsing, namely the head of each word (which can be another word or the
root token) and the syntactic functions of most words. There are, however, several
problems in using this information to find the subject and object of the target word:

• Passive: Many sentences are written in the passive voice. As this is not the
case for the English dataset, the subjects of passive sentences should become
the objects. Here is an example:

(19) Es wurden dreimal täglich die Mahlzeiten aufgetischt. (translation:
“Meals were served three times a day.”)

In this sentence the word Mahlzeiten is parsed as the subject of aufgetischt.
However, in active sentences Mahlzeit and related words seldom are the subject
of the target verb auftischen (except for figurative language), hence a classifier
trained on English (non-passive) data will not be able to classify it correctly.
Subjects in passive sentences were therefore converted to objects.

21

• Non-standard language: The dataset contains non-standard language, which
is not parsed correctly, as in the following example:

(20) Wahnsinn, unvergesslich, kein Oscar für diese Filmmusik, dafür gehört

jede Academy der Welt eingerissen. (translation: “This is madness, un-
forgettable, no oscar for this soundtrack, for this every Academy in the
world should be destroyed.”)).

In cases like this one, the correct subject and object had to be annotated
manually.

• Coreference resolution: In cases, where the subject or object of an target word
was a relative pronoun, the corresponding noun from the main clause was used
as subject or object respectively. (There are, however, many pronouns that are
not resolved, for example demonstrative pronouns, and which therefore do not
yield much information for feature extraction.)

Therefore, we used the syntactic dependencies found in the dataset to find the
subjects and objects, but also carried out a manual correction as described to find
the lemmatized subjects and objects for passive voice, non-standard language and
coreference resolution.
For the mBERT-based models, the sentences were masked. As the target word
was marked in the dataset, we were easily able to create the mask. We then further
preprocessed the original sentence and its copy with the masked target word by using
the tokenization pipeline described in Section 3.1 for English, which produced the
final input to the mBERT-based classifiers, namely input-IDs, the attention mask
and token-type-IDs.

22

3.4 Latin

3.4.1 Dataset

As the basis for the Latin dataset we used the Lexham Figurative Language of
the New Testament Dataset by Westbury et al. (2016), which is published in the
Logos Bible Software16. The authors annotated conceptual metaphors, “where each
figurative expression is given a figurative category, source and target terms that
represent the figurative concept (source) and intended meaning (target), and a brief
description”17. The software itself shows the passages from the New Testament (the
American Standard Version of the Bible was used), and highlights the metaphors
in each verse. Using these highlights, we extracted 100 sentences, of which 50 were
annotated as metaphorical and 50 were not. As the metaphors were annotated in the
English Bible text, we then manually searched for the corresponding Latin transla-
tions in the Vulgate18. Here are two examples:

(21) Et venerunt, et impleverunt ambas naviculas, ita ut pene mergerentur. (text
from American Standard Version from Logos: “And they came, and filled
both the boats, so that they began to sink.“) → literal

(22) Et dixerunt ei: Quia heri hora septima reliquit eum febris. (text from Ameri-
can Standard Version from Logos: “They said therefore unto him, Yesterday
at the seventh hour the fever left him.”) → non-literal

13 of the selected sentences contain both subject and object, 27 contain a subject
only and 29 contain an object only. There are 31 sentences where both subject and
object are missing. The mean sentence length is 22 words with a standard deviation
of 7.5 words.
When selecting the literal and non-literal instances from the Logos Bible Software,
two problems arose:

16https://www.logos.com
17https://www.logos.com/product/178518/lexham-figurative-language-of-the-bible-glossary
18https://vulgata.info/index.php?title=Kategorie:BIBLIA_SACRA.

23

• The annotation is not complete. Some instances are annotated as non-literal
in one case, but a very similar wording is annotated as literal. For example,
the verb filled is annotated as figurative in the following example:

(23) And his father Zacharias was filled with the Holy Spirit, and
prophesied, saying ...

However, it is not annotated as figurative here:

(24) ... and Elisabeth was filled with the Holy Spirit.

In such cases, we assumed that the annotation was simply forgotten in the
second text.

• Many instances were annotated as non-literal, but it is not obvious to theolog-
ical laypersons, why these instances were considered non-literal. For example,
the verb followed was annotated as non-literal in many cases, as it is used in
the sense of “to be a disciple”. We did not use these annotations in the dataset,
because classifying them correctly would require expert knowledge, which is
in stark contrast to the other datasets and which cannot be expected from the
classifiers.

3.4.2 Preprocessing

For the random forest classifier, we manually annotated subject, verb and object
and lemmatized them. For the mBERT-based classifiers, we selected the target
word manually and masked it in the input string. For the original input string and
the masked input string, we generated input-IDs, the attention mask and token-
type-IDs as described in Section 3.1 for English.

24

4 Models

After the preprocessing, the data for all languages contained subject, verb and object
(as lemmata) as input for the random forest classifier and the original sentence plus
a copy of the original sentence, where the target word was masked, for the mBERT-
based models. The following sections describe how the different classifiers use this
input to make predictions, namely the random forest classifier (Section 4.1) and
the mBERT-based models, which are zero- and few-shot classification with mBERT
(Section 4.2) and an adaptation method based on mBERT, MAD-X (Section 4.3).

4.1 Random Forest Classifier with Vector Space Model (VSM)

Firstly, this thesis explores a non-neural classifier, namely a random forest classifier
featuring a vector space model, which is based on the classifier by Tsvetkov et al.
(2014). The features for this classifier are extracted from (lemmatized) subject-verb-
object-triples of the corresponding sentences, where the verb is the target word to
be classified.

4.1.1 Random Forest Classifier

Random forest classification is a classification method making use of ensembles of
different decision trees. A decision tree consists of a root node, internal nodes
and the leaves. Each node “splits the instance space into two or more sub-spaces”
(Rokach and Maimon, 2014) according to a certain attribute. Each leaf corresponds
to a class label that can be assigned to an instance.
A tree is created by first instantiating a root node. Then,

1. all features are compared for the node via a split criterion which calculates the
impurity of the split (see below),

2. the feature with the best impurity score is chosen as the label for this node
(as a running example we introduce the feature “abstractness_subject”) and

25

3. as many edges are created as there are values connected to the feature (in the
example, there could be three edges: “abstract”, “neutral”, “concrete”).

4. As a next step, a new subtree node is instantiated for each of the edges (i.e.
three nodes for “abstractness_subject”).

This process is repeated for each node until a stopping criterion is fullfilled (Rokach
and Maimon, 2014).
Two concepts need further explanation, namely the stopping criterion and the split
criterion. For the implementation of the random forest classifier, we use the scikit

learn library19. We use the default hyperparameters, where the stopping criterion
is that “nodes are expanded until all leaves are pure”19. As default split criterion,
we use the default scikitlearn criterion, called Gini index20. For each edge, a kind
of leaf is simulated, i.e. a node that is not expanded further and where it is counted
how many instances belong to each of the classes. This simulated leaf is exemplified
with the green boxes in Figure 1, and for each of these leaves the following Gini
impurity H(Qm) is calculated20:

H(Qm) =
∑
k

pmk(1 − pmk),(1)

where Qm is the subset of the data at this simulated node m (for example the 3
literal and 1 non-literal sentences in the first green box) and k is a class label (in
the example, “literal” or “non-literal”). pmk is the proportion of instances of class k

at node m, and is defined as20:

pmk =
1

nm

∑
y∈Qm

I(y = k)(2)

In the example (Figure 1), for the first green box pmk with k = literal would be 3
4
,

with k = non-literal it would be 1
4
. The Gini impurity H(Qm) for the first green box

would be 0.375 (3
4
(1− 3

4
)+ 1

4
(1− 1

4
) = 0.375). For the second green box, H(Qm) = 0

19https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
20https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation

26

abstractness_subject

“abstract”:
literal: 3
non-lit: 1

“neutral”:
literal: 3
non-lit: 0

“concrete”:
literal: 1
non-lit: 1

Figure 1: Example of calculating the Gini-index for a given feature.

and for the third green box H(Qm) = 0.5. A Gini impurity of 0.5 signifies a max-
imally impure feature, whereas a Gini index of 0 indicates a pure feature, i.e. a
feature where all instances that show this feature belong to one class.
The total Gini impurity G is calculated as the weighted sum of all simulated leaves.
For example, H(Qm) for the first green box would be weighted by 4

9
, since it covers

4 instances of the total of 9 instances across all three green boxes. The total Gini
index would in this example amount to a rounded value of 0.28. This value would be
compared to the total Gini index for other features, such as “abstractness_object”
or “valence_verb” and the feature with the lowest impurity would be chosen for the
orange top node in the example. For inference, the test instance follows the path
that corresponds to its features from the top node to the leaf, which assigns a label
to the instance.
The random forest classifier used in this thesis instantiates 100 of these decision
trees (in the experiments with default hyperparameters), which are trained on ran-
dom subsets of the training data and where each decision tree considers a random
subset of features. For inference, the test data is being classified with each individual
tree and the results are averaged to make a classification decision.

4.1.2 Feature Types

In the paper by Tsvetkov et al. (2014), three categories of features are used for the
random forest classifier:

• Abstractness and Imageability: Tsvetkov et al. (2014) use abstractness

27

and imageability scores, which they generated on the basis of the MRC rat-
ings created by Wilson (1988). They used a “logistic regression classifier to
propagate abstractness and imageability scores from MRC ratings to all words
for which [they] have vector space representations” (Tsvetkov et al., 2014). We
also use these scores, which are published in their github repository21.

• Supersenses: Tsvetkov et al. (2014) refer to supersenses as “coarse semantic
categories‘” and use them as features in the following way: A word can belong
to several synsets in WordNet (Fellbaum, 1998), each of which is associated
with several supersenses. A feature vector is created with these supersenses as
dimensions. For example: the noun head participates in 33 synsets, 3 of those
are related to the supersense noun.body. The dimension corresponding to the
supersense noun.body therefore gains the value of 3/33. The supersense scores
for each word can be accessed on github21.

• VSM: Tsvetkov et al. (2014) use the VSM by Faruqui and Dyer (2014). This
model uses multilingual information in order to produce similar vectors for
synonymous words. The scores can be accessed on github21.

4.1.3 Feature Extraction

Features are extracted from the training data in two ways: Firstly, as individual
features, and secondly, as combinations of features. For the individual features, the
features of each feature type (see Section 4.1.2) are extracted from the lemmatized
subject, verb and object. These three feature vectors are concatenated.

21https://github.com/ytsvetko/metaphor

28

Figure 2: Excerpt from Table 2 in Tsvetkov et al. (2014), which shows the number
of features for each feature type (abstractness/imageability, supersenses, vsm and
combinations of these types) which they used for their experiments.

For the combinations of features, features for token pairs (subject-verb, verb-object)
are extracted. Tsvetkov et al. (2014) provide the following example: “to generate the
feature vector for the SVO triple < car, drink, gasoline >, we compute all the fea-
tures for the individual words car, drink, gasoline and combine them with the
conjunction features for the pairs car, drink and drink, gasoline”. Here, they men-
tion that they create combinations of features for “all” features. However, in the code
that they provide22, the combinations of features are only created for abstractness
and imageability features, but not for the vsm and supersense features. Also, the
number of features shown in Table 2 in Tsvetkov et al. (2014) shows that combina-
tions of features are only created for abstractness and imageability (see the table in
Figure 2). For the feature type abstractness and imageability, there are

• 3 individual features for abstractness: subject_abstractness, verb_abstractness,
object_abstractness,

• 8 combinations of features for abstractness: subject_verb_aa, verb_object_aa,
subject_verb_ac, verb_object_ac, subject_verb_ca, verb_object_ca, sub-
ject_verb_cc, verb_object_cc (“aa” stands for “abstract-abstract”, “ac” stands
for “abstract-concrete”, etc.),

• 11 features for imageability analogous to the abstractness features.
22https://github.com/ytsvetko/metaphor

29

This list assumes 22 features, whereas 20 are mentioned in the paper (see 2). The
difference is probably due to the fact that Tsvetkov et al. (2014) use a different
training set, namely a downsized and preprocessed version of the TroFi Example
Base by Birke and Sarkar (2006). Since this version is not publicly available, it can
only be assumed that not all combinations of abstract and concrete values that were
found in our English dataset were found in their training set.
It is clear, though, that the number 20 can only be achieved by using combinations
of features in addition to individual features. This is not true for the other feature
types: 67 features are listed for supersenses. As there are 26 supersenses for nouns,
hence 26 supersenses for the subject and 26 for the object, as well as 15 supersenses
for verb, the number 67 is possible only if no combinations of features are used.
Since the vsm model contains 64 dimensions, the number 192 is also only possible
without combinations of features, since the vectors for the three tokens subject, verb
and object are concatenated (64 × 3 = 192).
In the experiments in this thesis the 22 features listed above are used for abstract-
ness and imageability. For the other feature types, no combinations of features are
used. The numbers of features for each feature type used in our experiments are
summarized in Table 3.

feature type # features

Abstractness/Imageability 22
Supersenses 67
VSM 192

All 281

Table 3: Table presenting the numbers of features used in the experiments in this
thesis for each feature type when reproducing the results from Tsvetkov et al. (2014).

4.1.4 Cross-Lingual Inference

Section 4.1.3 describes how features are extracted for training on the source language
dataset. If inference was done in the source language, the features would be extracted

30

in the same way from the test instances as described above for the training instances.
However, to use the classifier cross-lingually, the features from the test instances are
extracted in the following way:

• Subject, verb and object of the sentence from the target language are trans-
lated to the source language with the help of an electronic bilingual dictionary,
which yields one-to-many translations (e.g. target word: Fliege, translation to
source language: “fly, bowtie”). For Russian and German, the Word2Word li-
brary by Choe et al. (2020) was used for this purpose23. For Latin the transla-
tions were collected manually from an online Latin-English dictionary24. For a
short discussion on the advantages and disadvantages of different approaches
to obtaining one-to-many translations see Appendix A.5.

• The mean scores for all translations are calculated. In the case of abstractness,
imageability and vsm scores, this is done conventionally by summing up the
scores for the individual translations and dividing this sum by the number of
translations.

• For supersenses, averaging is done in a special way: Firstly, all synsets for the
translations, e.g. “fly” (5 synsets) and “bowtie” (1 synset), are collected. Then
it is counted how many synsets are associated with a certain supersense, for
example with noun.artifact. In the case of Fliege, 1 synset is connected to
this supersense for “bowtie” and 3 for “fly”, so 4 overall. Lastly, the proportion
of synsets associated with this supersense is calculated, which is to be 4/6,
since in total 4 out of 6 synsets are connected to this supersense. Thus, in the
supersense feature vector the dimension noun.artifact gets the score 4/6.
As the supersense scores for individual words were given in the github repos-
itory25 by Tsvetkov et al. (2014), for this thesis a shortcut was taken: We
gathered the number of synsets for each translation from NLTK (Bird et al.,

23Choe et al. (2020) extract bilingual lexica from parallel subtitle corpora. In doing so, they aim
at high-coverage dictionaries, which suits our purpose well.

24https://www.online-latin-dictionary.com
25https://github.com/ytsvetko/metaphor

31

2009), namely that there are 5 synsets for “fly” and 1 synset for “bowtie”. Then
the score by Tsvetkov told us that the supersense noun.artifact is connected
to 60% of the synsets for “fly” (see Figure 3) and to 100% of the synsets for
“bowtie” (not shown here). 60% of the 5 synsets means that 3 synsets are con-
nected to this supersense. For “bowtie” there is only one synset and this was
associated to the supersense noun.artifact (100%). By doing these caculations
we know that in total 4 (3 from “fly” and 1 from “bowtie”) out of 6 synsets
are connected to the supersense noun.artifact without having to download
and iterate through the different lexicographer files from WordNet (Fellbaum,
1998), where each synset is assigned to one supersense.

Figure 3: Example output for the noun “fly” from the supersenses-file from Tsvetkov
et al. (2014).

Once the subjects, verbs and objects of the test sentences are translated and the
scores are averaged, the concatenated vectors for all feature types are fed to the
random forest classifier for inference.

4.2 Zero- and Few-Shot Classification with mBERT

One common way of performing neural cross-lingual transfer is to use multilingual
pretrained language models, namely mBERT. BERT (Devlin et al., 2019) is short
for Bidirectional Encoder Representations from Transformers. This means that it is
an attention-based architecture (using transformers, see Vaswani et al. (2017)) that
bidirectionally encodes large amounts of unlabelled data, in order to create contex-
tual representations of an input sequence. The implementation of BERT consists of
two steps: pretraining and fine-tuning.
During pre-training, the model is trained on unlabelled training data, which – in
the case of mBERT – are the Wikipedias in 104 different languages26. For that, two

26The languages were chosen because they have 104 of the world’s largest Wikipedias, see https:
//huggingface.co/bert-base-multilingual-cased

32

tasks are employed, masked language modelling (MLM) and next sentence predic-
tion (NSP). For MLM, a percentage of the input tokens (tokenized by Word Piece,
see Appendix A.4) is masked, and the model has to predict the masked words. For
NSP, a corpus is generated where in 50% of all cases sentence A is followed by its
actual next sentence B, and in 50% of all cases it is followed by a random sentence
B from the corpus. The model then has to predict whether sentence B is the next
sentence or not. Since the labels (i.e. the words to be predicted in the case of MLM
and the actual next sentence for NSP) for both pretraining tasks are found in the
corpus itself, the tasks are carried out in an unsupervised way. This means that huge
amounts of text can be used as training data: no labelling effort is necessary.
For fine-tuning, a classification layer is added to the pretrained model. Then all
parameters – the pretrained ones and the classification layer – are fine-tuned on a
downstream task.
In this thesis, this model is used in two scenarios, a zero-shot and a few-shot classifi-
cation. For zero-shot learning, we will investigate how mBERT performs when it
is fine-tuned on source language data and then evaluated on target language data.
For few-shot learning, we will investigate whether double fine-tuning (first on
source language data and then fine-tuning again on a few target language instances)
boosts the classifier’s performance, as was shown by Lauscher et al. (2020) for other
tasks like POS-tagging and natural language inference.
In both scenarios, we fine-tune by adapting the procedure from Ma et al. (2021).
We take the original sentence (sequence A), copy the sentence and mask the target
word (sequence B), and then exploit the fact that mBERT was pretrained on the
NSP task. If mBERT predicts that both sequences appear in the same context, then
it is likely that the masked word is used literally. If mBERT predicts that the two
sequences do not appear in the same context, then it is likey that the masked word is
used non-literally. Ma et al. (2021) do not explain in detail why this method works.
The following can be assumed, though: Shutova and Teufel (2010) show that accord-
ing to their data, metaphors occur on average in every third sentence across various
domains. This means that in two thirds of all sentences, so in the majority of cases,
the words are used literally. Therefore the representation generated by mBERT for

33

the masked tokens tends to be on the literal side. Therefore, the masked sentences
with literally used target words have a representation closer to the original than
the non-literal sentences, and this similarity probably is the deciding factor in the
classification decision.

4.3 Adapter-Based Crosslingual Transfer

Besides zero- and few-shot mBERT, a third neural method was implemented: MAD-
X, which is short for Multiple ADapters for Cross-lingual transfer (Pfeiffer et al.,
2020b). Here, small amounts of weights are injected into the embedding and trans-
former layers of pretrained multilingual models such as mBERT, while the pre-
trained model itself is frozen. Three types of adapters are used: language adapters,
task adapters and invertible adapters.
Language and task adapters are added to each transformer layer. They take as in-
put a hidden layer hl. They first insert a matrix Ddown ∈ Rh×d to downsize hl to
a bottleneck dimension d, which is followed by a ReLU activation function and a
multiplication with a matrix Dup ∈ Rd×h, which is an uprojection to the original
dimensionality of layer h. Also, a residual connection is added. By the down- and
upsizing (instead of inserting a matrix of dimension M ∈ Rh×h) it is ensured that
only a few weights are added.
Invertible adapters are constructed similarly as language adapters, but they aim to
capture “token-level language-specific transformations” (Pfeiffer et al., 2020b). They
are inserted on top of the embedding layer. However, since the input and output
embedding layers are tied, the inverse of the invertible adapter that is stacked on
top of the input embedding layer is stacked on top of the output embedding layer.
Figure 4 shows where the different adapters are added in the transformer architec-
ture.

34

Figure 4: MAD-X architecture as shown in Pfeiffer et al. (2020b). The invertible
adapters are placed on top of the input embedding layer and before the output
embedding layer (see left side of figure). The task and language adapters are placed
inside the transformer layers (one of these layers is exemplified here).

English German

1. Train Language (and
Invertible) Adapters:

2. Train Task Adapter:
Metaphor Detection

3. Inference:

English

German Metaphor Detection

Figure 5: Step by step illustration for using the language and task adapters of MAD-
X.

Figure 5 illustrates how the different adapters are used (in the example, only Ger-
man is depicted as a target language, but the same method is used for every target
language). Firstly, the language adapter Alang and the invertible adapter Ainv are
trained on source (here: English) and target language data (here: Geman) for the

35

MLM task. Secondly, a task adapter for MD AMD is trained on an English lan-
guage metaphor dataset (while using the English language and invertible adapters).
Thirdly, for zero-shot inference, the English language adapter and invertible adapters
are replaced by German language and invertible adapters, while the (language ag-
nostic) task adapter AMD is kept in place.
As the pretrained model that is frozen during the adapter training we use mBERT,
and the task adapter is trained by adapting the procedure from Ma et al. (2021)
as explained in Section 4.2. We use the the MAD-X implementation found at the
AdapterHub library (Pfeiffer et al., 2020a). Here, language adapters are readily avail-
able for our target languages German, Russian and Latin. They have been trained
on Wikipedia for the given languages. The task adapter for MD was not available
and therefore had to be trained on the English training dataset (see Section 3.1.1).
For that, the code from AdapterHub had to be adapted for metaphor detection, a
step by step direction for adapting the original code for new tasks is to be found
online27.

5 Experiments and Results

The models described in Section 4 are used as the basis for our own experiments.
This section firstly covers the basic experimental setup that was used to answer our
research questions and its results28 (see Section 5.1). The following sections show
how the results of the basic experimental setup change

• when hyperparameters are tuned (Section 5.2),

• when a larger dataset is used to train the models (Section 5.3),

• when different shots are used for few-shot classification with mBERT (see
Section 5.4), and

27https://docs.adapterhub.ml/training.html
28On the reproducibility of the results see Appendix A.3.

36

• when the datasets are more comparable in terms of linguistic structure (see
Section 5.5).

While the first three steps aim at improving model performance, the last step is
carried out in order to obtain a clearer picture of the impact of language typology
and the amount of pretraining data on model performance. As a last step, we make
a brief digression to evaluate the hyperparameter-tuning that was performed (see
Section 5.6). All results presented in this section are discussed in Section 6.

5.1 Basic Experimental Setup

Our first research question is the following: Neural cross-lingual transfer methods
have been shown to perform well on a wide range of tasks (such as named entity
recognition and question answering). Are they also applicable to MD? In order to
answer this question, we used the target language datasets for Russian (see Section
3.2), German (see Section 3.3) and Latin (see Section 3.4). As the source language
dataset we used the English dataset presented in Section 3.1.1. We refer to this
dataset by Tsvetkov et al. (2014) as the basic training set. Then we explored how
each of the following neural cross-lingual classifiers performed on each of the target
languages:

• zero-shot mBERT (see Section 4.2),

• few-shot mBERT with a second fine-tuning on 20 instances29 of the target
language data (see Section 4.2), and

• MAD-X (see Section 4.3).

As hyperparameters for zero- and few-shot mBERT in the basic experimental setup
we used the default hyperparameters provided by Huggingface30, namely (among

29The 20 instances are taken from the test datasets, so for mBERT20 the test datasets are
slightly reduced compared to the test datasets used for the other experiments.

30https://huggingface.co/docs/transformers/v4.28.1/en/main_classes/trainer#

transformers.TrainingArguments

37

others) a batch-size of 8, a learning rate of 5e-5, 3 training epochs and the AdamW
optimizer. As hyperparameters for MAD-X we used the hyperparameters that Pfeif-
fer et al. (2020b) mention in their paper, namely a learning rate of 1e-4, a batch-size
of 8 and 100 training epochs. In order to make the results reproducible, the seed
was set to 42.
The second research question is: There are languages where only a small amount
of pretraining data is available for large language models and/or that are typologi-
cally distant from the source language. Can a non-neural classifier outperform neural
models for these languages? In order to answer this question, the random forest clas-
sifier described in Section 4.1 was not only used to classify our dataset for Latin,
but also the datasets for Russian and German for comparison. As hyperparameters
we used the default hyperparameters from scikitlearn, namely (among others) 100
estimators, i.e. 100 decision trees, no max-depth limit and Gini as split criterion. In
order to make the results reproducible, the seed was set to 1234.
The third and fourth research questions aim at investigating whether the perfor-
mance of the random forest classifier can be improved by means of feature engineer-
ing: It has been shown that sentences containing metaphorical language seem to be
more emotionally charged than non-figurative sentences (Mohammad et al., 2016).
Will adding emotion scores as conceptual features improve the performance of the
non-neural classifier? and Research has shown that mid-range abstractness ratings
are unreliable, since they exhibit a large degree of disagreement among annotators
(Pollock, 2018). Will separating mid-range abstractness ratings from truly concrete
and abstract ratings improve the performance of the non-neural classifier? There-
fore, in addition to reproducing the results from Tsvetkov et al. (2014) (see Section
4.1), we firstly tested whether or not adding emotional scores (valence, dominance
and arousal) collected by Mohammad (2018) as real-numbered features improves the
performance of the original classifier. Secondly, it was tried out whether replacing
binary abstractness scores by three categories (“abstract”, “neutral” and “concrete”)
would improve the original classifier’s performance, since in this setting unreliable
mid-range ratings are treated differently from truly abstract and concrete ratings.
The classifier, which was reproduced as closely as possible to that of Tsvetkov et al.

38

(2014), contained 281 features altogether (see Table 3). For the newly added feature
type emotion (VAD), 9 features were added, namely one feature for valence, arousal
and dominance for each of the three syntactic functions subject, verb and object
(3×3 = 9). An overview over the numbers of features for the original random forest
classifier with added VAD-scores is given in Table 4.

feature type # features

Abstractness/Imageability 22
Supersenses 67
VSM 192
VAD 9

All 290

Table 4: Table presenting the numbers of features used for the random forest classifier
for each feature type when the model by Tsvetkov et al. (2014) is changed by adding
emotion scores (VAD).

Replacing binary abstractness scores by 3 categories led to a total number of 300
features, where 41 features were used for abstractness and imageability instead of
the original 22 features in the classifier from Tsvetkov et al. (2014).
In theory, the following 54 features are possible for abstractness and imageability in
the scenario with three labels (a stands for abstract, c for concrete, m for midrange
values) rather than 41:

• 9 individual features for abstractness:
subject_a, verb_a, object_a, subject_m, verb_m, object_m, subject_c, verb_c,
object_c

• 9 individual features for imageability: the same categories as for abstractness

• 18 combinations of features for abstractness:
subject_verb_aa, subject_verb_am, subject_verb_ac, subject_verb_ma,
subject_verb_mm, subject_verb_mc, subject_verb_ca, subject_verb_cm,

39

subject_verb_cc, verb_object_aa, verb_object_am, verb_object_ac,
verb_object_ma, verb_object_mm, verb_object_mc, verb_object_ca,
verb_object_cm, verb_object_cc

• 18 combinations of features for imageability: the same features as for abstract-
ness

However, when mid-range ratings were introduced, some combinations from above
(for example subject_verb_cc for imageability) and some of the new combinations
(for example verb_object_cm for imageability) no longer occurred in the training
data and were therefore not used as features for inference31. Only 41 of the features
occurred in the training data, as shown in Table 5, which lists the feature types for
the original random forest classifier with three instead of two abstractness scores.
In cases, where the difference between the results for two models was very small and
where it was deemed important for the interpretation of the results, significance test-
ing with χ2 was carried out. This holds for the current and the following subsections.

feature type # features

Abstractness/Imageability_3 41
Supersenses 67
VSM 192

All 300

Table 5: Table presenting the numbers of features used for the random forest classifier
for each feature type when the model by Tsvetkov et al. (2014) was changed by using
three categories (abstract, medium, concrete) instead of two (abstract, concrete).

The results of the basic experimental setup (default hyperparameters and basic train-
ing data) can be found in Table 6. It shows the F1-scores for detecting non-literal

31The feature number 300 assumes thresholds of 0.7 and 0.3 for the abstractness and imageability
scores, i.e. abstract: rating higher than 0.7, medium: rating between 0.3 and 0.7, and concrete:
rating below 0.3).

40

Russian German Latin

majority vote 66.7 66.7 66.7

mBERT0 86.7 77.6 69.1*
mBERT20 82.9 66.6 30.8
MAD-X 56.8 52.0 18.2

random forest 80.8 70,8 66.7
+ VAD 78.7 71.7 70.6**

+ abstr_imag_3 80.4 70.3 68.4

Table 6: F-scores for detecting non-literal verb usages using the
basic training dataset by Tsvetkov et al. (2014) and default hyperparameters
for all models. Model with asterisk (*) performs significantly better than the
baseline; model with double asterisk (**) performs significantly better than model
with one asterisk (*) according to χ2 testing (p<0.05).

word usage of the target word for the four models: zero- and few-shot classifica-
tion with mBERT (mBERT0 and mBERT20, respectively), zero-shot classification
with MAD-X and classification with the random forest classifier (once in the vanilla
version that closely resembles the model from Tsvetkov et al. (2014), once boosted
with VAD-scores and once with three abstractness and imageability labels instead
of two (abstr_img_3)). The performance of each model is shown for each of the
three target languages, Russian, German and Latin. The baseline is majority vote32;
for the balanced datasets, this leads to an F1-score of 66.7. This layout is the basis
for all results presented in this section, so this description will not be repeated. The
best-performing model for Russian (86.7) and German (77.6) in this setup is zero-
shot classification with mBERT. For Latin, the random forest classifier boosted with
VAD-scores performs best (70.6). It is closely followed by mBERT0 (69.1), which
according to χ2 testing performs significantly better than the baseline, while the ran-
dom forest classifier with VAD performs significantly better than mBERT0 (p<0.05).

32In the case of a balanced dataset, majority vote is used in the sense that all predictions are
“metaphorical”.

41

Adding a second round of fine-tuning (few-shot setup) decreases the F1-scores across
all languages; for German and Latin, the performance is below the baseline. MAD-X
performs considerably worse than the baseline across all languages.
The vanilla random forest classifier performs better than the baseline for Russian
and German, but on par with the baseline for Latin. Adding VAD-scores improves
the performance of the random forest classifier by 0.9 points for German and 3.9
points for Latin. For Russian, adding VAD-scores leads to worse results than using
the vanilla random forest classifier. When using three abstractness labels instead
of two, the performance slightly deteriorates compared to the vanilla classifier for
Russian and German, while the F1-score for Latin increases by 1.7 points.

5.2 Performing Hyperparameter-Tuning

When dealing with high-resource languages, the data is usually split into train, dev
(or validation) and test set. For training (or fine-tuning) the model, the train set is
used. For fine-tuning the hyperparameters, the dev set is used: Different sets of hy-
perparameters are tried out on the dev set, and the optimal hyperparameters found
for the dev set are used for evaluating the performance of this model on unseen test
data, namely the test set. This is done in order to confirm that the hyperparame-
ters found for the dev set generalize to unseen data and that no overfitting to the
particular dev set is occuring.
In this thesis, classifiers for low-resource languages, where there is no or very little
training data available and definitely no validation data, are explored. Therefore,
the following procedure was tried out: the models were trained on the basic English
dataset for different sets of hyperparameters. Then these different hyperparameter
sets were evaluated on a different MD dataset from the high resource source language
English, namely the dataset by Mohammad et al. (2016). For a description of this
dataset see Appendix A.7. This English dataset was used as the dev set, since no
dev set from the target language was available. Finally, the hyperparameter set that
led to the best performance on the dev set (i.e. the hightest F1-score for detecting
non-literal word usage) was used for testing the model on unseen test data, namely

42

the datasets for the three languages Russian, German and Latin.
The hyperparameter search was carried out in the form of a grid search, where
different combinations of hyperparameters were tried out. Table 7 reports the hy-
perparameters33 that were used for this grid search, while Table 8 reports the hy-
perparameters that led to the hightest F1-score for detecting non-literal verb usages
during the grid search on the English dataset by Mohammad et al. (2016).

learning rates epochs batch size

mBERT0 and

mBERT20
1e-4, 1e-5, 1e-6 8, 16, 32 8, 16, 32

MAD-X 1e-3, 1e-4, 1e-5 10, 50, 100 8, 16, 32

of estimators max tree depth seed

random forest 10, 50, 100 None, 5, 10 83, 297, 1234

Table 7: Hyperparameter values used for the grid searches for the different classifi-
cation models.

learning rate epochs batch size

zero 1e-6 8 32

few_ru 1e-6 8 16

few_ge 1e-6 8 32

few_la 1e-6 8 32

madx 1e-3 50 8

of estimators max tree depth seed

random forest 10 None 297

Table 8: Hyperparameter sets that were found to lead to the highest F1-score for
detecting non-literal word usage during the grid search.

To sum up: The setup is identical to the basic experimental setup described in Sec-
tion 5.1; however, the hyperparameter sets that led to the best performance during

33See Appendix A.9 for an explanation of why the hyperparameter values given in Table 7 were
chosen for the grid search.

43

the grid search were used instead of the default hyperparameters.
The following paragraph presents the results of the hyperparameter-tuning: The hy-
perparameters shown in Table 8 form the basis for the results presented in Table 9.
Here, the basic training dataset was used as well as the best-performing hyperpa-
rameter sets obtained from grid search. The best results for Russian and German
are achieved by MAD-X, while for Latin the random forest classifier boosted with
VAD-scores performs best. Zero- and few-shot classification with mBERT performs
worse or just slighty better than the baseline across all three languages. MAD-X
performs well for Russian and German, while performing slightly better than the
baseline for Latin. The vanilla random forest classifier performs slightly better than
the baseline for Russian and German, while performing worse than the baseline for
Latin. Adding VAD-scores improves the F1-scores across all languages here. Using
three abstractness labels instead of two improves the performance compared to the
vanilla random forest classifier for Russian and Latin, but for German performance
slightly worsens. Compared to the results for the default hyperparameters (see Ta-
ble 6), the performance of all models decreases, but for MAD-X the performance
improves drastically.

Russian German Latin

majority vote 66.7 66.7 66.7

mBERT0 66.7 63.9 58.8
mBERT20 69.6 64.6 63.8
MAD-X 81.9 73.7 68.0

random forest 73.3 69.0 61.8
+ VAD 78.3 70.3 68.9

+ abstr_imag_3 76.2 68.1 67.8

Table 9: F-scores for detecting non-literal verb usages with the best results ob-
tained from hyperparameter-tuning. As training data, the basic training dataset by
Tsvetkov et al. (2014) was used.

44

5.3 Augmenting the Amount of Training Data

In order to investigate whether augmenting the amount of training data improves
the results, the dataset by Tsvetkov et al. (2014), which consists of 222 instances,
was augmented by the dataset by Mohammad et al. (2016), which consists of 1639
instances, so that the number of training instances was 1861 instead of 222. We
will refer to this combined dataset of 1861 instances as the augmented dataset, as
opposed to the basic training set which includes only the data by Tsvetkov et al.
(2014). The setup is identical to the basic experimental setup described in Section
5.1; however, instead of the basic dataset by Tsvetkov et al. (2014), the augmented
dataset is used.

Russian German Latin

majority vote 66.7 66.7 66.7

mBERT0 90.5 76.8* 63.8
mBERT20 87.6 76.6 31.4
MAD-X 86.2 75.1 59.2

random forest 85.5 71.0 72.2

+ VAD 85.8 71.5 66.7
+ abstr_imag_3 85.1 70.3 67.2

Table 10: F-scores for detecting non-literal verb usage using the
default hyperparameters for all models and the augmented training dataset
(Tsvetkov et al. (2014) and Mohammad et al. (2016)). The model with asterisk (*)
performs significantly worse than the corresponding model with the basic training
dataset.

The results are shown in Table 10. Zero-classification with mBERT performs best
for Russian (90.5) and for German (76.8). However, the performance for German is
– according to χ2 (p<0.05) – significantly worse than the corresponding experiment
with the basic training dataset. The best performance for Latin is achieved by the
vanilla random forest classifier (72.2). While mBERT0 performs well for German and
Russian, the results for Latin are below the baseline. As before, the performance of

45

mBERT drops when a second round of fine-tuning is added: mBERT20 performs
worse in all three languages than mBERT0, but still slightly better than MAD-X
(except for Latin, where all neural models perform below the baseline). The vanilla
random forest classifier performs worse than the neural models for Russian and Ger-
man, while better than the neural models for Latin. Adding VAD-scores improves
the performance of the classifier slightly for Russian and German (< 1 point), but
decreases the F1-score for Latin by almost 5 points. As before, using three abstract-
ness and imageability labels leads to a decline in the F1-score compared to using
two labels as in the vanilla classifier.

5.4 Selecting Shots in Few-Shot Classification

For the few-shot classification with mBERT in the basic experimental setup, a ran-
dom split of the test data was used for the second fine-tuning (see Table 6). The
results were not satisfactory in two ways: Firstly, in contrast to what was expected,
the second-fine-tuning led to a decrease in the F1-score compared to the zero-shot
classification with mBERT. For example the F1-score for Russian dropped from
86.7 to 82.9, even though the training conditions improved quantitatively (there
were 20 more training instances) and qualitatively (the 20 additional training in-
stances came from the target language). Secondly, the results for German and Latin
were very low, as both did not reach the majority vote baseline. Augmenting the
training data led to better results for German and Russian compared to using the
basic training dataset, but the F1-score for Latin was still very low and all few-shot
results were still lower than the zero-shot results.
To investigate whether or not some shots lead to better performance than others, i.e.
whether it is important to actively select the shot that leads to good performance,
few-shot classification was carried out 5 times, each with a different split of the tar-
get language dataset. For each model, the mean F1-score across the different shots
was calculated as well as the standard deviation in order to see how much influence
the selection of the shot has on model performance.
This experiment was carried out once with the basic training set from Tsvetkov

46

et al. (2014) and once with the augmented dataset (Tsvetkov et al. (2014) and Mo-
hammad et al. (2016)). The experimental setup is therefore identical to the few-shot
setups described in Sections 5.1 and 5.3, but instead of using one random shot, 5
different shots were used. The results (F1) for the individual shots as well as the
mean F1-score and the standard deviation for each language are given in Tables 11
and 12. Table 11 reports the numbers for using the basic training dataset, while
Table 12 reports the numbers for the augmented dataset.

indiv. F1 mean stand. dev.

Russian

87.3
50.3
80.0
77.8
86.1

76.3 15.1

German

65.3
80.9
77.2
78.0
74.4

75.2 6.0

Latin

0
66.7
62.3
63.2
66.7

51.8 29.0

Table 11: Individual F1-scores, mean and standard deviation for using 5 different
shots of the target language datasets for the second fine-tuning. The first fine-tuning
was carried out with the basic English dataset from Tsvetkov et al. (2014).

For the basic English dataset as training set, the mean F1-score across the five
shots for Russian is 76.3 and is therefore slightly higher than the mean F1-score
for German (75.2). For Latin, the mean F1-score is 51.8. The standard deviation is

47

very high for Latin (29.0), which is, however, due to only one outlier (0). The other
F1-scores range between 62.3 and 66.7. The standard deviation is rather high for
Russian (15.1), and slightly lower for German (6.0). The maximum value for Russian
in the individual F1-scores is 87.3, which is higher than the F1-score for zero-shot
classification with the basic training set and default hyperparameters, while the
lowest F1-score is 50.3, which is clearly below the baseline. For German, the best
shot led to a performance of 80.9, which is the highest F1-score that was achieved
for this dataset. The lowest result for German is also below the baseline (65.3). For
Latin, all results are close to the baseline or below.

indiv. F1 mean stand. dev.

Russian

86.2
81.6
85.6
84.2
82.9

84.1 1.9

German

68.6
80.7
79.9
75.2
78.3

76.5 4.9

Latin

57.5
65.9
64.0
66.7
60.8

63.0 3.8

Table 12: Individual F1-scores, mean and standard deviation for using 5 different
shots of the target language datasets for the second fine-tuning. The first fine-tuning
was carried out with the augmented English dataset.

For the augmented English dataset as training set, the mean F1-score across

48

all languages is slightly higher than for the basic training set, while the standard
deviation is substantially lower. The maximum value among the individual F1-scores
is 86.2 for Russian and 80.7 for German, so both values are slightly lower than the
maximum values for the basic training dataset. For Latin, the scores still do not
exceed the baseline.

5.5 Making Training Data More Comparable

When comparing the dataset for the target languages, it becomes obvious that in
many German and Latin sentences there is only a verb (i.e. a target word), but no
subject or object dependent on the target word, whereas in the Russian dataset for
each target word there is at least a subject or an object (see also data description in
Section 3). Especially for the random forest classifier, which only uses the lemmatized
subjects, verbs and objects as a basis for feature generation, this is a major problem:
The verb itself does not carry enough information for the classifier to make an
informed decision. In order to see how the different classifiers perform on more
comparable datasets, the German and Latin datasets were reduced by removing
sentences

• where the target word (i.e. the verb) comes without a subject and without an
object,

• where besides the verb only an adjective (such as omnis – “every(one)”) or a
pronoun is given as subject or object, and

• where information about the metaphoricity of the target word does not lie
within the subject or the object but another part of the sentence. Here are
two examples:

(25) accipietis donum Spiritus Sancti (translat̀ıon: “you will receive the gift
of the Holy Spirit”)

(26) die Sprosse der Karriereleiter ansägen (translation: “to saw the rung
of the career ladder”)

49

In both sentences, the object is not enough to make an informed classification
decision, but the attribute of the object (of the Holy Spirit and of the career
ladder) is necessary for determining whether the verb is used literally or not.

The reduced dataset for German consists of 228 sentences, of which 110 are labelled
as non-literal and 118 are labelled as literal, while the reduced Latin dataset con-
sists of 50 sentences, of which 27 are labelled as non-literal and 23 are labelled as
literal34. Then we used default hyperparameters and the augmented dataset, so the
experimental setup described in Section 5.3, on these reduced dataset versions for
German and Latin (as Russian is the dataset that we are trying to emulate, this
dataset remains unchanged).

Russian German Latin

majority vote 66.7 0 0.7

mBERT0 90.5 82.5 60.0
mBERT20 87.6 74.9 72.2
MAD-X 86.2 78.8 63.8

random forest 85.5 78.0 73.3

+ VAD 85.8 78.5 62.1
+ abstr_imag_3 85.1 76.5 64.5

Table 13: F1-scores for non-literal verb usages using the default hyperparameters for
all models and the augmented training dataset. The datasets for German and Latin
are reduced in such a way that the linguistic structure is more comparable to the
Russian dataset. As the results for Russian were not repeated but taken from Table
10 for comparison, they are given in gray.

The results are shown in Table 13. The best-performing model is mBERT0 for Ger-
man (F1: 82.5) and the vanilla random forest classifier for Latin (F1: 73.3). mBERT0
does not perform well for Latin, as its F1-score is below the baseline. For Latin,

34Due to this imbalance the baseline for the reduced datasets for German and Latin is no longer
66.7, but 0 and 0.7, respectively.

50

mBERT20 achieves an F1 of 72.2, which is higher than the result for zero-shot clas-
sification with BERT, but for German the additional fine-tuning leads to a worse
result than the zero-shot classification. MAD-X performs better than mBERT20 for
German (but worse than BERT0), while for Latin MAD-X performs below the base-
line.
The vanilla random forest classifier performs slightly worse than MAD-X for Ger-
man, while for Latin it leads to an improved result. Adding VAD-scores improves
the F1-score for German, but the performance deteriorates for Latin. Using three
abstractness and imageability labels leads to a worse performance than using two
labels in both languages.
When comparing the numbers for the reduced datasets with Russian, i.e. when
comparing the datasets that are more comparable than they were in the previous
experiments, it is obvious that Russian still performs best among the three lan-
guages, while German takes the second place and Latin the third place.
In comparison to previous experiments, German and Latin achieve the highest score
of all experiments.

5.6 Digression: Evaluating Hyperparameter-Tuning

5.6.1 Using Source Language Validation Data

By fine-tuning the pretrained language model, the model not only learns to perform
the task itself, but is also fine-tuned to work well for a given language and a given
domain. Therefore, it is not clear whether finding the optimal hyperparameters for
a dataset in the source language also leads to the optimal hyperparameters for a
dataset in the target language. In order to see whether the procedure that we em-
ployed in Section 5.2 is valid, we evaluated it by comparing the hyperparameter sets
that are found for English with the hyperparameter sets that would have been found
for German, Russian and Latin – if the datasets that we so far used as evaluation
data were used as validation data. The course of action is illustrated in Figure 6 and
explained in a more detailled way in the following.
As a first step (see first row in Figure 6), we trained each classifier on the basic

51

English training dataset for each hyperparameter set, chose the hyperparameter set
with the best performance in terms of F1 score for detecting non-literal verb usage
on the dev set, and evaluated this model on the test sets for the target languages.
This procedure was described in Section 5.2.

Training Validation Testing

1.

2.

EN
(Tsvetkov)

RU GE LA

RU GE LAEN
(Mohammad)

EN
(Tsvetkov)

EN
(Mohammad)

Figure 6: Course of action for evaluating whether a source language dataset can be
used to fine-tune hyperparameters in a cross-lingual setup. The first line illustrates
the procedure employed in Section 5.2, while the second line illustrates how this
procedure is evaluated in this section.

In the second step (see second row in Figure 6) – for evaluating the procedure
shown in the first row, which is what we do in this section –, we obtained the results
of the grid search for each model with the English dev set and with the target
language datasets. Finally, we examined whether the F1-scores for the different
hyperparameter sets correlate for the English dev set and each of the target language
datasets35. A strong correlation between the performance of the source and target

35As we picked the best hyperparameter set for the dev set already in step one (see Section 5.2)

52

language datasets would be an indicator that fine-tuning the hyperparameters on
the source language is enough and no target language material is necessary for the
validation process.
For zero- and few-shot mBERT, the evaluation of the grid search was conducted as
described so far and as can be seen in the second row of Figure 6. For MAD-X, the
procedure shown in the second row was carried out for the task adapter only, since
the language and invertible adapters were used off-the-shelf from AdapterHub. For
the random forest classifier as shown in Section 2.2, data was needed where subject,
verb and object were marked and lemmatized. Since obtaining this information for
the whole dataset by Mohammad et al. (2016) would have been very time-consuming,
only a small subset of this dataset, namely 100 samples, was used as dev set, where
lemmatized subject, verb and object were annotated manually.

– without having seen the performance of the test sets for the different hyperparameter sets –, the
results that are shown in Table 9 are obtained from truly unseen data.

53

Figure 7: Result for using both the data from Mohammad et al. (2016) (black line)
and the different test sets for target languages Russian, German and Latin as dev
sets for the grid search on zero-shot classification with mBERT.

In the following, the results for the experiments illustrated in the second row of
Figure 6 are given. For each classification model, it is depicted how different sets
of hyperparameters influence model performance when using validation data from
English compared to using (simulated) validation data from the target languages.
The results for evaluating the hyperparameter-tuning for zero-shot classification

with mBERT are illustrated in Figure 7. It shows the F1-scores for detecting non-
literal word usage (y-axis) for the different hyperparameter sets that were tried out
during the grid search, where each index on the x-axis corresonds to a particular
hyperparameter set. For the mapping between index and hyperparameter set see
Tables 19 (zero- and few-shot mBERT), 20 (MAD-X) and 21 (random forest) in
Appendix A.6. Figure 7 compares the performance of each hyperparameter set on
the English validation set (black line) with the performance of the hyperparameter

54

sets for (simulated) validation sets in the target languages German, Latin and Rus-
sian (lines in green, orange and blue). The results presented in Table 7 are discrete;
the lines have been added for reasons of perspicuity.
For the English validation dataset, the maximum F1-score is reached with hyperpa-
rameter set 21 (learning rate: 1e-6, epochs: 8, batch size: 32) and the top 3 results for
the English validation dataset are reached with a learning rate of 1e-636. For Russian,
the maximum F1-score is reached with hyperparameter set 2 (learning rate: 1e-4,
epochs: 8, batch size: 16), for German with hyperparameter set 6 (learning rate:
1e-4, epochs: 16, batch size: 32) and for Latin with hyperparameter set 9 (learning
rate: 1e-4, epochs: 32. batch size: 32). For Russian and German, the top 3 results
are achieved by a learning rate of 1e-4, while for Latin the top 3 results are achieved
with a learning rate of 1e-4 or 1e-5.
The results for evaluating the hyperparameter-tuning for few-shot classification

with mBERT are illustrated in Figure 8. Whereas for zero-shot classification gen-
erally one model is trained and used for inference on all languages, in few-shot clas-
sification each language has its own model. This is why the results are compared for
all languages within one figure for zero-shot classification and in three different sub-
figures for few-shot classification. In theory, one could also perform hyperparameter-
tuning for the German few-shot classifier on the Russian and Latin datasets. How-
ever, as the primary aim is to evaluate whether performing hyperparameter-tuning
on the high-resource source language is valid, only the comparison between the tar-
get language that the few-shot classifier was trained on and English is made.

36Indices 1 - 9 represent hyperparameter sets with a learning rate of 1e-4, indices 10-18 represent
sets with a learning rate of 1e-5 and indices 19-27 represent sets with a learning rate of 1e-6.

55

Figure 8: Result for using both the data from Mohammad et al. (2016) (black line)
and the different test sets for target languages Russian, German and Latin as dev
sets for the grid search on few-shot classification with mBERT.

For the Russian few-shot model, the maximum F1-score is reached by hyperpa-
rameter set 20 (learning rate: 1e-6, epochs: 8, batch-size: 16) for English and by
hyperparameter set 15 for Russian (learning rate: 1e-5, epochs: 16, batch-size: 32).
For a learning rate of 1e-5 (index 10-18) both models show a stable performance
clearly above the baseline.
For the German few-shot model, the maximum F1-score is reached by hyperparam-
eter set 14 (learning rate: 1e-5, epochs 16:, batch size: 16) for German. For English
it is achived by hyperparameter set 20 (learning rate: 1e-6, epochs: 8, batch size:

56

16). With one exception, all hyperparameter sets lead to a performance above the
baseline for German, especially a learning rate of 1e-5, which leads to a stable perfor-
mance at a high level. For English, the best and most stable performance is achieved
by a learning rate of 1e-6.
For the Latin few-shot model, the maximum F1-score is reached by hyperparameter
set 7 (learning rate: 1e-4, epochs: 32, batch size: 8) for Latin and by hyperparameter
set 21 (learning rate: 1e-6, epochs: 8, batch size: 32) for English. The results for
Latin are very unstable, only two hyperparameter sets lead to a performance above
the baseline. While these two results are achieved by a learning rate of 1e-4 and 1e-5
respectively, the top 3 results for English are achieved by a learning rate of 1e-6.

Figure 9: Result for using both the data from Mohammad et al. (2016) (black line)
and the different test sets for target languages Russian, German and Latin as dev
sets for the grid search on zero-shot classification with MAD-X.

57

The results for evaluating hyperparameter-tuning for MAD-X are illustrated in
Figure 9. For the English validation set, the top F1-score is reached by hyper-
parameter set 4 (learning rate: 1e-3, epochs: 50, batch size: 8), for Russian with
hyperparameter set 6 (learning rate: 1e-3, epochs: 50, batch size: 32), for German
with hyperparameter set 9 (learning rate: 1e-3, epochs: 50, batch size: 8) and for
Latin with hyperparameter set 6 (learning rate: 1e-3, epochs: 50, batch size: 8). The
results for English are stable at a low level37, while for the target languages stable
above baseline performance is reached by a learning rate of 1e-3 (one exception is
hyperparameter set 5 which leads to lower than baseline performance for Latin).
The two other learning rates that were tried out (1e-4 and 1e-5) led to performances
below the baseline for the target languages.

Figure 10: Result for using both the data from Mohammad et al. (2016) (black line)
and the different test sets for target languages Russian, German and Latin as dev
sets for the grid search on zero-shot classification with the random forest classifier.

37It should be noted here that due to the imbalance of the dataset by Mohammad et al. (2016),
the majority vote baseline for this validation set is 0.

58

The results for evaluating the hyperparameter-tuning for the random forest clas-

sifier are shown in Figure 10. The maximum F1-score for English is achieved by
hyperparameter set 8 (number of estimators: 10, max depth: None, random state:
297), for Russian by hyperparameter set 25 (number of estimators: 100, max depth:
None, random state: 83), for German by hyperparameter set 14 (number of estima-
tors: 50, max depth: 10, random state: 297) and for Latin by hyperparameter set 3
(number of estimators: 10, max depth: 5, random state: 1234). The performance of
the models is very stable across hyperparameter sets. Except for Latin, all languages
outperform the baseline. For Latin the models perform closely around baseline per-
formance, with some results being slightly lower and some slightly higher than the
baseline.

Russian German Latin

mBERT0 0.35 0.43 0.49
mBERT20 0.77 0.51 0.24
MAD-X 0.18 0.24 0.34
RF 0.08 0.12 0.24

Table 14: Spearman’s rank order correlation between the F1-scores obtained during
the grid search for the English validation set and the three target language datasets.

In Figures 7, 8, 9, and 10, the hyperparameter sets for English and the target
languages seem to correlate more or less, depending on the language and the model.
In order to quantify these first impressions, the correlation coefficient was calculated
between the source and target language results shown in the figures. We calculated
Spearman’s rank order correlation38 between the results for English and each of the
target languages for each model. For this, the results of the different hyperparameter
sets were firstly ranked according to their F1 score. Secondly, the following formula

38We use Spearman’s correlation instead of Pearson’s correlation because we are interested in
the monotonic relationship, i.e. we want to know for example whether the top results for English
are also the top results for German, independent of how much the F1 score varies.

59

was used to calculate the correlation:

ρ = 1 − 6
∑

d2i
n(n2 − 1)

,(3)

where d is the difference between each of the two ranks and n is the number of ob-
servations. Spearman’s ρ indicates the strength and the direction of the association
between two variables. A value of 1 (or -1) indicates a perfect positive (or negative)
correlation, whereas a value of zero indicates that there is no correlation to be found.
The results for calculating Spearman’s ρ can be found in Table 14. With the ex-
ception of mBERT20 and Russian, all values indicate moderate, low or negligible
positive correlation. The lowest correlation is found for the random forest classifier,
while the highest correlation is found for zero- and few-shot mBERT.

5.6.2 Using Third Language Validation Data

Originally, we tested whether or not there is a correlation between the results of the
hyperparameter-tuning for the English validation set and each of the target language
datasets. As a byproduct, Figures 7 and 9 hinted at a strong correlation between
the results for the target languages among themselves for zero-shot mBERT and
for MAD-X. Therefore, the correlation strength between all languages (in terms of
Spearman’s rank order correlation) was calculated for these two models. The results
are shown in Figures 11 and 12, respectively.
For both zero-shot mBERT and MAD-X, the correlation between English and the
target languages is the lowest of all combinations, while the correlation between
Russian and German is the highest. The correlation among all the target languages
is strongly positive with correlation values ranging from 0.79 to 0.97.

60

Figure 11: Spearman’s rank order correlation between all languages for zero-shot
classification with mBERT.

Figure 12: Spearman’s rank order correlation between all languages for MAD-X.

6 Discussion

Firstly, the results described in the previous section are discussed here with regard
to the research questions of this thesis. Secondly, conclusions that can be drawn

61

from the results that go beyond the research questions are discussed.

6.1 Answering the Research Questions

This section presents the research questions and discusses which answers can be
drawn from the results presented in Section 5. In order to do this, we take into
account only the results for the basic training set with default hyperparameters
(Table 6), the augmented training set with default hyperparameters (Table 10) and
the results from Tables 11 and 12, where the influence of shot selection is presented.
All other results are discussed in the following Section 6.2.

6.1.1 Research Question 1

Neural cross-lingual transfer methods have been shown to perform well on a wide
range of tasks (such as named entity recognition and question answering). Are they
also applicable to MD? In order to answer this question, we look at the results that
the neural models zero-shot classification with mBERT, few-shot classification with
mBERT and MAD-X achieve for the Russian, German and Latin datasets.
Russian: When using the basic training set and default hyperparameters for Rus-
sian, the zero-shot mBERT classifier obtains an F1-score that is slightly higher than
the result published by Tsvetkov et al. (2014) for their dataset: 86.7 (see Table 6,
cf. Tsvetkov et al. (2014): 86.0). Even though adding a second round of fine-tuning
with 20 German instances that are randomly sampled reduces the F1-score slightly,
using the optimal shot in our experiment gave us an F1-score of 87.3 (see Table 11).
Augmenting the basic dataset and using default hyperparameters led to an even
higher result of of 90.5 (F1) for the zero-shot mBERT model (see Table 10). This is
coming close to the results Ma et al. (2021) published for monolingual MD, where
the results reached F1-scores up to 94.45 for English. With MAD-X, a result of 86.2
was reached with the augmented dataset and default hyperparameters (see Table
10), which is also slightly higher than the result published by Tsvetkov et al. (2014).
To put it in a nutshell: for Russian, all three neural models outperform the results

62

published by Tsvetkov et al. (2014), while the zero-shot mBERT classifier that uses
the augmented training dataset and default hyperparameters is the most successful
model.
German: For German, using the basic training set and default hyperparameters
with zero-shot mBERT results in an F1-score of 77.6 (see Table 6). Köper and
Schulte im Walde (2016) report an F1-score of 77.3 for detecting non-literal verb
usage on their dataset; it has to be mentioned, though, that the results presented
here are based on a balanced version of the original dataset by Köper and Schulte im
Walde (2016), so the results should not be compared directly. Surprisingly, the per-
formance deteriorates significantly when the training dataset is augmented (accord-
ing to χ2, p<0.05). Even though the F1-score for mBERT20 is slightly lower than
for mBERT0 with a randomly sampled shot, a better shot can lead to an increased
performance up to 80.9 (F1, see Table 11). In contrast to Russian, augmenting
the training data does not lead to an improvement of the results for German for
mBERT0 and mBERT20 compared to using the basic training dataset, while for
MAD-X the performance is improved compared to the basic training dataset (75.1
instead of 52.0 (F1), see Table 10). To put it in a nutshell: all models outperform the
baseline for German. In general, zero-shot mBERT0 performs best in the standard
setup, but few-shot mBERT seems to be a promising candidate for improving the
results – if it can be found out which factors constitute a successful shot (which is
a topic to be addressed by future work).
Latin: As we just saw, the neural models perform well for Russian and German. For
Latin, however, there’s a different picture, as expected: Only mBERT0 with default
hyperparameters using the basic training set achieves a performance of 69.1 (F1,
see Table 6), which lies slightly, but according to the χ2 test (p<0.05) significantly
above the baseline (66.7). All other models perform worse than the baseline. On the
side of the neural models, the only hope of achieving better results is MAD-X: For
metaphor detection, it seems to work well with a learning rate of 1e-3. If a sensible
way of performing hyperparameter-tuning can be found, results above 70 (F1) are
possible, as can be seen in Figure 9.
To conclude: since all neural models perform considerably better than the baseline

63

for two out of three languages (and one model, MAD-X, might perform decently for
all three languages), it can be stated that the neural cross-lingual models investi-
gated in this thesis are in general applicable to MD. This is certainly the case for
languages with large amounts of pretraining data.

6.1.2 Research Question 2

There are languages where only a small amount of pretraining data is available for
large language models and/or that are typologically distant from the source language.
Can a non-neural classifier outperform neural models for these languages?
As we saw in the previous section, neural cross-lingual models in general do not
perform well for the Latin dataset. This behaviour was expected, since mBERT was
pretrained with very little data on Latin and Latin is typologically dissimilar to
English. Therefore we investigated whether or not non-neural models that rely on
conceptual features are better suited for the Latin dataset than the neural classifiers.
Indeed, the highest F1-score for the basic training dataset and default hyperparam-
eters (see Table 6) and the augmented dataset with default hyperparameters (see
Table 10) was achieved by the random forest classifier. However, the scores are rather
low, with an F1-score of 72.2 being the highest score that is reached with the random
forest classifier.
It can therefore be stated that the non-neural classifier did outperform the neural
models with default hyperparameters for the Latin dataset, but it did so on a low
level.

6.1.3 Research Question 3 and 4

It has been shown that sentences containing metaphorical language seem to be more
emotionally charged than literally used sentences (Mohammad et al., 2016). Will
adding emotion scores as conceptual features improve the performance of the non-
neural classifier?
When using the default hyperparameters and the basic training dataset for the ran-
dom forest classifier (see Table 6), VAD-scores improved the performance of the

64

Latin and the German classifier (by 3.9 and 0.9 points, respectively), but not the
performance of the Russian classifier (it dropped by 1.9 points). When using the
default hyperparameters and the augmented training dataset (see Table 10), VAD-
scores improved the performance of the Russian and German classifier slightly (0.3
and 0.5 points, respectively), but not the performance of the Latin classifier (its
performance dropped by more than 5 points). Therefore, no clear picture can be ob-
tained from these results, even though there seems to be a slight tendency indicating
that VAD-scores improve the performance in some cases. Maybe the picture would
be clearer if VAD-scores for the entire sentence were used39, which is suggested by
the following example:

(27) Den Job kannst du dir abschminken. (translation: “You can forget about the
job.”)

If an emotion score was given for the whole sentence, the valence score would be
rather low, because the message is unpleasant. However, each individual word per se
is not unpleasant: on the contrary, the English word job (which is the translation of
the German word “Job”) has a valence rating of 0.694, which is rather positive, and
abschminken would (individually) be translated as “remove makeup”, where remove
has a valence score of 0.292 and makeup of 0.74, which is on average a neutral or
slightly positive score. When using the VAD-score of the entire sentence, the score
would be a suitable indicator of metaphoricity: Example sentence (27) and other
metaphorical uses of abschminken would gain a negative valence score, while literal
usage as in sentence (28) would gain a neutral score.

(28) Den Eyeliner kannst du dir abschminken. (translation: “You can remove the
eyeliner.”)

Research has shown that mid-range abstractness ratings are unreliable, since they
exhibit a large degree of disagreement among annotators (Pollock, 2018). Will sep-
arating mid-range abstractness ratings from truly concrete and abstract ratings im-

39In order to obtain VAD-ratings for entire sentences, a classifier would have to be trained.

65

prove the performance of the non-neural classifier?
In Tables 6 (results for the basic training set with default hyperparameters) and 10
(results for the augmented training set with default hyperparameters), only in one
case did using three abstractness labels for the feature generation instead of two
result in a stronger F1-score: for the basic training dataset and the default hyperpa-
rameters the score for Latin improved from 66.7 to 68.4 (F1). Therefore, it can be
concluded that separating scores between 0.3 and 0.7 from the truly abstract scores
(0.7 to 1.0) and the truly concrete scores (0.0 to 0.3) does not lead to an improved
performance of the random forest classifier.40 These results are surprising, given that
the picture in previous literature (Pollock (2018), Frassinelli and Schulte im Walde
(2019)) clearly indicates that mid-range ratings are not reliable. One explanation
for the poor results might be that due to using 3 labels instead of 2, during training
some features such as subject_verb_cc for imageability are not seen anymore (see
also Section 5.1). Therefore they also cannot be used during inference, even though
they might occur in the test data.

6.2 Additional Insights

6.2.1 Hyperparameter-Tuning

Neural Models: Section 6.1 did not take into account the results presented in Table
9, because the hyperparameters obtained from the grid search using the English
validation dataset did not yield reliable results. As can be seen in Table 14, the
correlation between the results for the different hyperparameter sets for the English
validation set and the Russian, German and Latin datasets was moderate at best
across all models. This means that choosing the hyperparameter set that leads to
the highest F1-score on another source language dataset is not sensible, since this
seems to be a case of overfitting to the source language. This is also reflected in
the F1-scores shown in Table 9: the results for mBERT0 and mBERT20 are for the
most part worse than the baseline, the only exception being MAD-X, which in this

40Trying out different different boundaries preliminarily did not result in improved F1-scores,
but this should be investigated in a more structured way.

66

scenario shows a better performance with the hyperparameters gathered from the
English validation set compared to the default hyperparameters. However, it should
be taken into account that the results for the hyperparameter search on the English
validation set stay within a very narrow range (see Figure 9): Especially for the
first 18 indices, i.e. learning rates of 1e-3 and 1e-4, the hyperparameter sets lead
to a mean F1-score of 39.4 with a standard deviation of 1.2 points. Therefore, a
slight change (e.g. a different seed) could lead to different maximum F1-score on
the English dataset. For example, if a change in seed led to best performance of the
English validation dataset for a hyperparameter set containing a learning rate of
1e-4, a result clearly below the baseline for the target language would follow.
While the evaluation results in Section 5.6 clearly show that a target language
dataset is not suitable as a validation set, they also indicate that languages other
than the source language might serve well as validation sets. Figures 11 and 12 show
that the correlations between English and each of the three languages Russian,
German and Latin are lowest in the grid search, while the correlation for language
pairs not including English is very high: the correlation between Russian and German
in zero-shot classification has a value of 0.97 in terms of Spearman’s ρ. Even though
the correlation for the pairs Latin-Russian (0.87) and Latin-German (0.9) are lower
than the correlation for Russian-German, the two correlation scores are striking, as
the Latin dataset stems from a different domain than the other two datasets.
It would be interesting to investigate whether this pattern also occurs for other high-
and low-level tasks, such as question answering, part of speech tagging, and so on.
In this case, other languages should also be taken into account, so that it is possible
to describe which languages are suited best as hyperparameter-tuning pairs.
In the current setup, the results obtained during the hyperparameter search (even
the highest ones seen across all hyperparameter sets, i.e. zero-shot mBERT: 85.5 for
Russian, 77.4 for German, 71.2 for Latin, MAD-X: 84.1 for Russian, 76.0 for German,
74.4 for Latin) are – with the exception of Latin – lower than the results obtained
with default hyperparameters on the basic training dataset. Therefore, if more tasks
and more languages are tried out, also more hyperparameters need to be taken into
account, so that the hyperparameters especially for mBERT0 and mBERT20 can

67

actually outperform the default hyperparameters. MAD-X, on the other hand, is a
promising candidate for performing MD for Latin: if we had used Russian as the
validation set, we would have picked hyperparameter set 6 for the target language
Latin, and this would have given us a score of 74.4 (F1) for Latin, which is the
highest score achieved for Latin across all experiments. Further experiments have
to confirm, though, that using data from a language different from the source and
target language as validation data is a valid option.
Random Forest Classifier: Figure 10 shows that the results for using different
hyperparameter sets only vary slightly and that no pattern is discernible. As the
best results for the grid search overall (Russian: 80.6, German: 71.6, Latin: 68.9) are
only slightly higher for German and Latin and lower for Russian, while using the
augmented dataset leads to better results for the vanilla classifier in all languages,
a recommendation would be to use a larger training dataset instead of performing
hyperparameter-tuning for this classifier if possible.

6.2.2 Language Typology and Amount of Pretraining Data

Neural Models: Lauscher et al. (2020) showed that mBERT and other multilin-
gual transformer models perform well on a number of tasks in languages with large
amounts of pretraining data and between languages that are typologically close.
Since more German than Russian data was used for pretraining mBERT (see Table
1) and since German and the source language English are typologically more sim-
ilar than English and Russian, we assumed that the models would show a better
performance on the German dataset than on the Russian dataset. However, this
assumption was not confirmed by the experiments in this thesis.
One assumption on why models perform so well on the Russian dataset was that
the German dataset is linguistically more diverse than the Russian dataset. While
for the Russian dataset, the metaphoricity of the verb is clear by simply looking at
the subject and/or object of the verb, this is not the case for the German dataset.
Often, the verb to be classified either occurred without subject and object, or the
subject or object were not suitable to make a decision about the metaphoricity of
the verb, because they were pronouns, for example. Therefore, we transformed the

68

Latin and German datasets in such a way that they were more comparable to the
Russian dataset (see Section 5.5). The more comparable datasets led to higher re-
sults for German and Latin (see Table 13) than the results from the previously used,
unreduced datasets (see Table 6). However, the reduced version still shows a better
model performance for Russian than for German and a better performance for Ger-
man than for Latin.
As mentioned before, it is not surprising that the performance of the neural classi-
fiers on the Latin dataset is rather weak: the language stems from the Italic branch
of the Indo-European language family, whereas English belongs to the Germanic
branch. This difference is marked by the fact that Latin is a synthetic language that
not only relies heavily on word inflection, but also has a rather free word order,
whereas English is an analytic language where hardly any inflections exist, but word
order is rather fixed. In addition, the Latin pretraining data for mBERT consisted
of roughly 5% of the amount of Russian or German pretraining data (see Table 1),
and the domain (religion) is very different from the domain of the training data (web
domain) and pretraining data (knowledge domain: Wikipedia).
Russian is also a synthetic language. English, however, contains more loan words
from Latin than from Russian as well as sharing the same script with Latin. There-
fore, – if language similarity alone was the deciding factor – Latin would perform
better. Here it can be seen that the amount of pretraining data and the domain
plays a crucial role.
However, why German (not as synthetic as Russian and Latin, same branch of the
language family as English, same script, same domain) performs worse than Rus-
sian, even in a linguistically comparable dataset, cannot be explained by the results
obtained so far. Therefore, a qualitative analysis of the results obtained by the
best-performing neural classifier (mBERT0 with default hyperparameters and basic
training dataset) for German follows in Section 7.1.
Non-Neural Models: As mentioned before, weak performance of the neural mod-
els on the Latin dataset was expected. Why the scores for Latin are so low for the
non-neural model, however, is unclear: as the random forest model with conceptual
features takes lemmatized subjects, verbs and objects as basis for the features, lan-

69

guage characteristics such as word order or inflections should not influence model
performance. Therefore, we performed a qualitative analysis of the results for Latin
in Section 7.2.

7 Qualitative Analyses

The following sections present the results of a qualitative analysis. For that, the
classification results for Latin and German were analyzed manually in order to find
possible reasons for misclassification. For Russian, only a very shallow analysis was
conducted due to lack of knowledge of the Russian language. For each language, the
best-performing model was used to produce the results to be analyzed.

7.1 German

For the qualitative analysis, possible sources of errors were identified by looking
at the predictions of the best performing model for German, namely the zero-shot
mBERT with default hyperparameters and basic training dataset.
One hypothesis as to why the models perform unexpectedly mediocre on the German
dataset is that the target words consist of “computationally challenging” (Köper and
Schulte im Walde, 2016) particle verbs: they consist of a base verb (e.g. schminken)
and a particle (e.g. ab-), they are highly productive and often ambiguous (Köper
and Schulte im Walde, 2016), and the particle is in many syntactical constructions
separated from the base verb, as in the following sentence:

(29) Der Pfarrer legte seinen ernsten Gesichtsabdruck ab. (translation: “The vicar
removed his serious expression.”)

If the language model computes a representation for the [MASK]-token in

(30) “Der Pfarrer [MASK] seinen ernsten Gesichtsabdruck ab.” (translation: “The
vicar [MASK] his serious expression.”),

70

the gap is probably filled with a representation close to legte. Afterall, the gap needs
to be filled with another particle verb with the particle ab- and there are hardly
any other words that fit here (except for maybe abändern). The representation
calculated for the masked token is therefore probably very close to the original
word, and this leads to a high similarity of the representations of the masked and
unmasked sentence. A high similarity in turn leads the model to classify that both
sentences appear in the same context, so it falsely classifies the target word as literal.
To compare: in the English translation of the sentence, removed can be replaced by
many alternatives, such as lost, altered, or even noticed or dismissed, because it is not
constricted by a particle. Therefore, the representation of the [MASK]-token would
not be as close to the representation of the target word as in German. Russian also
does not have particle verbs, so it would behave similarly to English and therefore
be easier to classify for MD41.
As the particle verbs consist of a base verb and a particle, the particle verbs are
tokenized into at least two subtokens, while the English target verbs for the most
part consist of only one subtoken. Therefore, the assumption was that the number of
subtokens may be one reason why the models perform worse for the German dataset
than for the Russian one. However, the mean number of subtokens for the German
dataset is 3.1, while for the Russian one it is only slightly lower (2.9; for English:
1.49). The richness of Russian morphology and inflection seems to outweigh the fact
that each target word in the German dataset consists of one extra subtoken for
the particle. Since both languages show similar numbers of subtokens for the target
word, the number of subtokens is not a deciding factor for misclassifications.
Among the misclassified test instances were 11 instances where unusual proper

nouns preceded or followed the target words within a window of 2 words. Here are
two examples42:

(31) Wir gedachten, Euch am Mückenflusse anzutreffen. (translation: “We planned
41In order to confirm the hypothesis that target words with separated particles (e.g. legte ab)

are harder to classify than target words that consist of only one word (e.g. ablegen), the dataset
needs to be reduced to such instances where no separations occur. This will be left for future work.

42A list of all misclassified instances with unusual proper nouns can be found in Appendix A.10.

71

to meet you at the Mosquito River.”)

(32) Möchte dem Fahrzeug einen GP Geniussport 80 R mit Speed 12 T einpflanzen.
(translation: “Want to implant a GP Geniussport 80 R with Speed 12 T into
the vehicle.”)

In order to find out whether the unusual proper nouns cause misclassifications,
the proper nouns were replaced by common nouns (sentence 1: Mückenfluss became
Fluss, sentence 2: GP Geniussport 80 R mit Speed 12 T became einen neuen Motor)
and then the classification with zero-shot mBERT was repeated (for the alterations
on all eleven instances see Appendix A.10). With the original unusual proper nouns
the F1-score was 0.0, as no instance was classified correctly. For the instances with
the replacements, an F1-score of 53.3 was reached, because 4 out of 11 instances
were classified correctly. This is a slight indication that unusual proper nouns might
cause errors. It could be that they distort the representation of the masked token,
since the language model has never seen these nouns before and therefore it cannot
decide which word might follow or precede (i.e. which representation is valid for the
[MASK]-token).
Another hypothesis as to why the models perform worse on the German dataset
than on the Russian dataset is that the German dataset contains many idioms. For
example:

(33) Da wird der Teufel mit dem Beelzebub ausgetrieben. (translation: “One evil
is replaced by another.”)

Interestingly, highly similar variants of this idiom are classified inconsistently: While
the target word in sentence (33) was misclassified as being literal, it was classified
as non-literal in the following sentence:

(34) Denn die Elite und die USA werden den Teufel nicht mit einem Beelzebub
austreiben. (translation: “For the elites and the U.S.A. will not replace one
evil with another.”)

72

In total, 3 out of 7 sentences that contain the idiom den Teufel mit dem Beelzebub
austreiben were classified incorrectly.
Other examples for idiomatic verb usage or highly conventionalized expressions with
inconsistent classification results are the following:

(35) Dampf ablassen (translation: “release steam”)

→ 5 classified correctly, 4 incorrectly

(36) Sendung ausstrahlen (translation: “broadcast a show”)

→ 6 classified correctly, 15 incorrectly

If the language model was not performing MD, but filling the gap that the [MASK]-
token leaves, it would fill the gap with a word that often appears together with
the words of the context. Therefore, in example sentence (33), the gap is filled with
ausgetrieben, because this verb is a constituent of the idiom. It could therefore be
expected that all idioms are classified as literal. However, the model sometimes clas-
sifies the instance as literal and sometimes it does not, so it can differentiate idioms
from clearly non-literal word usage, but not reliably. To test whether the classifier
indeed struggles with classifying idioms, the dataset from Ehren et al. (2020) was
used for comparison. It is a dataset that consists of sentences from 34 preselected
verbal idioms. For each idiom the information is given whether the idiom is used
literally or non-literally; the details of the dataset and its preprocessing is described
in detail in Appendix A.8. If the classifiers perform poorly on this dataset, it can
be concluded that classifying idioms is difficult for our models. Therefore, all neural
models were tried out on the dataset by Ehren et al. (2020). In order to make this
dataset comparable to the dataset by Köper and Schulte im Walde (2016), it was
balanced and reduced to 2000 instances. The result for the different neural models
is found in Table 1543. For mBERT0, we used the basic dataset and default hyper-

43The non-neural models were not tried out because subject and object are not marked in the
dataset and because the main question that we are trying to answer is why the neural models
perform worse for German than for Russian.

73

German (Ehren) German (Koeper)

majority vote 0.67 0.67

mBERT0 72.1 77.6
mBERT20 76.2 76.6
MAD-X 66.4 75.1

Table 15: F1-scores for detecting non-literal usages in verbal idioms in the dataset by
Ehren et al. (2020) using the default hyperparameters and basic training set for zero-
shot classification with mBERT and default hyperparameters with the augmented
training dataset for few-shot mBERT and the MAD-X classifier. For comparison,
the F1-scores for the dataset from Köper and Schulte im Walde (2016) from the
corresponding experiments are given in gray.

parameters. For mBERT20 and MAD-X, we used default hyperparameters as well,
but with the augmented training dataset, because using the basic training dataset
led to results below the baseline for the original German dataset (see Table 6).
As can be seen in Table 15, across all models the results for the dataset by Ehren

et al. (2020) are lower than the results for the dataset by Köper and Schulte im Walde
(2016). This slightly indicates that the neural methods for word-based metaphor de-
tection do not work as well on idioms as they do on less conventionalized metaphors,
especially since the verbs to be classified as literal or non-literal here (liegen, ste-
hen, ziehen, etc.) are less computationally challenging than the particle verbs in the
dataset by Köper and Schulte im Walde (2016).
Another weakness of the classifier seem to be instances, where the target verb is part
of a larger, extensively described metaphor, as in the following 4 sentences:

(37) Das Volk wird gemolken, ja der letzte Tropfen wird noch ausgesaugt. (trans-
lation: “The people are milked, even the last drop is sucked out of them.”)

(38) Aber ob man der Lufthansa so das Wasser abgräbt? (translation: “But does
this take the bread out of Lufthansa’s mouth?”)

74

(39) In der Gerüchteküche wurde tagelang deftig aufgekocht. (translation: “For
days the gossip factory was working overtime.”)

(40) Während die neuen Gegner Chris Pine und Christoph Waltz den Jungs
manche Sprosse der Karriereleiter absägen. (translation: “While the new
opponents Chris Pine and Christoph Waltz saw the rung off the boys’ career
ladder.”)

All 4 sentences have in common that not only the target word is used metaphorically,
but most words of the sentence. For example, in sentence (39), only the partial word
Gerüchte- determines that a metaphor is used here, while all other words belong to
a richly illustrated metaphor. Also, all 4 sentences were classified as literal with the
gold label being non-literal. Apparently, too little evidence hinted at the non-literal
verb usage in these sentences.
From 1792 sentences in the balanced dataset that we used for the experiments in
this thesis, 398 were misclassified. Potential sources of errors were unusual nouns
(responsible for 11 misclassifications), idioms (responsible for 22 misclassifications)
extensively described metaphor (responsible for 4 misclassifications). All in all, only
for 37 out of 398 misclassifications, a possible explanation was found. This means
that the vast majority of instances were misclassified either due to the structural
difficulty of particle verbs or the reasons for the misclassifications still have to be
found.
This qualitative analysis hints at some difficulties (i.e. difficulty of particle verbs,
unusual proper nouns, extensively described metaphors, idioms) which might make
it harder for the models to classify the German dataset than the Russian dataset,
however, it has to be analyzed by a Russian speaker whether these difficulties are
not found in the Russian dataset, too.

7.2 Latin

It is clear why the mBERT-based models do not perform well for Latin: pretraining
data for mBERT was very limited, Latin stems from a different branch of the Indo-

75

European language family than the source language English, and the dataset covers
a different domain than the pretraining and training data for mBERT. However,
the random forest classifier is language agnostic (Tsvetkov et al., 2014), so it should
perform clearly better than the baseline. Whereas for German in many cases it is
not clear why misclassifications happened, for Latin in most cases it is clear. Out of
the 100 instances in the dataset, 37 were misclassified. Only for 10 of the misclas-
sifications, no obvious source for the error was found. All other misclassifications
happend because of one of the following reasons:

• The most common source for misclassification was that there was no subject
or object dependent on the target verb. Therefore, features could only be
extracted for the verb, which does not yield enough clues for the classifier to
decide whether verb usage is literal- or non-literal (17 sentences).

• Secondly, the clues that hinted at metaphoricity were found beyond the subject
or object (6 sentences).

• Thirdly, for 4 sentences individual reasons for the errors were found:

(41) Consepulti enim sumus cum illo per baptismum in mortem: ut quo-
modo Christus surrexit a mortuis per gloriam Patris, ita et nos in
novitate vitæ ambulemus. (translation from American Standard Ver-
sion in Logos: We were buried therefore with him through baptism
into death: that like as Christ was raised from the dead through the
glory of the Father, so we also might walk in newness of life.)

→ The word surgere can mean “to get up” or – in this case – “to rise from the
dead”. Without knowing further context, the classifier could not disambiguate
the word meaning here.

(42) Relinque ibi munus tuum ante altare, et vade prius reconciliari fratri
tuo: et tunc veniens offeres munus tuum. (translation from American
Standard Version in Logos: Leave there thy gift before the altar, and

76

go thy way, first be reconciled to thy brother, and then come and offer
thy gift.)

→ The word munus has multiple meanings, the majority of them being ab-
stract: gift, function, present, service, spectacle, duty, task, burden, favour.
Therefore, averaging the features for the different translations probably led
to a representation of the word that was rather abstract, which is why the
classifier labelled it as non-literal instead of literal.

(43) Et ego dico tibi, quia tu es Petrus, et super hanc petram aedifi-

cabo ecclesiam meam, et portæ inferi non praevalebunt adversus eam.
(translation from American Standard Version in Logos: “And I also say
unto thee, that thou art Peter, and upon this rock I will build my
church; and the gates of Hades shall not prevail against it.”)

→ Ecclesia is not meant literally here, but in the sense of church community.
The classifier used it as a concrete word.

(44) Petrus vero ad illos: Poenitentiam, inquit, agite, et baptizetur un-
usquisque vestrum in nomine Jesu Christi in remissionem peccato-
rum vestrorum: et accipietis donum Spiritus Sancti. (translation from
American Standard Version in Logos: “And Peter said unto them, Re-
pent ye, and be baptized every one of you in the name of Jesus Christ
unto the remission of your sins; and ye shall receive the gift of the
Holy Spirit.”)

→ The word donum is meant figuratively here, even though it is rated as
concrete.

• As mentioned before, for 10 sentences no obvious reason for the misclassifica-
tion was found. The sentences are listed in Appendix A.10.2.

Removing the first and second source for errors led to an F1-score of 73.3 instead

77

of 72.2 (see Table 13). The improvement made in the F1-score is little because the
dataset only consisted of 50 instances afterwards; the instances with errors due to
individual reasons and the errors where no source could be found made up a larger
percentage.
All in all it can be stated that the random forest classifier with conceptual features
shows great potential for Latin datasets where the metaphoricity of the target word
depends only on the (existing) dependent subject or object, as is the case for the
Russian dataset.

7.3 Russian

For Russian, the results achieved with mBERT0 with default hyperparameters and
augmented training data were very high (F1: 90.5), so very few errors were pro-
duced. These errors could not be analyzed due to a lack of knowledge of the Russian
language. One hypothesis as to why the models perform so well on Russian is that
the sentences in the Russian dataset were the shortest with an average of 9 tokens
per sentence. The average sentence length for the German dataset is 13 tokens, and
for Latin it is 22 tokens (see Section 3).

8 Conclusion

While the focus of previous research has been on MD in English, this thesis has
shown that MD can also be successfully carried out cross-lingually. The experiments
confirmed that the cross-lingual neural models mBERT0, mBERT20 and MAD-X do
not only yield state-of-the-art results for standard tasks such as question answering
or part-of-speech tagging, but also for MD (see research question 1).
As expected, the neural classifiers performed well on the target languages Russian
and German, but not on Latin. This is mainly due to the fact that mBERT, which
is the basis for all neural models used in this thesis, was pretrained on comparably
little Latin data. However, the non-neural random forest classifier with vector space

78

model and conceptual features was able to outperform the neural models with de-
fault hyperparameters for Latin, even though the results were still at a low level (see
research question 2).
Adding emotion features and treating mid-range abstractness and imageability rat-
ings differently from the more reliable concrete and abstract ratings did not – in
contrast to what was expected – boost the performance of the original classifier by
Tsvetkov et al. (2014) (see research questions 3 and 4).
Even though the neural models outperformed the baseline for both the Russian and
the German dataset, it is not clear why across all experiments they performed bet-
ter for Russian than for German. A qualitative analysis revealed that this might be
due to the inherent difficulty of particle verbs, unusual proper nouns, extensively de-
scribed metaphors, and idioms that occur in the German dataset. Also, the fact that
the Russian sentences are generally shorter than the German ones probably boosts
performance on the Russian dataset. However, for the majority of misclassifcations
no obvious reason could be found; here, XAI methods like SHAP (Lundberg and
Lee, 2017) would be beneficial in order to find out why the models perform worse
on the German dataset than on the Russian one.
Finally, it was shown that in most cases the misclassifications of the random forest
classifier in the Latin dataset could be explained (they are mostly due to the chal-
lenging linguistic nature of the Latin dataset, where subjects and objects are missing
or where the metaphoricity of the target word is determined by words beyond the
subject and object). This speaks in favor of the random forest classifier, which would
probably perform better on a Latin dataset that is linguistically more comparable
to the Russian dataset.
When trying to find the optimal model for each of the target languages, a difficulty
had to be overcome: hyperparameter-tuning seemed to be needed for good results
(especially for MAD-X), however, no validation data for the target languages was
available. Therefore it was tried out whether performing hyperparameter-tuning on
source language material produced decent results. This procedure seems to lead to
overfitting on the source language; however, it was found out that using a dataset
from a language different from the source and target language (i.e. from a third

79

language) as validation data can lead to finding effective hyperparameters for the
target language.
For future application of the models, the best performing model for each of the
target languages is listed as follows:

• For Russian, zero-shot mBERT with default hyperparameters and an aug-
mented training dataset worked best.

• For German, zero-shot mBERT with default hyperparameters and the basic
training dataset worked best. However, if more is found out about which shots
lead to good results, few-shot mBERT with the basic training dataset might
be able to outperform zero-shot mBERT.

• For Latin, the random forest classifier with vector space representations and
conceptual features worked best. However, – if a suitable validation dataset
is available – MAD-X is also a promising candidate for MD classification in
Latin. If a successful hyperparameter set is found, MAD-X performs well on
Latin. Then, this neural approach outperforms the random forest classifier and
it is also more efficient, as the preprocessing for the random forest classifier
(i.e. finding lemmatized subjects, verbs and objects) is laborious, and finding
a dictionary that yields sensible one-to-many translations is difficult.

9 Future Work

In future work it would be interesting to compare the performance of the previ-
ously described VSM used for the random forest classifier to a method by Vulić
and Moens (2013), which bootstraps a bilingual vector space based on two monolin-
gual non-parallel corpora (see Section 2.2). One advantage of this approach is that
there is no need to use bilingual dictionaries to transfer, for example, supersense-
and abstractness-ratings during inference, which is beneficial because one-to-many
translations are hard to find, especially for low-resource languages, which benefit
most from the non-neural vsm models (see Appendix A.5).

80

Different shots for mBERT 20 led to vastly different results. There should be an
analysis of which factors determine whether or not a shot improves the performance
of the model compared to zero-shot classification.
In order to avoid an analysis of the shot-selection and also to avoid fine-tuning hy-
perparameters, a strategy by Schmidt et al. (2022) could be attempted: the authors
propose to replace few-shot classification with mBERT by joint fine-tuning on source
and target language data, where the loss L is defined as a weighted sum of the the
source and target language losses:

L = δLsource + (1 − δ)Ltarget(4)

Here, the hyperparameter δ determines “the relative weight between the two losses”.
They show that this procedure leads to more robust models that are not in need of
shot-selection or hyperparameter-tuning (at least for the tasks they considered, for
example for part-of-speech tagging and natural language inference).
For scenarios where only zero-shot classification is possible, because absolutely no
additional training material is available, it would be interesting to gain deeper in-
sights into hyperparameter-tuning using data from a language different from the
source and target language as validation data. More tasks should be tried out, and
the suitability of language pairs in this setup should also be explored. These insights
could prove fruitful especially for MAD-X, where the only well-performing hyperpa-
rameters for Latin could be found with the help of hyperparameter-tuning.
As mentioned before, to understand why German performed worse than Russian
across all experiments, the neural blackbox models should be made more transpar-
ent with the help of post-hoc explanations such as SHAP (Lundberg and Lee, 2017).

81

References

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse
fine-tuning for cross-lingual transfer. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1778–1796, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.acl-long.125. URL https://aclanthology.org/

2022.acl-long.125.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with
Python. O’Reilly Media, Inc., 1st edition, 2009. ISBN 0596516495.

Julia Birke and Anoop Sarkar. A clustering approach for nearly unsupervised recog-
nition of nonliteral language. In 11th Conference of the European Chapter of the
Association for Computational Linguistics, pages 329–336, Trento, Italy, April
2006. Association for Computational Linguistics. URL https://aclanthology.

org/E06-1042.

Yo Joong Choe, Kyubyong Park, and Dongwoo Kim. word2word: A collection of
bilingual lexicons for 3,564 language pairs. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 3036–3045, Marseille, France, May
2020. European Language Resources Association. ISBN 979-10-95546-34-4. URL
https://aclanthology.org/2020.lrec-1.371.

Verna Dankers, Marek Rei, Martha Lewis, and Ekaterina Shutova. Modelling the
interplay of metaphor and emotion through multitask learning. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 2218–2229, Hong Kong, China, November 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-1227. URL
https://aclanthology.org/D19-1227.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Pro-

82

ceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Erik-Lân Do Dinh, Steffen Eger, and Iryna Gurevych. One size fits all? A simple
LSTM for non-literal token and construction-level classification. In Proceedings of
the Second Joint SIGHUM Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Literature, pages 70–80, Santa Fe, New
Mexico, August 2018. Association for Computational Linguistics. URL https:

//aclanthology.org/W18-4508.

Rafael Ehren, Timm Lichte, Laura Kallmeyer, and Jakub Waszczuk. Supervised
disambiguation of German verbal idioms with a BiLSTM architecture. In Proceed-
ings of the Second Workshop on Figurative Language Processing, pages 211–220,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.figlang-1.29. URL https://aclanthology.org/2020.figlang-1.29.

Manaal Faruqui and Chris Dyer. Improving vector space word representations us-
ing multilingual correlation. In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, pages 462–471,
Gothenburg, Sweden, April 2014. Association for Computational Linguistics. doi:
10.3115/v1/E14-1049. URL https://aclanthology.org/E14-1049.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books,
1998.

Diego Frassinelli and Sabine Schulte im Walde. Distributional interaction of con-
creteness and abstractness in verb–noun subcategorisation. In Proceedings of the
13th International Conference on Computational Semantics - Short Papers, pages
38–43, Gothenburg, Sweden, May 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/W19-0506. URL https://aclanthology.org/W19-0506.

83

Maximilian Köper and Sabine Schulte im Walde. Distinguishing literal and non-
literal usage of German particle verbs. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 353–362, San Diego, California, June 2016.
Association for Computational Linguistics. doi: 10.18653/v1/N16-1039. URL
https://aclanthology.org/N16-1039.

Zoltan Kövecses. Metaphor: A Practical Introduction. Oxford University Press,
2010. ISBN 9780199705313.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and Goran Glavaš. From zero to hero:
On the limitations of zero-shot language transfer with multilingual Transformers.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4483–4499, Online, November 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.363. URL https:

//aclanthology.org/2020.emnlp-main.363.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/

file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

Weicheng Ma, Ruibo Liu, Lili Wang, and Soroush Vosoughi. Improvements and
extensions on metaphor detection. In Proceedings of the 1st Workshop on Under-
standing Implicit and Underspecified Language, pages 33–42, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.unimplicit-1.5.
URL https://aclanthology.org/2021.unimplicit-1.5.

Saif Mohammad. Obtaining reliable human ratings of valence, arousal, and domi-
nance for 20,000 English words. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 174–

84

184, Melbourne, Australia, July 2018. Association for Computational Linguistics.
doi: 10.18653/v1/P18-1017. URL https://aclanthology.org/P18-1017.

Saif Mohammad, Ekaterina Shutova, and Peter Turney. Metaphor as a medium for
emotion: An empirical study. In Proceedings of the Fifth Joint Conference on Lex-
ical and Computational Semantics, pages 23–33, Berlin, Germany, August 2016.
Association for Computational Linguistics. doi: 10.18653/v1/S16-2003. URL
https://aclanthology.org/S16-2003.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebas-
tian Ruder, Kyunghyun Cho, and Iryna Gurevych. AdapterHub: A framework for
adapting transformers. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations, pages 46–54, Online,
October 2020a. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.7. URL https://aclanthology.org/2020.emnlp-demos.7.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. MAD-X: An
adapter-based framework for multi-task cross-lingual transfer. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 7654–7673, Online, November 2020b. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.emnlp-main.617. URL https:

//aclanthology.org/2020.emnlp-main.617.

Lewis Pollock. Statistical and methodological problems with concreteness and other
semantic variables: A list memory experiment case study. Behavior Research
Methods, 50:1198 – 1216, 2018.

Lior Rokach and Oded Maimon. Data mining with decision trees - theory and appli-
cations. 2nd edition. In Series in Machine Perception and Artificial Intelligence,
2014.

Fabian David Schmidt, Ivan Vulić, and Goran Glavaš. Don’t stop fine-tuning:
On training regimes for few-shot cross-lingual transfer with multilingual lan-
guage models. In Proceedings of the 2022 Conference on Empirical Methods

85

in Natural Language Processing, pages 10725–10742, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.736.

Roland Schäfer and Felix Bildhauer. Building large corpora from the web using
a new efficient tool chain. In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Mehmet UÄŸur DoÄŸan, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceed-
ings of the Eight International Conference on Language Resources and Evaluation
(LREC’12), pages 486–493, Istanbul, Turkey, 2012. European Language Resources
Association (ELRA). ISBN 978-2-9517408-7-7. URL http://rolandschaefer.

net/?p=70.

Ekaterina Shutova and Simone Teufel. Metaphor corpus annotated for source -
target domain mappings. In Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10), Valletta, Malta, May 2010.
European Language Resources Association (ELRA).

Yulia Tsvetkov, Elena Mukomel, and Anatole Gershman. Cross-lingual metaphor
detection using common semantic features. In Proceedings of the First Workshop
on Metaphor in NLP, pages 45–51, Atlanta, Georgia, June 2013. Association for
Computational Linguistics. URL https://aclanthology.org/W13-0906.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman, Eric Nyberg, and Chris Dyer.
Metaphor detection with cross-lingual model transfer. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 248–258, Baltimore, Maryland, June 2014. Associ-
ation for Computational Linguistics. doi: 10.3115/v1/P14-1024. URL https:

//aclanthology.org/P14-1024.

Peter Turney, Yair Neuman, Dan Assaf, and Yohai Cohen. Literal and metaphorical
sense identification through concrete and abstract context. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, pages

86

680–690, Edinburgh, Scotland, UK., jul 2011. Association for Computational Lin-
guistics. URL https://aclanthology.org/D11-1063.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, pages 5998–6008, 2017.

Ivan Vulić and Marie-Francine Moens. A study on bootstrapping bilingual vector
spaces from non-parallel data (and nothing else). In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pages 1613–
1624, Seattle, Washington, USA, October 2013. Association for Computational
Linguistics. URL https://aclanthology.org/D13-1168.

Joshua R. Westbury, Kris Lyle, Jimmy Parks, and Jeremy Thompson. The Lexham
Figurative Language of the Bible Glossary. Lexham Press, 2016.

Michael Wilson. Mrc psycholinguistic database: Machine-usable dictionary, version
2.00. Behav. Res. Methods Instrum. Comput., 20(1):6–10, January 1988.

87

A Appendix

A.1 Abbreviations

The following abbreviations are used in this thesis:

MD metaphor detection

mBERT0 zero-shot multilingual BERT

mBERT20

few-shot multilingual BERT
(target language fine-tuning
with 20 instances
taken from the test data)

VAD valence, arousal, dominance

en English

ge German

ru Russian

abstr_imag_3
abstract, neutral, concrete
(Ginitract, concrete)

VSM vector space model

MLM masked language modelling

NSP next sentence prediction

Table 16: Abbreviations used in the thesis.

A.2 Terminology: Metaphorical, Non-Literal and Figurative

Table 17 shows that the terms metaphorical, non-literal and figurative are used
interchangeably in the papers that describe the datasets that we use in this thesis:
either the papers avoid the term metaphorical and use the broader terms non-
literal or figurative, or they use the term metaphorical, but mention that this term
is not clear-cut and/or list instances which are not metaphors (but, for example,

88

personifications) in their dataset. Originally, the focus of this thesis was supposed
to be on metaphors, but as the different datasets contain other forms of figurative
language, too, classification using the given datasets always involves other forms of
figurative language as well. We therefore also use the terms non-literal and figurative
in addition to metaphorical.

dataset terminology comments

Tsvetkov et al. (2013) metaphorical

They mention in the paper
that “there is no clear-cut
semantic distinction between
figurative and metaphorical
language.” They also use
personifications in their dataset
(see example sentence (2)).

Köper and Schulte im Walde (2016) non-literal

Lexham by Westbury et al. (2016) figurative

They mention that they
include metaphors, similes
and metonymies, “as
well as other types of
non-literal expressions.”

.

Mohammad et al. (2016) metaphorical

The dataset includes figurative
language that might be
interpreted not as a metaphor,
but, for example, as
a personification (as in:
“his high fever attested
to his illness”).

Table 17: Terminology used in the different datasets.

89

A.3 Reproducibility of Results

The results presentend in this thesis were obtained by using the GPUs on the servers
froschweihe and strauss. If the experiments are repeated on the same server, the
results are entirely reproducible. However, if the experiments that were conducted
on froschweihe are repeated on strauss, the results slightly differ, even if the same
hyperparameters and the same seed is used. Therefore it is to be expected that slight
changes also occur when the code is run on other servers.
Since some experiments have been carried out on froschweihe and some on strauss,
the computing infrastructure of both servers is given here:

• strauss : The server contains an AMD EPYC 7542 32-Core Processor with 64
threads and NVIDIA GeForce RTX 2080 Ti GPUs.

• froschweihe: The server contains an AMD EPYC 7282 16-Core Processor with
32 threads and NVIDIA RTX A6000 GPUs.

A.4 WordPiece

Word Piece is an algorithm that splits an input string into subword tokens from a
predefined vocabulary. In order to arrive at such a vocabulary of subword tokens,
the following procedure is carried out: As a first step, the vocabulary is initialized
with individual characters found in the training data. These are used as the first
tokens. Then the following steps are carried out until the desired vocabulary size is
reached:

1. A score is computed for each token pair in the vocabulary with the following
formula (p stands for “part”):

score = (freq_of_pair)/(freq_of_first_p× freq_of_second_p)(5)

2. The pair with the highest score is merged and added to the vocabulary.

90

In the formula, the frequency of a pair (e.g. unable) is divided by the product of its
parts, namely the product of the frequency of un and the frequency of ##able. Even
though unable occurs frequently in the vocabulary, it’s individual parts appear very
often in other combinations, too (e.g. in unholy). Therefore the word is not merged.
Only a word where its parts do not often appear individually is merged, as for
example with the word computer, where com might appear quite frequently, but
puter does not.

A.5 Bilingual Dictionaries

The options presented in Table 18 were tried out to find an electronic bilingual dictio-
nary, which produces one-to-many translations (for example: Fliege – “fly, bowtie”).
The translations produced by Word2Word are not perfect, as can be seen from the
following example:

(45) abschminken – ‘makeup’, ‘make-up’, ‘remove’, ‘goodbye’, ‘kiss’

On the one hand, no direct translation of abschminken was given, the two words
remove and makeup are presented separately. On the other hand, unrelated words
like kiss and goodbye are listed as translations. There are translations, that work
rather well, for example:

(46) Vorsatz – ‘resolution’, ‘premeditation’, ‘intent’, ‘premeditated’, ‘intention‘

Yet even in this sentence the word premeditated is not a correct translation. Also,
many translations are missing, for example the word Zecke (“tick”).
However, Word2Word was used in the thesis because it produces the best results for
our purposes among the different solutions that were tried out.
In addition to these options, there are scrapers available as python packages, but
they were not considered because their output is illegal.

91

Advantages Disadvantages

Oxford Dictionary API
python-friendly (API via requests
module in Python)

No Latin, no translations to
individual words, but translations
of entire example sentences.

DeepL API
Python-friendly (API via
requests module in Python)

One-to-one translations only.

Google Translate API
Python-friendly (API via
requests module in Python)

One-to-one translations only.

Pons API one-to-many translations
Not python-friendly,
translations are mixed
with example sentences.

WordReference API
API keys are no longer
handed out, so it
stopped working.

Marian / FairSeq
Can in theory produce the top k
translations for a word.

Does not work well
without context.

Word2Word one-to-many translations

Translations are often
not sensible: книга
is translated as
’book’, ’Book’, ’favorite’,
’open’, ’read’, even though
only ’book’ is correct.

dict.cc
Easy to download,
mostly one-to-many translations,
available for Latin

Translations are mixed
with example sentences,
very hard to
preprocess. For Latin,
highly frequent words
are missing and
there are mostly
one-to-one-translations.

Table 18: Table presenting different options that were tried out in order to find a
dictionary that produces one-to-many translations.

92

A.6 Hyperparameter Sets

A.6.1 mBERT0 and mBERT20: Index to Hyperparameter Set Mapping

During the hyperparameter search described in Section 5.2, the sets of hyperparam-
eters listed in Table 19 were used for mBERT0 and mBERT20:

index learning rate epochs train batch size

1 1e-4 8 8
2 1e-4 8 16
3 1e-4 8 32
4 1e-4 16 8
5 1e-4 16 16
6 1e-4 16 32
7 1e-4 32 8
8 1e-4 32 16
9 1e-4 32 32

10 1e-5 8 8
11 1e-5 8 16
12 1e-5 8 32
13 1e-5 16 8
14 1e-5 16 16
15 1e-5 16 32
16 1e-5 32 8
17 1e-5 32 16
18 1e-5 32 32
19 1e-6 8 8
20 1e-6 8 16
21 1e-6 8 32
22 1e-6 16 8
23 1e-6 16 16
24 1e-6 16 32
25 1e-6 32 8
26 1e-6 32 16
27 1e-6 32 32

Table 19: Index to hyperparameter set mapping for zero- and few-shot mBERT.

93

A.6.2 MAD-X: Index to Hyperparameter Set Mapping

During the hyperparameter search described in Section 5.2, the sets of hyperparam-
eters listed in Table 20 were used for the MAD-X-classifier:

index learning rate epochs train batch size

1 1e-3 10 8
2 1e-3 10 16
3 1e-3 10 32
4 1e-3 50 8
5 1e-3 50 16
6 1e-3 50 32
7 1e-3 100 8
8 1e-3 100 16
9 1e-3 100 32

10 1e-4 10 8
11 1e-4 10 16
12 1e-4 10 32
13 1e-4 50 8
14 1e-4 50 16
15 1e-4 50 32
16 1e-4 100 8
17 1e-4 100 16
18 1e-4 100 32
19 1e-5 10 8
20 1e-5 10 16
21 1e-5 10 32
22 1e-5 50 8
23 1e-5 50 16
24 1e-5 50 32
25 1e-5 100 8
26 1e-5 100 16
27 1e-5 100 32

Table 20: Index to hyperparameter set mapping for MAD-X.

94

A.6.3 RF: Index to Hyperparameter Set Mapping

During the hyperparameter search described in Section 5.2, the sets of hyperparam-
eters listed in Table 21 were used for the random forest classifier:

index # of estimators max depth random state

1 10 5 83
2 10 5 297
3 10 5 1234
4 10 10 83
5 10 10 297
6 10 10 1234
7 10 None 83
8 10 None 297
9 10 None 1234

10 50 5 83
11 50 5 297
12 50 5 1234
13 50 10 83
14 50 10 297
15 50 10 1234
16 50 None 83
17 50 None 297
18 50 None 1234
19 100 5 83
20 100 5 297
21 100 5 1234
22 100 10 83
23 100 10 297
24 100 10 1234
25 100 None 83
26 100 None 297
27 100 None 1234

Table 21: Index to hyperparameter set mapping for random forest.

95

A.7 English Validation Set

A.7.1 Dataset

When carrying out the grid search described in Section 5.2, a second source language
dataset next to the dataset by Tsvetkov et al. (2014) was needed. For this purpose,
the metaphor detection dataset provided by Mohammad et al. (2016) was used44.
It consists of 1639 sentences, of which 410 are annotated as metaphorical and 1229
are annotated as literal, so the dataset is not balanced. The sentences are extracted
from WordNet. Here are two example sentences:

(47) This young man knows how to climb the social ladder. → non-literal

(48) Did you ever climb up the hill behind your house? → literal

Subject, verb and object are not given as lemmatized forms. The mean sentence
length is 7.4 words with a standard deviation of 2.65 words.

A.7.2 Preprocessing

As the dataset includes no subjects, verbs and objects as lemmatized forms, these
were added for 100 sentences manually in order to perform the grid search for the
random forest classifier. We carried out the same preprocessing that was de-
scribed for the English dataset in Section 3.1 for this dataset (i.e. we replaced
the target word with the mask-token and preprocessed the original sentence and
its masked copy with the HuggingFace tokenizer pipeline) for the mBERT-based

classifiers.
44http://saifmohammad.com/WebPages/metaphor.html

96

A.8 German Dataset for Idiom Detection

A.8.1 Dataset

The German dataset by Ehren et al. (2020) contains sentences from 34 preselected
verbal idioms, which occur in literal and metaphorical idiomatic occurrences45. The
dataset comprises 6985 sentences, of which 1527 are annotated as literal, 5417 as
idiomatic and 8 as both idiomatic and literal. Also, for 33 sentences the annotators
labelled the instance as “undecided”, because they thought the context was not suf-
ficient for making a decision. The sentences were taken from the German newspaper
corpus TüPP-DZ, so the sentences are obtained from the news domain.
Here are two example sentences:

(49) „Auf den Arm nehmen kann ich mich alleine ,“ meinte er zusehends zornig
und begann eine heftige Befragung. (translation: “ ‘I don’t need you to fool
me’, he said increasingly angry and began a heavy interrogation.”) → non-
literal

(50) Der kleine Peter schaut verängstigt, die Mutter läßt das Telefon klingeln,
nimmt ihren Sohn auf den Arm. (translation: “Little Peter looks scared, the
mother lets the telephone ring, picks up her son.”) → literal

Subject, verb and object are not given as lemmatized forms. For the experiments,
we balanced and reduced this dataset to 2000 instances that do not contain the
labels “undecided” and “both”. The mean sentence length in our balanced dataset is
26 words with a standard deviation of 14.1 words.

A.8.2 Preprocessing

This dataset was not used for classification with the random forest classifier,
therefore subject, object and verb were not annotated. For the mBERT-based

45https://github.com/rafehr/COLF-VID

97

models, the same preprocessing that was described for the English dataset in Sec-
tion 3.1 was carried out for this dataset (i.e. replacing the target word with the
mask-token and preprocessing the original sentence and its masked copy with the
HuggingFace tokenizer pipeline).

A.9 Hyperparameter-Selection for Tuning

The hyperparameters for the grid search were chosen by looking at the default
hyperparamters and varying them: For mBERT the default hyperparameters are a
learning rate of 5e-5, 3 epochs and a batch size of 8. For the learning rate roughly
the neighbouring values were chosen in addition to 1e-5, which are 1e-4 and 1e-6.
Preliminary experiments also reveiled that smaller and larger learning rates lead to
random results. As 3 epochs are few, larger numbers, i.e. 8, 16 and 32 epochs, were
chosen. As batch-size commonly 8, 16 or 32 are tried out.
For MAD-X the default learning rate was 1e-4, so the neighbouring values 1e-3, 1e-4
and 1e-5 were chosen. As the default number of training epochs (100 epochs) was
very high, smaller numbers of epochs were tried out, too (10, 50, 100). The common
batch-sizes of 8, 16 and 32 were used here, too.
For the random forest classifier, the default values of 100 trees in the forest (i.e.
the number of estimators) was varied so that 10, 50 and 100 trees were tried out.
The default max depth of None (which means that the nodes are expanded until all
leaves are pure) was varied in such a way that in addition to None also a max depth
of 5 and 10 was tried out. Finally, the three random states (83, 297 and 1234) were
chosen randomly to see which impact different seeds have.

98

A.10 Error Analysis

A.10.1 Unusual Proper Nouns

sentence replacement

Statt eines Feinschmecker-Menüs zum Abschluss tischt BioWare bewährte Kost auf. das Restaurant
Eine satte Portion Geschichten bekommen Museumsgäste am Nachmittag von Maria Kiener aufgetischt. der Leiterin
Denn Roth hat aus der allzeit perfekten Grammatiksystematik von Panini abgeschrieben. von einem Wissenschaftler
Schliesslich entschied man sich dafür zunächst in Babylon auszugraben. in der Stadt
TMD hat jetzt die wohl älteste Demo Aufnahme von Metallica ausgegraben. der Band
Später sind wir zum Literary Walk aufgebrochen und haben uns in Dublin umgeschaut. Spaziergang
Möchte dem Fahrzeug einen GP Geniussport 80 R mit Speed 12 T einpflanzen. neuen Motor
Die S4 wird ab Rahlstedt richtig leer und der nächste Mob steigt in Ahrensburg aus. in der Stadt
Den Aufenthaltsort des Hexers konnten sie einer Dienerin Barsoks abpressen. -
Wir gedachten, Euch am Mückenflusse anzutreffen. Fluss
ich nehme auch immer eyebright zum abschminken, reinigt und pflegt gleichzeitig. Reiniger

Table 22: Misclassified sentences, where unusual proper nouns (see words in bold)
are replaced by common nouns. Replacement words in purple indicate that the
instances were classified correctly after the original words were substituted by these
replacements.

A.10.2 Latin

For the follwing instances no source for the error could be found:

(51) Amen, amen dico vobis, quia venit hora, et nunc est, quando mortui audient
vocem Filii Dei. (translation from the American Standard Bible from Logos:
“Verily, verily, I say unto you, The hour cometh, and now is, when the dead
shall hear the voice of the Son of God. ”)

(52) Sed habeo adversum te, quod caritatem tuam primam reliquisti. (translation
from the American Standard Bible from Logos: “But I have this against thee,
that thou didst leave thy first love.”)

99

(53) Ecclesia quidem per totam Judaeam, et Galilaeam, et Samariam habebat
pacem, et aedificabatur ambulans in timore Domini, et consolatione Sancti
Spiritus replebatur. (translation from the American Standard Bible from
Logos: “So the church throughout all Judaea and Galilee and Samaria had
peace, being edified; and, walking in the fear of the Lord and in the comfort
of the Holy Spirit, was multiplied.”)

(54) Dixit autem illis: Ubi est fides vestra? Qui timentes, mirati sunt ad invicem,
dicentes: Quis putas hic est, quia et ventis, et mari imperat, et obediunt
ei? (translation from the American Standard Bible from Logos: “And being
afraid they marvelled, saying one to another, Who then is this, that he
commandeth even the winds and the water, and they obey him?‘”)

(55) per quem accepimus gratiam, et apostolatum ad obediendum fidei in om-
nibus gentibus pro nomine ejus (translation from the American Standard
Bible from Logos: “through whom we received grace and apostleship, unto
obedience of faith among all the nations, for his name’s sake”)

(56) Amen dico vobis, quicumque non acceperit regnum Dei sicut puer, non in-
trabit in illud. (translation from the American Standard Bible from Logos:
“Verily I say unto you, Whosoever shall not receive the kingdom of God as
a little child, he shall in no wise enter therein.”)

(57) Qui cum venissent, oraverunt pro ipsis ut acciperent Spiritum Sanctum
(translation from the American Standard Bible from Logos: “who, when
they were come down, prayed for them, that they might receive the Holy
Spirit.”)

(58) Et nolite timere eos qui occidunt corpus, animam autem non possunt oc-
cidere: sed potius timete eum, qui potest et animam et corpus perdere in
gehennam. (translation from the American Standard Bible from Logos: “And
be not afraid of them that kill the body, but are not able to kill the soul:
but rather fear him who is able to destroy both soul and body in hell.”)

100

(59) An putatis quia inaniter Scriptura dicat: Ad invidiam concupiscit spiritus
qui habitat in vobis? (translation from the American Standard Bible from
Logos: “Or think ye that the scripture speaketh in vain? Doth the spirit
which he made to dwell in us long unto envying?”)

(60) qui solus habet immortalitatem, et lucem inhabitat inaccessibilem: quem
nullus hominum vidit, sed nec videre potest: cui honor, et imperium sem-
piternum. Amen. (translation from the American Standard Bible from Lo-
gos: “who only hath immortality, dwelling in light unapproachable; whom no
man hath seen, nor can see: to whom be honor and power eternal. Amen.”)

101

