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Abstract
With the ongoing advances in artificial intelligence (AI) systems, their influence on our private,
professional, and public life is expanding. While these systems’ prediction performance
increases, they often rely on opaque system architectures that hide the reasons for the systems’
decisions. The field of explainable AI thus seeks to answer why a system returns its prediction.

In this thesis, we explore explanatory methods for natural language processing (NLP)
systems. Instead of focusing on the technical aspects of explainability in isolation, we take a
human-centered approach and additionally explore users’ perception of and their interaction
with explainable NLP systems. Our contributions thus range on a spectrum from technology-
centered machine learning contributions to human-centered studies of cognitive biases.

On the technical end of the spectrum, we first contribute novel approaches to integrate
external knowledge into explainable natural language inference (NLI) systems and study the
effect of different sources of external knowledge on fine-grained model reasoning capabilities.
We compare automatic evaluation with user-perceived system quality and find an equally
surprising and alarming disconnect between the two. Second, we present a novel self-correction
paradigm inspired by Hegel’s dialectics. We apply our resulting thought flow network method
to question answering (QA) systems and demonstrate our method’s ability to self-correct model
predictions that increase prediction performance and additionally find that the corresponding
decision sequence explanations enable significant improvements in the users’ interaction with
the system and enhance user-perceived system quality.

Our architectural and algorithmic contributions are followed by an in-depth investigation
of explanation quality quantification. We first focus on explainable QA systems and find that
the currently used proxy scores fail to capture to which extent an explanation is relevant to the
system’s answer. We thus propose the two novel model-agnostic scores FARM and LOCA,
which quantify a system’s internal explanation-answer coupling following two complementary
approaches. Second, we consider general explanation quality and discuss its characteristics and
how they are violated by current evaluation practices at the example of a popular explainable
QA leaderboard. We provide guidelines for explanation quality evaluation and propose our
novel “Pareto Front leaderboard” method to construct system rankings to overcome challenges
in explanation quality evaluation.

In the last part of the thesis, we focus on human perception of explanations. We first
investigate how users interpret the frequently used heatmap explanations over text. We find that
the information communicated by the explanations differs from the information understood
by the users. In a series of studies, we discover distorting effects of various types of biases
and demonstrate that cognitive biases, learning effects, and linguistic properties can distort
users’ interpretation of explanations. We question the use of heatmap visualizations and
propose alternative visualization methods. Second, we develop, validate, and apply a novel
questionnaire to measure perceived system predictability. Concretely, we contribute the novel
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Abstract

perceived system predictability (PSP) scale, demonstrate its desirable psychometric properties,
and use it to uncover a dissociation of perceived and objective predictability in the context of
explainable NLP systems.

Overall, this thesis highlights that progress in explainable NLP cannot rely on technical
advances in isolation, but needs to simultaneously involve the recipients of explanations
including their requirements, perception, and cognition.
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Zusammenfassung
Die Fortschritte im Bereich künstlicher Intelligenz (KI) dehnen den Einfluss von KI-Systemen
auf unser Privat-, Arbeits- und Gesellschaftsleben kontinuierlich aus. Obwohl die Vorhersa-
gegenauigkeit dieser Systeme kontinuierlich ansteigt, liegen ihnen häufig undurchsichtige
Systemarchitekturen zugrunde, die es nicht ermöglichen, den Entscheidungsprozess der Syste-
me nachvollziehen zu können. Forschung im Bereich erklärbarer KI befasst sich deswegen mit
der Frage wie ein System zu seiner Vorhersage gelangt.

In dieser Arbeit setzen wir uns mit Methoden der erklärbaren KI im Kontext maschineller
Sprachverarbeitung (MSV) auseinander. Anstatt den Fokus auf rein technische Aspekte er-
klärbarer KI zu legen, verfolgen wir einen nutzerzentrierten Ansatz und schließen zusätzlich
die Wahrnehmung erklärbarer MSV Systeme durch deren Nutzer sowie deren Interaktion mit
diesen Systemen in unsere Analyse ein. Die Forschungsbeiträge dieser Arbeit decken ein
Spektrum von technologiezentrierten Methoden im Bereich des maschinellen Lernens bis hin
zu nutzerzentrierten Analysen kognitiver Verzerrungen ab.

Am technologiezentrierten Ende des Spektrums stellen wir neue Methoden zur Integra-
tion externer Wissensquellen in erklärbare Systeme zur natürlichsprachigen Inferenz (NLI)
vor und untersuchen die Auswirkungen verschiedener Quellen auf spezifische Inferenzfähig-
keiten der entsprechenden Systeme. Wir vergleichen die Ergebnisse einer automatisierten
Systemevaluation mit der durch Nutzer wahrgenommen Systemqualität und entdecken eine
gleichermaßen überraschende und alarmierende Diskrepanz zwischen den beiden Evaluierungs-
sansätzen. Darüber hinaus stellen wir ein neues, von Hegels Dialektik inspiriertes Paradigma
zur Systemselbstkorrektur vor. Wir wenden unsere abgeleitete Thought Flow Network Methode
auf natürlichsprachige Antwortsysteme (QA Systeme) an und zeigen, dass unsere Methode
effektiv Systemvorhersagen korrigieren kann, die die Genauigkeit des System erhöhen, und die
resultierenden Erklärungen in Form von Entscheidungssequenzen signifikante Verbesserungen
der Mensch-System Interaktion und der Systemwahrnehmung durch Nutzer ermöglichen.

Unserer Diskussion verschiedener Systemarchitekturen und Algorithmen folgt eine tiefge-
hende Untersuchung der quantitativen Messung von Erklärungsqualität. Wir konzentrieren
unsere Analyse auf erklärbare QA Systeme und stellen fest, dass herkömmliche Proxymetriken
nicht ausreichend erfassen, inwieweit eine Erklärung für die Antwort des Systems relevant ist.
Wir stellen deshalb die zwei neuen modellagnostischen Proxyscores FARM und LOCA vor,
die die systeminterne Erklärungs-Antwort Kopplung eines erklärbaren QA Systems anhand
zweier komplementärer Ansätze quantifizieren.

Anschließend widmen wir uns der Qualität von Erklärungen im Allgemeinen und beschreiben
deren generelle Merkmale und die Verletzung dieser durch herkömmliche Evaluierungsprak-
tiken am Beispiel eines populären Leaderboars für erklärbare QA Systeme. Um einige der
Herausforderungen bei der Messung von Erklärungsqualität zu bewältigen, stellen wir Leit-
linien zur Evaluation von Erklärungsqualität vor und präsentieren unsere neue “Pareto Front
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Leaderboard” Methode zur Konstruktion von Ranglisten.
Im letzten Teil der Arbeit befassen wir uns mit der menschlichen Wahrnehmung von Erklärun-

gen. Wir untersuchen zunächst, wie Nutzer die häufig verwendeten Heatmap-Erklärungen über
Text interpretieren. Wir stellen fest, dass die durch die Erklärungen kommunizierte Information
sich von der von den Nutzern verstandenen Information unterscheidet. In einer Reihe von Stu-
dien decken wir den Einfluss verschiedener verzerrender Einflüsse auf und demonstrieren, dass
kognitive Verzerrungen, Lerneffekte und linguistische Merkmale die Nutzerinterpretation von
Erklärungen verfälschen können. Wir stellen die Verwendung von Heatmap-Visualisierungen
infrage und schlagen alternative Visualisierungsmethoden vor. Zusätzlich entwickeln, validieren
und verwenden wir einen neuartigen Fragebogen zur Messung wahrgenommener Systemvor-
hersagbarkeit. Konkret stellen wir die neue PSP Skala vor, weisen deren gute psychometrischen
Eigenschaften nach und verwenden die Skala, um eine Diskrepanz zwischen wahrgenommener
und objektiver Vorhersagbarkeit im Kontext erklärbarer NLP Systemen offenzulegen.

Zusammenfassend verdeutlicht diese Arbeit, dass Fortschritte auf dem Gebiet erklärbarer KI
nicht allein auf technischen Neuerungen beruhen können, sondern gleichzeitig die Nutzer der
Erklärungen einschließlich ihrer Anforderungen, Wahrnehmung und kognitiver Eigenschaften
einbeziehen müssen.
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1. Introduction

1.1. Motivation

AI and NLP Systems. AI systems affect nearly every aspect of our digital lives: Recom-
mender systems determine which media content we are shown (Covington et al., 2016; Schedl
et al., 2018; Raza and Ding, 2022), advertisement systems decide which products we are offered
(Gharibshah and Zhu, 2022), and dating apps decide which user profiles we get to see (Courtois
and Timmermans, 2018). While these examples primarily concern our voluntary interaction
with automated systems in the sense that we can opt out by not using them, AI systems can also
affect us indirectly and without our consent. For example, clinical decision support systems are
used in medical diagnosis (Sutton et al., 2020), passenger screening systems affect determine
the probability that we are being searched at an airport (Waldman, 2019), grade prediction
systems can decide on which A-Level grade students receive (Smith, 2020), and welfare fraud
prediction system are used to decide which individuals are investigated1.

A large part of today’s AI systems processes natural language and chatbots, QA systems,
or content filters already affect the daily work as well as social lives of millions of users. For
example, in Helsinki, a maternity clinic chatbot is offered to citizens2 and in Amsterdam, the
municipality uses NLP to assign categories to public space issue reports3. Further, social media
platforms decide which content we are exposed to by, e.g., using automatic content moderation
systems (Jaki and Smedt, 2019; Zhou and Zafarani, 2021) to detect and remove harmful content,
such as disinformation.

When these systems are poorly designed or even misused on purpose, they pose serious risks
to users, patients, citizens, and societies. These risks include discrimination, arbitrary decisions,
misinformation, and manipulation. However, systems that are developed and evaluated carefully
can provide benefits to the ones who are affected by their operations. These benefits include
improved quality of public service, reduction of harmful content, and increased end user utility.

1https://www.wired.com/story/welfare-state-algorithms/
2https://ai.hel.fi/en/maternity-clinic-chatbot-nero/
3https://algoritmeregister.amsterdam.nl/en/reporting-issues-in-public-spa
ce/

1
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1. Introduction

The Need for Explainability. How can a malfunctioning or malicious system be distin-
guished from a genuinely useful system? Clearly, the system’s decisions/predictions in a test
scenario should be correct, i.e., we have to assess whether the system takes the right decisions.
However, this only scratches the surface of the system’s behavior. While its predictions might
be perfectly correct, we also want them to be “right for the right reasons” (Ross et al., 2017).
Investigating why a system takes the decisions it does, can allow us to detect model failure
beyond prediction behavior. An illustrative real-world example can be found in the work of
Zech et al. (2018) who analyze a system developed to detect pneumonia from X-ray scans. The
system successfully detected pneumonia cases, however, an analysis of the system’s activation
maps revealed that — instead of focusing on the patient — the system actually learned to
focus on small metal tags in the scans’ corners. These tags allowed the system to identify the
X-ray system that was used to make the scan. As, e.g., the system used in the emergency unit
and an inpatient floor differ, this information allows to make strong predictions regarding a
patient having pneumonia without considering the patient. This example shows that monitoring
system performance alone is not enough and we, additionally, have to investigate how a system
arrives at its decision. In contrast to this computer vision example, a key aspect that makes
explainability for NLP challenging is that language is discrete and highly structured. While
images contain continuous (color channel) information, a natural language sentence contains
discrete elements (in the sense that two words cannot be averaged) which are highly structured
(following the grammatical rules of its language).

User-centered Explainability. Explanations for a system’s behavior can serve multiple
stakeholders. First, explanations can help developers to debug and improve systems (Bhatt
et al., 2020). For example, the finding that the pneumonia detection system described above
focused on identifying a specific X-ray system can drive the collection of more diverse datasets
to enable performance improvements and system robustness. Second, researchers can use
explanations to derive findings regarding the modeled task or domain. For example, Watson
(2021) describes how explainability methods can be (and are) used for knowledge discovery in
genetics. Third, explanations can serve end users. When users are subject to an algorithmic de-
cision, explanations can empower them to detect and challenge erroneous or unfair algorithmic
treatment. When users make use of an explainable system as a tool or in human-AI collabora-
tion, explanations can calibrate users’ trust in the system’s abilities such that they neither under-
nor over-rely on its decisions. Each user group will have different requirements and there is no
one-size-fits-all solution to explainability. However, as researchers and developers are the ones
developing explainability methods, there is a risk of having the inmates running the asylum

2



1.1. Motivation

natural language
processing

explainability human-computer 
interaction

this thesis

Figure 1.1.: This thesis combines explainability and NLP with a human-centered perspective.

(Miller et al., 2017), i.e., researchers and developers developing methods that suit their needs
and neglect the needs of the users intended to use these methods. As argued by Miller et al.
(2017), developing explainability methods should thus incorporate findings from the social and
behavioral sciences.

This Thesis: User-centered Explainable NLP. This thesis connects explainability,
NLP, and human-centered approaches (as illustrated in Figure 1.1). We are convinced that only
by studying all three aspects in combination, we can move towards meaningful and effective
explanations. Concretely, we study explainable NLP along a spectrum ranging from technical
aspects of explainability on the one hand to human perception on the other hand (as shown
in Figure 1.2). This spectrum is reflected in the thesis’ three-folded structure: The first part
of this thesis proposes new techniques for integrating external knowledge into explanation
generation as well as a novel model self-correction method to produce sequences of model
decisions (“thought flows”). The second part addresses evaluation of explanation quality and
raises awareness of the shortcomings in today’s evaluation practices. In particular, it provides
empirical evidence for a disconnect between automatic evaluation and human evaluation across
various explainability tasks in NLP. The third part centers on humans and their perception
of NLP explanations. We demonstrate that users’ perception of explanations can be biased
and develop and validate a questionnaire to measure user-perceived system predictability. We
present a detailed outline of the structure of this thesis in Section 1.3.

3



1. Introduction
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Figure 1.2.: Overview of this thesis’ contributions. Contributions are ordered along a spectrum
ranging from technology-centered contributions (such as novel system architec-
tures) to human-centered contributions (such as measures of human perception).
Circled numbers refer to the respective sections within this thesis.

1.2. Main Contributions

In this thesis, we contribute to explainability research with a focus on NLP. Our contributions
cover a broad spectrum ranging from technical machine learning contributions to human-
centered contributions. Figure 1.2 depicts our main contributions ordered along this spectrum.
In the following, we partition this spectrum into three groups reflecting the three-fold structure
of this thesis.

Architectures and Algorithms

On the technology-centered end of the spectrum (depicted on the left in Figure 1.2), we first
contribute (i) various approaches to integrate external knowledge into explainable NLI systems.
Prior work showed that external knowledge can improve NLP systems across a wide range
of tasks (Shi et al., 2016; Seyler et al., 2018; Pan et al., 2019; Lin et al., 2019a) including
NLI systems (Chen et al., 2018; Wang et al., 2019; Li et al., 2019; Faldu et al., 2021; Bauer
et al., 2021). We explore how the integration of external knowledge affects explainable NLI
systems. Concretely, we compare various sources of external knowledge for which we propose
different integration methods and investigate how the choice of knowledge source/integration
method affects model performance, fine-grained model reasoning capabilities, and explanation
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1.2. Main Contributions

generation. In addition, we complement our automatic evaluation with human evaluation and
find that improvements in proxy scores do not transfer to quality improvements in user ratings.

Further, we (ii) propose a novel self-correction paradigm based on Hegel’s dialectics that
we call “thought flow networks”. Related work explored various approaches for model self-
correction, however, existing approaches are either task-specific (Mori et al., 1973; Katupitiya
and Gock, 2005), are not applicable to pre-trained models (Hopfield, 1982; Koller and Friedman,
2009; Barra et al., 2018; Ramsauer et al., 2020) or cannot be applied iteratively (Wei et al.,
2022). In contrast, we derive a new system architecture along a novel training/prediction
paradigm, that is task-agnostic, can be applied on top of existing models, and can iteratively
correct model predictions. We apply our method to QA models and demonstrate our model’s
ability to correct its own predictions and its potential to notably boost model performance, and
find promising improvements in user performance and user-perceived system quality.

Evaluation Methodology and Proxy Scores

In the middle of the spectrum, we first (iii) propose novel proxy scores to evaluate explainable
QA systems. While prior development of explainable QA system focused on F1-scores to
quantify the models’ explanation quality (i.a., Yang et al., 2018; Fang et al., 2020; Tu et al.,
2020; Nishida et al., 2021; Li et al., 2022) by comparing ground truth explanations to system
explanations, we introduce two scores that quantify answer-explanation coupling without

ground truth explanations.

Further, we (iv) discuss general explanation quality based on insights from behavioral
sciences. We formulate characteristics of explanation quality, and (v) demonstrate how today’s
explanation quality evaluation approaches violate them. Most importantly, we discover an
alarming disconnect between automatic and human evaluation of explanation quality. While the
use of automatic proxy scores has been questioned frequently within natural language generation
(NLG) (e.g., regarding BLEU) (Callison-Burch et al., 2006; Liu et al., 2016; Novikova et al.,
2017; Sulem et al., 2018; Reiter, 2018) and the need for human-centered evaluation approaches
in explainable AI have been stressed by (i.a. Ribera and Lapedriza, 2019; Chu et al., 2020;
Gonzalez et al., 2021; Colin et al., 2021; Schlegel et al., 2022; Liao et al., 2022), the relation
between proxy scores and human ratings received little attention in the context of explainable
AI (Kayser et al., 2021; Clinciu et al., 2021). In particular, this relation was — to the best of our
knowledge — not studied for explainable QA. We thus investigate explainable QA models and
compare the respectively used de facto standard proxy scores to numerous human self-reports
of explanation quality. We find that automatic evaluation poorly reflects the explanations’ utility
to users and the users’ perceived explanation quality.
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To address some of the main challenges that today’s explanation quality evaluation is
facing, we (vi) provide guidelines and practical recommendations including a new leaderboard
construction method that we call “Pareto Front leaderboards”. In contrast to previously proposed
leaderboard alternatives (Chaganty et al., 2017; Ethayarajh and Jurafsky, 2020; Linzen, 2020)
our method can combine multiple quality dimensions into a joint system ranking without
condensing score dimensions into a single score.

Cognitive Biases and Human Perception

On the human-centered end of the spectrum (depicted on the right in Figure 1.2), we first con-
tribute (vii) the discovery that cognitive biases can affect human understanding of explanations.
Concretely, we study saliency (heatmap) explanations over text, find that the information com-
municated by the explanation differs from the information understood by users, and propose
alternative visualization methods that mitigate the effect of the respective cognitive biases. In
contrast to prior work that explored belief bias in users’ decision behavior (Gonzalez et al.,
2021), we investigate and discover a broad range of biasing influences, such as visual properties
of an explanation or learning effects and focus on the users’ perception of explanations.

Finally, we (iix) develop and validate a questionnaire to provide a solid foundation to study
perceived system predictability. While prior work only includes predictability as a facet of
higher-level constructs (Schrills et al., 2022) or explored related constructs, such as trust
(Cramer et al., 2008; Ribes et al., 2021; Khurana et al., 2021) or perceived usefulness (Khurana
et al., 2021; Bansal et al., 2021) our scale is the first validated instrument to measure perceived
predictability along with subordinate dimensions of predictability. Concretely, we propose a
theory of perceived predictability based on uncertainty theory, construct a 6-item Likert scale,
demonstrate its desirable psychometric properties, and apply it in a large-scale user study to
explore how explanations and system stochasticity affect perceived predictability and how
perceived predictability is related to objective predictability and other subjective dimensions,
such as trust.
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1.3. Structure

The mapping of the described contributions to sections is depicted in Figure 1.2. Coarsely, this
thesis is structured into five chapters following this introduction:

• Chapter 2 provides the reader with background on NLP tasks and model architectures
(Section 2.1.1), explainability (Section 2.2), user study design (Section 2.3), and statistical
methods (Section 2.4).

• Chapter 3 presents our technical system contributions regarding external knowledge
integration for explainable NLI (Section 3.1) and our self-reflective thought flow networks
(Section 3.2).

• Chapter 4 addresses explanation quality evaluation by proposing new proxy scores for
explainable QA (Section 4.1), discussing fundamental characteristics of explanation qual-
ity (Section 4.2), arguing how today’s evaluation approaches violate them (Section 4.3),
and proposing remedies to re-orient explainable NLP system development towards more
effective explanation quality evaluation (Section 4.4).

• Chapter 5 focuses on human perception of explanations. In a series of studies, we
demonstrate that human interpretation of heatmap explanations over text is distorted by
cognitive biases and present alternative visualization methods (Section 5.1). Additionally,
we develop and psychometrically validate a questionnaire to measure general user-
perceived system predictability and explore the impact that different types of explanations
and levels of system stochasticity have on users’ perceived ability to be able to predict a
system’s behavior (Section 5.2).

• Chapter 6 concludes the thesis and discusses future work.
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2. Background

This chapter introduces this thesis’ context with respect to the addressed NLP tasks and typical
model architectures (Section 2.1), explainable AI and explainability methods within NLP
(Section 2.2), core concepts of user studies (Section 2.3) as well as statistical methods that we
use in the following chapters (Section 2.4).

2.1. Tasks, Datasets, and Systems

In this section, we present the NLP tasks that we address within this thesis (Section 2.1.1) along
with common system architectures that are used to model them (Section 2.1.2).

2.1.1. Tasks and Datasets

Throughout this thesis, we focus on two tasks: explainable QA and explainable NLI. In the
following, we introduce the “classic” as well as the explainable versions of these tasks and
clarify what the inputs and outputs of the respective systems are.

2.1.1.1. (Explainable) Natural Language Inference

Natural Language Inference. NLI tasks require systems to decide how two sentences
are related regarding the relation of their meanings (Jurafsky and Martin, 2023). More con-
cretely, the systems receive two sentences (the premise and the hypothesis) and predict a label
corresponding to entailment, contradiction, and (in some datasets) a neutral relation. Table 2.1
displays three examples of premise-hypothesis pairs corresponding to the three relations. Fig-
ure 2.1 depicts an example in which the correct relation class is entailment. As shown in
Figure 2.1, NLI systems receive the premise and the hypothesis sentences and predict an
inference relation label. The yellow box on the bottom right of Figure 2.1 shows an explanatory
extension and is not part of the classic NLI task. Popular NLI datasets include SNLI (Bowman
et al., 2015), MultiNLI (Williams et al., 2018), and XNLI (Conneau et al., 2018).

9
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Relation Premise Hypothesis

entailment A soccer game with multiple
males playing.

Some men are playing a sport.

contradiction A man inspects the uniform of a
figure in some East Asian country.

The man is sleeping.

neutral An older and younger man
smiling.

Two men are smiling and laughing
at the cats playing on the floor.

Table 2.1.: NLI examples with the three relations entailment, contradiction, and neutral. Exam-
ples are selected from the SNLI dataset (Bowman et al., 2015).

Explainable Natural Language Inference: e-SNLI. We will work on the e-SNLI
dataset (Camburu et al., 2018) in the following chapters of this thesis. The e-SNLI dataset is
the SNLI dataset with an additional explanation annotation layer that textually justifies why
the entailment/contradiction/neutral label is correct. In the example shown in Figure 2.1, the
textual explanation relates “dog” to “animal”, “snow” to “cold weather”, and “jumping for a
frisbee” to “plating with a plastic toy”. The dataset is split into 549k training instances, 9842
validation instances, and 9824 test instances and contains crowdsourced free-text explanations.

2.1.1.2. (Explainable) Question Answering

Question Answering. In the QA task, the system receives a question text along with a
textual context, such as Wikipedia articles (depending on the specific task setup, the system has
to retrieve the relevant context itself). The system’s task is to map these two inputs to an answer.
Depending on how the answer is constructed, one distinguishes extractive QA, abstractive QA,
and multiple choice QA. We depict an exemplary (extractive) QA instance in Figure 2.2. In
extractive QA, the answer is chosen as a text span from the context, i.e., we assume that the
question can be answered by determining a start position and a stop position within the given
context. Popular datasets for extractive QA include SQuAD (Rajpurkar et al., 2016), TriviaQA
(Joshi et al., 2017), NewsQA (Trischler et al., 2017) and Natural Questions (Kwiatkowski et al.,
2019). In abstractive QA, the answer is generated based on the question and context texts. This
allows an abstractive system to generate answers that do not exist as a text span in the context.
Popular datasets for abstractive QA include NarrativeQA (Kočiský et al., 2018), ELI5 (Fan
et al., 2019), and TweetQA (Xiong et al., 2019). In multiple choice QA, the system receives —
in addition to the question and the context — a set of answer candidates. The system’s task is
to select the correct answer candidate. Popular datasets for multiple choice QA include RACE
(Lai et al., 2017), CommonsenseQA (Talmor et al., 2019), and Cosmos QA (Huang et al., 2019).
We refer to Cambazoglu et al. (2020) for an overview of QA datasets.
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system

premise

input entailment label

output

A dog jumping for a
Frisbee in the snow.

hypothesis

An animal is outside in the
cold weather, playing with 

a plastic toy.

neutral

contradiction

entailment

textual explanation

A dog is a form of animal, for there
to be snow it must be cold weather
outside, and "jumping for a frisbee"

is a rephrasing of "playing with a
plastic toy".

Figure 2.1.: Example of an explainable NLI task. The NLI system receives a premise text
and a hypothesis text and classifies the hypothesis to either (a) be entailed by the
premise, (b) be neutral with respect to the premise, or (c) contradict the premise.
Additionally, the system generates a textual explanation to support its prediction.
Example texts are taken from the e-SNLI dataset (Camburu et al., 2018).

Explainable Question Answering: HotpotQA. Similar to the explainable extension of
NLI task described above, the QA task can also be extended with an additional explanatory
output. HotpotQA (Yang et al., 2018) is an extractive QA dataset and extends the answer
annotations with supporting facts. A supporting fact is a sentence from the input context and
supports the model’s answer prediction and thereby serves as an explanation of the model’s
behavior. Figure 2.2 shows a supporting fact explanation within the bottom right yellow box.
We will consider a more complex explainable QA example in Chapter 4.

2.1.2. Deep Learning Models for NLP

While the previous discussed what the inputs and outputs for each task are, we now focus on
how the mapping between input and output is established from a system perspective.

2.1.2.1. Representing the Input: From Text to Vectors

The first step in any NLP system considered in this thesis is to represent a textual input
numerically. More specifically, we map a text containing n ∈ N tokens to a sequence of vectors
represented by a matrix X ∈ Rd×n where d ∈ N is the embedding dimension, i.e., the number
of dimensions we use to represent a token. We demonstrate this first step at the example of the
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The Kalahari Desert is a large 
semi-arid sandy savanna in 
Southern Africa extending for 
900000 km2, covering much of 
Botswana, parts of Namibia and 
regions of South Africa.

What is the area of
the Kalahari Desert?

user

system

question

context

input

900000 km2

answer

output

text source 
(e.g. Wikipedia) 

supporting fact explanation

Figure 2.2.: Example of an explainable question answering task. The QA system receives a
question text and a context text as inputs and returns an answer text as output.
Additionally, the system provides an explanation by predicting which parts of the
input context are supporting its answer prediction. Context and answer texts are
taken from the HotpotQA dataset (Yang et al., 2018).

text “A dog jumping for a Frisbee in the snow”. Note that, in our NLI example (as shown in
Figure 2.1), the input consists of two sentences, i.e., the input would, e.g., be the concatenation
of the premise and the hypothesis “A dog jumping for a Frisbee in the snow. An animal is
outside [...]”. In the following, we focus on the processing of a single sentence or parts of a
sentence to introduce the several processing stages. We discuss different approaches to how
two inputs can be combined into one text in Chapter 3.

Tokenization. First, the input sentence is split into tokens in a process called tokenization.
Figure 2.3 depicts how the text string is mapped to a sequence of tokens. Note that today’s sys-
tems usually do not break sentences into words and punctuation but apply subword tokenization

meaning that, e.g., the word “jumping” might be further split into the subword tokens “jump”
and “ing”. The set of subword tokens that are used by a tokenizer is determined empirically,
for instance, using byte pair encoding (Gage, 1994; Sennrich et al., 2016).

Embeddings. The next step is to represent the sequence of tokens in vector space. For
this, each token is mapped to a vector representation. Figure 2.4 shows how each token of
our example sentence is “embedded” into vector space and, by this, the example sentence is
mapped to a sequence of vectors.

12
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"A dog jumping for a Frisbee in the snow."

text (sequence of characters)
tokenization

A dog jumping the... snow .

tokenized text (sequence of tokens)

Figure 2.3.: Tokenization maps a text string to a sequence of tokens. Tokens can be (sub)words
or punctuation.

vectorization
A dog jumping the... snow .

tokenized text (sequence of tokens)

...

sequence of vectors

text with  tokens

numerical representation 

....A dog

Figure 2.4.: Each token is mapped to a (learned) vector representation.

Figure 2.5.: Each token’s vector representation is transformed into a contextualized vector
representation.

13



2. Background

2.1.2.2. Mapping Inputs to Outputs: From Vectors to Vectors

The previous paragraphs describe how a text is mapped to an initial sequence of vectors.
Before this sequence is related to, e.g., a predicted class label or a predicted sequence of class
labels (which we will discuss in Section 2.1.2.3), the sequence of vectors is transformed into a
representation that allows to numerically access the, e.g., entailment information within a text
containing two sentences, i.e., the sequence of vectors is transformed into another sequence of
vectors as illustrated in Figure 2.5.

In the following, we review model components that we will use within the following chapters.
For more details on deep learning models and their components we refer to the textbook by
Goodfellow et al. (2016).

Linear Layers. Linear layers (or fully-connected layers) implement affine transformations.
Let x ∈ Rm denote the input vector. A linear layer determines the transformed representation
y ∈ Rn as

y = Wx+ b, (2.1)

where W ∈ Rn×m is a weight matrix and b ∈ Rn is a bias vector. Intuitively, multiplying
with W defines each dimension of y as a linear combination of dimensions of x. Adding b

adds a fixed offset to each new dimension. Linear layers are typically used as the very last layer
of a model, mapping the last-layer vector representation to, e.g., class probabilities.

Attention. A critical component that can be found within the architectures of merely every
recent large language model (LLM) is the attention mechanism. It was initially introduced to
align words in neural machine translation using recurrent neural networks (RNNs) (Bahdanau
et al., 2015). While previous RNN-based translation systems aggregated the input sentence
into a fixed vector representation and subsequently used a decoder to, step by step, generate the
predicted translation, Bahdanau et al. (2015) propose to equip the decoder with a mechanism
that allows the system to dynamically aggregate the input token representations during decoding.
Figure 2.6 shows a motivating example in which different decoding steps need to pay “attention”
to different parts of the input representation within an English-to-German translation setting.
Technically, given a sequence of input vectors (X1,X2, ...,XN), the layer’s output At at
decoding position t is defined as

At =
N∑
j=1

αt,jXj (2.2)
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Figure 2.6.: Example showing the motivation behind the attention mechanism. The three
decoding steps for the German translation of “a friendly dog” require information
from different parts of the English sentence. For example, the translation of
“friendly” needs to integrate information about the gender of “dog”. As the German
translation of “dog” is “Hund” (male), “friendly” translates to “freundlicher”. In
contrast, the German translation of “a friendly cat” is “eine freundliche Katze” as
“Katze” is female. Similarly, the German translation of the article “a” depends on
the noun’s gender. αt,j indicate the attention weight that decoding step t puts on
input token j. The rightmost box summarizes the attention weights in a matrix.

with
αt,j =

exp(et,j)∑n
k=1 exp(et,k)

. (2.3)

where e depends on Xj (e.g., via dot product attention).

While this attention mechanism laid the conceptual foundation of attention (in transformers),
it differs from the succeeding self-attention and masked attention mechanisms, which we will
introduce in the following.

Self-Attention. So far, we introduced attention as a mechanism that relates two token
sequences as shown in the rightmost box of Figure 2.6. However, attention can also be applied
within a single sequence, which is referred to as self-attention (or, originally, intra-attention)
introduced by Cheng et al. (2016). Intuitively, self-attention allows a transformation of a token
vector sequence into another (same width) sequence that integrates contextual information.
Figure 2.7 depicts an example of self-attention in left-to-right encoding. In particular, the fourth
row of the left part of the figure (corresponding to the right part of the figure), shows how self-
attention can be used to contextualize a token’s representation. Concretely, the representation
of the token “its” is updated to integrate information about “the dog”, to which it refers. As
mentioned, different variations of attention scores can be used. In their seminal introduction of
the transformer architecture, Vaswani et al. (2017) propose scaled dot product self-attention,
which they express in terms of key, value, and query matrices as follows. First, the input vector
sequence (i.e., matrix) X is multiplied with a weight matrix WQ to obtain the query matrix Q.
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the dog chased its tail

the dog chased its tail

the dog chased its tail

the dog chased its tail

the dog chased its tail

the

the

the

the dog

dog

dog chased

chased

the

dog

chased

its

tail

the

dog

chased

its

tail

Figure 2.7.: Illustration of the self-attention mechanism. While encoding the sentence “a dog
chased its tail”, self-attention allows the model to integrate contextual information.
In the example, the representation of the token “its” is updated with a weighted
average of the previous step’s representations with emphasis on the sentence’s
subject “the dog”. The right part of the figure depicts the third row of the left
part of the figure in more detail. Note that this example depicts masked self-
attention. Figure 2.8 makes the difference between masked attention and non-
masked attention explicit.

Similarly, the key, and the value matrices K and V are calculated as the matrix-matrix products
of X with a weight matrix WK and X with a weight matrix WV respectively. The result of
scaled dot product self-attention is then defined as

softmax
(
QKT

√
dk

V

)
, (2.4)

where dk is the embedding dimension of Q and K. Vaswani et al. (2017) add the normalization√
dk

−1 to stabilize gradients during training.

Masked Attention. The example in Figure 2.7 shows how a sequence of tokens is processed
left-to-right and each token’s new representation is a composition of its preceding, i.e., left
tokens. In contrast to such a masked self-attention, self-attention can be also applied without
restricting a token’s context to its preceding tokens. Figure 2.8 compares how the same example
sentence shown in Figure 2.7 can be transformed with masked self-attention (left) and without
masking (right). While it might seem to be an unnecessary restriction to mask tokens, we
will discuss how the two types of attention are fundamental ingredients of the transformer
architecture in the following.

Transformers. One of the driving motivations behind the transformer architecture, as it
was originally proposed in the seminal work of Vaswani et al. (2017), is that the previously
dominant RNN architectures suffered from the practical disadvantage of not allowing fully-
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the dog chased its tail

the dog chased its tail

the dog chased its tail

the dog chased its tail

the dog chased its tail

the

the

the

the dog

dog

dog chased

chased

the dog tail

the dog chased its tail

the dog chased its tail

the dog chased its tail

the dog chased its tail

the

the

the

the dog

dog

dog chased

chased

chased its

masked self- attention self- attention without masking

Figure 2.8.: Masked self-attention (left) restricts the information that is available to encode
a word to its preceding context (left side in English). In contrast, self-attention
without masking can access the full context (right).

parallelized training with batches that contain token sequences with different lengths. The
transformer architecture, in contrast, contains no more recurrent model components and fully
relies on self-attention to capture long-distance relationships between tokens. Importantly, the
transformer follows (like its recurrent network predecessors) an encoder-decoder approach in
which an input is first encoded and then, this encoding is used to generate an output sequence
step-by-step. A detailed description of the fine-grained components (such as multi-headed
attention or positional embeddings) of the transformer is outside the scope of this thesis. We
refer to the original paper by Vaswani et al. (2017) for further information.

2.1.2.3. Representing the Output: From Vectors to Outputs

The previous paragraphs describe how a text is mapped to a vector representation and how
this vector representation can be transformed into a new representation. Ultimately, this
representation has to be mapped to a system output in order to reflect, e.g., a class prediction or
a token generation. In the following, we present typical approaches to model outputs for (a)
text classification, (b) span extraction, and (c) text generation.

Text Classification. For text classification, the model’s input is mapped to a categorical
output. In our NLI example, these classes are “entailment”, “contradiction”, and “neutral”.
Figure 2.9 depicts a NLI classification example in which the input text is mapped to an
“entailment” label. The model’s prediction is as a discrete probability distribution over the three
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A dog jumping

 

embedding

output mapping

transformation

[...]

[...]

[...]

Figure 2.9.: Example of a binary classification output. The system returns a predicted proba-
bility distribution over a set of classes. The example depicts a NLI classification
returning a distribution that corresponds to an “entailment” class label prediction
with 70% confidence.

classes “positive”, “neutral”, and “negative” which is represented as a three-dimensional vector

y =

ppos

pneut

pneg

 . (2.5)

Typically, the model returns a vector of class logits which can be related to class probabilities
using the softmax function, that maps an input z ∈ Rn to a probability distribution over classes
using

yi =
exp(zi)∑n
j=1 exp(zj)

. (2.6)

The resulting vector y is normalized and corresponds to a probability distribution over classes
where yi is the probability estimate of the i-th class.

Span Extraction. As we detailed in Section 2.1.1, extractive QA systems return an answer
by selecting a span (i.e., a text snippet) from a given context. Assuming that answers are
continuous spans from the next, the output can be described by the combination of (a) the
predicted span’s start position and (b) the predicted span’s end position. The example shown in
Figure 2.10 shows a part of the input context (“[...] extending for 900000 km²,”) to the question
“What is the area of the Kalahari desert?” (the full context sentence can be found in Figure 2.2).
The shown model returns two probability distributions. In the example, the value 0.9 in the
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extending for 900000 km2

embedding

output mapping

transformation

,... ...

start

end

900000 km2

...

... ...

...

Figure 2.10.: Example of a span extraction output. The system returns two distributions, one
regarding the start token position and one regarding the end token position. The
shown example refers to the question answering example introduced in Figure 2.2
in which the question asks “What is the area of the Kalahari desert?”. In the
example, the system correctly returns “900000 km²” as the most probable span.

predicted start position distribution reflects an estimated 90% probability that the answer starts
at the token “90000”. Similarly, the value 0.04 in the end distribution reflects a 4% probability
of the answer stopping at the “,” punctuation symbol.

To derive a combination of start and stop positions, a common approach is to first assume
the two distributions to be independent and then account for implausible position combina-
tions. Concretely, one first calculates the outer product of the start distribution with the end
distribution:

pstart ⊗ pend =



pstart1pend1 pstart1pend2 pstart1pend3 · · · pstart1pendn

pstart2pend1 pstart2pend2 pstart2pend3 · · · pstart2pendn

pstart3pend1 pstart3pend2 pstart3pend3 · · · pstart3pendn
...

...
... . . . ...

pstartnpend1 pstartnpend2 pstartnpend3 · · · pstartnpendn


(2.7)

Next, combinations for which the end position is in front of the start position are eliminated
by setting all pstartipendj with i < j to zero, i.e., taking the element-wise product with an upper
diagonal masking matrix resulting in:
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pstart1pend1 pstart1pend2 pstart1pend3 · · · pstart1pendn

0 pstart2pend2 pstart2pend3 · · · pstart2pendn

0 0 pstart3pend3 · · · pstart3pendn
...

...
... . . . ...

0 0 0 · · · pstartnpendn


(2.8)

Additionally, one can constrain the maximum span length to exclude implausibly long answer
spans by applying an element-wise product with a band matrix to the matrix in Section 2.1.2.3.
For our example, we restrict the answers to a maximum length of two tokens (for better
visualization) and multiply our matrix with a bidiagonal mask matrix:

1 1 0 · · · 0

0 1 1 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1


⊙



pstart1pend1 pstart1pend2 pstart1pend3 · · · pstart1pendn

0 pstart2pend2 pstart2pend3 · · · pstart2pendn

0 0 pstart3pend3 · · · pstart3pendn
...

...
... . . . ...

0 0 0 · · · pstartnpendn


(2.9)

The resulting matrix thus reads:

pstart1pend1 pstart1pend2 0 · · · 0

0 pstart2pend2 pstart2pend3 · · · 0

0 0 pstart3pend3 · · · 0
...

...
... . . . ...

0 0 0 · · · pstartnpendn


(2.10)

Note that this masking step includes the previous masking step, however, we introduce both
to illustrate the underlying motivations. In our example from Figure 2.10, the corresponding
matrix of the shown part of the context would be:

0

0.05

0.9

0.04

0.01

⊗


0

0.01

0.0

0.95

0.04

⊙

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

⊙

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

0 0 0 0 1

 =


0 0 0 0 0

0 0.0005 0 0 0

0 0 0 0.855 0

0 0 0 0.038 0.0016

0 0 0 0 0.0004


The value 0.855 is the maximum and its position reflects the correct answer “900000 km²”.
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completing this

embedding

output mapping

transformation

...

sentence

...

...

?

Figure 2.11.: Example of text generation. The system is asked to complete the text “[...]
completing this” and returns a probability distribution over its vocabulary. In the
example, the vocabulary element “sentence” receives the highest probability and
the system thus completes the text with “sentence”.

Text Generation. For text generation systems, we consider the example shown in Fig-
ure 2.11. The system receives the text “[...] completing this” and should predict the next
token. This is usually modeled as a probability distribution over the system’s vocabulary. In
our example, the token with the highest probability is “sentence”. Thus, “sentence” would be
chosen to complete the sentence and the subsequent text reads “[...] completing this sentence”.
This left-to-right completion procedure can be iterated to predict one token after the other.
This procedure, also known as autoregressive language modeling, is typically approached with
transformer architectures (see Section 2.1.2.2).

2.1.2.4. Training

So far, we specified how an input can be represented in vector space, how different NLP tasks
can be modeled in terms of a model’s output, and how the mapping between input and output
can be modeled in terms of various components (e.g., matrix-vector products). In the following,
we provide a high-level overview of the process of optimizing model parameters in order to
approximate a desired quality measure, i.e., model training.

Loss Functions. In order to decide how to determine the parameters of a model, one has
to formalize how model “badness” — and thereby model “goodness” is measured. When the
model output corresponds to one (or multiple) classification decisions, one typically seeks to
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minimize the cross-entropy (CE) loss, which quantifies the distance between the predicted
probability distribution ŷ and the ground truth distribution y. When training on annotated data,
the ground truth distribution boils down to a one-hot vector, i.e., a vector that has a one at
the index of the ground truth class and zeros at all other indices. In this case, the CE loss for
distributions with M classes then reads

CE(y, ŷ) = −
M∑
i=1

yi log(ŷi). (2.11)

In the case of a binary classification problem, i.e. M = 2, Equation (2.11) can be simplified to

CE(y, ŷ) = −
2∑

i=1

yi log(ŷi) (2.12)

= − (y1 log(ŷ1) + y2 log(ŷ2)) (2.13)

= − (y1 log(ŷ1) + (1− y1) log(1− ŷ1)) . (2.14)

Note that minimizing CE is equivalent to minimizing the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951). We use the CE loss across all systems trained within this
thesis. When the model does not perform classification but regression, i.e., the output is not
a probability, a typical loss function is the mean squared error (MSE) loss. With a scalar
prediction ŷ and a scalar target value y, the MSE reads

MSE(y, ŷ) = (y − ŷ)2 . (2.15)

We make use of the MSE loss within our thought flow network method presented in Section 3.2.

Optimizers. Once a model architecture as well as an optimizer, are determined, the model
parameters have to be trained towards decreasing loss, i.e., better model fit. While closed-form
solutions exist for, e.g., linear regression (Bishop, 2006), there is no closed-form solution
for typical neural, and, in particular, transformer models, which thus have to be optimized
iteratively using (typically) gradient descent. While basic stochastic gradient descent (SGD) has
been extended to a large variety of optimizers, we follow the typical choices of ADAM (Kingma
and Ba, 2015) with decoupled weight decay (Loshchilov and Hutter, 2019) for LLMs and plain
SGD for vision models. Note that learning rate scheduling (in particular warm-up (Goyal et al.,
2017)), batch sizes, and weight initialization can cause fundamental increases/decreases in
model performance.
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2.2. Explainability

So far, we discussed systems that map an input to an output, i.e., how a system determines
what to output. For explainability, we ask why it returned that output. In the following, we first
define explainability and dimensions along which explainability methods can be categorized
(Section 2.2.1). Second, we present popular types of explanations in NLP (Section 2.2.2).

2.2.1. Definition and Taxonomy of Explainability

2.2.1.1. Explainability, Explanation, Interpretability, and Justification

The terminology in explainability research is largely inconsistent and notions of what explain-
ability means and, e.g., whether it is different from interpretability differ (i.a., Rudin, 2019;
Miller, 2019). In this thesis, we follow the terminology of Miller (2019), which in turn builds
upon the definition of Biran and Cotton (2017). Concretely, Miller (2019) equates interpretabil-

ity and explainability and defines them as “the degree to which an observer can understand

the cause of a decision”. Explanation is considered one way to achieve this understanding. In
contrast to an explanation, a justification’s primary goal is not to increase understanding of the
model decision process, but, instead, to provide evidence why its decision should be correct.
Many of the methods described in this thesis could foremost be categorized as justifications. For
consistency with related work and to ease readability, we will, however, refer to explanations
throughout the remainder of this thesis.

2.2.1.2. Explanandum, Explanans, Explainer, Explainee, and Explanation

Going back to the deductive nomological model of scientific explanation by Hempel and
Oppenheim (1948), an explanandum can be distinguished from an explanans. The explanandum

is the phenomenon or event to be explained, the explanans, in turn, explains the explanandum
(Overton, 2012). Explainer and explainee refer to two agents of which the explainer explains
(its own) decisions to the explainee. Within this thesis, the explainer is an automated system
and the explainee is a user. Miller (2019) argues for a three-fold notion of explanation

extending the dual process-product distinction of Lombrozo (2006): (i) the cognitive process to
determine an explanans, (ii) the product of this cognitive process, and (iii) the social process
of communicating information between the explainer and the explainee. Within this thesis,
we predominantly refer to explanation in terms of its product notion. Figure 2.12 shows an
overview of the discussed terminology.
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explainer explaineeexplanansexplanandum

Figure 2.12.: Overview over explanation-related terminology used in this thesis. The sys-
tem’s behavior is what should be explained (explanandum), an automatic method
explains the system’s behavior (explainer) using a NLP explanation modality,
such as saliency explanations (explanans), which in turn is received by a user
(explainee).

2.2.1.3. Taxonomies of Explanation Methods

Explanations in the context of explainable AI can be categorized along multiple dimensions.
Speith (2022) reviews several taxonomies of explainable AI methods and proposes a unified
taxonomy. The unified taxonomy distinguishes explanations along five high-level dimensions
(and an additional “other” dimension) which are shown in Figure 2.13. We refer to Speith
(2022) for a detailed discussion of each dimension and provide an overview in the following.

Scope. An explanation can either explain a single system decision (e.g., why a system
assigned an entailment label to a particular pair of sentences) or explain a system’s overall
decision behavior (e.g., why a system fails to detect cows when there is snow in the background
of an image). The former situation is often referred to as a local explanation, while the latter is
referred to as global (Guidotti et al., 2019; Sokol and Flach, 2020; Vilone and Longo, 2021;
Speith, 2022). All explanation methods discussed in this thesis correspond to local explanations.

Stage. Various taxonomies distinguish between post hoc and ante hoc explanations (Guidotti
et al., 2019; Sokol and Flach, 2020; Vilone and Longo, 2021; Speith, 2022). Post hoc methods
are methods that explain model behavior after the decision is made (e.g., by tracing back
what inputs affected the model to take that decision). Speith (2022) further distinguish model-
agnostic and model-specific methods as a subordinate dimension of post hoc methods (not
depicted in Figure 2.13). Ante hoc explanations refer to inherently-interpretable models, i.e.,
models that are expected to be explainable by design. Typical model architectures that are
argued to fall into that category include linear regression, decision trees, or k-nearest neighbors
classification. However, Speith (2022) note that presumable interpretable architecture can
become uninterpretable with a high number of parameters.
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explanation method

- local 
- global

- textual 
- visual 
- numerical 
- rules 
- ...

scope

format - post-hoc 
- ante-hoc

stage

- perturbations 
- examples 
- ...

functioning

- feature relevance 
- surrogate model 
- examples

result

Figure 2.13.: Taxonomy of explainable AI methods replicated from Speith (2022) who reviewed
and unified existing taxonomies.

Format. Explanation methods can further be categorized with respect to their output format
(Vilone and Longo, 2021). While visual explanations, such as saliency maps or numeric impor-
tance scores might be among the most well-known explanation output formats, explanations can
also be given in the form of, e.g., extracted rules. In this thesis, we focus on textual explanations
as well as saliency explanations over text and additionally explore a novel method that explains
a system’s final decision by means of a sequence of initial and intermediate decisions (see
Section 3.2).

Result. Orthogonal to the output format, explanation methods can be distinguished along
their result (McDermid et al., 2021; Speith, 2022). Speith (2022) distinguish feature relevance,
surrogate models and examples. While two methods might both yield the same result (e.g.,
feature relevance), their format can be different (e.g., one method uses visual representations of
the feature importance while the other reports numeric importance values).

Functioning. Functioning refers to the approach an explanation method takes to derive
an explanation (Arrieta et al., 2020; Speith, 2022). For example, perturbation methods can
modify the input and derive an explanation from the observed changes in a model’s output
while example-based methods can operate, e.g., on example instances from the training set.
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2.2.2. Types of Explanations in NLP

While Section 2.2.1.3 discussed general properties of explanation methods, the following
introduces explanation methods that are used to explain text or explain with text. Concretely,
we detail the three classes of NLP explanations that are used in this thesis: rationals/saliency
explanations, supporting fact explanations, and free-text explanations. Table 2.2 provides an
overview of these explanation types including examples as well as typical automatic evaluation
scores which we will discuss in detail in Chapter 4.

2.2.2.1. Saliency and Rational Explanations

Saliency (or heatmap) explanations indicate how strongly a part of the input (i.e., a token)
influences a model’s output. Saliency explanations are typically communicated via heatmaps
and make use of an importance measure, such as Integrated Gradients (Sundararajan et al.,
2017) or attention weights (Wiegreffe and Pinter, 2019) which we detail in the following. While
general saliency explanations communicate graded importance which allows to interpret them
in a relative mode (e.g., “movie” being more important than “this” but less important than “like”
in the example shown in the first row of Table 2.2), rational explanations communicate binary
relevant/irrelevant information (e.g., “this” as well as “movie” are irrelevant in the rational
explanation shown in Table 2.2).

So far, we discussed the saliency/rational explanations output format. Next, we discuss their
result as well as their functioning. For this, we have to distinguish between the underlying
attribution scores and discuss attention scores, Shapley values, and SHAP as well as Integrated
Gradients in the following.

Attention as Explanation. As we described in Section 2.1.2.2, the attention mechanism
and its variants are fundamental components of today’s NLP systems. Attention scores can be
used as explanations by averaging each word’s attention score over the last layer’s attention
heads and visualizing the respective scalar using color-coding as shown in the first row of
Table 2.2. Its (apparent) analogy to human attention makes attention scores, at first sight,
promising measures of how important a token was to a model. Note that there is an ongoing
debate on whether attention can serve as an explanation (i.a., Wiegreffe and Pinter, 2019) or
whether it can not (i.a., Jain and Wallace, 2019). We refer to Bastings and Filippova (2020) for
a detailed argumentation of why saliency scores should be chosen over attention scores and to
Pruthi et al. (2020) for a practical demonstration of how attention weights can be used to deceive
explainees. Note that we will use “saliency explanations” to refer to any explanation method
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Type Description Example Proxy Scores

Rationals,
saliency

maps

Input tokens are
highlighted to
reflect what was
most important to
the model (e.g.,
based on
attention or
saliency scores,
such as Integrated
Gradients).

Input: I like this movie.
Prediction: positive sentiment
Rational explanation:
I like this movie.
Saliency explanation:
I like this movie .

Overlap to human rational
annotations (e.g., via F1),
Removal analysis (e.g.,
quantifying the drop in
performance when highlighted
input parts are removed) (i.a.,
Atanasova et al., 2020),
Student model accuracy
gains when trained on the
explanations (Pruthi et al.,
2022)

Supporting
facts

A set of facts (i.e.,
sentences)
extracted from a
given context is
provided as
evidence for the
prediction.

Question: What is the area of the
desert that Ghanzi is in the
middle of?
Answer: 900000 km²
Fact 1: Ghanzi is a town in the
middle of the Kalahari Desert
the western part of the
Republic of Botswana in
southern Africa.
Fact 2: The Kalahari Desert is
[...] extending for 900000 km².

Overlap to human
annotations of supporting
facts (e.g., via F1) (Yang et al.,
2018)
Removal and consistency
analysis in Section 4.1.2

Free text Generated textual
explanation that
supports the
prediction.

Premise: A man in an orange
vest leans over a pickup truck.
Hypothesis: A man is touching a
truck.
Predicted label: entailment
Explanation:
Man leans over a pickup truck
implies that he is touching it.

(from Camburu et al. (2018))

Overlap to human-written
references (e.g., via BLEU or
BLEURT) (Camburu et al.,
2018; Kayser et al., 2021)) and
Section 3.1.2

Table 2.2.: Three examples of different explanation types in NLP along with proxy scores
that are used to quantify their quality (see Chapter 4 for a detailed discussion of
explanation quality evaluation).
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that communicates saliencies (i.e., referring to the format of the explanations) regardless of
how the underlying scores were obtained for the remainder of this thesis. Attention scores can
only be obtained from models using an attention mechanism and require access to the model’s
internal state.

Shapley Values and SHAP. Two important saliency methods are Shapley values (Shapley,
1953) and the derived SHAP values (Lundberg and Lee, 2017). Shapley values originate from
game theory and answer the question of how much — for a set of players (a coalition) — each
player contributed individually to an outcome. In the context of explainable NLP, the players
are the input tokens and the outcome is, e.g., a class probability. Following the notation of
Mosca et al. (2022b), we denote the full set of tokens with F = {1, 2, ..., p} where each number
represents the token at the respective position, and use S to refer to a subset of tokens. The
value contribution of a coalition is denoted with val(S). The marginal contribution of a token i

to a coalition is defined as

∆val(i, S) = val(S ∪ {i})− val(S). (2.16)

The marginal contribution of a token is used to define its overall contribution by summing and
normalizing ∆val(i, S) for all coalitions S ⊆ F \ {i}

ϕval(i) =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |! ∆val(i, S) (2.17)

which defines the Shapley value ϕval(i). Based on Shapley values, Lundberg and Lee (2017)
proposed SHAP values along with various approximation methods that make their computation
feasible. SHAP values have a unique solution and fulfill several desirable properties. Notably,
Lundberg and Lee (2017) also demonstrate SHAP values to have a stronger agreement to
human explanations compared to LIME (Ribeiro et al., 2016) and DeepLift (Shrikumar et al.,
2016, 2017). Shapley values and SHAP values both are model-agnostic explainability methods.

Integrated Gradients. Another important saliency method are Integrated Gradients (Sun-
dararajan et al., 2017). Following the authors’ original notation, F denotes the model function
and is bound to [0, 1] and x denotes the input vector and x′ refers to a baseline input (which
usually is chosen as 0 for embedded text inputs). Integrated gradients are now defined as the
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Integrated Gradients along the path connecting x′ and x:

IGi(x) = (xi − x′
i) ·

∫ 1

α=0

∂F (x′ + α · (x− x′))

∂xi

dα. (2.18)

Integrated gradients are easy to implement and satisfy desirable properties. We refer to
Sundararajan et al. (2017) for an in-depth discussion. Integrated gradients are a model-specific
explanation method in the sense that they require a differentiable model to calculate gradients
and require access to the model’s internal state.

2.2.2.2. Supporting Fact Explanations

Besides saliency explanations, another popular class of explanations in NLP are supporting
fact explanations. In a supporting fact explanation, a set of facts (i.e., sentences) is provided
on top of the predicted model output. It thus resembles search engine interfaces which — in
answer to a search query — return links to websites along with text snippets with highlighted
search query terms. The middle row of Table 2.2 depicts such a supporting fact explanation
taken from the HotpotQA explainable QA dataset (Yang et al., 2018) which we will introduce
in detail in Chapter 4.

Referring back to the distinction between justification and explanation in Section 2.2.1,
supporting facts can be regarded to be justifications that can provide explanatory value. Con-
cretely, a supporting fact explanation that is consistent with the predicted output, can indicate
successful processing of the input while a supporting fact explanation that is inconsistent
with the predicted output can signal model failure. We discuss this consistency property and
approaches to measuring it in detail in Section 4.1.

2.2.2.3. Free-text Explanations

While supporting text explanations stem from a textual context, such as a Wikipedia article
or a website, supporting evidence for the correctness of a model prediction can also be freely
generated. In that sense, free-text explanations can be regarded to be — tying back to the
distinction between abstractive and extractive QA in Section 2.1.1 — the abstractive equivalent
to extractive supporting fact explanations. As for supporting fact explanations, free-text
explanations can be considered justifications with a potential for explanatory value. The bottom
row of Table 2.2 shows an example of a free-text explanation from the e-SNLI explainable NLI
dataset (Camburu et al., 2018). We introduce the dataset and various model architectures to
approach its modeling in Section 3.1.
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2.3. Designing User Studies

The previous sections provided this thesis’ background in NLP and explainability. This section
complements the background chapter by presenting the necessary background on human
evaluation, and, in particular the design of user studies which we will build upon in the
following chapters. We introduce essential concepts of variables (Section 2.3.2), metrics
(Section 2.3.3), and experimental designs (Section 2.3.4). For in-depth introductions to the
respective topics, we refer to textbooks by, i.a., Field and Hole (2002) and MacKenzie (2013).

2.3.1. The Need for Human Evaluation in NLP

Over the past years, the NLP community (beyond explainable NLP) has increasingly expressed
the need for and the importance of human evaluation to complement automatic evaluation
(Belz and Reiter, 2006). Tasks, such as machine translation (Graham et al., 2013), explanation
generation (Nguyen, 2018; Narang et al., 2020; Clinciu et al., 2021), text-to-speech generation
(Cardoso et al., 2015; Clark et al., 2019), question answering (Chen et al., 2019), and automatic
summarization (Owczarzak et al., 2012; Paulus et al., 2018) still rely heavily on automatic
measures like BLEU Papineni et al. (2002) or F1-scores. However, these scores have been
shown to correlate only loosely with human perception of such systems (Callison-Burch et al.,
2006; Liu et al., 2016; Mathur et al., 2020; Iskender et al., 2020; Clinciu et al., 2021) and do
not necessarily reflect how a system might perform with respect to extrinsic evaluations, such
as downstream tasks (Gaudio et al., 2016).

For example, BLEU scores are commonly used to quantify the similarity of a generated
sentence to a ground truth sentence, e.g., in machine translation. In this thesis, we use
(and question the use of) BLEU to quantify the quality of generated textual explanations
in Section 3.1. BLEU scores rely on the n-gram overlap between the generated and the
reference text. However, this approach has two important shortcomings: (i) relying on “ground
truth” reference texts ignores the breadth of possible correct translations (in the context of
translation), and (ii) assuming that similarity of meaning can be inferred from n-gram overlap
discounts, e.g., that different words in the sentence contribute to its meaning differently.
Consider an explainable NLI instance for which the premise “the boy went for a walk with
his dog yesterday” contradicts the hypothesis “the boy did not do anything yesterday”. The
contradiction label is further explained with a reference explanation “walking one’s dog means
doing something”. Consider two candidate explanations: (a) “walking one’s pet means doing
something’ and “eating one’s dog means doing something”. Both receive the same BLEU-2
scores, however, from a human perspective, sentence (a) reflects the reference explanation
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Figure 2.14.: Normalized frequencies of “human evaluation” and “Likert” (as in the Likert
scale questionnaire type) in the ACL anthology from 2005 to 2020 indicating the
growing attention on human evaluation.

much better.1 Similarly, automatic evaluation measures used by other NLP tasks face the same
problem (Callison-Burch et al., 2006; Liu et al., 2016; Mathur et al., 2020; Iskender et al.,
2020; Clinciu et al., 2021). Therefore, human evaluation has begun to gain more and more
attention in the NLP community (especially in the context of natural language generation tasks,
including machine translation (Belz and Reiter, 2006; Novikova et al., 2018; van der Lee et al.,
2019)). This trend is indicated in Figure 2.14.

2.3.2. Variables

Before discussing experimental designs and evaluation methods, it is important to distinguish,
which variables are intentionally being changed, which variables are being measured, and which
variables one cannot control. In order to support a repeatable experiment that reliably answers
a research question, one also has to choose an operationalization, i.e., a clear, measurable
definition for each of these variables.

2.3.2.1. Independent

The independent variable(s) are those which are controlled within the study, also called factors

(MacKenzie, 2013). Experimental designs involving a single independent variable are referred

1There exist different versions of BLEU, e.g., BLEU-2 refers to the score that considers unigrams and bigrams.
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to as unifactorial and experiments involving multiple independent variables are referred to as
multifactorial. The values a variable can take are called levels. For example, if the variable
is “explanation method”, levels might be “no explanation”, “SHAP value heatmap”, and “new
explanation method”. Here it is important to be deliberate about the changes between the two
systems so it is clear that any changes observed are a result of the independent variable in
question, e.g., the explanation method. For our example of explanation method comparison,
it would be important that all explanation methods (including no method) are evaluated on
the same dataset. Otherwise, one might not be able to attribute an observed difference in the
dependent variables to a difference in the factor of interest (explanation method), but only be
able to conclude this difference as the result of the combined effects (explanation method and
dataset) without being able to disentangle the effects of each variable.

2.3.2.2. Dependent

The dependent or response variable(s) are those which are measured and whose changes are
a result of the independent variable (MacKenzie, 2013). For this, it is important to consider
not just the general concept (construct), but also what concrete measurement to take. This
process is known as operationalization. For example, in order to evaluate the hypothesis that
“the new explanation method will enable users to better detect false predictions”, it is necessary
to first operationalize the construct ”better" into a dependent variable, which can be concretely
measured. In this case, one could decide, for example, that “better” refers to a lower user
acceptance rate of incorrect model predictions.

2.3.2.3. Confounding

A confounding variable or confounder is a variable that affects the dependent variable, but
cannot be controlled for, e.g., age, gender, or education of the participants. Education, for
example, might affect the users’ acceptance rate (e.g., when users are familiar with the topic of
the system predictions), but one cannot deliberately change the education level of participants.
Potential confounding variables should either be accounted for in the experiment design or
in the statistical evaluation of the collected responses. One option is to include confounding
variables as random effects, as discussed in Section 2.4. Therefore, it is important to consider
which variables might be confounding variables and to measure these when conducting a study.
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Figure 2.15.: A subset of Likert items from our novel perceived system predictability scale we
present in Chapter 5.

2.3.3. Metrics

Depending on the choice of dependent variable(s), there are different means to concretely
quantify user responses. We focus on Likert scales as a measure of self-reported user responses
(Section 2.3.3.1), but depending on the research question at hand, other quantitative (Sec-
tion 2.3.3.2) or qualitative measurements (Section 2.3.3.3) may be equally important. For
quantitative measurements, it is crucial to be aware of the measurement level of the collected
responses (Section 2.3.3.4) as it will directly affect which statistical tests can be applied to the
collected data.

2.3.3.1. Likert Scales

While it is clear how to collect objective measures, e.g., the length of a dialog, it is less
straightforward how to collect scores of trust, cognitive load, or even creepiness. For such
subjective metrics, one usually obtains scores via a validated scale (Körber, 2018; Hart and
Staveland, 1988; Langer and König, 2018), e.g., in the form of a questionnaire. In the following
chapters, we will use various Likert scales to score, i.a., usability, grammaticality, and mental
demand. In Section 5.2, we develop our own scale to measure perceived system predictability.
We deepen our discussion of scale development and validation in Section 5.2 and Section 5.3.
Figure 2.15 shows a subset of the 7-point Likert items of our novel system predictability scale.

2.3.3.2. Other Useful Metrics for NLP

As an alternative to Likert scales, continuous rating scales like the visual analog scale (VAS)
can be used to measure a construct. Santhanam and Shaikh (2019) found that continuous rating
scales can yield more consistent results than Likert scales for dialog system evaluation. In
tasks like generating text or speech, direct comparisons or ranked order comparisons (ranked
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output from multiple systems best to worst) can be a good option (Vilar et al., 2007; Bojar et al.,
2016). Another option for tasks involving text generation is error classification, which involves
users annotating text output from a set of predefined error labels (Secară, 2005; Howcroft
et al., 2020). Other measurements of interest to NLP research include completion time, and
bio-signals, such as gaze, EEG, ECG, and electrodermal activity. Bio-signals may provide
insight into, e.g., emotional state (Kim and André, 2008), engagement (Renshaw et al., 2009),
stress (McDuff et al., 2016), and user uncertainty (Greis et al., 2017a).

2.3.3.3. Qualitative Analysis

In addition to quantitative analysis, qualitative analysis can provide valuable insights into users’
perspectives by allowing them more freedom of expression than metrics like a Likert scale. For
example, in order to understand a user’s perception of a chatbot, free response questions can be
used alongside, e.g., Likert scales, allowing the user to express which aspects of the chatbot
had the largest impact on them. These responses can then be analyzed with techniques, such
as content/theme analysis (Hsieh and Shannon, 2005; Braun and Clarke, 2006), where user
responses are “coded” using a set of labels generated from the collected data, to identify similar
themes across responses. These codes can then be quantified and patterns can be analyzed
about how often certain codes/themes, appeared and under which conditions. For example, one
code might be “smart”, then all user responses that indicated that they found the chatbot to
be intelligent could be marked with this label. Researchers could then, for example, analyze
that 76% of users found the chatbot to be intelligent, and that this correlated highly with users
who reached their goal. We revisit qualitative evaluation for explanation quality evaluation in
Sections 4.3 and 4.4.

2.3.3.4. Level of Measurement

It is important to consider the scale on which a variable is measured in order to choose a correct
statistical test (Section 2.4) and measures of central tendency (i.e., mode, median, and mean).
Typically, four types of measurement scales are considered: nominal, ordinal, interval, and
ratio (Stevens, 1946; Borgatta and Bohrnstedt, 1980; MacKenzie, 2013).

Nominal. On a nominal (categorical) scale, items are simply named, with no concept of order
or distance between them. An example is emotions perceived in a generated voice (“happiness”,
“sadness”, “fear”, etc.). If the scale only contains two choices, it is called dichotomous. The
only measure of central tendency applicable to such data is the mode.
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Ordinal. An ordinal scale adds order to the elements. However, the distance between them
cannot be assumed to be equal. An example is measuring intelligibility using the values “very
low”, “low”, “medium”, “high”, and “very high”. In addition to the mode, ordinal data also
enables the derivation of a median.

Interval. On an interval scale, the elements are ordered with an equal distance between them,
allowing one to additionally take the mean. Scores obtained from multi-item Likert scales (as
shown in the perceived system predictability scale in Figure 2.15) are frequently considered
interval data. There has been a long debate between ordinalists who claim that Likert scales
should be treated as ordinal data and non-parametric statistics have to be used, and intervalists

who argue for an interval interpretation and thus support parametric approaches (Jamieson,
2004; Carifio and Perla, 2008; De Winter and Dodou, 2010). For a deeper discussion as well as
practical recommendations, we refer to Harpe (2015).

Ratio. A ratio measurement adds the property of a true zero point making ratios of interval
measurements sensible. An example are interaction times with an interactive explanation
generation system or the number of dialog turns for a chat bot.

2.3.4. Experimental Designs

When the independent and dependent variables are chosen and operationalized, the question
of how to assign participants to conditions, i.e., to levels of the independent variable(s), has
to be addressed. The choice of the assignment determines applicable statistical tests and can
mitigate confounding effects. To illustrate experiment design choices, we will use the example
of investigating the perceived naturalness of a text-to-speech system with the independent
variable “system”, the levels “old” and “new”, and the confounding variable “native speaker”,
i.e., that some participants are native speakers while others are not.

2.3.4.1. Within-Subject

In this study design, also called a repeated-measures design, participants are exposed to all study
conditions and can thus make comparisons between them (Charness et al., 2012; MacKenzie,
2013). With a fixed number of participants, this allows to collect more samples than a between-
subjects design. However, a within-subject design cannot be scaled to an arbitrary number of
conditions both because users are often unwilling to participate in longer studies and because
they will be affected by fatigue after too many conditions. Additionally, repeated measures may
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cause participant responses for later conditions to be affected by their responses to earlier ones
due to carry-over effects and learning. One way to account for carry-over effects is to control
the order of conditions the participants are exposed to. Typical approaches are randomization

(i.e. participants are shown conditions in random order), blocking (i.e., participants are grouped
into blocks regarding a participant characteristic, such as age), and Latin square designs. For
details, we refer to Dean et al. (1999). Within-subject designs require a statistical comparison
of differences per subject which is accounted for using paired tests. In our example, we could
use a within-subject approach and mitigate carry-over effects by sampling all possible four
combinations2 equally often. We could account for the possible confounding effect of being a
native speaker by balancing the number of native/non-native speakers per condition.

2.3.4.2. Between-Subject

In this design, each participant is only exposed to one condition (Charness et al., 2012;
MacKenzie, 2013). While collecting a fixed number of samples requires a higher number of
participants than a within-subject design, a between-subject design can easily be scaled to an
arbitrarily high number of conditions, assuming the research budget supports this. Participant
responses collected with a between-subject design must use unpaired tests as there are no
paired responses, but rather two (or more) independently-sampled groups. In our example, it
could be preferable to use a between-subject approach if the interaction of the users with the
system takes a long time and, thus, users could become fatigued when being exposed to both
conditions (i.e., old and new system).

2.4. Statistical Evaluation

The previous section discussed user study design. Although van der Lee et al. (2019) found that,
in their review of INLG and ACL papers, from the papers that conduct human evaluation, only
33% report statistical analyses, statistical evaluation is the epistemic backbone of empirical
research. In this section, we thus address how the results of a user study can be analyzed
with the appropriate statistical tools. Concretely, we provide an overview of how to choose an
appropriate sample size, select an applicable statistical test and decide whether a post hoc test
and a multiplicity adjustment need to be used.

2(i) native speaker: “old” first→ “new” second, (ii) native speaker: “new”→ “old”, (iii) not native speaker:
“old”→ “new”, (iv) not native speaker: “new”→ “old”.
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2.4.1. Sample Size, Effect Size, Significance, and Power

Before starting a user study, an important step is to consider what sample size will be necessary
to make meaningful claims about the results. If, e.g., too few participants are chosen, it will
reduce the statistical power of the study, and thereby the probability of recognizing a statistically
significant difference between experimental groups if one occurs. In short, statistical power
is important to consider because it represents the likelihood of not reporting a false negative.
Therefore designing an experiment with enough power is critical to ensure that time, energy,
and money are not wasted conducting a study only to report a false negative result because
there were not enough participants. A power level of 0.80 or higher is generally recommended
(Bausell and Li, 2002) as it represents that if an experimental design is carried out correctly,
80% of the time, a significant difference will be detected by the chosen statistical test if such a
difference exists.

To ensure enough statistical power in an experiment, researchers can conduct a power
analysis before starting their experiment to hypothesize what power they can expect given an
estimated effect size, a number of participants (N), and a desired significance level. In the
following, each of these factors is discussed in more detail and an example is provided to show
how one can perform such an analysis.

2.4.1.1. Effect Size

The effect size refers to the size or magnitude of an effect (difference between experimental
groups) which would be expected to be observed in a population. In general, there are three
different ways to calculate effect size: (i) as a standardized result (e.g., standard deviation units
from the mean) which allows for interpretation across applications, (ii) using the original units
(e.g., difference of means) which may be useful for domain-specific interpretation of results, or
(iii) as a unit-free result (e.g., a correlation coefficient) (Sullivan and Feinn, 2012).

For NLP system comparisons, the independent variable is typically categorical and one of
the most common methods for calculating standardized unit effect sizes is Cohen’s d. Cohen’s d
measures the difference between the mean from two Gaussian-distributed variables in standard
deviation units. It can be calculated by taking the difference between the means of two groups
and dividing this by the pooled standard deviation of both samples.

While estimating effect size before starting the actual experiment can be difficult, previous
research in the field or the results from a pilot study can provide a good starting point. However
if there is no prior information available on the expected effect size, the values 0.2, 0.5, and
0.8 are commonly used as Cohen’s d values for small, medium, or large expected effect sizes
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(Cohen, 1988). In a meta-study of 302 social and behavioral meta-analyses, Lipsey and Wilson
(1993), found the average effect size to be exactly 0.5. As an important note, the smaller the
effect size is, the more participants will be required to achieve the same statistical power.

2.4.1.2. Sample Size

The general goal of a power analysis is to identify the minimum sample size needed to achieve
a desired level of power (normally 0.8). To this end, increasing the sample size will always
increase the power of an experiment. In some cases, however, this may not be feasible. In
these cases, it is advisable to try to reduce the number of experimental groups (levels of the
independent variable) to as few as is scientifically defensible. The fewer groups there are,
the higher the number of participants per group. Alternatively, a within-subject design, if
applicable, can also greatly increase the statistical power of a study (Cohen, 1988).

2.4.1.3. Significance Level

Finally, it is important to consider what statistical test will be run on the data and what
significance level α is appropriate for the study. Often, an alpha level of 0.05 is chosen which
represents that 95% of the time if a statistically significant difference is observed, it is not due
to random chance (Kennedy-Shaffer, 2019; Leo and Sardanelli, 2020). For more information
on choosing the right statistical test, see Section 2.4.2.

2.4.1.4. Power analysis

Once all of these pieces of information have been decided, a power analysis can be performed
to determine the expected power of the planned study. This is commonly used to determine
what the minimum number of participants needed will be to ensure a study with sufficient
power. For more information, including tables with the relationship between power, N , and
hypothesized effect size as well details on calculating power with more complex study designs,
Dean et al. (1999), Bausell and Li (2002), Sullivan and Feinn (2012), and Montgomery (2017)
provide a solid introduction to the topic and VanVoorhis et al. (2007) discuss common rules
of thumbs of sample size. Additionally, Faul et al. (2009) provide an open-source tool for
performing power analysis including support for most common statistical tests.3

3www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeits
psychologie/gpower
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2.4. Statistical Evaluation

2.4.2. Choosing the Correct Statistical Test

The (set of) applicable statistical test(s) is determined by the experimental setup including the
choice of measurement scale (Section 2.3.3.4) and the experimental design (Section 2.3.4). To
choose a test, one has to determine the number of levels (groups), if the samples were collected
in a paired or unpaired design, the measurement scale of the dependent variable, and whether
parametric assumptions apply. In the following, we discuss these aspects and present common
tests. Figure 2.16 summarizes these tests within a flow chart, illustrating the conditions under
which each test is applicable. We refer to Buckley (2006) for an extensive discussion of a broad
range of tests along with SPSS and R code.

2.4.2.1. Paired and Unpaired Tests

Whether a paired or an unpaired test is the correct choice depends on the choice of experimental
design (see Section 2.3.4) as different designs require accounting for the subject-dependent
variances in the responses differently. A paired test is applicable if the samples were collected in
a within-subject design (repeated measures), i.e., from one group. An unpaired test is applicable
if the samples were collected in a between-subjects design, i.e., from different groups.

2.4.2.2. Parametric and Non-Parametric Tests

Parametric tests make assumptions on the underlying population distribution (such as normality),
non-parametric tests do not make assumptions on the distributions but still can make other
assumptions (Colquhoun, 1971). Therefore, the measurement scale of the dependent variable
can directly determine whether a parametric test is applicable. For example, we cannot run
a t-test (which is parametric) on ordinal responses from {“often”, “sometimes”, “never”}. It
is often claimed that parametric tests offer higher statistical power. This statement has to be
restricted to very specific conditions and Colquhoun (1971) argues to prefer non-parametric tests
as long as there is no experimental evidence of the error distribution. We refer to Colquhoun
(1971) for a discussion of the differences between parametric and non-parametric methods and
to Sprent (2012) and Corder and Foreman (2014) for details on non-parametric statistics.

2.4.2.3. Frequently-used Tests for NLP

In the following, we present a selection of common statistical tests, highlight important
assumptions they make, and provide examples of NLP applications they are relevant to. We do
not exhaustively discuss all assumptions of each test here, but instead, offer first guidance in
choosing the right test.
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Figure 2.16.: A flow chart to help find an appropriate test to analyze collected responses.
Starting from the middle, the chart shows tests suited to analyze experiments
with two levels of independent variables (e.g., system A and system B) on
the left and tests suited to analyze experiments with more than two levels of
independent variables (e.g., systems A, B and C) on the right. A paired test needs
to be used if, e.g., a within-subject design is used and the level of measurement
determines whether a parametric test can be used. For example, yes/no ratings are
nominal/dichotomous by definition and cannot be analyzed using a t-test. ∗The
pairwise differences have to be on an ordinal scale, see Colquhoun (1971).

We first discuss tests that are applicable to experiment designs with one factor that has two
levels (e.g., the factor chatbot system with the levels “system A” and “system B”). Thereafter,
we consider tests involving one factor with more than two levels (e.g., the factor chatbot system
with an additional third “system C”). These tests are called omnibus tests, which means that they
only can detect that “there is a difference” but make no statement about pairwise differences.
Therefore, pairwise post hoc tests are usually used after detecting a significant difference with
an omnibus test. For a more detailed discussion, we refer to Buckley (2006).

Unpaired and Paired Two-Sample t-Test. In the context of user studies, the t-test is
usually used to test if the means of two samples differ significantly, i.e., a two-sample t-test.4 In
NLG evaluation, the time a participant takes to read a sentence generated by one versus another

4A one-sample t-test compares a sample’s mean with a predefined reference mean.
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system could be compared using a t-test. For the two-sample test one further distinguishes
an unpaired or independent test and a paired or dependent test. The t-test assumes that the
errors follow a normal distribution which is usually decided subjectively by inspecting the
quantile-quantile (Q-Q) plot of the data (Hull, 1993). When analyzing Likert scale responses,
the choice of test depends on whether one regards the scale scores to be measures to be ordinal
or interval measures (see Section 2.3.3.4). For more detailed recommendations on when and
when not to apply parametric statistics to Likert responses we refer to Harpe (2015). However,
De Winter and Dodou (2010) compare error rates between the non-parametric Mann-Whitney U
test with the parametric t-test for five-point Likert items and find that both tests yield similar
power. A typical situation to apply a t-test is to compare task completion times, e.g., the time it
takes a participant to read a text or the times a user takes to engage with a chat bot.

Mann-Whitney U and Wilcoxon Signed-Rank. Although the t-test can be robust to
violations of normality (Hull, 1993), non-parametric alternatives, such as the Mann-Whitney U
test for unpaired samples and the Wilcoxon signed-rank test for paired samples are preferable
for non-parametric data. The Mann-Whitney U test is the non-parametric counterpart to the
unpaired t-test. In contrast to the t-test, which is restricted to interval data, it is additionally
applicable to ordinal data as well as interval data that does not fulfill the parametric assumptions.
For example, testing user acceptance of a voice assistant could involve asking participants
how often they would use the system: "daily", "weekly", "monthly" or "never". The paired
counterpart to the Mann-Whitney U test is the Wilcoxon signed-rank test which compares
median differences between the two groups and can be applied as long as the pairwise dif-
ferences between samples can be ranked. If this is not possible, a sign test should be used
instead (Colquhoun, 1971). An application for the Mann-Whitney U test and the Wilcoxon
Signed-Rank test are Likert ratings of, e.g., text fluency or coherence.

Fisher’s Exact, χ2, and McNemar Test. If the measurement scale is nominal, the Mann-
Whitney U and the Wilcoxon signed rank test are not applicable. Instead, Fisher’s exact test
should be used for unpaired groups if the dependent variable is dichotomous, i.e., can only
take two values like “yes” and “no”, e.g. for rating the correctness of answers generated by
a question answering system. If it can take more values, e.g. additionally “I do not know”,
a chi-square (χ2) test can be used. When samples are paired, the test of choice should be a
McNemar test. An exemplary NLP application of these two tests, are binary responses, to, e.g.,
“Is this sentence grammatically correct?” (Fisher’s exact or chi-square test for unpaired samples
and McNemar test for paired samples) or categorial responses to, e.g.,“For which tasks would
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you use this travel chat bot most likely: (a) searching for travel information, (b) booking a
travel or (c) making a modification to a booked travel?” (chi-square test for unpaired samples
and McNemar test for paired samples).

One-Way and Repeated-Measures ANOVA. So far, we only addressed tests that com-
pare two groups, such as samples from “dialog system A” to samples from “dialog system B”.
When we add a third or more conditions, the discussed tests are no longer applicable. Instead,
if the samples are parametric, a one-way analysis of variance (ANOVA) can be applied to
unpaired samples and a repeated-measures ANOVA can be applied to paired samples.
For example, when interaction times with three different explainability methods should be
compared, one can use a one-way ANOVA when using a between-subjects design (i.e., each
participant sees only one method) and a repeated-measures ANOVA if each participant sees
each method (in a randomized order), i.e. a within-subject design.

Kruskal-Wallis and Friedman Test. Like the Mann-Whitney U and the Wilcoxon-
signed rank test are the non-parametric counterparts to the paired and unpaired t-test, one
can use the non-parametric Kruskal-Wallis test instead of a one-way ANOVA and the non-
parametric Friedman test instead of a repeated-measures ANOVA. For further details, we refer
to Ostertagova et al. (2014) and Pereira et al. (2015). In the above explainability methods
example, these tests are appropriate choices if instead of measuring interaction times (interval
scale), one, e.g., asks participants to rate trust on a single-item Likert scale (ordinal scale).

2.4.2.4. More Complex Tests

In addition to the tests above, there also are more general models and tests, which can be useful
for NLP applications. If the response variable is, e.g., categorical (e.g., “dog”, or “cat”), linear
models can be extended to generalized linear models (Nelder and Wedderburn, 1972), where
the (e.g., categorical) response scale is linked to a latent scale (e.g., logits) via a link function.
If the experimental setup requires accounting for, e.g., subject-specific influences (e.g., mother
tongue or literacy) or repeated measures of one factor within a mixed design (e.g., a design in
which each participant uses one version of a dialog system, i.e. a between-subjects factor, but
all participants perform the same set of tasks, i.e., a within-subject factor), generalized linear
mixed models (GLMMs) can be an appropriate statistical model. The difference between a
linear and a linear mixed model is that the latter is extended to include random effects, such as
individual participant characteristics on top of fixed effects, such as “system type” resulting in a
mixed model. Intuitively, the purpose of including random effects is to get a clearer picture of
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the fixed effects and not to falsely attribute, e.g., an effect of participant age to be a difference
between two chatbots. An introduction to linear mixed models and their usage in R is provided
by Winter (2013). More details can be found in McCulloch and Neuhaus (2005) and Jiang
(2007). Howcroft and Rieser (2021) discuss ways to improve power in human evaluations in
NLP and recommend to make use of ordinal mixed effects models. Other commonly used
models are generalized additive models (GAMs) (Hastie and Tibshirani, 1990; Hastie et al.,
2009) which model the response variable as a sum of general basis functions. We refer to Wood
(2017) for an introduction using R. Two applications of (ordinal) GAMs can be found (a) in
Divjak and Baayen (2017) who analyze grammaticality ratings and (b) in Section 5.1 of this
thesis in which we study human perception of saliency explanations. As this model class is
central to our analysis of explanation understanding, we introduce GAMs generalized additive
mixed models (GAMMs) models in more detail in the following.

2.4.2.5. (Ordinal) Generalized Additive Mixed Models

For an intuitive understanding of GAMMs, we sketch how one arrives at ordinal GAMMs
starting from linear models. We follow the notation of Wood (2017).

Linear Model. In a linear model, the response variable y (e.g., a numeric rating of impor-
tance) is modeled as a function of explanatory variables X which are related to y linearly via
parameters β assuming additional noise ϵ:

y = Xβ + ϵ. (2.19)

Linear Mixed Model. In many scenarios, there are random effects which one wants to
account for in the model. For example, we collect 150 word importance ratings per participant,
i.e., we collect repeated measures and are in danger of violating the independence assumption
and introducing a confounding effect of the variable participant ID because specific participants
might have a tendency to give overall higher ratings than other participants. Like the linear
model, linear mixed models estimate fixed effects but in addition they also model random effects

(e.g., of the participant ID) to disentangle their influence on the response variable and thereby
offer a clearer view on the fixed effects. The general formulation of a linear mixed model reads

y = Xβ + Zb+ ϵ, (2.20)

where Z corresponds to the random effects and b to the respective weights.
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Generalized Linear Model (GLM). While linear models require the response distribution
to be normal, generalized linear models (GLMs) Nelder and Wedderburn (1972) generalize to
non-normal (exponential family) response distributions, such as categorical responses (e.g., dog
or cat) or ordinal responses (e.g., Likert item ratings). To achieve this generalization, GLMs
link values on the response scale (e.g., categorical ratings) to a latent scale (e.g., logits) via a
link function g(·) (e.g., logit function). For a row i, the general formulation reads:

g(µi) = Xiβ. (2.21)

Generalized Additive Model (GAM). While a generalized linear model only allows to
model linear relationships between the explanatory variables and g(µi), a GAM Hastie and
Tibshirani (1990) generalizes the linear relationship to a sum of smooth functions of explanatory
variables using:

g(µi) = X∗
iθ + f1(x1i) + f2(x2i, x3i) + ... , (2.22)

where f1 and f2 are smooth functions that typically are chosen to be a sum of basis functions,
such as splines, and X∗ corresponds to strictly parametric model components. A regularized
estimation of these functions allows GAMs to model complex functions, but also to fall back
to simpler, e.g., constant or linear functions when an increase in model complexity is not
sufficiently warranted by improved model fit.

Ordinal Generalized Additive Mixed Model (ordinal GAMMs). Having introduced
the previous models, an ordinal GAMM can be described as a generalized additive model
that additionally accounts for random effects and models ordinal ratings via a continuous
latent variable that is separated into the ordinal categories via estimated threshold values. For
further details, Divjak and Baayen (2017) provide a practical introduction to ordinal GAMs
in a linguistic context and Wood (2017) offers a detailed textbook on GAM(M)s including
implementation and analysis details.

2.4.2.6. Post Hoc Tests

The presented omnibus tests do not allow to make statements about pairwise differences
between conditions. For example, an ANOVA might detect a significant difference within the
groups {“system A”, “system B”, “system C”} but makes no statement if there is for example
a significant difference between “system A” and “system B”. In such cases, one needs to use
a post hoc test (Buckley, 2006; MacKenzie, 2013). The respective post hoc test is typically
only applied if the omnibus test found a significant effect and — depending on the method
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— requires a multiple testing adjustment. Commonly used tests are Tukey HSD, Scheffé,
Games-Howell, Nemenyi, and Conover.

2.4.2.7. The Multiple Comparisons Problem

The intuition behind the multiple comparisons problem is that every time a statistical test is run,
it bears the risk of a Type I error, i.e., falsely reporting a positive result. When one considers the
standard significance level, α of 0.05, this represents 95% confidence in a reported significant
difference or a 5% chance that there was a type I error. However, if multiple hypotheses are
tested, the chance for a type I error over the entire experiment increases. For example, if
two hypotheses are tested each with a 95% confidence level, the confidence for the entire
experiment drops to 0.9 (i.e., 0.952, the likelihood that both tests were not falsely positive), and
thus α equals 0.1.

Thus, when multiple hypotheses are tested at once, the individual α levels need to be adjusted.
A simple and well-known adjustment method is the Bonferroni correction, which divides the
α level per test by the number of tests to ensure a given family-wise error rate – error rate
across the entire experiment – is achieved. Less conservative methods, such as the Benjamini-
Hochberg technique or the Holm procedure, also called the Holm-Bonferroni method can
provide more power for an experiment (Bender and Lange, 2001; Streiner and Norman, 2011).
Alternatively, if the data in an experiment was suitable for an ANOVA test, the Tukey HSD,
also called the Tukey test, can be a good choice. When and when not to apply α adjustments is
discussed by Rothman (1990); Ottenbacher (1998); Moyé (1998); Bender and Lange (2001);
Streiner and Norman (2011).

2.4.2.8. Further Analysis Methods for NLP

As NLP systems are frequently evaluated in side-by-side comparisons, the collected variables
can also be ranks or preferences (Callison-Burch et al., 2007; Grundkiewicz et al., 2015). For
example, participants can be asked to rank pairs of translations or generated speech snippets.
TrueSkill™ (Herbrich et al., 2006; Sakaguchi et al., 2014) can be used to construct ranks from
pairwise preferences. Pairwise preferences can be analyzed statistically using models, such
as the (log-linear) Bradly-Terry model (Bradley and Terry, 1952; Dras, 2015) or approaches
based on item response theory (Sedoc et al., 2019; Sedoc and Ungar, 2020). Further, hybrid
approaches that combine ranking with scale ratings (Novikova et al., 2018) or human judgments
with automatic evaluation (Hashimoto et al., 2019) have been proposed for NLG.
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Explanations

In this chapter, we present our contributions to integrating external knowledge into explanation
generation for NLI (Section 3.1) as well as our novel self-reflective thought flow architecture,
that provides explanations in the form of decision sequences, which we demonstrate at the
example of QA (Section 3.2).

3.1. Explanations as Output: External Knowledge

Improves Explainable NLI

We introduced the task of NLI in Section 2.1.1. In essence, given two sentences (premise and
hypothesis), systems are trained to decide whether (a) the first sentence entails the second
sentence, (b) the two sentences contradict each other or (c) they have a neutral relation. As
discussed, the NLI task can be extended to an explainable NLI task in which the system needs
to provide an additional textual explanation of why the predicted answer should be the correct
answer. Figure 2.1 on page 11 in Section 2.1.1 shows an example of an explainable NLI
instance. Solving the task requires models to not only reason over the provided information but
also to link it with commonsense knowledge.

Integrating external knowledge was shown to improve NLI systems (Jijkoun and de Rijke,
2005; Chen et al., 2018; Li et al., 2019; Faldu et al., 2021). However, the following question
remains: Does the positive effect of external knowledge on the inference ability transfer to the

generation of explanations? Figure 2.1 shows an NLI example for which external knowledge
potentially helps to infer the correct label and explanation. In the example, the system needs to
link “dog” to “animal”, “jumping for a Frisbee” to “playing”, “Frisbee” to “plastic toy”, and
“snow” to “outside” as well as to ‘cold weather”. The predicted explanation needs to explicitly
state this reasoning chain and would be expected to benefit from external knowledge.

Pre-trained language models, such as BERT (Devlin et al., 2019) or GPT-2 (Radford et al.,
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2019) have been shown to be able to learn and store commonsense knowledge implicitly
(Petroni et al., 2019). However, an open question is: How effective is the implicit commonsense

knowledge of language models compared to symbolic sources of knowledge, such as knowledge

base triplets?

To evaluate NLI models, mainly automatic measures, such as accuracy, are used. However,
model weaknesses can stay unnoticed using automatic scores alone and automatic scores are not
necessarily correlated to human-perceived model quality (we will revisit this topic in Chapter 4).
Thus, human evaluation is a crucial step in the development of user-centered explainable AI
systems. Therefore, we ask the question: How do humans perceive explanation quality of

state-of-the-art natural language inference models?

In this section, we investigate the three mentioned research questions. To answer them, we
analyze the impact of external knowledge from multiple sources, such as knowledge graphs,
embeddings, and language models, and propose novel architectures to include and combine
them into explainable NLI systems. Further, we conduct an extensive automatic analysis as well
as a user study. To the best of our knowledge, our study exceeds previous human evaluations of
explainable NLI models regarding the number of participants as well as the variety of rated
explanation criteria.

For our first research question, we find that the positive effect of external knowledge on label
accuracy in the standard NLI setting can also be observed in the explainable NLI setting and
external knowledge can improve the BLEU scores of the generated explanations. In regard
to our second research question, we observe that pre-trained language models are the most
promising source of commonsense knowledge but at the same time identify weaknesses with
respect to negations and numerical reasoning abilities which, however, can be mitigated through
combination with additional knowledge sources. Despite the improvements in accuracy, BLEU,
or BLEURT scores, our user study shows that, for our third research question, these do not
reflect in human ratings of explanation correctness, commonsense inclusion, nor grammar or
label correctness. Our results provide initial evidence for caution to solely rely on automatic
scores for explainability and motivate our in-depth analysis of the relation between proxy scores
and human ratings discussed in Chapter 4.

To facilitate future work, we make our model’s predictions as well crowdsourced human
ratings available at https://github.com/boschresearch/external-knowled
ge-explainable-nli.

3.1.1. Knowledge Integration Methods

In the following, we describe our base model and present the models we analyze.
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3.1.1.1. Base Model

We combine a state-of-the-art attention-based inference model with an explainable NLI model
that predicts entailment labels and generates explanations. In particular, we use the encoder part
of the enhanced sequential inference model (ESIM), which has a cross-attention layer to capture
relevant semantics between premise and hypothesis (Chen et al., 2017), and the prediction
part of the PRED-EXPL model of Camburu et al. (2018). We refer back to our introduction
to different varieties of attention in Section 2.1.2.2. In contrast to the self-attention used in
transformers, the cross-attention in the ESIM model is used to capture dependencies between
the hypothesis and the premise. We represent the input sentences with BERT embeddings
(Devlin et al., 2019) which we fine-tune on the SNLI dataset. We pass inputs of the form
“[CLS] premise [SEP] hypothesis” to BERT and use a softmax layer on top of the CLS token’s
embedding to predict the entailment label and fine-tune the model for up to two epochs.
Throughout this chapter, we refer to this model as VANILLA.

3.1.1.2. Integration of Knowledge Sources

External knowledge can be found in various formats. We aim to cover a possibly broad variety
and focus on state-of-the-art sources and methods. We include the natural language knowledge
base COMET (Bosselut et al., 2019), the ConceptNet Numberbatch embeddings (Speer et al.,
2017), and the GPT-2 language model (Radford et al., 2019).

Background Knowledge from COMET. As our example in Figure 2.1 in Section 2.1.1
showed, resolving natural language entailment can require reasoning over multiple concepts
and relations, such as inferring cold weather and outside from snow. We seek to facilitate this
resolvement by providing the model with related words (and phrases) that can be seen as a
natural language extension of the premise and the hypothesis. We use the COMmonsEnse
Transformers (COMET) (Bosselut et al., 2019) as a natural language knowledge base to query
background knowledge for the premise and the hypothesis. COMET is based on a transformer
language model that is fine-tuned on a knowledge base completion task on ConceptNet. Given
an input sentence and a ConceptNet relation, it generates a phrase to complete the object in
a knowledge statement expressed in the (subject, relation, object) format. Instead of feeding
in the whole premise and hypothesis, we find that chunking them into noun and verb sub-
phrases based on POS tags patterns yields better object phrase generations.1 Thus, for each

1We manually find that feeding in the whole sentence predominantly relates the output to the last tokens of the
sentence and fails to include information from tokens earlier in the sentence.
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sentence (premise/hypothesis) we generate #chunks × #relations object phrases.2 Afterward,
we embed each object phrase (with the respective relation string prepended) with Sentence-
BERT (Reimers and Gurevych, 2019) and quantify its similarity to the embedding of the
source sentence using cosine similarity. For each relation, we keep the object phrase with
the highest similarity score. Given the relation HasA and the chunked sentence The dog | is

walking in the snow, for example, COMET will generate bone and effect of freeze for the two
sub-phrases, respectively. We only preserve the object phrase effect of freeze as it has a higher
similarity to the source sentence. To condense the object phrases into a fixed-length vector
representation, we average the respective Sentence-BERT embeddings. This procedure yields
one vector representing the background knowledge regarding the premise and one regarding
the hypothesis. We combine them with the local inference vector representation of Chen et al.
(2017). Following Camburu et al. (2018), this vector is passed to the label prediction module as
well as the explanation decoder. We refer to this model as COMET.

Modified Attention with ConceptNet. Following Li and Srikumar (2019), we use
knowledge-driven rules to modify the attention weights within the cross-attention layer between
premise and hypothesis in the encoder. This supports the attention mechanism to align word
pairs pi and hj from premise and hypothesis based on world knowledge. The rules proposed
by Li and Srikumar (2019) are shown in Equation 3.1 and 3.2. In R1, the antecedent Kpi,hj

indicates that a word pair pi and hj is of a certain relation within ConceptNet. If the condition of
the antecedent is true, the consequent A′

pi,hj
that aligns the word pair follows. R2 is a relatively

conservative rule that additionally takes the model’s own decision into account. The antecedent
Kpi,hj

∧ Api,hj
in R2 is a conjunctive condition that becomes true if a word pair is both in a

relation and aligned by a model’s original attention. If such a conjunctive condition is true, the
word pair must be aligned which results in a new alignment as the consequent A′

pi,hj
indicates.

R1 : Kpi,hj
→ A′

pi,hj
(3.1)

R2 : Kpi,hj
∧ Api,hj

→ A′
pi,hj

(3.2)

Different from the approach of Li and Srikumar (2019) that checks a word pair’s relation
in a binary fashion, we hypothesize that knowledge-aware embeddings might capture more
fine-grained word relationship that exists in multi-hop relational edges. Considering playground

and playroom, for example, the former is usually located outdoors whereas the latter is located
indoors. We generalize the binary relational inclusion from Li and Srikumar (2019) to continu-

2We consider the relations AtLocation, CapableOf, DefinedAs, HasA, HasProperty, HasSubevent, InheritsFrom,
InstanceOf, IsA, LocatedNear, MadeOf, PartOf, SymbolOf, UsedFor, and LocationOfAction.
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ous relation scores. For this, we replace the binary rule antecedent with the absolute cosine
similarity between the ConceptNet Numberbatch (Speer et al., 2017) vector representations
of pi and hj . We empirically confirm that our continuous formulation outperforms the binary
version regarding label accuracy as well as explanation correctness. In the following, we refer
to these modified rules as continuous constraints and use CONT to refer to the respective model.

All-text Prediction with GPT-2. Similar to Kumar and Talukdar (2020), we fine-tune a
pre-trained GPT-2 language model on the e-SNLI dataset. In contrast to Kumar and Talukdar
(2020), we use a single GPT-2 model to generate explanations for all three entailment labels
instead of training a separate model for each of them. This allows us to directly integrate the
label prediction into the language model instead of training an additional model which predicts
the label on top of the three explanations. Therefore, we propose two models, which both
are GPT-2-large models, but differ regarding their training setting. In the label-first setting
(GPT-LF), the model is trained on text following the structure:
Premise: <premise> Hypothesis: <hypothesis> [LAB] [label] [EXP] <explanation> EOS.
In the explanation-first setting (GPT-EF) it is trained on text following the structure:
Premise: <premise> Hypothesis: <hypothesis> [EXP] <explanation> [LAB] <label> EOS.

3.1.1.3. Combined Models

COMET and ConceptNet. We combine COMET with CONT to benefit from both integrated
background information from COMET and a knowledge-enhanced attention mechanism based
on ConceptNet Numberbatch. We expect this to help the model focus on important relations
between premise and hypothesis.

Knowledge-enhanced Ensembles. We combine the world knowledge of BERT embed-
dings (VANILLA), ConceptNet Numberbatch (CONT), COMET (COMET) and the combined
model COMET+CONT with the language model abilities of GPT-2 (GPT-LF and GPT-EF). For
this, we propose an ensemble that not merely aggregates label votes but combines the models
with respect to their different strengths. The label predictions of VANILLA, CONT, COMET,
COMET+CONT as well as GPT-LF are passed to a majority voting. In the basic ensemble, the
GPT-LF model is then conditioned on the voted label and generates the final explanation. We
refer to this model as ENSEMBLE. In the filtered ensemble, the majority voting only allows
models to vote if their generated explanation lets the GPT-EF model predict the same label
prediction as the original model. In other words, we fix the input as well as the generated
explanation and only let the GPT-EF model predict the label. This step can be interpreted as a
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premise

hypothesis

input model 1

model 2

explanation-first GPT-2

pass if equal

pass if equal

majority
voting

label-first GPT-2

label

expl

label

expl

label

label

label

explanation

output

Figure 3.1.: Schematic depiction of the two proposed ensemble architectures ENSEMBLE and
FILTERED-ENS. The blue components correspond to the consistency-filter.

consistency filter that prevents models from voting if their label prediction does not match their
explanation prediction. In the following, we refer to this model as FILTERED-ENS. Figure 3.1
depicts the corresponding ENSEMBLE and FILTERED-ENS ensemble architectures.

3.1.2. Automatic Evaluation

First, we evaluate the discussed knowledge-enhanced models with respect to commonly used
scores on e-SNLI and a stress test evaluation. In addition to our constructed models, we also
include PRED-EXPL (Camburu et al., 2018), which is basically our VANILLA baseline without
cross-attention and with GloVe embeddings instead of fine-tuned BERT embeddings. Further,
we include two more recent models proposed for e-SNLI: NILE:post-hoc, which is the highest
performing model from Kumar and Talukdar (2020), and WT5-11B from Narang et al. (2020),
which held the state-of-the-art performance at the time of our study. While NILE:post-hoc is
based on GPT-2 as well, WT5-11B is a fine-tuned version of the T5 language model (Raffel
et al., 2020). We train all non-LM models with five random seeds and report scores of the
median model based on label accuracy. Table 3.1 shows predicted explanations for the subset
of models that we investigate within the human evaluation in Section 3.1.3. Further examples
are provided in Appendix A.1.

3.1.2.1. Performance on e-SNLI

Following prior work on e-SNLI, we report label accuracy as well as BLEU scores (Papineni
et al., 2002) for explanations. We additionally evaluate BLEURT scores (Sellam et al., 2020),
which is a reference-based learned evaluation metric to model human judgments of text
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Model Predicted Explanation

GROUND-TRUTH a man is either playing the accordion or performs a mime act while happy people pass
by or angry people glare at him.

VANILLA a man can not be playing and a mime at the same time
COMET the man is either playing the accordion or a mime
CONT people can not be playing and angry at the same time
COMET+ CONT the man can not be playing the accordion and the mime at the same time
GPT-LF Happy people are not angry people.
WT5-11B The man cannot be playing the accordion and performing a mime act at the same time.

Table 3.1.: Explanation predictions of the models used within the human evaluation for the
premise “A man on a sidewalk is playing the accordion while happy people pass by”
and the hypothesis “A man on the sidewalk performs a mime act while angry people
glare at him”. All models correctly predict the class contradiction but generate
different explanations. The predicted explanation of the FILTERED-ENS model is
identical to the explanation of the GPT-LF model as GPT-LF is used to predict the
ensemble’s explanation. Missing punctuation reflects exact model generations.

generation. BLEURT is of particular interest for explanation evaluation as Clinciu et al. (2021)
compare how various automatic scores, such as BLEU, ROUGE, and METEOR correlate
to human ratings of generated explanations and find that embedding-based methods and
particularly BLEURT scores show distinctly higher correlations than, e.g., BLEU.

Table 3.2 shows the respective scores for all considered models. For NILE:post-hoc (Kumar
and Talukdar, 2020) and WT5-11B (Narang et al., 2020) we report the label accuracy from their
paper and calculate BLEU/BLEURT scores based on the explanation predictions provided by
the authors. Narang et al. (2020) calculate BLEU scores using SacreBLEU v1.3. (Post, 2018)
leading to a higher reported score of 33.7. The upper block lists models that share or extend the
PRED-EXPL architecture. Compared to PRED-EXPL, the VANILLA model achieves a notable
increase in label accuracy as well as BLEURT scores. Surprisingly, COMET reduces all scores
and even decreases the BLEU score below the PRED-EXPL score. In contrast, knowledge-
enhanced cross attention (CONT) improves BLEU and BLEURT scores and reaches a label
accuracy close to VANILLA. Combining CONT with COMET retains the CONT label accuracy
but again slightly decreases BLEU and BLEURT scores. The lower block contains models
that are or include language models. All language model-based models increase BLEU and
BLEURT scores. All except GPT-EF outperform all non-language model models.

To analyze whether the performance differences of models can be really attributed to a better
reasoning and commonsense knowledge ability instead of merely different model capacity, we
next evaluate our models on the NLI stress test evaluation.
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Type Model Label Accuracy BLEU BLEURT

no
n-

LM

PRED-EXPL 84.21 19.77 -0.871
VANILLA 89.20 19.71 -0.820
COMET 88.97 18.84 -0.822
CONT 89.02 20.10 -0.799
COMET+CONT 89.07 19.66 -0.809

LM
-b

as
ed

GPT-EF 87.89 21.70 -0.624
GPT-LF 89.70 26.90 -0.577
ENSEMBLE 90.24 27.10 -0.576
FILTERED ENS 90.24 27.09 -0.577

NILE:POST-HOC 91.49 26.26 -0.577
WT5-11B 92.30 29.01 -0.511

Table 3.2.: Automatic evaluation metrics on the e-SNLI test set. Label accuracy quantifies
NLI performance. BLEU and BLEURT score the similarity between predicted and
ground truth explanation texts. BLEURT is a learned score which predicts scores
given the text to be evaluated and a reference text. Higher values are better.

3.1.2.2. Stress Test Evaluation

Table 3.3 shows the results of our models on the NLI stress test evaluation proposed by
Naik et al. (2018). The dataset contains multiple subsets of which each subset is used to
evaluate the robustness of the system against a specific type of perturbation, e.g., spelling
errors, negations, numerical reasoning, and more. On average, all models distinctly improve
performance compared to the PRED-EXPL baseline. With respect to VANILLA, all models except
GPT-EF improve average performance. Further, both COMET and CONT improve average label
accuracy, while their combination decreases performance. Surprisingly, GPT-LF outperforms
the ensemble methods on average. While COMET+CONT reaches the best performance in
terms of e-SNLI label accuracies, it performs worst on the stress tests. The same effect can be
observed for the FILTERED-ENS. While it reaches top performance for the spelling error test,
its performance drops for numerical reasoning, where it performs worse than any other model.
These results show that combining different knowledge sources does not result in a consistent
combination of their weaknesses and strengths. Instead, the sources of external knowledge have
to be carefully adjusted to the target domain and our results paint a rather pessimistic picture
regarding a cure-all solution. Further, a model’s reasoning capabilities have to be assessed in
detail as evaluation across different reasoning types easily masks model weaknesses.

Finally, we investigate whether language models reach their higher performance due to
better reasoning: For most of the assessed reasoning types — with the exception of numerical
reasoning and negation — the best non-ensemble model in fact is GPT-LF. Also, GPT-LF reaches
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Type Model Total Competence Test Distraction Test Noise Test

Antonymy Numerical Word Overlap Length Mismatch Negation Spelling

no
n-

LM

PRED-EXPL 48.69 36.36 36.55 47.17 53.44 45.31 52.42
VANILLA 56.94 37.94 32.24 55.46 65.21 52.03 62.90
COMET 57.05 34.54 35.48 57.31 64.15 52.85 62.33
CONT 57.09 32.50 40.28 52.10 64.35 53.38 62.77
COMET+CONT 56.26 44.43 34.16 51.34 64.39 49.36 63.03

LM
-b

as
ed GPT-EF 52.74 51.81 31.33 55.91 60.97 38.44 58.20

GPT-LF 59.28 54.84 28.80 64.06 68.72 42.82 67.07
ENSEMBLE 59.19 37.97 34.03 58.13 67.45 52.51 65.92
FILTERED-ENS 58.99 52.53 28.54 63.70 68.02 42.18 67.10

Table 3.3.: Label accuracies (higher is better) for all categories in the NLI stress test tasks (Naik
et al., 2018). The six rightmost columns show (i) the model’s reasoning abilities
(competence), (ii) how sensitive it is to lexical distractors (distraction), and (iii)
how robust it is against noise from different perturbations (noise). Each column
corresponds to one dataset. For datasets with matched and mismatched subsets, we
report the accuracy over all labels within the group. Similarly, the total accuracy is
calculated over all labels.

the highest accuracy on average. Therefore one could generally recommend to include external
knowledge in the form of a pre-trained language model as the foremost option. However, our
results also show that language models are not necessarily the best choice for all reasoning
needs and can, e.g., severely decrease performance for numerical reasoning and negations,
where models based on language models perform worse than all other models.

3.1.3. Human Evaluation

While automatic scores, such as BLEU, provide a valuable starting point for evaluating expla-
nations, they fall short of capturing the model’s real explanation capabilities. We, therefore,
conduct a large-scale crowdsourcing study to complement our automatic evaluations on e-SNLI
and the stress tests. Following related work (Narang et al., 2020), we assess explanation quality
based on ratings from crowdworkers on Amazon Mechanical Turk (MTurk).3 While previous
work limited evaluation to rating explanation correctness, we additionally ask participants
to provide fine-grained ratings of commonsense inclusion and grammatical correctness. A
screenshot of the interface is shown in Figure 3.2.

3We provide an in-depth discussion of explanation quality evaluation in Chapter 4.
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Figure 3.2.: Screenshot of the study interface presented to crowdworkers on MTurk.

3.1.3.1. Conditions

In order to evaluate effects across the discussed sources of external knowledge, we include
seven models in our human evaluation: VANILLA, COMET, CONT, COMET+CONT, GPT-LF,
FILTERED-ENS and WT5-11B. Additionally, we evaluate the e-SNLI ground truth labels and
explanations as a representation of a hypothetical perfect model. Table 3.1 displays the different
explanations the models predict for an exemplary input as well as the ground truth explanation.

3.1.3.2. Dependent Variables

We evaluate the models’ predicted labels and explanations along four self-reported dimensions.

Label Correctness. Following Kumar and Talukdar (2020) and Narang et al. (2020), we
ask participants to rate if the predicted label answer is correct or not.

Explanation Correctness. Similar to Camburu et al. (2018), Kumar and Talukdar (2020),
and Narang et al. (2020), we collect subjective yes/no explanation correctness ratings.

Grammatical Correctness. We ask participants to rate if the explanation is grammatical.
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Commonsense Inclusion. We ask participants whether the explanation includes com-
monsense knowledge that is needed to answer the question. We collect responses on an item
with the options yes, no, and no need.

3.1.3.3. Study Design

In order to evaluate the effect of the level of required external knowledge, we compile, like
Kumar and Talukdar (2020) and Narang et al. (2020), a set of 100 premise-hypothesis pairs.
In contrast to them, we compose the 100 pairs to contain 50 pairs that require a low level of
external knowledge and 50 pairs that require a high level. To gather pairs of both categories,
we let two annotators rate 250 premise-hypothesis pairs from the e-SNLI test set. We sample
50 pairs per level of external knowledge from the 179 pairs on which the annotators agree.
We provide details on the annotation criteria in Appendix A.1. During the study, we, like
Narang et al. (2020), collect five crowdsourced ratings for each condition and for each of the
ten input pairs per batch, i.e., 500 ratings per model and a total of 4000 ratings for each variable.
Table 3.4 displays various model predictions along with examples of corresponding human
ratings (non-averaged individual ratings).

3.1.3.4. Analysis

We collect responses from 290 crowdworkers and discard those that were entered in less than
five minutes (31%) as this might indicate arbitrary answer selection. Note that the repeated
measures design of our study possibly introduces inter-dependencies within ratings as, e.g.,
certain participants can have a tendency to rate explanations as correct more often than others
or a certain question might elicit more label correctness ratings. Thus, we use GLMMs to
account for the potentially confounding variables (worker ID, question ID, and level of required
commonsense knowledge). We refer to our brief introduction to GLMMs in Section 2.4.2. As
our response variables are binary,4 we use binomial GLMMs. We include fixed effects (model
and commonsense level) as well as random intercepts (worker and question IDs). Figure 3.3
shows effect displays for the collected ratings in relation to the predictor model type.

We conduct likelihood-ratio tests (LRTs) between the full model and the model without the
evaluated predictor to test the effects of model type and commonsense level on all four rating
variables. As model type contains more than two factors, we additionally conduct single-step
corrected Tukey HSD post hoc tests for all four variables.

4We do not consider “no need” commonsense ratings during the respective model estimation.
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Premise Hypothesis CoS Model Pred.
Label

Predicted
Explanation

Human Ratings

Label Expl. Gramm. CoS

By a table with several
boxes and two coffee
cups on it, a woman in
a green sweater is
opening a small box
and another person
(whose head cannot be
seen) is operating a
small handheld
electronic device.

Members of
congress
opening care
packages.

high WT5-
11B

neutral Not all women are
members of
congress. Not all
boxes are care
packages.

✓ ✓ ✓ ✓

In front is a guy singing
and playing guitar and
a white shirted
drummer in the back.

Some people
perform at a
concert.

high GPT-LF neutral Just because a guy
singing and playing
guitar and a white
shirted drummer in
the back does not
mean they are
performing at a
concert.

✓ ✓ ✓ ✓

A man in a black coat
and hat and a woman in
a blue coat with pink
hat snowshoeing on the
side of a road with a
stoplight in the
background.

A man and
woman are
outside in
the snow.

high COMET

+CONT

entail-
ment

in the snow is
outside

✓ ✓ ✓ ✓

Two individuals
dressed up like animals
are posing for the
camera.

Two young
boys dressed
like cows are
posing .

low COMET

+CONT

neutral not all people are
young

✗ ✗ ✓ ✓

A man playing a piano The man’s
hands are on
the keys of a
piano.

high VANILLA entail-
ment

playing a piano
requires one to be
on the hands

✓ ✓ ✗ ✓

Two women are
hugging on a path
through a grassy area
with a cow visible past
them.

There are
women
outside in
this picture

high WT5-
11B

entail-
ment

A grassy area is
outside.

✓ ✓ ✓ ✓

A woman in a spaghetti
strap tank wearing a
flower in her hair is
staring towards the
right.

The woman
is sleeping
on a pillow.

low COMET

+CONT

contra-
diction

the woman can not
be looking towards
a sleeping she is
sleeping

✓ ✗ ✗ ✓

Table 3.4.: Examples of model predictions and individual human ratings of the predicted
labels and explanations for various model types. “CoS” denotes common sense
requirements/ratings.
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(a) Label correctness.
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(b) Explanation correctness.
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(c) Grammatical correctness.
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(d) Commonsense correctness.

Figure 3.3.: Effect displays for user ratings of label, explanation, grammatical, and common-
sense correctness depending on model type following Fox (2003). The rating
probability is the probability that a prediction of a respective model type is per-
ceived to be correct by a human considering fixed effects. Error bars mark 95%
confidence limits.

Label Correctness. We do not observe a significant main effect of model type (χ2(7) =

13.00, p = 0.0723) but a significant main effect of commonsense level (β = 0.28, χ2(1) = 4.54,
p < 0.0331). β refers to the estimate of a high commonsense level.

Explanation Correctness. We observe a main effect of model type (χ2(7)=24.06, p<0.0012)
and commonsense level (β = 0.27, χ2(1) = 7.79, p < 0.0053). For model type, a post hoc
Tukey test showed significant differences between FILTERED-ENS and VANILLA (p < 0.0055)
as well as FILTERED-ENS and COMET+CONT (p < 0.0029).

Grammatical Correctness. We observe a main effect of model type (χ2(7) = 14.20,
p < 0.0479). However, a post hoc Tukey test did not reveal significant differences between any
model type pair. No significant main effect of commonsense level was observed (β = 0.02,
χ2(1) = 0.02, p = 0.8803).
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Commonsense Correctness. We observe a main effect of model type (χ2(7) = 20.63,
p < 0.0044). However, a post hoc Tukey test did not reveal significant differences between any
model type pair. No significant main effect of commonsense level was observed (β = 0.07,
χ2(1) = 0.25, p = 0.6163).

Overall, these results show surprisingly few significant differences between the different
model types and conflict with the large differences within automatic evaluation scores.

3.1.4. Overall Discussion

Effect of External Knowledge. We showed that external knowledge can increase label
accuracies on e-SNLI as well as on the stress tests. In addition, we found external knowledge
to increase BLEU(RT) scores and thus help explanation generation in terms of proxy scores.

Implicit Knowledge in Language Models. While language models achieve the best
scores on general e-SNLI performance, the stress tests showed that they do not succeed in all
reasoning types. Thus, for choosing the best way of integrating commonsense knowledge, the
final reasoning goal of the model needs to be considered.

Perceived Explanation Quality by Humans. We expected the large differences in
e-SNLI label accuracy (up to 3.23%), BLEU (up to 10.17), and BLEURT (0.31) to reflect
in human ratings, but none of these maximal differences in scores leads to a statistically
significant difference in ratings for any dependent variable. Regarding the observed significant
differences, FILTERED-ENS is not the best model included in the study with respect to e-SNLI
(WT5-11B reaches distinctly higher values for all scores) and, similarly, neither VANILLA nor
COMET+CONT are the worst models on any score in Table 3.2. Thus, large accuracy gains do
not necessarily imply better models when used in real-world applications with users. In the
following, we will further discuss these results.

Superhuman Model or Noisy Ground Truth? It is particularly remarkable that the
ground truth ratings do not significantly differ from any other model’s ratings. In fact, the
ground truth condition ranks in the lower half across all four rating dimensions and yields the
lowest probability of receiving label correctness ratings as shown in Figure 3.3a. Similarly,
Narang et al. (2020) note that in their experiment the WT5-11B model reaches a 12%-higher
explanation correctness rating than the ground truths. This indicates that e-SNLI might not
be suitable to distinguish performances of today’s high-performing models. While it remains
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valuable for training, models should be scored on specifically designed evaluation sets, for
example, an explainable extension of the NLI stress test dataset.

Limitations and Future Directions. Although we evaluated a total of eleven different
model architectures and various different sources of external knowledge, this clearly does not
exhaust all possible knowledge sources or architectures. While our analysis provides insight
into the most common knowledge sources integrated into representative model architectures,
future work should confirm our findings for additional sources and architectures. Although
our user study already is — to the best of our knowledge — the largest and most fine-grained
evaluation of explainable NLI, future work should further expand the set of dependent variables
to potentially reveal effects that are not visible through the lens of our experimental setup.
In addition, our results raise the question of whether the observed evaluation disconnect also
holds for other explainable NLP tasks. We address this question in detail in Chapter 4 and, i.a.,
observe a similar disconnect for explainable QA.

3.2. Decision Processes as Explanations: Thought

Flow Networks

While the previous section addressed the generation of textual explanations, this section
explores decision sequences as a novel explanation format. Inspired by Hegel’s dialectics,
we propose the concept of thought flows, formalize it in terms of gradient-based optimization
within the model’s decision space, and demonstrate its application to QA models.

Our method builds upon the observation that today’s classification models map a specific
input x, e.g., a token or a sentence, to an output ŷ (Bishop, 2006) where ŷ can be, e.g., a
class, a sequence (e.g., a generated text) or an answer span extracted from a context. This
mapping x→ ŷ might involve various modulations and abstractions of x in a latent space, e.g.,
hidden layers of a neural network, but typically does not allow variations or trajectories of ŷ.
Humans, on the other hand, rarely come to a single decision right away but follow a complex
thought process that involves reflecting on initial decisions, comparing different hypotheses, or
resolving contradictions. While humans’ trains of thought are extensively studied in cognitive
sciences and philosophy — one particular example being Hegel’s dialectics (Maybee, 2020) —
such theories are rarely explored in machine learning. However, with increasingly complex
tasks that have large output spaces, such as QA5, or tasks that require multiple reasoning steps,

5A Longformer QA model can output 16M possible spans.
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such as multi-hop QA, learning to directly hit the right prediction in one shot might be more
difficult than to learn to iteratively self-correct an initial prediction.

In this section, we propose the concept of a thought flow as a sequence of inter-dependent
probability distributions. Thought flows thereby can offer explanatory value by relating a model
decision to a sequence of preceding, intermediate decisions, that open a novel perspective on
the model’s prediction behavior. To implement the concept of thought flow, we propose a
simple correction module which can be used on top of any model that provides output logits
of one or multiple distributions. In particular, it is inspired by the three moments of Hegel’s
dialectics which it relates to forward and backward passes of the model and is trained to judge
whether the predicted class distribution corresponds to a correct prediction.

We apply our method to QA and conduct experiments on the HotpotQA dataset (Yang et al.,
2018). We demonstrate our method’s ability to self-correct flawed answer span predictions and
identify qualitative patterns of self-correction, such as span reductions/extensions. Figure 3.4
shows a real example of a thought flow that corrects a prediction (y(0)), that would be the output
of a standard model, to a new prediction (y(2)) within two steps. Concretely, two gradient
updates using our method result in a shrinkage of the answer span followed by a cross-sentence
answer jump. We find that our method can achieve performance improvements up to 9.6%
F1-score (absolute) on HotpotQA.

Finally, we assess the impact of thought-flow predictions on human users within a crowd-
sourced study. We find that thought-flow predictions are perceived as significantly more correct,
understandable, helpful, natural, and intelligent than single-answer predictions and/or top-3
predictions and result in the overall best user performance without increasing completion times
or mental effort.

To sum up, this section presents our contributions on (i) a formalization of a thought flow
inspired by human thinking and Hegel’s dialectics, (ii) a novel correction module and a cor-
responding gradient-based update scheme to generate a thought flow in a state-of-the-art
transformer network, (iii) experiments on QA that demonstrate its strong correction capabilities
and reveal qualitative patterns of self-correction, (iv) a crowdsourced user study that demon-
strates that thought flows can improve perceived system performance as well as actual user
performance using the system.

3.2.1. Thought Flow Networks

In the following, we present background on Hegel’s dialectics (Section 3.2.1.1), formalize
thought flows based on it (Section 3.2.1.2), and present a concrete implementation for QA
(Section 3.2.1.3).
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Answer #1: 
If the citizen's heart was

heavier than a feather
they would face torment

in a lake of fire.

Answer #2: 
If the citizen's heart was

heavier than a feather
they would face torment

in a lake of fire.

Answer #3: 
In Ancient Egyptian religious tradition,

citizens would recite the 42 negative
confessions of Maat as their heart was
weighed against the feather of truth.

In ancient Egyptian religion, how would a citizen be weighed to decide if they were worthy
of damnation and would face the torment in the lake of fire?

Figure 3.4.: In contrast to the standard approach of mapping an input to an output in a single step
(grey box), we propose a method that allows models to sequentially “reconsider”
and update their predictions, i.e., the thought flow. In this (real) question answering
example, the orange box marks our thought flow extension, which corrects a flawed
answer in two steps.

3.2.1.1. Inspiration: Hegel’s Dialectics

To give models the opportunity to reflect and refine their predictions, we take inspiration
from Hegel’s dialectics. Dialectics, in general, describes an argumentative method involving
opposing sides (Maybee, 2020). What distinguishes Hegel’s dialectics from other dialectics
is that in his dialectics, the opposing sides are views or definitions while, e.g., in Platon’s
dialectics the opposing sides are people (Maybee, 2020). Besides its philosophical relevance,
Hegel’s dialectics has been related to various fields before, such as cognitive sciences (Riegel,
1973), neuroscience (Boonstra and Slagter, 2019), or optimization (Kadioglu and Sellmann,
2009).

In the following, we will briefly introduce the three moments of Hegel’s dialectics and
distinguish them from the thesis-antithesis-synthesis triad before we use them to derive our
thought flow concept in the following section.

Three Moments. Hegel’s dialectics distinguishes three moments: (i) the moment of un-

derstanding, (ii) the dialectical moment, and (iii) the speculative moment. The moment of
understanding refers to the initial, “seemingly stable” view. In the second moment, this
supposed stability is lost due to the view’s one-sidedness or restrictedness and the initial de-
termination sublates itself into its own negation. The speculative moment unifies the first two
determinations by negating the contradiction (Maybee, 2020).
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Thesis-Antithesis-Synthesis Triads. The three moments are often compared to a thesis-
antithesis-synthesis triad, which was popularized by Heinrich Moritz Chalybäus, but cannot

necessarily be equated to it as argued by, e.g., Mueller (1958). While the thesis-antithesis-
synthesis triad can suggest the notion of a “one pass” process, the dialectical process in Hegel’s
dialectic does not have to end after a single iteration but can go through several iterations
(Maybee, 2020).6 The possibility for iteration is an essential property of our thought flow.

3.2.1.2. Formalization of Thought Flow Concept

We now translate the abstract description of these three moments into a simplified formalized
setting that can be implemented in any differentiable model that uses a vector-valued repre-
sentation of the input (such as an embedding) and outputs (tuples of) logits. In particular, we
embed Hegel’s dialectics in a framework of obtaining an initial “thought” vector and iteratively
updating it in the three “moments”. Note that our formalization is not to be understood as an
accurate reflection of Hegel’s dialectics. Instead, Hegel’s dialectics serves as a useful inspiration
to enable the development of a novel machine learning method.

Thought. We model a thought with ẑ ∈ Z, the logits corresponding to a model’s prediction
and Z ⊆ Rc being the logit space.7 This ẑ serves as a representation of the model’s “decision
state” between c classes and captures information including the most probable output as well
as possible alternatives and uncertainty.

Moment of Understanding. The first moment relates to an initial, seemingly stable view.
We model this with the initial value of ẑ(0), obtained from applying the prediction function
fpred : Φ→ Z to the model to the encoded input ϕ(x) with an encoding function ϕ : R → Φ

and the encoding space Φ ⊆ Re (see Figure 3.5a).

Dialectical Moment. In the second moment, the stability breaks down due to the view’s one-
sidedness or restrictedness. To model this, we first introduce a new function fcorr : Z × Φ→ R
that differentiably maps ẑ(0) to a correctness score s ∈ R that is an estimate of the quality of
the model prediction corresponding to ẑ(0) conditioned on ϕ(x). Intuitively, fcorr(ẑ

(0), ϕ(x))

scores how good the current decision state ẑ(0) is given the model input, which is represented
using ϕ(x). Next, we formalize the dialectical moment with the gradient of the correctness

6A particular example of such an iterative process within Hegel’s work can be found in the dialectical development
of Hegel’s logic regarding the concepts of “Abstract Purpose” and “Realized Purpose” (Maybee, 2020).

7We choose ẑ over ŷ because we can modify logits in energy space without normalization.
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(a) First label and correctness prediction
(→ moment of understanding).

(b) Gradient calculation w.r.t. the label logits
(→ dialectical moment).

(c) Update logits and correctness score
(→ speculative moment).

Figure 3.5.: The steps of the prediction update scheme and their relation to the three moments
of Hegel’s Dialectics. The depicted example corresponds to the first answer change
from Figure 3.4.

score with respect to ẑ(0), i.e. ∇T
ẑ(0)

s (see Figure 3.5b). Thus, we ask “How does the thought
ẑ(0) have to change in order to be more correct?” This gradient represents the view’s instability.
As it creates a tension away from the current ẑ(0) towards a new one, it destroys its stability
and thus negates the initial view.

Speculative Moment. The third moment unites the initial view with the negation from
the dialectical moment. We formalize this by modifying ẑ(0) with a step into the gradient’s
direction that yields

ẑ(1) := ẑ(0) + α(0) · ∇T
ẑ(0)s (3.3)

where α(0) is a, potentially dynamic, step width and ẑ(1) again constitutes the subsequent first
moment of the next iteration (see Figure 3.5c).

Iteration. Iterative application of the dialectical and the speculative moment yields a se-
quence of logits

(
ẑ(k)

)N
k=0

and corresponding predictions
(
ŷ(k)

)N
k=0

.

In the following, we detail this abstract formalization for the example of QA.
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3.2.1.3. Implementation in Transformers for Question Answering

Figure 3.5 visualizes our formalization for the question answering example introduced in
Figure 3.4. We now discuss QA-related implementation details.

Choosing Parameters and Functions. To apply our abstract thought flow method to
a real model we have to (a) determine how to structure the model prediction logit vector ẑ,
(b) choose an input representation ϕ(x) (that is passed to fpred as well as fcorr), (c) choose
a parametrization of the correctness score prediction function fcorr and (d) define what the
correctness score s measures. In the following, we describe how these aspects can be realized
in a transformer-based QA model.8

Composing ẑ: In extractive QA, a typical approach to model answer span extraction from a
context of L tokens is to use two probability distributions: (i) ŷstart ∈ [0, 1]L that assigns a
probability of being the start of the answer to each token in the context and (ii) a respective end
token distribution ŷend ∈ [0, 1]L.9 To match our previously defined formalization, we define

ẑ(i) :=
[
ẑ
(i)
start ẑ

(i)
end

]T
which is linked to the respective probabilities via the softmax function σ:

ŷ(i) : =
[
ŷ
(i)
start ŷ

(i)
end

]T

=
[
σ(ẑ

(i)
start) σ(ẑ

(i)
end)

]T
.

Input Representation ϕ(x): In contrast to transformer-based classification models that conven-
tionally rely on the embedding of the [CLS] token, typical transformer-based QA models apply
a linear function on top of each token’s embedding that maps the embedding to a start and an
end logit. We follow this convention and define

ϕ(x) := [e1, e2, ..., eL] ∈ Rd×L (3.4)

i.e., as the sequence of L contextualized embeddings with embedding dimension d.

Choosing fcorr: To represent the input within fcorr, we need a representation of ϕ(x) that
focuses on the relevant parts of the (potentially very long) input that were relevant to the start
and end logit predictions. We thus choose a weighted average over all token embeddings to
retain as much as possible of the important information from the input while heavily reducing

8For a background on the QA task and transformer models, we refer to our brief introduction in Section 2.1.
9See Section 2.1.2.3 for a detailed description and step-by-step example of span extraction modeling.
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its available representation dimensionality to a single vector. As weights, we choose the
element-wise product of the predicted start and end probabilities. We thus define a modified
input encoding ϕ̃(i)(x) ∈ Rd where d denotes the dimension of the embeddings (e.g., 768 for
BERT-base (Devlin et al., 2019)) as follows:

w̃(i) :=
(
ŷ
(i)
start ⊙ ŷ

(i)
end + ϵ · 1

)
∈ RL (3.5)

ϕ̃(x)(i) := ϕ(x) · w̃(i)

Σjw̃
(i)
j

∈ Rd (3.6)

where ϵ is a small constant that ensures that we do not divide by zero, ei is the embedding of
the i-th token, ⊙ is element-wise multiplication, and L is the maximum number of tokens in the
context. This modified input representation ϕ̃(x)(i) can be regarded to be a dynamic perspective
onto ϕ(x) that highlights these parts of ϕ(x) that are most important to the model’s answer
prediction. The intuition behind this is that the correction module should have access to all
information about the context that the prediction model focused on. Based on initial empirical
findings, we choose to use a two-layer MLP with SELU activation (Klambauer et al., 2017) to
map the concatenated vector[

dropout(ϕ̃(i)) ẑ
(i)
start ẑ

(i)
end

]T
∈ Rd+2·L (3.7)

to an estimated correctness score s. Note that fcorr does not receive the decoded answer text but
uses the start and end logits directly to provide differentiability.

Correctness Score s: Following standard QA evaluation metrics, we use the F1-score of the
predicted answer as the correctness score that fcorr is trained to predict.

Training. To train fcorr, we freeze the parameters of fpred. Then, we pass the training instances
through the whole model (including ϕ, fpred, and fcorr) as shown in Figure 3.5a to obtain the
target of the predicted correctness score s (i.e., fcorr predicts an F1-score without access to the
ground-truth answer span). We determine the ground-truth correctness score by calculating the
F1-score between the ground truth answer and the answer prediction from fpred. We define the
correctness estimate prediction loss as the mean squared error between the calculated score, and
the predicted s and train fcorr to minimize it. Overall, we thus train fcorr to score how correct a
model prediction (represented by the start and end logits) is given a model input (represented
by the condensed input encoding ϕ̃(x)) and use the model’s predictions on the training set to
generate ground truth correctness scores (using F1-score).
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Inference. At inference time, we encode a new input and predict (i) the answer start and
end logits using fpred and (ii) an estimated F1-score s of the predicted answer span using the
correction module fcorr as shown in Figure 3.5a. Instead of directly using the initial logits
as the model’s prediction — as would be done in a standard model — we iteratively update
the logits w.r.t. the estimated correctness score’s gradient following our formalization from
Section 3.2.1.2 as shown in Figures 3.5b and 3.5c.

Update Rule: As described in Section 3.2.1.2, we aim at modifying ẑ(i) such that the correction
module assigns an increased correctness (i.e., F1-score in this application to QA). To apply
Equation (3.3), we have to define how the step size α is chosen in our QA application. We
choose a time-independent α such that a predefined probability mass δ is expected to move.
To this end, we first take a probing step of length one, calculate the distance as the L1 norm
between the initial distribution and the probe distribution and choose the step width α ∈ R+

such that it scales the linearized distance to the hyperparameter δ using

α :=

[
δ

||σ(ẑ(i))− σ
(
ẑ(i) +∇T

ẑ(i)
s
)
||
1

+ ϵ

]
(3.8)

with the softmax function σ(·) and a small constant ϵ ∈ R+ needed for numerical stability.

Monte Carlo Dropout Stabilization: The gradient∇ẑ(i)s is deterministic but can — as we find
in preliminary experiments — be sensitive to small changes in the input representation ϕ(x).
We, therefore, stabilize our correction gradient estimation by sampling and averaging gradients
instead. For this, we use the dropped-out input encoding from Equation (3.7) and sample five
gradients for every step using MCDrop (Gal and Ghahramani, 2016).

3.2.2. Question Answering Experiments

3.2.2.1. Data, Model, and Training

Dataset. We choose the HotpotQA dataset (distractor setting) (Yang et al., 2018) to eval-
uate our models as it contains complex questions that require multi-hop reasoning over two
Wikipedia articles. In the distractor setting, the model is “distracted” by eight irrelevant articles
that are passed to the model in addition to the two relevant articles. In addition to yes/no/answer
span annotations, HotpotQA also provides explanation annotations in the form of binary rele-
vance labels over the paragraphs of the relevant articles which we do not use when training our
models. As the public test set is secret, we use the official validation set as test set and sample
a custom validation set of size 10k from the training set leaving 80,564 training instances.
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Base model. We use a Longformer-large (Beltagy et al., 2020) model10 with a linear layer
on top that maps token embeddings to start and end logits as our underlying QA model. The
model reaches 63.5% F1-score (SD=0.6) on the HotpotQA validation set averaged over three
random seeds and can handle input lengths up to 4096 tokens which enables us to feed in
the entire context as a single instance without truncation. The model’s input is a single token
sequence that contains the question followed by the answer context (i.e., the ten concatenated
Wikipedia articles). The model’s output are two distributions over the input tokens (i.e., two
4096-dimensional distributions), one for the answer start position and one for the answer end
position. We prepend a “yes” and a “no” token to the context, which offers the advantage of
modeling these answer options within the same distributions as the text span answers. In total,
this model has 435M parameters compared to the additional 331k parameters our multilayer
perceptron (MLP) implementation of fcorr adds.

Training Details. We first train the base models for five epochs on a single V100 GPU
using a learning rate of 10−5, an effective batch size of 64, the ADAM (Kingma and Ba, 2015)
optimizer with decoupled weight decay (Loshchilov and Hutter, 2019), early stopping and a CE
loss on the start/end logits. We subsequently train the correction modules using the same setting
but the MSE loss function for F1-score prediction training. Training models took approximately
three days each. In the following, we report all results as averages over three random seeds
including standard deviations.

3.2.2.2. Performance Improvements

Performance Over Steps. Figure 3.6a shows how F1-scores per gradient scaling target δ
evolve over 100 steps. We observe that small δ values enable small F1-score improvements.
While δ = 0.1 consistently improves F1-scores, all other δ values eventually deteriorate F1-
scores. The higher the δ value, the quicker the F1-score decreases. We conclude that (i) very
small δ values are not sufficient to reach notable performance gains and that (ii) larger δ can
initially improve performance but then “overshoot” with their corrections. We hypothesize that
a remedy to this trade-off is to use larger δ values but stop the flows at the right time.

Stopping Oracle. To test this hypothesis, we introduce an oracle-stopping function that
stops the thought flow where it achieves its best F1-score performance. Figure 3.6b shows
that, with this oracle function, thought flows can reach performance improvements up to 9.6%
(absolute) F1-score (SD=0.61).
10https://huggingface.co/allenai/longformer-large-4096
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(a) Non-oracle-stopped flows.
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(b) Oracle-stopped flows.
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(c) Oracle-stopped flows per decision change.

Figure 3.6.: Thought flows with different gradient scaling targets δ averaged over three seeds of
a QA model. Higher values for δ correspond to more aggressive decision changes.
Without a stopping oracle that stops when the thought flow does no longer improve
an answer (top left), only δ = 0.1 provides consistently stable, but very small
F1-score improvements. With an oracle (top right), higher values for δ reach
higher and faster F1-score improvements up to >9%. Nearly all performance gains
are achieved by the first decision change (bottom). y axes use a symlog scale.
Improvements are reported as absolute F1-scores (not relative).
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Figure 3.6c shows that almost all performance improvements are due to the first decision
change within the thought flows and that answer spans constantly improve and do not randomly
shift across the context. This observation shows that single thought flow changes are highly
effective and can reach substantial corrections fast.

3.2.2.3. Thought Flow Patterns

In a qualitative evaluation, we identify various thought flow patterns. We randomly sample 150
instances from the subset of the official validation split for which the thought flow changed
the initial answer prediction. We identify six (non-exclusive) correction patterns and show
selected examples in Table 3.5. In addition, Table 3.6 shows thought flow examples using three
correction steps.

Cross-sentence. With 52.7%, this is the most frequent type of correction. The thought
flow shifts the predicted answer from one sentence to another.

Span Reduction. Thought flows can shorten the predicted answer span to correct it.

Span Extension. Similarly, thought flows can enlarge a predicted answer span to correct it.

In-Sentence. On top of in-sentence span reduction/extension, the thought flow can also
jump between non-overlapping spans within a sentence.

Entity Refinement. In this correction pattern, the thought flow keeps predicting the same
entity but jumps to an alternative mention of the entity.

Logic Hops. The thought flow performs a step-wise reasoning that first resolves the first
step of HotpotQA’s two-step reasoning structure before jumping to the second step, i.e., the
correct answer.

Combinations. We observe various combinations of the aforementioned patterns. A model
can, for instance, jump between sentences, refine entities and reduce the answer span.

Sequential Corrections. Corrections can also occur sequentially as shown in the examples
in Table 3.6. While the example in the upper part of Table 3.6 demonstrates a combination of a
cross-sentence correction followed by a span reduction correction, the example in the lower part
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PatternFrequ.Example

cr
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en
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52.7%

Question: Who is older Danny Green or James Worthy?
(1) Daniel Richard "Danny" Green, Jr. (born June 22, 1987) is an American professional basketball
player for the San Antonio Spurs of the National Basketball Association (NBA).
(2) James Ager Worthy (born February 27, 1961) is an American professional basketball coach and
former player, commentator, television host, and analyst.

sp
an

re
du

ct
io

n

23.3%

Question: What philosophy related to creationism is Paul Nelson noted for?
(1) Paul A. Nelson (born 1958) is an American philosopher of science noted for his advocacy of
young earth creationism and intelligent design

(2) Paul A. Nelson (born 1958) is an American philosopher of science noted for his advocacy of young
earth creationism and intelligent design

sp
an

ex
te

ns
io

n

21.3%

Question: Ronald Reagan and George H. W. Bush both held which position in office?
(1) The presidency of Ronald Reagan began on January 20, 1981, when Ronald Reagan was inaugurated
as President of the United States, and ended on January 20, 1989.
(2) The presidency of Ronald Reagan began on January 20, 1981, when Ronald Reagan was inaugurated
as President of the United States , and ended on January 20, 1989.

in
-s

en
te

nc
e

7.3%

Question: When was the stadium that held the 2015 Magyar Kupa demolished?
(1) The stadium was closed in 2016 and demolished in 2017 to give place to the new Ferenc Puskas
Stadium.
(2) The stadium was closed in 2016 and demolished in 2017 to give place to the new Ferenc Puskas
Stadium.

en
tit

y
re

f.

8%

Question: Which host of Sunday Night Safran has the hebrew first name Yehoshua?
(1) John Michael Safran (Hebrew: "Yehoshua Safran" ; born 13 August 1972) is an Australian radio
personality, satirist, documentary maker and author, known for combining humour with religious,
political and ethnic issues.
(2) It was hosted by John Safran and Catholic priest, Bob Maguire.

lo
gi

c
ho

ps

4%

Question: Is the Pakistan fast bowler who joined the Kent County Cricket Club in June, 2011 a left-hand
or right-hand batsmans?
(1) Wahab Riaz (Punjabi, Urdu: ; born 28 June 1985) is a Pakistani cricketer.
(2) He is a left-arm fast bowler and a right-hand batsman.

co
m

bi
ne

d

9.3%
Question: Who was born in 1922 and published a book in 1985 by Delacorte Press?
(1) Kurt Vonnegut Jr. (November 11, 1922; April 11, 2007) was an American writer.
(2) Galapagos is the eleventh novel written by American author Kurt Vonnegut .

Table 3.5.: Correction patterns identified in 150 randomly sampled thought flows using δ = 1.
The correct answer is marked bold, the predicted answer per flow step is marked
in orange. For each example, the wrong (1) and the corrected (2) prediction steps
are shown.
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Examples

Question: How many times did the man who coached the 1986-87 UNLV Runnin’ Rebels fail to win 20 games in a
season?
(1) He spent the majority of his career coaching with the UNLV Runnin’ Rebels, leading them four times to the
Final Four of the NCAA Men’s Division I Basketball Tournament, winning the national championship in 1990.
(2) Overall, he won over 700 games in his career, and only twice failed to win 20 games in a season.
(3) Overall, he won over 700 games in his career, and only twice failed to win 20 games in a season.

Question: Why did the CEO of the football team based in Denver, Colorado step down in 2014?
(1) He served as the Broncos CEO from his purchase of the club in 1984 until July 2014, when he stepped down as
Broncos’ CEO due to the onset and progression of Alzheimer’s disease .
(2) He served [...], when he stepped down as Broncos’ CEO due to the onset and progression
of Alzheimer’s disease .
(3) He served [...], when he stepped down as Broncos’ CEO due to the onset and progression of Alzheimer’s
disease .

Table 3.6.: Multi-step correction examples (δ = 1).

illustrates how a span extension correction can iteratively correct a prediction. We additionally
observe flow patterns with a very high number of decision changes. These typically correspond
to two- or three-cycles between answer spans or exhibit a seemingly chaotic behavior.

3.2.3. Human Evaluation

While the previous experiments showed that our thought flow implementation can enable
complex self-correction and can reach promising performance gains, we now investigate how
the respective thought flow predictions affect human users in an AI-assisted QA task.

3.2.3.1. Experiment Design

We choose a within-subject design in which each participant is exposed to three variations of a
QA system.11

Conditions. We aim at assessing the effect of the thought flow concept on users and present
the outputs of the oracle-stopped thought flow in one condition (TF) and compare it to two
baseline conditions. As baselines, we use top-1 predictions (SINGLE) (to compare against
standard models) and top-3 predictions (TOP-3) (to compare to an alternative approach to show
several predictions). For all conditions, we present the predicted answer(s) along with the
sentence in which they appear in the context.

11We refer to our introduction to user studies and experiment designs in Section 2.3.
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Dependent Variables. We study the effect of the condition (SINGLE, TF and TOP-3)
on a set of dependent variables. We include variables on a per-question level (after each
question) and on a per-system level (after all questions of one condition). The per-question
variables include: (i) human answer correctness, (ii) perceived model correctness, (iii) perceived
understanding, (iv) perceived helpfulness, and (v) completion time. The per-system variables
include: (vi) usability using the UMUX questionnaire (Finstad, 2010, 2013), (vii) mental effort
using the Paas scale (Paas, 1992), (viii) anthropomorphism using the respective subscale of
the Godspeed questionnaire (Bartneck et al., 2009)12, (ix) perceived intelligence using the
subscale from the same questionnaire, (x) average completion time. We provide a full list of all
questionnaires in Appendix A.2.

Apparatus. We sample 100 instances from the HotpotQA validation instances for which
a thought flow using δ = 1 causes at least one prediction change.13 From these, we sample
30 instances per participant and randomly assign the instances to three bins of ten questions
(one bin per condition).14 We balance the six possible condition orders across participants and
include three attention checks per participant. Figure 3.7 shows our user study interface for the
TF condition. We provide screenshots of all conditions’ interfaces in Appendix A.2.

3.2.3.2. Quantitative Results

We use MTurk to recruit US crowdworkers with >90% approval rate and the MTurk Masters
qualification and collect responses from 55 workers.15

Statistical Models. We evaluate the collected responses using appropriate statistical tests.

Per-System Ratings: We analyze the per-system ratings using Friedman tests to account for the
paired responses due to the within-subject design.16 We use Holm-corrected Conover post hoc
tests to identify significant pairwise differences.

Per-Item Ratings: Note that the within-subject design of our study possibly introduces inter-
dependencies within ratings that we have to account for using an appropriate statistical model
(see Section 2.4.2 for a deeper discussion). Additionally, our dependent variables are measured
on different levels, e.g., completion time is measured on a ratio scale while human answer

12We drop the robotics-specific item regarding “moving rigidly/elegantly” as it is not applicable to QA.
13If there is no prediction change, TF is identical to SINGLE.
14We statistically account for random effects of individual questions.
15We filter out two participants that did not pass the attention checks and collect two additional responses.
16Although aggregated Likert item scores are commonly considered interval responses, we use a Friedman test

that only requires ordinal responses and is more conservative than its parametric counterpart RM-ANOVA.
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Figure 3.7.: User study interface showing the TF condition (ours).
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Condition Perceived Quality User Performance

correct∗ understand∗ helpful∗ usability mental effort humanlike∗ intelligent∗ time∗ answer F1∗

SINGLE A A A A A A A A A
TOP-3 A B B A A AB B B B
TF B B B A A B B AB C

Table 3.7.: Statistical results of our human evaluation (N = 55). “∗” marks dependent variables
on which a significant effect of the system condition was observed (Friedman
tests and LRT tests for GLMMs/CLMMs). Pairwise differences between conditions
(Holm-adjusted Tukey/Conover tests) are reported as compact letter displays (CLDs)
(Piepho, 2004). E.g., the “humanlike” column shows that the post hoc test detected a
significant difference between SINGLE and TF but no significant difference between
any other pair. Similarly, the last column shows pairwise differences between
all conditions and the TF condition reaches significantly higher human answer
F1-scores than any other condition. Variables for which TF is among the best
performing models are marked cyan , variables for which it is found to be the sole
superior system are marked green .

correctness is measured on a nominal (dichotomous) scale.17 We, therefore, use GLMMs
and cumulative link mixed models cumulative link mixed models (CLMMs) to (i) account
for random effects of question and subject IDs, and (ii) account for the variables’ respective
measurement scales. We use GLMMs to analyze continuous and dichotomous responses
(Gamma/binomial link) and CLMMs to analyze ordinal ones. We use a LRT between the full
model and the model without the condition variable to identify main effects of the condition
variable and conduct Holm-corrected Tukey post hoc tests.

Results. We find significant differences for all dependent variables except usability and
mental effort. We summarize the results of our statistical analysis in Table 3.7 using compact
letter displays (CLDs) (Piepho, 2004). Table 3.8 provides the p values for main effects and each
pairwise comparison. In the following, we discuss our findings for each dependent variable for
which we found a significant main effect.

Perceived Answer Correctness: While there is no statistically significant difference between
showing users single answers or top-3 predictions, displaying thought flows leads to signifi-
cantly higher answer correctness ratings.

Understanding: Top-3 as well as thought flow predictions significantly increased the feeling of
understanding how the system came up with its answer compared to single predictions.

17We follow related work and treat Paas mental effort, UMUX, and Godspeed subscale responses as interval data
but analyze single-item perceived understanding and helpfulness on an ordinal level.
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Perceived Quality User Performance

correct∗ understand∗ helpful∗ usability mental effort humanlike∗ intelligent∗ time∗ answer F1∗

Main effect <0.0001 <0.0001 <0.0001 0.07968 0.6282 0.03575 0.00124 <0.0001 <0.0001

TF – SINGLE <0.0001 <0.0001 <0.0001 0.13116 1 0.03431 0.00586 0.15304 <0.0001
TF – TOP-3 0.00891 0.8867 0.9994 0.84254 1 0.30556 1 0.06207 <0.0001
TOP-3 – SINGLE 0.51897 <0.0001 <0.0001 0.13653 1 0.25097 0.00586 0.00012 <0.0001

Table 3.8.: Detailed p values for all main effects and pairwise comparisons shown in Table 3.7.
Significant p values are marked bold. The cell colors follow the color coding of
Table 3.7.

Helpfulness: Similarly, top-3 and the thought flow predictions significantly improve perceived
system helpfulness compared to single predictions.

Anthropomorphism: While we observe no significant difference in anthropomorphism ratings
between single and top-3 predictions, the thought flow predictions are perceived as significantly
more human-like/natural than the single answers.

Perceived Intelligence: Both, the top-3 and the thought flow predictions, lead to a significantly
increased perceived system intelligence.

Completion Time: We observe that the top-3 predictions significantly improve completion times
compared to single answers, but there is no significant increase for thought flows.

User Performance: While top-3 predictions already improve user performance in terms of
F1-score of the user’s answer, thought flow predictions enable even higher performances, that
are significantly higher compared to the single answer or top-3 conditions. We additionally
analyze user answers using exact match scores and find the same effects and model orders.

Overall, our results indicate that thought flows are better or equally good than single answer or

top-3 predictions regarding all evaluated dimensions. In particular for perceived answer
correctness, humanlikeness, and user performance, thought flows are significantly better
than both, the single answers and the top-3 predictions. While comparable (statistically
indistinguishable) improvements of understanding, helpfulness, naturalness, and intelligence
can also be achieved using top-3 predictions, these come at the cost of significantly increased
completion times compared to single answers. In contrast, we do not find a significant time
increase using thought flows.

3.2.4. Application to Image Classification

So far, we explored our thought flow method in the context of QA systems. As our method
only requires a model to provide a vector representation of the model input and a differentiably-
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linked model output, it can be applied to the vast majority of classification models within as
well as outside NLP. In the following, we demonstrate an application to image classification.

3.2.4.1. Vision Transformers on CIFAR

We use a pre-trained vision transformer model (Dosovitskiy et al., 2020) as base model and
fine-tune the model on the CIFAR-10 and CIFAR-100 image classification datasets (Krizhevsky,
2009). We use the ViT-L-32 model variant pre-trained on the ILSVRC-2012 ImageNet and the
ImageNet-21k datasets (Deng et al., 2009) as described by Dosovitskiy et al. (2020).18

As for our QA implementation discussed in Section 3.2.1.3, we have to specify our choice of
logit vector ẑ, input representation ϕ(x), correctness score s, and correctness score prediction
function fcorr. While our QA span extraction model did yield two probability distributions
(one for the start position and one for the end position), we now only have to consider a single
distribution over image classes. Following our notation in Section 3.2.1.3, we thus define ẑ

to be the predicted class logits. As input representation ϕ(x), we use the vision transformer’s
embedding of the [CLS] token as — in contrast to our QA model which used each token’s
embeddings — our image classifier only relies on the [CLS] embedding when predicting the
image class. While we used F1-score as correctness score in our QA experiments, we use a
probability score s now, i.e., the correction module predicts a probability estimate that the label
prediction is correct.19 As for our QA implementation, we implement fcorr as a two-layer MLP
with scaled exponential linear unit (SELU) activation. We train the correction module using
CE loss. Overall, we train five models for each of the datasets using different random seeds.

3.2.4.2. Error Correction Capability

We observe that applying our thought flow can successfully correct erroneous predictions.
Figure 3.8 shows two examples. In Figure 3.8a, the wrong prediction worm is corrected to
snake after eight gradient steps. Similarly, Figure 3.8b shows a correction from forest to bridge.
While the probability mass is redistributed over the course of the thought flow, the class road

gains probability as well which can be interpreted as a sensible “change of mind” as the central
object could be a road on a bridge as well.

In terms of accuracy, our models yield consistent but small performance gains (<0.3% for
both datasets). However, as our baseline models reach 98.7% (SD=0.7) accuracy on CIFAR-10

18The models are available via https://github.com/google-research/vision_transformer.
19We also experimented with predicting the label module’s true class probability instead of correctness probability,

similar to Corbière et al. (2019), but did not observe improvements over our setting.
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init 1 4 7 10 13 16 19
steps

caterpillar

snake

worm 0.25

0.30

0.35

(a) The thought flow corrects the wrong initial prediction worm to the correct
prediction snake with eight correction steps.

init 1 4 7 10 13 16 19
steps

bridge

forest

road
0.30

0.35

(b) The wrong (but plausible) label forest is corrected to bridge. Notably, the
probability of road increases with the probability of bridge.

Figure 3.8.: Exemplary thought flows on CIFAR-100 instances. The black rectangle shows
the initial class probabilities from the base model (step 0), i.e., the unmodified
prediction, from a bird’s eye perspective. The corresponding predicted label is
marked in italics. On the right side of the black rectangle, the thought flow is
depicted. The white lines mark the maximum probability across classes for each
step. The ground truth label is marked with a gray box . For readability, we only
show classes that reach a probability of at least 1% within the thought flow.

and 92.5% (SD=0.7) accuracy on CIFAR-100, there is much less room for improvement than
in our QA experiments for which our base model reached 63.5% F1-score.

3.2.4.3. Thought Flow Patterns

Similar to the qualitative analysis of flow patterns in our QA experiments (see Section 3.2.2.3),
we now investigate the dynamics of the generated image classification thought flows. While
Figure 3.8 shows thought flows that gradually transition from one class to another and then
converge to that class, we observe diverse flow patterns which we display in Figures 3.9
and 3.10. Figure 3.9a shows an example for which our method does not change the (correct)
label prediction but increases the model’s confidence in its prediction. In Figure 3.9b, the
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(a)

(b)

(c)

(d)

(e)

Figure 3.9.: Exemplary thought flows from different models on CIFAR demonstrating the
diverse range of correction dynamics. A detailed description of the plots is provided
in Figure 3.8.
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(a)

(b)

(c)

(d)

(e)

Figure 3.10.: More exemplary thought flows from different models on CIFAR demonstrating
the diverse range of correction dynamics. A detailed description of the plots is
provided in Figure 3.8.
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thought flow does not change the predicted label but decreases the model’s confidence. Thus,
the flows in Figures 3.9a and 3.9b can be interpreted as a form of neural network calibration
(Guo et al., 2017). Figure 3.9d shows a smooth transition from one class to a gradual back-
and-forth between two classes. In Figure 3.9e one can see a transition from the class tulip to
the class sweet pepper via the class poppy. In Figure 3.10a, the thought flow quickly changes
from plain to cloud. While the predicted class remains cloud, the probability of plain decreases
continuously until the flow changes its prediction to sea which we interpret as overthinking

(Kaya et al., 2019). Figures 3.9c and 3.10b to 3.10d show different periodic behaviors including
the transition from a cycle to a fixed class in Figure 3.10b, smooth cycles in Figure 3.9c and
longer sawtooth-like cycles in Figure 3.10d. Importantly, Figures 3.10b and 3.10e are examples
for flows that explore an alternative class prediction but “return” to the initial class prediction
and thus show that our method can be used to explore alternatives without necessarily neglecting
a correct prediction.

Overall, we observe that our thought flow method is applicable beyond QA and can correct
model predictions of image classifiers. As for the QA thought flow patterns discussed in
Section 3.2.2.3, we observe numerous correction patterns that exhibit a surprisingly high
complexity and motivate a deeper study of the correction dynamics in future work.

3.2.5. Overall Discussion

In this section, we introduced a task-agnostic self-correction formalism that turns a model’s
single output prediction into an evolving sequence of predictions — the thought flow. We take
inspiration from Hegel’s dialectics and propose a correction module along with a gradient-
based update rule that sequentially updates a model’s output distributions in the direction of
an increasing self-estimate of correctness. We apply our method to QA models and conduct
extensive experiments including human evaluation. We find that thought flows (i) can increase
F1-scores up to 9.3%, (ii) exhibit complex self-correction patterns, and (iii) provide significant
improvements in human interaction and system perception including task performance and
perceived system correctness and naturalness. Finally, we apply our thought flow method to
image classifiers and (vi) demonstrate that it can correct model predictions using non-trivial
correction patterns across input modalities. A potential next step to further improve performance
is learning to stop.
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3.3. Related Work

In the following, we discuss (i) prior work related to external knowledge, explanation generation,
and (human) evaluation of (explainable) NLI systems (Section 3.3.1) and (ii) work on cognitive
modeling, confidence estimation, (sequential) prediction, and model correction (Section 3.3.2).

3.3.1. External Knowledge and Explainable NLI

External Knowledge for NLI. External knowledge was shown to help a variety of NLP
tasks (Shi et al., 2016; Seyler et al., 2018; Pan et al., 2019; Lin et al., 2019a). While early
sources for external knowledge are WordNet and NomBank (Jijkoun and de Rijke, 2005;
MacCartney et al., 2008), today, a large number of sources exists: From COMET (Bosselut
et al., 2019) over ConceptNet (Speer et al., 2017) to language models. Chen et al. (2018) show
that enriching an NLI system with external lexical-level semantic knowledge increases accuracy
scores on SNLI and enhances transfer to MultiNLI. Wang et al. (2019) show the potential of
knowledge from ConceptNet for NLI systems. Li et al. (2019) find that external knowledge
from pre-training helps NLI and suggest to combine it with external knowledge from human-
curated resources. Li and Sethy (2019) propose knowledge-enhanced attention modifications
for Transformers and decomposable methods and show that their methods improve model
robustness. Faldu et al. (2021) extend BERT by extracting entities from the input text and
adding their projected KG embeddings derived from ConceptNet and WordNet as sequential
input to a modified BERT layer. Bauer et al. (2021) present ERNIE-NLI, a modified ERNIE
Zhang et al. (2019) model using NLI-specific knowledge embeddings and find that it improves
performance over a non-adapted ERNIE model using general-domain TransE embeddings. We
propose various models to compare different possibilities of integrating external knowledge
and address the question of whether external knowledge also improves explanation generation.

Explainable NLI. The task of explainable NLI consists of (i) predicting the correct entail-
ment label and (ii) providing an explanation that allows the user to assess the model’s reasoning.
In general, such explanation can take various forms, such as weights and gradients over the
input (Simonyan et al., 2014; Ribeiro et al., 2016; Lundberg and Lee, 2017) and text spans
or snippets from the input or external text (Zaidan and Eisner, 2008; Lei et al., 2016; Yang
et al., 2018). Beyond that, there exist various resources and approaches designed to generate
textual explanations. Rajani et al. (2019) present a dataset that contains free-text explanations
for multiple-choice commonsense reasoning and Bhagavatula et al. (2020) provide a dataset for
abductive multiple-choice answering as well as abductive NLG. Camburu et al. (2018) provide
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the e-SNLI dataset, which adds free-text explanations as an additional layer on the SNLI dataset
(Bowman et al., 2015). As numerous models with and without external knowledge have been
developed on the SNLI dataset, we use its explainable extension e-SNLI to conduct our analy-
sis and train our models. Various models have been proposed on e-SNLI including systems
based on alignment (Swanson et al., 2020), label-specific explanation generators (Kumar and
Talukdar, 2020), and fine-tuned text-to-text models (Narang et al., 2020). In contrast to those,
our focus is not on proposing a new architecture or paradigm to develop a high-scoring system.
Much more, we seek to conduct a broad comparison across knowledge sources and isolate their
effect on automatic scores as well as human perception.

Evaluation and Human Ratings of Explainable NLI. Explainable NLI system perfor-
mance is typically scored using (i) accuracy with respect to annotated gold labels on a reference
dataset and (ii) BLEU scores (Papineni et al., 2002) between the generated explanations and
the ground truth explanations (Camburu et al., 2018; Kumar and Talukdar, 2020; Narang
et al., 2020). BLEU scores can only quantify explanation quality loosely (Narang et al., 2020).
Therefore, previous work evaluates explanation quality either by manual annotation (Camburu
et al., 2018; Kumar and Talukdar, 2020) or crowdsourcing (Narang et al., 2020). However,
previous human evaluations regarding explainable NLI are limited to assessing label and/or
explanation correctness. In contrast, we additionally evaluate commonsense inclusion as well
as grammatical correctness of explanations. As Clinciu et al. (2021) find automatic BLEURT
scores to have distinctly stronger correlations to human ratings of generated explanations than
BLEU, we investigate whether BLEURT is a viable replacement for a user study.

3.3.2. Thought Flow Networks

Cognitive Modeling and Systems. Regarding our thought flow methodology, the fields
of cognitive modeling and cognitive systems provide numerous models of human thinking
(Rupert, 2009; Busemeyer and Diederich, 2010; Levine, 2018; Lake et al., 2017). While work
in these fields often orients towards accurate descriptions of human cognition, our method
does not aim to provide a plausible description of cognitive process but, instead, applies a
philosophical concept to machine learning to improve system performance and user utility.

Confidence Estimation and Model Corrections. Estimating a model’s confidence and
the correctness of its predictions is addressed with various methods, including the training of
secondary models for predicting the main model’s uncertainty (Blatz et al., 2004; DeVries and
Taylor, 2018). Among those, ConfidNet is particularly related to our approach as it predicts
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the true-class probability of the main model (Corbière et al., 2019). In contrast, our correction
module receives the class probabilities of the main model as input and predicts a correctness
score. In contrast to methods aiming at estimating accurate confidence scores, we predict such
scores only as an auxiliary signal in order to generate a gradient that allows us to update the
model prediction. Regarding model correction, the arguably most established approach to learn
corrections of model predictions is gradient boosting (Friedman, 2001) including its popular
variant XGBoost (Chen and Guestrin, 2016). In contrast to those works, we do not use an
ensemble of weak learners but propose a lightweight correction module that is applicable on
top of any existing classification model. Further, in our method, the correction module receives
the main model’s predictions and is able to directly adapt them.

Sequences of Predictions. The idea of iteratively predicting and correcting has been
explored for a long time. Early work includes Mori et al. who present a non-neural iterative
correction method tailored to estimate elevation maps from aerial stereo imagery (Mori et al.,
1973). Katupitiya and Gock (2005) propose to iterate two neural networks to address the
problem of predicting inputs of a mechanical process given the outputs of the process. While
their method is specifically designed for the task of input prediction, our work presents a general-
purpose classification model that iterates class label predictions. Besides those task-specific
methods, there are models and inference methods that make use of an iterative prediction
process by design, such as Hopfield networks (Hopfield, 1982) and their modern variants (Barra
et al., 2018; Ramsauer et al., 2020), or Loopy Belief Propagation, Markov Chain Monte Carlo
or Gibbs sampling (Bishop, 2006; Koller and Friedman, 2009). While these techniques can be
linked to our work conceptually, they all require to train a new model. In contrast, our approach
can be applied to an existing neural model as well. Another related approach is chain-of-thought
prompting (Wei et al., 2022) in which a language model is prompted with demonstrations of
problem decomposition/reasoning in a few-shot manner and subsequently can be observed to
show similar behavior in its answer. While this method yields impressive model answers, it
predicts one answer that contains information on its deduction without changing or correcting
its answer. In contrast, our method is not targeted towards decomposition/reasoning but predicts
a sequence of answers with the goal of iteratively improving it.

Learning to Stop. A further line of work, including Graves (2016) and Banino et al. (2021),
trains RNNs to learn when to stop applying recurrent transformations within the model. While
their approaches require the model to contain recurrent components and to retrain the model,
our method only requires the model to yield output logits and leaves the base model unchanged.

85





4. Evaluating and Quantifying
Explainability

In this chapter, we discuss the limitations of current evaluation scores used to quantify expla-
nation quality for explainable QA systems and present two novel proxy scores (Section 4.1),
propose general characteristics of explanation quality (Section 4.2), demonstrate how current
evaluation practices violate them resulting in an alarming disconnect between automatic evalu-
ation and human evaluation (Section 4.3), and propose general guidelines and a novel ranking
approach to alleviate the challenges that explanation quality evaluation faces (Section 4.4).

4.1. Proxy Scores to Quantify Explanation Quality

In this section, we introduce how explainable QA systems are evaluated to date and why the
respective explanation evaluation is insufficient (Section 4.1.1), present two novel proxy scores
that quantify answer-explanation coupling (Section 4.1.2), and demonstrate that these scores
can reflect an explanation’s utility to users better than current scores do (Section 4.1.3.2).

4.1.1. Limitations of Current Evaluation Scores

The performance of explainable QA systems is quantified regarding two aspects: (i) the QA
performance and (ii) the explanation quality. For QA performance, typical QA proxy scores,
such as F1-score, exact match (EM), precision, or recall are used. These scores quantify
the word-level overlap between a predicted answer with a ground truth answer annotation.
For explanation quality, the same proxy scores have been applied on a sentence level (Yang
et al., 2018), i.e., the scores quantify the overlap of binary relevant/irrelevant decisions over
the sentences in a given context. The HotpotQA leaderboard aggregates the QA scores with
explanation scores and uses joint-F1 as the leaderboard ranking criterion. In the following, we
discuss why this choice can be problematic.
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* The Kalahari Desert is a 
  large semi-arid sandy savanna

in Southern Africa extending 
for 900000 km2 , covering  
much of Botswana, parts of

Namibia and regions of South
Africa.  

What is the area
of the desert that
Ghanzi is in the

middle of?
Ghanzi is a town in the middle  ...

Ghanzi's area is 117,910 km².

The Kalahari Desert is a large  ...

Other unrelated facts.
Other unrelated facts.

Other unrelated facts.

Other unrelated facts.

Other unrelated facts.
Other unrelated facts.

user system

answer

explanation

900000 km2

1. * Ghanzi is a town in the middle of
the Kalahari Desert the western part of
the Republic of Botswana in southern
Africa.
2. Ghanzi's area is 117,910 km².

because context

Figure 4.1.: Example prediction from the HotpotQA explainable QA dataset. The model
returns the correct answer (blue box) but its predicted explanation, i.e., selection of
supporting facts (green box), is only partially correct as it (a) reports an irrelevant
fact about the size of Ghanzi and (b) fails to report the relevant fact containing
the predicted answer. “∗” marks facts within the human-annotated ground truth
explanation. How can the resulting (lack of) explanation quantity be evaluated
meaningfully? Example data from Yang et al. (2018).

No Empirical Evidence. There is no empirical evidence that joint-F1 is related to user
performance or experience regarding explainable QA. While F1-score is a well-established
score across NLP, there is — to the best of our knowledge — no demonstration of a strong
relation between F1-scores and human-perceived quality in explainable NLP. In fact, as we
will demonstrate in Section 4.3.2, there only is a moderate correlation between joint-F1 and
various dimensions of human-perceived quality or utility.

Rewarding Poor Explanations. Figure 4.1 shows an example prediction that is rewarded
with a joint-F1 of 0.5 although its explanation provides no value to the user. The reward
stems from the overlap of the explanation with the ground truth but does not consider that the
predicted answer is not contained in any of the predicted relevant facts.

Punishing Good Explanations. Consider a model output in which the predicted answer
is wrong but the explanation perfectly explains this wrong answer, showing to the user why
the model has selected it. Standard F1-scores compare the model output to the ground truth
annotations and will, therefore, score both the answer and the explanation with an F1 of 0.
However, we argue that an explanation should be evaluated with a score higher than zero if it is
able to explain the reasoning process of the model to the user and, thus, lets the user identify
the failure of the model.
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4.1.2. Novel Scores: FARM and LOCA

In the following, we propose two new proxy scores to quantify answer-explanation coupling
within explainable QA systems. Our FARM and LOCA scores build upon and unify the scores
proposed in our prior work (Schuff, 2020). We review the relevant fine-grained scores and
describe how they lead to our final FARM and LOCA scores in the following.

4.1.2.1. Fact-Removal Score (FARM)

Ideally, the explanation of the model includes all facts that the model uses within its reasoning
chain but no additional facts beyond that. Note that even for a wrong model answer, this
assumption should hold so that the relevant facts provide explanations for the (wrongly)
predicted answer.

To quantify the degree of answer-explanation coupling, we propose to iteratively remove
parts (individual facts) from the explanation, re-evaluate the model using the reduced context,
and track how many of the model’s answers change. For a model with perfect coupling of
answer and explanation, the answer will change with the first fact being removed (assuming
no redundancy) but will not change when removing irrelevant facts not belonging to the
explanation. We remove facts in order of decreasing predicted relevance as more relevant facts
should influence the model’s reasoning process the strongest.

In the following, we denote an instance of the data set by e ∈ E with its corresponding
question eques and context econ. We use answer(·, ·) to denote the answer that a model predicts
for a given question and context. The functions reducerel(·, k) (reduceirr(·, k)) return a context
from which up to k facts the model predicts to be relevant (irrelevant) have been removed.1 We
re-evaluate the model on this reduced context and calculate the fraction of changed answers
crel(k) and cirr(k), respectively.

a(e) = answer(eques, econ) (4.1)

ârel,k(e) = answer(eques, reducerel(econ, k)) (4.2)

âirr,k(e) = answer(eques, reduceirr(econ, k)) (4.3)

crel(k) =
|{e ∈ E : a(e) ̸= ârel,k(e)}|

|E| (4.4)

cirr(k) =
|{e ∈ E : a(e) ̸= âirr,k(e)}|

|E| (4.5)

1If the number of facts predicted as (ir)relevant is less or equal to k, we remove all (ir)relevant facts.
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Finally, we condense crel(k) and cirr(k) into a single fact-removal score:

FARM(k) =
crel(k)

1 + cirr(k)
∈ [0, 1] (4.6)

FARM(k) ranges between zero and one and a higher score reflects a better explanation.

4.1.2.2. Location-of-Answer Score (LOCA)

A second important indicator for the degree of a model’s answer-explanation coupling is the
location of the answer span: As shown in Figure 4.1, the model can predict answers that are
located outside the facts it predicts to be relevant, i.e., outside the explanation. We argue that
this is confusing for users. Therefore, we consider the fractions of answer spans that are inside
the explanation of the model and the fraction of answer spans that are outside. For an ideal
model, all answer spans would be located inside the explanation. We use I and O to denote the
number of answers inside/outside of the set of facts predicted as relevant. A denotes the total
number of answers.2

Based on these counts, we propose the answer-location score that we define as

LOCA =
I
A

1 + O
A

=
I

A+O
∈ [0, 1]. (4.7)

LOCA ranges between zero and one, larger values indicate better answer-explanation coupling.

4.1.3. Comparison with Established Scores and Human Evaluation

4.1.3.1. Comparison with Established Scores

We compare our proposed proxy scores to the widely adopted proxy scores SP-EM, SP-F1,
SP-recall, SP-precision, and the respective joint answer-explanation scores used by Yang et al.
(2018). We evaluate all scores on three question answering models: the model proposed by Qi
et al. (2019) (QI-2019) and two models we proposed in prior work (Schuff, 2020). Concretely,
these two models are a “select and forget” model (S&F), that performs supporting fact selection
before predicting the answer on a reduced context, and a model that was regularized with an
answer-explanation coupling term during training (REG).

2In HOTPOTQA, answers can stem from article titles although titles are never used as relevant facts. Thus,
A > I +O is possible. Our score is still applicable in this case.
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Proxy score Model

QI-2019 S&F REG

es
ta

bl
is

he
d

SP-EM 39.81 42.16 25.98
SP-F1 79.34 80.07 75.60
SP-P 78.01 78.84 66.79
SP-R 85.26 85.45 93.26

Joint-EM 22.28 22.78 14.56
Joint-F1 52.51 50.71 49.66
Joint-P 53.33 51.40 45.64
Joint-R 57.92 55.61 62.09

ou
rs FARM(4) 66.20 75.54 73.32

LOCA 60.49 70.60 67.92

Table 4.1.: Comparison of three explainable QA models regarding established explainable QA
proxy scores (upper part) and our proposed scores (lower part). Bold numbers mark
highest (best) values. Scores are calculated on the distractor dev set of the HotpotQA
dataset. The box marks the main leaderboard score used to rank models in the
official HotpotQA leaderboard Yang et al. (2018). We observe that the established
proxy scores and our novel scores yield contradicting conclusions regarding what
the best model is. SP refers to supporting facts.
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(c) Completion times.

Figure 4.2.: Box plots showing the results of the model comparison from the user study we
conducted in prior work (Schuff, 2020). Boxes mark quartiles, whiskers mark 1.5
inter-quartile ranges, outliers are plotted separately. Horizontal solid/dashed lines
within boxes mark means and medians, respectively. GT refers to ground truth
answers and explanations. Plots are reproduced from prior work (Schuff, 2020).

Table 4.1 shows that both of our novel scores rank the S&F model in the first place. In
contrast, joint-F1, which is the main ranking criterion in the official HotpotQA leaderboard,
ranks the S&F model second and yields the highest score for the QI-2019 model, which
in turn is ranked clearly last following our scores. So far, we only can conclude that the
established scores and our novel scores yield contradicting conclusions. Without additional
information quality information about the four models, we cannot argue that either of the
established/novel scores captures some aspect of explanation quality better than the other. For
this, we additionally consider human quality ratings.

4.1.3.2. Comparison with Human Evaluation

Preceding User Study. We re-analyze the human evaluation we conducted in prior work
(Schuff, 2020). We previously collected ratings and interaction signals from 40 participants.
Each participant was exposed to one of the three models or the ground truth “model” in a
unifactorial between-subjects experiment design and was tasked to answer 25 questions using
the respective model’s answer and explanation predictions. We manually assessed whether
participant answers were correct and derived multiple dependent variables from the participants’
answers and interactions. Concretely, we collected completion times, several performance
variables indicating how well they judged the correctness of the model (fraction of correct
ratings, false positive ratio (FP), false negative ratio (FN), true positive ratio (TP), true negative
ratio (TN), precision (P), recall (R) and F1-scores), agreement (fraction of model predictions
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Human Eval. Established Scores Proposed Scores

Supporting Facts Joint FARM LOCA

EM F1 P R EM F1 P R FARM(1) FARM(4) LOCA

correct decision + - - +
overestimation - -
completion time - - - - +
human-FP - -
human-TP + - - +
human-FN + + + + -
human-TN + - - +
human-P + +
human-R + - - +
human-F1 + - - +

Table 4.2.: The table shows whether sorting the conditions by a human score (rows) and an
automatized score (columns) result in the same order (+), the inverse order (-), or a
different order (blank cell). Green (■) cells with boxes mark desirable relations,
red (■) cells without boxes mark undesirable relations.

that the users rate as correct (Bussone et al., 2015)), and overestimation (difference between
agreement and true model accuracy (Nourani et al., 2019)). Furthermore, we collected the
following variables in self-reports with five-point Likert scales: certainty of the participants
(Greis et al., 2017a), completeness and helpfulness of the explanations (Nourani et al., 2019),
trust of the participants in the model (Bussone et al., 2015), and satisfaction (Kulesza et al.,
2012; Greis et al., 2017b).

Relevant Results. Figure 4.2 displays the resulting fractions of correct user ratings, erro-
neous answer acceptance, and mean completion times per model. Notably, we observed that
compared to the QI-2019 model, the S&F model (a) increased the fraction of correct user
answers by 9.17%, (b) decreased (i.e., improved) the fraction of erroneous answer acceptance
(FPs) by 9.25%, and (c) lowers the completion time by 4.2 seconds per questions on average.3

These results indicate that the model of choice following our scores (i.e., the S&F model)
would have been a better choice than the model choice following the joint-F1-score (i.e., the
QI-2019 model).

Relation Between Proxy Scores and Human Ratings. While the previous observa-
tions only consider the relation between the QI-2019 model and the S&F model, we now

3We refer to our discussion in Schuff (2020) for a detailed analysis of the additional dependent variables.
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Figure 4.3.: Model score comparisons between human-false positives (FPs) and model scores.
All scores are normalized to [0, 1]. We show (1−human-FP) as fewer FPs are
better. The left figure shows that F1 poorly correlates to human performance. The
right figure shows a much stronger correlation for our proposed scores.

extend the analysis to all four models (including the ground truth predictions). For this, we
investigate the correlation of human ratings with model evaluation scores based on the model
ranks they produce. Concretely, we rank the models by (i) human measures obtained in the
user study and (ii) model evaluation scores. In Table 4.2, a cell is marked with a “+” if the
ranking with respect to the human measure and the model score is identical (e.g., the ranks
regarding human-FPs and answer-F1 are identical). If the ranks are exactly reversed, we mark
the cell with a “-”. All other cells are left empty. “+” and “-” both indicate a perfect rank-wise
correlation and do not imply that one is preferable over the other.

Next, we consider whether selecting a model based on the different model scores would
result in a desired change in human evaluation scores or not. This depends on whether a high
score (e.g., F1-score) or a low score (e.g., the fraction of answers outside the predicted relevant
facts) is aimed for. We indicate desired model selection with green boxed cells and undesired
model selection with red cells (e.g., choosing a model with a higher answer-F1 would result in
a model with more human-FPs, which is not desired).

All F1-scores show at least one undesirable rank relation. Notably, joint-F1 is among the least
aligned scores. In contrast, our scores have only desirable relations. In particular, FARM(4)
and LOCA lead to a model ranking that is inverse to the ranking by human-overestimation and
human-FPs. This is also confirmed in Figure 4.3, which shows how the human-FP ratio varies
in comparison to the three F1-scores (left plot: no correlation) and to our proposed scores (right
plot: correlated). We provide the respective plots for all dependent variables in Appendix A.3.
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4.1.4. Overall Discussion

Overall, we find that (i) our newly introduced FARM and LOCA scores contradict established
proxy scores, such as joint-F1 regarding model preference decisions, and (ii) our results indicate
that our proposed scores predict user behavior better than the established scores regarding, i.a.,
the correctness of AI-assisted user decisions and false user trust into model predictions. Our
findings highlight that developing new evaluation scores to capture explanation quality can be
equally or even more important than developing new systems to increase existing scores. We
investigate characteristics of explanation quality evaluation in Section 4.2 and extend our study
of LOCA, joint-F1, etc. in an in-depth analysis of HotpotQA leaderboard system submissions
to explore the challenges current evaluation practices face in Section 4.3.

4.2. Characteristics of Explanation Quality

The two proxy scores introduced in the previous section are motivated by task-specific properties
of explanation quality for the specific case of explainable (extractive) QA models. In this section,
we explore which general properties explanation quality has.

Criteria for high-quality explanations have mainly been discussed in social sciences so
far. Besides desirable explanation features, such as coherence (Thagard, 1989; Ranney and
Thagard, 1988; Read and Marcus-Newhall, 1993), soundness, or completeness (Kulesza et al.,
2013), literature has pointed out the importance of the explainees (Miller, 2019; Wang and Yin,
2021) and their goals (Vasilyeva et al., 2015). Based on these, we discuss characteristics of
explanation quality in NLP in this section. We assume the faithfulness of an explanation and
only focus on characteristics for its perceivable quality.4 In the following, we focus on two
characteristics: user-dependence (Section 4.2.1) and multidimensionality (Section 4.2.2).

4.2.1. Explanation Quality Is User-dependent

We argue that in AI, an explanation exists only in relation to a system that should be explained
(the explanandum) and the human that receives the explanation (the explainee). This statement
is in line with the social process function of an explanation described by Miller (2019) referring
to the conversational model of explanation of Hilton (1990). Hilton argues that an explanation
should be considered a conversation and emphasizes that “the verb to explain is a three-

4We consider explanation characteristics that can be judged without access to the underlying model. We refer to
Jacovi and Goldberg (2020) for a discussion of faithfulness evaluation and to Liao et al. (2022) for a distinction
between model-intrinsic and human-centered explanation properties.

95



4. Evaluating and Quantifying Explainability

place predicate: Someone explains something to someone” (Miller, 2019, p. 29). Given that
explanations are always targeted towards a specific user group, we argue that their quality
needs to be assessed accordingly. In the following, we detail how user goals, individual user
characteristics as well as general properties of human perception impact the definition of how
good an explanation is and why such a definition can never be universal.

Goals of Target Users. Vasilyeva et al. (2015) showed that users’ perception of explanation
quality depends on their goals. Similarly, Liao et al. (2022) found that users’ usage context
affects which explanation quality properties they consider to be important. While, for example,
an explanation in the form of a heatmap over a text (as shown in the first row of Table 2.2)
might be sufficient for an NLP developer or researcher who aims at analyzing and improving
the system, it might not fit the needs of an end-user who has no machine-learning background
but uses the system in practice. Although the explanation contains the same information, its
perceived quality might be considered lower by end-users compared to developers because, for
example, the mental effort to process the explanation could be higher for end-users that are
unfamiliar with such visualizations.

Individual Differences of Target Users. In addition to the users’ goals, their background
knowledge affects which type and extent of explanations are most useful for them (Preece et al.,
2018; Yu and Shi, 2018; Suresh et al., 2021). As a trivial but illustrative example, a perfect
explanation in Spanish is clearly useless to a monolingual English speaker, and an “explanation”
as it is provided by the coefficients of a linear model is useless to a user with dyscalculia.
Concretely, prior work showed that, i.a., (a) an increase in users’ education levels and technical
literacy corresponds to an increased algorithm understanding (Cheng et al., 2019), (b) users’
need for cognition (NFC) (i.e., their motivation to engage in effortful mental activities) impacts
how much they benefit from interventions that increase analytical engagement with explanations
(Buçinca et al., 2021), and (c) the effect of explanation on users strongly depends on the users’
domain knowledge (Wang and Yin, 2021).

Intersubjective Quality within User Groups. While the individual goals and character-
istics of each user make them perceive and use explanations in a unique way, certain groups of
“similar” explainees (e.g., Spanish native speakers reading a Spanish text) will be affected by
explanations similarly. We argue that explanation quality is an intersubjective construct. This
has two immediate implications. First, it implies that every evaluation of explanation quality
is limited to a specific group of explainees. However, it also implies that explanation quality
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can be objectively assessed within a suitable group of explainees. For example, an often-used
categorization in explainability is to divide users into three groups: developers, domain experts,
and lay users (Ribera and Lapedriza, 2019). Dividing users into such high-level groups can
already help to identify important differences regarding their explanation needs, however, a
more fine-grained categorization including, e.g., social and cognitive user properties — as
suggested by Jacovi et al. (2022) — could further improve evaluation quality. We will revisit
the influence of cognitive user properties in terms of a user’s NFC in Section 5.2.

Cognitive Biases and Social Attribution. Hilton’s conversational model of explanation
distinguishes two stages: (a) the diagnosis stage in which causal factors of an event/observation
are determined and (b) the explanation presentation stage in which this information is commu-
nicated to the explainee Hilton (1990) (we refer to Miller (2019) for a more detailed discussion
of Hilton’s work in the context of explainability). So even if the first stage is successful (i.e.,
the right “explanation information” has been identified), communicating the explanation infor-
mation can fail (e.g., by relying on an inappropriate visualization to visualize the information).
We empirically demonstrate that such problems in explanation communication can occur for
heatmap explanations over text in Section 5.1 and that the information that users understand
from these explanations is distorted by unrelated factors, such as word length. Similarly,
Gonzalez et al. (2021) show that belief bias (i.e., a particular cognitive bias) affects which
explanation method users prefer. More broadly, Jacovi et al. (2022) propose a framework of
social attribution by the human explainee that describes which information an explainee is
comprehending and thereby allows to identify failures of explainability methods.

4.2.2. Explanation Quality Has (Orthogonal) Dimensions

Explanation quality is commonly treated as a monolithic construct in which explanations can
be ranked along a unidimensional range of explanation “goodness”. We, in contrast, argue
that there are different dimensions of explanation quality which also can be orthogonal to each
other. Thus, explanations should be evaluated along multiple facets of explanation quality.

An example of two orthogonal quality dimensions are faithfulness and plausibility. Consider
an explanation that explains the decision process of a system A in a way that (a) faithfully
reflects the system decision process and (b) plausibly convinces a user of the correctness of the
prediction. We then replace the system with a new system B while keeping the explanation
constant. The explanation will still be plausible to the user (it did not change), however, if
system B has a different decision process, the explanation is not faithful anymore as it no longer
reflects the model’s inner workings. Consequently, the two explanation quality dimensions
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faithfulness and plausibility can be independent and cannot be captured with the same score. We
refer to Jacovi and Goldberg (2020) for a detailed comparison of faithfulness and plausibility.

Similarly, an explanation that is perceived to be helpful by explainees does not actually have
to be helpful for them. Buçinca et al. (2020) showed that between two decision support systems,
users preferred one system (in terms of rating it as more helpful and trusted), although their
actual performance was significantly better with the less-favored system. Also, their subjective
ratings were not predictive of their objective performance with the system. In their follow-up
work, Buçinca et al. (2021) found a trade-off between subjective system quality ratings and
effective human-AI performance for explainable AI systems. Related effects have been reported
by Scharrer et al. (2012) who compared the impact of showing easy versus difficult scientific
arguments to lay people and found that the easy arguments lead to participants being more
convinced and underestimating their own knowledge limitations. These findings suggest that
effective explanations have to combine or balance (a) perceived utility and (b) actual utility to
their users. While an explanation that only subjectively seems to provide a benefit clearly is not
desirable, an explanation that affects users to their own benefit but is disliked by them will not
be used in practice, as, e.g., Nadarzynski et al. (2019) found AI acceptability to be correlated
with, i.a., perceived utility, and trustworthiness. We explore the relation between perceived
system predictability and objective system behavior prediction capability as a concrete instance
of this objective-subjective relation in Section 5.2. Overall, effective explanation evaluation
thus has to account for numerous, partially orthogonal dimensions of explanation quality.

4.3. Shortcomings of Current Evaluations

In the following, we present common evaluation practices and assess to which extent they
conflict with the explanation quality characteristics presented in Section 4.2. Figure 4.4 provides
an overview of the main challenges discussed in this section. Before we present our arguments
on how current explainability quality evaluations fall short, we introduce our case study which
we will refer back to throughout the remainder of this chapter.

4.3.1. Case Study on the HotpotQA Leaderboard

To support the following discussion with empirical evidence, we conduct a crowdsourcing
study analyzing systems from 10 real models submitted to the official HotpotQA (Yang et al.,
2018) leaderboard that ranks explainable QA models.5

5We thank the HotpotQA maintainers for providing us with the predictions and the system submitters for giving
us their consent to include their model in our case study.
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Figure 4.4.: Overview of the main drawbacks of current evaluation practices: (i) Disconnect of
proxy scores and user perception, (ii) conflation of multiple dimensions into single
proxy scores, and (iii) single-score leaderboards.

4.3.1.1. Task, Models, and Automatic Evaluation

In the following, we present the leaderboard models we analyze and list proxy metrics that we
use to automatically quantify the models’ explanation capabilities.

Evaluated Models. We obtained consent from submitters of 24 real models to include
the system predictions in our analysis. From those 24 models, we choose ten models for our
user study: AMGN (rank 16) (anonymous submitter), FE2H on ALBERT (3) (Li et al., 2022),
HGN (Fang et al., 2020) (35), IRC (63) (Nishida et al., 2021), Longformer (25) (anonymous),
S2G-large (31) (anonymous), Text-CAN (47) (Usyd NLP), GRN (65) (anonymous), SAE (48)
(Tu et al., 2020), DecompRC (unranked6) (Min et al., 2019).7

Additionally, we derive five synthetic models using the ground truth annotations to include
extreme cases of the potential space of systems: (i) gold answers and gold facts (plain gold
annotations), (ii) gold answers and random facts (we sample the same number of facts as the
gold annotations, but do not sample from the articles in which the gold facts are located), (iii)
random answers and gold facts (we sample a random answer from the context while keeping
the number of words the same as in the gold answer), (iv) random answers and random facts

(both, answers and facts are sampled, as described before), (v) gold answers and all facts (gold
answers but the predicted facts are all facts from the context, i.e. from ten Wikipedia articles).

Proxy Scores. As discussed in Section 4.1, the HotpotQA leaderboard reports the metrics
EM, precision, recall, and F1 for three levels: (i) answer, (ii) supporting facts (i.e., the expla-

6DecompRC reports answer metrics only.
7Ranks from 24th of February 2023.
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Proxy score Description

le
ad

er
bo

ar
d

sc
or

es

answer-precision,
answer-recall, answer-F1,

answer-EM

Overlap metrics that compare the predicted an-
swer tokens and the ground truth answer tokens
using precision, recall, F1-score, and EM

SP-precision, SP-recall,
SP-F1, SP-EM

Overlap metrics that compare the set of pre-
dicted supporting facts and the set of ground
truth supporting facts using precision, recall,
F1-score, and EM on a sentence level

joint-precision,
joint-recall, joint-F1 ,

joint-EM

Joint versions of the answer and supporting
facts metrics based on instance-wise products
of EM, precision, and recall

ad
di

tio
na

ls
co

re
s

LocA score A score that measures how well the predicted
answer and explanation are coupled. It com-
pares the fraction of answer tokens inside an
explanation to the fraction of tokens outside an
explanation.

#facts Number of facts (i.e., sentences) within the pre-
dicted explanation

#words Number of words over all facts inside the pre-
dicted explanation

Table 4.3.: Proxy scores that we use to automatically evaluate the explainable question an-
swering systems. The upper part shows the scores that the HotpotQA leaderboard
evaluates. The lower part shows additional metrics that are (a) two simple surface
metrics related to the length of the predicted explanation and (b) one task-specific
explanation quality score. joint-F1 is used to rank models on the leaderboard.

nation), and (iii) on the answer and explanation jointly. Table 4.3 lists and describes all of
these proxy scores in the upper part of the table. The leaderboard ranks the systems according
to joint-F1 on a non-public test set (breaking ties by using other measures like joint-EM and
answer-F1).

We consider three additional scores shown in the lower part of Table 4.3. The LOCA score
we proposed in Section 4.1 is a task-specific score that measures to which extent predictions and
explanations are coupled and a higher LOCA score corresponds to a better explanation-answer
coupling. While our definition of the LOCA score in Section 4.1 measures how many predicted
answers are located in explanations by comparing offsets, we generalize this concept to general
string matching because we do not have access to the answer offsets of the leaderboard models.
As a positive side-effect, this makes the score applicable to every kind of model and not only to
extractive question answering models. Furthermore, we include two additional surface scores
that measure an explanation’s length in terms of (a) the number of facts it includes and (b)
the total number of words that these facts contain. Note that we do not include our proposed
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FARM score (see Section 4.1) as evaluating it requires to have direct access to the model to
track system prediction changes with modified prediction contexts. We provide all F1, LOCA
and explanation length values of the models for which we got permission to include them in
our analysis as well as our five synthetic models in Table A.3 in Appendix A.4.1.

4.3.1.2. Human Evaluation

To obtain a clearer perspective on (i) the relation between the described proxy scores and human
ratings and (ii) the model ranks regarding various human ratings, we conduct a human evalua-
tion. While our analysis described in Section 4.1 was limited to three models and the ground
truth predictions on the public validation set only, we now analyze test set predictions of the
ten real model submissions as well as the five synthetic models we discussed in Section 4.3.1.1.
We evaluate the models in a crowdsourced user study with 75 participants, collecting subjective
quality ratings of utility, consistency, usability, answer correctness, and mental effort as well as
objective completion time measures. In the following, we detail the conducted user study.

Experiment Design and Participants. We make use of a between-subject experiment
design, i.e., each participant is exposed to model predictions from exactly one model. The
participants are distributed to models such that each model receives ratings from five different
participants. We include two attention checks to filter out participants that are likely to not have
read the question or the explanations.

For each model, we collect ratings from five crowdworkers who each rate a sample of 25
questions drawn from a pool of 100 questions.8 For each participant, we present the individual
sample of 25 questions in a randomized order to avoid potential carry-over effects between
questions. We make use of this approach to (i) cover a large number of questions to better
reflect the dataset and at the same time (ii) restrict the user’s workload to evade fatigue effects.

We recruit a total of 75 crowdworkers from the US using MTurk. We require workers to
have a >90% approval rate and an MTurk Master qualification and ensure that each worker
participates no more than once in our experiments.

Collected Human Ratings. We collect the human ratings/scores listed in Table 4.4. We
collect per-instance participant ratings of perceived explanation utility, explanation consistency,
and answer correctness. In addition, we track the completion time, the participants take to finish

8To support our assumption that a pool of 100 questions is sufficiently representative, we simulate experiments
with various question subsets. We find that correlations stabilize for as few as 20 questions and report details
in Appendix A.4.2.
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Quality Dimension Description

in
st

an
ce

Explanation utility “The explanation helps me to decide if the answer is correct.”
Explanation
consistency

“The explanation helps me to understand how the model came
up with its answer” (similar to Nourani et al. (2019) and
Schuff et al. (2020))

Answer correctness “The answer is correct” (similar to Bussone et al. (2015), Cam-
buru et al. (2018), Schuff et al. (2020), Kumar and Talukdar
(2020), and Narang et al. (2020))

Completion time Time per instance (similar to Lim et al. (2009), Lage et al.
(2019), Cheng et al. (2019), and Schuff et al. (2020))

sy
st

em Usability UMUX system usability questionnaire (Finstad, 2010, 2013)
Mental effort Paas mental effort scale (Paas, 1992)

Table 4.4.: Human ratings/scores collected in our crowdsourcing study.

each question. Further, we collect per-system ratings within a post questionnaire at the end
of the experiment where we ask participants to rate usability using the UMUX scale (Finstad,
2010, 2013) and mental effort using the Paas scale (Paas, 1992).

Results. We discuss our results and, in particular, the relation between the proxy scores and
the collected human ratings in the context of the respective shortcomings in the evaluation of
explanation quality in the following section. We provide the detailed averaged ratings over all
15 models in Appendix A.4. Further details on the collected proxy scores over all real and five
synthetic models are provided in Table A.3 in Appendix A.4.1. Details on the exact human
ratings over all models included in our human evaluation are provided in Appendix A.4.

4.3.2. Disconnect Between Automatic and Human Evaluation

The underlying assumption of using proxy scores for evaluating explanation quality is that
an improvement in proxy scores implies an increase in user benefits. However, to the best
of our knowledge, there is no established view to which extent those scores actually reflect
the value of explanations to users (i.e., to which extent they are valid and measure what
they should measure). This practice conflicts with both, the user-dependence characteristic
(Section 4.2.1) and the multidimensionality characteristic (Section 4.2.2) of explanation quality.
In the following, we discuss different aspects of the relation between proxy scores and human
ratings. Concretely, we investigate (i) the pairwise relation between proxy scores and human
ratings, (ii) their overall relation in terms of their underlying factor structure, and (iii) the
dynamics of their relation over time.

102



4.3. Shortcomings of Current Evaluations

4.3.2.1. Low Correlations Between Proxy Scores and Human Ratings

If the assumption that higher values on a specific proxy score correspond to higher user benefits
holds true, this benefit should also reflect in one or multiple human subjective ratings or
objective performance markers.

One of the few studies that study the strength of the link between proxy scores and human
ratings in the context of explanations is conducted by Kayser et al. (2021). They analyze
the correlation between NLG metrics (i.a., BLEU, BERT-Score and BLEURT) and human
quality ratings to quantify free-text explanations for three visual QA datasets within a large
crowdsourcing study. They find that (over the three datasets), the highest Spearman correlation
across ten different proxy scores only reaches 0.29. Similarly, earlier work of Camburu et al.
(2018) finds that BLEU does not reliably reflect textual explanation quality for a NLI task
which is supported by our observation that even high performance differences regarding proxy
scores of explainable NLI models are not reflected in human ratings of explanation quality
we discussed in Section 3.1. Clinciu et al. (2021) study human ratings of explanation clarity
and informativeness in the context of natural language explanations of Bayesian networks.
Averaged over different scenarios, they find that, across eleven proxy scores, the highest
Spearman correlation still only reaches 0.39 while the correlation between the two human
ratings reaches a much higher value of 0.82.

Overall, to the best of our knowledge, all (of the few) available studies indicate that proxy

scores and human ratings correlate weakly.

Case Study. We provide an additional analysis for explainable QA and exceed previous
studies in the diversity of human rating dimensions. Additionally, our results are evaluated
using predictions of real leaderboard models instead of evaluating correlations on ground truth
datasets (Camburu et al., 2018; Kayser et al., 2021; Clinciu et al., 2021) and thus cover a
distribution of scores and ratings that better reflects the scores’ usage within leaderboards.

Figure 4.5 shows Kendall’s τ correlation coefficients between (a) the automatic scores
included in the leaderboard and (b) the human ratings we collected in our study. A heatmap vi-
sualization of all pairwise correlations including statistical significance markers and coefficients
can be found in Appendix A.4.

While we observe moderate correlations between, e.g., joint-F1 and explanation consistency,
the majority of correlations is under 0.5 and thus the previously described weak relation between
human ratings and proxy scores is supported by our case study.
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Figure 4.5.: Kendall’s τ correlation coefficients for the correlation of different automatic scores
and user-rated quality dimensions. The correlations illustrate the weak and con-
flated connection between proxy scores and human assessment (from left to right
and top to bottom: scores evaluating answer correctness, scores evaluating cor-
rectness of supporting facts, scores jointly evaluating answer and fact correctness,
additional scores including LOCA and surface scores). Axes cropped at 0.6.

4.3.2.2. Proxy Scores Conflate Different Dimensions

We argue that the currently used explanation quality proxy scores can, and often will, conflate
different dimensions of explanation quality, and, consequently, information about the individual
independent dimensions is lost and cannot be recovered. For example, given two systems with
similar proxy scores, it cannot be determined which one was superior in terms of individual
explanation quality aspects, such as consistency or understandability. Therefore, it is not
possible to identify an isolated improvement of a model in some of those aspects using the
proxy score. For example, when we improve the proxy score, we cannot assess whether we
actually improved all quality aspects or only a subset of them (and possibly decreased the
performance on others). Similarly, a targeted improvement of particular quality aspects (e.g.,
for a particular use case) is not possible.
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Case Study. In order to assess the degree to which proxy scores are related to multiple

human ratings/scores, we also analyze their underlying factor structure. While the correlations
shown in Figure 4.5 demonstrate that the pairwise correlations are weak, they do not tell us
how a score/rating is associated with the “big picture” in terms of the latent structures behind
the scores and ratings. A factor analysis is used to describe each score/rating in terms of its
association with empirically-derived latent factors. In order to determine the number of factors,
we follow the method agreement procedure in which the optimal number of factors is chosen
based on the largest consensus between numerous methods. We find four dimensions to be
supported by the highest number of methods as, from a total of 14 methods, four agree on a
number of four factors (i.e., beta, Optimal coordinates, Parallel analysis, and Kaiser) which has
higher support than every other number of factors (ranging between 1 and 19). We, therefore,
conduct a factor analysis using a varimax rotation that maps each score/rating to one of the
four latent factors such that the resulting factors describe the data as well as possible. Table 4.5
displays the respective loadings (i.e., correlations of the score/rating with the latent factor).

Factor F1 contains all answer-related scores including human ratings of answer correctness.
Factor F2 only contains the fact-related automatic scores as well as joint-F1 and joint-EM.
Factor F3 contains all explanation-related human ratings. Interestingly, F3 also contains the
automatic scores joint-recall, LOCA, and joint-precision. Factor F4 contains the explanation-
length-related automatic scores #words and #facts. We observe that the answer-related proxy
scores and the human answer-correctness ratings form a cluster and have strong loadings on
their joint factor. This can be interpreted as evidence that perceived answer correctness can —
to a moderately strong extent — be measured via the answer-related proxy scores.

If (one of) the evaluated proxy scores for explanation quality would have an equally strong
association with any human rating, we would expect a factor, that, e.g., contains joint-F1 and
perceived utility along with strong factor loadings of both scores/ratings onto this factor.
However, Table 4.5 demonstrates that all of the different explanation-related human ratings
can be found in one factor along with the proxy scores joint-recall, LOCA, and joint-precision.
This shows that our explanation quality measurements cannot be grouped into distinguishable
groups (as we observe for the answer-related scores and ratings). Instead, they form a hardly-
interpretable diffuse factor 3 that mixes up all kinds of human ratings and yields much lower
factor loadings and — in addition — does not contain the leaderboard ranking score joint-F1.

Overall, our factor analysis suggests that (a) answer-related proxy scores reflect human

answer correctness ratings, (b) no explanation-related proxy score can be associated to a

particular human rating. In particular, joint-F1 does shares no factor with any human rating.
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Score/rating Type F1 F2 F3 F4

answer-EM 0.98
answer-F1 0.97
answer-recall 0.97
answer-precision 0.97
correctness rating 0.80

sp-EM 0.97
sp-F1 0.89
sp-precision 0.83
sp-recall 0.82
joint-EM 0.58
joint-F1 0.55

consistency rating 0.79
usability rating 0.74
joint-recall 0.64
utility rating 0.63
LOCA score 0.56
joint-precision 0.53
completion time (0.24)

#words 0.95
#facts 0.95

Table 4.5.: Factor loadings of the collected scores/ratings onto four factors (F1-F4). Proxy
scores are marked as , human ratings/scores are marked as . We observe that F3
contains all explanation-related human ratings as well as the three three proxy scores
joint-recall, LOCA, and joint-precision. This suggests that these three scores can
be better suited to capture perceived explanation quality compared to the currently
used joint-F1 which loads onto factor F2.

4.3.2.3. Goodhart’s Law: Validity Can Change Over Time

Even if we had a score that is valid, i.e., it measures one dimension of explanation quality in
a decent way, using this score as the sole ranking criterion of a leaderboard can subvert its
validity over time. This effect is described in Goodhart’s Law that is commonly stated as when

a measure becomes a target, it ceases to be a good measure (Goodhart, 1975; Campbell, 1979;
Strathern, 1997; Manheim, 2018; Manheim and Garrabrant, 2018). Thomas and Uminsky
(2022) discuss this in the context of AI and highlight the field’s problematic reliance on (single)
metrics including the issue of metrics being gamed (Bevan and Hood, 2006).

Assume that an initial investigation of some systems showed that a particular proxy score
can be considered to be valid (in a certain use case for a certain user group). If now more and
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Figure 4.6.: Kendall’s τ correlations over time between different human ratings and the official
leaderboard metric joint-F1. The gradual decline of the relation between joint-
F1 and human ratings indicates that joint-F1 looses validity over time and thus
supports Goodhart’s law.

more systems are developed with the primary goal of reaching higher values on that score,
the initial set of models no longer represents the new model population. As a result, it cannot
be ensured that the original strong relation between the (initially valid) proxy score and the
measured quality dimension still holds. Consequently, the score’s validity can “wear off” over
time as it is used in isolation.

Case Study. We investigate whether we can find such a temporal deterioration in the
HotpotQA leaderboard. For this, we study the association of the leaderboard’s target metric
(i.e., joint-F1) with the measured human ratings across different time windows. Figure 4.6 shows
Kendall’s τ correlation coefficients between joint-F1 and human ratings for a 12-month sliding
window over system submissions. We observe that correlations decrease from moderately
positive to lower and even negative correlations. We hypothesize that this decrease could have
been mitigated using multiple proxy scores.

Overall, our observations indicate that Goodhart’s law affects today’s leaderboards and single

target metrics lose their expressiveness over time.

4.3.3. Neglecting Users

So far, we argued why the currently used proxy scores of explanation quality do not reliably
reflect user-perceived quality properties. But if we had proxy scores that were shown to
successfully reflect various aspects of explanation quality, could we stop human evaluation and
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Figure 4.7.: Visualization of the Streetlight Effect in the context of explanation quality evalua-
tion. Searching where the light is, i.e., relying on proxy scores in isolation (left)
does not allow to study the whole spectrum of explanation quality. Instead, we also
have to study quality aspects that are only accessible via human evaluation (right).

rely on these scores alone? We, just like Thomas and Uminsky (2022), argue that we could not.

The predominant evaluation practice of relying on automatic scores is questioned in many
contexts in NLP today, especially in NLG (Callison-Burch et al., 2006; Liu et al., 2016;
Novikova et al., 2017; Sulem et al., 2018; Reiter, 2018). In the context of explainability, the
need for human-centered evaluation is stressed by, i.a., Ribera and Lapedriza (2019), Chu et al.
(2020), Gonzalez et al. (2021), Colin et al. (2021), Schlegel et al. (2022), or Liao et al. (2022).
We argue that human evaluation always has to be part of explanation quality evaluation. User
studies yield insights beyond proxy scores as they can comprise (i) a broader set of quantifiable
dimensions than proxy scores can offer as well as (ii) dimensions of explanation quality that are
inaccessible using quantitative methods at all but require qualitative approaches, such as mental
model analysis (Schrills and Franke, 2020; Kulesza et al., 2013), or thematic analysis (Braun
and Clarke, 2006) in which themes are extracted from textual responses or transcriptions via
various steps (coding, theme generation, review, etc.).

We argue that searching for valuable systems based on proxy metrics alone can be regarded to
be an instance of the Streetlight Effect, also known as the Drunkard’s Search Principle (Kaplan,
1964; Iyengar, 1993). This effect describes a situation in which a drunken man lost his keys in
a park, but instead of searching for them in the place where he lost them, he is searching under

a streetlight because this is where the light is. We argue that we face a similar situation when
we exclusively rely on proxy metrics as shown in Figure 4.7. Instead of focusing on what we
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ultimately are interested in, i.e., providing good explanations to users, we narrow our focus to
increasing proxy scores instead. To shed light on a broader spectrum of explanation quality, our
quantitative measures should include both, validated proxy scores and human ratings/signals.

Case Study. Our results reported in Section 4.3.2 already show that human ratings exceed
the information we are able to get from our investigated proxy scores. In addition, there also is
information that we cannot obtain using quantitative human ratings alone. To illustrate this, we
collect voluntary free text feedback from our participants:

• “I see why the model thought it, but it doesn’t provide any useful info in reality”.
This comment shows that users have the impression that a model “thinks”, hinting
at anthropomorphization. Concretely, this suggests to consider the inclusion of an
anthropomorphism questionnaire in subsequent user studies.

• “The question asks about two players but there is only a correct answer for one player

and only one explanation”.
This comment confirms that one type of model error is to provide answers that do not
semantically match the question. Consequently, developing a new proxy score to quantify
the semantic overlap between the predicted answer and the question could help to guide
model development.

• “It doesn’t really state how it came up with this answer, as it only told about other fights.

My default answer is incorrect, until the system proves it to be true.”
This comment informs us about the user’s rating behavior and suggests that a re-wording
of the question could allow us to capture the range of perceived correctness better.

Overall, the collected comments illustrate that qualitative evaluation can yield insights

beyond quantitative participant ratings which in turn can help to improve proxy scores and
human rating evaluation.

4.3.4. Single-score Leaderboards

The current practice in NLP leaderboards (and many NLP research work in general) is to score
and compare of systems using a single score, such as accuracy, BLEU, or F1. In Section 4.2.2,
we already motivated that explanation quality has multiple independent dimensions. Therefore,
it should be measured with multiple scores. Moreover, aggregating those scores (e.g., via
averaging) to obtain a single measure will not be expedient either since the dimensions might
be independently useful and/or scaled differently.
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ranking criterion

joint-F1 LocA averaged proxy
scores

factor-weighted
proxy scores

human usability
ratings

1 gold
(1.00)

gold
(1.00)

gold
(1.00)

gold
(1.73)

FE2H on
ALBERT

(0.98)

2 FE2H on
ALBERT

(0.77)

gold-answers-all-
facts
(1.00)

FE2H on
ALBERT

(0.78)

FE2H on
ALBERT

(1.47)

HGN
(0.90)

3 AMGN
(0.74)

FE2H on
ALBERT

(0.98)

AMGN
(0.76)

AMGN
(1.43)

S2G-large
(0.88)

4 Longformer
(0.73)

HGN
(0.97)

HGN
(0.74)

HGN
(1.4)

Longformer
(0.87)

5 S2G-large
(0.72)

AMGN
(0.95)

Longformer
(0.74)

Text-CAN
(1.31)

SAE
(0.87)

6 HGN
(0.71)

Text-CAN
(0.92)

Text-CAN
(0.70)

Longformer
(1.28)

Text-CAN
(0.87)

7 Text-CAN
(0.66)

GRN
(0.89)

S2G-large
(0.69)

SAE
(1.25)

AMGN
(0.87)

8 SAE
(0.63)

SAE
(0.86)

SAE
(0.67)

gold-answers-all-
facts
(1.23)

gold-answers-all-
facts
(0.86)

9 IRC
(0.59)

IRC
(0.77)

GRN
(0.64)

GRN
(1.21)

gold
(0.83)

10 GRN
(0.58)

Longformer
(0.72)

IRC
(0.62)

IRC
(1.17)

IRC
(0.83)

11 gold-answers-all-
facts
(0.12)

random-answers-
gold-facts

(0.12)

gold-answers-all-
facts
(0.53)

S2G-large
(0.94)

GRN
(0.68)

12 random-answers-
all-facts

(0.02)

S2G-large
(0.12)

random-answers-
gold-facts

(0.3)

random-answers-
gold-facts

(0.09)

random-answers-
random-facts

(0.23)

13 gold-answers-
random-facts

(0.00)

random-answers-
random-facts

(0.11)

gold-answers-
random-facts

(0.29)

random-answers-
random-facts

(0.06)

random-answers-
gold-facts

(0.21)

14 random-answers-
random-facts

(0.00)

gold-answers-
random-facts

(0.03)

random-answers-
random-facts

(0.01)

gold-answers-
random-facts

(0.02)

gold-answers-
random-facts

(0.16)

Table 4.6.: Ranking models with respect to different criteria. We construct leaderboards for (a)
joint-F1 (official leaderboard score), (b) the answer-explanation consistency measure
LocA, (c) the average over all 14 proxy scores, (c) a factor-loading-weighted average
over the three proxy scores which we found to be associated with human ratings
within our factor analysis, and (d) human utility ratings. We mark S2G-large and
gold predictions to demonstrate inconsistent model ranks across criteria.
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Ranking systems using a single score can additionally lead to over-optimization of this one
score (Thomas and Uminsky, 2022) and can lead to the deterioration of score validity as we
argued and demonstrated in Section 4.3.2.3. This arguably could be prevented by using a
diverse set of scores instead of only one score.

Case Study. We construct various leaderboards from the HotpotQA systems and evaluate
how sensitive model rankings are with respect to the ranking criterion. Table 4.6 displays the
respective model rankings of four criteria. We observe that different scores and weighting

schemes lead to contradicting model rankings. For example, S2G-large (marked with a box in
Table 4.6) is rated the fourth-best real model according to joint-F1 and the third-best regarding
usability ratings but rated the worst real model according to LocA. While all real models except
FE2H on ALBERT differ with respect to their relative rankings, FE2H on ALBERT is ranked
as the best real model across all criteria including human usability ratings, indicating that this
model offers substantial benefits over the other models.

Further, rankings regarding human ratings and proxy metrics disagree heavily as we can see
for the gold predictions that consistently are ranked top following the proxy score leaderboards,
but are ranked eighth following human usability ratings. Interestingly, the gold answers along
with all facts are ranked as more usable than the gold facts with only the relevant facts.

Overall, our results signal a disagreement between the user needs assumed within the
HotpotQA dataset and the actual user needs within our participant sample.

4.4. Remedies

This section proposes guidelines to address the shortcomings described in Section 4.3.

4.4.1. Report Various Scores Without Averaging

As we argued in Section 4.3.4, using a single score for evaluation (regardless of proxy scores or
human ratings) can be misleading. Thus, we propose to use various scores rather than weighting
quality dimensions against each other to get a single score. This is in line with the recommen-
dations by Thomas and Uminsky (2022). While prior work proposed alternative leaderboards
using on-demand (crowdsourcing) evaluation (Chaganty et al., 2017) and personalized utility
rankings (Ethayarajh and Jurafsky, 2020), we are — to the best of our knowledge — the first to
provide a leaderboard that does not condense multiple scores into a single one.
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Figure 4.8.: Ranked Pareto fronts for two dimensions and nine (fictional) systems. Each point
represents a system along two (higher-is-better) scores q1 and q2.

Pareto Front Leaderboards. To compare systems based on multiple scores, e.g., on a
leaderboard, we propose to leverage the concept of Pareto efficiency. In the context of multidi-
mensional leaderboards, a system is called Pareto efficient if the only way to select another
system that is better regarding any score dimension is to worsen another score dimension. For
example, system A is Pareto efficient if the only way to select another system to increase, e.g.,
the F1-score, is to choose a system that has a lower, e.g., accuracy. Given a set of systems,
multiple systems can simultaneously be Pareto efficient. Figure 4.8 shows a fictional example
with nine systems (visualized by points) and two higher-is-better quality scores q1 and q2

(visualized by axes). All five systems on the so-called Pareto front (front 1) are Pareto efficient
and thus have rank 1. To rank the remaining systems, we remove those five systems, calculate
the next Pareto front (front 2), and repeat this until all systems are ranked. The resulting
leaderboard of the example shown in Figure 4.8 would consequently have five models in the
first place (i.e., front), two models in the second, and two models in the third.

Related Applications of Pareto Efficiency. We are not the first to leverage Pareto
efficiency within NLP. Pimentel et al. (2020) use Pareto efficiency to propose a new probing
approach that trades off probe accuracy and complexity. In contrast to their work, we use Pareto
efficiency to construct leaderboards. Similar to our approach, Liu et al. (2022b) argue that, in
the context of efficient NLP models, models should be judged in terms of how far they overstep
the performance-efficiency Pareto front. In contrast to their work, we do not only consider the
(first) Pareto front but extend the concept of Pareto efficiency to multiple fronts which form the
ranks of our proposed leaderboard.
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Advantages. Using multiple scores for evaluation offers the advantage of capturing diverse

aspects of a system. If a sufficiently diverse set of scores is used, the over-optimization of one

score can be prevented since other scores would likely be decreased at the same time. This is
supported by surrogation effects (Choi et al., 2012, 2013) where, in the context of manager
compensation, Choi et al. (2012) find that manager decisions can be improved when “managers
are compensated on multiple measures of a strategic construct” instead of on a single one. We
hypothesize that this observation also holds for AI practitioners that need to choose a system,
e.g., from a leaderboard.

When using Pareto front leaderboards, we can rank systems without weighting the different

quality dimensions against each other. In particular, the concept of Pareto efficiency allows us
to choose systems that are not worse than others on all fronts. Note that Pareto fronts are robust
to score re-scaling and are applicable to ordinal (e.g., Likert) ratings.

Limitations. With multiple scores, it can be hard to determine a “winning” system because
different models might rank best on different scores. Pareto Front Leaderboards can mitigate
this problem, however, they may result in a set of winning systems instead of a single winning
system. We argue that this is not a real limitation though since the concept of Pareto efficiency
ensures that a system on one front is not worse than other systems on the same front. In the
extreme case when the number of scores is high in comparison to the number of systems that
should be scored, the resulting leaderboard can collapse to a single front because the fronts’
surface grows exponentially with the number of scores. We, therefore, recommend ensuring
that the number of variables should only be increased along with a sufficient increase in the
number of systems.

Further, Pareto Front leaderboards can be “attacked” by optimizing a single metric with the
purpose of positioning a new system inside the first front. Although this allows the leaderboards
to be gamed to a certain extent, a truly remarkable improvement is one that creates a new front
that is, in turn, robust to the improvement of single metrics.

Case Study. We evaluate the 15 models described in Section 4.3.1.1 on numerous (i) human
ratings and (ii) automatic scores. We construct two Pareto front leaderboards, one for human
ratings and one for automatic scores.

Table 4.7 shows the Pareto front leaderboard based on human ratings (usability, mental
effort, utility, correctness, consistency, and completion time). We observe that high-performing
models, such as FE2H on ALBERT (official leaderboard rank 3), are located within the rank
1 Pareto front en par with the gold prediction system. Interestingly, previously lower-ranked
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Rank Models (original HotpotQA ranks in parentheses)

1 gold (*), random-answers-gold-facts (*), FE2H on ALBERT (3),
Longformer (25), S2G-large (31), HGN (35), Text-CAN (47), IRC (63)

2 AMGN (16), SAE (48), GRN (65), DecompRC (unranked),
random-answers-random-facts (*), gold-answers-all-facts (*)

3 gold-answers-random-facts (*)

Table 4.7.: Ranked Pareto fronts based on human ratings. “∗” marks systems derived from the
ground truth annotations.

Rank Models (original HotpotQA ranks in parentheses)

1 gold (*)
2 gold-answers-all-facts (*), rand.-answers-gold-facts (*), FE2H on ALBERT (3),

AMGN (16)
3 Longformer (25), HGN (35), IRC (63), gold-answers-random-facts (*)
4 S2G-large (31), Text-CAN (47)
5 SAE (48), GRN (65)
6 DecompRC (unranked)
7 random-answers-random-facts (*)

Table 4.8.: Ranked Pareto fronts based on proxy scores.

models, such as IRC (leaderboard rank 63) are also located in the first Pareto front which means
that they also possess a combination of strengths that dominates the models in the other ranks.

Table 4.8 shows the leaderboard based on automatic proxy scores. The gold prediction
system is the single winner in this leaderboard, followed by the two real models FE2H on
ALBERT and AMGN. While the first models are ordered consistently with the HotpotQA
leaderboard, the Pareto front leaderboard disagrees w.r.t. ranks for others, e.g., the IRC model
(leaderboard rank 63), Longformer (leaderboard rank 25) or S2G-large (leaderboard rank 31).
For the synthetic systems, we observe differences across the two Pareto front leaderboards. For
example, the gold-answers-random-facts system is ranked last w.r.t. human ratings but ranked
third w.r.t. automatic scores. Our results highlight, again, that proxy metrics do not reflect the
quality dimensions probed in the human ratings sufficiently well. We provide details on the
exact proxy scores and model ratings in Appendix A.4.1 and Appendix A.4.2.

4.4.2. Validate Proxy Scores Against Humans

While there is a lot of work on investigating the relation between automatic scores and human
ratings in NLG (Belz and Reiter, 2006; Novikova et al., 2017; Dušek et al., 2019), only a few
studies consider this aspect in the context of explanation evaluation (Jannach and Bauer, 2020;
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Kayser et al., 2021; Clinciu et al., 2021). To address the problem of unvalidated proxy scores
for explanation quality evaluation (Section 4.3.2), we advise to consistently validate the relation
between proxy scores and human signals, such as human-AI performance, subjective ratings,
completion times, or physiological measures like eye tracking. One straightforward approach
to quantify these relations is a correlation analysis.

Advantages. Given proxy scores that yield sufficiently strong correlations to human rat-
ings/signals, those scores can be used to develop systems that are actually useful for users.

Limitations. Given a new task or leaderboard, it is unlikely that we have access to a
representable pool of models which can be used to validate the metrics. Therefore, we have to
accept a certain grace period in which we can only assume that the chosen evaluation scores
lead to reasonable results. Once there is a handful of models available, the proxy metrics should
then be validated against human scores and revised if necessary.

Referring to our discussion of Goodhart’s law in Section 4.3.4, any proxy metric has to be
periodically re-tested for its validity. Concretely, the need for re-testing can be recognized by,
e.g., monitoring demographic changes in the target population and/or changes in the correlations
within user ratings.

Finally, each validity evaluation is limited to a group of explainees (see Section 4.2.1).
Different groups of users will have different needs and, as a result, explanation quality evaluation
will need different measures. For example, validity findings for the population of high-school
students might not transfer to adult NLP researchers.

4.4.3. Do Human Evaluation

In Section 4.4.2, we already recommend user studies for the purpose of proxy score validation.
Based on our discussion in Section 4.3.3, we also propose to conduct as much human evaluation
as possible in order to gain additional explanation quality indicators from human rating scores
directly. In the context of application-oriented model development, human evaluation can be
conducted as the final evaluation step after model tuning. In the context of leaderboards, we
propose to regularly conduct human assessments of (a subset of) system submissions.

Measures of Human Behavior and Perceived Quality. When choosing what to
measure within a user study, we suggest to collect objective measures of user behavior as

well as subjective ratings. Table 4.9 lists a selection of possible measures of (a) objective
measures of human behavior (top) and (b) subjective human ratings (bottom) along with
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Measure Description References
ob

je
ct

iv
e

sc
or

es
Time Time measures of, e.g., task

completion or interaction with the
system

Lim et al. (2009), Lage
et al. (2019), Cheng
et al. (2019)

Human performance Task performance of users (e.g.,
accuracy in an AI-supported decision
task)

Feng and Boyd-Graber
(2019), Lage et al.
(2019), Bansal et al.
(2021)

Simulatability Measures related to how well
explanations enable users to predict
system performance (given an
explanation when making predictions
on new instances)

Hase and Bansal
(2020), Wang and Yin
(2021)

Teachability Measures related to how well
explanations enable users to predict
system performance (without having
access to explanations when making
predictions on new instances)

Goyal et al. (2019),
Wang and Vasconcelos
(2020)

Agreement Frequency of how often a user
accepts a system decision

Zhang et al. (2020b),
Bansal et al. (2021)

Number of user
interactions

Number of times a user, e.g., runs a
model to predict an output

Pezeshkpour et al.
(2022)

su
bj

ec
tiv

e
ra

tin
gs

Perceived
performance

Subjective estimate of system
performance

Nourani et al. (2019)

Over- /
underestimation

Difference between perceived system
performance and actual system
performance

Nourani et al. (2019)

Trust Trust in the model’s
abilities/correctness

Bussone et al. (2015),
Ribes et al. (2021),
Buçinca et al. (2021)

Perceived usefulness User-reported system usefulness Khurana et al. (2021),
Bansal et al. (2021)

Subjective
understanding

Self-reported degree of system
understanding

Ehsan et al. (2019),
Wang and Yin (2021),
Ribes et al. (2021)

Grammaticality Ratings or grammatical correctness Liu et al. (2022a)
Perceived factuality Ratings of factual correctness Liu et al. (2022a)
Mental demand Self-reports of mental demand in

processing the explanation
Buçinca et al. (2021)

Table 4.9.: Selection of (a) scores of objective human behavior (top) and (b) dimensions of
subjective self-reports of perceived quality (bottom).

116



4.4. Remedies

exemplary publications including the respective scores/ratings. We refer to Chromik and
Schuessler (2020) as well as Nauta et al. (2022) for a review of (quantitative) human evaluation
methods conducted in explainability research. Objective measures include, e.g., response
time, human task performance, and human-AI agreement, but also more complex scores,
e.g., Utility-k (Colin et al., 2021). Subjective ratings include, e.g., perceived accuracy, trust,
perceived usefulness (Khurana et al., 2021), or mental demand (Buçinca et al., 2021). As noted
by Buçinca et al. (2020), subjective ratings should complement objective user performance
measures as the latter cannot necessarily be inferred from the former (Buçinca et al., 2020). We
investigate the relation between objective and subjective system predictability in Section 5.2.

Following Jannach and Bauer (2020) and Thomas and Uminsky (2022), we further advocate
to also collect qualitative feedback (e.g., participant comments within a user study or a focus
group) to complement quantitative measures. We demonstrate how qualitative feedback can
yield insights beyond quantitative evaluation within our case study in Section 4.3.3.

The study conducted by Cheng et al. (2019) is a good example of how objective measures
can be combined with both qualitative as well as quantitative human evaluation. Additional
examples of such mixed-methods evaluations can be found in the work of Bansal et al. (2021)
in the context of complementary human-AI team performance and Sivaraman et al. (2023) in
the context of clinical AI acceptance. Note, however, that collecting qualitative feedback via,
e.g., the think-aloud method, can impact users’ mental effort allocation which can potentially
affect participant behavior (Buçinca et al., 2020) and, consequently, respective studies should
be designed carefully.

Advantages. Human evaluation allows us to re-adjust the direction into which we develop
systems by unveiling explanation quality dimensions that were previously hidden. For example,
qualitative findings from user comments can help us to identify system qualities we did not
think of before. Moreover, human evaluations can reward the development of systems that
follow an unconventional approach and, as a result, have explanation qualities that might have
been undetectable using proxy scores. This can motivate researchers to develop original models
and can ultimately diversify and accelerate research.

Limitations. Each human evaluation is bound to noise w.r.t. the pool of participants and the
way they approach the study (for example whether they carefully read the questions). However,
in contrast to annotation (on an instance level), noisy human responses do not have to limit
human evaluation (on a system level) using adequate statistical tools. Further, potentially
high costs to compensate the participants and longer preparation times to recruit participants
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and conduct and carefully evaluate the studies might hinder the conduction of a user study.
Additionally, proxy task evaluations (i.e., evaluations that are conducted on simplified human-
AI tasks) do not necessarily lead to the same findings that real human-AI tasks yield and, in
fact, can even contradict the latter (Buçinca et al., 2020).

Finally, user study interfaces have to be designed carefully as presumably minor design
choices can heavily affect participant behavior. For example, Sullivan Jr. et al. (2022) find
participants’ rational explanation selections (i.e., marking relevant words in the text input) was
greatly impacted by whether participants could mark multiple words at once or not. Introductory
texts on designing and conducting user studies in NLP can be found in, e.g., Belz et al. (2020)
(NLG), Iskender et al. (2021) (text summarization) or Sedoc et al. (2019) (chatbots). We
additionally published an extended version of our general NLP user study background covered
in Section 2.3 in Schuff et al. (2023b).

Case Study. We discuss the experiment design of our case study along with a description
of collected ratings in Section 4.3.1.2. A detailed discussion of our results can be found in the
“case study” paragraphs across Section 4.3.

Overall, our human evaluation allowed us to identify low correlations between human
ratings and proxy scores, detect that correlations decreased over three years of system submis-
sions, qualitative user feedback helps to spot shortcomings of proxy scores and human rating
evaluation, and proxy-score-based systems ranks conflict with human-rating-based ranks.

4.4.4. Overall Discussion

In the previous sections, we discussed general characteristics of explanation quality (Sec-
tion 4.2), described shortcomings of the current evaluation practices, and pointed out to which
extent they violate the discussed characteristics (Section 4.3). We supported our arguments
with empirical evidence of a crowdsourced case study that we conducted for the example of
explainable QA systems from the HotpotQA leaderboard.

Concretely, we demonstrated that (i) proxy scores poorly reflect human explanation quality
ratings, (ii) proxy scores can lose their expressiveness over time, (iii) human evaluation yields
quantitative as well as qualitative insight beyond automatic evaluation, and (iv) single-score
leaderboards fail to reflect the spectrum of explanation quality dimensions.

In (Section 4.4), we proposed (a) guidelines for a more effective and human-centered
evaluation as well as (b) an alternative type of leaderboard that constructs ranks from multiple
dimensions without averaging scores. We aim to inform and inspire future work and ultimately
drive the field towards reliable and meaningful explanation quality evaluation.
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4.5. Related Work

In the following, we discuss related criticism on F1-score (Section 4.5.1), the relation of proxy
scores to human evaluation (Section 4.5.2), and alternative leaderboards (Section 4.5.3).

4.5.1. Criticism on F1-score

The F1-score has been criticized regarding various aspects including theoretical considerations
and applications (Hand and Christen, 2018; Chicco and Jurman, 2020; Sokolova et al., 2006).

Hand and Christen (2018) discuss F1-scores for a record linkage task (i.e., linking entities to
records across databases) and show that F1-scores can be reformulated in terms of a weighted
sum of precision and recall for which the weights depend on the evaluated system. They argue
that, instead, these weights should depend on the system’s usage context.

Further, Chicco and Jurman (2020) criticize the use of F1-score in binary classification within
genomics and recommend to use Matthews correlation coefficient instead as it advantages
over F1-score regarding, i.a., dataset imbalance, and label swapping. Similarly, Sokolova et al.
(2006) criticize the usage of F1-score, accuracy, and receiver operating characteristic (ROC).
They argue that, while these measures focus on a classifier’s ability to correctly predict a class
label, desirable properties such as class discrimination or failure avoidance can provide deeper
insight and propose to use alternative measures rooted in medical diagnoses, such as Youden’s
index (Youden, 1950) or discriminant power (Oddone et al., 1995).

Qian et al. (2016) further demonstrate that modifying F1-scores for word segmentation based
on insights from psychometrics can improve the scores’ correlation to human ratings.

4.5.2. Relation Between Proxy Scores and Human Evaluation

4.5.2.1. NLP Systems

While the relation of proxy scores to human-rated quality has been extensively studied and
criticized for NLG systems (i.a., Callison-Burch et al., 2006; Liu et al., 2016; Novikova et al.,
2017; Sulem et al., 2018; Reiter, 2018), explainable systems received much less attention. In
the following, we discuss important exceptions.

4.5.2.2. Explainable Systems

Kayser et al. (2021) investigate the correlation between ten NLG metrics (i.a., BLEU, BERT-
Score and BLEURT) and human quality ratings to quantify free text explanations for three visual
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QA datasets. They find that among the ten proxy metrics, considering all three datasets, only
BERT-Score (Zhang et al., 2020a) has a significant but small Spearman correlation (r = 0.293)
with human ratings of how well the respective explanations justify the model answers.

Further Camburu et al. (2018) compare human-annotated textual explanations of the e-SNLI
explainable NLI dataset (see Section 2.1) with model-generated explanations using BLEU.
They observe that (a) the BLEU scores within multiple human explanation annotations are low
and (b) when comparing the model-generated explanations to human-annotated ground truth
explanations, the resulting BLEU scores are only slightly smaller than inter-annotator BLEU
scores. They conclude that BLEU does not reliably reflect explanation quality.

Ultimately, Clinciu et al. (2021) investigate human ratings of explanation clarity and infor-
mativeness for natural language explanations of Bayesian networks. Averaged over different
scenarios, they find that, across eleven proxy scores, BLEURT reaches the highest absolute
Spearman correlation (r = 0.39), closely followed by BLEURT (r = 0.37). However, they find
that correlations between the two human ratings reach a much higher value of r = 0.82.

In contrast to all described studies, our evaluation considers explanations for explainable QA.
While the described studies only consider ground truth explanations, our evaluation includes
predictions from ten systems that were submitted to the HotpotQA leaderboard.

4.5.3. Alternative Leaderboards

Numerous alternative leaderboards have been proposed in NLP. For example, Chaganty
et al. (2017) introduce on-demand crowdsourcing evaluation to provide a fair comparison of
knowledge base population systems. Concretely, their approach addresses the problem that
new systems can predict previously unseen relations which is penalized even when it is correct.

Further, (Ethayarajh and Jurafsky, 2020) argue that the predominant focus of NLP leader-
boards on system accuracy can neglect additional model qualities, such as efficiency, robustness,
or fairness. They consider individual system utility and introduce personalized leaderboards in
which system ranks are determined for each individual regarding, e.g., model size or robustness.

Similarly, Linzen (2020) argues that single-score task performance leaderboards do, i.a., not
reflect sample-efficiency and calls for the development of metrics that incentivize this model
asset as well as the evaluation of additional parallel leaderboards that score a model’s linguistic
generalizations abilities or its task performance on increasingly smaller datasets.

In contrast to the described alternative leaderboard approaches, we are — to the best of our
knowledge — the first to provide a leaderboard that offers a joint ranking across all scoring
dimensions without condensing multiple scores into a single one.
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In this chapter, we focus on human perception of explanations. First, we explore whether users
understand heatmap explanations over text in the way they are intended (Section 5.1). We find
that human interpretation of heatmap explanations is distorted by various word and sentence
properties as well as assimilation and contrast effects within explanations. We propose bar charts
and a model-based saliency correction method to mitigate biases in the users’ interpretation
of importance score explanations and demonstrate their effectiveness to reduce a distorting
effect of word length and anticipate temporal changes in user perceptions, respectively. Second,
we develop, validate, and apply a new scale to measure perceived predictability (Section 5.2).
We motivate why perceived predictability should be measured, develop and validate our novel
6-item perceived system predictability (PSP) scale, and study the relation between perceived
predictability and objective prediction correctness as well as trust and user’s NFC in the context
of NLP explanations. Our findings uncover orthogonal effects of explanations and system
stochasticity on objective prediction correctness and subjective PSP ratings which we link to
known cognitive biases. Our results underline the need to investigate subjective predictability
in addition to objective user performance measures and demonstrate that our PSP scale is a
valid instrument that can and should be used in future investigations of explanatory systems
and within broader NLP and human-computer interaction (HCI) contexts.

5.1. Heatmaps Considered Harmful: Cognitive Biases

and Saliency Explanations

Heatmap explanations are a popular class of explanation methods to explain model decisions
by specifying the parts of the input which are most salient in the model’s decision process
(Burkart and Huber, 2021; Tjoa and Guan, 2021; Fel et al., 2021b). In NLP, this refers to which
subwords, words, phrases, or sentences in the input contributed most to the model prediction
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Figure 5.1.: A saliency explanation is generated to answer the human’s need to understand
the model. We investigate whether the saliency explanation can be systematically
misperceived by humans and which factors influence its perception.

(Madsen et al., 2023; Danilevsky et al., 2020). While much research exists on developing
and verifying such explanations (Arras et al., 2017; Adebayo et al., 2018; Kindermans et al.,
2019; Tuckey et al., 2019; Wang et al., 2020; Madsen et al., 2021), less is known about the
information that human explainees actually understand from them (Miller, 2019; Dinu et al.,
2020; Fel et al., 2021a; Arora et al., 2021).

In the explainable NLP literature, it is generally (implicitly) assumed that the explainee
interprets the information “correctly”, as it is communicated (Arras et al., 2017; Feng and
Boyd-Graber, 2019; Fel et al., 2021a): e.g., when one word is explained to be influential
in the model’s decision process, or more influential than another word, it is assumed that
the explainee understands this relationship (Jacovi and Goldberg, 2021). We question this
assumption: research in the social sciences describes modes in which the human explainee
may be biased — via some cognitive habit — in their interpretation of processes (Malle, 2003;
Miller, 2019; Epley et al., 2007; Watson, 2020). Additional research shows this effect manifests
in practice in AI settings (Gonzalez et al., 2021; Darling, 2015; Ehsan et al., 2021; Hartzog,
2015; Natarajan and Gombolay, 2020). This means, e.g., that the explainee may underestimate
the influence of a punctuation token, even if the explanation reports that this token is highly
significant (Figure 5.1), because the explainee is attempting to understand how the model
reasons by analogy to the explainee’s own mind which is an instance of anthropomorphic

bias (Johnson, 2018; Dacey, 2017; Zlotowski et al., 2015) and belief bias (Evans et al., 1983;
Gonzalez et al., 2021).

We identify four different such biases which may influence the explainee’s interpretation:
(i) anthropomorphic bias and belief bias: influence by the explainee’s self projection onto
the model, (ii) visual perception bias: influence by the explainee’s visual affordances for
comprehending information, (iii) learning effects: observable temporal changes in the ex-
plainee’s interpretation as a result of interacting with the explanation over multiple instances,
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and (iv) chunking effects: influences within the perception of neighboring explanation elements
that are understood as a unit by the explainee (such as “New York”).

We thus address the following question in this section: When a human explainee observes

feature-attribution explanations, does their comprehended information differ from what the

explanation “objectively” attempts to communicate? If so, how? We propose a methodology to
investigate whether explainees exhibit biases when interpreting feature-attribution explanations
in NLP, which effectively distort the objective attribution into a subjective interpretation of
it (Section 5.1.1.5). We conduct user studies in which we show an input sentence and a
feature-attribution explanation (i.e., saliency map) to explainees, ask them to report their
subjective interpretation, and analyze their responses for statistical significance across multiple
factors, such as word length, total input length, or dependency relation, using a GAMM
(Section 5.1.1.6).

In the first part of this section (Section 5.1.1), we find that word length, sentence length,
the position of the sentence in the temporal course of the experiment, the saliency rank,
capitalization, dependency relation, word position, word frequency as well as sentiment can
significantly affect user perception. In addition to whether a factor has a significant influence,
we also investigate how this factor affects perception. We find that, for example, short words
decrease importance ratings while short sentences or intense sentiment polarities increase them.

In the second part of this section (Section 5.1.2), we explore the effect of phrase-level

features. Concretely, we extend our analysis to investigate the effect of a word’s neighboring

words to the word’s rating, conditioned on various a priori measures of bigram constructs, such
as the words’ syntactic relation or the degree to which they collocate in a corpus. We observe
significant effects for (i) left-adjacency vs. right-adjacency, (ii) the difference in importance
between the two words, and (iii) the phrase relationship between the words (common phrase
vs. no relation) and discuss potential links of our observations to known effects from relevant
literature.

Finally, in the third part of this section (Section 5.1.3), we propose two visualization inter-
ventions to mitigate learning effect and visual perception biases: model-based color correction
and bar charts. We conclude that (a) model-based color correction can predict and mitigate
distorting temporal effects and (b) bar charts can successfully remove the influence of word
length.
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5.1.1. Word- and Sentence-level Factors

5.1.1.1. Feature-attribution Explanations

Feature-attribution explanations aim to convey which parts of the input to a model decision
are “important”, “responsible” or “influential” to the decision (Arras et al., 2017; Ribeiro et al.,
2016; Carvalho et al., 2019; Madsen et al., 2023; Zhang et al., 2021). This class of methods is a
prevalent mode of describing NLP processes (Madsen et al., 2023; Danilevsky et al., 2020; Kaur
et al., 2020; Tenney et al., 2020), due to two main strengths: (i) it is flexible and convenient,
with many different measures developed to communicate some aspect of feature importance
and (ii) it is intuitive, with — seemingly, as we discover — straightforward interfaces of
relaying this information. Here we cover background on feature-attribution on two fronts: the
underlying technologies (Section 5.1.1.2) and the information which they communicate to
humans (Section 5.1.1.3).

5.1.1.2. Attribution Methods

We consider feature-attribution explanations generally as scoring (or ranking) functions that
map portions of the input to scores that communicate some aspect of importance about the
aligned portion: Ef (f(x)) : Σ

n → Rn, where Ef is the explanation method with respect to f ,
f is the model and x ∈ Σn the input text to the model, i.e., the input consists of n tokens which
are elements of an alphabet Σ. A high score implies high importance.

The loose definition proposed above for feature-attribution explanations as communicating
“important” portions of the input (words, sub-words, or characters) is often interpreted with a
causal lens: that by intervening on the tokens assigned a high score, the model behavior will
change more than by intervening on the tokens assigned a low score (Jacovi and Goldberg,
2021; Grimsley et al., 2020; Arras et al., 2017). This perspective is relaxed in various ways
to produce various softer measures of importance: for example, gradient-based methods

measure the change required in the embedding space to cause a change in model output, while
Shapley-value methods measure the change with respect to the “average case” in the data.

The granularity provided in the scoring function may vary greatly, from a binary measure
— important or not important — to a complete saliency map, depending on the tokenization
granularity, the method, and visualization. Most commonly, the explanation is given as a
colorized saliency map over word tokens (e.g., Arras et al., 2017; Wang et al., 2020; Tenney
et al., 2020; Arora et al., 2021). Note that this section is not concerned with a particular feature-
attribution method, but rather how feature-attribution explanations generally communicate
information to human explainees, and what the explainees comprehend from them.
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5.1.1.3. Social Attribution: The Case of Text Marking

Is it really possible for the explainee to comprehend feature-attribution explanations differently
from what they objectively communicate? What is the nature of any discrepancy in this
perception?1 As Miller (2019) writes, literature in the social sciences about how humans
comprehend explanations and behavior can help illuminate this problem.

In particular, we assume that the human explainee comprehends the explanation with respect
to their own reasoning. By assigning human-like reasoning to the model behavior being
explained (Miller, 2019), the explainee may fill any incompleteness in the explanation with
assumptions from their own priors about what is plausible to them (Dacey, 2017; Gonzalez
et al., 2021). To demonstrate, consider the case of binary feature-attribution — marking parts
of the input as “important” and “not important”, also known as highlighting or extractive

rationalization (Lei et al., 2016). Even this simple format of communicating information can be
assigned human-like reasoning by the explainee, on account of “who marked this text” and “for

what purpose”: Marzouk (2018) identifies various objectives that humans follow when marking
or observing marked text, e.g., marking forgettable sections (for memorization), marking as
a summary (for subsequent reading), marking exemplifying text, marking contradicting or
surprising text, etc. In the context of NLP models, Jacovi and Goldberg (2021) note two central
objectives: reducing the input to a summary that comprehensively informs the decision, or
identifying influential evidence in the input which non-comprehensively supports the decision.

These many different objectives can influence the choice of marking, and the information
that it communicates. This means that both the marked text, and the choice of what text to mark,
are information that the explainee comprehends when observing the explanation. Therefore,
how the explanation is perceived is influenced by both factors.

Text marking is a special case of feature-attribution. The above demonstrates how the
explainee’s interpretation is potentially shaped by aspects of the explanation which are implicit
or unintended — leading to an “erroneous” interpretation of the explanation. We identify four
biases that may cause this effect, as motivation for our investigation: (i) anthropomorphic
bias and belief bias, via the explainee’s a priori opinion on human-like or plausible reason-
ing, (ii) visual perception bias, via characteristics of the explainee’s visual affordances for
comprehending information, (iii) learning effects, as observable influence in the explainee’s
interpretation by previous explanation attempts in-context, and (iv) assimilation and contrast
effects, as influences of neighboring words and lexical chunks.

1This question is distinct from the question of whether the explanation faithfully communicates information
about the model (Wiegreffe and Pinter, 2019; Jacovi and Goldberg, 2020): even if the feature-attribution
information is entirely faithful, discrepancies may still arise in how humans comprehend this information.

125



5. Human Perception and Explanations

Figure 5.2.: Screenshot of the importance rating interface for English sentiment sentences.

5.1.1.4. Study Overview

Research Question. The core research question of the following is to probe into which,
if any, factors in the explanation process — aside from the saliency itself — may influence
the explainee’s interpretation of the saliency information. Formally, we view the saliency
explanation as a process whose result is the explainee’s interpretation of the saliency scores. The
“input” to this process is the original text as well as the saliency information and the visualization
method. Then, we ask which factors in the original text have statistically significant effects on
the explainee’s interpretation and how properties of the saliency score and the visualization
method affect it. Notably, a key challenge in analyzing the explainees’ saliency understanding
is that we want to identify influencing factors on the explainee’s ratings without the existence
of an inherently correct ground truth perception.

Proposed Methodology. We propose a combination of study design and statistical anal-
ysis to quantify the influence of arbitrary factors, such as word length, sentiment polarity, or
dependency relations. We collect explainees’ subjective interpretations of the saliency scores
in a crowdsourcing setup. We relate this interpretation to the original explanation considering
various potentially influencing factors using an ordinal GAMM (we refer to our brief introduc-
tion to GAMMs in Section 2.4.2.5). The result from this comparison is an answer on which

of the a priori candidate explanatory factors indeed have significant effect on the explainee’s
interpretation and how these factors functionally affect interpretation.
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5.1.1.5. Study Methodology Specification

The study consists of two phases: collecting subjective importance interpretations (Sec-
tion 5.1.1.5) and analyzing responses with an adequate statistical model (Section 5.1.1.5).
We release the collected data and analysis code.2

Collecting Self-reported Importance Ratings. In our main study, we investigate the
interpretation of color-coding saliency visualization of the feature-attribution by crowdsource
laypeople (variations on this study will be described later). We measure the perceived impor-
tance of a word within a saliency score explanation by directly probing human self-reported
word importance. In this instance, we ask “How important (1-7) do you think the word "X"
was to the model?” (Figure 5.2). We collect answers on a single-item unipolar 7-point Likert
scale ranging from not important at all to very important.

Texts: We use sentences from the Universal Dependencies English Web Treebank (Silveira
et al., 2014).3 This treebank contains comprehensive annotation, including dependency rela-
tions of sentences, stemming from various domains, such as newsgroups or online reviews.
We use sentences from the reviews group for a plausible framing of a sentiment analysis task.
We choose sentences without sub-token dependency relations (e.g., excluding “it’s” because
displaying it as two tokens breaks the orthography) and with unique word occurrences (i.e.,
excluding sentences that contain a word several times). From this subset we remove length
outliers: sentences with a number of tokens longer than one standard deviation above the mean
(concretely, eleven tokens). We randomly select 150 sentences to be used.

Saliency Scores: We assign random saliency scores to each token to uniformly sample the
space of saliency intensities. We are, at this stage, not interested in using a “real” model or
saliency score (e.g., attention or Integrated Gradients), as we investigate general perception
of arbitrary scores. It is therefore useful to create saliency scores that “do not make sense”
because a saliency score should reflect the model’s reasoning which might very well not make
sense at all. We study two “real” saliency scores later in Section 5.1.1.6 (Integrated Gradients)
and Section 5.1.2 (SHAP).

Study Interface: See Figure 5.2 for the rating collection interface. We display all sentences
using monospaced font and fixed whitespaces to obtain a direct mapping between the number
of characters and the color area for each word (ligatures and other typographic attributes of
non-monospaced fonts would break this mapping).

2https://github.com/boschresearch/human-interpretation-saliency
3https://github.com/UniversalDependencies/UD_English-EWT
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Procedure: We ask participants to rate the importance of a randomly-selected word in the
sentence.4 We show all 150 sentences from the described review dataset to each participant,
displayed in a randomized order per participant. Saliency scores for all tokens are randomized
for each participant (such that we collect responses to many different saliency maps, rather
than numerous responses for the same set). We do so because our aim is not to obtain accurate
(mean) estimates of single ratings as one would do in a corpus annotation, but to collect rich
data to build an accurate model describing the underlying general phenomenon. For each
sentence, we collect the participant’s importance rating, the completion time, and a voluntary
free-text comment. We choose to not include a dedicated training phase, e.g., showing the
participants ten explanation instances before starting the data collection as we explicitly want
to study learning effects. These can be crucial in real-world applications: e.g., should we
find a decaying learning effect, an effective model audit should ensure to include a sufficient
number of model predictions. To filter out (a) careless responses and (b) noisy responses due
to decreased participant attention towards the end of the study, we insert three trap sentences
at random positions in the last two thirds of the real sentences. See an example and more
integration details in Figure A.14 in Appendix A.5.1.

Participants: We recruit 50 crowdworkers on MTurk. One crowdworker failed all of the trap
sentences, so we exclude this worker’s responses and recruit one additional worker. All other
participants successfully passed all trap sentences. In total, this yields 7500 importance ratings.

Factors of Saliency Perception. For our set of candidate factors, we model factors
that are motivated by the three types of biases: anthropomorphic and belief biases, visual
biases, and learning effects. Each factor is tested for statistical significance on the explainees’
interpretations. Table 5.1 lists the factors we investigate in this subsection. Selected factors
include: (i) word length as longer words correspond to a larger colored draw area, which we
hypothesize influences visual perception bias, (ii) word polarity as we present participants a
sentiment classification task and expect that the participants’ own assessment of word impor-
tance influences their perception of how important it is to the model, which we hypothesize
is an instance of belief bias, (iii) display index as we hypothesize that participant ratings are
affected by temporal effects, such as learning, (iv) word position as we hypothesize that, e.g.,
words at the center of a sentence are perceived more strongly due to the center bias observed
in various eye-tracking studies, i.a., for natural scenes (Tseng et al., 2009). We derive word

4Alternatively, one can imagine a setting in which participants rate all words within the sentence. We choose to
ask for single-word ratings to (i) avoid carry-over effects from ratings of the first to the last words and (ii)
collect ratings of more sentences within the same experiment time compared to splitting the set of sentences
over participants which would introduce further dependencies in the statistical analysis.
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Factor Description Significant Effects
EN DE EN-IG

Saliency The color intensity specified as the saturation value (S ∈ [0, 1])
in a (H,S, V ) color triple (Smith, 1978), e.g., (0°,0.5,1.0) (■)
and (0°,0.25,1.0) (■).

✓ ✓ ✓

Word length The number of characters in a word, e.g., 7 for “example”. ✓ ✓ ✓

Word frequency The word’s normalized frequency, estimated on a large corpus. ✓

Sentence length Number of words in the sentence. ✓ ✓

Display index The sentence’s position within a sequence of sentences (e.g., the
third sentence in the sequence of 150 sentences). This relates to
temporal effects such as learning.

✓ ✓

Sentiment polarity The sentiment polarity of a word (defined via its lemma) ∈
[−1, 1].

✓ –

Saliency rank Normalized rank of a word’s saliency score (i.e. color intensity)
in comparison to the other words in its sentence ∈ [0, 1].

✓ ✓

Word position The index of the token’s position within its sentence. ✓

Capitalization The word’s capitalization, e.g., “example”, “Example” or “EX-
AMPLE”.

✓

Dependency relation Dependency relation to its parent within the dependency graph
(36 types for EN).

✓

Table 5.1.: List of factors that presupposedly affect saliency explanation perception along
with the findings of our three user studies. EN refers to the English sentiment
classification study, DE to the German fact checking study and EN-IG to the English
sentiment classification study using Integrated Gradients as feature attribution
method (without correction visualizations).

frequencies from the WikiMatrix corpus (Schwenk et al., 2021) and sentiment polarities from
SentiWords (Gatti et al., 2016).

Statistical Analysis Using GAMMs. Given a set of inputs for which there are the feature-
attribution scores and the interpreted importance scores, we describe the analysis methodology
aiming to derive the possible input factors that cause a discrepancy between the two.

Ordinal Generalized Additive Mixed Model: We analyze the collected ratings of perceived
importance using an ordinal GAMM. Its key properties are that it (i) models the ordinal
response variable (i.e., the importance ratings in our setting) on a continuous latent scale
(ordinal generalized), which is (ii) modeled as a sum of smooth functions of covariates
(additive) and (iii) accounts for random effects (mixed). The continuous latent scale is linked
to ordinal categories by estimating threshold values that separate neighboring categories. The
smooth functions can comprise single covariates (univariate smooths), such as f1(x1) or
combinations of multiple covariates, such as f2(x2, x3). Random effects allow to account
for, e.g., systematic differences in individual participants’ rating behavior. For example, a
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specific participant might have a tendency to give overall higher ratings than other participants.
Including a random effect allows to disentangle this influence on the response variable from
the influence of the covariates in question (such as word length) and thereby offers a clearer
view on these fixed effects. The GAMM analysis enables us (i) to make statements about which
factors significantly influence saliency perception, without prescribing any notion of “correct
perception” and (ii) to study the relation between these factors and participants’ importance
ratings in detail, via an interpretation of the model’s parametric terms (categorical factors) as
well as smooth terms (numeric factors). We provide a brief introduction to ordinal GAMMs in
Section 2.4.2.5.

Model Details: We include all factors listed in Table 5.1 into our model formula. We use
smooth terms for numeric factors and parametric terms for categorical factors. Additionally,
we include tensor product interactions for all pairs of smooth terms.5 In order to statistically
account for potentially confounding effects of individual participants or sentences, we include
random intercepts as well as random slopes for each participant and each sentence. Before
fitting the model, we remove a small number of outlier ratings. We remove outliers from the
initial 7500 importance ratings by excluding words with 20 or more characters (8 ratings) and
ratings with a completion time of 60 seconds or more (50 ratings), leaving 7442 ratings left for
analysis. We apply the identical filters to the study described in Section 5.1.3. For the German
study described in Section 5.1.1.6, we only apply the completion time filter. We use fast
REML for smoothness selection and apply variable selection via double-penalty shrinkage (i.e.,
additionally penalizing the splines’ null space). We fit the model using discretized covariates as
described in Wood et al. (2017) and Li and Wood (2020).6

5.1.1.6. Study Results, Interpretation, and Generalizations

In the following, we conduct three user studies. The first study (Section 5.1.1.6) investigates
saliency perception for English and a sentiment classification task. The second study (Sec-
tion 5.1.1.6) extends the investigation to German language and a fact checking task to evaluate
generalization of the findings. Since these two studies use random saliency scores so as to
not prescribe a specific feature-attribution method, we report a third study (Section 5.1.1.6)
which uses the wide-spread Integrated Gradient scores as a generalization to practically-used
attribution methods.

5Such a functional ANOVA decomposition is supported by mgcv and allows to study, e.g., the interaction
between word length and sentiment polarity in addition to the isolated main effects of word length and
sentiment polarity.

6We use R and mgcv (Wood, 2011; Wood et al., 2016; Wood, 2004, 2017, 2003) (1.8-38) to fit all our models.
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edf ref. df F p

s(saliency) 12.0967 19 728.8738 < 0.0001
s(display index) 1.0921 9 2.0872 0.0001
s(word length) 2.5416 9 4.1826 < 0.0001
s(sentence length) 0.9200 9 1.7531 0.0001
s(word frequency) 0.0011 9 0.0001 0.1082
s(sentiment polarity) 2.1281 9 1.6156 0.0065
s(saliency rank) 0.9580 9 4.4417 < 0.0001
s(word position) 0.0005 9 0.0000 0.7882

Table 5.2.: Effective degrees of freedom (edf), reference df and Wald test statistics for the
uniariate smooth terms of the first user study.

Sentiment Analysis in English. In the following, we discuss quantitative results based
on the fitted GAMM as well as qualitative findings based on the participants’ written feedback.
Table 5.2 shows statistics for the univariate smooth terms in the fitted GAMM. Figure 5.3
shows partial effect plots of the respective significant smooth terms. Regarding the parametric
terms, neither a word’s capitalization (df=2, F=1.84, p=0.16) nor its dependency relation
(df=35, F=1.17, p=0.24) show a significant effect on perceived importance. Regarding the
smooth terms, we observe that saliency score, display index, word length, sentence length,
word sentiment polarity, and saliency rank show significant effects on perceived importance. In
addition to the significant partial effects, we also find numerous significant interactions. We
provide the statistics of Wald tests for all pairwise tensor product interactions (following a
functional ANOVA decomposition) as well as summed-effect plots of all significant pairwise
interactions in Table A.5 and Figure A.15 in Appendix A.5.2. In the following, we discuss each
partial effect in detail.

Saliency (Figure 5.3a): The saliency (i.e., the color saturation) has the strongest impact on
perceived importance as the graph spans the by-far widest y-axis range of all plots in Figure 5.3.
Except for the saliency scores around 1, the entire graph shows a monotonous relation between
saliency score and perceived importance.

Display Index (Figure 5.3b): Participants’ ratings increased over the course of the experiment.
We hypothesize that the participants report more conservative ratings at the beginning of the
experiment to “leave enough room” for more extreme sentences and adapt their ratings to a
more “calibrated” level over the course of the experiment. Interestingly, this trend does not
seem to stop after our maximum number of 150 sentences. We leave the study of sufficient
amount of training required for the effect to reach a peak to future work.
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Figure 5.3.: Partial effect plots for all significant smooth terms (note that y-axes are scaled per
effect). Numbers in y-axis labels are estimated degrees of freedom (edf) of the
respective smooth. The shaded area displays confidence intervals (plus and minus
one standard error) including uncertainty about the overall mean.

Word Length (Figure 5.3c): With increasing word length, importance ratings rise up until a
length of approximately eight characters and decrease again afterward. We hypothesize that
the initial increase corresponds to an increase in the colored area that a longer word directly
causes, as the saliency score is visualized within a box that is proportional to the number of
characters. To interpret the subsequent decrease in perceived importance, we consider the
interactions between word length and other factors. We find significant pairwise interactions of
word length with (i) saliency, (ii) display index, and (iii) word frequency (Appendix A.5.2). For
the interaction with display index, we observe that the decreasing effect of high word lengths
grows with increasing display index up until around the 55th sentence. After this point, the
effect decreases. While the latter decrease can be explained by the partial effect of increasing
ratings with higher display indices (as shown in Figure 5.3b), the former decrease demands
detailed investigation in future work.
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Sentence Length (Figure 5.3d): Importance ratings decrease for words in longer sentences.
A longer sentence leads to a higher number of color samples and therefore also to a larger
expected color range. We argue that such an increased color range inhibits users to make very
high importance ratings due to a missing “maximum color” anchor.

Sentiment Polarity (Figure 5.3e): The effect of a word’s lemma’s sentiment polarity on
importance ratings. We observe a parabola-shaped curve with a minimum at slightly-positive
sentiment. To the left, importance ratings increase with increasingly negative polarity, and to
the right importance ratings increase with increasingly positive polarity. This suggests that
users’ ratings of “what was important to the model when classifying the sentence” are biased
by their answer to “what is important to me when classifying the sentence myself”. Such
a substitution of a presumably complex-to-compute target attribute with a simpler heuristic
attribute is a known cognitive bias and often referred to as attribute substitution or substitution

bias (Kahneman and Frederick, 2002).

Saliency Rank (Figure 5.3f): The partial effect of a word’s normalized saliency rank on
participants’ importance ratings. We normalize the rank by dividing by sentence length, as
low ranks (i.e., larger numbers) would otherwise be strongly correlated to sentence length, and
potentially cause stability issues within the model estimation. We observe that an increased
rank (a value of one corresponds to the last rank, i.e., the lowest saliency score) corresponds to
a decrease in rated importance. In contrast to the effect of saliency score shown in Figure 5.3a,
the saliency rank is not only a property of a word but of a word in context of its sentence. A
word’s saliency score can remain unchanged while at the same time, its rank can be arbitrarily
modified by changing the saliency scores of the other words in its sentence. We argue that the
significant effect of saliency rank indicates that users interpret saliencies in relation to each
other, i.e., their judgments are relative and lack a fixed anchoring point. This is supported by
the qualitative analysis discussed in the following.

In addition to the statistical evaluation, we also evaluate the participants’ voluntary free-text
comments. Table 5.3 shows a selection of comments grouped into four categories:

Relative Judgment: Participants explicitly state that they make relative importance judgments.
This supports our argumentation of relative judgments discussed for the effects of sentence
length and saliency rank.

Own Opinion: Similarly, participant comments support our hypothesis that users’ ratings
are subject to the cognitive bias of attribute substitution as discussed for the effect of word
sentiment polarity.
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Type Sentence & Saliency Rating Comment

re
la

tiv
e

Best Electrician in

Florence

2 "Best" highlighted in the light pink was not scored as high as the other
words in deeper shades of red, so I assume the model didn’t find it very
important. (P11)

Absolutely amazing job ! 3 I see 4 different levels of highlights. Absolutely seems to be the third
darkest so that’s why I chose 3 (P20)

ow
n

op
in

io
n Room was amazing . 3 I am uncertain why the period at the end of the sentence would be

important, so I choose a 3, even though the AI coded it as red color.
(P26)

best 2 I would think that if it’s one word then the word should be important.
But I don’t think it is important because it’s such a light color (P20)

lig
ht

co
lo

r Would do business with

them again .

1 the symbol has no color code around it at all so I chose 1 (P26)

David Bundren is the

Tire GooRoo .

1 It probably didn’t even notice the last name (P44)

ot
he

r

Listened to my problem

and took care of it .

7 Now I understand the range of red colors better. "it" outside of the
phrase "care of it" is meaningless, but since blanks between words are
NOT colored, I have to think that AI is judging "it" by itself. (P39)

Great Place ! 7 well you state that the redder the word is, the more influence it
has...that’s pretty red. (P44)

Table 5.3.: Comments of the participants of the English sentiment study. Participants were
asked to rate the underlined word or symbol.

Light Color: Participants seem to make a categorical distinction between very light color and
seemingly no color although this distinction does not exist in terms of the attribution score.
This can be important when communicating very low influences and should be addressed in
more detail in future work.

Other: Miscellaneous comments on, e.g., issues of word-level attribution and the resulting
ambiguity in interpretation.

Generalization Across Tasks and Languages: Fact Checking in German. So far,
we found indication that numerous factors (word length, saliency rank, etc.) significantly influ-
ence users’ subjective importance ratings. Two important limitations are that (i) the findings
are limited to English and (ii) they are limited to one AI task (sentiment classification). To
assess whether the findings do generalize to another language and another task, we repeat the
study identically with German sentences from the PUD Corpus7 with a fact checking AI task.
We collect responses from 25 German-speaking participants from a participant pool including
Germany, Austria, and Switzerland. In total, this corresponds to 3750 ratings.

7https://universaldependencies.org/treebanks/de_pud/index.html.
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Confirmed Effects: Our analysis confirms the significant effects of saliency, display index,
word length, and sentence length. Figure 5.4 displays the respective partial effect plots. While
the smooths for saliency (Figure 5.4a) and sentence length (Figure 5.4d) show high similarity
to the respective smooths of the English study (see Figures 5.3a and 5.3d), we observe slight
differences for display index (Figures 5.4b and 5.3b) and word length (Figures 5.4c and 5.3c).
While the English display index smooth grows more or less linearly (edf=1.09), the respective
German smooth reaches a plateau after around half the sentences (edf=1.60). We hypothesize
that such a saturation effect will also be visible for English, but requires a larger number of
sentences. We argue that this is caused by the fact that the sentences in the German study
are longer than in the English study, which makes participants of the German study see more
colored words and thereby “calibrates” their ratings faster in terms of number of sentences.
Similarly, the German word length smooth saturates after around 15 characters, while the
English smooth decreases after around eight characters. We hypothesize that this difference can
be attributed to the overall longer words in German as well as the differences in compounding.
The effect of saliency rank cannot be confirmed in the German experiment. Like in the English
study, we find no indication that word frequency has a significant effect on importance ratings.
We provide test statistics of parametric and smooth terms (univariate smooths and pairwise
interactions) as well as coefficient estimates in Appendix A.5.3. As in the English study, we
additionally qualitatively analyze the participants’ free-text comments and observe (as in the
English study) numerous instances for which participants mix their own estimate of importance
with the communicated importance. We provide exemplary instances in Appendix A.5.3.

Additional Effects: In addition to the effects that we already observed in the English study, we
also find that the word’s position within the sentence (Figure 5.4e) as well as capitalization and
dependency relation have significant effects on importance ratings. A full list of coefficient
estimates along with further details is provided in Appendix A.5.3. The estimate for fully
capitalized words is 1.91 (SE=0.96), the respective estimate for words with the first letter capi-
talized is 0.41 (SE=0.12).8 This confirms the intuition that fully capitalized words receive the
highest importance ratings, followed by first-letter-capitalized words. We argue that this effect
— in particular for first-letter-capitalized words — is more visible in the German experiment as
German uses more frequent capitalization (e.g., for all nouns). Regarding dependency relations,
the highest estimate can be observed for temporal modifiers (obl:tmod, β = 1.70, SE=0.55)
like “today” and numerical modifiers (nummod, β = 1.39, SE=0.36) like “one”. The lowest
estimate can be observed for clausal modifier of nouns (acl, β = −1.22, SE=0.64) like “sees”

8The estimate for lower-cased words is fixed to zero as the reference level. For dependency relations, we choose
the (most frequent) punctuation relation.

135



5. Human Perception and Explanations

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

saliency

s(
sa

lie
nc

y,
8.

21
)

(a) Saliency (saturation)

0 50 100 150

3.
0

3.
5

4.
0

4.
5

5.
0

display index

s(
di

sp
la

y 
in

de
x,

1.
6)

(b) Temporal display index

5 10 15 20

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

word length

s(
w

or
d 

le
ng

th
,2

.0
4)

(c) Word length

5 10 15

3.
0

3.
5

4.
0

4.
5

5.
0

sentence length

s(
se

nt
en

ce
 le

ng
th

,0
.9

1)

(d) Sentence length

5 10 15

3.
0

3.
5

4.
0

4.
5

5.
0

word position

s(
w

or
d 

po
si

tio
n,

2.
44

)
(e) Word position

Figure 5.4.: Partial effect plots for all significant smooth terms (note that y-axes are scaled
per effect) for the German experiment. Numbers in y-axis labels are estimated
degrees of freedom (edf) of the respective smooth. The shaded area displays
confidence intervals (plus and minus one standard error) including uncertainty
about the overall mean. (a) refers to color saturation.

in “the issues as he sees them” and indirect objects (iobj, β = −0.48, SE=0.52) like “me” in
“she gave me the book”. We hypothesize that the grammatical function effect is larger here
than in the previous experiment because, i.a., the use of temporality, numerals, and embedded
clauses are more important for determining factuality than for determining sentiment.

Generalization to Model-based Saliencies. We want to assess whether our findings
on the random saliency scores used in the previous two studies also hold for practically-used
feature attribution scores. Therefore, we conduct an additional user study using Integrated
Gradients (Sundararajan et al., 2017) instead of random saliencies.9

Study Modification: Within-Subject Design: We combine the evaluation of Integrated Gradient
scores with a within-subject evaluation of three visualization methods which we detail in

9We make use of the Language Interpretability Toolkit (Tenney et al., 2020) to obtain normalized Integrated
Gradient scores with respect to the SST2-base sentiment model and 30 interpolation steps.
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Section 5.1.3. In this section, we focus on the unmodified visualization as it is used in the
two previously described studies. In the remainder of this section, this visualization method is
referred to as saliency. We sample another 150 sentiment sentences from the sentence pool
described in Section 5.1.1.5 and present them in the same sentiment classification context.
Instead of using one saliency visualization method for all 150 sentences, we now use the three
visualizations and show each participant 50 sentences per visualization.10 We collect 9000
importance ratings from 60 participants and exclude participants from the previous study to
avoid carry-over effects from previous exposures.

Model Modification Using Factor-Smooth Interactions: We again use an ordinal GAMM
using the same covariates as in Section 5.1.1.5. We add a parametric term for the visualization
condition to account for overall differences in rating intensities between the visualization
conditions and include a random intercept to account for visualization order. We use factor-
smooth interactions for each variable which leads to separate estimates for each variable
per visualization (e.g., three smooths for word length, one per visualization). First, this
yields smooths for the “original” saliency visualization, i.e., the heatmap visualization without
corrections. In contrast to our first study, these smooths now correspond to effects on Integrated
Gradient saliencies instead of random saliencies. First, comparing the smooths allows us to
compare how factors influence importance ratings across visualizations, e.g., to assess whether
the bar visualization did mitigate the biasing effect of word length. We discuss the respective
results in Section 5.1.3.3. Second, analyzing the smooths relating to the original visualization
allows us to evaluate which of the effects we observed in the first study do generalize to the
Integrated Gradients attribution scores. We discuss the respective results in the following.

Results: We find significant effects of saliency score, word length, relative word frequency,
and saliency rank. We provide details and test statistics on all parametric coefficients as well
as smooth terms in Table A.17 in Appendix A.8. All of these variables except relative word
frequency were also found to be significant in our first study and all of them except relative word
frequency and saliency rank were confirmed in our German study. The significant influence of
relative word frequency was observed for the first time.

Overall, three studies confirmed the presumably biasing influence of word length, (pairs of)
two studies respectively confirmed the effect of sentence length, display index, and saliency
rank, and one study (each) found significant effects of word position, sentiment polarity, word
frequency, capitalization, and dependency relation. Together, these reflect the three sources of
bias: anthropomorphism and belief bias, visual perception, and learning effects.

10The order of visualization methods is balanced across participants. Sentence order is fixed to ensure identical
ordering effects for the three visualizations.
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Figure 5.5.: Illustration of the user study. We ask laypeople to rate the perceived importance
of words following a word-importance explanation (grey). Then we analyze the
effect of the importance of neighboring words on this interpretation, conditioned
on the relationship between the words across various measures (orange).

5.1.2. Neighboring Words: Assimilation and Contrast

So far, we explored how word features (such as word length and capitalization) and sentence
features (such as sentence length) affect human interpretation of importance scores visualized
using heatmaps. We demonstrated that numerous factors have a distorting effect on human
importance ratings. In the following, we extend our analysis to phrase-level features and their
influence on the perceived importance of a particular word: Text is naturally constructed and
comprehended in various levels of granularity that go beyond the word level (Chomsky, 1957;
Xia, 2018). For example (Figure 5.5), the role of the word “York” is contextualized by the
phrase “New York” that contains it. Given an explanation that attributes importance to “New”
and “York” separately, what is the effect of the importance score of “New” on the explainee’s
understanding of the importance “York”? We investigate this question in the following.

As we demonstrated in Section 5.1.1, it is not trivial for an explanation of an AI system
to successfully communicate the intended information to the explainee (Miller, 2019; Dinu
et al., 2020; Fel et al., 2021a; Arora et al., 2021). In the case of feature-attribution explana-
tions (Burkart and Huber, 2021; Tjoa and Guan, 2021), which commonly appear in NLP as
explanations based on word importance (Madsen et al., 2023; Danilevsky et al., 2020), we
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must understand how the explainee interprets the role of the attributed inputs on model outputs
(Nguyen et al., 2021; Zhou et al., 2022). Research shows that it is often an error to assume that
explainees will interpret explanations “as intended” (Gonzalez et al., 2021; Ehsan et al., 2021).

As our approach discussed in Section 5.1.1, the following study involves two phases (Fig-
ure 5.5). First, we collect subjective self-reported ratings of importance by laypeople, in a
setting of color-coded word importance explanations of a fact-checking NLP model (Sec-
tion 5.1.2.1, Figure 5.6). Then, we fit a GAMM to map the importance of neighboring words

to the word’s rating, conditioned on various a priori measures of bigram constructs, such as the
words’ syntactic relation or the degree to which they collocate in a corpus Kolesnikova (2016).

We observe significant effects (Section 5.1.2.3) for (i) left-adjacency vs. right-adjacency, (ii)
the difference in importance between the two words, and (iii) the phrase relationship between
the words (common phrase vs. no relation). We then deduce likely causes for these effects
from relevant literature (Section 5.1.2.4). We are also able to reproduce our findings from
Section 5.1.1 in a different English language domain (Section 5.1.2.2). We release the collected
data and analysis code.11

We conclude that laypeople’s interpretation of word importance explanations in English can

be biased via neighboring words’ importance, likely moderated by reading direction and phrase
units of language. Future work on feature-attribution should investigate more effective methods
of communicating information (Mosca et al., 2022a; Ju et al., 2022), and implementations
of such explanations should take care not to assume that human users interpret word-level
importance objectively.

5.1.2.1. Study Specification

We first collect subjective interpretations of word-importances from laypeople, and then test for
significant influence in various properties on the collected ratings — in particular, properties of
adjacent words to the rated word.

Collecting Perceived Importance. As in Section 5.1.1, we ask laypeople to rate the
importance of a word within a feature-importance explanation (Figure 5.6). We use the MTurk
crowdsourcing platform to recruit a total of 100 participants.12

Explanations: As in Section 5.1.1, we use color-coding visualization of word importance expla-
nations as the more common format in the literature (e.g., Arras et al., 2017; Wang et al., 2020;

11https://github.com/boschresearch/human-interpretation-saliency
12We select English-speaking raters from English-speaking countries and analyze responses from 64 participants

for our first and 36 participants for our second experiment. Details are provided in Appendix A.6.1.
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Figure 5.6.: Screenshot of the rating interface.

Tenney et al., 2020; Arora et al., 2021). We use importance values from two sources: Random-
ized, and SHAP-values13 (Lundberg and Lee, 2017) for facebook/bart-large-mnli14

(Yin et al., 2019; Lewis et al., 2020) as a fact-checking model.

Task: We communicate to the participants that the model is performing a plausible task of
deciding whether the given sentence is fact or non-fact (Lazarski et al., 2021). The source texts
are a sample of 150 Wikipedia sentences from the Wikipedia Sentences collection.15 in order to
select text in a domain that has a high natural rate of multi-word chunks.

Procedure: As in Section 5.1.1, we ask the explainee: “How important (1-7) do you think the
word [...] was to the model?” and receive a point-scale answer with an optional comment field.
This repeats for one randomly-sampled word in each of the 150 sentences.

Measuring Neighbor Effects. Ideally, the importance ratings of a word will be explained
entirely by its color-coded saliency. However, as we showed in Section 5.1.1, this is not the case.
Here, we are interested in whether and how much the participants’ answers can be explained by
properties of neighboring words, beyond what can be explained by the rated word’s saliency.

Modeling: We analyze the collected ratings using an ordinal GAMM. We provide a brief
introduction to GAMMs in Section 2.4.2.5. Its key properties are that it models the ordinal
response variable (i.e., the importance ratings in our setting) on a continuous latent scale as a
sum of smooth functions of covariates, while also accounting for random effects.16

13As the largest observed SHAP value in our data is 0.405, we normalize all SHAP values with 0.405−1 to cover
the full color range.

14https://huggingface.co/facebook/bart-large-mnli
15https://www.kaggle.com/datasets/mikeortman/wikipedia-sentences
16Random effects allow to control for, e.g., systematic differences in individual participants’ rating behavior, such

as a specific participant with a tendency to give overall higher ratings than other participants.
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Measure Examples Description

First-order constituent highly developed, more than,
such as

Smallest multi-word constituent sub-
trees in the constituency tree.

Noun phrase tokyo marathon, ski racer, the
UK

Multi-word noun phrase in the con-
stituency tree.

Frequency the United, the family, a
species

Raw, unnormalized frequency.

Poisson Stirling an American, such as a
species

Poisson Stirling bigram score.

φ2 Massar Egbari, ice hockey,
Udo Dirkschneider

Square of the Pearson correlation co-
efficient.

Table 5.4.: Illustrative subset of our phrase measures.

Precedent model terms: We include all covariates tested in Section 5.1.1, including the rated
word’s saliency, word length, etc., in order to control for them when testing our new phrase-level
variables. We follow our respective controls for all precedent main and random effects and
exclude the pairwise interactions due to increased stability.

Novel neighbor terms: The following variables dictate our added model terms as the basis for
the analysis: Left or right adjacency, rated word’s saliency (color intensity), saliency difference
between the two words, and whether the words hold a weak or strong relationship. We include
four new bivariate smooth terms (Figure 5.7) based on the interactions of the above variables.

We refer to a bigram with a strong relationship as a chunk. To arrive at a reliable measure
for chunks, we methodically test various measures of bigram relationships, in two different
categories (Table 5.4): syntactic, via dependency parsing, and statistical, via word collocation in
a corpus. Following Frantzi et al. (2000), we use both syntactic and statistical measures together,
as first-order constituents among the 0.875 percentile for φ2 collocations (our observations are
robust to choices of statistical measure and percentile, see Appendix A.6.2).

5.1.2.2. Reproducing Prior Results

The described experiment largely overlaps with our experiments described in Section 5.1.1
in which we investigate the effects of word-level and sentence-level features. Thus, we
investigate whether we can confirm our previous findings in a different language domain
(medium-form Wikipedia texts vs. short-form restaurant reviews in Section 5.1.1), and SHAP-
values vs. Integrated Gradients Sundararajan et al. (2017). The result is positive: We reproduce
our previously reported significant effects of word length, display index, capitalization, and
dependency relation for randomized explanations as well as SHAP-value explanations (details
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(e)df Ref.df F p

s(saliency) 11.22 19.00 580.89 <0.0001
s(display index) 3.04 9.00 22.02 <0.0001
s(word length) 1.64 9.00 16.44 <0.0001
s(sentence length) 0.00 4.00 0.00 0.425
s(relative word frequency) 0.00 9.00 0.00 0.844
s(normalized saliency rank) 0.59 9.00 0.37 0.115
s(word position) 0.58 9.00 0.18 0.177
te(left diff.,saliency): no chunk 3.12 24.00 1.50 0.002
te(left diff.,saliency): chunk 2.24 24.00 0.51 0.038
te(right diff.,saliency): no chunk 2.43 24.00 0.47 0.049
te(right diff.,saliency): chunk 0.00 24.00 0.00 0.578

capitalization 2.00 3.15 0.042
dependency relation 35.00 2.92 <0.0001

Table 5.5.: (Effective) degrees of freedom, reference degrees of freedom and Wald test statistics
for the univariate smooth terms (top) and parametric terms (bottom).

in Appendix A.6.1). This result reinforces prior observations that human users are at significant
risk of biased perception of saliency explanations despite seemingly objective visualization.

5.1.2.3. Neighbor Effects Analysis

In the following, we present our results for our two experiments using (a) random saliency
values and (b) SHAP values.

Randomized Explanations. Regarding our additionally introduced neighbor terms, Fig-
ure 5.7 shows the estimates for the four described functions (left/right × chunk/no chunk).
Table 5.5 lists all smooth and parametric terms along with Wald test results (Wood, 2013a,b).
Appendix A.6.1 includes additional results.

Asymmetric influence: Figure 5.7a vs. Figure 5.7b and Figure 5.7c vs. Figure 5.7d reveal
qualitative differences between left and right neighbor’s influences. We quantitatively confirm
these differences by calculating areas of significant differences (Fasiolo et al., 2020; Marra and
Wood, 2012). Figures 5.8a and 5.8b show the respective plots of (significant) differences and
probabilities for the chunk case. Overall, we conclude that the influence from left and right
word neighbors is significantly different.

Chunk influence: We investigate the difference between neighbors that are within a chunk with
the rated word vs. those that are not. We find qualitative differences in Figure 5.7 as well as
statistically significant differences (Figures 5.8c and 5.8d).
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Figure 5.7.: Left and right neighbors. (∗) marks statistically significant smooths. Colors are
normalized per figure.

Saliency moderates neighbor difference: Figure 5.7 shows that the effect of a neighbor’s
saliency difference (x-axis) is moderated by the rated word’s saliency (y-axis). We confirm this
observation statistically (Figure 5.8e) by comparing functions at a rated word saliency of 0.25
and 0.75, using unidimensional difference plots (Van Rij et al., 2015).

Combined effects: We identify two general opposing effects: assimilation and contrast. We bor-
row this terminology from psychology and will discuss links to related work in Section 5.1.2.4.
We refer to assimilation as situations where a word’s perceived saliency is perceived as more
(or less) important based on whether its neighbor has a higher (or lower) saliency. We find
assimilation effects from left neighbors that form a chunk with a moderate saliency (0.25–0.75)
rated word. We refer to contrast as situations where a word’s perceived saliency is perceived as
less (or more) important based on whether its neighbor has a higher (or lower) saliency. We
find contrast effects from left and right neighbors that do not form a chunk with the rated word.
Note that although Figure 5.7d suggests a contrast effect, the color normalization inflates the
minimal differences in this figure and the Wald tests did not signal a significant effect.
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Figure 5.8.: Difference plots. Red x-axis in (e) marks significant differences.
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SHAP-value Explanations. For the SHAP-value explanations, we observe effects that (a)
are shared with our observations for randomized saliencies and (b) differ from these.

Shared Results: Our SHAP-value experiment confirms our observation of (i) asymmetric
influence of left/right neighbors (Figures A.22a and A.22b), (ii) chunk influence (Figures A.22c
and A.22d), (iii) a moderating effect of saliency (Figure A.22e), and (iv) assimilation and
contrast effects (Figure A.21d).

Variant Results: Notably, our SHAP-value results differ from our randomized saliency results
with respect to the effects of left/right direction. For the randomized saliency experiment, we
observe assimilation effects from left neighbors within a chunk (Figure 5.7c) and contrast
effects from left and right neighbors outside a chunk (Figures 5.7a and 5.7b). For our SHAP-
value experiment, we observe assimilation (low-rated word saliencies) and contrast effects
(medium normalized rated word saliencies) from right neighbors within a chunk (Figure A.21d).
We hypothesize that this difference can be attributed to the inter-dependencies of SHAP values
as indicated in Figure A.23 in Appendix A.6.

Overall Results. Overall, we find that (a) left/right influences are not the same, (b) strong
bigram relationships can invert contrasts into assimilation for left neighbors, (c) extreme
saliencies can inhibit assimilation, and (d) biasing effects can be observed for randomized
explanations as well as SHAP-value explanations.

5.1.2.4. Theoretical Grounds in Psychology

The assimilation effect is, of course, intuitive — it means that neighbor’s importance “leaks”
from neighbor to the rated word for strong bigram relationships. But is there precedence for the
observed assimilation and contrast effects in the literature? How do they relate to each other?
Psychology investigates how a prime (e.g., being exposed to a specific word) influences human
judgment, as part of two categories: assimilation (the rating is “pulled” towards the prime) and
contrast (the rating is “pushed” away from the prime) effects (i.a., Bless and Burger, 2016).

Förster et al. (2008) demonstrate how global processing (e.g. looking at the overall structure)
vs. local processing (e.g., looking at details) leads to assimilation vs. contrast. We argue that
some of our observations can be explained with their model: Multi-word phrase neighbors may
induce global processing that leads to assimilation (for example, in the randomized explanation
experiments, left neighbors) while other neighbors (in the randomized explanation experiments,
right neighbors and unrelated left neighbors) induce local processing that leads to contrast.
Future work may investigate the properties that induce global processing in specific contexts.
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(a) Original saliency. (b) Corrected saliency. (c) Bars.

Figure 5.9.: The three different saliency visualization methods we compare.

5.1.3. Alternative Visualizations to Mitigate Biases

So far, we observed that various seemingly irrelevant factors influence human perception in
unintended ways from the explicit and objective saliency information across different languages,
tasks, and feature-attribution scores. Next, we explore two methods to decrease the bias in
human perception (Figure 5.9): (i) controlling for the bias by modifying the color-coding to
account for over-estimation and under-estimation of importance (over-estimated tokens will
receive decreased color saturation, and vice versa) (Figure 5.9b), (ii) replacing the color-coding
visualization with bar chart visualization (Figure 5.9c).

5.1.3.1. Model-Based Color Correction Technique

We compute an alternative color-coding visualization that a priori accounts for over-estimation
and under-estimation of tokens based on the data collected in the previous experiments. Here
we investigate whether it is possible to “correct” the explainees’ saliency perception by super-
imposing the initial saliency values with a correction signal.

We require a procedure that increases the saliency scores for words that are predicted to
be under-perceived (e.g., short words and words that appear in long sentences) and decrease
the saliency scores for words that are predicted to be over-perceived (e.g., words with a high
sentiment polarity or words that appear in short sentences). Briefly, the trained GAMM model
from the English sentiment study (Section 5.1.1.6) allows us to map a combination of a saliency
score together with word/sentence properties to a perceived importance score (on a continuous
latent scale). By grounding this prediction of perceived importance to a prediction conditioned
on a particularly chosen reference level, we can iteratively globally correct the explained
scores over the sentence such that the (predicted) perception bias is decreased in each iteration.
Table 5.6 displays examples of the application of this correction. In Appendix A.7, we discuss
the full algorithm including its components and motivating details, and provide an extended list
of example applications in Table A.16 as well as an example of the gradual correction over the
course of 100 correction steps in Table A.15.
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Saliency Bias Removed Bias

original Great people ! Great people !
94.9%

corrected Great people ! Great people !

original Horrible service . Horrible service .
100.0%

corrected Horrible service . Horrible service .

original I remain unhappy . I remain unhappy .
84.3%

corrected I remain unhappy . I remain unhappy .

Table 5.6.: Examples of the bias reduction procedure. The saliency column shows the saliency
explanations (how users would see them) before and after the bias correction
procedure. The bias column shows the color-coded bias estimates. Predicted over-
estimations are colored in red whereas predicted under-estimations are colored in
blue. More examples can be found in Table A.16 in Appendix A.7.

5.1.3.2. Bar Chart Visualization

As an alternative to color-coding visualization, we consider bar charts (Figure 5.9c): we
investigate whether a sufficiently distinct visualization will result in different perception. We
hypothesize that this is related to visual perception bias.

We note two visual qualities of bars that differentiate it from color-coding, and therefore
make it a relevant alternative visualization candidate: (i) The bars are communicated with
objective reference points of zero and one (the top and bottom of the draw area), while the
results in, i.a., Section 5.1.1.6 indicate that participants perceive colored saliency in relation to
each other, instead of in reference to zero and one (pure white and pure red, respectively) and
(ii) the draw area for the bars is separate from the draw area for the input text, in contrast to
color-coding, where they occupy the same space. This means that in color coding, for example,
a word with more characters will receive a larger area of color, in comparison to a shorter
word with the same color. As our studies in, i.a., Section 5.1.1.6 show, word length influenced
explainee perception. In the bar chart visualization scheme, all words are treated identically
within the draw area which communicates importance.

5.1.3.3. Results

We investigate how well the two proposed visualization alternatives counteract bias in user
perception within the study described in Section 5.1.1.6. We find that visualization has a
significant effect on importance ratings (df=2, F=35.45, p<0.0001) where the bar charts lead
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(c) Temporal display index.

Figure 5.10.: Selected summed-effects comparison plots of the visualization alternatives.

to lower importance ratings (β = −0.5991, SE=0.1579) and the correction method leads to
higher ratings (β = 1.1102, SE=0.2515). Regarding the visualizations’ effect on smooth terms,
we focus on color saturation, word length, and display index in Figure 5.10.

Figure 5.10a shows that the saliency scores’ effect on importance ratings is similar to the
original saliency and the bar visualizations, while the corrected visualization leads to higher
ratings in the lower end of the color saturation spectrum. These differences are neither “good”
nor “bad” — we argue that the similarity between the original saliency visualization and the
bar charts is remarkable as the two visualizations are fundamentally different.

Figure 5.10b shows that the biasing effect of word length in the original visualization is
successfully eliminated using the bar visualization as shown by the nearly constant smooth of
the bar visualization (edf=0.0009). This confirms our hypothesis that bar charts evade word
length bias. The correction visualization leads to a different effect than the original visualization,
however, this effect indicates a different but equally distorting bias of word length.

Figure 5.10c indicates a successful application of our color correction technique. While
the original visualization as well as the bar charts show a biasing effect regarding the model
smooths, the saliency correction visualization leads to a nearly constant smooth (edf=0.0009).
Regarding the original and the bar visualizations, the smooths indicate that, in contrast to the
original visualization, the bar visualization leads to an initial overestimation of importances
which decreases over time, while the original visualization lead to a respective underestimation.
However, a difference plot between the two conditions (see Figure A.31c in Appendix A.8)
shows no significant differences.

While these examples demonstrate indications for successful bias mitigation, we want to
note that this mitigation cannot be observed for most of the other variables, in particular not

148



5.1. Heatmaps Considered Harmful: Cognitive Biases and Saliency Explanations

for the effect of saliency rank, which we expected to be mitigated by the bar visualization. We
provide summed-effect comparison plots for all effects under investigation in Figure A.30,
difference plots between all conditions in Figures A.31 and A.32 as well as details and test
statistics on all parametric coefficients as well as smooth terms in Table A.17 in Appendix A.8.

Tying back to our initial categorization of biases, we observe that our proposed visualization
alternatives can successfully remove instances of visual bias (word length) and learning effect
bias (display index). We hypothesize that belief biases (such as sentiment polarity) exhibit more
distinct expression across individuals, which requires participant-adaptive correction methods
and should be addressed by online estimation of individual participant slopes and intercepts
within our GAMM model in future work.

5.1.4. Overall Discussion

Overall, our results show that supposedly irrelevant factors, such as word length do affect

how explainees perceive the influence of words in feature-attribution explanations, despite

the explanations explicitly communicating this influence. This is a surprising result, which
raises important questions for explainability in NLP, and in general, about the ability of feature-
attribution tools available today to convey the information that they intend to communicate:
Even in the case of a relatively straightforward explanation, such as directly informing impor-
tance regions in the input, cognitive biases of explainees run deep, and may erroneously affect
the understanding of the given information.

In a series of four studies, we demonstrate that (i) various word and sentence features distort
users’ explanation perception, (ii) distorting effects generalize across two languages and tasks,
(iii) apply to experimental random as well as real attribution scores, and (iv) neighboring words
affect each other’s importance perception via assimilation and contrast effects depending on
left/right neighborhood and whether they form a lexical chunk.

We explore two visualization alternatives to mitigate the effect of the observed biases and
show that bar charts and color correction result in better-aligned human assessments in our
setting on multiple bias factors. We urge researchers to not blindly trust that users perceive
explanations as communicated, and to investigate if our findings transfer to their respective
audience and context. We revisit and further refine our recommended bar chart visualization
based on additional findings from our study of perceived predictability in Section 5.2.
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EF-1 The system behaves in a predictable
manner. ×

EF-2 I can tell which responses the system will
likely give. ×

EP-1 I observed enough system responses to
predict how the system behaves. ×

EP-2 Based on past system responses, I know the
responses the system will likely give me. ×

AL-1 I can tell the reasons for the system’s
decisions. ×

AL-2 There is a consistent pattern in the system’s
behavior. ×

Example ratings result in an overall score of 4.3 (mean).

Table 5.7.: Final PSP scale with items, rating options, and a rating example. EF, EP, and AL
refer to the effective, epistemic, and aleatory aspects of predictability covered in
the scale. The example rating is indicated with “×” and illustrates how the six
ratings are linked to numeric scores which are averaged to obtain the total system
predictability score. The choice of the seven agreement anchors builds upon recent
findings on optimal conceptual anchor distances (Casper et al., 2020).

5.2. Perceived System Predictability: Scale

Development and Results

In this final section, we describe the development, validation, and usage of our novel PSP scale
depicted in Table 5.7. The PSP scale is a highly-economic 6-item Likert scale to measure facets
of perceived system predictability and is designed to be applicable to any system that takes
decisions or makes predictions, such as automated decision making (ADM) systems, chatbots,
robots, and many more.

In the following, we (i) outline why we need to measure PSP (Section 5.2.1), (ii) pro-
pose a theory of perceived predictability comprising three facets (epistemic, aleatory, and
effective predictability) (Section 5.2.2.1), (iii) develop a novel 6-item scale to measure PSP
(Section 5.2.2.2), (iv) evaluate our scale (Section 5.2.2.3), (v) use our scale to explore the effects
of explanations and system stochasticity, and (vi) explore how PSP is related to, i.a., prediction
correctness, trust, subjective information processing awareness (SIPA), and participants’ NFC
(Section 5.2.3).
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system

objective subjective

system usability
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Figure 5.11.: We propose a novel scale to measure PSP. PSP belongs to subjective self-reported
measures. We argue that it is necessary to assess subjective predictability in
addition to objective predictability and that we cannot resort to existing subjective
measures of related constructs.

5.2.1. The Need to Measure Perceived System Predictability

As we discussed in Section 4.2, the quality of explanations has numerous facets. Within this
thesis, we measured how accurately users perform a task with the help of a system (Section 3.2),
how much time users need to complete a task with a system (Sections 3.2 and 4.3), how usable
users rate the system to be (Sections 3.2 and 4.3), or as how intelligent, human-like, or helpful
users perceive the system to be (Section 3.2). As depicted in Figure 5.11, we can categorize
these measures into objective scores and subjective ratings as we discussed in Section 4.4.
While task performance and completion time are objective scores, ratings of usability and
perceived system characteristics are subjective ratings. In addition to our work, there are
numerous additional scores and ratings used in related work. We provide a non-exhaustive list
of scores and ratings that are especially relevant to assess explanation quality in Table 4.9 on
page 116 of this thesis.

A user’s ability of being able to predict a system’s behavior can be assessed on both, the
objective as well as the subjective side of evaluation measures. While objective predictability,
i.e., a user’s demonstrated ability to predict how the system will behave in an unseen situation,
has been assessed frequently (Goyal et al., 2019; Hase and Bansal, 2020; Wang and Vasconcelos,
2020; Wang and Yin, 2021), perceived predictability received less attention (Schulz et al., 2015;
Schrills et al., 2022).

In the following, we will elaborate on (i) why measuring objective predictability is not
enough, (ii) why we cannot resort to other subjective measures, and (iii) why we choose to
develop a novel measurement instrument to score PSP.

151



5. Human Perception and Explanations
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objective predictability:
"How will the model decide

for an unseen input ?"

perceived predictability:
"I can tell which repsponses the

system will likely give."

Figure 5.12.: We argue that measuring objective and perceived predictability reflect distinct
characteristics of the user’s mental model of a system. We use the metaphor of
two flashlights that illuminate separate aspects of the user’s mental model that
is, i.a., formed by the user’s experience with the system indicated by the left box
using plate notation.

5.2.1.1. Objective Measures of Predictability Are not Enough

It can be argued that measuring objective predictability is at least as informative or even more
informative than measuring subjective predictability. Why should one investigate how well
users feel to be able to predict a system’s behavior when their ability to do so can be measured
objectively? In the following, we motivate why we have to measure the subjective feeling in
addition to the objective performance. For this, we draw parallels to two related evaluation
settings: (i) measuring system usability in HCI and (ii) measuring the feeling of learning (FOL)
in educational research. We illustrate our argument in Figure 5.12.

Subjective Versus Objective Usability. Measuring usability is a key aspect of quan-
tifying user experience (Lewis, 2018). Similarly to our context, usability measures can be
grouped into subjective measures (e.g., obtained from user satisfaction questionnaires) and
objective measures (e.g., task completion time) (Nielsen and Levy, 1994; Hornbæk, 2006).
Nielsen and Levy (1994) study how objective and subjective measures are related within a
meta-analysis and found that — although there is an overall positive correlation — the two can
yield contradictory conclusions. For example, users were observed to consistently prefer an
interface with which they were slower than an alternative system with which they reached faster
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interactions before (Grudin and MacLean, 1985). Similarly, MacLean et al. (1985) observed
that users preferred a slower input method as long as it was not more than 20% slower than the
faster alternative. Hornbæk (2006) lists numerous arguments why both — subjective as well
as objective — usability measures should be assessed. Inter alia, Hornbæk (2006) notes that
objective and subjective measures can lead to different conclusions, for example, objective time
measures and subjectively experienced time were shown to differ (Eisler, 1976; Tractinsky and
Meyer, 2001; Czerwinski et al., 2001). Similarly, Hornbæk (2006) mentions the dissociation of
objective performance and perceived workload discussed by Yeh and Wickens (1988).

Feeling of Learning Versus Actual Learning. In our second example, we consider the
study of active learning classroom instructions (as opposed to passive lectures) of Deslauriers
et al. (2019). Students were evaluated on (a) what they objectively learned during a class and
(b) what they felt to have learned. While one may expect that the two measures are positively
correlated, Deslauriers et al. (2019) find that students that participate in an active learning
lecture (as opposed to a passive lecture) learn more but feel like they learn less. The authors
argue that this observation is an effect of an increased cognitive effort leading to (i) an increased
learning effect but at the same time causes (ii) a cognitive disfluency that students perceive as a
decreased learning effect. This cognitive disfluency and the corresponding feeling of learning
less can be major obstacles to the success and acceptance of active learning lectures as they
pose a threat to students’ motivation and engagement (Deslauriers et al., 2019). Measuring and
studying FOL, allowed the authors to identify this disconnect and propose suitable interventions.
If the authors would not have measured FOL, they would not have been able to uncover the
described effect and would not have been able to address the respective problems. Similarly,
we argue that measuring perceived predictability (in relation to objective predictability) can
identify and help to eliminate obstacles to, i.a., explainability that remain hidden without access
to an adequate measurement instrument.

5.2.1.2. Measuring Related Constructs Is not Enough

One might argue that, instead of measuring perceived predictability directly, it is sufficient
to study it indirectly via related constructs, such as trust, usability, or perceived helpfulness
(as depicted in Figure 5.11). While a strong relation between perceived predictability and
related constructs, such as trust is plausible (as we demonstrate in Section 5.2.3), we argue
that measuring perceived predictability enables insights beyond what we can explore with
related constructs. As we will show in Section 5.2.3, the relation between trust and objective
predictability differs from the relation between perceived and objective predictability.
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Prior work compared objective and subjective measures of explanatory systems and indi-
cates that subjective ratings are not predictive of objective measures of human interactions.
Concretely, Buçinca et al. (2020) found that trust is not predictive of user performance with
the system. Similarly, Hase and Bansal (2020) did not find that subjective explanation quality
ratings ("Does this explanation show me why the system thought what it did?") are predictive
of user correctness. One explanation of this phenomenon can be that (a) user-reported ratings
of explanatory systems are dissociated from their objectively observed interaction with these
systems in general. However, we want to raise attention that another explanation can be that (b)
the previously used subjective measures capture constructs that are too “distant” from the user’s
perceived system behavior to be predictive of their related objective measures. In Section 5.2.3,
we find that (i) perceived predictability is a significant predictor of objective predictability, and
(ii) that there is a significant negative association between trust and objective predictability.

5.2.1.3. The Need for a Novel Instrument

So far, we motivated why we need to measure perceived predictability. In the following, we
discuss existing instruments and argue why we need to develop a new instrument.

Schulz et al. (2015) investigate how properties of a function (such as smoothness) affect the
perceived predictability and ask participants to rate “how well could you predict this function?”
with a 1-100 slider. While we agree that this scale is a suitable choice within the context
studied by Schulz et al. (2015), we argue that we cannot apply it to general systems for two
reasons. First, the wording of the scale is tailored to rate “this function” which is less suitable
to refer to, e.g., a chatbot. While, of course, the wording can be adapted to “this system”,
this highlights the second problem which is the lack of demonstrated psychometric validity.
Concretely, we could only hope that “how well could you predict this system?” actually
measures perceived predictability. This problem applies to all single-item scales (i.e., scales
with a single question or statement) as a single item does not allow to estimate the item’s
correlation to the latent variable (perceived predictability). When using multiple items to
measure a construct, the items’ correlation to the latent variable can be indirectly quantified via
the item-item correlation (DeVellis and Thorpe, 2021). Even when ultimately only a single item
is retained, it is important to provide evidence that this item has a sufficiently strong relation
to the construct that is intended to be measured. Subjective ratings of explanatory systems
often rely on custom single-item scales that are applied without following a psychometric
development and validation process. While the resulting scales can still be valid, without a
dedicated analysis, there is no evidence that they actually are valid. An important exception is
the SIPA scale by Schrills et al. (2022). This scale builds upon the theory of situation awareness
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(Endsley, 1988) and collects ratings for transparency, understandability, and — importantly —
predictability with two items each which are combined into a SIPA score. The development
of the SIPA scale followed an established scale development process (which we will expand
upon when describing the development of our own scale in Section 5.2.2) and demonstrated
good statistical properties. While the SIPA scale can be used in explainability research17, the
construct of predictability only is one out of three facets of SIPA. This reduces the predictability-
related measure to a two-item subscale which in turn models predictability as a unidimensional
construct. In the following, we will provide (a) evidence from user interviews as well as (b) a
theoretical link to uncertainty theory, that both support a more fine-grained measurement of
perceived predictability. Concretely, our novel scale “zooms in” to predictability and measures
predictability along three dimensions (effective, epistemic, and aleatory predictability) using
two items each.

5.2.2. Scale Development and Validation

We define perceived predictability as the degree to which a user feels to be able to predict how

a system behaves. In the following, we propose a theory of perceived predictability based on
structured target population interviews (inductive) and uncertainty theory (deductive), which
we combine into a multidimensional construct of perceived predictability.

5.2.2.1. A Theory of Perceived Predictability

Target Population Interviews. As our first step, we assess that the construct of system
predictability exists in our target population’s participants’ notion of automated, in particular,
AI systems. For this, we ask 20 crowdworkers on MTurk to state what “understanding an AI
system” means to them.18 We find that, besides transparency, technical details, and intended
usage, perceived predictability is mentioned by the majority of participants and conclude that
predictability is a natural aspect of users’ system perception.

Already at this stage, we identify participant comments that suggest a distinction of pre-
dictability types: “I would not trust a system that behaved randomly unless it was ’controlled

random.’ [...] Like if a system was programmed to randomly select from a set of pictures for

example”. These comments indicate that users distinguish different dimensions of predictability.

In our second step, we ask another 20 participants what “having the feeling that you can
predict how an AI system behaves” means to them to obtain a focused picture of the participants’

17We investigate the relation between the SIPA scale and our own scale in Section 5.2.3.
18We recruit crowdworkers from the US, Australia, and the UK within this and the following studies.
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– I feel like I can predict an AI system’s behavior when I have interacted with it many times before.
– If I use the AI frequently, I know what I can and cannot ask or do with the AI.
– Being able to anticipate how it will respond after some moderate use [...].
– I feel like I can predict how an AI system behaves the more I interact with it.
– I feel that as I gained more experience with the system it would become more and more
predictable to me.
– knowing that result it is likely to give me, either based on it’s past responses or my own
assumptions

al
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ry

– [...] given a certain input it should always product the same output.
– means to me that the AI normally behaves in a consistent manner
– It may start following a certain pattern and I get an idea of how the algorithm works.
– I would definitely want such a system to give consistent and reliable results.
– I have a basic understand of the various rules or conditions that the AI system uses to make it’s
judgments
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– its more of like you can guess how it will react.
– It means that I can guestimate how it comes to its conclusions.
– I can know what to expect.
– I can usually predict if the AI can answer the question I have in mind for it.
– a good overall understanding of the AI

Table 5.8.: Target population comments on what “having the feeling that you can predict how
an AI system behaves” means to individual participants. We identify three aspects
of perceived predictability: epistemic, aleatory, and effective predictability.

notion of perceived predictability. Again, we observe responses that suggest that there exist
multiple aspects of predictability: “[...] it is following a set of rules [...], so given a certain

input it should always produce the same output. I feel that as I gained more experience with

the system it would become more and more predictable to me” in which the first sentence can
be interpreted as aleatory uncertainty and the second sentence as epistemic uncertainty which
we will delineate in the following. Table 5.8 shows a list of target group participant comments.

An additional observation is that users relate a slight level of unpredictability with a preferable
or more powerful system by comments, such as “If it’s too predictable then I wonder what the

point of having it is. The same as if it is too unpredictable. Sometimes like on a racing game

with really good AI you can have races that you really can’t tell if it is a human or a bot. The

same goes for chatbots that people test on MTurk. Some of them are uncanny at how real they

are. I guess to sum it up AI needs to be just unpredictable enough and in the right way for me to

like it and see a need for it.” or “with AI currently it seems you can usually within some reason,

predict how the AI will answer or what actions it will give, i think its because its not a true AI

as it stands. there is no conscious thought, just the data we gave it to act like its own self, which

its just a shell of that. i do think in the somewhat future, not sure on distant or close, that AI

will have its own conscious thought and then be slightly unpredictable in its answers/actions”.
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epistemic

effective

aleatory

"I observed enough system responses 
to predict how the system behaves."

"I can tell which responses the system 
will likely give."

"There is a consistent pattern in the 
system's behavior."
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Figure 5.13.: We decompose perceived predictability into three (partially overlapping) facets.
In contrast to uncertainty (in statistics), in which the total uncertainty is the sum of
the epistemic and the aleatory uncertainty, our notion of “effective” predictability
includes additional information beyond epistemic and aleatory predictability.
Exemplary items from our final PSP scale are added to their respective facet on
the right side of the figure.

We will revisit this effect in the light of our quantitative results in Section 5.2.3

Uncertainty Theory: Epistemic and Aleatory Uncertainty. We argue that our eval-
uation of target population participant comments indicates that perceived predictability has
multiple facets. We argue that the observed categories can be related to epistemic and aleatory
uncertainty. In uncertainty theory, Fox and Ülkümen (2011) distinguish two types of uncer-
tainty: (a) epistemic uncertainty that relates to the uncertainty of not knowing something
that could be known, e.g. due to a lack of observations of a phenomenon and (b) aleatory

uncertainty that refers to a phenomenon’s inherent stochasticity and that cannot be addressed
with a higher number of observations. For example, we can have perfect epistemic certainty
about how a die functions and yet be unable to predict the outcome of rolling dice due to the
aleatory uncertainty rising from the dice’s randomness.

Dimensions of Predictability: Epistemic, Aleatory, and Effective. We argue that
the concepts of epistemic and aleatory uncertainty can be transferred to predictability (objective
and perceived) as failing to predict a system’s behavior (or the respective perceived ability)
can be caused by (i) a lack of system behavior observations, and/or (ii) inconsistencies in the
system’s behavior. Regarding the former, in the extreme case, if users had no exposure to a
system at all, their (perceived) prediction abilities are reduced to their general notion of an
unknown system’s predictability. On the contrary, having observed infinite system decisions
removes this barrier to predictability. Regarding the latter, in the extreme case, the system
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expert interviews
(N=6)

target population
evaluation (N=25)

40 items 12 items

scale administration
(N=200)
6 items

item generation
(N=40)
60 items

Figure 5.14.: Overview of our scale development process. For each step, we report the number
of participants and the resulting number of items retained in our scale in italics.

takes completely random decisions. In this case, users will not be able to predict the system’s
behavior, even with access to infinite observations. In contrast, a completely deterministic
system can (in theory) be fully predictable by observing all possible contexts before making
the prediction. For uncertainty, epistemic and aleatory uncertainty can be summed to yield
the overall uncertainty. We argue, that for perceived predictability, this does not hold and the
effective predictability covers more than the sum of epistemic and aleatory predictability. We
illustrate our theory in Figure 5.13.

5.2.2.2. Scale Development

In the following, we report the process and result of our scale development. We follow best
practices as discussed by Boateng et al. (2018); Menold and Bogner (2016); DeVellis and
Thorpe (2021). Figure 5.14 displays an overview of the separate development steps and the
respective number of participants and retained scale items.

Initial Item Pool. We generate an initial item pool of 60 items based on (i) the target
population interviews described above and (ii) our proposed theory of perceived predictability.
We report the full item pool in Appendix A.9.1.1.

Expert Ratings. Following the typical scale development process, we ask experts to review
each item within our initial item pool in order to ensure content validity, i.e., that our items
capture the intended domain of perceived predictability. We had six experts rate our initial
item pool in terms of the two dimensions relevance and clarity and collect additional textual
feedback from each rater for each item. Based on the experts’ ratings, we remove eight items
experts found to be irrelevant and 13 items that experts found to be unclear. We additionally
modify the wording of five items for which experts indicated a need for revision and add one
new item based on their comments. Our revised item pool thus contains 40 items.

Target Population Evaluation. In order to assert the face validity of our scale, i.e., that
our items are appropriately designed for their target population (e.g., regarding the items’
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wording), we conduct a crowdsourced adaption of cognitive interviews (Beatty and Willis,
2007) following probes from Willis (2004) with a total of 25 participants. In our first round of
cognitive interviews, we present 20 MTurk crowdworkers (twelve identified as female, eight
as male; mean age of 42.0 years (SD=11.1 years)) predictions of a hypothetical classification
system. We ask participants to rate their agreement to each item on a numeric 1-7 Likert scale
ranging from “strongly disagree” (1) to “strongly agree” (7). We discuss details of the classifi-
cation system and the Likert items in Section 5.2.2.3. In addition, we ask to crowdworkers to
(i) repeat each item statement in their own words and (ii) describe how they did get to their
answer. The participants’ responses allow us to detect ambiguous and unclear items. Based
on the participants’ feedback, we remove 15 items, modify five items, and add one new item.
Next, we merge similar items, streamline item wording, and add additional items based on
discussions of the revised item pool, resulting in a pool of 16 items.

Full Verbalization and Optimized Response Anchors: We noticed that for some items, partici-
pants explicitly mentioned that “[they] will neither agree or disagree of this statement” and
rated 4 (as intended), so we keep the middle point. However, some participants also note that
they gave a neutral rating, but in fact, rated a 5. We, therefore, choose to provide explicit
response anchors for each possible rating (1-7). This is in line with Menold and Bogner (2016)
who find in their review that fully verbalized scales are preferable to scales that only have
endpoint labels. To choose an appropriate selection of response anchors, we build upon recent
findings of Casper et al. (2020) who investigate how response anchors can be optimally chosen
regarding the conceptual distance between anchors. They find that, for 7-point agreement
ratings, the labels “strongly disagree”, “do not agree”, “somewhat disagree”, “neither agree
nor disagree”, “generally agree”, “agree” and “strongly agree” yield minimum overlap and
approximate equal mean intervals. We thus update our scale to a fully-verbalized 7-point Likert
scale using optimized response anchors and conduct another round of cognitive interviews
with five crowdworkers (three identified as female, two as male; mean age of 43.6 years
(SD=8.4 years)). We remove another four items and modify one item based on the participants’
responses. Our updated item pool contains twelve items. We provide all items of this pool in
Appendix A.9.1.2.

5.2.2.3. Scale Evaluation

In order to further reduce the number of items in our scale and to assess its psychometric
properties, we collect scale ratings from 200 participants across five predictability scenarios of
a fictional classification system.
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Figure 5.15.: One of the five fictional classification system prediction scenarios we show to
participants. The class prediction for the blue circle is inconsistent, introducing
aleatory uncertainty along the epistemic uncertainty caused by, i.a., the lack of
blue triangle inputs. We refer to this scenario as MIXED.

Scenarios. To elicit different levels of perceived predictability, we design different versions
of a fictional classification system. Our system maps colored shapes (red or orange circles,
squares, or triangles) to one of two classes (A or B). We intentionally design a system that does
not make predictions for which users might be biased by their own idea of what the correction
is and will revisit scale ratings in the context of a real AI system in Section 5.2.3. We design
five scenarios for which we vary (a) the number of shown predictions and (b) the randomness
of the system’s predictions. Figure 5.15 shows a scenario with mixed epistemic (few examples
and non-exhaustive input examples) and aleatory (inconsistent predictions for the blue circle)
uncertainty. We refer to this scenario as MIXED. We provide the shown examples for the
additional four scenarios in Appendix A.9.2.1. Given the example predictions of the respective
scenario, we ask participants to rate which class the model will predict for each of the three
inputs shown in Figure 5.16. We use this task to motivate participants to analyze and reflect
upon the provided system predictions in order to build a certain level of perceived predictability.

Scale Rating. After presenting the respective scenario and asking the users to rate which
output they think the system will produce for the three symbols, we ask participants to rate
each of the twelve remaining items. In this first evaluation, we randomize the order of items
for each participant to reduce the confounding impact of potential carry-over effects or rating
patterns on the estimate of, i.a., an item’s discrimination strength, which we will discuss in the
following. The order of items in the final version of our scale is not randomized. We review the
psychometric properties of this fixed scale in Section 5.2.3.
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(a) Blue square (predictable
with high certainty).

(b) Orange triangle (predictable
with lower certainty).

(c) Blue circle (unpredictable).

Figure 5.16.: The three symbols we ask users to predict the system’s output for. Given the
scenario shown in Figure 5.15, the system response for the first two shapes can
be predicted (with different levels of certainty) and the system response to the
third input is unpredictable.

Participants. We recruit 200 participants from the United States, Australia, and the United
Kingdom on MTurk. Participants had a mean age of 40.8 (SD=11.2) years. 80 participants
identified as female, 119 as male, and one participant as non-binary.

Item Reduction. We assess items along inter-item correlations, item-total correlations, item
discrimination, and item difficulty and reduce the scale to six items following quantitative
indicators as well as semantic overlap. We report the reasons for each of our removal decisions
in Appendix A.9.1.2. Table 5.9 displays item difficulty and item discrimination values for the
items retained in our final scale. As we intend our scale to be applicable in a broad spectrum
of research contexts, we strive for an as short as possible scale while retaining enough items
to obtain fine-grained measurements. In order to be able to estimate reliability coefficients
for each of the three hypothesized facets, and thereby analyze their adequacy to be used as
subscales, we choose to retain two items per dimension. In the following, we study our resulting
6-item PSP scale.

Reliability. The overall Cronbach’s α (Cronbach, 1951) of our PSP scale equals 0.9606,
coefficient ω (Raykov, 2001) equals 0.9607.19 Following the evaluation of the SIPA scale
Schrills et al. (2022), we use Spearman-Brown coefficients to quantify the reliability of the
two-item subscales. Eisinga et al. (2013) recommend the Spearman-Brown coefficient as
the reliability score of choice for two-item (sub)scales. We find R=0.908 for the epistemic
subscale, R=0.889 for the aleatory subscale, and R=0.881 for the effective subscale. Overall,
the observed reliability coefficients indicate a high internal consistency of our scale as a whole
as well within its three subscales.
19We use a CFA-based calculation of coefficient ω as described by Furr (2022) (p. 515) using the R package

semTools (Jorgensen et al., 2022). We calculate alternative McDonald’s ω (Mcdonald, 1999) indices ωh and
ωt based on hierarchical factor analysis equal using the R package psych (Revelle, 2022). The values equal
0.894 and 0.967 respectively.
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Item Diff. Discr.

EF-1 The system behaves in a predictable manner. 0.72 0.89
EF-2 I can tell which responses the system will likely give. 0.71 0.86
EP-1 I observed enough system responses to predict how the system behaves. 0.67 0.87
EP-2 Based on past system responses, I know the responses the system will likely give me. 0.70 0.90
AL-1 I can tell the reasons for the system’s decisions. 0.65 0.84
AL-2 There is a consistent pattern in the system’s behavior. 0.70 0.89

Table 5.9.: Item difficulty and item discrimination values of the items in our final scale (mean
inter-item-correlation = 0.804, Cronbach’s α=0.961).

Confirmatory Factor Analysis. We conduct confirmatory factor analysis (CFA) to com-
pare two models: a unidimensional model (Figure 5.17a) and a three-factor model (Fig-
ure 5.17b).20 We report common model fit measures in Table 5.10 and detailed model fits in
Appendix A.9.2.3. Hu and Bentler (1999) proposed — the now widespread — cutoff criteria
for various fits, which are 0.06 for RMSAE, 0.08 for SRMR, and 0.95 for CFI and TLI. Both
models fulfill the recommended criteria for RMSAE, CFI, and TLI, the three-factor model
additionally fulfills the recommended SRMR criterion. While a comparison of the χ2, RMSEA,
SRMR, CFI, and TLI between the two models indicates a slight preference for the three-factor
over the one-factor model, the differences between the two models are minor and both models
can be considered adequate. Note that the three scale dimensions are strongly correlated with
each other. Concretely, we observe Pearson correlations of 0.901 (p < 0.001) between effective
and epistemic predictability, 0.889 (p < 0.001) between effective and aleatory predictability,
and 0.876 (p < 0.001) between epistemic and aleatory predictability.21 Overall, along with the
identical differentiation patterns across the subscales and the total scale, which we detail in the
following, our scale evaluation indicates that a unifactorial usage of our scale (i.e., measuring
perceived predictability as the mean value over all six items) is warranted. However, the
three-factor model showed slightly better model fit measures and the subscale scores should be
evaluated in addition to the total scores for each application of our scale, especially when levels
of epistemic and aleatory predictability can be expected to differ.22

Differentiation by Known Groups. One common way to assess a scale’s construct
validity is to evaluate how well the scale can differentiate between known groups that are
expected to induce different scale scores. We assess whether our scale can differentiate between

20Note that the three-factor model is visualized as a higher-order model. With three first-order dimensions, a
higher-order model is just-identified and equivalent to a correlated factors model with three dimensions.

21Pearson correlations are calculated using list-wise deletion as implemented in sjPlot (Lüdecke, 2023).
22For example, when users have a very high epistemic predictability (stemming from, e.g., a long usage period)

but very low aleatory predictability.
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(a) One-factor model. (b) Three-factor model.

Figure 5.17.: The two models we compare in confirmatory factor analysis (CFA) along with
standardized coefficients. The rectangular boxes correspond to the six items of
our scale as denoted in Table 5.9. Dashed lines indicate estimates fixed to one
(before standardization). Note that standardized coefficients are not bound to be
lower than one as discussed by Deegan (1978) and Jöreskog (1999).

Fit Measure Model

One-factor Three-factor

χ2 (↓) 12.67 (p=0.18) 7.140305 (p=0.31)
RMSEA (↓) 0.045 ([0.000, 0.098]) 0.031 ([0.000, .101])
SRMR (↓) 0.010 0.008
CFI (↑) 0.997 0.999
TLI (↑) 0.995 0.998
AIC (↓) 3354.034 3354.502
BIC (↓) 3393.613 3403.977
Adj. BIC (↓) 3355.596 3356.455

Table 5.10.: Fit indices reported per model following Dunn and McCray (2020). Higher-is-
better fit measures are marked with (↑) while lower-is-better fit measures are
marked with (↓). We argue that, overall, fit measures indicate that the three-factor
model is preferable over the one-factor model. The RMSEA value is reported
along with a 90% confidence interval.
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the different levels of predictability induced by the different classifier scenarios. Concretely,
we conduct a one-way ANOVA to test for an effect of the independent variable “scenario” on
total PSP scores. We find that the main effect of scenario is statistically significant and large
(F (4, 195) = 16.25, p < 0.001; η2 = 0.25, 95% CI [0.16, 1.00]). We conduct a Tukey HSD
test to find pairs of scenarios with significantly different mean scores. Out of the ten model
pairs, we find significant differences between all pairs except four which align to the four most
similar pairs (MIXED vs. MIXED-LESS-ALEATORY, MIXED-MORE-EPISTEMIC vs. HIGH-BOTH,
MIXED-LESS-ALEATORY vs. LOW-ALEATORY, and MIXED vs. MIXED-MORE-EPISTEMIC).
We report detailed statistics in Appendix A.9.2.2.

Concurrent and Predictive Validity. We assess how PSP scores are associated to related
measures that are expected to overlap in an additional study. While we discuss the relation of
PSP to trust, objective predictability, and NFC in detail in Section 5.2.3, we already briefly
discuss the main results regarding concurrent and predictive validity here. Regarding concurrent
validity, we find that SIPA scores are strongly correlated with PSP scores (r = 0.856, p <

0.001) but not as strongly correlated as the PSP subscales among each other (average correlation
of r = 88.9 as reported above). We expected this effect due to the two scales sharing an
overlapping but not identical theoretical foundation. Regarding predictive validity, we find
that, while PSP is a significant non-linear predictor of objective predictability, we find no
significant association between SIPA and objective predictability. Again, this confirms our
theoretical expectation: While PSP scores should be related to objective predictability, SIPA is
a higher-level construct, which we expected to be related to objective predictability in a much
weaker way or not at all.

5.2.3. Predictors, Objective Predictability, and Effects of
Explanations

So far, we focused on developing and validating our PSP scale in the context of a fictional
task and classification system. Now, we investigate how PSP is associated with objective
predictability, trust, SIPA, and NFC in the context of a realistic sentiment classification system.
In particular, we evaluate these constructs under different levels of true system predictability
(via system stochasticity) as well as different explanation visualization methods including the
saliency and bar chart explanations discussed in Section 5.1.
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5.2.3.1. Experiment Design

We conduct another user study with 200 participants to further investigate PSP and its relation
to (supposedly) related constructs and measures in the context of a simple, but real sentiment
classification system.

Sentiment Classifier. Our sentiment classifier makes use of word polarity scores provided
in SentiWordNet323 (Baccianella et al., 2010) which are summed over all words in the sentence
to obtain an overall sentiment score. The score corresponds to a positive sentiment prediction
in case it is greater than zero and to a negative sentiment prediction when it is not. We choose
to use this simple system because we want to use a system that (i) is easy to interpret (the word
polarity scores can be considered to be technically faithful explanations), (ii) makes systematic
errors that can be identified by humans (the system cannot handle negations or contractions by
design), and (iii) can be executed on-demand as we — in contrast to our previous studies —
also explore explanations in combination with an interactive user interface within this study.
We additionally evaluate stochastic versions of the classifier. For this, we add independent,
normally distributed noise to each word’s polarity score.24

Explanation Modalities. Within our experiment, we compare six levels of explanations.
First, we compare (i) no explanations, (ii) heatmap explanations, and (iii) bar chart explana-
tions as discussed in Section 5.1.3. Figure 5.18 depicts the three explanation types. As in
Section 5.1.3, the heatmap and bar chart explanations show absolute importance values, i.e.,
we do not communicate class-specific importance scores. In addition, we include interactive
versions of these three explanation types. Concretely, we provide users an additional interface
that allows them to enter arbitrary texts and receive the respective sentiment prediction, and —
in the combinations involving heatmap or bar chart explanations — the respective explanation.
Figure 5.19 shows these interactive interfaces for heatmap and bar chart explanations.

Procedure. We use a between-subject experiment design and assign 25 participants to each
of the six explanation modalities, using the noiseless prediction system. To explore the effect
of noisy systems, we additionally assign 25 participants to the medium noise system as well as
the high noise system each, using system prediction examples without added explanations or
system interaction interface. We ask each user to complete three phases of our experiment.

23https://github.com/aesuli/SentiWordNet
24We sample noise from N (0, 1), scale this noise with 0.4 (0.8) for a medium (high) noise level, and clip the sum

of the original score and the scaled noise to [-1,1].
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(a) No explanation. (b) Heatmap explanation. (c) Bar chart explanation.

Figure 5.18.: The three explanations forms underlying the six explanation modalities used in
our experiment.

(a) Interactive heatmap explanation.

(b) Interactive bar chart explanation.

Figure 5.19.: Two of the three additional interactive explanation modalities.
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Figure 5.20.: Subset of the system predictions shown to users in the heatmap conditions.
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Training Phase: In the first step, we show each user 20 system predictions using the respective
explanation modalities. For the interactive modalities, we present users the same 20 examples of
fictional restaurant reviews and additionally provide them with the interactive interface to give
them the same context and ensure they receive the same “hints” regarding the system’s behavior.
Figure 5.20 depicts six of the 20 example predictions we display to users in the heatmap
conditions. We provide the full list of examples in Appendix A.9.3. Each user receives the same
20 prediction examples but in a randomized order to mitigate carry-over effects. We compose
the 20 fictional review sentences in such a way that half of them correspond to a positive system
decision, and half of them to a negative decision, and such that each of these halves contains
five correct system decisions and five incorrect system decisions. Further, the examples are
chosen in a way that demonstrates that the model treats contractions, such as “don’t” differently
from “do not” and does not correctly resolve negations. In addition, the examples contain two
sentences that each are repeated to make the users aware of (non-)deterministic model behavior
which is relevant for the noisy systems described above.

Prediction Phase: In the second step, we ask users to predict which predictions the system
will make for new, unseen sentence inputs (e.g., “I love the food at this place!” and “I expected
it to be better.”). We provide the full list of sentences in Appendix A.9.3. We again randomized
the order of sentences across participants.

Questionnaire Phase: In the third step, we ask participants for self-reports of PSP using our
scale, SIPA using the respective scale proposed by Schrills et al. (2022), system trust using the
facets of system trustworthiness (FOST) scale (Franke et al., 2015), and the user’s individual
NFC using the NCS-6 scale (de Holanda Coelho et al., 2018). We choose to include a measure
of user’s NFC based on Buçinca et al. (2021) who find that their intervention on explanation
presentation to reduce over-reliance disproportionately affected users who reported a high NFC.

Participants. We recruit 200 participants from the United States, Australia, and the United
Kingdom on MTurk. Participants had a mean age of 43.2 (SD=12.2) years. 89 participants iden-
tified as female, 110 as male, and one participant as non-binary. Across the entire experiment,
the population’s mean PSP rating is 5.39 (SD=0.89).

5.2.3.2. Reliability Reproduction

Before analyzing the relation between constructs and objective performance measures, we
first re-assess each scale’s internal reliability. Table 5.11 displays the respective values for
Cronbach’s α (Cronbach, 1951), and McDonald’s ω (Mcdonald, 1999). As in our first relia-
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Reliability
measure

Scale

PSP SIPA FOST NCS-6

α 0.874 0.852 0.780 0.766
ωh 0.713 0.593 0.100 0.392
ωt 0.896 0.886 0.830 0.834

Table 5.11.: Measures of internal reliability estimated for the four scales measured in our
second experiment (N = 200) including our PSP scale. α refers to Cronbach’s α
(Cronbach, 1951), ωh and ωt refer to versions of McDonald’s ω (Mcdonald, 1999).

bility assessment, we quantify the reliability of the PSP subscales using the Spearman-Brown
coefficient and find R = 0.718 for the epistemic subscale, R = 0.726 for the aleatory subscale,
and R = 0.698 for the effective subscale, indicating high reliability across subscales.

5.2.3.3. Predictors of Perceived Predictability

Next, we focus on which factors are predictors of PSP scores. In particular, we explore whether
PSP scores can be predicted from objective measures, such as completion time or prediction
correctness. For this, we model PSP scores using a GAM model.

Model. As discussed in Section 2.4, GAM models offer the advantage to model additive
smooth non-linear effects of numeric covariates. We include smooth terms for prediction
correctness, completion time of the prediction phase, FOST trust scores, SIPA scores, NSC-6
NFC scores, and participant age. We additionally include parametric terms for explanation form
(none, saliency, and bar charts), interactivity25, noise level, and the participant’s identification
to account for the experiment design and control for potentially confounding effects. We
additionally add an interaction term between explanation form and interactivity as we expect
that the different explanation forms induce different levels of interaction motivation.

Results. We report Wald tests for the parametric and smooth terms in Table 5.12 and
Table 5.13 respectively.

Objective Scores Do not Predict PSP: Notably, we do not find significant effects of the
objective scores (i.e., prediction correctness and completion time) on PSP scores, supporting our

25We find that 21.3% participants in the interactive conditions did not use the interactive prediction interface and
thus define the “interactivity” factor to distinguish between participants that did interact with a prediction
interface and participants who did not (including participants that could use the interface but did not do so).
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(b) SIPA

Figure 5.21.: Partial effect plots of factors with a significant effect on perceived predictabil-
ity within our GAMM analysis. The plots show all significant smooth effects
accounting for various additional parametric and smooth effects. Note that y-axes
are scaled per plot. Remarkably, no objective score, such as prediction correctness
or completion time is found to be a significant predictor of PSP.

assumption that PSP measures a distinct concept than objective predictability does. Separate
Pearson correlations between PSP and prediction correctness (r = 0.050, p = 0.478) and
completion time (r = 0.109, p = 0.125) yield the same conclusion. This result indicates that
PSP scores capture additional information, that we cannot substitute with automatic scores and
supports our hypothesis that we cannot cut corners and evaluate systems without subjective
human evaluation as we argued in Section 4.4. In fact, we will demonstrate that, in the
opposite direction (i.e., predicting prediction correctness from PSP scores), subjective ratings
are significant predictors of prediction correctness in Section 5.2.3.4.

Strong Association Between PSP and SIPA: We find that increases in trust and SIPA scores
can be associated with increases in PSP scores, which is supported by the Pearson correlations
reported in Table 5.16. Figure 5.21 displays the respective partial effects of trust and SIPA
ratings. Again, the strong association between PSP scores and SIPA scores is consistent with
the theoretical background of PSP and SIPA: as SIPA models predictability as one facet of
situational information processing awareness, PSP “zooms in” to the predictability facet and
models predictability using the three proposed facets.

Effects of Explanation Modality and no Effect of Noise Level: For the parametric terms, we find
a significant main effect of explanation form as well as a significant interaction effect between
explanation form and interactivity as reported in Table 5.12. We report detailed parametric
estimates in Appendix A.9.3. A post hoc Wald comparison of the contrasts for explanation
formats revealed significant differences between saliency and bar chart explanation forms
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df F p

explanation format 2.00 3.44 0.03
interactivity 1.00 1.80 0.18
explanation format:interactivity 2.00 3.18 0.04
noise level 2.00 0.41 0.67
identification 2.00 0.37 0.69

Table 5.12.: Wald tests for the parametric terms in our model of PSP scores. Explanation format
(none, saliency, or bar chart) was found to have a significant effect on PSP scores.

edf Ref.df F p

s(prediction correctness) 0.69 9.00 0.15 0.14
s(trust) 3.20 9.00 5.82 <0.001

s(completion time) 0.00 9.00 0.00 0.39
s(SIPA) 2.79 9.00 44.13 <0.001
s(NFC) 0.00 9.00 0.00 0.53

s(age) 0.00 9.00 0.00 0.66

Table 5.13.: Wald tests for the smooth terms in our model of PSP scores. Trust and SIPA ratings
have significant effects on PSP scores. Notably, no objective score (correctness
and completion time) is found to be a significant predictor of PSP scores.

(χ2(1) = 6.619, p = 0.010) for which saliency explanations are associated with significantly
higher PSP ratings. A respective joint post hoc test for explanation formats and interactivity
revealed differences between non-interactive bar charts and non-interactive no-explanation
sentences (χ2(1) = 3.963, p = 0.047), non-interactive bar charts and interactive bar charts
(χ2(1) = 4.759, p = 0.029), and non-interactive bar charts and non-interactive saliencies
(χ2(1) = 6.619, p = 0.010). Detailed estimates are reported in Appendix A.9.3. Interestingly,
we do not find a significant effect of noise level on PSP scores. We revisit this observation in
the context of the effect of noise level on prediction correctness in the following.

5.2.3.4. Perceived Predictability versus Prediction Correctness

In the previous analysis, we explored which factors are predictors of PSP. Now, we investigate
if and how PSP scores and additional factors are related to objective prediction correctness.

Model. We analyze the relation between perceived predictability and prediction correctness
within another GAM model. We consider smooth terms for PSP scores, FOST trust scores,
SIPA scores, NCS-6 NFC scores, completion time, and participant age. In addition, we consider
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parametric terms for explanation format, interactivity, noise level, and participant identification.
As for the GAM model discussed above, we also include an interaction term for explanation
format and interactivity.

Results. We report Wald tests for the parametric and smooth terms in Table 5.14 and Ta-
ble 5.15 respectively. Details are reported in Appendix A.9.3.

Subjective Ratings Are Predictive of Objective Correctness: While we found that objective pre-
diction correctness did not have a significant effect on subjective PSP scores in Section 5.2.3.3,
we find a significant effect of PSP scores on prediction correctness. As shown in Figure 5.22a,
our model associates an increase in PSP scores with a moderate increase in objective prediction
correctness. In addition, we find a strong contrary effect of trust. As shown in Figure 5.22b,
increasing levels of participant’s trust in the system correspond to a decrease in prediction
correctness. Hase and Bansal (2020) found that subjective explanation quality ratings of "Does
this explanation show me why the system thought what it did?" are not predictive of user
correctness. Similarly, Buçinca et al. (2020) found that trust ratings are not predictive of
performance. In contrast to Hase and Bansal (2020) and Buçinca et al. (2020), we find that PSP
and trust ratings are predictive of prediction correctness. While the specific combinations of the
particular scale and score as well as the usage context, do not allow to draw general conclusion
in either direction, we note that in contrast to Hase and Bansal (2020) and Buçinca et al. (2020),
we model non-linear effects of subjective ratings on prediction correctness using GAM models
and also find the resulting function estimates to be non-linear (Figures 5.22a and 5.22b).

Better Predictions Need Time: Figure 5.22c shows that, within our model, an increase in
prediction completion times is associated with a moderate increase in prediction correctness.
We argue that this effect is to be explained by high differences in the participants’ interest in the
prediction task and their corresponding willingness to think about the system’s behavior. While
this finding is not surprising, it supports the use of time-based insufficient effort responding
detection which aligns with the findings of Bowling et al. (2021).

Noise Level Affects Prediction Correctness: Among the parametric terms, we find that only
noise level has a significant effect on prediction correctness. In particular, explanation format
did not have a significant effect. A post hoc Wald comparison of the contrasts for noise level re-
vealed significant differences between a noise level of 0.0 and 0.4 (χ2(1) = 28.196, p < 0.001)
and 0.0 and 0.8 (χ2(1) = 34.539, p < 0.001). The difference between 0.4 and 0.8 was not
significant (χ2(1) = 0.347, p = 0.556). These findings are consistent with the box plots for
prediction correctness (i.e., objective predictability) shown in Figure 5.23.
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df F p

explanation format 2.00 1.44 0.24
interactivity 1.00 0.55 0.46
explanation format:interactivity 2.00 0.85 0.43
noise level 2.00 22.13 <0.01
identification 2.00 0.66 0.52

Table 5.14.: Wald tests for the parametric terms in our model of prediction correctness scores.
Noise level (i.e., the level of system stochasticity) is found to have a significant
effect on prediction correctness.

edf Ref.df F p

s(PSP) 1.66 9.00 0.79 0.01
s(trust) 2.34 9.00 2.45 <0.01

s(completion time) 0.80 9.00 0.45 0.02
s(SIPA) 0.00 9.00 0.00 0.85
s(NFC) 0.86 9.00 0.20 0.11

s(age) 0.48 9.00 0.08 0.22

Table 5.15.: Wald tests for the smooth terms in our model of prediction correctness. We
find PSP scores, trust scores, and completion time to have significant effects on
prediction correctness.
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Figure 5.22.: Factors with a significant effect on objective rating correctness within our GAM
analysis. The plots show all significant smooth effects accounting for various
additional parametric and smooth effects. Note that y-axes are scaled per plot.
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Figure 5.23.: Boxplot showing the distributions of prediction correctness and normalized PSP
scores for different levels of system stochasticity and no additional explanations.

Subjective ̸= Objective: Comparing our findings on subjective PSP scores and objective
prediction correctness, we observe that PSP scores are affected by explanation modality and
prediction correctness is affected by noise level. While using saliency visualizations instead
of bar charts results in a significant increase of PSP ratings, we find no effect of explanation
form on prediction correctness. Similarly, adding noise to the system’s word polarity estimates
corresponds to a significant drop in prediction correctness without affecting PSP ratings. This
observation supports our hypothesis that objective predictability and subjective predictability
measure distinct characteristics of the user’s mental model of a system (as illustrated in
Figure 5.12). Our results further support our observations that supposedly minor visualization
decisions can affect users’ perception of explanations, which we explored in Section 5.1.

Hallucinated (Lack of) Predictability: While the objective information in the heatmaps and the
bar charts is identical, we hypothesize that heatmaps have properties that induce a higher level
of perceived information gain, than, e.g., bar charts. Note that the results of this experiment do
not allow us to judge whether this increase in perceived predictability is beneficial or misleading.
Similarly, our results do not show whether the observed difference is due to an increase induced
by heatmaps or a decrease induced by bar charts. Related work on perceptual misinterpretation
of bar charts found the “within-the-bar bias”, users’ tendency to perceive values contained
within the bar (i.e., below the top edge) as more probable when, e.g., inspecting means depicted
using bars and being asked about the probability of equidistant values above and below the
bar’s edge (Newman and Scholl, 2012). We hypothesize that (a part) of our observations can
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Figure 5.24.: Enhanced bar chart explanation visualization using cumulative bars as proposed
by Kang et al. (2021) to mitigate “within-the-bar bias” (Newman and Scholl,
2012) and the supposedly associated underestimation of importance scores.

be explained by this effect and a corresponding underestimation of importance scores., which,
in turn, lead to a less concise mental model of the system. Kang et al. (2021) investigate
modifications of the bar chart visualization and find that cumulative bar charts (i.e., also filling
the upper part using a different color) can reduce bias. Consequently, we adapt our bar chart
visualization and recommend to use cumulative bar charts as shown in Figure 5.24.

Illusion of Explanatory Depth: The observed invariance of PSP scores under variation of
noise levels along with the observed drop in prediction correctness and the demonstrated
discrimination of known groups in Section 5.2.2.3 raises the question of why participants did
not notice their reduced ability to predict the system’s behavior while, at the same time, being
sensitive to the choice of explanation visualization. We hypothesize that this phenomenon
can potentially be explained by the illusion of explanatory depth explored by Rozenblit and
Keil (2002). Concretely, we hypothesize that the participants’ own judgments of the sentences’
sentiment create a predisposition to form an illusion of explanatory depth while the fictional
shape classification task does not allow them to fall back to their own judgments and alleged
familiarity with the domain and forces them to reflect upon their knowledge. Similarly,
Gonzalez et al. (2021) explore how explainees are affected by belief bias and argue that
fictional domains might mitigate its distorting influence.

5.2.3.5. Relation to Trust, SIPA, and Need for Cognition

In Section 5.2.3.3 we explored to which extent PSP scores can be predicted in terms of a sum
of smooth functions of other subjective ratings (such as trust ratings), objective performance
measures (such as completion time), and additional variables related to, e.g., the explanation
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SIPA FOST NCS-6

PSP 0.856
(< 0.001)

0.558
(< 0.001)

0.248
(< 0.001)

SIPA 0.424
(< 0.001)

0.272
(< 0.001)

FOST 0.118
(0.096)

Table 5.16.: Pearson correlation coefficients between PSP, SIPA, trust (FOST), and NFC (NCS-
6). Numbers in parentheses correspond to Holm-adjusted p values. Significant
correlation coefficients are highlighted in bold font.

format used. The focus of our GAM analysis was to combine all provided factors into a
prediction of PSP scores. Among the three collected related scale scores for trust, SIPA, and
NFC, we found that the smooth terms for trust and SIPA scores were significant. In turn,
accounting for all other terms, we did not find a significant effect of NFC.

In the following analysis, we investigate a related, but slightly different question. Concretely,
we ask how strongly ratings of a scale in isolation are related to ratings of another scale (without
accounting for the respective relations to other scales). For this, we explore pairwise Pearson
correlations between the (paired) responses collected with the four scales.

Results. Table 5.16 displays Pearson correlations and the respective Holm-adjusted p values.

Confirming the Association Between PSP and SIPA as Well as Trust: We observe that PSP and
SIPA ratings show a strong (linear) correlation (r = 0.856, p < 0.001), which is consistent with
our theory-driven expectations (see Section 5.2.3.3) as well as our empirical results from our
GAM analysis (see Figure 5.21b). Similarly, our correlation analysis confirms the association
between PSP and trust (r = 0.558, p < 0.001) which we observed in our GAM analysis.

Predictors of Trust: Schrills et al. (2022) also evaluate the correlations between SIPA scores
and FOST trust scores as well and find that — across three different samples — correlations
vary between 0.55 and 0.84. We confirm the finding of Schrills et al. (2022) that SIPA and trust
have a significant (linear) association. We statistically compare the strength of the correlation
of SIPA and trust to the strength of the correlation between PSP and trust using the cocor R
package (Diedenhofen and Musch, 2015).26 We find that, in our study, the correlation between
PSP and trust is significantly higher than the correlation between SIPA and trust. We argue

26The cocor package provides numerous tests including Dunn and Clark’s z (Dunn and Clark, 1969) and Zou’s
confidence interval (Zou, 2007). All implemented tests indicate a significant difference between the two
correlation coefficients.
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that this observation can be explained by the theoretical foundations of the PSP and the SIPA
scales. While SIPA measures the facets transparency, understandability, and predictability, our
PSP scale focuses on (three facets of) predictability. We hypothesize that trust has a stronger
dependence on predictability and less on, potentially preceding, effects of e.g., perceived
understandability. To test this hypothesis, we analyze the correlations of trust with the respec-
tive SIPA subscales. Following our hypothesis, the SIPA predictability subscale should have
significantly higher correlations with trust compared to the transparency and understandability
subscales. We find that the SIPA predictability subscale has a stronger correlation to trust
(r = 0.447, p < 0.001) than the transparency subscale (r = 0.318, p < 0.001) and the under-
standability subscale (r = 0.351, p < 0.001). The respective statistical tests of differences
in correlation strengths using cocor all indicate that the predictability subscale has higher
correlations with trust than the remaining two subscales. This supports our hypothesis, that the
stronger correlation between our PSP scale and trust (compared to the SIPA scale and trust)
can be attributed to the focused construct of the PSP scale along with a stronger association
between PSP and trust. In another experiment, Ford et al. (2020) find that an increased rate of
system misclassifications was associated with a decrease in self-reported levels of trust. We
fit another GAM model to assess whether we can replicate their observations.27 In contrast
to their results, we do not find a significant effect of noise level on trust. However, we find a
significant effect of explanation modality on trust. A post hoc Wald comparison of the contrasts
of explanation modality reveals significant pairwise differences between bar charts and saliency
explanations (χ2(1) = 8.007, p = 0.005) as well as between no explanation and saliency
explanations (χ2(1) = 8.161, p = 0.004). For both pairs, saliency explanations are associated
with a significantly reduced trust level. We report detailed test statistics for the discussed and
additional effects in Appendix A.9.3. This association opposes our observation for the effect of
explanation format on PSP for which saliency explanations were associated with a significant
increase in PSP compared to bar chart explanations (see Section 5.2.3.3). This conflict indicates
that PSP ratings do not only offer an additional perspective in addition to objective scores but
also yield information beyond measures of related subjective constructs whose association to
PSP should be explored in-depth in future work.

Effect of High Need for Cognition: Our correlation analysis finds a significant (linear) as-
sociation of PSP and NFC. As the results of Buçinca et al. (2021) indicate that users’ NFC
affects the effect that explanations have on their decision behavior, it is plausible to assume that
NFC has an effect on perceived predictability as well. Interestingly, we do not find an effect of

27We include the same smooth and parametric terms as for our analysis of PSP ratings and swap PSP and trust.
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NFC scores on prediction correctness in our scenario.28 An analysis of the correlation between
NFC and prediction correctness confirms this result (r = 0.071, p = 0.318). At the same time,
we do not observe a significant correlation between NFC and trust. We thus hypothesize that
participants’ need for cognition affects their system perception in a way that neither is captured
by prediction correctness nor trust but still positively affects PSP. Future work should build
upon this initial observation and leverage our scale to further investigate the relation between
PSP and further constructs, such as mental demand. Additional qualitative evaluation, such as
think-aloud studies with participants with different NFC might shed light on the underlying
relation between NFC and PSP.

5.2.4. Overall Discussion

In this section, we developed and evaluated a novel 6-item scale, and applied it to explore the
effects of explanations and system stochasticity on (perceived) system predictability and the
relation of PSP to, i.a., prediction correctness, trust, SIPA, and participants’ NFC.

Overall, we collected opinions from 40 participants to guide our theory development based
on uncertainty theory, incorporate feedback from six experts to improve our initial item pool,
conduct written cognitive interviews with 25 participants to further enhance and filter our items,
conduct a study on a functional shape classification study with 200 participants to distill and
evaluate the final version of our scale, and conduct an additional study on different varieties of
a sentiment classification system to confirm our evaluation and explore the relation of PSP to
related scales and prediction correctness.

Our scale evaluations demonstrated that our PSP scale exhibits desirable psychometric
properties, such as a consistently high internal reliability, and indicate that it can be used as
(a) a unidimensional measure of perceived predictability and (b) a hierarchical measure of
perceived predictability with three subscales for epistemic, aleatory, and effective predictability.

Our results suggest that (a) PSP cannot be predicted from automatic measures, such as
prediction correctness or completion time, (b) vice versa, prediction correctness is significantly
affected by subjective scores (higher PSP scores are associated with higher prediction correct-
ness while higher trust scores are associated with notably lower prediction correctness), (c)
the choice of explanation modality affects PSP but not prediction correctness, and (d) higher
system stochasticity affects prediction correctness but not PSP.

Overall, we find that subjective PSP and objective prediction correctness measure distinct
aspects of users’ mental models of a system and that the two measures can diverge – highlighting

28We additionally evaluate a binarized NFC covariate following a partition of subjects above and under the median
NFC as applied by Buçinca et al. (2021) and still do not find a significant effect of NFC.
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the need to explore both, subjective as well as objective predictability. We link our observations
to the known “within-the-bar bias” (Newman and Scholl, 2012) and the illusion of explanatory
depth (Rozenblit and Keil, 2002) and refine our recommended bar chart visualization to include
cumulative bars as shown in Figure 5.24.

5.3. Related Work

In the following, we (i) review related work on the effects explanations have on users (Sec-
tion 5.3.1) including perceived system performance, usefulness, trust, and user behavior, (ii)
discuss risks and misuses that arise when explanations are provided to users (Section 5.3.2),
and (iii) provide a high-level overview of scale development and validation (Section 5.3.3).

5.3.1. Effects of Explanations on Users

In the following, we review related work on how presenting explanations to users affects their
behavior and perception of the system that is explained.

5.3.1.1. Effects on User Perception

The effects of exposing users to explanations that accompany system predictions have been
studied across a broad range of explanation methods, tasks, and user populations. In the
following, we present a non-exhaustive summary that should equip the reader with a notion of
the diverse dimensions of user perceptions that explanations can affect.

Perceived System Performance. Nourani et al. (2019) investigate local explanations
for image classification and find that participants significantly underestimate system accuracy
when implausible explanations (compared to plausible explanations) are provided. Biran and
McKeown (2017) study explanations for a stock price prediction classifier and observe that
providing explanations improves users’ ability to estimate whether classifier predictions are
correct or not. The clinical decision support system study of Bussone et al. (2015) found that
providing explanations can lead to over-reliance on the system. Similarly, we found both over-
and under-estimation effects in our prior work on explainable QA (Schuff, 2020).

Trust. Related work came to different conclusions regarding the effect of explanations on
user trust. For example, the study of Cramer et al. (2008) did not find an effect of explaining a
recommender decision on user trust. Similarly, Ribes et al. (2021) investigated explanations
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for a news aggregator system and found no effect on user trust. In contrast, Khurana et al.
(2021) explored explanations from chatbots and found an improvement in trust. We argue that
the diversity in tasks, explanation methods, and experiment designs does not allow to draw
general conclusions on the effect of explanations on user trust. However, as trust was found to
be correlated with, e.g., acceptability (Nadarzynski et al., 2019), it can be assumed that it is (at
least indirectly) affected by explanations.

Acceptability. Herlocker et al. (2000) investigate explanations in recommender systems
and observe that providing explanations can foster system acceptability. Cramer et al. (2008)
observe a similar effect in their study of art recommender systems.

Perceived Usefulness. The mentioned chatbot study of Khurana et al. (2021) found
that explanations enhance perceived usefulness. Similarly, Bansal et al. (2021) observed that
high-quality explanations increase usefulness ratings. However, a high perceived usefulness
does not necessarily have to translate to an actual usefulness as we discuss in the following.

5.3.1.2. Effects on User Behavior

Besides studying the users’ subjective experience of using an AI system (with explanations), the
extent to which provided explanations affect the users’ (decision) behavior has to be monitored.

Agreement and Human-AI Performance. A broad body of research reported improve-
ments in user decisions when users receive explanations along the decisions of an AI system
(Lundberg et al., 2018; Lai and Tan, 2019; Feng and Boyd-Graber, 2019; Green and Chen,
2019; Lai et al., 2020; Zhang et al., 2020b; Buçinca et al., 2020; Poursabzi-Sangdeh et al.,
2021).29 Bansal et al. (2021) call the generalizability of these improvements into question
and find that providing explanations does generally increase the rate at which users accept a
system’s predictions. Importantly, this effect also holds for erroneous system decisions. Thus,
improvements observed in earlier studies could largely be due to the used AI systems perform-
ing distinctly better than humans. When a AI system in fact is performing distinctly better
than its users, this might still be a desirable effect. However, increasing the users’ tendency to
blindly agree to a given system decision clearly should not be a method’s goal.

Likeability-Effectiveness Trade-off. In addition to the effect of explanations on user
agreement and user performance, Buçinca et al. (2020) investigate whether an explanation that

29See Bansal et al. (2021) for an overview of these studies.
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is perceived to be helpful by explainees also corresponds to an explanation that actually is

helpful to them. The authors showed that between two decision support systems, users preferred
one system (in terms of rating it as more helpful and trusted), although their actual performance
was significantly better with the less-favored system. In their follow-up work, Buçinca et al.
(2021) found a trade-off between subjective system quality ratings and effective human-AI
performance for explainable AI systems.

Overall, the effects of providing explanations to users are still actively studied and — as with
the effects on user perceptions — it is likely that the effects on user behavior do not generalize
across tasks, AI systems, and explanation methods.

5.3.2. Risks and Misuses of Explanations

While explanation methods have a great potential to create added value for their users and
empower individuals affected by decisions of AI systems used for automated decision making,
providing explanations is also associated with certain risks, which we discuss in the following.

Fairwashing, Manipulation, and Remote Explainability. Aïvodji et al. (2019) warn
against misusing explainability methods to create the false impression that a system adheres
to some ethical values while it, in fact, does not. They demonstrate how an unfair black-box
model can be fairwashed using their proposed LaundryML method.

Similarly, Lakkaraju and Bastani (2020) demonstrate how high-fidelity explanations can be
constructed such that they still allow the model to discriminate without making this discrimina-
tion visible in the explanation. Concretely, their approach exploits input feature correlations
that allow their method to cover the usage of obviously discriminating features, such as race
by using correlated features, such as zip code. They demonstrate their approach’s potential to
manipulate user trust within a user study involving domain experts from criminal justice.

In a related argument, Merrer and Trédan (2019) introduce the bouncer problem. In analogy
to a club bouncer that might cover discriminating customer reject with untruthful explanations
(e.g., explaining a reject with non-matching cloth while the decision actually is based on the
guest’s age), providing remote explanations of decisions of a black-box model (e.g., via an API)
allows malicious model providers to cover discriminating decisions with presumably plausible
explanations using a “public relations attack” method which the authors propose.

Dark Patterns and Explainability Pitfalls. Besides directly forging an explanation or
modifying it to make the underlying model appear more favorable than it is, explainability can
also be misused when designing explanation presentation and control. Maclure (2021) discuss
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dark patterns of explainability building on the dark patterns in user experience design discussed
by Gray et al. (2018). Dark patterns refer to deceptive design strategies that, e.g., artificially
complicate an interaction process to make the user act in someone else’s interest. Transferred
to explainability, such a pattern would be, e.g., a strategically induced information overload
that demotivates a user to understand a given explanation.

Apart from intentionally malicious strategies, explanation methods can also have unexpected
negative effects that emerge even when designers and developers have the best intentions. Ehsan
and Riedl (2021) introduce the term explainability pitfalls to refer to such unintended negative
effects. In their case study, they, e.g., find that simply showing users unlabeled numbers without
context of what these numbers refer to, increased users’ trust and perceived intelligence of a
reinforcement learning (RL) agent.

Accountability and the Responsibility Gap. Lima et al. (2022) argue that over-
emphasizing explanation methods can undermine accountability. When AI systems are per-
ceived as blameworthy agents, explanations can help to misuse these systems as scapegoats
to shift away responsibility from their designers. This problem highlights a specific instance
of the responsibility gap (Matthias, 2004) (or liability problem (Asaro, 2016)), which refers
to the problem of ascribing responsibility in the context of AI decisions which differ from the
traditional responsibility and liability regarding a machine for which there is no “gap” between
the manufacturer’s responsibility and the operator’s responsibility.

Overall, the risks that explanation methods can pose have to be considered carefully when
researching and deploying explanations. This is not to say that research should stop investigating
explainability. On the contrary, we have to understand which explanation methods affect users
in which way to (i) spot and stop careless or malicious use of explanations, and (ii) develop
explanation methods that serve users and society. To study the effect of explanations on users,
we have to evaluate how they perceive and interact with explanations.

5.3.3. Scale Development

A scale is designed to quantify a construct, e.g., “system usability”, that may comprise multiple
aspects, called dimensions, e.g., — for system usability — efficiency, effectiveness, and
satisfaction (Brooke, 1996; Finstad, 2010). The most common type of scale is the Likert scale,
containing (multiple) items, rated by the user on a discrete range. The overall score for a
dimension or construct is calculated by combining the numbers related to the answer from each
item. Depending on the exact scale, the procedure used may vary, e.g., items can be weighted.
Note that the single questions are not scales themselves but rather are items and the group
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of items together constitutes the scale. Using multiple items instead of a single rating allows
one to assess the scale’s internal consistency, e.g., via Cronbach’s alpha (DeVellis and Thorpe,
2021). Although one cannot directly assess how well an item is related to the latent variable of
interest (e.g., perceived system predictability) because this is the construct to be captured via
the items, one still can quantify these relationships indirectly via item-item correlations. If the
items have a high correlation with the latent variable, they will have a high correlation with
each other (DeVellis and Thorpe, 2021).

Designing a valid and reliable scale requires a precise development process, summarized
by Boateng et al. (2018) and explained in detail by DeVellis and Thorpe (2021). For NLP,
the fields of psychology, HCI, and robotics already offer a valuable range of scales. Validated
questionnaires exist, for example, for evaluating trust (Körber, 2018), usability (Brooke, 1996;
Finstad, 2010), cognitive load (Hart and Staveland, 1988), social attribution (Carpinella et al.,
2017), or user interface language quality (Bargas-Avila and Brühlmann, 2016). However, to
the best of our knowledge, there is no such scale available to measure (dimensions of) PSP.
A potential pitfall in designing and applying (Likert) scales is to use scales that have not
been validated (DeVellis and Thorpe, 2021). Although such unvalidated scales can yield valid
measurements, the researcher does not know for certain that they will and runs the danger of
not measuring the construct one intended to. In order to obtain a reliable and valid scale, we
thus follow best practices of scale development (DeVellis and Thorpe, 2021; Boateng et al.,
2018) in the development and validation of our PSP scale.
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In this thesis, we explored explainable NLP and provided contributions on (i) a technical
machine learning level, (ii) a methodological evaluation level, as well as (iii) a human-centered
level. This final chapter summarizes our contributions and discusses next steps for future work.

System Architectures and Explanations

In Chapter 3, we (a) addressed external knowledge integration for explanation generation and
(b) explored model self-correction.

For external knowledge integration, we studied explainable NLI models and investigated how
different knowledge sources (such as knowledge bases and language models) affect the models’
classification performance as well as the generated free-text explanations’ quality. We found
that fine-tuned language models reach the highest performance on the explainable NLI dataset
e-SNLI (Camburu et al., 2018) as well as the highest average accuracy within the NLI stress test
evaluation Naik et al. (2018). However, their performance broke down on numerical reasoning
and negations. In addition, we conducted a large-scale human crowdsourcing evaluation and
found that, surprisingly, high differences in accuracy (up to 3.2%), BLEU (up to 10.17 points),
or BLEURT scores do not reflect in significant differences in human ratings of explanation
correctness, commonsense inclusion, grammar, or entailment prediction correctness.

While we explored how external knowledge affects explanations of NLI systems, one
potential direction for future work is to investigate the effects of external knowledge on further
explainable systems. Concretely, we consider studies of the impact of external knowledge
on post hoc saliency attribution explanations as well as counterfactual explanations to be
promising next steps. A further direction for future work is to leverage the information that
our collected human ratings provide. Concretely, an extended psychometric analysis of how
perceived explanation correctness, perceived commonsense inclusion, perceived grammatical
correctness as well as perceived entailment prediction correctness are interrelated has the
potential to extend our knowledge of user-perceived explanation quality. To facilitate such and
similar studies, we make all collected human ratings available at https://github.com
/boschresearch/external-knowledge-explainable-nli.
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6. Conclusion and Future Work

For model self-correction, we set out to enable classification models (regardless of the task),
to re-consider and correct their own predictions. In contrast to humans who can solve complex
problems by creating a sequence of ideas (involving an intuitive decision, reflection, error
correction, etc.) in order to reach a conclusive decision, today’s machine learning models are
mostly trained to map an input to an output in one single step. To provide models with the
capability of having a second, third, and k-th “thought”, we took inspiration from philosophy
and developed our thought flow method based on Hegel’s dialectics. Our method comprises
an architecture extension as well as adapted training and prediction algorithms. In particular,
we train models to estimate the correctness of their own prediction and use this estimate’s
gradient to iteratively update the models’ prediction towards higher self-estimated correctness.
We applied our method to QA systems and demonstrate our method’s ability to correct its own
predictions and its potential to notably improve model performances (>9% absolute F1-score).
In addition, we performed a qualitative analysis of thought flow correction patterns and explored
how thought flow predictions affect human users within a crowdsourcing study. We find that
thought flows enable improved user performance and are perceived as more natural, correct,
and intelligent as single and/or top-3 predictions.

As our oracle-stopping experiments demonstrated, halting the self-correction at the right time
is crucial to avoid over-corrections. We encourage future work to explore automatic optimal
stopping and expect geometric features of the correction trajectory (e.g., a very steep ascent) to
yield an effective heuristic approach. Further, directly learning a policy to take correction steps
(or stop) based on the correction module’s gradients — similar to learning an optimizer (Li and
Malik, 2016) — can be a promising advancement of our method. An additional extension of
our work that could be addressed in future work is to apply our thought flow method to further
classification as well as regression tasks. We expect that our method will yield promising
results in any task for which predicting the correct answer is substantially harder than verifying
whether a given answer is plausible. We thus hypothesize that our method will be particularly
useful for (a) tasks that involve multiple reasoning steps, (b) structured predictions, and (c)
generation tasks. Beyond the multi-step QA task we explored, multi-step reasoning NLP
tasks include multi-step reading comprehension (Lin et al., 2019b) or multi-step numerical
reasoning (Zhao et al., 2022). Structured prediction tasks in NLP include, i.a., dependency
parsing or multi-label document classification. A concrete example of a generation task are
dialog systems for which our flow method could prevent systems from generating inconsistent
responses by re-assessing their answer generation with respect to the dialog history. As we
demonstrated in our vision experiments, our method can also easily be applied beyond NLP,
motivating further applications in more complex vision tasks, such as scene comprehension
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or image segmentation. Besides applying our method to further tasks, we also encourage
a deeper study of thought flows’ effects on users. While our user study revealed numerous
advantages over, e.g., single-step predictions, it remains to be investigated which factors cause
participants to perceive thought flow predictions to be, e.g., more natural and how thought
flow predictions achieve an increased user performance without the sacrifice of significantly
increased completion times that is required to increase user performance via top-3 predictions.

Evaluating and Quantifying Explainability

In Chapter 4, we (a) proposed new proxy scores to quantify prediction-explanation coupling in
explainable QA systems, (b) discovered an alarming disconnect between automatic evaluation
and human evaluation, and (c) raised awareness of the shortcomings of today’s evaluation
practices and proposed guidelines to overcome them.

We first extended our prior work (Schuff, 2020) and proposed two novel proxy scores to
measure how strongly an explainable QA model’s predicted answer is coupled to its prediction
of supporting facts which should serve as evidence for the model’s answer. Concretely, we
proposed the FARM(k) score as well as the LOCA score. For FARM(k), we remove k facts
that the model predicted to be relevant/irrelevant from the input context and relate the number
of resulting answer changes caused by removing facts that the model predicted to be relevant
(should be high) to the number of resulting answer changes caused by removing facts that
the model predicted to be irrelevant (should be low). For LOCA, we consider the location of
answers within the input context and evaluate how frequently model answers are located within
facts that the model predicted to be relevant. We evaluated the two scores against the human
ratings we obtained in our prior work (Schuff, 2020) and found that our scores reflect various
human ratings better than standard metrics, such as F1-score. The underlying human ratings
are available at https://github.com/boschresearch/f1-is-not-enough.

While we developed our scores specifically for explainable QA, the challenge of measuring
prediction-explanation coupling applies to all types of explanations. In the year we published
our work (Schuff et al., 2020), DeYoung et al. (2020) proposed scores to measure compre-

hensiveness and sufficiency to evaluate saliency explanations. Similar to the answer change
fractions within our FARM score, comprehensiveness, and sufficiency measure how class
probabilities change when tokens with high/low saliency are removed. While various authors
(DeYoung et al., 2020; Atanasova et al., 2020) consider these and similar scores to quantify
faithfulness, we argue that — along the definition of socially aligned faithfulness by Jacovi and
Goldberg (2021) — faithfulness evaluation has to consider how human explainees attribute a
given explanation and future work should study which proxy scores respect social alignment.
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6. Conclusion and Future Work

The human evaluations we conducted for our proposed explainable NLI models as well
as the analysis of our proposed scores indicate that today’s de facto standard proxy scores,
such as F1-score, accuracy or BLEU, fail to capture human-rated explanation quality. We
thus explored whether, and, if yes, how strongly, automatic evaluation is detached from
human evaluation within explainable NLP. We evaluated ten real-world model submissions
to the official HotpotQA (Yang et al., 2018) leaderboard which ranks explainable QA models
and conducted an extensive crowdsourced user study. Assessing models from a real NLP
leaderboard on the publicly unavailable test set allowed us to study a uniquely representative
and realistic pool of systems. Additionally, our study exceeded previous studies in the diversity
of human rating dimensions including, e.g., ratings of usability, mental effort, or explanation
utility. Our results confirm the disconnect between automatic evaluation and human evaluation.
We additionally found that optimizing for a single proxy score (as it is usually done within
NLP) can decrease the score’s expressiveness over time (i.e., Goodhart’s law), meaning that
scores can “wear off” and ultimately undermine a leaderboard’s utility.

While challenges regarding the disconnect between proxy scores and human ratings within
NLG are well known and extensively researched for various tasks (Callison-Burch et al., 2006;
Liu et al., 2016; Novikova et al., 2017; Sulem et al., 2018; Reiter, 2018), this issue has received
— apart from important exceptions, such as the work of Clinciu et al. (2021) — little attention
in explainable NLP research yet. Exploring to which extent other explainable NLP tasks are
affected by this disconnect is a pressing need that future work should address in order to ensure
that we are not developing systems for the sake of improving scores on leaderboards, but to
provide an actual benefit to the systems’ users.

A key challenge in evaluating explanation quality is its often vague and implicit definition.
We thus addressed the question of what makes a “good” explanation. For this, we proposed
fundamental characteristics of explanation quality including insights from the behavioral
sciences. Next, we demonstrated how today’s evaluation practices violate them. As a remedy,
we proposed guidelines to overcome some of the main challenges that explanation quality
evaluation is facing. The core of our recommendations is to conduct human evaluation in order
to validate automatic evaluation, combine the strengths of automatic and human evaluation,
and evaluate explanations beyond quantitatively measurable dimensions. In order to support
NLP researchers that want to get started with how to design, conduct, and evaluate user studies,
we published a survey paper that reviews the aspects of human evaluation that we consider
to be most important in NLP (Schuff et al., 2023b). We additionally developed Pareto front
leaderboards as an alternative to the single-score rankings that are predominantly used in NLP
today. Pareto front leaderboards construct model ranks based on multiple dimensions without
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weighting or averaging the single dimensions and provide an alternative approach to defining
new state-of-the-art models and multi-criteria model selection.

Future work should seek to unify and standardize explanation quality evaluation. While an
increasing amount of explainable NLP publications includes human evaluation in their method
assessment, the choice of collected signals and ratings, experiment design, and statistical
evaluation vary strongly. Although there is no one-fits-all solution to explanation quality
evaluation, establishing a shared evaluation framework will allow to compare methods across
publications using standardized norms. We are convinced that a well-developed evaluation
foundation will accelerate research, strengthen reproducibility, and foster acceptance of human
evaluation as an integral part of (explainable) NLP research.

Human Perception and Explanations

In Chapter 5, we (a) explored how cognitive biases distort human perception of explanations
and (b) developed and validated a questionnaire to measure perceived system predictability.

For our study of cognitive biases, we considered saliency explanations over text. Saliency
explanations overlay text with a heatmap of, typically red, color in which light shades of
red correspond to less important parts of the input while strong shades of red mark more
important parts. In a series of six experiments, we demonstrated that, although a word’s
importance information is communicated via its color only, the information that explainees
understand is influenced by unrelated superficial factors, such as the word’s length or the
word’s capitalization. We replicated these biasing effects across languages, tasks, domains,
and saliency scores (including the commonly used attribution scores Integrated Gradients and
SHAP). Besides a word’s influence on the perception of its explanation, we also investigated
how other words influence a word’s perception. Concretely, we analyzed how left and right
neighbors influence importance perception and discovered left-right asymmetries as well as
significant differences between neighboring words that share a lexical chunk versus unrelated
neighboring words. We linked the observed effects to known cognitive biases and connected
the observed effects between neighboring words to a psychological theory of assimilation
and contrast. We further explored how the distorting effects can be mitigated and proposed
three visualization alternatives. We demonstrated that bar charts can mitigate visual bias,
our novel model-based saliency correction method can mitigate bias from learning effects,
and choosing an appropriate color range can prevent distorting influences from neighboring
words. We release the collected human ratings as well as our GAMM analysis code at https:
//github.com/boschresearch/human-interpretation-saliency.
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6. Conclusion and Future Work

One important direction for future work is to study whether our conclusions can be replicated
using alternative methodological approaches. Concretely, we envision a replication of our
study using eye-tracking and electroencephalography . Further, future work can build upon our
proposed visualization alternatives and derive improved visualization and general explanation
methods based on our findings. Lastly, we hypothesize that the effects we observed can also
be relevant to work in psychology, in which our results might either confirm existing theories
or shed light on previously unexplored effects that are of interest beyond their relevance in
explainable NLP.

In the last part of this thesis, we developed and validated a scale to measure perceived
system predictability. Following best practices of scale development, we designed a 6-item
Likert questionnaire that allows us to measure the degree to which users feel able to predict
a system’s behavior. We conducted extensive experiments that demonstrate the validity of
our instrument and showed that it can be used to measure perceived predictability either as a
unidimensional construct or as a three-dimensional construct in which we distinguish between
effective, epistemic, and aleatory predictability inspired by uncertainty theory. We (a) explored
how perceived predictability is related to, i.a., user trust, (b) analyzed how subjective perceived
predictability and objective accuracy of users’ system prediction estimates are related, and
(c) investigated how different types of explanations and levels of system stochasticity affect
perceived predictability. We found that measuring perceived system predictability yields
information beyond measuring objective system predictability and that objective and perceived
predictability can diverge and differ in their relation to explanations and system stochasticity.

Future work should further study the psychometric properties of our scale and assess its
validity within new usage contexts as well as for additional user populations. Most importantly,
we consider our scale together with our fundamental research on perceived predictability to be
a valuable tool for researchers within NLP, broader explainability research, and various areas
of HCI. We envision applications of our scale to range on a broad spectrum from the evaluation
of chatbots to user experience evaluation in automated driving.

Essential Takeaways

The key argument that this thesis made is that developing effective explainable NLP systems
requires an interdisciplinary approach. We showed that addressing explainable NLP from a
purely technical perspective poses the danger of having “the inmates [NLP researchers] running
the asylum [explainability research]” (Miller et al., 2017), i.e., developing explainability
methods that suit their developers but not their users. Instead, we argued that adding a human-
centered perspective allows us to question and improve our evaluation methods, diversifies
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model development, and ultimately drives explainable NLP research towards explanations that
matter to their users. We envision an ideal explanation method development process as one that
(i) proposes a new explanation method based on a principled technical foundation as well as
knowledge of human cognition, (ii) is accelerated by automatic evaluation using meaningful
proxy scores, and (iii) finally verifies the proposed explanation method using standardized
human evaluation.
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A. Appendix

A.1. External Knowledge for NLI

A.1.1. Knowledge Requirement Annotation

Table A.1 lists the annotation guidelines used to decide on low/high levels of required external
knowledge as discussed in Section 3.1.3.3. Table A.2 shows example annotations.

L
ow

L
ev

el

Pattern Matching

The entailment can be decided by matching identical parts in the
premise and the hypothesis.
Premise: A water scene with a sunset in the background.
Hypothesis:There is a water scene with the sunset in the back.

Unrelated Negation
The entailment can be decided by identifying an unrelated negation.
Premise: Children bathe in water from large drums.
Hypothesis: The kids are not reading.

Rephrasing

The entailment can be decided by simple rephrasing (e.g. replacing a
word with a synonym).
Premise: A boy dressed in an orange shirt and a helmet is riding a dirt
bike in the woods.
Hypothesis: A boy in orange rides his dirt bike.

Easily-Distinguishable
Concepts

The entailment can be decided by identifying unrelated concepts that
have no semantic relation.
Premise: Firefighters in full gear are walking up a ladder.
Hypothesis: The firefighters are eating lunch.

H
ig

h
L

ev
el

Complex Reasoning

The entailment can be decided by resolving more complex relations
and reasoning using common sense knowledge.
Premise: Soccer players are playing a night game and the ball is in the
air, while the two teams fight for it.
Hypothesis: The sun was shining during the soccer match.

Abstract Concepts

The entailment can be decided using common sense knowledge about
abstractions of concepts.
Premise: A girl reaches up to kiss a cat, which is sitting on the counter.
Hypothesis: A girl is showing affection towards a cat.

Table A.1.: Annotation guidelines used during the annotation of low/high levels of required
external knowledge with examples.
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L
ow

L
ev

el

Premise: There is a group of children getting their picture taken with presents.
Hypothesis: Two men carry a Christmas tree.

Premise: A woman looks at a plate filled with steam.
Hypothesis: The woman is out shopping at the mall.

Premise: Man sitting on bench with a suitcase in front of PADDINGTON sign.
Hypothesis: A man sitting with a sign.

Premise: A man grilling a hamburger.
Hypothesis: The man is swimming at the bottom of the ocean.

Premise: The African American man protests against unlawful sex.
Hypothesis: The man protests.

H
ig

h
L

ev
el

Premise: A boy in a red jacket and black hat sliding on his knees down a snowy hill
Hypothesis: A child is playing outside.

Premise: A man playing a piano.
Hypothesis: The man’s hands are on the keys of a piano.

Premise: 3 girls chatting and laughing on the stairwell.
Hypothesis: Girls are not having a good time.

Premise: A man visiting a friend in the hospital.
Hypothesis: A man and a patient in a hospital room.

Premise: Two girls pose along a tree-lined path and blow kisses towards the camera.
Hypothesis: Two girls are taking pictures outside.

Table A.2.: Pairs from the low/high external knowledge requirement annotations sampled from
pairs for which annotators agreed.

A.2. Thought Flow Nets

A.2.1. Question Answering Experiments

A.2.1.1. Dataset Details.

We use the HOTPOTQA dataset (Yang et al., 2018), which is an English multi-hop QA data
set. It covers 90,564 training instances, 7,405 test validation instances, and 7,405 test instances
per setting (there are a distractor and a fullwiki setting). Training instances are grouped by
difficulty and cover 18,089 easy, 56,814 medium, and 15,661 hard questions. We refer to (Yang
et al., 2018) for more details.

A.2.2. User Study

A.2.2.1. Questionnaire Items

Per-System Questionnaires. We collected the following ratings per-system, i.e., after
interaction with all instances.

194



A.2. Thought Flow Nets

Usability: The UMUX usability scale (Finstad, 2010, 2013) uses the following four 5-point
Likert items:

• This system’s capabilities meet my requirements.

• Using this system is a frustrating experience.

• This system is easy to use.

• I have to spend too much time correcting things with this system.

Mental Effort: The Pass mental effort scale (Paas, 1992) uses a single 9-point Likert item:

• Please rate the mental effort required to decide if the system’s answer is correct. The nine
points are labeled from “very, very low mental effort” to “very, very high mental effort”.

Anthropomorphism: The Godspeed anthropomorphism subscale (Bartneck et al., 2009) uses
five 5-point semantic differential scales that ask the user to rate the system in a spectrum of:

• fake – natural

• machinelike – humanlike

• unconscious – conscious

• artificial – lifelike

• (moving rigidly – moving elegantly) (We exclude this item as it is not applicable to
question answering systems.)

Perceived Intelligence: The Godspeed perceived Intelligence subscale (Bartneck et al., 2009)
uses five 5-point semantic differential scales that ask the user to rate the system in a spectrum
of:

• incompetent – competent

• ignorant – knowledgeable

• irresponsible – responsible

• unintelligent – intelligent

• foolish – sensible
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Per-Item Questionnaires. In addition to the per-system ratings, we also collect ratings on
a fine-grained, per-instance level.

Perceived Answer Correctness: We use a single binary item to collect perceived answer
correctness ratings:

• I think the system’s answer is correct.

Perceived Helpfulness: We use a single 5-point Likert item to collect helpfulness ratings:

• I think the system’s answer enables me to give the correct answer.

Perceived Understanding: We use a single 5-point Likert item to collect understanding ratings:

• I understand how the system came up with its answer.

A.2.2.2. Interface

Figures A.1 to A.3 show screenshots of our experiment interface for the three studied prediction
conditions TF, TOP-3 and SINGLE. Figure A.4 depicts an attention check question.

A.3. Novel Proxy Scores

Figures A.5 and A.6 compare model scores and human measures grouped into F1-scores and
our proposed FARM(4) and LOCA scores. Rows alternate between F1-scores and our scores.
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A.3. Novel Proxy Scores

Figure A.1.: User study interface showing the TF condition (ours).
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Figure A.2.: User study interface showing the TOP-3 condition.
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A.3. Novel Proxy Scores

Figure A.3.: User study interface showing the SINGLE condition.
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Figure A.4.: User study interface showing an attention check.
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Figure A.5.: Comparisons between human measures and model scores. All scores are nor-
malized before plotting by subtracting the minimum score and re-scaling the
score span to [0, 1]. Human measures for which lower values correspond to better
performance are plotted as (1−score) for the convenience of the reader. The figure
shows scores for completion time, fraction of correct user decisions, overestima-
tion, agreement, false positives, and true positives.
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Figure A.6.: Comparisons between human measures and model scores. All scores are nor-
malized before plotting by subtracting the minimum score and re-scaling the
score span to [0, 1]. Human measures for which lower values correspond to better
performance are plotted as (1−score). The figure shows scores for false negatives,
true negatives, precision, recall, and user F1-score.
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A.4. HotpotQA Case Study

A.4. HotpotQA Case Study

A.4.1. Detailed Proxy Scores

We provide values of all analyzed proxy scores across models in Table A.3 and Kendall’s τ
correlation coefficients between automatic scores in Figure A.9.

A.4.2. User Study Details

We show screenshots of our study interface in Section A.4.2.1 and report human ratings along
all measured rating dimensions in Section A.4.2.2.

A.4.2.1. User Study Interface

We provide screenshots of the user study interface that we showed to participants. Figure A.7
displays the rating interface we showed for each question. Figure A.8 displays the post hoc
questionnaire we asked participants to fill out at the end of the study.

A.4.2.2. Detailed Human Ratings

Table A.4 displays the human ratings and completion times we obtained within the user study
for the ten leaderboard systems as well as our five synthetic systems.

A.4.2.3. Proxy Scores and Human Ratings

Figure A.11 displays the Kendall’s τ correlations between proxy scores and human ratings. We
additionally provide Bonferroni-corrected significance levels. We further evaluate (i) grouped
weighted κ inter annotator agreements (IAAs) Cohen (1968) as an appropriate IAA measure
for ordinal responses and (ii) standard deviations to provide an additional perspective on the
ratings’ variances. We observe κ = 0.42 / SD= 0.43 for correctness, κ = 0.3 / SD= 1.88 for
utility and κ = 0.33 / SD= 2.13 for consistency. These IAAs and standard deviations signal a
low agreement / high variability which is commonly interpreted to correspond to low-quality
annotations.1 However, we want to emphasize that the purpose of our study is not (and should
not be) to collect clean annotations of specific explanation instances but instead to capture the
relation between automatic scores and intentionally and potentially noisy subjective human

ratings as these are the exact ratings that constitute human assessment of explanation quality.

1We note that this interpretation can be challenged and low IAAs are not necessary to collect highly reliable data
(Beigman Klebanov and Beigman, 2009).
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joint-F1 F1 SP-F1 LOCA # words # facts # excess facts

∗ gold 99.99 99.99 100.00 1.00 58.43 2.43 0.00
FE2H on ALBERT 76.54 84.44 89.14 0.98 56.05 2.30 -0.13
AMGN 74.20 82.80 88.12 0.95 54.05 2.22 -0.22
Longformer 73.17 81.26 88.34 0.72 56.50 2.33 -0.10
S2G-large 72.26 80.24 87.61 0.12 55.90 2.31 -0.13
HGN 71.04 79.37 87.33 0.97 57.36 2.36 -0.07
Text-CAN 65.96 73.99 85.76 0.92 56.65 2.33 -0.10
SAE 62.92 72.77 82.82 0.86 57.50 2.38 -0.05
IRC 59.22 72.53 79.36 0.77 70.34 2.94 0.51
GRN 58.48 66.72 84.11 0.89 57.35 2.37 -0.05
∗ gold-answers-all-facts 11.79 99.99 11.80 1.00 923.96 41.26 38.83
∗ random-answers-gold-facts 1.93 1.93 100.00 0.12 58.43 2.43 0.00
∗ random-answers-random-facts 0.00 1.89 0.00 0.11 55.95 2.43 -0.01
∗ gold-answers-random-facts 0.00 99.99 0.00 0.03 55.83 2.43 -0.01

Table A.3.: Extended HotpotQA leaderboard including synthetic systems derived from the gold
test set (marked with “∗” and italics). DecompRC only reports answer metrics.

Figure A.7.: MTurk interface to rate a system prediction.
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Figure A.8.: Post questionnaire of the MTurk interface.

Usability
(UMUX)

Consistency Utility Answer
Correctness

Mental
Effort

Completion
Time (seconds)

AMGN 86.7 5.8 5.6 0.9 5.8 80.2
DecompRC 78.3 5.0 4.8 0.9 5.8 43.2
FE2H on ALBERT 97.5 6.3 6.2 1.9 4.0 81.8
∗ gold 83.3 6.1 6.2 2.0 5.6 41.4
∗ gold-answers-all-facts 85.8 5.0 5.6 1.8 5.8 75.4
∗ gold-answers-random-facts 15.8 2.3 2.4 1.7 7.8 43.8
GRN 68.3 5.4 5.8 1.7 4.8 75.1
HGN 90.0 6.3 6.3 1.9 4.2 64.4
IRC 83.3 6.0 6.3 1.8 5.8 118.0
Longformer 86.7 5.9 6.3 1.9 5.0 42.0
∗ random-answers-gold-facts 20.8 2.1 5.4 1.0 4.6 44.4
∗ random-answers-random-facts 23.3 2.4 2.9 1.0 5.2 48.7
S2G-large 88.3 6.1 6.1 1.8 4.0 50.9
SAE 86.7 5.9 6.3 1.8 4.2 86.6
Text-CAN 86.7 6.0 6.3 1.9 4.6 94.2

Table A.4.: Human ratings of the systems we assessed within our human evaluation (synthetic
systems are marked with “∗” and italics). Best values are marked bold. Answer
correctness ratings are scaled to [0, 2] to allow a finer-grained differentiation be-
tween systems.
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Figure A.9.: Kendall’s τ correlation coefficients between automatic scores to quantify model
behavior related to explanation quality on the HotpotQA dataset. Significance
levels are corrected using Bonferroni correction. (∗: p ≤ 0.05, ∗∗: p ≤ 0.01, ∗ ∗ ∗:
p ≤ 0.001 and ∗ ∗ ∗∗: p ≤ 0.0001).
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Figure A.10.: Kendall’s τ correlation coefficients between human ratings and joint-F1.

A.4.2.4. Question Pool Size Simulations.

In order to support our assumption that our pool of 100 questions is sufficiently representative,
we simulate experiments with various question subsets. Figure A.10 shows that correlations
already stabilize for 20 questions and that there are no qualitative or quantitative differences to
using 100 (all τ differences<=0.04).
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Figure A.11.: Kendall’s τ correlations (per HIT). Significance levels are corrected using Bon-
ferroni correction. (∗: p ≤ 0.05, ∗∗: p ≤ 0.01, ∗ ∗ ∗: p ≤ 0.001 and ∗ ∗ ∗∗:
p ≤ 0.0001).
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A.5. Human Interpretation

A.5.1. Study Interfaces

In addition to the screenshot shown in Figure 5.2, Figure A.12 shows the interface of the German
study and Figure A.13 shows an interface that uses the alternative bar chart visualization.
Figure A.14 displays one of the three trap questions we use to detect participants that do not
pay attention to the task.

Figure A.12.: Screenshot of the importance rating interface for German fact checking sentences
using saliency visualization.

A.5.2. English Study Details

Table A.5 displays test statistics for all smooth pairwise interactions. We make use of ten-
sor interaction smooths following a functional ANOVA decomposition. Figure A.15 shows
summed-effect plots for the respective significant interactions. Ordered categorical cut points
are located at -1, 1.31, 3.29, 5.15, 7.1, and 9.22.
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Figure A.13.: Screenshot of the importance rating interface for English sentiment sentences
using bar visualization.

Figure A.14.: Screenshot of one of three trap sentences used to validate that the participant
pays attention to the task.
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edf ref. df F p

ti(saliency,display index) 2.5102 16 2.1075 0.0001
ti(saliency,word length) 6.0566 16 2.2698 0.0001
ti(saliency,sentence length) 3.1609 16 1.1203 0.0020
ti(saliency,word frequency) 0.9176 12 1.8325 0.0004
ti(saliency,sentiment polarity) 2.9357 16 0.5553 0.0814
ti(saliency,saliency rank) 0.0004 16 0.0000 0.5864
ti(saliency,word position) 0.6254 16 0.1144 0.1276
ti(display index,word length) 1.5112 16 0.6637 0.0026
ti(display index,sentence length) 1.2776 16 1.0159 0.0010
ti(display index,word frequency) 2.6938 16 1.7810 0.0001
ti(display index,sentiment polarity) 0.5386 16 0.0853 0.1678
ti(display index,saliency rank) 1.3966 16 0.5272 0.0174
ti(display index,word position) 3.3649 16 0.6625 0.0520
ti(word length,sentence length) 0.0004 16 0.0000 0.9236
ti(word length,word frequency) 2.1540 16 6.5510 < 0.0001
ti(word length,sentiment polarity) 0.0014 16 0.0000 0.6790
ti(word length,saliency rank) 2.2175 16 0.3503 0.0573
ti(word length,word position) 1.0296 16 0.1270 0.1222
ti(sentence length,word frequency) 0.0005 16 0.0000 0.8608
ti(sentence length,sentiment polarity) 0.0013 16 0.0001 0.5113
ti(sentence length,saliency rank) 1.3045 16 0.2651 0.0453
ti(sentence length,word position) 3.1995 16 0.8487 0.0067
ti(word frequency,sentiment polarity) 0.0015 16 0.0001 0.1969
ti(word frequency,saliency rank) 0.0022 15 0.0001 0.3230
ti(word frequency,word position) 2.0375 16 0.3168 0.0924
ti(sentiment polarity,saliency rank) 0.0006 16 0.0000 0.8407
ti(sentiment polarity,word position) 0.0005 16 0.0000 0.9558
ti(saliency rank,word position) 0.0006 16 0.0000 0.6542

s(sentence_id) 0.0006 150 0.0000 0.9276
s(saliency,sentence_id) 9.1441 150 0.0676 0.2305
s(worker_id) 48.1065 49 10640.8475 < 0.0001
s(saliency,worker_id) 48.0654 50 6593.7769 < 0.0001

Table A.5.: Wald tests for the pairwise interactions (tensor interactions) (upper) and random
effects (lower) of the English user study.

df F p

capitalization 2 7.62 0.0005
dependency relation 33 2.57 < 0.0001

Table A.6.: Wald tests for the parametric terms of the German user study.
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(c) Saliency * sentence length
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(e) Display index * word length
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(h) Display index * saliency rank
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(j) Sentence length * saliency rank
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Figure A.15.: Summed-effect plots of all significant pairwise interactions.
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edf ref. df F p

s(saliency) 8.2052 19 148.1115 < 0.0001
s(display index) 1.5999 9 2.4742 < 0.0001

s(word length) 2.0440 9 3.9174 < 0.0001
s(sentence length) 0.9073 9 1.7657 0.0003
s(word frequency) 0.0017 9 0.0002 0.2816

s(saliency rank) 0.0004 9 0.0000 0.7016
s(word position) 2.4429 9 2.8142 0.0002

ti(saliency,display index) 0.0007 16 0.0000 0.5846
ti(saliency,word length) 2.4114 16 1.1662 0.0013

ti(saliency,sentence length) 1.8496 16 0.7410 0.0125
ti(saliency,word frequency) 0.6953 11 0.3084 0.0549

ti(saliency,saliency rank) 1.4340 16 0.4958 0.0142
ti(saliency,word position) 0.0765 16 0.0053 0.2970

ti(display index,word length) 0.3529 16 0.0477 0.1968
ti(display index,sentence length) 0.1902 16 0.0171 0.2622
ti(display index,word frequency) 0.0005 15 0.0000 0.7096

ti(display index,saliency rank) 0.2967 16 0.0332 0.2325
ti(display index,word position) 1.1440 16 0.4244 0.0168
ti(word length,sentence length) 0.9858 16 0.3138 0.0290
ti(word length,word frequency) 0.9622 11 1.0293 0.0050

ti(word length,saliency rank) 0.0005 16 0.0000 0.8581
ti(word length,word position) 0.8285 16 0.5132 0.0091

ti(sentence length,word frequency) 0.0009 15 0.0001 0.3536
ti(sentence length,saliency rank) 0.0005 16 0.0000 0.9945
ti(sentence length,word position) 0.0005 16 0.0000 0.6862
ti(word frequency,saliency rank) 0.0003 16 0.0000 0.9438
ti(word frequency,word position) 0.0005 15 0.0000 0.6085

ti(saliency rank,word position) 0.0004 16 0.0000 0.8379

s(sentence ID) 0.0004 149 0.0000 0.9007
s(saliency,sentence ID) 36.6567 150 0.3534 0.0087

s(worker ID) 23.5324 24 8128.6327 < 0.0001
s(saliency,worker ID) 23.6122 25 5645.0812 < 0.0001

Table A.7.: Wald tests for the smooth terms of the German user study.

213



A. Appendix

Coefficients β SE t p

capitalization: all capital 1.9051 0.9638 1.9767 0.0481
capitalization: first capital 0.4074 0.1151 3.5390 0.0004

dependency relation: acl -1.2155 0.6428 -1.8910 0.0587
dependency relation: acl:relcl 1.3605 0.5947 2.2878 0.0222
dependency relation: advcl 0.8647 0.7154 1.2087 0.2269
dependency relation: advmod 0.3741 0.2369 1.5790 0.1144
dependency relation: amod 0.4794 0.2653 1.8072 0.0708
dependency relation: appos 0.2823 0.4119 0.6852 0.4932
dependency relation: aux 0.6395 0.3138 2.0379 0.0416
dependency relation: aux:pass -0.0679 0.3798 -0.1789 0.8581
dependency relation: case 0.1169 0.2082 0.5613 0.5746
dependency relation: cc 0.1126 0.2571 0.4379 0.6615
dependency relation: cc:preconj 0.8039 1.1491 0.6996 0.4842
dependency relation: ccomp 1.1850 0.5206 2.2763 0.0229
dependency relation: compound 0.8738 0.4488 1.9470 0.0516
dependency relation: compound:prt 0.4114 0.4577 0.8989 0.3688
dependency relation: conj 0.1673 0.2900 0.5769 0.5640
dependency relation: cop 0.4169 0.2598 1.6043 0.1087
dependency relation: csubj 1.0154 0.7533 1.3480 0.1777
dependency relation: det -0.1604 0.2088 -0.7682 0.4424
dependency relation: expl -1.0130 0.4605 -2.1998 0.0279
dependency relation: flat:name 0.3786 0.5401 0.7010 0.4833
dependency relation: iobj -0.4807 0.5162 -0.9312 0.3518
dependency relation: mark 0.1537 0.3646 0.4216 0.6734
dependency relation: nmod 0.4656 0.2787 1.6707 0.0949
dependency relation: nmod:poss -0.0658 0.3251 -0.2025 0.8395
dependency relation: nsubj 0.4443 0.2369 1.8755 0.0608
dependency relation: nsubj:pass 0.4296 0.4305 0.9979 0.3184
dependency relation: nummod 1.3866 0.3609 3.8419 0.0001
dependency relation: obj 0.2406 0.2649 0.9082 0.3638
dependency relation: obl 0.3126 0.2679 1.1668 0.2434
dependency relation: obl:tmod 1.7042 0.5544 3.0739 0.0021
dependency relation: parataxis -0.2780 0.8595 -0.3234 0.7464
dependency relation: root 0.5463 0.2432 2.2460 0.0248
dependency relation: xcomp 0.6718 0.4494 1.4948 0.1351

Table A.8.: Capitalization and dependency relation coefficients for the German user study.
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Table 9: Comments of the participants of the German study. Participants were asked to rate the underlined word or symbol.

Sentence with Saliency Explanation Rating Comment

Durch den Deal zwischen Aoun und Hariri kommen

sich die beiden verfeindeten Bündnisse ( vorerst ) näher

.

4 Wenn dann müssen beide Klammern weg (P4)

Jedes Gedicht erzählt nur von einem Teil des Krieges

.

2 Das Symbol wird von der KI zu hoch bewertet. (P10)

Gewitterstürme sind selten , die Stadt berichtet nur an

sieben Tagen pro Jahr von Gewittern .

7 Auch hier: "Gewitterstürme" viel zu gering gewichtet,
"Jahr" zu hoch bewertet (P10)

Die Geschichte von Doss hat auch etwas Unglaubhaftes

an sich , das sie nur umso attraktiver macht .

3 Der Artikel ist sicher wichtig, jedoch nicht zwingend für
den Sinn verantwortlich. (P16)

Frau Hopley fügte hinzu : „ Der starke Anstieg des

politischen Risikos sollte nicht unbeachtet bleiben. “

1 Es ist nur eine grammatische Kennzeichnung. Diese ist
für KI meines Erachtens wenig bis garnicht relevant.
(P16)

Wasser aus den Flüssen wird in über 500

Wasserkraftwerken genutzt , wobei 2900 Kilowatt

Elekrizität generiert werden .

3 Die KI sollte schon den Wert einer Aussage kennen,
die erst in der Zukunft eintritt und diese gegenüber ak-
tuell bereits eingetretenen Ereignissen bewerten können.
(P16)

Der Kunde kann die Forderung nach Veränderung

verstärken .

5 Das Verb gibt dem Satz seinen Sinn. (P16)

Ich glaube , darum haben sie sich mit so vielen

Mustern und Farben umgeben .

5 Das Adjektiv beschreibt eine wichtige Eigenschaft und
ist für die Satzbewertung relevant. (P16)

product of intervals of observed values (e.g., 1-37 characters word
length) per variable if the variable is numeric (e.g., word length)
and the set of possible values if the variable is categorial (e.g., de-
pendency relation). Each point is a candidate context. We evaluate
the term in Equation 10 for a saliency score of 0.5 and each candi-
date context. Among all predicted importance scores, we select the
median score and choose the corresponding candidate context as
our reference context xref.21

E.3 Iterative Bias Minimization
In order to minimize the absolute predicted bias score, we have
to modify each word’s original saliency score s(i)orig ∈ [0, 1] into
a corrected saliency score s(i)corr ∈ [0, 1]. While this seems to be a
straight-forward minimization at first glance there is one covari-
ate in the model that complicates optimization. The value of the
saliency rank variable depends on the saliencies of all words in the
sentence. Thus, changing one word’s saliency can impact all other
word’s saliency rank. We therefore propose an iterative minimiza-
tion that (i) sequentially picks a token in the sentence (one after

21The concrete xref corresponds to a “flat” dependency relation, a “first letter capital-
ized” capitalization, a display index of 129.7, a word length of 24.6, a sentence length
of 4.1, a relative word frequency of 0.04, a sentiment polarity of -0.78, a normalized
saliency rank of 0.11 and a word position index of 1.08. While non-integer values for,
e.g. word length cannot occur in any prediction, this does not limit the utility of xref
as the reference context as it only serves as an arbitraty, but neutral reference point.

the other, round-robin) and (ii) updates this token’s saliency score
into the direction of a decreased absolute bias score while keeping
all other tokens’ saliencies fixed. Algorithm 1 shows the complete
correction procedure, Table 10 shows the procedure’s impact on an
example sentence over the course of 100 optimization steps. Besides
the examples shown in Table 4, we provide additional examples in
Table 11.

F INTEGRATED GRADIENTS AND
CORRECTION STUDY

We report detailed estimates and test statistics regarding our third
user study in Table 12. Figure 11 shows comparison plots for each
smooth term and Figure 12 as well as Figure 13 visualize the re-
spective difference functions between visualizations along with
highlighted regions of significant differences. Cut points are lo-
cated at -1, 0.95, 2.37, 3.67, 5.06 and 6.83.

Table A.9.: Comments of the participants of the German study. Participants were asked to rate
the underlined word or symbol.

A.5.3. German Study Details

In this section, we provide details on the analysis of the German experiment. Table A.7 and
Table A.6 display test statistics for the smooth and parametric terms of the fitted GAMM model.
Table A.8 shows statistics regarding parametric coefficient estimates. Cut points are located at
-1, 0.86, 2.42, 3.75, 5.53, and 7.67. Table A.9 lists exemplary participant comments.

A.6. Neighboring Words

A.6.1. User Study Details

A.6.1.1. Interface

Figure A.16 shows a screenshot of our rating interface. Figure A.17 shows a screenshot of an
attention check.
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Figure A.16.: Screenshot of the rating interface.

A.6.1.2. Attention Checks

As in the previous studies, we include three attention checks per participant which we randomly
place within the last two thirds of the study.

A.6.1.3. Participants

In total, we recruit 76 crowdworkers from English-speaking countries via MTurkfor our
randomized explanation study and 36 crowdworkers for our SHAP-value explanation study.
We require workers to have at least 5,000 approved HITs and a 95% approval rate. Raters are
screened with three hidden attention checks that they must answer correctly to be included
(but are paid fully regardless). Of the 76 workers, 64 workers passed the screening, i.e., we
excluded 15.8% of responses on a participant level. From the 36 workers, all workers passed
the screening. On average, participants were compensated with an hourly wage of US$ 8.95.
We do not collect any personally identifiable data from participants.

A.6.1.4. Model Details in Our Analysis

We control for all main effects (word length, sentence length, etc.) as well as all random effects
used in the previous study. We exclude the pairwise interactions due to model instability when
including the interactions.
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Figure A.17.: Screenshot of the rating interface for an attention check.

We additionally include four new novel bivariate smooth terms. Each of these terms models
a tensor product of saliency (i.e. the rated word’s color intensity) and the neighboring (left or
right) word’s saliency difference to the rated word. For each side (left and right), we model
the smooths for neighbors that (i) are within a lexical chunk of the rated word and (ii) are not.
Figure 5.7 shows the estimated four (bivariate) functions.

A.6.1.5. Data Preprocessing

We exclude ratings with a completion time of less than a minute (implausibly fast completion)
and exclude words with a length of over 20 characters. We effectively exclude 1.8% of ratings.

In order to analyze left as well as right neighbors, we additionally have to ensure that we only
include ratings for which both — left and right — neighbors exist. Therefore, we additionally
exclude ratings for which the leftmost or rightmost word in the sentence was rated. This
excludes 11.7% of ratings. In total, we thus use 9489 ratings to fit our model.

A.6.1.6. Chunk Measures

We explore and combine two approaches to identifying multi-word phrases (or “chunks)”.
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Syntactic Measures: Constituents. We first apply binary chunk measures based on
the sentences’ parse trees. We use Stanza (Qi et al., 2020) (version 1.4.2) to generate a parse
tree for each sentence. We assess whether the rated word and its neighbor (left/right) share a
constituent at the lowest possible level. Concretely, we (a) start at the rated word and move up
one level in the parse tree and (b) start at the neighboring word and move up one level in the
parse tree. If we now arrived at the same node in the parse tree, we consider the rated word
and its neighbor to share a first-order constituent. If we arrived at different nodes, we consider
them to do not. Restricting the type of first-level shared constituents to noun phrases yields
a further category. We provide respective examples for shared first-level constituents and the
respective noun phrase constituents extracted from our data in Table A.10 (upper part).

Statistical Measures: Co-occurrence Scores. We additionally explore numeric asso-
ciation measures and calculate all available bigram collocation measures available in NLTK’s
BigramAssocMeasures module2. The calculation is based on the seven million Wikipedia-2018
sentences in Wikipedia Sentences.3 A description of each metric as well as top-scored examples
on our data is provided in Table A.10 (lower part). We separate examples into examples that
form a constituent vs. do not form a constituent to highlight the necessity to apply a constituent
filter in order to get meaningful categorization into chunks vs. no chunks.

A.6.1.7. Detailed Results

As described in Section 5.1.2.3, we observe different influences of left/right neighbors, chunk/no
chunk neighbors as well as rated word saliency levels for randomized explanation experiment.
We report the detailed Wald test statistics for our randomized explanation experiment in
Table A.11.

Left vs. Right Neighbors. Figure A.18 shows difference plots (and respective p values)
between left and right neighbors for chunk neighbors (Figures A.18a and A.18b) and no chunk
neighbors (Figures A.18c and A.18d).

Chunk vs. No Chunk. Respectively, Figure A.19 shows difference plots (and respective p
values) between chunk and no chunk neighbors for left neighbors (Figures A.19a and A.19b)
and right neighbors (Figures A.19c and A.19d).

2https://www.nltk.org/_modules/nltk/metrics/association.html
3https://www.kaggle.com/datasets/mikeortman/wikipedia-sentences
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Measure Constituent Examples No Constituent Examples Description

First-order
constituent

highly developed, more than,
such as, DVD combo, 4
million

— Smallest multi-word constituent sub-
trees in the constituency tree.

Noun phrase Tokyo Marathon, ski racer,
the UK, a retired, the city

— Multi-word first-order noun phrase
in the constituency tree.

Mutual information as well, more than, ice hockey,
United Kingdom, a species

is a, of the, in the, is an, it was Bigram mutual information variant
(per NLTK implementation).

Frequency the United, the family, a
species, an American, such as

of the, in the, is a, to the, on
the

Raw, unnormalized frequency.

Poisson Stirling an American, such as, a
species, as well, the family

is a, of the, in the, is an, it
was, has been

Poisson Stirling bigram score.

Jaccard Massar Egbari, ice hockey,
Air Force, more than, Udo
Dirkschneider

teachers/students
teaching/studying, is a, has
been, it was, of the

Bigram Jaccard index.

φ2 Massar Egbari, ice hockey,
Udo Dirkschneider, Air Force,
New Zealand

teachers/students
teaching/studying, is a, has
been, footballer who, is an

Square of the Pearson correlation co-
efficient.

Table A.10.: The list of phrase measures we tested for. Examples for numeric measures are
chosen based on highest co-occurrence scores whereas the (boolean) noun phrase
and constituent examples are chosen arbitrarily. For the numeric measures, we
provide examples that (a) form a constituent with their neighbor and (b) do not.
The examples underline the need to combine numeric scores with constituents.
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Figure A.18.: Differences and p values for (no) lexical chunk neighbors for our randomized
explanation experiment.

Differences Across Saliency Levels. Figure A.20 shows that the effects of saliency
difference are significantly different between different levels of the rated word’s saliency (0.25
and 0.75) for left neighbors (Figure A.20a) as well as right neighbors (Figure A.20b).
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Figure A.19.: Differences and p values for left and right neighbors for our randomized explana-
tion experiment.
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Figure A.20.: Difference plots between the influence of saliency differences between exemplary
high (0.75) and low (0.25) rated word saliency levels. Red x-axis areas indicate
significant differences.

A.6.1.8. SHAP-value Results

We additionally report details regarding our SHAP-value experiment results. Figure A.21
shows the respective summed-effects plots. Figure A.22 displays left/right, chunk/no chunk,
and rated word saliency level difference plots. We report the detailed Wald test statistics for our
SHAP-value explanation experiment in Table A.12. Figure A.23 illustrates how the distribution
of saliency scores is uniformly random for our randomized explanations in contrast to the
distributions of SHAP values.
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Figure A.21.: Left and right neighbors in our SHAP-value experiment. (∗) marks statistically
significant smooths. Colors are normalized per figure. Note that the first three
plots correspond to non-significant effects and their respective color mappings
cover a small value range.
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Figure A.22.: Difference plots of our SHAP-value experiment results. Red x-axis in (e) marks
significant differences.
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Figure A.23.: Comparison of the distributions of rated word saliency and right neighbor saliency
across our randomized explanations and our SHAP-value experiments.
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(e)df Ref.df F p

s(saliency) 11.22 19.00 580.89 <0.0001
s(display index) 3.04 9.00 22.02 <0.0001
s(word length) 1.64 9.00 16.44 <0.0001
s(sentence length) 0.00 4.00 0.00 0.425
s(relative word frequency) 0.00 9.00 0.00 0.844
s(normalized saliency rank) 0.59 9.00 0.37 0.115
s(word position) 0.58 9.00 0.18 0.177
te(left diff.,saliency): no chunk 3.12 24.00 1.50 0.002
te(left diff.,saliency): chunk 2.24 24.00 0.51 0.038
te(right diff.,saliency): no chunk 2.43 24.00 0.47 0.049
te(right diff.,saliency): chunk 0.00 24.00 0.00 0.578

s(sentence ID) 0.00 149.00 0.00 0.616
s(saliency,sentence ID) 16.13 150.00 0.14 0.191
s(worker ID) 62.19 63.00 30911.89 <0.0001
s(saliency,worker ID) 62.11 64.00 16760.88 <0.0001

capitalization 2.00 3.15 0.042
dependency_relation 35.00 2.92 <0.0001

Table A.11.: (Effective) degrees of freedom, reference degrees of freedom and Wald test statis-
tics for the univariate smooth terms (top), random effects terms (middle) and
parametric fixed terms (bottom) using t = 87.5% and φ2 measure.

A.6.1.9. Reproduction Analysis

We confirm our previous results from Section 5.1.1 and find significant effects of word length,
display index, capitalization, and dependency relation. We report detailed statistics of our
randomized saliency experiment in Table A.11 and our SHAP experiment in Table A.12.

A.6.2. Robustness to Evaluation Parameters.

To ensure our results are not an artifact of the particular combination of threshold and co-
occurrence measure, we investigate how our results change if we (i) vary the threshold
within {0.5, 0.75, 0.875} and (ii) vary the co-occurrence measure within {Jaccard, MI-like, φ2,
Poisson-Stirling}. We find significant interactions and observe similar interaction patterns as
well as areas of significant differences (left/right, chunk/no chink as well as saliency levels)
across all settings. We provide a representative selection of plots in Figures A.24 to A.29.
Additionally, Tables A.13 and A.14 demonstrate that changing the threshold or co-occurrence
measure leads to model statistics that are largely consistent with the results reported in Ta-
ble A.11. We choose the φ2 and a 87.5% threshold as no other model reaches higher deviance

222



A.6. Neighboring Words

(e)df Ref.df F p

s(saliency) 6.71 19.00 18.85 <0.0001
s(display index) 1.88 9.00 6.45 <0.0001
s(word length) 2.04 9.00 4.43 <0.0001
s(sentence length) 0.00 4.00 0.00 0.98
s(relative word frequency) 0.00 9.00 0.00 0.64
s(normalized saliency rank) 0.89 9.00 1.99 0.002
s(word position) 0.42 9.00 0.12 0.19
te(left diff.,saliency): no chunk 0.00 24.00 0.00 0.37
te(left diff.,saliency): chunk 0.00 24.00 0.00 0.49
te(right diff.,saliency): no chunk 0.99 24.00 0.20 0.06
te(right diff.,saliency): chunk 3.24 24.00 1.09 0.01

s(sentence ID) 0.00 149.00 0.00 0.52
s(saliency,sentence ID) 11.31 150.00 0.10 0.14
s(worker ID) 34.77 35.00 14185.28 <0.0001
s(saliency,worker ID) 62.11 64.00 16760.88 <0.0001

capitalization 2.00 0.35 0.71
dependency relation 34.59 36.00 8468.22 <0.0001

Table A.12.: SHAP experiment results details. (Effective) degrees of freedom, reference de-
grees of freedom and Wald test statistics for the univariate smooth terms (top), ran-
dom effects terms (middle) and parametric fixed terms (bottom) using t = 87.5%
and φ2 measure.

explained and a comparison of randomly-sampled chunk/no chunk examples across measures
and thresholds yields the best results for this setting.
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Figure A.24.: Tensor product interactions for left saliency difference in the outside chunk
setting across different choices of co-occurrence measures. We find similar
patterns across all settings for our randomized explanation experiment. t = 87.5
is consistent for all plots.
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(e)df Ref.df F p

s(saliency) 11.23 19.00 547.16 < 0.0001
s(display_index) 3.10 9.00 20.93 < 0.0001
s(word_length) 1.61 9.00 16.47 < 0.0001
s(sentence_length) 0.00 4.00 0.00 0.436
s(relative_word_frequency) 0.00 9.00 0.00 0.814
s(normalized_saliency_rank) 0.58 9.00 0.36 0.120
s(word_position) 0.59 9.00 0.18 0.173
te(left diff.,saliency): no chunk 2.90 24.00 1.21 0.003
te(left diff.,saliency): chunk 3.34 24.00 0.92 0.015
te(right diff.,saliency): no chunk 2.50 24.00 0.67 0.021
te(right diff.,saliency): chunk 0.00 24.00 0.00 0.836

s(sentence_id) 0.00 149.00 0.00 0.601
s(saliency,sentence_id) 17.35 150.00 0.15 0.178
s(worker_id) 62.19 63.00 30421.05 < 0.0001
s(saliency,worker_id) 62.11 64.00 17591.01 < 0.0001

capitalization 2.00 3.01 0.049
dependency_relation 35.00 2.93 < 0.0001

Table A.13.: (Effective) degrees of freedom, reference degrees of freedom and Wald test statis-
tics for the univariate smooth terms (top), random effects terms (middle) and
parametric fixed terms (bottom) using t = 25% and φ2 measure.
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(d) Poisson-Stirling.

Figure A.25.: Tensor product interactions for left saliency difference in the within chunk setting
across different choices of co-occurrence measures. We find similar patterns
across all settings for our randomized explanation experiment. t = 87.5 is
consistent for all plots.
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(e)df Ref.df F p

s(saliency) 11.21 19.00 584.57 < 0.0001
s(display_index) 3.04 9.00 21.63 < 0.0001
s(word_length) 1.63 9.00 16.66 < 0.0001
s(sentence_length) 0.00 4.00 0.00 0.407
s(relative_word_frequency) 0.00 9.00 0.00 0.813
s(normalized_saliency_rank) 0.56 9.00 0.32 0.130
s(word_position) 0.65 9.00 0.22 0.159
te(left diff.,saliency): no chunk 3.10 24.00 1.57 0.0010
te(left diff.,saliency): chunk 1.79 24.00 0.34 0.082
te(right diff.,saliency): no chunk 2.37 24.00 0.47 0.048
te(right diff.,saliency): chunk 0.64 24.00 0.05 0.249

s(sentence ID) 0.00 149.00 0.00 0.638
s(saliency,sentence ID) 17.14 150.00 0.15 0.164
s(worker ID) 62.19 63.00 30521.95 < 0.0001
s(saliency,worker ID) 62.11 64.00 16749.25 < 0.0001

capitalization 2.00 3.23 0.039
dependency relation 35.00 2.94 < 0.0001

Table A.14.: (Effective) degrees of freedom, reference degrees of freedom and Wald test statis-
tics for the univariate smooth terms (top), random effects terms (middle) and
parametric fixed terms (bottom) using t = 87.5% and MI-like measure.
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Figure A.26.: p values for differences between right - left for no lexical chunk neighbors across
different choices of co-occurrence measures. We find similar patterns across all
settings for our randomized explanation experiment. t = 87.5 is consistent for
all plots.
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Figure A.27.: p values for differences between right - left for no lexical chunk neighbors across
different choices of thresholds. We find similar patterns across all settings for our
randomized explanation experiment. The φ2 measure is used across all plots.
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Figure A.28.: Difference plots between the influence of left saliency differences between
exemplary high (0.75) and low (0.25) rated word saliency levels across different
choices of thresholds for our randomized explanation experiment. We find similar
patterns across all settings. The φ2 measure is used across all plots.
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(d) Poisson-Stirling.

Figure A.29.: Difference plots between the influence of left saliency differences between
exemplary high (0.75) and low (0.25) rated word saliency levels across different
choices of co-occurrence measures for our randomized explanation experiment.
We find similar patterns across all settings. t = 87.5 is consistent for all plots.
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A.7. Model-based Bias Correction

Our second approach to bias mitigation is to leverage the previously described GAMM model
of human saliency perception and to correct saliency perception by superimposing the initial
saliency values with a correction signal.

Concretely, we want to increase the saliency scores for words that are predicted to be under-
perceived (e.g., short words and words that appear in long sentences) and decrease the saliency
scores for words that are predicted to be over-perceived (e.g., word’s with a high polarity score
or words that appear in very short sentences).

When we want to correct a user perception via the saliency scores, we cannot say whether
a subjective user rating of importance is right or wrong. However, the previously described
GAMM model allows us to map a combination of a saliency score together with word/sentence
properties to a perceived importance score (on a continuous latent scale). In the following, we
denote this mapping as

u(s,x) : [0, 1]× Rd → R, (A.1)

where s is a saliency score and x is a d-dimensional feature vector representing the word/sentence
properties. This function allows us to take a fixed saliency score s (e.g., 0.7) and predict its
perceived importance given word and sentence features x̂ (corresponding to, e.g., a word length
of five characters and a sentence length of four). We define this predicted importance score as

p := u (s, x̂) . (A.2)

Additionally, it allows us to predict the perceived importance of that same saliency (0.7) in a
hypothetical reference context xref (corresponding to, e.g., a word length of three and a sentence
length of six). We define this second predicted importance score as

pref := u (s,xref) . (A.3)

We can now define a bias score b ∈ R as the difference between the importance score for the
saliency in the observed context and the importance score for the same saliency in the reference
context

b := p− pref. (A.4)

The predicted bias score b is positive if the saliency in the observed context is over-perceived

with respect to the reference level and negative if it is under-perceived with respect to the refer-
ence level. A bias score of zero corresponds to an unbiased predicted perception. Intuitively,
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this formalization allows us to answer the question “In which direction do I have to change the

saliency such that the predicted bias with respect to the reference context is decreased?”.

To gain an executable process for bias mitigation we still lack (a) a way to handle the random
effects in the model, i.e., participant IDs and sentence IDs, (b) a definition of the reference
context, and (c) a procedure to minimize the absolute value of the bias score. We detail these
three aspects in the following.

A.7.1. Including Random Effects

So far, our definition of the model function u ignores the random effects of the GAMM model,
i.e., we did not specify which worker ID and which sentence ID should be used in predicting
the importance score. However, the choice of the respective levels directly influences the
model predictions not only via the random intercepts but also via the random slopes for each
worker and sentence ID. We see two options to address this. While a first, intuitive remedy is
to use an arbitrary worker ID and an arbitrary sentence ID for all predictions, this approach has
the disadvantage of introducing an arbitrary bias. Therefore, we choose to make each model
prediction not only for one participant ID and one sentence ID but instead for all combinations
of participant IDs and sentence IDs (50× 150 = 7500 combinations). Thereby, we consider
each combination of a participant and a sentence as equally relevant for the prediction of unseen
participants and sentences and smooth-out extreme influences of single participants or sentence
IDs. Formally, we thus update our definition of Equation A.1 to

u(s,x, w, v) : [0, 1]× Rd ×W × V → R, (A.5)

where W is the set of participant (or crowdworker) IDs (|W | = 50) and V is the set of sentence
IDs (|V | = 150). Consequently, a single evaluation of u (s,x) is now replaced with

1

|W ||V |
∑
w∈W

∑
v∈V

u (s,x, w, v) . (A.6)

A.7.2. Choosing the Reference Context

So far, our definitions in Equations A.2 to A.4 do not impose any constraints on the choice
of reference context. Why can we not just use an arbitrary reference context with, e.g., a
word length of eight and a sentence length of one (and respective choices for all remaining
covariates, such as sentiment polarity, etc.)? The problem that arises for that concrete context
is that the model assigns a very high importance prediction to words with eight characters
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within a sentence with length one. Consequently, pref will be larger than p for most words
and the bias score b would get negative, indicating an under-perception for most words. If we
then increase all these words’ saliency scores in order to minimize the absolute bias score, we,
overall, have to make large changes to the saliencies. In other words, this specific reference
context corresponds to an, overall, raised level of saliency intensities. While this is not bad per
se, we favor a reference context that is as neutral as possible regarding its impact on predicted
importance ratings.

In order to find such a reference context, we sample 10001 random points from the space
of possible contexts defined as the cross product of intervals of observed values (e.g., 1-37
characters word length) per variable if the variable is numeric (e.g., word length) and the set
of possible values if the variable is categorical (e.g., dependency relation). Each point is a
candidate context. We evaluate the term in Equation A.6 for a saliency score of 0.5 and each
candidate context. Among all predicted importance scores, we select the median score and
choose the corresponding candidate context as our reference context xref.4

A.7.3. Iterative Bias Minimization

In order to minimize the absolute predicted bias score, we have to modify each word’s original
saliency score s

(i)
orig ∈ [0, 1] into a corrected saliency score s

(i)
corr ∈ [0, 1]. While this seems

to be a straight-forward minimization at first glance there is one covariate in the model that
complicates optimization. The value of the saliency rank variable depends on the saliencies
of all words in the sentence. Thus, changing one word’s saliency can impact all other words’
saliency ranks. We, therefore, propose an iterative minimization that (i) sequentially picks a
token in the sentence (one after the other, round-robin) and (ii) updates this token’s saliency
score into the direction of a decreased absolute bias score while keeping all other tokens’
saliencies fixed. Algorithm 1 shows the complete correction procedure, Table A.15 shows the
procedure’s impact on an example sentence over the course of 100 optimization steps. Besides
the examples shown in Table 5.6, we provide additional examples in Table A.16.

4The concrete xref corresponds to a “flat” dependency relation, a “first letter capitalized” capitalization, a display
index of 129.7, a word length of 24.6, a sentence length of 4.1, a relative word frequency of 0.04, a sentiment
polarity of -0.78, a normalized saliency rank of 0.11 and a word position index of 1.08. While non-integer
values for, e.g. word length cannot occur in any prediction, this does not limit the utility of xref as the reference
context as it only serves as an arbitrary, but neutral reference point.
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Algorithm 1: Saliency color correction procedure.

Input: s(i)orig: Original saliency scores for each word of the sentence with length l.
Input: xref: Feature representation of the reference input.
Output: s(i)corr: Corrected saliency scores for each word of the sentence.
s
(i)
corr ← s

(i)
orig for all i. // Initialization

// Iterate for a fixed number of steps
for k ← 1 to nsteps do

// Each iteration goes over all tokens in the sentence
for i← 1 to l do

x̂← feature representation of the i-th word (also depends on all other s(i)corr via
the saliency rank feature)
p← 1

|W ||V |
∑

w∈W
∑

v∈V u
(
s
(i)
corr, x̂, w, v

)
// Model-predicted

perceived importance (on the latent continuous
scale) averaged over participant IDs W and
sentence IDs V .

pref ← 1
|W ||V |

∑
w∈W

∑
v∈V u

(
s
(i)
orig,xref, w, v

)
// Model-predicted

perceived importance if the word would be the
reference level word (in the reference level
sentence).

b← p− pref // Define bias.

s
(i)
corr ← s

(i)
corr − α ·

(
1− k−1

nsteps

)2

· sgn(b) // Update saliency with

quadratically-decaying step size (starting from α)
into the direction of reduced predicted bias.

s
(i)
corr ← max

(
0,min

(
s
(i)
corr, 1

))
// Make sure we stay within

[0, 1].
end

end
return s

(i)
corr for all i.
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Human Interpretation of Saliency-based Explanation Over Text FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

Table 10: Evolution of saliency scores and corresponding bias estimates across 100 optimization steps of our bias correction
procedure. The first row corresponds to the initial saliency scores. The first row of the right column shows that our method
predicts that the word “thanks” is perceived as overly important, while the other parts of the sentence (especially “...”) are
under-perceived. After 100 optimization steps, the saliencies of “many”, “2scompany” and “...” have been increased while the
saliency of “thanks” is decreased resulting in a removal of nearly all predicted bias.

Step Saliency Bias

1 many thanks 2scompany ... many thanks 2scompany ...

10 many thanks 2scompany ... many thanks 2scompany ...

21 many thanks 2scompany ... many thanks 2scompany ...

41 many thanks 2scompany ... many thanks 2scompany ...

61 many thanks 2scompany ... many thanks 2scompany ...

81 many thanks 2scompany ... many thanks 2scompany ...

100 many thanks 2scompany ... many thanks 2scompany ...

Table A.15.: Evolution of saliency scores and corresponding bias estimates across 100 opti-
mization steps of our bias correction procedure. The first row corresponds to the
initial saliency scores. The first row of the right column shows that our method
predicts that the word “thanks” is perceived as overly important, while the other
parts of the sentence (especially “...”) are under-perceived. After 100 steps, the
saliencies of “many”, “2scompany” and “...” have been increased while the ones
of “thanks” is decreased resulting in a removal of nearly all predicted bias.

A.8. Integrated Gradients and Correction Study

We report detailed estimates and test statistics regarding our third user study in Table A.17. Fig-
ure A.30 shows comparison plots for each smooth term and Figure A.31 as well as Figure A.32,
visualize the respective difference functions between visualizations along with highlighted
regions of significant differences. Cut points are located at -1, 0.95, 2.37, 3.67, 5.06, and 6.83.
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FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Schuff and Jacovi, et al.

Table 11: Examples of our proposed bias reduction method. The table shows sentences along with their initial saliency scores
and the respective corrected saliency scores in the saliency column. The bias column shows the color-coded bias estimates as
defined in our method. Predicted overestimations are colored in red whereas predicted underestimations are colored in blue.
For each example, we scale the range of biases to use the full color spectrum in one direction. The column removed bias lists
how many percent of the initial bias were removed in the corrected saliencies.

Saliency Bias Removed Bias

original Wonderful Atmosphere Wonderful Atmosphere 100.0%
corrected Wonderful Atmosphere Wonderful Atmosphere

original Craig and Nate are wonderful . Craig and Nate are wonderful . 95.3%
corrected Craig and Nate are wonderful . Craig and Nate are wonderful .

original Love this place !! Love this place !! 91.6%
corrected Love this place !! Love this place !!

original But not so . But not so . 98.5%
corrected But not so . But not so .

original Usually very quick and timely . Usually very quick and timely . 92.7%
corrected Usually very quick and timely . Usually very quick and timely .

original Just ask American Express Just ask American Express 100.0%
corrected Just ask American Express Just ask American Express

original Rubbish Rubbish 76.3%
corrected Rubbish Rubbish

original Great Manicure Great Manicure 100.0%
corrected Great Manicure Great Manicure

original Fantastic couple of days . Fantastic couple of days . 86.6%
corrected Fantastic couple of days . Fantastic couple of days .

original They are especially rude to women . They are especially rude to women . 80.7%
corrected They are especially rude to women . They are especially rude to women .

original Not enough seating . Not enough seating . 89.4%
corrected Not enough seating . Not enough seating .

original Not impressed . Not impressed . 100.0%
corrected Not impressed . Not impressed .

original The food was incredibly bland . The food was incredibly bland . 86.8%
corrected The food was incredibly bland . The food was incredibly bland .

original Dessert was good . Dessert was good . 92.9%
corrected Dessert was good . Dessert was good .

original Horrible ! Horrible ! 100.0%
corrected Horrible ! Horrible !

Table A.16.: Examples of our proposed bias reduction method. The table shows sentences
along with their initial saliency scores and the respective corrected saliency scores.
The bias column shows the color-coded bias estimates. Predicted overestimations
are colored in red whereas predicted underestimations are colored in blue. For
each example, we scale the range of biases to use the full color spectrum in one
direction. The column removed bias lists how much of the predicted bias was
removed in the corrected saliencies.
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Figure A.30.: Summed-effects comparison plots of the correction methods.
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Figure A.31.: Difference plots between the bar visualization and the original visualization.
Areas of significant differences are marked in red.
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Figure A.32.: Difference plots between the model-corrected saliencies and original saliencies.
Areas of significant differences are marked in red.
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Parametric Terms β SE t p
(Intercept) 2.1119 0.1994 10.5909 < 0.0001

bars -0.5991 0.1578 -3.7974 0.0001
saliency-corrected 1.1102 0.2515 4.4135 < 0.0001

Smooth Terms edf ref. df F p

s(saliency):saliency 11.4304 19 283.3393 < 0.0001
s(saliency):bars 11.0767 19 321.0314 < 0.0001
s(saliency):saliency-corrected 5.5202 19 113.9321 < 0.0001
s(display index):saliency 1.4830 9 7.2492 0.2575
s(display index):bars 1.7044 9 15.3135 0.0254
s(display index):saliency-corrected 0.0009 9 0.0001 0.6438
s(word length):saliency 1.7724 9 4.1550 < 0.0001
s(word length):bars 0.0009 9 0.0001 0.3775
s(word length):saliency-corrected 2.3645 9 1.3936 0.0213
s(sentence length):saliency 0.0005 9 0.0001 0.2313
s(sentence length):bars 0.0004 9 0.0000 0.8967
s(sentence length):saliency-corrected 2.4024 9 22.4406 < 0.0001
s(word frequency):saliency 1.8086 9 2.3192 < 0.0001
s(word frequency):bars 1.7381 9 2.7043 < 0.0001
s(word frequency):saliency-corrected 2.8913 9 7.2153 < 0.0001
s(sentiment polarity):saliency 1.0751 9 0.4727 0.0633
s(sentiment polarity):bars 1.0022 9 0.5076 0.0507
s(sentiment polarity):saliency-corrected 1.6991 9 2.2243 0.0020
s(saliency rank):saliency 0.9279 9 2.0901 0.0002
s(saliency rank):bars 0.9764 9 6.5779 < 0.0001
s(saliency rank):saliency-corrected 4.1893 9 6.8094 < 0.0001
s(word position):saliency 0.0004 9 0.0000 0.9754
s(word position):bars 1.2970 9 0.7165 0.0167
s(word position):saliency-corrected 0.0005 9 0.0000 0.9615
s(capitalization):saliency 0.0009 2 0.0003 0.4268
s(capitalization):bars 0.0003 2 0.0001 0.4525
s(capitalization):saliency-corrected 1.0644 2 3.2665 0.0245
s(dependency relation):saliency 0.0057 29 0.0002 0.3443
s(dependency relation):bars 0.0010 28 0.0000 0.5819
s(dependency relation):saliency-corrected 1.4715 28 0.0731 0.1955
s(condition order):saliency 3.7653 6 30.7306 0.0044
s(condition order):bars 0.0007 6 0.0001 0.5619
s(condition order):saliency-corrected 4.4665 6 150.1092 < 0.0001
s(sentence ID) 12.7259 150 0.1028 0.2236
s(saliency,sentence ID) 68.0861 150 1.7605 < 0.0001
s(worker ID) 55.7637 59 313.9570 < 0.0001
s(saliency,worker ID) 53.3619 60 230.3436 < 0.0001

Table A.17.: Parametric and smooth coefficients of the GAMM corresponding to the third user
study comparing the three visualizations.
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A.9. Perceived Predictability Scale

A.9.1. Item Generation

A.9.1.1. Initial Item Pool

Our initial item pool contains 60 items. Concretely, these items are:

• "My knowledge about the system behavior is complete."

• "I know a lot about the system’s behavior."

• "I do not need to learn more about the system’s behavior."

• "I understand how the system functions."

• "The system behaves as expected (including ’controlled random’)."

• "I can explain how the system functions."

• "I have a lot of experience with this system."

• "I observed the system’s behavior in many different situations."

• "I know enough about the system to predict how it behaves."

• "Seeing more of the system’s behavior will not surprise me."

• "Based on past responses, I know the responses the system will likely give me."

• "I have interacted with the system many times."

• "I am able to anticipate how the system will respond after having used it."

• "I have an understanding of the system based on its responses to the given input."

• "I have a comfortable feeling of knowing."

• "I engaged with the system a lot."

• "I have personal experiences with the system."

• "I have an educated guess on how the system will behave."

• "I have experience with the system."
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• "I can identify rules and patterns in the system’s decisions.

• "The system does not take random decisions."

• "The system takes consistent decisions."

• "I feel a sense of order and direction."

• "There is a consistent pattern in the system’s decisions."

• "Given a fixed input, the system always takes the same decision"

• "I know the reasons for the system’s decisions."

• "I know what brought the system to its decisions."

• "The system’s logic is similar to mine."

• "The system’s knowledge is similar to mine."

• "The system is following a certain pattern."

• "I get an idea of how the algorithm works."

• "I know how the system is likely to interpret input."

• "I feel like the results the system gives are reliable."

• "The system behaves in a predictable manner."

• "The system gives consistent results."

• "The system gives reliable results."

• "The system normally behaves in a consistent manner."

• "I know how the system will respond in a given situation."

• "I am able to predict how the system will react."

• "The system’s decisions are predictable."

• "I have an understanding how the system makes its judgements."

• "The system’s decision process is straightforward."
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• "I know how the system ’thinks’."

• "I have a good overall understanding of the system."

• "I know the responses the system will likely give."

• "I can guess how the system will behave."

• "I know if the system is biased."

• "I know how the system was created."

• "I know the system’s quirks."

• "I have an understanding of why the systems responded in the way it did."

• "I can guess how the system will react."

• "I feel like I can predict how the system will behave."

• "I have knowledge about what the system is supposed to do."

• "I know what I can expect from the system."

• "I am certain about the system’s behavior."

• "I can guess how the system comes to its conclusions."

• "I can estimate how the system comes to its conclusions."

• "I can usually predict if the system can answer the question I have in mind for it."

• "I know what I can and cannot do with the system."

• "I know how to use the system efficiently."

A.9.1.2. Intermediate Item Pool

After the expert ratings and two rounds of cognitive interviews with target population par-
ticipants, we filtered and refined the item pool used in our first large-scale evaluation to the
following items. We mark items included in our final scale version with “∗” and report reasons
for our removal decisions in parentheses:
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• ∗"I can tell which responses the system will likely give."

• "I can predict how the system will behave most of the time." (> 0.85 inter-item correlation
to previous item)

• ∗"The system behaves in a predictable manner."

• "The system’s responses are predictable for me." (strong content similarity to previous
item, removed for brevity)

• "I can identify rules and patterns in the system’s responses." (lower item discrimination
value than all other items)

• "I understand the system well enough to predict how it behaves." (least categorizable
item regarding our three-facet theory)

• ∗"There is a consistent pattern in the system’s behavior."

• ∗"I can tell the reasons for the system’s decisions."

• "I have an understanding of why the systems responded in the way it did." (strong
similarity to previous item but more complex wording, removed for brevity)

• ∗"I observed enough system responses to predict how the system behaves."

• ∗"Based on past system responses, I know the responses the system will likely give me."

• "The number of system responses I have seen is large enough to predict the system’s
behavior." (> 0.85 inter-item correlation to previous item)

A.9.2. Scale Evaluation

A.9.2.1. Colored Shapes Experiment Interface

In addition to the scenario depicted in Figure 5.15, we included the scenarios depicted in
Figures A.33 to A.36 as described in Section 5.2.2.
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Figure A.33.: A scenario with mixed uncertainty, but slightly more aleatory uncertainty than
the scenario shown in Figure 5.15 (i.e., less predictability). We refer to this
scenario as MIXED-LESS-ALEATORY.
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Figure A.34.: A scenario with mixed uncertainty, but twice the number of examples of the
scenario shown in Figure 5.15 (i.e., more epistemic predictability). We refer to
this scenario as MIXED-MORE-EPISTEMIC.
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Figure A.35.: A scenario with strong aleatory uncertainty (i.e., low predictability). We refer to
this scenario as LOW-ALEATORY.
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Figure A.36.: A scenario with a high degree of epistemic and aleatory certainty. We refer to
this scenario as HIGH-BOTH.
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A.9.2.2. Differentiation by Known Groups

Table A.18 shows details of the Tukey HSD post hoc test to determine significant differences
between our scenarios.

Scenario pair difference CI-upper CI-lower p (adjusted)

HIGH-BOTH vs. LOW-ALEATORY 2.025 1.177 2.873 <0.0001
MIXED vs. LOW-ALEATORY 1.088 0.240 1.935 0.005

MIXED-LESS-ALEATORY vs. LOW-ALEATORY 0.250 -0.598 1.098 0.927
MIXED-MORE-EPISTEMIC vs. LOW-ALEATORY 1.588 0.740 2.435 <0.0001

MIXED vs. HIGH-BOTH -0.938 -1.785 -0.090 0.022
MIXED-LESS-ALEATORY vs. HIGH-BOTH -1.775 -2.623 -0.927 <0.0001
MIXED-MORE-EPISTEMIC vs. HIGH-BOTH -0.438 -1.285 0.410 0.615

MIXED-LESS-ALEATORY vs. MIXED -0.8375 -1.685 0.010 0.0546
MIXED-MORE-EPISTEMIC vs. MIXED 0.500 -0.348 1.348 0.484

MIXED-MORE-EPISTEMIC vs. MIXED-LESS-ALEATORY 1.338 0.490 2.185 <0.001

Table A.18.: Tukey HSD test result details for our PSP scores between known groups, i.e.
scenarios. Pairs with significant differences are highlighted in bold font.

A.9.2.3. Confirmatory Factor Analysis

Table A.19 and Table A.20 show detailed parameter estimates of the one-factor and three-factor
models.

LHS op RHS estimate SE z p CI-lower CI-upper

predictability =∼ EF1 1.00 0.00 1.00 1.00
predictability =∼ EF2 0.96 0.05 19.62 0.00 0.86 1.06
predictability =∼ EP1 1.04 0.05 19.95 0.00 0.94 1.14
predictability =∼ EP2 1.01 0.05 22.28 0.00 0.92 1.10
predictability =∼ AL1 0.98 0.05 18.41 0.00 0.88 1.09
predictability =∼ AL2 1.00 0.05 21.58 0.00 0.91 1.09
EF1 ∼∼ EF1 0.48 0.06 8.11 0.00 0.36 0.59
EF2 ∼∼ EF2 0.60 0.07 8.62 0.00 0.46 0.73
EP1 ∼∼ EP1 0.66 0.08 8.53 0.00 0.51 0.81
EP2 ∼∼ EP2 0.40 0.05 7.67 0.00 0.29 0.50
AL1 ∼∼ AL1 0.77 0.09 8.89 0.00 0.60 0.95
AL2 ∼∼ AL2 0.44 0.06 7.99 0.00 0.33 0.55
predictability ∼∼ predictability 2.28 0.27 8.34 0.00 1.75 2.82

Table A.19.: Detailed parameter estimates of the one-factor model.
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LHS op RHS estimate SE z p CI-lower CI-upper

effective =∼ EF1 1.00 0.00 1.00 1.00
effective =∼ EF2 0.96 0.05 18.99 0.00 0.86 1.06
epistemic =∼ EP1 1.00 0.00 1.00 1.00
epistemic =∼ EP2 0.97 0.05 21.34 0.00 0.88 1.06
aleatory =∼ AL1 1.00 0.00 1.00 1.00
aleatory =∼ AL2 1.02 0.05 19.11 0.00 0.92 1.13
predictability =∼ epistemic 1.00 0.00 1.00 1.00
predictability =∼ aleatory 0.94 0.06 16.83 0.00 0.83 1.05
predictability =∼ effective 0.98 0.05 19.70 0.00 0.88 1.08
EF1 ∼∼ EF1 0.52 0.07 7.49 0.00 0.39 0.66
EF2 ∼∼ EF2 0.64 0.08 8.31 0.00 0.49 0.79
EP1 ∼∼ EP1 0.63 0.08 7.96 0.00 0.47 0.78
EP2 ∼∼ EP2 0.36 0.06 6.28 0.00 0.25 0.48
AL1 ∼∼ AL1 0.75 0.09 8.37 0.00 0.58 0.93
AL2 ∼∼ AL2 0.39 0.06 6.05 0.00 0.26 0.52
effective ∼∼ effective -0.09 0.05 -1.89 0.06 -0.19 0.00
epistemic ∼∼ epistemic 0.07 0.05 1.28 0.20 -0.04 0.17
aleatory ∼∼ aleatory 0.06 0.05 1.14 0.26 -0.04 0.16
predictability ∼∼ predictability 2.43 0.31 7.88 0.00 1.83 3.03

Table A.20.: Detailed parameter estimates of the three-factor model.

A.9.3. Sentiment Classifier Experiments

Figure A.37 shows the full list of system prediction examples we showed to users. While
Figure A.37 shows examples of the heatmap conditions, we respectively use bar charts or no
explanations in the other conditions.
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Figure A.37.: System predictions shown to users. Figure showing examples in the heatmap
conditions, sentences were equal across conditions. Sentence order is randomized
across participants.
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The sentences we asked users to predict the system’s decision for are (we provide the system
predictions in parentheses and use italics to highlight wrong model decisions):

• I love the food at this place! (pos)

• Absolutely sensational! (pos)

• Quite nice! (pos)

• Tasty food! (pos)

• Super good place! (pos)

• Would not go there again. (neg)

• Pretty bad place. (neg)

• The food made me sick... (neg)

• Quite bad. (neg)

• Do not eat there! (neg)

• I don’t like this restaurant very much! (pos)

• Wouldn’t recommend. (pos)

• The water was the best part of the meal... (pos)

• Nice ads but didn’t hold up the high expectations. (pos)

• I expected it to be better. (pos)

• Have not expected such a good place! (neg)

• I was so sad when I heard that they will close! (neg)

• I have not eaten at a better restaurant! (neg)

• Not too bad at all! (neg)

• Have not expected such a good place! (neg)
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.78 0.42 11.41 0.00
bar charts -0.08 0.10 -0.78 0.44

saliency 0.22 0.11 1.90 0.06
interactivity 0.16 0.12 1.34 0.18

female -0.18 0.42 -0.43 0.67
male -0.13 0.42 -0.32 0.75

noise level L 0.06 0.08 0.77 0.44
noise level Q -0.04 0.08 -0.44 0.66

bar charts : interactivity 0.09 0.17 0.55 0.58
saliency : interactivity -0.32 0.18 -1.84 0.07

Table A.21.: Parametric terms details for our model of PSP scores.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.56 0.11 5.12 0.00
bar charts 0.04 0.03 1.32 0.19

saliency 0.05 0.03 1.53 0.13
interactivity 0.02 0.03 0.74 0.46

female 0.10 0.11 0.88 0.38
male 0.11 0.11 0.97 0.33

noise level L -0.12 0.02 -5.88 0.00
noise level Q 0.05 0.02 2.57 0.01

bar charts : interactivity -0.04 0.04 -0.96 0.34
saliency : interactivity 0.01 0.05 0.29 0.77

Table A.22.: Parametric terms details for our model of prediction correctness scores.
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df F p

explanation format 2.00 5.15 0.01
interactivity 1.00 0.12 0.73
explanation format:interactivity 2.00 7.44 0.00
noise level 2.00 2.66 0.07
identification 2.00 0.11 0.90

Table A.23.: Wald tests for the parametric terms in our model of FOST trust scores.

edf Ref.df F p

s(prediction correctness) 2.58 9.00 3.38 0.00
s(PSP) 0.98 9.00 5.41 0.00

s(completion time) 0.84 9.00 0.57 0.01
s(SIPA) 1.01 9.00 0.18 0.18
s(NFC) 2.32 9.00 1.38 0.00

s(age) 0.50 9.00 0.11 0.16

Table A.24.: Wald tests for the smooth terms in our model of FOST trust scores.
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Secară, A. (2005). Translation evaluation: A state of the art survey. In Proceedings of the

279



Bibliography

eCoLoRe/MeLLANGE workshop, Leeds, volume 39, page 44. Citeseer.
Sedoc, J., Ippolito, D., Kirubarajan, A., Thirani, J., Ungar, L., and Callison-Burch, C. (2019).

ChatEval: A tool for chatbot evaluation. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics (Demonstrations), pages
60–65, Minneapolis, Minnesota. Association for Computational Linguistics.

Sedoc, J. and Ungar, L. (2020). Item Response Theory for Efficient Human Evaluation of
Chatbots. In Proceedings of the First Workshop on Evaluation and Comparison of NLP

Systems, pages 21–33, Online. Association for Computational Linguistics.
Sellam, T., Das, D., and Parikh, A. (2020). BLEURT: Learning robust metrics for text

generation. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 7881–7892, Online. Association for Computational Linguistics.
Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words

with subword units. In Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany.
Association for Computational Linguistics.

Seyler, D., Dembelova, T., Del Corro, L., Hoffart, J., and Weikum, G. (2018). A study of the
importance of external knowledge in the named entity recognition task. In Proceedings of

the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers), pages 241–246, Melbourne, Australia. Association for Computational Linguistics.
Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games,

2(28):307–317.
Shi, C., Liu, S., Ren, S., Feng, S., Li, M., Zhou, M., Sun, X., and Wang, H. (2016). Knowledge-

based semantic embedding for machine translation. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
2245–2254, Berlin, Germany. Association for Computational Linguistics.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through
propagating activation differences. In Precup, D. and Teh, Y. W., editors, Proceedings of the

34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-

11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 3145–3153.
PMLR.

Shrikumar, A., Greenside, P., Shcherbina, A., and Kundaje, A. (2016). Not just a black
box: Learning important features through propagating activation differences. CoRR,
abs/1605.01713.

Silveira, N., Dozat, T., de Marneffe, M.-C., Bowman, S., Connor, M., Bauer, J., and Manning,
C. D. (2014). A gold standard dependency corpus for English. In Proceedings of the Ninth

280



Bibliography

International Conference on Language Resources and Evaluation (LREC-2014).
Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep inside convolutional networks:

Visualising image classification models and saliency maps. In Bengio, Y. and LeCun, Y.,
editors, 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,

Canada, April 14-16, 2014, Workshop Track Proceedings.
Sivaraman, V., Bukowski, L. A., Levin, J., Kahn, J. M., and Perer, A. (2023). Ignore, trust, or

negotiate: Understanding clinician acceptance of ai-based treatment recommendations in
health care.

Smith, A. R. (1978). Color gamut transform pairs. ACM Siggraph Computer Graphics,
12(3):12–19. Publisher: ACM New York, NY, USA.

Smith, H. (2020). Algorithmic bias: should students pay the price? AI Soc., 35(4):1077–1078.
Sokol, K. and Flach, P. A. (2020). Explainability fact sheets: a framework for systematic assess-

ment of explainable approaches. In Hildebrandt, M., Castillo, C., Celis, L. E., Ruggieri, S.,
Taylor, L., and Zanfir-Fortuna, G., editors, FAT* ’20: Conference on Fairness, Accountability,

and Transparency, Barcelona, Spain, January 27-30, 2020, pages 56–67. ACM.
Sokolova, M., Japkowicz, N., and Szpakowicz, S. (2006). Beyond accuracy, f-score and ROC:

A family of discriminant measures for performance evaluation. In Sattar, A. and Kang, B.,
editors, AI 2006: Advances in Artificial Intelligence, 19th Australian Joint Conference on

Artificial Intelligence, volume 4304 of Lecture Notes in Computer Science, pages 1015–1021,
Hobart, Australia. Springer.

Speer, R., Chin, J., and Havasi, C. (2017). Conceptnet 5.5: An open multilingual graph
of general knowledge. In Singh, S. P. and Markovitch, S., editors, Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,

California, USA, pages 4444–4451. AAAI Press.
Speith, T. (2022). A review of taxonomies of explainable artificial intelligence (XAI) methods.

In FAccT ’22: 2022 ACM Conference on Fairness, Accountability, and Transparency, Seoul,

Republic of Korea, June 21 - 24, 2022, pages 2239–2250. ACM.
Sprent, P. (2012). Applied nonparametric statistical methods. Springer Science & Business

Media.
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103 2684:677–80.
Strathern, M. (1997). ‘Improving ratings’: audit in the British University system. European

review, 5(3):305–321. Publisher: Cambridge University Press.
Streiner, D. L. and Norman, G. R. (2011). Correction for multiple testing: is there a resolution?

Chest, 140(1):16–18.
Sulem, E., Abend, O., and Rappoport, A. (2018). BLEU is not suitable for the evaluation of

281



Bibliography

text simplification. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 738–744, Brussels, Belgium. Association for Computational
Linguistics.

Sullivan, G. M. and Feinn, R. (2012). Using effect size—or why the p value is not enough.
Journal of graduate medical education, 4(3):279–282.

Sullivan Jr., J., Brackenbury, W., McNutt, A., Bryson, K., Byll, K., Chen, Y., Littman, M.,
Tan, C., and Ur, B. (2022). Explaining why: How instructions and user interfaces impact
annotator rationales when labeling text data. In Proceedings of the 2022 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 521–531, Seattle, United States. Association for Computational
Linguistics.

Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep networks. In
Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Conference on

Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 3319–3328. PMLR.

Suresh, H., Gomez, S. R., Nam, K. K., and Satyanarayan, A. (2021). Beyond expertise and
roles: A framework to characterize the stakeholders of interpretable machine learning and
their needs. In Proceedings of the 2021 CHI Conference on Human Factors in Computing

Systems, CHI ’21, New York, NY, USA. Association for Computing Machinery.
Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., and Kroeker,

K. I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies
for success. NPJ Digital Medicine, 3.

Swanson, K., Yu, L., and Lei, T. (2020). Rationalizing text matching: Learning sparse align-
ments via optimal transport. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 5609–5626, Online. Association for Computational
Linguistics.

Talmor, A., Herzig, J., Lourie, N., and Berant, J. (2019). CommonsenseQA: A question answer-
ing challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 4149–4158, Minneapolis,
Minnesota. Association for Computational Linguistics.

Tenney, I., Wexler, J., Bastings, J., Bolukbasi, T., Coenen, A., Gehrmann, S., Jiang, E.,
Pushkarna, M., Radebaugh, C., Reif, E., and Yuan, A. (2020). The language interpretability
tool: Extensible, interactive visualizations and analysis for NLP models.

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 12(3):435–467.

282



Bibliography

Thomas, R. L. and Uminsky, D. (2022). Reliance on metrics is a fundamental challenge for AI.
Patterns, 3(5):100476. Publisher: Elsevier.

Tjoa, E. and Guan, C. (2021). A survey on explainable artificial intelligence (xai): Toward med-
ical xai. IEEE transactions on neural networks and learning systems, 32(11):4793—4813.

Tractinsky, N. and Meyer, J. (2001). Task structure and the apparent duration of hierarchical
search. International Journal of Human-Computer Studies, 55(5):845–860.

Trischler, A., Wang, T., Yuan, X., Harris, J., Sordoni, A., Bachman, P., and Suleman, K.
(2017). NewsQA: A machine comprehension dataset. In Proceedings of the 2nd Workshop

on Representation Learning for NLP, pages 191–200, Vancouver, Canada. Association for
Computational Linguistics.

Tseng, P.-H., Carmi, R., Cameron, I. G., Munoz, D. P., and Itti, L. (2009). Quantifying center
bias of observers in free viewing of dynamic natural scenes. Journal of vision, 9(7):4–4.
Publisher: The Association for Research in Vision and Ophthalmology.

Tu, M., Huang, K., Wang, G., Huang, J., He, X., and Zhou, B. (2020). Select, answer and
explain: Interpretable multi-hop reading comprehension over multiple documents. In The

Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second

Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI

Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,

USA, February 7-12, 2020, pages 9073–9080. AAAI Press.
Tuckey, D., Broda, K., and Russo, A. (2019). Saliency Maps Generation for Automatic Text

Summarization. CoRR, abs/1907.05664. arXiv: 1907.05664.
van der Lee, C., Gatt, A., van Miltenburg, E., Wubben, S., and Krahmer, E. (2019). Best

practices for the human evaluation of automatically generated text. In Proceedings of the

12th International Conference on Natural Language Generation, pages 355–368, Tokyo,
Japan. Association for Computational Linguistics.

Van Rij, J., Wieling, M., Baayen, R. H., and van Rijn, D. (2015). itsadug: Interpreting time
series and autocorrelated data using gamms.

VanVoorhis, C. W., Morgan, B. L., et al. (2007). Understanding power and rules of thumb for
determining sample sizes. Tutorials in quantitative methods for psychology, 3(2):43–50.

Vasilyeva, N., Wilkenfeld, D. A., and Lombrozo, T. (2015). Goals Affect the Perceived Quality
of Explanations. In CogSci.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances

in Neural Information Processing Systems 30: Annual Conference on Neural Information

283



Bibliography

Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008.
Vilar, D., Leusch, G., Ney, H., and Banchs, R. E. (2007). Human evaluation of machine

translation through binary system comparisons. In Proceedings of the Second Workshop on

Statistical Machine Translation, pages 96–103.
Vilone, G. and Longo, L. (2021). Classification of explainable artificial intelligence methods

through their output formats. Mach. Learn. Knowl. Extr., 3(3):615–661.
Waldman, A. E. (2019). Power, process, and automated decision-making. Fordham Law

Review, 88:613.
Wang, J., Tuyls, J., Wallace, E., and Singh, S. (2020). Gradient-based Analysis of NLP Models

is Manipulable. In Cohn, T., He, Y., and Liu, Y., editors, Findings of the Association for Com-

putational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020, volume EMNLP
2020 of Findings of ACL, pages 247–258. Association for Computational Linguistics.

Wang, P. and Vasconcelos, N. (2020). SCOUT: self-aware discriminant counterfactual explana-
tions. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR

2020, Seattle, WA, USA, June 13-19, 2020, pages 8978–8987. Computer Vision Foundation /
IEEE.

Wang, X., Kapanipathi, P., Musa, R., Yu, M., Talamadupula, K., Abdelaziz, I., Chang, M.,
Fokoue, A., Makni, B., Mattei, N., and Witbrock, M. (2019). Improving Natural Language
Inference Using External Knowledge in the Science Questions Domain. In AAAI, pages
7208–7215.

Wang, X. and Yin, M. (2021). Are explanations helpful? A comparative study of the effects
of explanations in ai-assisted decision-making. In Hammond, T., Verbert, K., Parra, D.,
Knijnenburg, B. P., O’Donovan, J., and Teale, P., editors, IUI ’21: 26th International

Conference on Intelligent User Interfaces, College Station, TX, USA, April 13-17, 2021,
pages 318–328. ACM.

Watson, D. (2020). The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence,
pages 45–65.

Watson, D. S. (2021). Interpretable machine learning for genomics. Human Genetics, 141:1499
– 1513.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E. H., Le, Q., and Zhou, D. (2022). Chain
of thought prompting elicits reasoning in large language models. CoRR, abs/2201.11903.

Wiegreffe, S. and Pinter, Y. (2019). Attention is not not explanation. In Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 11–20, Hong
Kong, China. Association for Computational Linguistics.

284



Bibliography

Williams, A., Nangia, N., and Bowman, S. (2018). A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana.
Association for Computational Linguistics.

Willis, G. B. (2004). Cognitive interviewing: A tool for improving questionnaire design. sage
publications.

Winter, B. (2013). Linear models and linear mixed effects models in R with linguistic applica-
tions. CoRR, abs/1308.5499.

Wood, S., N., Pya, and Säfken, B. (2016). Smoothing parameter and model selection for
general smooth models (with discussion). Journal of the American Statistical Association,
111:1548–1575.

Wood, S. N. (2003). Thin-plate regression splines. Journal of the Royal Statistical Society (B),
65(1):95–114.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for general-
ized additive models. Journal of the American Statistical Association, 99(467):673–686.

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models. Journal of the Royal Statistical

Society (B), 73(1):3–36.
Wood, S. N. (2013a). On p-values for smooth components of an extended generalized additive

model. Biometrika, 100(1):221–228.
Wood, S. N. (2013b). A simple test for random effects in regression models. Biometrika,

100(4):1005–1010.
Wood, S. N. (2017). Generalized additive models: an introduction with R. CRC press.
Wood, S. N., Li, Z., Shaddick, G., and Augustin, N. H. (2017). Generalized additive models

for gigadata: modeling the UK black smoke network daily data. Journal of the American

Statistical Association, 112(519):1199–1210. Publisher: Taylor & Francis.
Xia, X. (2018). An effective way to memorize new words—lexical chunk. Theory and Practice

in Language Studies, 8:14941498.
Xiong, W., Wu, J., Wang, H., Kulkarni, V., Yu, M., Chang, S., Guo, X., and Wang, W. Y. (2019).

TWEETQA: A social media focused question answering dataset. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, pages 5020–5031,
Florence, Italy. Association for Computational Linguistics.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhutdinov, R., and Manning, C. D.
(2018). HotpotQA: A dataset for diverse, explainable multi-hop question answering. In

285



Bibliography

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium. Association for Computational Linguistics.

Yeh, Y.-Y. and Wickens, C. D. (1988). Dissociation of performance and subjective measures of
workload. Human Factors, 30(1):111–120.

Yin, W., Hay, J., and Roth, D. (2019). Benchmarking zero-shot text classification: Datasets,
evaluation and entailment approach. In Inui, K., Jiang, J., Ng, V., and Wan, X., editors,
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing, EMNLP-

IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 3912–3921. Association for
Computational Linguistics.

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3.
Yu, R. and Shi, L. (2018). A user-based taxonomy for deep learning visualization. Vis.

Informatics, 2(3):147–154.
Zaidan, O. and Eisner, J. (2008). Modeling annotators: A generative approach to learning from

annotator rationales. In Proceedings of the 2008 Conference on Empirical Methods in Natural

Language Processing, pages 31–40, Honolulu, Hawaii. Association for Computational
Linguistics.

Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Titano, J. J., and Oermann, E. K. (2018).
Variable generalization performance of a deep learning model to detect pneumonia in chest
radiographs: A cross-sectional study. PLoS Medicine, 15.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. (2020a). Bertscore: Evaluating
text generation with BERT. In 8th International Conference on Learning Representations,

ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
Zhang, Y., Liao, Q. V., and Bellamy, R. K. E. (2020b). Effect of confidence and explanation on

accuracy and trust calibration in ai-assisted decision making. In Hildebrandt, M., Castillo, C.,
Celis, L. E., Ruggieri, S., Taylor, L., and Zanfir-Fortuna, G., editors, FAT* ’20: Conference

on Fairness, Accountability, and Transparency, Barcelona, Spain, January 27-30, 2020,
pages 295–305. ACM.

Zhang, Y., Tiño, P., Leonardis, A., and Tang, K. (2021). A survey on neural network inter-
pretability. IEEE Trans. Emerg. Top. Comput. Intell., 5(5):726–742.

Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., and Liu, Q. (2019). ERNIE: Enhanced
Language Representation with Informative Entities. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 1441–1451, Florence, Italy.
Association for Computational Linguistics.

Zhao, Y., Li, Y., Li, C., and Zhang, R. (2022). MultiHiertt: Numerical reasoning over multi

286



Bibliography

hierarchical tabular and textual data. In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 6588–6600,
Dublin, Ireland. Association for Computational Linguistics.

Zhou, X. and Zafarani, R. (2021). A survey of fake news: Fundamental theories, detection
methods, and opportunities. ACM Comput. Surv., 53(5):109:1–109:40.

Zhou, Y., Booth, S., Ribeiro, M. T., and Shah, J. (2022). Do feature attribution methods
correctly attribute features? In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI

2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI

2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI

2022 Virtual Event, February 22 - March 1, 2022, pages 9623–9633. AAAI Press.
Zlotowski, J., Proudfoot, D., Yogeeswaran, K., and Bartneck, C. (2015). Anthropomorphism:

Opportunities and challenges in human–robot interaction. International Journal of Social

Robotics, 7:347–360.
Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychological

methods, 12 4:399–413.

287


	Acknowledgments
	List of Abbreviations
	List of Figures
	List of Tables
	Abstract
	Zusammenfassung
	Prepublications
	Introduction
	Motivation
	Main Contributions
	Structure

	Background
	Tasks, Datasets, and Systems
	Tasks and Datasets
	Deep Learning Models for NLP

	Explainability
	Definition and Taxonomy of Explainability
	Types of Explanations in NLP

	Designing User Studies
	The Need for Human Evaluation in NLP
	Variables
	Metrics
	Experimental Designs

	Statistical Evaluation
	Sample Size, Effect Size, Significance, and Power
	Choosing the Correct Statistical Test


	System Architectures and Explanations
	Explanations as Output: External Knowledge Improves Explainable NLI
	Knowledge Integration Methods
	Automatic Evaluation
	Human Evaluation
	Overall Discussion

	Decision Processes as Explanations: Thought Flow Networks
	Thought Flow Networks
	Question Answering Experiments
	Human Evaluation
	Application to Image Classification
	Overall Discussion

	Related Work
	External Knowledge and Explainable NLI
	Thought Flow Networks


	Evaluating and Quantifying Explainability
	Proxy Scores to Quantify Explanation Quality
	Limitations of Current Evaluation Scores
	Novel Scores: FaRM and LocA
	Comparison with Established Scores and Human Evaluation
	Overall Discussion

	Characteristics of Explanation Quality
	Explanation Quality Is User-dependent
	Explanation Quality Has (Orthogonal) Dimensions

	Shortcomings of Current Evaluations
	Case Study on the HotpotQA Leaderboard
	Disconnect Between Automatic and Human Evaluation
	Neglecting Users
	Single-score Leaderboards

	Remedies
	Report Various Scores Without Averaging
	Validate Proxy Scores Against Humans
	Do Human Evaluation
	Overall Discussion

	Related Work
	Criticism on F1-score
	Relation Between Proxy Scores and Human Evaluation
	Alternative Leaderboards


	Human Perception and Explanations
	Heatmaps Considered Harmful: Cognitive Biases and Saliency Explanations
	Word- and Sentence-level Factors
	Neighboring Words: Assimilation and Contrast
	Alternative Visualizations to Mitigate Biases
	Overall Discussion

	Perceived System Predictability: Scale Development and Results
	The Need to Measure Perceived System Predictability
	Scale Development and Validation
	Predictors, Objective Predictability, and Effects of Explanations
	Overall Discussion

	Related Work
	Effects of Explanations on Users
	Risks and Misuses of Explanations
	Scale Development


	Conclusion and Future Work
	Appendix
	External Knowledge for NLI
	Knowledge Requirement Annotation

	Thought Flow Nets
	Question Answering Experiments
	User Study

	Novel Proxy Scores
	HotpotQA Case Study
	Detailed Proxy Scores
	User Study Details

	Human Interpretation
	Study Interfaces
	English Study Details
	German Study Details

	Neighboring Words
	User Study Details
	Robustness to Evaluation Parameters.

	Model-based Bias Correction
	Including Random Effects
	Choosing the Reference Context
	Iterative Bias Minimization

	Integrated Gradients and Correction Study
	Perceived Predictability Scale
	Item Generation
	Scale Evaluation
	Sentiment Classifier Experiments


	Bibliography

