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Abstract
We introduce a novel computational framework for the multiscale simulation
of higher-order continua that allows for the consideration of first-, second-,
and third-order effects at both micro- and macro-level. In line with classical
two-scale approaches, we describe the microstructure via representative volume
elements that are attached at each integration point of the macroscopic problem.
To take account of the extended continuity requirements of independent fields
at micro- and macro-level, we discretize both scales via isogeometric analysis
(IGA). As a result, we obtain an IGA2-method that is conceptually similar to the
well-known FE2-method. We demonstrate the functionality and accuracy of this
novel multiscale method by means of a series of multiscale simulations involving
different kinds of higher-order continua.
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1 INTRODUCTION

Whether or not morphological features of a material are visible depends on the observed length scale. While a material
may appear perfectly homogeneous at one scale, it may be heterogeneous at another. A typical example for such a material
is a composite, whose phases are distinguishable only at a small length scale and whose heterogeneous properties are
linked to homogeneous properties at a larger scale. In general, the involved length scales are considered separated if their
contrast is sufficiently high.* In such cases, it is reasonable to describe the homogenized behavior with classical, first-order
theories. In contrast to that, when the scales are not clearly separated, the description of the homogenized behavior needs
to be based on generalized, higher-order theories.

Generalized theories for materials are nowadays well-established. They trace back to the seminal work of Reference
2, who investigated the emergence and significance of couple stresses for the modeling of the size-dependent response of
materials more than a hundred years ago. In their theory, the Cosserat brothers linked couple stresses to the gradient of a
microscopic rotation field and classical force stresses to the gradient of the macroscopic translation field (i.e., the displace-
ments). In that context, the microscopic rotation field is understood independent from the macroscopic rotation field.
An extended theory based on the consideration of both macroscopic translational and macroscopic rotational degrees of
freedom was later developed by the authors in References 3-5. We refer to References 6 and 7 for rigorous expositions of
the Cosserats’ couple-stress theory as well as to References 8-10 for further developments and generalizations.

Next to classical couple-stress theories, there exist a number of further approaches to the modeling of size effects in
materials. An important branch is given by so-called strain-gradient theories, which for linear elastic solids have first been
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proposed by Mindlin.11 Associated theories are based on the incorporation of higher-order gradients of the displacement
field into the material description. We refer to Reference 12 for further specifications based on the first gradient of strain
and to Reference 13 for an extension involving the second gradient of strain. The interested reader is further referred to
References 14 and 15 for underlying virtual-work and variational principles, respectively, to Reference 16 for extensions
toward fully nonlinear settings, and to References 17-19 for possible numerical implementations. A general overview of
gradient-extended continua is available through the monographs of References 20-22. Next to gradient-theories for elastic
materials, there exists a rich theory on gradient-extended models for dissipative solids. In these cases, the gradient exten-
sions are classically linked to internal variables like the plastic strains23,24 and the damage field.25 We refer to Reference
26 for associated variational treatments.

The above-mentioned formulations have in common that they incorporate the notion of microstructure (and its size)
in a phenomenological way. In contrast to that, microstructural information about morphology and material properties
can be accounted for in an explicit manner by means of homogenization methods. As in case of phenomenological material
modeling, size effects may be incorporated in related schemes, depending on the existence of scale separation. If the
considered scales are clearly separated, classical or first-order homogenization schemes are applicable; if they are not,
generalized or higher-order schemes become necessary.

In the context of first-order homogenization schemes, we refer to References 27-31 for fundamental analytical
approaches and to References 32-35 for seminal contributions to two-scale finite-element (FE) simulations. In the con-
text of higher-order and generalized continua, analytical approaches have been explored by the authors in References
36-39, see also the overview by Forest40 as well as the more recent contributions of References 41-45. Associated com-
putational homogenization schemes have been developed in the framework of couple-stress and micromorphic theories
by the authors in References 46-49 and in the framework of macroscopic strain-gradient approaches by the authors in
References 50-53. We refer to References 54 and 55 for seminal treatments.

The present work is devoted to the multiscale computational homogenization of gradient-extended continua and unites
ingredients of the works of50 with respect to the gradient extensions at the homogenized scale, of56 with regard to the
algorithmic linearization of the macroscopic field equations, and of57,58 with regard to spatial discretizations. In contrast
to the contribution of,50 which combines a Cauchy continuum at the lower length scale with a gradient-extended contin-
uum at the larger length scale, we will take into account gradient-extended continua at both scales. This endeavor poses
additional challenges not only for the theoretical treatment, but also for the numerical implementation.

From a theoretical perspective, we are dealing with overall three spatial scales given by (i) a macroscopic scale, at
which the homogenized, gradient-extended behavior will be obtained through computational homogenization of (ii) a
mesoscopic scale, at which we assume the presence of representative volume elements (), which are themselves
characterized by size dependent material response at each mesoscopic material point and thus inherently linked to
(iii) a microscopic scale, at which we assume the existence of a microstructure that we capture with phenomenological,
gradient-extended material models. The latter could be motivated, for example, through the presence of microscopic fibers
with spatial extensions and distributions that could still be distinguished from further morphological entities like holes,
inclusions, and so forth at the level of the  . We refer the interested reader to59,60 for associated analytical, numerical
and experimental details.

From a numerical perspective, challenges arise because the gradient extensions come along with the requirement of
C1-continuous approximations of independent fields at both scales. Such a requirement can be captured in an elegant
way by employing isogeometric analysis (IGA) in the sense of References 57 and 58. A further algorithmic feature of the
proposed implementation is due to the linearization of the macroscopic boundary value problem. Here, we employ the
approach advocated by Miehe et al.,56 which was originally developed in the context of first-order homogenization. As
we will see, the associated gradient extensions result in settings that remind of the linearized structures appearing in the
coupled homogenization schemes considered by the authors in References 61-63.

As the present work proposes a computational multiscale method based on numerical discretizations involving IGA
at two scales, we denote it as IGA2-method in analogy to the well-known FE2-methods mentioned above. We refer to Ref-
erence 64 for a review of FE2-methods and to Reference 65 for a general overview of computational multiscale techniques.
As already mentioned, the motivation behind using IGA instead of classical finite elements is due to the straightforward
and elegant implementation of C1-continuous independent fields. In case of classical FE methods, the construction and
implementation of higher-order element continuities is usually cumbersome. It could, for example, be realized by the use
of Hermite shape functions, which however come with a complex algebraic structure and a high number of degrees of
freedom, in particular in three spatial dimensions. Alternative FE approximations are given by mixed and nonconform-
ing methods. While mixed methods can be implemented with standard C0-type shape functions, they need to satisfy the
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inf-sup condition.66 Nonconforming finite elements indeed allow for a more or less straightforward numerical imple-
mentation at a reasonable amount of degrees of freedom,67 still their finite-element function space is not a subspace of
the solution space.68 In contrast to that, IGA-based schemes do not suffer from such limitations, but allow for an elegant
implementation of higher-order continuities.† As IGA-based multiscale methods have thus far been limited to homo-
geneous macroscopic problems,73,74 we believe that the here proposed IGA2-method provides a useful and innovative
framework for the modeling of higher-order continua across length scales.

The outline of the article is as follows. In Section 2, we discuss fundamental concepts of the multiscale modeling of
higher-gradient continua. In that consequence, suitable boundary conditions based on an energetically consistent scale
transition are derived. In Section 3, we discuss the numerical implementation of the proposed scheme. Here, we put an
emphasis on the consistent linearization of the macroscopic field equations and the IGA-based discretization of repre-
sentative volume elements (RVE). In Section 4, we present a number of benchmark tests to demonstrate the performance
and accuracy of the proposed multiscale technique. We close the article with a summary and a conclusion in Section 5.

2 PRELIMINARIES AND PROBLEM DESCRIPTION

In this section, we present the basic concepts for the homogenization of second- and third-gradient media for the macro-
and microcontinuum. Moreover, suitable boundary conditions with respect to energetic criteria for the scale transition are
provided. As higher-order tensor notations and operations on them are required, a brief summary is given in Appendix A.

2.1 Macroscopic boundary value problem

We start with a short summary of the second-gradient macroscopic continuum. Therefore, we introduce a reference con-
figuration Ω0 ⊂ R3 with boundary 𝜕Ω0 and outward unit normal N and a current configuration Ω ⊂ R3, with outward
unit normal n and boundary 𝜕Ω, with subsets Γ

𝜑
and Γ

𝜎
, and properties Γ

𝜑
∩ Γ

𝜎
= ∅ and Γ

𝜑
∪ Γ

𝜎
= 𝛿Ω. The deformation

mapping 𝝋 ∶ Ω0 → R3 relates the reference and current configuration to each other, Ω = 𝝋(Ω0). Furthermore, the vector
to an arbitrary material point P is labeled by X ∈ Ω0. In the current configuration, the location of the corresponding point
p is given by x = 𝝋(X), see Figure 1.

The first-order deformation measure F ∶ Ω0 → R3×3 and the second-order deformation measure 𝔉 ∶ Ω0 → R3×3×3 are
given by the first and second gradient of the mapping 𝝋(X) as

F = ∇𝝋 and 𝔉 = ∇
2
𝝋. (1)

F I G U R E 1 Reference and current configuration
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Here, ∇ refers to the gradient with respect to X, see (A3) in Appendix A. Following References 16, 75, and 76, we postulate
the virtual work of the internal contributions as

𝛿Π
int

= ∫
Ω0

(
P ∶ 𝛿F +𝔓 ⋮ 𝛿𝔉

)
dV , (2)

where P denotes the macroscopic two-point first Piola–Kirchhoff stress tensor and 𝔓 the macroscopic two-point
third-order stress tensor, conjugate to 𝔉. Moreover,

𝛿F = ∇𝛿𝝋 and 𝛿𝔉 = ∇
2
𝛿𝝋, (3)

where the space of virtual or admissible test functions is given by

 = {𝛿𝝋 ∈ 2(Ω) | 𝛿𝝋 = 0, ∇𝛿𝝋 N = 0 on Γ
𝜑
} (4)

with boundary Γ
𝜑

, see Figure 2. Applying integration by parts twice in (2) yields

𝛿Π
int
(𝝋) = ∫

Ω0

∇ ⋅ (∇ ⋅𝔓 − P) ⋅ 𝛿𝝋dV + ∫
𝜕Ω0

𝛿𝝋 ⋅ (P − ∇ ⋅𝔓) N + ∇𝛿𝝋 ∶ (𝔓 ⋅ N)dA. (5)

Introducing the orthogonal decomposition ∇⊥ ⋅ (•) = ∇(•) ∶ (N ⊗ N) and ∇|| ⋅ (•) = ∇(•) ∶ (I − N ⊗ N), we obtain after
some further technical steps

𝛿Π
int
(𝝋) = ∫

Ω0

∇ ⋅ (∇ ⋅𝔓 − P) ⋅ 𝛿𝝋dV + ∫
𝜕Ω0

𝛿𝝋 ⋅ (P − ∇ ⋅𝔓) NdA

− ∫
𝜕Ω0

[
𝛿𝝋 ⋅ (K (𝔓 N) N + ∇|| ⋅ (𝔓 N)) − ∇⊥𝛿𝝋 ∶

(
𝔓 N

)]
dA

+ ∫
𝜕2Ω0

𝛿𝝋 ⋅ (𝔓 ∶ ( ̂N ⊗ N))dS,

(6)

for a sufficiently smooth Ω0, where ̂N is the normal to 𝜕2Ω0 and the tangent to 𝜕Ω0. Note that 𝜕2Ω0 is defined by
the union of the boundary curves of the boundary surface patches and thus, ̂N can be defined differently from both
adjacent surfaces, see Javili et al.16 and the citations therein for details. Moreover, K = −∇|| ⋅ N is the curvature of the
surface.

Omitting line forces for the ease of exposition, the external contributions to the virtual work are given by

𝛿Π
ext

= ∫
Ω0

Bext ⋅ 𝛿𝝋 dV + ∫
Γ
𝜎

Text ⋅ 𝛿𝝋 dA + ∫
Γ
∇𝜎

Mext ∶ ∇⊥𝛿𝝋 dA (7)

with the common body force per unit volume Bext, the traction forces Text on boundary Γ
𝜎
, and the hyperstress traction

force Mext on boundary Γ
∇𝜎

, see once again Figure 2.
Thus, the principle of virtual work reads

𝛿Π
int

− 𝛿Π
ext

= 0 , ∀ 𝛿𝝋 ∈  (8)

and the internal contributions can be related by applying partial integration and the Gaussian integral theorem to the
external contributions, see Javili et al.:16
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Text = (P − ∇ ⋅𝔓) N,

Mext = 𝔓 N .
(9)

Note, that the last equation can be decomposed in tangential and normal components, see Madeo et al.77 for details.
Taking the balance equation

∇ ⋅ (P − ∇ ⋅𝔓) + Bext = 0 (10)

into account, completes the set of equations for the strong form of the second-gradient boundary value problem. In the
following, we omit volumetric body forces as gravity forces, thereby Bext = 0.

2.2 Mesoscopic boundary value problem

In every material point P of the macroscopic domain, we assume the existence of a representative volume ele-
ment  on a mesoscale, sufficiently separated from the macroscale and sufficiently large to be representa-
tive, containing the information on the inhomogeneous mesoscopic continuum, see Figure 2. To be specific, we
postulate a second-gradient material in the  analogous to (8) on the macroscale for two reasons: First,
this general approach for the homogenization from a second-gradient micro-continuum toward a second-gradient
macro-continuum allows us to demonstrate that the formulation proposed by Kouznetsova et al.50 is a special
case of the methodology presented next. Second, we can now generalize this concept for general higher-order
materials.

We start with the mapping for the microscopic relative position of the material points x = 𝝋(X):

𝝋(X) = F X + 1
2
𝔉 ∶ (X ⊗ X) + w̃. (11)

F I G U R E 2 Meso-macro transition of the mechanical boundary value problem, left: boundary decomposition of the macroscopic
continuum in Dirichlet boundaries Γ

𝜑
and Neumann boundaries Γ

𝜎
, Γ

∇𝜎
of the traction force and the hyperstress traction force, right: 

as defined for every macroscopic point
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Here, w̃ describes the unknown microcroscopic fluctuation field, which includes all higher-order terms of the Taylor
series expansion, see Kouznetsova et al..50 In analogy to the macroscopic quantities, we obtain the microscopic first-order
deformation measure F = ∇𝝋 and the second-order deformation measure 𝔉 = ∇2𝝋:

F = F +𝔉 X + F̃ and 𝔉 = 𝔉 + �̃�, (12)

where F̃ ∶= ∇w̃ and �̃� ∶= ∇2w̃. The averaged microscopic deformations over the volume of the  can be connected
to the macroscopic counterparts F and 𝔉 via

1
V ∫


F dV = F and 1

V ∫


𝔉 dV = 𝔉, (13)

see Appendix B‡ for further information. The local balance equation of the microscopic second-gradient continuum is
given analogously to (10) by:

∇ ⋅
[
P − ∇ ⋅𝔓

]
= 0, (14)

where P ∶= 𝜕FΨ(F,𝔉) and 𝔓 ∶= 𝜕𝔉Ψ(F,𝔉) are defined in terms of a Helmholtz energy function Ψ.
The macro-homogeneity condition is given by an energetic criterion that states that the virtual work applied to the

system in the material point P is equal to the virtual work in the  , hence we assume

1
V ∫



(
P ∶ ∇𝛿𝝋 +𝔓 ⋮ ∇2𝛿𝝋

)
dV = P ∶ 𝛿F +𝔓 ⋮ 𝛿𝔉. (15)

Note that this excludes Neumann conditions on the  , which would add an effective contribution to the virtual work
on the mesoscale. The left-hand side of the energetic criterion can be rewritten as

1
V ∫


P dV ∶ 𝛿F + 1

V ∫


(P ⊗ X +𝔓) dV ⋮ 𝛿𝔉 = P ∶ 𝛿F +𝔓 ⋮ 𝛿𝔉, (16)

see Appendix C. Comparing the left- and right-hand sides of the last equation, yields

P = 1
V ∫


P dV and 𝔓 = 1

V ∫


P ⊗ X dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝔓
P

+ 1
V ∫


𝔓 dV

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝔓
𝔓

. (17)

Here, the macroscopic third-order stress tensor𝔓 is split into𝔓
P

, which is given by the volume average of the first moment
of the microscopic stresses P, and 𝔓

𝔓
, which is a volume average of the microscopic third-order stress tensor 𝔓. Note

that if a first-gradient material within the  is assumed, the macroscopic hyperstress 𝔓
𝔓

vanishes and we obtain the
formulation provided by Kouznetsova et al..50 To obtain information about the boundary conditions, (15) can be rewritten
as:

1
V ∫



([
P − P

]
∶ [𝛿F + 𝛿𝔉 X − 𝛿F] +

[
𝔓

𝔓
−𝔓

]
⋮
[
𝛿𝔉 − 𝛿𝔉

])
dV = 0, (18)

see Appendix D.1. Obviously, the simplest assumption for all points of the mesoscale, that fulfills the last equation is given
by postulating the constraints P ∶= P or 𝛿F + 𝛿𝔉 X ∶= 𝛿F and additionally 𝔓

𝔓
∶= 𝔓 or 𝛿𝔉 ∶= 𝛿𝔉, compare Schröder64

in the context of first-order theories. An alternative expression of (18) yields:
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1
V ∫

𝜕

([
𝔓

𝔓
−𝔓

]
N
)
∶
[
𝛿F + 𝛿𝔉 X − 𝛿F

]
dA

+ 1
V ∫

𝜕

([
P − (P − ∇ ⋅𝔓)

]
N
)
⋅
[
𝛿F X + 1

2
𝛿𝔉 ∶ (X ⊗ X) − 𝛿𝝋

]
dA = 0,

(19)

see Appendix D.2 for further information. Thus, regarding a deformation-driven approach, suitable Dirichlet boundary
conditions on the boundary 𝜕 are

F X + 1
2
𝔉 ∶ (X ⊗ X) − 𝝋 = 0,

F +𝔉 X − F = 0,
(20)

satisfying (19). Note that due to 𝔉 the boundaries are quadratic functions.
For a stress driven approach, (19) yields possible Neumann boundary conditions, however, that would render

an inherently complex implementation for large deformations, see Kouznetsova.75 A comparison of the Dirich-
let boundary conditions with the mappings (11) and (12)1 provides the following relationship for these condi-
tions, w̃ = 0 and ∇w̃ = 0 on the boundary. Furthermore, the microscopic stress tractions are Text = (P − ∇ ⋅𝔓) N
and the hyperstress tractions are given by Mext = 𝔓 N, periodic boundary conditions as shown in Figure 3
require

w̃(X+) = w̃(X−) , Text(X+) = −Text(X−),
∇w̃(X+) = ∇w̃(X−) , Mext(X+) = −Mext(X−),

(21)

satisfying the energetic criterion (15). Here, X+ and X− refer to opposite surfaces, see Figure 3 for details. Note, that the
tangential part of the constraint ∇w̃ = 0 is already fulfilled by the condition w̃ = 0. Therefore, we can either restrict the
gradient term to the normal component or, alternatively, make use of a least-square minimization approach within the
context of Mortar domain decomposition methods. We refer to Reference 78 for details on the theoretical background and
to References 79 and 80 for the implementation.

Note that the periodicity is given in terms of the fluctuation w̃, that is, with regard to (11) follows immediately that the
geometrical boundaries for a second-order problem are not periodic within the  in contrast to a first-order problem.
To be specific, the boundary deformation emanating from F is periodic whereas the deformation emanating from 𝔉 is not
due to the quadratic formulation in X. The latter term does not drop out if (21), left, is formulated in the total deformation
𝝋(X).

F I G U R E 3 Mesoscopic boundary value problem, periodic boundary conditions on 𝜕 , here only displayed for top and bottom for
better understanding



2506 SCHMIDT et al.

Remark 1. Third-gradient medium: The proposed formulation at hand can be extended in a straightforward manner
toward a macroscopic third-gradient medium with hyperstress P and the conjugate deformation measure F = ∇

3
𝝋. The

corresponding application of the energetic criterion reads

1
V ∫



(
P ∶ ∇𝛿𝝋 +𝔓 ⋮ ∇2𝛿𝝋

)
dV = P ∶ 𝛿F +𝔓 ⋮ 𝛿𝔉 + P ∶∶ 𝛿F. (22)

The mapping of the microscopic position reads

𝝋(X) = F X + 1
2
𝔉 ∶ (X ⊗ X) + 1

6
F ⋮ (X ⊗ X ⊗ X) + w̃. (23)

Insertion yields the relations

P = 1
V ∫


P dV ,

𝔓 = 1
V ∫


P ⊗ X dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝔓
P

+ 1
V ∫


𝔓 dV

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝔓
𝔓

,

P = 1
V ∫



1
2

P ⊗ X ⊗ X dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

P
P

+ 1
V ∫


𝔓⊗ X dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

P
𝔓

,

(24)

where we have again made use of ∫ XdV = 0, see Appendices B–D. This yields the set of Dirichlet boundary conditions

F X + 1
2
𝔉 ∶ (X ⊗ X) + 1

6
F ⋮ (X ⊗ X ⊗ X) − 𝝋 = 0,

F +𝔉 X + 1
2

F ∶ (X ⊗ X) − F = 0,
(25)

where we omit again further discussion on possible (periodic) Neumann conditions. With this at hand, a first-gradient
medium within the  can be established by removing all terms related to 𝔓. An extension toward a third-gradient
medium within the  seems plausible, but up to now constitutive equations for this need further investigations. More-
over, we note here, that a typical  is in the range of μm, and thus, inhomogeneities in the first Piola–Kirchhoff stress
tensor are weighted with μm2 in P, which is often negligible and the reason, why we do not further take this into account
here. For further information on scale separation, see Schröder.64

3 CONSISTENT LINEARIZATION AND DISCRETIZATION

For the computation of the macroscopic boundary value problem with attached mesoscopic s, we introduce here
the IGA2-method, analogous to the FE2-method, see Schröder64 and references therein. We omit here details on the
spline-based discretization of the macroscale within the concept of IGA, as numerous papers have already presented
this and instead focus on the mesoscopic  , assuming that the discrete macroscopic quantities of the deformations
(F, 𝔉) are known at the particular Newton step. Note that higher-order continua at the macroscale require appropriate
continuity of the spline based discretization.

Thus, in a first step the macroscopic quantities (F, 𝔉) are transferred to the mesoscale  at every material point,
see Figure 2. After that, the boundary value problem on the mesoscale is solved using suitable boundary conditions
and the homogenization is performed using volumetric averaged mesoscopic quantities as well as the linearization of
these quantities. In the last step, the macroscopic boundary value problem is solved and the next Newton iteration
starts.
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3.1 Linearization of macroscopic stresses and hyperstresses

Since the macroscopic boundary value problem is solved with a Newton–Raphson iteration, we need a consistent lin-
earization of the macroscopic field equations. Therefore, it is necessary to linearize the stresses P and 𝔓, evaluated via
the incremental relations:

ΔP ∶= 𝜕P
𝜕F

∶ ΔF + 𝜕P
𝜕𝔉

⋮ Δ𝔉 and Δ𝔓 ∶=
𝜕𝔓

𝜕F
∶ ΔF +

𝜕𝔓

𝜕𝔉
⋮ Δ𝔉. (26)

However, the macroscopic quantities are given by the averaged mesoscopic stresses and hyperstresses, hence P ∶=
P(P(F,𝔉)) and 𝔓 ∶= 𝔓(P(F,𝔉),𝔓(F,𝔉)), see (17). Thus we have to use the chain rule for the partial derivative of the
macroscopic stresses with respect to the corresponding deformations and end up after some calculations with:

[
ΔP

]
iJ
= 1

V ∫


[
C
]

iJsT dV
[
ΔF

]
sT

+ 1
V ∫



([
C
]

iJsT [X]U + [D]iJsTU
)

dV
[
Δ𝔉

]
sTU

+ 1
V ∫



([
C
]

iJsT

[
ΔF̃

]
sT + [D]iJsTU

[
Δ�̃�

]
sTU

)
dV

(27)

and [
Δ𝔓

]
iJK

= 1
V ∫



([
C
]

iJsT [X]K + [E]iJKsT
)

dV
[
ΔF

]
sT

+ 1
V ∫



([
C
]

iJsT [X]K [X]U + [D]iJsTU [X]K

+ [E]iJKsT [X]U + [G]iJKsTU ) dV
[
Δ𝔉

]
sTU

+ 1
V ∫



([
C
]

iJsT [X]K + [E]iJKsT
) [

ΔF̃
]

sT dV

+ 1
V ∫


([D]iJsTU [X]K + [G]iJKsTU )

[
Δ�̃�

]
sTU dV ,

(28)

where the derivatives of the stresses are defined by:

C ∶= 𝜕P
𝜕F

, D ∶= 𝜕P
𝜕𝔉

, E ∶=
𝜕𝔓
𝜕F

, and G ∶=
𝜕𝔓
𝜕𝔉

, (29)

see Appendix E for more details. It is obvious, that the linearizations of the macroscopic stresses P and 𝔓 depend on the
sensitivity of the mesoscopic fluctuations ΔF̃ and Δ�̃�, defined in (12). The correlation between these sensitivities and
the change of the corresponding macroscopic fields ΔF and Δ𝔉 can be done in the discrete setting by linearization of the
virtual work of the mesoscopic boundary value problem in the solution point, as shown next.

3.2 Linearization of mesoscopic boundary value problem

The relationship between these sensitivities and the macroscopic fields follows from the mesoscopic boundary value
problem. With regard to (14) and assuming that 𝛿w̃ = 0 holds on the whole boundary, we obtain

G ∶= ∫


(
P ∶ 𝛿F̃ +𝔓 ⋮ 𝛿�̃�

)
dV . (30)
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Solving the problem such that G = 0, it follows immediately that ΔG = 0. Hence, the linearization in the equilibrium
state reads

ΔG ∶= ∫


(
𝛿F̃ ∶

[
C ∶ ΔF + D ⋮ Δ𝔉

]
+ 𝛿�̃� ⋮

[
E ∶ ΔF + G ⋮ Δ𝔉

])
dV = 0, (31)

where

ΔF = ΔF + Δ𝔉 X + ΔF̃ and Δ𝔉 = Δ𝔉 + Δ�̃�. (32)

This can be evaluated in the discrete setting, as will be shown next.

3.3 Mesoscopic finite element approximation

Next, we have to approximate the fluctuation field, the virtual and the incremental fluctuation fields:

w̃h =
∑
A∈

RA q̃A, 𝛿w̃h =
∑
A∈

RA 𝛿q̃A, and Δw̃h =
∑
A∈

RA Δq̃A, (33)

where RA ∶  → R are B-spline§ based shape functions of order p with associated control points A ∈  = 1, … ,m
with the overall number of control points m. Furthermore,

[
q̃A, 𝛿q̃A, Δq̃A] ∈ R3. So, the deformation tensors lead to the

approximation

F̃h =
∑
A∈

q̃A ⊗ ∇RA and �̃�h =
∑
A∈

q̃A ⊗ ∇2RA, (34)

which are given analogously for the virtual (𝛿F̃h, 𝛿�̃�h) and the incremental (ΔF̃h, Δ�̃�h) deformation tensors. Note that
we can also discretize the displacement field 𝝋(X) using (11) as well.

For the boundary conditions, we first introduce Dirichlet conditions as presented in (20). For the implementation of
a first-order mesoscale continuum is straightforward, as we only have to deal with linear conditions in X. Using open
knot vectors, which are interpolatory at the boundaries, the control points of the spline has to be distributed linearly
along the boundaries of the  . For higher-order problems, we obtain quadratic (second-order formulations) and cubic
(third-order formulations) boundaries in X. Therefore, we make use of a least-square optimization for the ease of imple-
mentation. However, the problem itself can be solved exactly, that is, quadratic or higher order splines can reproduce
a quadratic boundary, compare Reference 81. Introducing a set of evaluation points q̂i along the boundary and a set of
control points q̃j for the splines-based discretization of the discrete boundary 𝜕 h , the least-square problem reads

{q̃j} = min
⏟⏟⏟

q̃i∈𝜕h

||q̂i −
∑

j
Rj(𝝃i) q̃j||. (35)

Note, that q̂i = F qi +
1
2
𝔉 ∶ (qi ⊗ qi) and ∇q̂i = F +𝔉 qi , with the position of the evaluation point in the reference

configuration qi. We refer to the textbook81 and the discussion therein on the enforcement of Dirichlet conditions for
further information on the evaluation of the least-square problem. For second-order boundaries, the least-square problem
is expanded by the constraint ∇w̃(X) = 0 on all surfaces to

{q̃j} = min
⏟⏟⏟

q̃i∈𝜕h

‖‖‖‖‖‖‖‖
q̂i −

∑
j

Rj(𝝃i) q̃j

∇q̂i −
∑

j
∇Rj(𝝃i) q̃j

‖‖‖‖‖‖‖‖
. (36)

For periodic boundary conditions, we have to ensure that (21), left, is valid. For general higher-order domain decompo-
sition problems using nonconforming meshes, we refer to our previous developments in References 79 and 80, applied
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here on conforming meshes. For the ease of implementation, we note that a least-square optimization using

{q̃−
j } = min

⏟⏟⏟

q̃−
i ∈𝜕h

‖‖‖‖‖‖‖‖
∑
k

Rk(𝝃+i ) q̃k −
∑

j
Rj(𝝃−i ) q̃j +

(
q̂+

i − q̂−
i
)

∑
k
∇Rk(𝝃+i ) q̃k −

∑
j
∇Rj(𝝃−i ) q̃j +

(
∇q̂+

i − ∇q̂−
i
)
‖‖‖‖‖‖‖‖
, (37)

can also be applied, leaving a nodal dependency in the form q̃−
j ∶= q̃−

j (q̃
+
j ) for the set of opposing evaluation points

{q+
i ,q−

i }.
Next, we can establish a relationship between the mesoscopic sensitivities and the change of corresponding macro-

scopic fields. For this, we discretize the last two sections in reverse order and insert the approximations in a first step in
the equilibrium state of the mesoscopic boundary value problem (31)

ΔGh ∶= ∫
h

𝛿F̃h ∶
[
C

h ∶
(
ΔF + Δ𝔉 Xh + ΔF̃h

)
+ Dh ⋮

(
Δ𝔉 + Δ�̃�h

)]
dV

+ ∫
h

𝛿�̃�h
⋮
[
Eh ∶

(
ΔF + Δ𝔉 Xh + ΔF̃h

)
+ Gh ⋮

(
Δ𝔉 + Δ�̃�h

)]
dV = 0,

(38)

where the discrete derivatives of the stresses are defined by

Ch ∶= C
(

Fh, 𝔉h) , Dh ∶= D
(

Fh, 𝔉h) , Eh ∶= E
(

Fh, 𝔉h) , and Gh ∶= G
(

Fh, 𝔉h) . (39)

After some calculations, see Appendix F for further information, we arrive at the discrete correlation between the
mesoscopic sensitivities and the change of corresponding macroscopic fields:

[
Δq̃

]B
s = −

(
[K]AB

ls
)−1

([
𝔏
]A

lrT

[
ΔF

]
rT

+
[
M
]A

lrTU

[
Δ𝔉

]
rTU

)
. (40)

Here, K, 𝔏, and M are the stiffness matrices of the mesoscopic boundary value problem.
In a second step, we discretize the macroscopic stresses (27) and (28), where we use the correlation of the mesoscopic

sensitivities to the macroscopic quantities (40) and end up in:

[
ΔP

]h

iJ
=
{[

V
C
]h

iJrT −
[
𝔑
]B

iJs

(
[K]AB

ls
)−1 [𝔏]A

lrT

} [
ΔF

]
rT

+ {
[
VCD

]h
iJrTU −

[
𝔑
]B

iJs

(
[K]AB

ls
)−1 [

M
]A

lrTU}
[
Δ𝔉

]
rTU

,

(41)

for the linearization of the stresses and:[
Δ𝔓

]h

iJK
=
{[

VCE
]h

iJKrT −
[
N
]B

iJKs

(
[K]AB

ls
)−1 [𝔏]A

lrT

} [
ΔF

]
rT

+
{[
VCDEG

]h
iJKrTU −

[
N
]B

iJKs

(
[K]AB

ls
)−1 [

M
]A

lrTU

}[
Δ𝔉

]
rTU

,

(42)

for the linearization of the hyperstresses, see Appendix G for further information on the volume averaged tensors VC,
VCD, VCE, and VCDEG as well as 𝔑 and N. This description of the linearization of the macroscopic stresses and hyperstresses
is free of the mesoscopic fluctuations w̃ and the discretized version q̃A, respectively.

4 NUMERICAL EXPERIMENTS

In this section, we investigate the performance and accuracy of the homogenization technique for different materials.
We start with some benchmark tests for a Mooney–Rivlin material and a second-gradient material for fiber-reinforced
polymers for the  . Afterwards, we use this second-gradient material for investigations using the well-known Cook’s
membrane.
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4.1 Benchmark test: Mooney–Rivlin material

As a first proof of concept, we investigate  using a homogeneous Mooney–Rivlin material, see Reference 60. The
edge length of the  cube is 0.1 mm and the coordinate system is fixed in the center of the cube, see Figure 4.

The first-order constitutive relation is given by

Ψ(J, I1, I2) = c (J − 1)2 − d ln(J) + c1 (I1 − 3) + c2 (I2 − 3). (43)

Here, J = det(F), I1 = tr(FT F) = F ∶ F, and I2 = tr(cof(FT F)). Moreover, c = 1∕3 (c1 + c2), d = 2 (c1 + 2 c2), c1 =
2000 MPa, and c2 = 1000 MPa. To test the  , we define the macroscopic deformation tensor:

F ∶=
⎡⎢⎢⎢⎣

0.897 0.500 −0.400
− 0.070 1.001 −0.100
0.082 0.020 0.997

⎤⎥⎥⎥⎦
, (44)

and assume the macroscopic second gradient to be 𝔉 ∶= ⦑. With this information, we solve the microscopic boundary
value problem, where we apply in a first step Dirichlet boundaries on 𝜕 and in a second step periodic boundaries,
see Figure 4 for details.

In Figure 5, the von Mises stresses are plotted for the  with Dirichlet and periodic boundary conditions. In par-
ticular, we increase the number of elements in each direction of the cube from 4, 8 to 16 elements using B-splines of
order p = 2. Since the Mooney–Rivlin material is of first order with linear constraints on the boundary, we obtain a
homogeneous distribution of the stress field.

Since we use an energetic criterion within the homogenization, we compare the maximum error Emax(Ψ) of the (ana-
lytically evaluated) strain energyΨana ∶= Ψ(F)with the averaged strain energyΨ ∶= 1

V
∫ Ψ(Fh)dV of the , see

Table 1. In particular, we make use of the following error definitions for the relative maximal error Emax and the relative
error of the norm Enorm

Emax(•) =
max(abs((•)ana − (•) ))||(•)ana|| , Enorm(•) =

||(•)ana − (•) ||||(•)ana|| . (45)

Moreover, we make use of the same error definition for the stresses 𝜕FΨ(F) and for the tangent 𝜕2
FΨ(F). Note that the

relative maximum errors Emax(•) and the relative errors in the norm Enorm(•) for the energy, stresses and tangent are in
the range of 1.48E − 16 to 1.27E − 14.

4.2 Benchmark test: Second-gradient material

In this second example, we apply the proposed concept for second-order gradient materials. In Reference 59, the whole
deformation has been prescribed such that a constant curvature generates a homogeneous hyperstress field. Here, we

F I G U R E 4 Mooney–Rivlin material. Left:  (edge length 0.1 mm) with Dirichlet boundaries w̃ = 0 mm on 𝜕 . Right: 
with periodic boundary conditions w̃(X+) = w̃(X−) for the periodically contiguous surfaces (pcs) top-bottom, right-left, front-back, and eight
constrained corner nodes (cn) with w̃ = 0 mm
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F I G U R E 5 Mooney–Rivlin material. Von Mises stresses—Left to right:  with Dirichlet and periodic boundaries, top to bottom: 4,
8, and 16 elements in each direction

prescribe again the boundary of the RVE and evaluate the balance equations to obtain the aimed hyperstress field. To
be precise, we make use of fiber-reinforced polymers (frp) as proposed in References 76 and 82 with a composed stored
energy function of the form

Ψfrp ∶= 𝜁 Ψmat +
1 − 𝜁

2
Ψfib, (46)

where 𝜁 ∈ [0, 1] is the volume fraction of the matrix material. Ψmat denotes the stored energy function of the matrix
material and Ψfib denotes the stored energy function of the fibers, both given as follows
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T A B L E 1 Mooney–Rivlin material

Elements 4 × 4 × 4 8 × 8 × 8 16 × 16 × 16

Boundary Dirichlet Periodic Dirichlet Periodic Dirichlet Periodic

Emax(Ψ) 6.18E − 16 3.71E − 16 1.00E − 16 1.00E − 16 8.29E − 15 8.29E − 15

Emax(P) 3.38E − 16 2.24E − 16 1.43E − 15 1.43E − 15 7.65E − 15 7.65E − 15

Enorm(P) 5.03E − 16 3.49E − 16 1.62E − 15 1.62E − 15 1.19E − 14 7.65E − 15

Emax(𝜕FP) 2.23E − 16 1.48E − 16 4.45E − 16 4.45E − 16 4.68E − 15 4.68E − 15

Enorm(𝜕FP) 4.36E − 16 4.00E − 16 1.27E − 15 1.26E − 15 1.27E − 14 1.27E − 14

Note: Relative maximum error of the energies Emax(Ψ) (1st row). Relative maximum error Emax(•) and relative error in the norm Enorm(•) for the stresses and
tangent (2nd–5th row). Here, for 4, 8, and 16 elements in each direction and the Dirichlet and periodic boundaries, respectively.

T A B L E 2 Second-gradient material

Parameter of matrix material c1 2000 MPa

Parameter of matrix material c2 1000 MPa

Volume fraction of matrix material 𝜁 0.5 –

Shear parameter of fiber material aF 15,000 MPa

Stretch parameter of fiber material bF 3000 MPa

Curvature parameter of fiber material cF 1.25 N

Orientation of fiber 1 L1 1√
4.25

[−1; −1; 1.5] –

Orientation of fiber 2 L2 1√
4.25

[−1; −1; −1.5] –

Initial angle of fibers 𝛽 acos
(

L1 ⋅ L2) rad

Note: Material setting of the fiber-reinforced polymer.

Ψmat ∶= Ψ(J, I1, I2),

Ψfib ∶= aF tan2𝜑 + 1
2
∑
𝛼

[
bF (𝜆𝛼 − 1)2 + cF 𝜿𝛼 ⋅

(
F FT 𝜿𝛼

)]
,

(47)

where we make use of the Mooney–Rivlin material given in (43) for the matrix material Ψmat. The stiffness parameter a,
b and c are related to the shear, stretch and curvature of the fiber material (Table 2).

Using bidirectional fibers with 𝛼 = [1, 2], for the normalized fiber orientation L𝛼 in the reference configuration and
the initial angle 𝛽 between both directions, the spatial field of the fiber directions reads l𝛼 = F L𝛼 . The stretch of the fibers
𝜆𝛼 can now be expressed as

𝜆𝛼 = ||l𝛼|| = ||F L𝛼||, (48)

whereas the spatial angle reads

𝜑 = acos
(

l̃1
⋅ l̃2
)
− 𝛽. (49)

Hence, we can write for the deformed fiber configuration l𝛼 = 𝜆𝛼 l̃𝛼 . The curvature measure for the fiber initially aligned
in L𝛼-direction is introduced as follows

𝜿𝛼 = 1
(𝜆𝛼)2

(
I − l̃𝛼 ⊗ l̃𝛼

)
𝔉 ∶ (L𝛼 ⊗ L𝛼) . (50)
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F I G U R E 6 Homogeneous second-gradient material. Left:  in the reference configuration with edge length 0.1 mm and Dirichlet
boundaries on 𝜕 . Middle: Schematic representation of the long fibers in the polymer with direction L𝛼 . Right:  with periodic
boundary conditions, for the periodically contiguous surfaces (pcs) top-bottom, right-left, front-back, and constrained corner nodes (cn)

The macroscopic values of F and 𝔉 are again predefined

F ∶=
⎡⎢⎢⎢⎣

0.897 0.500 −0.400
− 0.400 1.001 −0.100
0.082 0.020 0.997

⎤⎥⎥⎥⎦
, 𝔉(1, ∶) ∶=

⎡⎢⎢⎢⎣
− 0.033 0.015 −0.020
0.015 0.013 0.043
− 0.020 0.043 0.029

⎤⎥⎥⎥⎦
,

𝔉(2, ∶) ∶=
⎡⎢⎢⎢⎣

0.015 −0.005 0.024
− 0.005 0.028 0.028
0.024 0.028 0.014

⎤⎥⎥⎥⎦
, 𝔉(3, ∶) ∶=

⎡⎢⎢⎢⎣
0.023 0.005 −0.031
0.005 −0.042 −0.001
− 0.031 −0.001 −0.012

⎤⎥⎥⎥⎦
.

(51)

In a first step, Dirichlet boundaries are applied on the boundary 𝜕 , see Figure 6, left. Therefore, the boundaries are
deformed satisfying the quadratic configuration provided in (20), constraining w̃ = 0 and ∇w̃ = 0.

In a second step, we have applied periodic boundaries on 𝜕 , requiring a higher-order coupling of all opposing
surfaces. Moreover, the predefined macroscopic deformation due to F and 𝔉 has to be satisfied on all eight corner nodes,
see Figure 6. The edge length of the  cube is l = 0.1 mm and the coordinate system is placed in the center of the cube,
see Figure 6.

In Figure 7, the von Mises stress and the norm of the second-order stress 𝔓 are plotted for 16 elements in every
direction. Again, we compare the solution of the constitutive relation at the mesoscale as defined in (47) with the analytical
solution of (47) applied on the macroscale, see Table 3 for additional details. It can be seen, that the two shown ways of
the enforcement of the energetic criterion result in different stress distributions, especially regarding the second-order
contributions.

In addition, to demonstrate the accuracy of the formulation, we aim at a pure second-gradient material. Since this
anisotropic second-gradient contribution is not well defined (it is singular without first-gradient contributions), we have
to stabilize the formulation using small first-gradient contributions. To be specific, we reduced the constitutive parameters
successively up to a factor of 1E − 08. In each direction 16 elements using quadratic B-splines (p = 2) for the analysis have
been applied with Dirichlet boundaries, see (20). The maximum absolute error of the averaged values of Fh,𝔉h, and𝔓h for
a second-gradient material is shown with regard to the (analytically evaluated) values on the macroscale. The remaining
error Emax(𝔓h) depends directly on the remaining first-gradient stiffness contributions. Thus, the second-gradient contri-
butions converge to the correct analytical value as expected for a second-gradient material for a constant 𝔉h deformation,
as shown in Table 3.

4.3 Second-gradient material with inclusions

Next, the previously introduced second-gradient material is applied on a geometrically inhomogeneous  with a
3D cross inclusion in the center. These types of inhomogeneities are used, for example, to reduce weight in 3D printed
materials. In this example, we consider the inclusions as a void by setting the material parameters to approximately
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F I G U R E 7 Homogeneous second-gradient material. Stresses for  with 16 elements in each direction—Left to right: Dirichlet and
periodic boundaries, top to bottom: von Mises stress and ||𝔓||

T A B L E 3 Homogeneous second-gradient material

Scaling 1E − 0 1E − 2 1E − 4 1E − 6 1E − 8

Emax(Fh) 1.58E − 14 1.57E − 14 1.59E − 14 1.59E − 14 1.56E − 14

Emax(𝔉h) 4.59E − 13 4.59E − 13 4.60E − 13 4.60E − 13 4.59E − 13

Emax(𝔓h) 1.74E + 01 1.81E − 01 1.80E − 03 2.58E − 05 1.84E − 05

||𝔓P||∕||𝔓|| 100% 21.6% 0.23% 0.00367% 0.00217%

Note: Relative absolute maximum error of Fh, 𝔉h, and 𝔓h along with the norm of 𝔓
P

in relation to the total norm of 𝔓 for a second-gradient material with
minimal first-gradient contributions, scaled by the parameter as given in the row “scaling.”

zero.¶ Again, Dirichlet and periodic boundary conditions are applied, see Figure 8. The edge length of the 
cube is again l = 0.1 mm with the coordinate system placed in the center. The 3D cross consists of two differ-
ent edge lengths. The short edges are of the length l∕6 and the long edges are of the length l∕4, see Figure 8 for
details.

In Figure 9, the von Mises stresses of the matrix and the fibers are plotted, cutting the  in half. Here, 24
quadratic B-splines elements in each direction of the  are used. Note that we observe the expected anisotropic stress
distribution.
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F I G U R E 8 Second-gradient material with a void. Left:  (edge length 0.1 mm) with a 3D cross void and Dirichlet boundaries on
𝜕 , see (20), middle: schematic representation of the long fibers in the polymer with direction L𝛼 , right:  with a 3D cross void and
periodic boundary conditions, see (21), for the periodically contiguous surfaces (pcs) top-bottom, right-left, front-back except the eight corner
nodes (cn), where Dirichlet boundaries are used, see (20)

F I G U R E 9 Second-gradient material with a void. Von Mises stresses for a half  with 24 elements in each direction—left to right:
Dirichlet and periodic boundaries, top to bottom: von Mises stress and ||𝔓||. Note that elements within the void are excluded from the plot

4.4 Cook’s membrane

In a last example, we examine a Cook’s membrane as macroscopic system, see Figure 10, left, using again the
second-gradient model for the microscopic system inheriting a void as described in Section 4.3. All other parameters are
given in Table 2.

For the macroscopic system, the Cook’s membrane is clamped on the left side, that is, 𝝋 = 0 mm on Γ
𝜑

. On the
right-hand side of the Cook’s membrane, a constant traction force Text = [0; 100; 0] N is applied. We use quadratic
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F I G U R E 10 Cook’s membrane. Left: Cook’s membrane with Dirichlet boundaries Γ
𝜑

on the left side and Neumann boundaries Γ
𝜎

on
the right side, right:  of the Cook’s membrane with a second-gradient material for fiber-reinforced polymers with Dirichlet boundary
conditions for the surfaces

B-splines on both scales with 27 Gauss points per element and set up two mesoscopic systems with 12 × 12 × 12 and
24 × 24 × 24 elements with in total 2744 and 17,576 control points, respectively. Since solving the for all Gauss points
of the macroscopic system in every load increment and Newton iteration requires a high computational effort, we applied
a multigrid-solution scheme.

Remark 2. Multigrid-solution: For a fast and efficient solution, we construct a series of nested meshes on the macro- and
mesoscale. Nested meshes are characterized by a linear dependency of the coarse shape functions from those of the fine
scale. This can be easily constructed in the context of B-splines and NURBS, if the fine scale is constructed by a knot
insertion technique (see, e.g., References 58 and 83). This technique provides all necessary topological information for
the prolongation matrix Tpro. Hence, a first simple algorithm for a fast solution as shown in Box 1 can be applied.

Note, that a further decrease of the computational effort can be obtained by using a series of nested meshes MRVE
Fj

on the mesoscale as well for each macroscale MFi . Alternatively, the prolongation on the mesoscale can be circumvented
by solving MFi with MRVE

Fj
and prolongate to MFi itself but resolved with MRVE

Fj+1. For the problem at hand, we solved{
MF1 |MRVE

F1

} Tpro
1,2 ◦

−−−−−→
{

MF2 |MRVE
F1

} Tpro
2,2 ◦

−−−−−→
{

MF2 |MRVE
F2

} Tpro
2,3 ◦

−−−−−→
{

MF3 |MRVE
F2

}
.

BOX 1 Algorithm for fast solution using nested meshes

onstruct a coarse scale mesh MF0

for i = 1 ∶ n, n ∶= number of elements do

Refine the mesh using a knot-insertion to obtain the fine mesh MFi .
Construct prolongation matrix Tpro

i,i+1.
end
for i = 1 ∶ n do

Solve the multi-scale problem on MFi .
Prolongate the solution MFi+1 = Tpro

i,i+1◦MFi .
end

In Figure 11, we plotted the von Mises stress of selected levels of the multigrid-solution and additionally the norm of
the second-order stress for the finest resolution of the macroscopic system with a scaled displacement. The second-order
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F I G U R E 11 Cook’s membrane. Stresses at different resolutions with a scaled displacement to the factor 5. Top to bottom: Level one,
three, and four according to Table 4. Left to right: von Mises stress and ||𝔓||
T A B L E 4 Cook’s membrane: Computational effort and convergence

Level 1 2 3 4

Macro res. 4 × 4 × 1 12 × 12 × 3 12 × 12 × 3 24 × 24 × 6

Micro res. 12 × 12 × 12 12 × 12 × 12 24 × 24 × 24 24 × 24 × 24

Step 1/10 … 10/10 1/1 1/1 1/1

NR-iterations 1.64E + 04 1.63E + 04 3.30E + 05 3.96E + 02 1.03E + 05

1.94E + 04 2.37E + 04 2.28E + 03 5.54E − 01 3.95E + 02

4.12E + 00 1.17E + 00 8.95E − 01 2.03E − 04 2.47E − 01

7.59E − 03 1.66E − 04 7.47E − 04 4.66E − 07 2.55E − 04

7.30E − 06 8.93E − 07 8.90E − 07 6.73E − 07∑ 21,600 58,320 46,656 466,560

Note: Newton–Raphson (NR) convergence utilizing the multigrid solution scheme on the macroscale and total number of solved  per multigrid level. Note
that we conducted an incremental stepping on level one with 10 steps, whereas the load at higher levels was applied in a single step.
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stress peaks in the area of clamped left side of the Cook’s membrane and matches the expected behavior. Furthermore,
Table 4 displays the convergence of the macroscopic system in each level of the multigrid-solution, indicating the accuracy
of the linearization as proposed in Section 3.2. and demonstrating the computational effort.

5 CONCLUSIONS

In this work, we could demonstrate a generalization for the numerical homogenization of higher-order strain gradi-
ent materials. This approach allows to homogenize first- and second-gradient materials on the mesoscale, containing
representative quantities of the microstructure, toward second- and third-gradient materials on the macroscale. Suit-
able Dirichlet and periodic boundary conditions have been applied on the mesoscale to ensure an energetic consistent
formulation, analogously to the Hill-Mandel criterion for first-gradient materials.

On both scales, the IGA concept using NURBS based shape functions has proven to be very well suited for these kind
of formulations. Hence, we could implement an IGA2-method and demonstrate the accuracy even for highly anisotropic
strain gradient materials on the mesoscale. Eventually, we could derive a generalized framework for a consistent lineariza-
tion of the macroscale values. The Newton-Raphson iteration for this highly nonlinear problem could be improved by
calculating nested meshes on the micro- and the macroscale. With this framework at hand, novel computational inves-
tigations and predictions of the constitutive relations of materials with specific microstructures as now widely used in
additive manufacturing are feasible.
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ENDNOTES
∗More strictly speaking, separation of scales is present when the wavelengths of physical fields at the higher scale are very much larger than
the dimensions of heterogeneities at the lower scale.1

†Alternative schemes with even C∞-continuous interpolations at the microscopic level have been proposed by Moulinec and Suquet 69 and
were recently implemented in the framework of so-called FE-FFT methods. As the name suggests, associated schemes combine macroscopic
solvers based on finite elements with microscopic solvers based on spectral methods (fast Fourier transforms; FFT), see References 70-72.

‡All appendices are written most generally with regard to a third-gradient medium. For the proposed second-gradient material, the corre-
sponding terms of the third gradient can be removed easily.

§B-splines are used without loss of generality, NURBS can also be applied if necessary.
¶Setting the parameters strictly to zero may lead to numerical instabilities.
#Latin indices range in the set {1, 2, 3}. We will make use of the Einstein summation convention on repeated indices.
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APPENDICES
The article summarizes all necessary equations for a second-gradient micro- and macrocontinuum. In Remark 1, we

discuss the combination of a second-gradient microcontinuum and a third-gradient macrocontinuum. Therefore, we
write Appendices B–D for the latter one. Omitting the fourth-order tensor F = ∇

3
𝝋 and the triple stress tensor P, we end

up in the equations for the second-gradient micro- and macrocontinuum mainly used in the article.

APPENDIX A. NOTATION

In the following, we briefly summarize the notation mainly used. The scalar product of two vectors a,b, two second-order
tensors A,B, two third-order tensors 𝔄,𝔅, and two fourth-order tensors A,B is given by#

[a ⋅ b] = ai bi , [A ∶ B] = Aij Bij , [𝔄 ⋮ 𝔅] = Aijk Bijk , [A ∶∶ B] = Aijkl Bijkl. (A1)

Other multiplications of two tensors of different order are given in the following way, here for example, for a fourth-order
tensor A with a third-order tensor 𝔅, second-order tensor B and vector b, respectively

[A b]ijk = Aijkl bl , [A ∶ B]ij = Aijkl Bkl , [A ⋮ 𝔅]i = Aijkl Bjkl. (A2)

All other combinations follow analogously. The dyadic product ⊗ increases the order of the tensor. For example, a dyadic
product of two vectors a,b is given by A = a ⊗ b with Aij = ai bj. Next, we define the macroscopic gradient with respect
to the macroscopic reference configuration ∇(•) of a vector field a and of a second-order tensor field A as

[∇a]iJ =
𝜕[a]i

𝜕[X]J
and [∇A]iJK = 𝜕[A]iJ

𝜕[X]K
. (A3)

For the macroscopic divergence operator, it follows

[∇ ⋅ A]i =
𝜕[A]iJ

𝜕[X]J
and [𝜵 ⋅𝔄]iJ =

𝜕[𝔄]iJK

𝜕[X]K
. (A4)

The microscopic gradient ∇a and ∇A as well as the divergence operators ∇ ⋅ A and ∇ ⋅𝔄 are given analogously to (A3)
and (A4) omitting the overlined symbol “ − ”. Furthermore, the transpose Ti with number i = 1, 2, 3 denotes the number
of shifted reference magnitudes

[A]iJ = [[A]Ji]T1 = [[A]Ji]T ,
[
𝔄
]

iJK =
[[
𝔄
]

KiJ

]T1
,

[
𝔄
]

iJK =
[[
𝔄
]

JKi

]T2
,[

A
]

iJKL =
[[

A
]

KLiJ

]T2
,

[
A
]

iJKL =
[[

A
]

JKLi

]T3
.

(A5)

Furthermore, we have to interchange some reference indices with Cij, where i, j denote the indices which will be
interchanged
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[
𝔄
]

JKi =
[[
𝔄
]

KJi

]C12
,

[
A
]

KLiJ =
[[
𝔄
]

LKiJ

]C12
,[

A
]

JKLi =
[[
𝔄
]

LKJi

]C13
,

[
A
]

JKLi =
[[
𝔄
]

JLKi

]C23
.

(A6)

APPENDIX B. MACROSCOPIC KINEMATIC

The microscopic kinematic for the third-gradient macroscopic continuum is given by

𝝋(X) = F X + 1
2
𝔉 ∶ (X ⊗ X) + 1

6
F ⋮ (X ⊗ X ⊗ X) + w̃. (B1)

The connections between the macroscopic deformations and the averaged microscopic deformations are given by

1
V ∫


F dV = 1

V ∫


(
F +𝔉 X + 1

2
F ∶ (X ⊗ X) + F̃

)
dV

= F + F ∶ 1
V ∫



1
2

(X ⊗ X) dV
(B2)

and

1
V ∫


𝔉 dV = 1

V ∫


(
𝔉 + F X + �̃�

)
dV = 𝔉 (B3)

using ∫ XdV = 0, which is valid if the coordinate system is in the center of the  . Furthermore, F̃ = ∇w̃ and
�̃� = ∇2w̃ are the first and second gradients of the fluctuation field. Since the macroscopic values are exactly the volume
averages of the microscopic values and not dependent on the fluctuations, we can write

1
V ∫


∇w̃ dV = 0 and 1

V ∫


∇2w̃ dV = ⦑. (B4)

Using Gauss’s theorem, we can rewrite the volume integrals of (B4) to surface integrals:

1
V ∫

𝜕
w̃ ⊗ N dA = 0 and 1

V ∫
𝜕

∇w̃ ⊗ N dA = ⦑. (B5)

using the divergence theorem for a unit tensor I and a vector a

∫
𝜕

a ⋅ (I N) dA = ∫


∇ ⋅ (IT a) dV ,

I ∶ ∫
𝜕

a ⊗ N dA = ∫


(∇ ⋅ I)
⏟⏟⏟

0

⋅ a dV + I ∶ ∫


∇a dV ,

(B6)

or for a tensor A and the unit tensor I

∫
𝜕

(A I) N dA = ∫


∇ ⋅ (A I) dV ,

∫
𝜕

A ⊗ N dA ∶ I = ∫


∇A dV ∶ I + ∫


A (∇ ⋅ I)
⏟⏟⏟

0

dV ,

(B7)

respectively.
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APPENDIX C. MACROSCOPIC STRESSES

For the derivation of the macroscopic stresses, we use the partial integration and the Gaussian integral theorem for the
integral of the left side of the energetic criterion (22):

∫


(
P ∶ ∇𝛿𝝋 +𝔓 ⋮ ∇2𝛿𝝋

)
dV

= ∫


∇ ⋅
([

P − ∇ ⋅𝔓
]T

𝛿𝝋 +𝔓T1 ∶ ∇𝛿𝝋
)

dV − ∫


(
∇ ⋅

[
P − ∇ ⋅𝔓

])
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

⋅ 𝛿𝝋 dV

= ∫
𝜕

([
(P − ∇ ⋅𝔓) N

]
⋅ 𝛿𝝋 +

[
𝔓 N

]
∶ ∇𝛿𝝋

)
dA.

(C1)

The macroscopic stresses are defined in terms of surface integrals since macroscopic values defined by volume integrals
could lead to nonphysical results, see Schröder and Keip.61 Inserting the variations of the material points 𝝋:

𝛿𝝋 = 𝛿F X + 1
2
𝛿𝔉 ∶ (X ⊗ X) + 1

6
𝛿F ⋮ (X ⊗ X ⊗ X) + 𝛿w̃ (C2)

and

∇𝛿𝝋 = 𝛿F + 𝛿𝔉 X + 1
2
𝛿F ∶ (X ⊗ X) + 𝛿F̃ (C3)

in the last equation, we can split the integral into three parts depending on the variation of the macroscopic deformation
gradient F, the second gradient 𝔉 and the third gradient F:

∫


(
P ∶ ∇𝛿𝝋 +𝔓 ⋮ ∇2𝛿𝝋

)
dV

= ∫
𝜕

(
𝔓 N +

[
P − ∇ ⋅𝔓

]
N ⊗ X

)
dA ∶ 𝛿F

+ ∫
𝜕

(
𝔓 N ⊗ X + 1

2
[
P − ∇ ⋅𝔓

]
N ⊗ X ⊗ X

)
dA ⋮ 𝛿𝔉

+ ∫
𝜕

(1
2
𝔓 N ⊗ X ⊗ X + 1

6
[
P − ∇ ⋅𝔓

]
N ⊗ X ⊗ X ⊗ X

)
dA ∶∶ 𝛿F

(C4)

with the restrictions on the boundary, since the macroscopic stresses are not dependent on the fluctuations:

∫
𝜕

(𝔓 N) ∶ ∇𝛿w̃ dA = 0 and ∫
𝜕

[
(P − ∇ ⋅𝔓) N

]
⋅ 𝛿w̃ dA = 0. (C5)

The transformation back to volume integrals leads to:

∫


(
P ∶ ∇𝛿𝝋 +𝔓 ⋮ ∇2𝛿𝝋

)
dV

= ∫


(
∇ ⋅𝔓 +

[
∇ ⋅

(
X ⊗

[
P − ∇ ⋅𝔓

])]T
)

dV ∶ 𝛿F

+ ∫


([
∇ ⋅ (X ⊗𝔓)

]T1 + 1
2
[
∇ ⋅

(
X ⊗ X ⊗

[
P − ∇ ⋅𝔓

])]T2
)

dV ⋮ 𝛿𝔉
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+ ∫


(1
2
[
∇ ⋅ (X ⊗ X ⊗𝔓)

]T2 + 1
6
[
∇ ⋅

(
X ⊗ X ⊗ X ⊗

[
P − ∇ ⋅𝔓

])]T3
)

dV ∶∶ 𝛿F

= ∫


P dV ∶ 𝛿F + ∫


(
𝔓 + ∇ ⋅𝔓⊗ X +

[
P − ∇ ⋅𝔓

]
⊗ X

)
dV ⋮ 𝛿𝔉

+ ∫


(
𝔓⊗ X + 1

2
∇ ⋅𝔓⊗ X ⊗ X + 1

2
[
P − ∇ ⋅𝔓

]
⊗ X ⊗ X

)
dV ∶∶ 𝛿F

= ∫


P dV ∶ 𝛿F + ∫


(𝔓 + P ⊗ X) dV ⋮ 𝛿𝔉

+ ∫


(
𝔓⊗ X + 1

2
P ⊗ X ⊗ X

)
dV ∶∶ 𝛿F, (C6)

where we used the following equalities for the divergence of third-, fourth-, and fifth-order tensors:

∇ ⋅ (X ⊗ A) = AT + X ⊗ ∇ ⋅ A,

∇ ⋅ (X ⊗𝔄) = 𝔄T1 + X ⊗ ∇ ⋅𝔄,

∇ ⋅ (X ⊗ X ⊗ A) =
(

X ⊗ AT)C12 + X ⊗ AT + X ⊗ X ⊗ ∇ ⋅ A,

∇ ⋅ (X ⊗ X ⊗𝔄) =
(

X ⊗𝔄T1)C12 + X ⊗𝔄T1 + X ⊗ X ⊗ ∇ ⋅𝔄,

∇ ⋅ (X ⊗ X ⊗ X ⊗ A) =
(

X ⊗ X ⊗ AT)C13 +
(

X ⊗ X ⊗ AT)C23 + X ⊗ X ⊗ AT

+ X ⊗ X ⊗ X ⊗ ∇ ⋅ A,

(C7)

as well as the strong form of the second-gradient microscopic continuum (14), the symmetry of
[
𝔉
]

iJK
in J,K and the

symmetry of
[
F

]
iJKL

in J,K,L.

APPENDIX D. MESOSCOPIC BOUNDARY CONDITIONS

For the third-gradient macroscopic continuum, we can rewrite the energetic criterion (22) as

1
V ∫



[
P − P

]
∶
[
𝛿F + 𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

]
dV

+ 1
V ∫



[
𝔓

𝔓
−𝔓

]
⋮
[
𝛿𝔉 + 𝛿F X − 𝛿𝔉

]
dV = 0,

(D1)

to obtain more information about the boundary conditions. Obviously, the simplest assumption for all points of the
microscopic scale, that fulfills the last equation is given by postulating the constraints P ∶= P or 𝛿F + 𝛿𝔉 X + 1

2
𝛿F ∶

(X ⊗ X) = 𝛿F and additionally 𝔓
𝔓
∶= 𝔓 or 𝛿𝔉 + 𝛿F X = 𝛿𝔉, compare Schröder.64

D.1 Proof of further representation of energetic criterion
For the derivation of the boundary condition, we have to show, that the energetic criterion (22) is equal to (D1). The first
term of (D1) leads to

1
V ∫



[
P − P

]
∶
[
𝛿F + 𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

]
dV

= − P ∶ 𝛿F −𝔓
P

⋮ 𝛿𝔉 − P
P
∶∶ 𝛿F + 1

V ∫


P ∶ 𝛿F dV ,

(D2)
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taking advantage of the fact that the macroscopic quantities are constant over the volume of the  and 1
V
∫ XdV =

0, if the coordinate system is in the center of the  . Furthermore, the correlations between the microscopic and
macroscopic quantities (B2) and (24) are used. For the second term of (D1), we use additionally (B3), which leads to

1
V ∫



[
𝔓

𝔓
−𝔓

]
⋮
[
𝛿𝔉 + 𝛿F X − 𝛿𝔉

]
dV = −𝔓

𝔓
⋮ 𝛿𝔉 − P

𝔓
∶∶ 𝛿F + 1

V ∫


𝔓 ⋮ 𝛿𝔉 dV . (D3)

So, we can write for (18) by adding the last two equations

1
V ∫


P ∶ 𝛿F dV + 1

V ∫


𝔓 ⋮ 𝛿𝔉 dV = P ∶ 𝛿F +
(
𝔓

𝔓
+𝔓

P)
⋮ 𝛿𝔉 +

(
P
𝔓
+ P

P)
∶∶ 𝛿F, (D4)

which reflects the energetic criterion (22).

D.2 Boundary integral of energetic criterion
Here, the transfer of the volume integrals of (D1) to boundary integrals of the energetic criterion is explained. Using the
partial integration for the first and second term of (D1), we get for the first term

1
V ∫



[
P − P

]
∶
[
𝛿F + 𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

]
dV

= 1
V ∫


∇ ⋅

([
P − P

]T [
𝛿F X + 1

2
𝛿𝔉 ∶ (X ⊗ X) + 1

6
𝛿F ⋮ (X ⊗ X ⊗ X) − 𝛿𝝋

])
dV

+ 1
V ∫


∇ ⋅ P ⋅

[
𝛿F X + 1

2
𝛿𝔉 ∶ (X ⊗ X) + 1

6
𝛿F ⋮ (X ⊗ X ⊗ X) − 𝛿𝝋

]
dV ,

(D5)

with ∇ ⋅ P = 0 and analogously for the second term

1
V ∫



[
𝔓

𝔓
−𝔓

]
⋮
[
𝛿𝔉 + 𝛿F X − 𝛿𝔉

]
dV

= 1
V ∫


∇ ⋅

([
𝔓

𝔓
−𝔓

]T1
∶
[
𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

])
dV

+ 1
V ∫


∇ ⋅𝔓 ∶

[
𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

]
dV ,

(D6)

with ∇ ⋅𝔓 = 0. Now, adding the following zero term

1
V ∫



(
∇ ⋅

([
𝔓

𝔓
−𝔓

]T1
∶ 𝛿F

)
+ ∇ ⋅𝔓 ∶ 𝛿F

)
dV = 0, (D7)

to the right-hand side of (D6) leads only to a change of (D6) in the form

[
𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

]
→
[
𝛿F + 𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

]
. (D8)

Using once again a partial integration, the second term of (D1) is given by

1
V ∫



[
𝔓

𝔓
−𝔓

]
⋮
[
𝛿𝔉 + 𝛿F X − 𝛿𝔉

]
dV
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= 1
V ∫


∇ ⋅

([
𝔓

𝔓
−𝔓

]T1
∶
[
𝛿F + 𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

])
dV

+ 1
V ∫


∇ ⋅

([
∇ ⋅𝔓

]T
[
𝛿F X + 1

2
𝛿𝔉 ∶ (X ⊗ X) + 1

6
𝛿F ⋮ (X ⊗ X ⊗ X) − 𝛿𝝋

])
dV

+ 1
V ∫


∇ ⋅ ∇ ⋅𝔓 ⋅

[
𝛿F X + 1

2
𝛿𝔉 ∶ (X ⊗ X) + 1

6
𝛿F ⋮ (X ⊗ X ⊗ X) − 𝛿𝝋

]
dV . (D9)

The introduction of the zero term leads to an easy summation of (D5) and (D9)

1
V ∫



[
P − P

]
∶
[
𝛿F + 𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

]
dV

+ 1
V ∫



[
𝔓

𝔓
−𝔓

]
⋮
[
𝛿𝔉 + 𝛿F X − 𝛿𝔉

]
dV

= 1
V ∫

𝜕

([
P − (P − ∇ ⋅𝔓)

]
N
)
⋅
[
𝛿F X + 1

2
𝛿𝔉 ∶ (X ⊗ X)

+1
6
𝛿F ⋮ (X ⊗ X ⊗ X) − 𝛿𝝋

]
dA

+ 1
V ∫

𝜕

([
𝔓

𝔓
−𝔓

]
N
)
∶
[
𝛿F + 𝛿𝔉 X + 1

2
𝛿F ∶ (X ⊗ X) − 𝛿F

]
dA

+ 1
V ∫


∇ ⋅ (P − ∇ ⋅𝔓)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=0

⋅
[
𝛿F X + 1

2
𝛿𝔉 ∶ (X ⊗ X) + 1

6
𝛿F ⋮ (X ⊗ X ⊗ X) − 𝛿𝝋

]
dV , (D10)

where we make use of the Gaussian integral theorem and the strong form of the microscopic continuum.

APPENDIX E. LINEARIZATION OF MACROSCOPIC STRESSES AND HYPERSTRESSES

The consistent linearization starts with the incremental macroscopic stresses and hyperstresses given by the correlated
microscopic stresses and hyperstresses, see (17), which are inserted in the latter equation

ΔP = 1
V ∫


ΔP dV and Δ𝔓 = 1

V ∫


Δ (P ⊗ X +𝔓) dV . (E1)

Since the microscopic stresses and hyperstresses depend on F and 𝔉, the chain rule is used

[
ΔP

]
iJ
= 1

V ∫


([
C
]

iJsT Δ [F]sT + [D]iJsTU Δ
[
𝔉
]

sTU

)
dV ,

[
Δ𝔓

]
iJK

= 1
V ∫



([
C
]

iJsT [X]K + [E]iJKsT
)
Δ [F]sT dV

+ 1
V ∫


([D]iJsTU [X]K + [G]iJKsTU ) Δ

[
𝔉
]

sTU dV .

(E2)

The derivatives of the stresses with respect to the deformation tensors (C, D, E, G) are defined in (29). The incremental
microscopic deformation measures, see (12), are
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Δ [F]sT = Δ
[

F
]

sT
+ Δ

[
𝔉
]

sTU
[X]U + Δ

[
F̃
]

sT ,

Δ
[
𝔉
]

sTU = Δ
[
𝔉
]

sTU
+ Δ

[
�̃�
]

sTU ,
(E3)

compare (27) and (28).

APPENDIX F. APPROXIMATION OF MICROSCOPIC BOUNDARY VALUE PROBLEM

The domain of the representative volume element is approximated by finite elements ≈ h =
⋃n

e=1e with
the number of elements n. For the approximation of the microscopic boundary value problem (31) with the incremental
deformation tensors of (32), we insert the approximations of (33) and (34)

ΔG =
n∑

e=1

[
𝛿q̃
]eA

i

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
e

[∇R]A
J
[
C
]eh

iJsT dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[𝔏1]eA
isT

[
ΔF

]e

sT
+ ∫

e

[∇R]A
J
[
C
]eh

iJsT [X]eh
U dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[M1]eA
isTU

[
Δ𝔉

]e

sTU

+ ∫
e

[∇R]A
J
[
C
]eh

iJsT [∇R]B
T dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[K1]eAB
is

[
Δq̃

]eB
s + ∫

e

[∇R]A
J [D]eh

iJsTU dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[M2]eA
isTU

[
Δ𝔉

]e

sTU

+ ∫
e

[∇R]A
J [D]eh

iJsTU
[
∇2R

]B
TU dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[K2]eAB
is

[
Δq̃

]eB
s + ∫

e

[
∇2R

]A
JK [E]eh

iJKsT dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[𝔏2]eA
isT

[
ΔF

]e

sT

+ ∫
e

[
∇2R

]A
JK [E]eh

iJKsT [X]eh
U dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[M3]eA
isTU

[
Δ𝔉

]e

sTU
+ ∫

e

[
∇2R

]A
JK [E]eh

iJKsT [∇R]B
T dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[K3]eAB
is

[
Δq̃

]eB
s (F1)

+ ∫
e

[
∇2R

]A
JK [G]eh

iJKsTU dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[M4]eA
isTU

[
Δ𝔉

]e

sTU
+∫

e

[
∇2R

]A
JK [G]eh

iJKsTU
[
∇2R

]B
TU dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[K4]eAB
is

[
Δq̃

]eB
s

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (F1)

In the end, we can write

ΔG =
n∑

e=1

[
𝛿q̃
]eA

i

{
[K]eAB

is
[
Δq̃

]eB
s +

[
𝔏
]eA

isT

[
ΔF

]e

sT
+
[
M
]eA

isTU

[
Δ𝔉

]e

sTU

}
(F2)

with

[K]eAB
is = [K1]eAB

is + [K2]eAB
is + [K3]eAB

is + [K4]eAB
is ,[

𝔏
]eA

isT =
[
𝔏1
]eA

isT +
[
𝔏2
]eA

isT ,[
M
]eA

isTU =
[
M1

]eA
isTU +

[
M2

]eA
isTU +

[
M3

]eA
isTU +

[
M4

]eA
isTU .

(F3)

After assembling over all elements with (•) = An
e=1(•)e, we get in the equilibrium state



2528 SCHMIDT et al.

ΔG =
[
𝛿q̃
]A

i

{
[K]AB

is
[
Δq̃

]B
s +

[
𝔏
]A

isT

[
ΔF

]
sT
+
[
M
]A

isTU

[
Δ𝔉

]
sTU

}
. (F4)

Thus, usingΔG = 0, the correlation between the sensitivities and the change of corresponding macroscopic fields is given
in the discrete setting as follows[

Δq̃
]B

s = −
(
[K]AB

ls
)−1

([
𝔏
]A

lrT

[
ΔF

]
rT

+
[
M
]A

lrTU

[
Δ𝔉

]
rTU

)
. (F5)

APPENDIX G. APPROXIMATION OF MACROSCOPIC STRESSES

In this section, we derive the discretized macroscopic stresses. We start with the discretization of the linearization of P:

[
ΔP

]h

iJ
=
[
V

C
]h

iJsT

[
ΔF

]
sT
+
[
VCD

]h
iJsTU

[
Δ𝔉

]
sTU

+
[
𝔑
]B

iJs

[
Δq̃

]B
s , (G1)

with the volume-averaged tensors

[
V

C
]h

iJsT = 1
V ∫

h

[
C
]h

iJsT dV ,

[
VCD

]h
iJsTU = 1

V ∫
h

([
C
]h

iJsT [X]h
U + [D]h

iJsTU

)
dV ,

[
𝔑
]B

iJs =
1
V ∫

h

([
C
]h

iJsT [∇R]B
T + [D]h

iJsTU
[
∇2R

]B
TU

)
dV .

(G2)

Inserting the discrete sensitivities (F5) yields

[
ΔP

]h

iJ
=
{[

V
C
]h

iJrT −
[
𝔑
]B

iJs

(
[K]AB

ls
)−1 [𝔏]A

lrT

} [
ΔF

]
rT

+
{[

VCD
]h

iJrTU −
[
𝔑
]B

iJs

(
[K]AB

ls
)−1 [

M
]A

lrTU

} [
Δ𝔉

]
rTU

.

(G3)

Furthermore, we discretize the linearization of the hyperstresses 𝔓

[
Δ𝔓

]h

iJK
=
[
VCE

]h
iJKsT

[
ΔF

]
sT
+
[
VCDEG

]h
iJKsTU

[
Δ𝔉

]
sTU

+
[
N
]B

iJKs

[
Δq̃

]B
s , (G4)

with the volume-averaged tensors

[
VCE

]h
iJKsT = 1

V ∫
h

([
C
]h

iJsT [X]h
K + [E]h

iJKsT

)
dV ,

[
VCDEG

]h
iJKsTU = 1

V ∫
h

([
C
]h

iJsT [X]h
K [X]h

U + [D]h
iJsTU [X]h

K

+ [E]h
iJKsT [X]h

U + [G]h
iJKsTU

)
dV ,[

N
]B

iJKs =
1
V ∫

h

([
C
]h

iJsT [X]h
K + [E]h

iJKsT

)
[∇R]B

T dV

+ 1
V ∫

h

(
[D]h

iJsTU [X]h
K + [G]h

iJKsTU
) [

∇2R
]B

TU

⎫⎪⎬⎪⎭
, dV .

(G5)
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Insertion once again of the discrete sensitivities (F5) yields

[
Δ𝔓

]h

iJK
=
{[

VCE
]h

iJKrT −
[
N
]B

iJKs

(
[K]AB

ls
)−1 [𝔏]A

lrT

} [
ΔF

]
rT

+
{[
VCDEG

]h
iJKrTU −

[
N
]B

iJKs

(
[K]AB

ls
)−1 [

M
]A

lrTU

}[
Δ𝔉

]
rTU

.

(G6)
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