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The calculation of derivatives is ubiquitous in science and engineering. In thermodynamics,
in particular, state properties can be expressed as derivatives of thermodynamic
potentials. The manual differentiation of complex models can be tedious and error-
prone. In this work, we revisit dual and hyper-dual numbers for the calculation of exact
derivatives and show generalizations to higher order derivatives and derivatives with
respect to vector quantities. The methods described in this paper are accompanied by
an open source Rust implementation with Python bindings. Applications of the generalized
(hyper-) dual numbers are given in the context of equation of state modeling and the
calculation of critical points.
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1 INTRODUCTION

The calculation of derivatives is required in many branches of physics and engineering. In particular,
derivatives are required in solvers for nonlinear equations or optimization problems. Accurate
calculations of derivatives are even more important in cases where the derivatives are part of the
model itself, rather than just appearing in algorithms that often do not suffer much from appropriate
approximations to the Jacobians. The ideal solution would be to not approximate at all and implement
all required derivatives of the model by hand. This approach guarantees accurate results and efficiency.
However, for complicated models, the probability of errors in the implementation becomes high. The
process can be aided by symbolic math toolboxes and automatic code generation. An entirely different
approach that requires no additional implementation within the model, is the use of numerical
derivatives like forward or central differences, and higher order methods. The simplicity of the
approach comes at the price, that the result is inherently an approximation and the achievable precision
depends on the chosen step size. For small step sizes, the calculation can become unstable due to
machine precision. For large step sizes, the calculation is stable but less accurate. To find the optimal
step size for an arbitrary problem can be challenging.

Exact results without differentiation by hand can be obtained using automatic differentiation
(Griewank and Walther, 2008). In this approach, the calculations in the model are represented by a
calculation tree, that contains all intermediate results and their derivatives. The individual steps in
this tree consist of algebraic operations or elementary functions for which the derivatives are known.
Depending on the order with which the derivatives are calculated, the methods are referred to as
forward or backward accumulation. The method of using (hyper-) dual numbers (Fike and Alonso,
2011) and the generalizations introduced in this work can be understood as an automatic
differentiation using operator overloading and forward accumulation. Automatic differentiation
with dual numbers is similar to the wider known complex step differentiation (Martins et al., 2003).
However, aside from the availability of complex numbers in many programming languages, there is
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no advantage whatsoever to use complex step differentiation
above dual numbers: complex step differentiation can be seen
as an improved numerical derivative that alleviates the problems
at small step sizes, whereas dual number differentiation always
results in exact derivatives within machine precision. Automatic
differentiation using (hyper-) dual numbers has been used in
various fields of engineering and science such as solving optimal
control problems (Agamawi and Rao, 2020) or formulating
equations of motion for rigid- and multi-body systems (Cohen
and Shoham, 2015; Cohen and Shoham, 2017). Yet, the concept
of automatic differentiation with dual numbers is rarely used in
chemical engineering and thermodynamics in particular, with the
exception of the work of Diewald et al. (2018) and Rehner et al.
(2019). With this review of the mathematical background and the
openly available implementation in Rust and Python, we aim to
change that.

This manuscript is structured as follows: in section 2 the
properties of dual and hyper-dual numbers are briefly revisited
and a generalization to higher derivatives and vector valued
gradients and Hessians is demonstrated. Section 3 outlines the
implementation in Rust and Python that is available on GitHub.
Section 4 shows applications for generalized (hyper-) dual
numbers within thermodynamics and equation of state
modeling. This is a particular interesting application for
automatic differentiation as state properties can be identified
as partial derivatives of thermodynamic potentials.

2 METHODS

This section aims to explain why dual and hyper-dual numbers
are useful in the context of automatic differentiation by
establishing an isomorphism between the number and
derivative calculus. Isomorphism refers to the observation that
all derivation rules have a counterpart in the arithmetic of the
(hyper-) dual numbers. With this link established, it is shown
how it can be reverted to obtain generalized (hyper-) dual
numbers for the calculation of higher order and partial
derivatives, gradients, Jacobians and Hessians.

2.1 Dual Numbers
Similar to complex numbers, dual numbers are formed by
adjoining a new element ε with the property ε2 � 0. A dual
number x can thus be written in the form

x � x0 + x1ε, x0, x1 ∈ R (1)

The product of x with a dual number y � y0 + y1ε is

xy � x0y0 + x0y1 + x1y0( ) ε. (2)

For the application in thermodynamic modeling and other
parts of physics, the most interesting property, however, is the
exact Taylor expansion

f(x) � f(x0) + f′(x0)x1ε. (3)

All higher order terms cancel since they contain the factor ε2 �
0. Therefore, the derivative of a (real) function f (x) can be

calculated exactly by evaluating the function using dual numbers
and taking the ε-component f1 of the result, as

f(x0 + ε) � f(x0)︸��︷︷��︸
f0

+f′(x0)︸��︷︷��︸
f1

ε. (4)

As opposed to numerical differentiation methods (forward,
backward, or central differences), calculating the derivative with
dual numbers does not introduce an error by truncating the
Taylor expansion (the truncation is exact for dual numbers).
Therefore the necessity to find an optimal step size is eliminated
and we can simply choose x1 � 1.

Themultiplication, Eq. 2, of two dual numbers follows the same
rules as the product rule in calculus and the Taylor expansion, Eq.
3, is analogous to the chain rule. With the chain rule, the product
rule and the elementwise addition, the derivatives of arbitrarily
complex functions are known. Therefore, dual numbers form an
isomorphism to the first derivative, and the derivatives of any
model, that is written using analytical functions can be calculated
exactly using dual numbers. As an example, the division can be
written as a product of the numerator with the divisor raised to the
power of minus one:

x

y
� xy−1 � x0 + x1ε( ) y−1

0 − y−2
0 y1ε( ) � x0

y0
+ x1y0 − x0y1

y2
0

ε (5)

The result of this composition is the quotient rule in calculus.
Additional functions like exponentials

ex � ex0 + x1e
x0ε (6)

or logarithms

lnx � lnx0 + x1

x0
ε (7)

follow from Eq. 3.

2.2 Hyper-Dual Numbers
As an extension to dual numbers, hyper-dual numbers were
introduced by Fike and Alonso (2011). Hyper-dual numbers
contain two extra dimensions ε1 and ε2 with the property ε21 �
ε22 � (ε1ε2)2 � 0. Thus a hyper dual number x can be written as

x � x0 + x1ε1 + x2ε2 + x12ε1ε2, x0, x1, x2, x12 ∈ R (8)

For a function f (x, y), the exact Taylor expansion using hyper
dual numbers is

f(x0 + ε1, y0 + ε2) � f(x0, y0) + fx(x0, y0)ε1 + fy(x0, y0)ε2
+ fxy(x0, y0)ε1ε2.

(9)

Therefore, hyper dual numbers can be used to calculate exact
second partial derivatives fxy (x, y) by setting x1 � y2 � 1 and all
other derivative parts to zero. The first partial derivatives fx (x, y)
and fy (x, y) are always calculated simultaneously. The product of
two hyper dual numbers x and y

xy � x0y0 + x0y1 + x1y0( ) ε1 + x0y2 + x2y0( ) ε2
+ x0y12 + x1y2 + x2y1 + x12y0( ) ε1ε2 (10)
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again corresponds to the product rule for partial derivatives and
the chain rule can be written as

f(x) � f(x0) + f′(x0)x1ε1 + f′(x0)x2ε2

+ f″(x0)x1x2 + f′(x0)x12( ) ε1ε2. (11)

To calculate derivatives using dual or hyper-dual numbers,
Eqs. 3, 11 are used to implement the required elementary
functions (exponentials, powers, trigonometric functions, etc.)
and Eqs. 2, 10 are used to overload the multiplication operator.
Then, by the virtue of Eqs. 4, 9, the derivatives of arbitrary
functions are available by setting the first derivative part(s) of the
input variable(s) to 1.

2.3 Generalizations
A detailed mathematical investigation of the properties of dual
and hyper dual numbers is important in a general context.
However, from a science and engineering point of view, the
isomorphism between the number and properties of
derivatives is all that matters. Dual numbers are usually
presented as numbers with certain properties. Then, by
identifying the isomorphism to the chain and product rules,
the exact calculation of derivatives follows as an application.
There is nothing stopping us from reversing the process: start
with a certain application, like the calculation of third or
higher order derivatives and generate a number that is
isomorphic to the chain and product rules. In other words,
we think about the number as data structures, that contain a
function value and its corresponding derivatives
simultaneously.

2.3.1 Higher Order Ordinary Derivatives
For ordinary derivatives of an arbitrary order all derivatives up
to the highest order are required for intermediate steps.
Therefore, a generalized dual number of order K can be
written as

x � x0 +∑K
i�1

xi]i, ∀i: xi ∈ R (12)

where the additional dimensions are referred to with the letter ]
as opposed to ε to indicate, that they represent additional
derivative orders instead of additional variables. The
multiplication of two generalized dual numbers x and y can be
written as

xy � x0y0 +∑K
i�1

∑i
j�0

i

j
( )xjyi−j]i (13)

The general expression of the chain rule requires the
application of Faà di Bruno’s formula

f(x) � f(x0) +∑K
i�1

∑ i!

k1! · / · ki!f
(k1+/+ki)(x0)∏i

m�1

xm

m!
( )km

]i

(14)

where the inner sum sums over all tuples of non-negative integers
(k1, . . ., ki) with ∑i

m�1mkm � i. The general implementation is

cumbersome and presumably slow. Therefore it is appropriate to
implement these generalized dual numbers for a fixed value of K.
For K � 3, the product rule

xy � x0y0 + x0y1 + x1y0( ) ]1 + x0y2 + 2x1y1 + x2y0( ) ]2
+ x0y3 + 3x1y2 + 3x2y1 + x3y0( ) ]3 (15)

and the chain rule

f(x) � f(x0) + f′(x0)x1]1 + f″(x0)x2
1 + f′(x0)x2( )) ]2

+ f‴(x0)x3
1 + 3f″(x0)x1x2 + f′(x0)x3( )) ]3 (16)

simplify accordingly. The i-th derivative (i ≤K) of a real function f
(x) can be identified as the ]i component of f evaluated using
generalized dual numbers.

f(x0 + ]1) � f(x0) +∑K
i�1

f(i)(x0)]i (17)

2.3.2 Gradients and Jacobians
With marginal changes to the formulation, a vector dual number
can be defined that is able to calculate the gradient of a function
with respect to an arbitrary amount of variables. To do so, the
scalar dimension ε is replaced with a vector ε � ε1 . . . εN( )⊺
with N the number of variables. The vector dual number x can
then be written as

x � x0 + x⊺1ε, x0 ∈ R, x1 ∈ RN. (18)

The product rule

xy � x0y0 + x0y1 + y0x1( )⊺ε (19)

and the chain rule

f(x) � f(x0) + f′(x0)x⊺1ε (20)

are modified accordingly. The most relevant use case is that for a
function f (x) of N variables x � x1 . . . xN( )⊺, ε can be chosen
as an array ofN elements. Then the gradient∇f can be determined
from the dual part of f (x0 + ε):

f(x0 + ε) � f(x0) + ∇f(x0)⊺ε (21)

For array valued functions F, this generalizes to the Jacobian
J, as

F(x0 + ε) � F(x0) + J(x0)ε (22)

2.3.3 Vectorized Second Partial Derivatives and
Hessians
Vector hyper dual numbers can also be defined and allow the
calculation of second partial derivatives with respect to an
arbitrary number of variables. Both ε1 and ε2 are vectors and
thus the vector hyper dual number x in general can be
written as

x � x0 + x⊺1ε1 + x⊺2ε2 + ε⊺1x12ε2, x0 ∈ R, x1 ∈ RM, x2 ∈ RN, x12 ∈ RM×N

(23)

with the product rule
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xy � x0y0 + x0y1 + y0x1( )⊺ε1 + x0y2 + y0x2( )⊺ε2
+ ε⊺1 x0y12 + x1y

⊺
2 + y1x

⊺
2 + y0x12( )ε2, (24)

and the chain rule

f(x) � f(x0) + f′(x0)x⊺1ε1 + f′(x0)x⊺2ε2
+ ε⊺1 f″(x0)x1x⊺2 + f′(x0)x12( )ε2 (25)

To save computation time for the case of simple Hessians, only
one of the first derivatives needs to be accounted for as they are
identical. The vector hyper dual number can then be written as

x � x0 + x⊺1ε + ε⊺x12ε, x0 ∈ R, x1 ∈ RN, x12 ∈ RN×N (26)

instead. The HessianH (and the gradient that comes for free) of a
scalar function f(x) can then be calculated from

f(x0 + ε) � f(x0) + ∇f(x0)⊺ε + ε⊺H(x0)ε. (27)

2.3.4 Higher Order Partial Derivatives
Higher order derivatives can be added by implementing new dual
numbers with additional fields for the derivatives and extended
sets of product and chain rules. However, by allowing the
elements of any generalized dual number to be a generalized
dual number themselves, higher order derivatives can be obtained
without additional implementation work (Szirmay-Kalos, 2021).
This becomes apparent, when a hyper dual number x is written as

x � x0 + x1ε1 + x2ε2 + x12ε1ε2 � x0 + x1ε1( ) + x2 + x12ε1( )ε2
(28)

showing that it can simply be represented as a dual number for
which the coefficients are themselves dual numbers. By avoiding
redundancies in the calculation, a dedicated implementation for
hyper dual numbers can be expected to be faster than the
recursive version. However, the recursive implementation
offers great flexibility when it comes to higher order
derivatives for which a dedicated implementation becomes
tedious. An example for which the usage of recursive dual
numbers is useful is given in section 4.2.

3 IMPLEMENTATION

Our implementation is done in the Rust programming language, an
open source language that was released in its first stable version in
2015 and has been increasingly adapted and used since then. It is an
attractive choice for a numerical library because it is a strongly typed,
compiled language that generates efficient machine code while
offering high-level language constructs (e.g. pattern matching),
elegant error handling, allows for generic programming and has
automatic code creation features (macros). A very valuable feature of
the Rust compiler is the so-called borrow checker that prevents
operations that would lead to undefined behavior (null or dangling
pointers) or data races at compile time.

Besides the compiler, Rust ships with Cargo, a package
manager that resolves dependencies of external packages,
compiles the code and its dependencies (by calling the

compiler, rustc), runs tests and benchmarks and builds the
documentation. The bindings to Python are written in pure
Rust using PyO3, a Rust package that allows to build native
Python extension modules.

Dual numbers as presented in this work are implemented in
Rust as structured types (structs, similar to classes in other
languages). Different from other object oriented languages,
Rust provides inheritance and polymorphism in form of traits,
i.e. a collection of methods that extend the data type’s
functionality. Overloading of operators is realized by
implementing the respective traits e.g. the Add trait for
addition, Sub for subtraction, and so on.

Dual numbers are generic over their inner data types and the
number of variables. The generic data type allows to specify the
precision, but also to define recursive dual numbers. The number
of variables is specified using Rusts min_const_generics feature.
Therefore, the size of the arrays is known at compile time and
scalar dual numbers can be obtained as a special case of the
generic vector dual numbers without any overhead. Our library
defines a trait, DualNum, which is implemented for all dual
numbers as well as floating point numbers (f64 and f32), and
contains a number of useful traits for numerical operations
(binary arithmetic operations, trigonometric functions,
exponential and logarithm as well as spherical Bessel
functions, comparison operators and so on). This trait can be
used to write generic functions whose arguments and results can
be any dual number types, and—since the compiler generates a
version for each dual number type at compile time (a concept
called monomorphization)—no checks at runtime are necessary.
Since theDualNum trait is build upon the more genericNum trait
(which is part of the Rust num package), dual numbers work
seamlessly with other Rust packages that offer functions or
structures parameterized over Num. For example, it is possible
to write a generic function that uses the fast Fourier transform
(using the RustFFT package) for which (partial) derivatives can be
computed by simply calling the function with a dual number as
argument instead of a floating point number.

Data types with generic parameters cannot be directly exposed
to Python, since these parameters (and consequently the size of
the data type) have to be known at compile time. Therefore, we
offer several specific parameter combinations as Python classes,
e.g. scalar dual and hyper dual numbers with 64 bit floating point
numbers as inner data types. The Python data types work
seamlessly with most of numpy’s math functions so that
existing code rarely has to be modified. The source code for
the Rust package including the Python bindings is available on
GitHub under the name num-dual. The code is also published on
the Rust package repository crates. io and the python packages for
Windows, Linux and macOS are available from the Python
Package Index (PyPI).

4 APPLICATIONS

The usage of the generalized (hyper-) dual numbers in the last
section is by no means restricted to a specific field in science or
engineering. However, in this work we want to focus on
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the application in equation of state modeling. Besides the
documentation of the provided data types and functions, the
github repository contains a comprehensive example which
illustrates the methods and algorithms discussed below in
form of a Jupyter notebook using the Peng-Robinson equation
of state.

4.1 Calculation of Thermodynamic
Properties
The calculation of state properties in thermodynamics is a
particularly interesting application of generalized (hyper-)
dual numbers because properties can be written as partial
derivatives of a thermodynamic potential. In modern
equations of state, this thermodynamic potential is usually
the Helmholtz energy A with its characteristic variables
temperature T, volume V, and number of particles of each
species n. In this and the subsequent sections bold symbols
indicate arrays over all components. With first order partial
derivatives, the entropy S, the pressure p, and the chemical
potentials μ can be obtained as

S � − zA

zT
( )

V,n

p � − zA

zV
( )

T,n

μ � zA

zn
( )

T,V

(29)

Using dual numbers, the scalar properties can be calculated as

A(T + ε, V, n) � A − Sε and A(T,V + ε, n) � A − pε (30)

With vector dual numbers, the chemical potential can be
calculated in a single function evaluation, as

A(T,V, n + ε) � A + μ⊺ε. (31)

With scalar dual numbers, the individual components have to be
evaluated individually, as

A(T,V, ni + ε, nj≠i) � A + μiε (32)

For second partial derivatives hyper dual numbers are
required. The derivatives with respect to scalar variables are
obtained from

A(T + ε1, V + ε2, n) � A − Sε1 − pε2 − zp

zT
( )

V,n

ε1ε2 (33)

which demonstrates how the first partial derivatives for the
variables associated with ε1 and ε2 are intrinsically calculated
together with the second partial derivatives. This characteristic
can be used to avoid redundancies in the calculation for specific
property evaluations where both first and second order partial
derivatives are required or more generally by caching all results of
the property evaluation for a given (T, V, n) state. Second partial
derivatives with respect to the same variable can also be calculated
using hyper dual numbers.

A(T + ε1 + ε2, V, n) � A − Sε1 − Sε2 − zS

zT
( )

V,n

ε1ε2 (34)

A(T,V + ε1 + ε2, n) � A − pε1 − pε2 − zp

zV
( )

T,n

ε1ε2. (35)

However, without any loss of information, the performance can
be slightly improved by switching to second order dual numbers.

A(T + ]1, V, n) � A − S]1 − zS

zT
( )

V,n

]2 (36)

A(T,V + ]1, n) � A − p]1 − zp

zV
( )

T,n

]2 (37)

by avoiding the duplicate calculation of the same first derivative.
The partial derivative of the chemical potential with respect to

mole numbers can be computed efficiently using vector hyper
dual numbers in the Hessian form, Eq. 26,

A(T,V, n + ε) � A + μ⊺ε + ε⊺
zμ

zn
( )

T,V

ε (38)

or in the general form, Eq. 23.

A(T + ε1, V, n + ε2) � A − Sε1 + μ⊺ε2 + ε1
zμ

zT
( )

V,n

ε2 (39)

A(T,V + ε1, n + ε2) � A − pε1 + μ⊺ε2 + ε1
zμ

zV
( )

T,n

ε2 (40)

where M � 1 in Eq. 23 and thus ε1 simplifies to a scalar.

4.2 Calculation of Critical Points
A commonly used algorithm for the calculation of critical points
for a system with given mole fractions z was proposed by
Heidemann and Khalil (1980) and refined by Michelsen and
Mollerup (2004). The matrix M is defined as

Mij � ����
zizj

√ z2βA

zniznj
( )

T,V

(41)

with zi the mole fraction of component i, β � 1
kBT

the inverse
temperature, and kB the Boltzmann constant. Further, the
variable s is introduced, that acts on the mole numbers n via

ni � zi + sui
��
zi

√
(42)

with u the eigenvector corresponding to the smallest eigenvalue
λ1 of M. Then, the two criticality conditions can be written as

z2βA

zs2

∣∣∣∣∣∣∣∣s�0 � ∑
i

∑
j

uiujMij � λ1 � 0 (43)

and

z3βA

zs3

∣∣∣∣∣∣∣∣s�0 � 0. (44)

The second criticality condition is usually evaluated using a
numerical derivation. This is particularly undesirable in this context,
because the numerical error does appear in the residual function.
Therefore it influences not only the convergence but the result itself.

The method can be enhanced using dual numbers. First the
matrixM is evaluated using scalar or vector hyper-dual numbers as
shown in section 4.1. The calculation of the smallest eigenvalue λ1
and the corresponding eigenvector u is unaffected by the presence
of dual numbers. The second criticality condition is calculated with
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one single evaluation of the Helmholtz energy using the third order
dual numbers introduced in section 2.3.1. By setting

ni � zi + ui
��
zi

√
]1, (45)

the ]3 component of the Helmholtz energy A (T, V, n) is the
second criticality condition.

The critical temperature and either density or volume are iterated
using a Newton scheme. The Jacobian can be approximated
numerically, however, if recursive dual numbers and the calculation
of eigenvalues and eigenvectors for dual numbers are available, it can be
evaluated exactly. The temperature and volume are set to

Tdual � T + 1 0( )ε, Vdual � V + 0 1( ) ε. (46)

The entries ofM (themselves dual numbers) are calculated by
setting

nhd−dualk � zk + δikε1 + δjkε2 (47)

with the Kronecker delta δij and evaluating the Helmholtz energy

Mdual
ij � ����

zizj
√

A(Tdual, Vdual,nhd−dual)12 (48)

The eigenvalue λdual1 and the corresponding eigenvector udual

are calculated as shown in Supplementary Material. Finally, the
second criticality condition is determined by setting

nd3−duali � zi + udual
i

��
zi

√
]1 (49)

and evaluating A(Tdual,Vdual,nd3−dual)3. The Jacobian is now
available from the gradient parts of the two criticality conditions.
Here it was assumed that operators are available for all combinations
of dual and recursive hyper-dual numbers. In practice this poses
difficulties with respect to the implementations and is therefore likely
not the case. Then, Tdual and Vdual can simply be lifted to the higher
order dual number by setting all derivative parts to zero.

4.3 Cross Association
In equations of state that are based on thermodynamic
perturbation theory by Wertheim (1984a), Wertheim (1984b),
like the statistical associating fluid theory (SAFT) family
(Chapman et al., 1989; Gross and Sadowski, 2001; Lafitte
et al., 2013) or the cubic plus association (CPA) equation of
state (Kontogeorgis et al., 2006), association contributions are
used to model highly directional short range interactions like
hydrogen bonds. The Helmholtz energy contribution for the
cross association is given by

βAassoc � ∑
i

ni ∑
Ai

NAi ln χAi − χAi

2
+ 1
2

( ) (50)

with NAi the number of association sites of kind A on molecule i
and χAi the corresponding fraction of non-bonded sites. What
makes this contribution relevant in the context of generalized
(hyper-) dual numbers is, that the fraction of non-bonded sites
χAi is determined by the implicit set of equations

χAi � 1 +∑
j

ρj ∑
Bj

NBjχ
BjΔAiBj⎛⎝ ⎞⎠−1

(51)

The exact expression for the association strength ΔAiBj differs
between different equations of state, but the equations shown here are
valid for all variants. To be able to automatically determine partial
derivatives of the Helmholtz energy, the partial derivatives of the
monomer fractions χAi are also required.With an appropriate iterative
method, these derivatives can be obtained with hardly any additional
implementations using generalized (hyper-) dual numbers.

The state of the art iteration method for the monomer fraction was
once again presented byMichelsen (2006). Applied to the notation used
above, the problem is reformulated as a minimization of the property

Q �∑
i

ρi ∑
Ai

NAi ln χAi − χAi + 1( )
− 1
2
∑
i

∑
j

ρiρj ∑
Ai

∑
Bj

NAiNBjχ
AiχBjΔAiBj (52)

with respect to the variables χAi . The minimum of Q is obtained
when the gradients

gAi �
zQ

zχAi
� ρiNAi

1
χAi

− 1 −∑
j

ρj ∑
Bj

NBjχ
BjΔAiBj⎛⎝ ⎞⎠ (53)

vanish. The stationary points of Eq. 53 coincide with the
solutions of Eq. 51. The solution is found by using the
Newton iteration scheme

χ(k+1) � χ(k) + Δχ, ĤΔχ + g � 0 (54)

with the modified Hessian Ĥ with entries

ĤAiBj � −ρiNAiδAiBj

χAi
1 +∑

k

ρk ∑
Ck

NCk
χCkΔAiCk⎛⎝ ⎞⎠

− ρiρjNAiNBjΔAiBj (55)

Themodification of theHessian ensures that it is negative definite.As
shown in Supplementary Material, when Eq. 54 is iterated from some
initial value using generalized (hyper-) dual numbers, the derivatives are
calculated automatically. To speed up the computation, it is advisable to
first solve the nonlinear equation for the real part. Then, as the equations
for the derivatives are linear, the resulting χAi can be lifted to the relevant
dual number and asmany steps ofEq. 54 need to be applied as there are
derivatives, i.e. one for dual numbers, two for hyper-dual numbers and
three for third order dual numbers.With the derivatives of themonomer
fractions in place, the Helmholtz energy contribution and its derivatives
are available from Eq. 50.

5 DISCUSSION

Generalized (hyper-) dual numbers enable the calculation of exact
derivatives of scalar and vector valued functions which is especially
valuable when derivatives are part of the (physical) model.
Derivatives no longer need to be implemented or approximated
which leads to less error prone and faster development. Depending
on the model, an implementation using dual numbers can be more
costly to evaluate compared to hand-written derivatives. However, in
the context of thermodynamic equations of state shown in this work,
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using the right type of dual number in combination with caching
prior results, this disadvantage can be compensated.

Thermodynamic equations of state greatly benefit from
generalized (hyper-) dual numbers because thermodynamic
properties are computed from (partial) derivatives of a single
function, the thermodynamic potential. We showed above that
generalized (hyper-) dual numbers can be used to efficiently
compute these properties even for complex models that contain
implicit expressions like the association contribution in SAFT. In
some cases, like the calculation of critical points, the algorithms
themselves can be simplified using generalized (hyper-) dual
numbers. Because only a single model equation has to be
implemented (the Helmholtz energy), separation of model agnostic
algorithms, like phase equilibria and stability analysis, and the model
equation is simple and leads to more maintainable and extensible
code. We believe that from a research point of view this enables faster
and easier development of new models and algorithms, and
consequently, it will enable faster adaption and transfer to industry.
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