
Supplementary Material – Application of generalized
(hyper-) dual numbers in equation of state modeling

1 LINEAR ALGEBRA

1.1 Systems of linear equations

In some cases, the evaluation of the model itself requires the solution of a system of nonlinear equations

Ax = b, x, b ∈ RN , A ∈ RN×N . (S1)

We are here only concerned with cases in which the real valued equation has a unique solution. To calculate
the derivatives of x, the system of linear equations has to be solved for generalized (hyper-) dual numbers
instead. Then, the coefficients of A, x and b are all generalized (hyper-) dual numbers. Since direct
solution methods like LU or Cholesky decomposition only rely on basic algebraic operations, they can be
implemented unaltered for generalized (hyper-) dual numbers. However, it might not be desired to redo
very efficient implementations for linear algebra like LAPACK. Then the solution of a system of linear
equations using generalized (hyper-) numbers can be split into multiple systems of real linear equations.

For dual numbers, eq. (S1) can be expanded using the product rule as

A0x0 + (A0x1 + A1x0) ε = b0 + b1ε. (S2)

By collecting the coefficients of ε, eq. (S2) can be split into two equations

A0x0 = b0 and A0x1 = b1 −A1x0 (S3)

that can be solved sequentially for x0 and x1. The same approach can be used for any generalized (hyper-)
dual number. For scalar hyper dual numbers for example, the real systems of equations are

A0x0 = b0 (S4)

A0x1 = b1 −A1x0 (S5)

A0x2 = b2 −A2x0 (S6)

A0x12 = b12 −A1x2 −A2x1 −A12x0. (S7)

The fact that only A0 appears as the system matrix of a linear equation can be exploited to speed up the
calculation by obtaining an appropriate decomposition and using that to calculate all entries of x.

1.2 Eigenvalues of symmetric matrices

Real symmetric matrices A ∈ RN×N are orthogonally diagonalizable. This can be written as

Aui = λiui i = 1 . . . N (S8)

with ui the eigenvector corresponding to the eigenvalue λi and uᵀ
iuj = δij . Again, a solution method that

finds eigenvalues and eigenvectors can be written using generalized (hyper-) dual numbers, but it might be

1



Supplementary Material – Application of generalized (hyper-) dual numbers in equation of state modeling

desirable to use an off the shelf algorithm. Therefore, the eigenvalue problem can be split into individual
components. For scalar dual numbers, this results in

A0u0i = λ0iu0i (S9)

A0u1i + A1u0i = λ1iu0i + λ0iu1i. (S10)

Equation (S9) is a real valued eigenvalue problem and is solved using an established algorithm from a
linear algebra library. Multiplying (S10) with uᵀ

0i from the left and using uᵀ
0iu0i = 1 leads to

uᵀ
0iA0u1i + uᵀ

0iA1u0i = λ1i + λ0iu
ᵀ
0iu1i. (S11)

Since A0 is symmetric, uᵀ
0iA0 =

(
Aᵀ

0u0i

)ᵀ
= (A0u0i)

ᵀ = λ0iu
ᵀ
0i and thus the first and last terms in

eq. (S11) cancel and the calculation of the derivatives of the eigenvalues simply become

λ1i = uᵀ
0iA1u0i. (S12)

Since the eigenvalues u0i are orthogonal, they form a basis of RN . Thus, the derivatives of the eigenvalues
can be written in this basis as

u1i =
∑
k

αiku0k. (S13)

Using this in eq. (S10) simplifies to∑
k

αikA0u0k + A1u0i = λ1iu0i +
∑
k

αikλ0iu0k (S14)

and with eq. (S9) ∑
k

αik (λ0i − λ0k)u0k = A1u0i − λ1iu0i (S15)

Multiplying with uᵀ
0j from the left leads to∑

k

αik (λ0i − λ0k) δjk = uᵀ
0jA1u0i − λ1iδij (S16)

and therefore

u1i =
∑
j 6=i

uᵀ
0jA1u0i

λ0i − λ0j
u0j . (S17)
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2 NONLINEAR EQUATIONS

A nonlinear system of equations can be written in the form

F (x(t), t) = 0 (S18)

where the goal is to find the variables x for a given value of t. The equation for the derivatives of x are
obtained by deriving eq. (S18) with respect to t, as

Fx(x(t), t)x′(t) + Ft(x(t), t) = 0 (S19)

showing that even if F is a nonlinear function, the equation to find the derivatives of its solution is always
linear. If F is solved for a dual number x = x0 + x1ε and t+ ε, from comparing

F (x, t+ ε) = F (x0, t) + (Fx(x0, t)x1 + Ft(x0, t)) ε = 0 (S20)

to eqs. (S18) and (S19), it follows that the dual number indeed contains the value and the derivative of the
solution.

For a general solution procedure xk+1 = G(xk, t) that converges to the solution x∗0, it is not guaranteed,
that the derivative parts of the solution also converge (Bartholomew-Biggs, 1998). However, since the
equations for the derivatives are always linear, a single step of a Newton iteration suffices to find the
solution, if the real part is already known from F (x∗0, t) = 0. This can be demonstrated by applying one
Newton step

Fx(xk, t+ ε)∆xk = −F (xk, t+ ε) (S21)

to the starting value x0
0 = x∗0 and x0

1 = 0. Then from F (x0
0, t) = 0 follows ∆x0

0 = 0. The derivative part
of eq. (S21)

Fx(xk
0, t)∆xk

1 +
(
Fxx(xk

0, t)x
k
1 + Fxt(x

k
0, t)

)
∆xk

0 = −
(
Fx(x∗0, t)x

k
1 + Ft(x

∗
0, t)

)
(S22)

simplifies to
Fx(x∗0, t)x

1
1 = −Ft(x

∗
0, t). (S23)

which is the equation for the derivative of the solution as shown in eq. (S19). The generalization to higher
order derivatives is straightforward when taking into account that the calculation of the derivatives only
progresses one order for every Newton iteration. Therefore, for second order (partial) derivatives, two
Newton steps are required, for third order derivatives three and so on.
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