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Abstract: Today, the Internet of Things (IoT) is an emerging topic in research and industry. Famous
examples of IoT applications are smart homes, smart cities, and smart factories. Through highly
interconnected devices, equipped with sensors and actuators, context-aware approaches can be
developed to enable, e.g., monitoring and self-organization. To achieve context-awareness, a large
amount of environment models have been developed for the IoT that contain information about the
devices of an environment, their attached sensors and actuators, as well as their interconnection.
However, these models highly differ in their content, the format being used, for example ontologies or
relational models, and the domain to which they are applied. In this article, we present a comparative
survey of models for IoT environments. By doing so, we describe and compare the selected models
based on a deep literature research. The result is a comparative overview of existing state-of-the-art
IoT environment models.
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1. Introduction

In recent years, the Internet of Things (IoT) has emerged through inexpensive hardware and their
increasing interconnectivity [1]. Hardware devices, equipped with sensors and actuators, can provide
access to important context information of their environment to achieve new approaches, such as smart
homes or smart cities. In general, an IoT environment can consist of physical hardware components,
an IoT platform that connects the hardware to the digital world, and IoT applications that interact with
the physical hardware components through the IoT platform [2].

Many IoT environment models have been developed [3], which can describe different aspects of an
IoT environment. We divide these aspects into two main layers, as shown in Figure 1, the physical layer
and the digital layer. The physical layer of an IoT environment refers to aspects describing hardware IoT
objects (e.g., devices, sensors, and actuators) and their interconnections. In the digital layer, the digital
twin is a program that either mirrors a physical device or simulates it [4,5]. Hence, it refers to aspects
describing running services provided within an IoT environment. The IoT application logic refers to
models that logically use the services provided by the digital twin to achieve the specific goals of an
IoT application, e.g., situation recognition or dashboards.

Currently, IoT environment models highly differ in their content, formats, and the domain to
which they are applied. Examples for such models are SensorML [6] or IoT-Lite [7]. Some of these
models are maintained by large organizations; others have been created in research projects and are
maintained by a small group of people. Furthermore, some of them are even standardized. In order to
support IoT application developers in finding a suitable model for their use cases, as well as researchers
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in getting an overview of existing IoT environment models, in this article, we present a comparative
survey of several models to describe IoT environments. By doing so, we consider not only standards,
but also new approaches that are not yet fully mature.

Figure 1. Layers of the Internet of Things.

The remainder of this article is structured as follows: In Section 2, we provide necessary
foundational background concepts for this survey. Section 3 gives an overview of IoT environment
models that are considered in this article. Section 4 describes criteria to which IoT environment
models are evaluated against and compares these models. Section 5 describes related work, and finally,
Section 6 gives a summary of this article.

2. Background

In this section, we describe the foundational background for our survey, i.e., the Internet of Things,
IoT environment models, and ontology models.

2.1. Internet of Things and IoT Environment Models

In the Internet of Things (IoT), multiple devices communicate with each other through uniform
network addressing schemes to reach common goals [8]. These devices are usually equipped with
sensors and actuators to monitor environments and act upon situations. The communication among
these devices, however, is very complex and heterogeneous. This complexity originates from different
communication protocols, data formats, and interfaces. Furthermore, the large amount of devices
existing in an IoT environment omits a clear overview, for example, for IoT application developers.

We define an IoT environment model based on previous work [9] as follows: an IoT environment
model contains representations of (i) devices, sensors, and actuators of the IoT environment and
(ii) the connections among them. In order to define which devices, sensors, actuators, communication
protocols, or data formats are contained within an IoT environment, a large amount of models
were developed that aim at a standardized description of such complex environments. However,
these models differ greatly regarding the abstraction level, focus, or genericity. For example,
some models focus on the network; others focus on the physical characteristics of the devices.
In addition, some models describe the characteristics of the environment itself (e.g., a factory);
others do not.

For IoT application developers, these models can be very helpful to understand the structure of
the IoT environment or even be used as an underlying data model for their applications. However,
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choosing the right model for a specific application is a difficult task. The wrong decision could
lead to a lock-in, because changing the underlying data model of an application is error-prone and
time-consuming. In this article, we present a survey of IoT environment models in order to support
IoT application developers to choose a suitable model for their applications.

2.2. Ontology Models

Ontologies are an important concept in the scope of IoT environment models and, thus, also for
this article. Ontologies offer a possibility to describe semantics between entities, leading to large,
semantic graphs. Each entity usually has relations of the type subject (S), predicate (P), and object (O).
Through these relations, semantics can be expressed [10]. For example, the IoT device Raspberry Pi (the
subject) is located (the predicate) in room B (the object). Furthermore, the subject Raspberry Pi (S) could
be connected (P) to an Arduino board (O). A famous language to create ontologies is the Web Ontology
Language 2 (OWL 2).

Especially for the IoT, using ontology models makes sense because a device is highly
interconnected with other devices and with its surroundings. For example, a device can be located
in a room of a building, is attached with sensors and actuators, and has connections to other devices.
Using the already in place graph model of ontologies enables a means to describe such dependencies
in an easy manner. Consequently, many of the developed models mentioned in this article are based
on ontology models to describe IoT environments.

Figure 2 shows an example ontology schema for the IoT. In this model, sensors and devices are
entities derived from a generic Object entity. Each device contains sensors, and each sensor is connected
to an adapter, which provides access to it. Actuators are omitted in this simple example. This example
shows how ontology models can be used in order to describe IoT environments. Many models
introduced in this survey are similar to this example.

Sensor

contains Adapter

offersAccess

Object Device

ID

geolocation

name type

string … frequency
quality

…

deployed_on

adapter_impl

category

…

…

…

ID

location

entity attribute data type predicate inheritance attribute relation

Figure 2. Example of an ontology-based model for IoT environments based on [11].

3. Models for IoT Environments

In this section, we survey several models that can be used to describe the components of IoT
environments, e.g., devices, sensors, and actuators.

Our research methodology is depicted in Figure 3, which is comprised of three main steps. In order
to compare IoT environment models, we first define five criteria covering important characteristics of
IoT models. These criteria were identified from experience and interviews in the scope of the German
industry projects SmartOrchestra [12] and Industrial Communication for Factories (IC4F) [13]. These
projects have many industry partners with expertise in the IoT and Industry 4.0 domains. Afterwards,
we searched for models in two different databases by using combinations of the following keywords:
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“IoT”, “Internet of Things”, “environment model”, and “ontology”. The following search string was used:
“((“Internet of Things environment model” OR “IoT environment model”) OR (“Internet of Things ontology”
OR “IoT ontology”))”. Papers that were found by the search string were selected or excluded based
on their title, abstract, and full-text reading. We excluded papers without accessible full-texts in the
selected databases, not written in English, or that were not peer reviewed. Papers that did not have
the focus on modeling any aspect of IoT environments based on their paper title or abstract were also
excluded. Furthermore, models that showed dependencies on specific technologies (e.g., ZigBee) or
systems (e.g., IoT platforms) were excluded as well. Moreover, we also took into consideration models
that were referred to by industry partners. In the last step, the resulting fifteen models were compared
based on the defined criteria. The criteria and criteria-based comparison are presented in Section 4.
The publication period of the compared models ranges from 1998 to 2019.

Model
search

Google Scholar

IEEE Explorer

Comparison
criteria 

definition

Industry 
partner 

interviews Criteria-
based

comparison

Overview of 
models for IoT 
environments

5 criteria

15 models

Figure 3. Research methodology.

The selected IoT environment models are described in the following. Note that this article does
not aim to describe these models in detail, but rather to enable a broad overview and comparison in
order to support the choice of a suitable model for IoT application developers. The following models
are ordered alphabetically.

homeML is an XML-based open format for the data exchange within smart home environments
proposed by Nugent et al. [14]. This format enables the description of a smart home, its rooms,
and sensors within the rooms. Actuators and network communication are not considered by this
model. Consequently, homeML focuses on the physical layer, e.g., the devices (cf. Figure 1). A device
description in homeML contains, for example, the device ID, location, and type, as well as a description
of events generated by the device. In the following, an example of homeML based on [14,15] is depicted.

<?xml version="1.0" encoding="UTF-8"?>
<homeML>
<inhabitantDetails>
<inhabitantID>454542</inhabitantID>

</inhabitantDetails>
<location>
<locationID>4754</locationID>
<locationDescription>Living Room</locationDescription>
<locationDevice>
<ldeviceID>454584</ldeviceID>
<deviceType>Temp Sensor</deviceType>
<units>Celsius<units>
<deviceDescription>Temperature Sensor Living Room</deviceDescription>
<deviceLocation>
<xPos>10.5</xPos>
<yPos>12.3</yPos>
<zPos>54.2</zPos>

</deviceLocation>
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<event>
<eventID>1</eventID>
<timeStamp>11:20:50, 9/24/11</timeStamp>
<data>23.1</data>

</event>
<event>
<eventID>2</eventID>
<timeStamp>11:21:44, 9/24/11</timeStamp>
<data>23.2</data>

</event>
</locationDevice>

</location>
<annotationDetails>
<annotationID>4654654</annotationID>
<IDevice>454584</IDevice>
<startTimeStamp>11:20:50, 9/24/11</startTimeStamp>
<endTimeStamp>11:21:44, 9/24/11</endTimeStamp>

</annotationDetails>
</homeML>

In order to support the use of homeML, the modeling tool homeML suite was introduced by
McDonald et al. [15]. A new and extended version of homeML (Version 2.2) was introduced in 2013.
homeML is specialized for smart homes and does not aim at being a generic model for the IoT.

IEEE 1451.2 is part of a group of IEEE standards aiming to ease sensor and actuator
connectivity [16,17]. It specifies the transducer electronic data sheet (TEDS), which allows the
self-description of transducers, i.e., sensors or actuators. Such a description is stored in a nonvolatile
memory and contains, for example, the type, operation, and calibration of a sensor. In Table 1,
an example of a TEDS for a voltage sensor provided by the manufacturer Futek [18] is shown.

This standard has been adapted to the IEEE standard 21450 [19]. Similar to homeML,
these standards focus on the physical layer, especially on sensors and actuators. IEEE 1451.2 and
21450 aim to provide generic models for the IoT and are very comprehensive. As an IEEE standard,
these models are reviewed and approved by an expert committee. Hence, these standards can be
adopted by companies in order to realize complex IoT applications. Implementations of this standard
have been developed by Conway et al. [20] and by Song and Lee [21]. Furthermore, Cherian et al. [22]
employed this standard to connect industrial legacy sensors to Ethernet networks.

The IoT-Lite ontology [7,23] has been developed within the European funded projects
FIWARE (https://www.fiware.org) and FIESTA-IoT (http://fiesta-iot.eu) and is a lightweight
instantiation of the Semantic Sensor Network (SSN) ontology to represent resources, entities,
and services in heterogeneous IoT platforms. In IoT-Lite (cf. Figure 4), IoT devices are sub-classified as
sensing devices, actuating devices, and tag devices, e.g., a radio-frequency identification (RFID) tag.
Moreover, IoT-Lite defines (i) objects, an IoT entity, (ii) system or resource, an abstraction for sensing
infrastructure, and (iii) services provided by IoT devices. Currently, IoT-Lite is under submission as
a standard at the World Wide Web Consortium (W3C) organization, where several implementation
examples of the ontology are provided.

https://www.fiware.org
http://fiesta-iot.eu
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Table 1. Exemplary transducer electronic data sheet (TEDS) of a voltage sensor (based on [18]).

TEDS Structure Property Value Units

Manufacturer ID Futek Advanced Sensor
Technology, Inc.

-

Model number MP -
Basic TEDS Version letter P -
(64 bits) Version number 300 -

Serial number 123456 -

Template ID 30 -
Physical Measurand (Units) psi -
Minimum physical value 0 psi
Maximum physical value 50 psi
Transducer electrical signal type Voltage sensor -
Full-scale electrical value precision 0-10V -
Minimum voltage output 0 V
Maximum voltage output 10 V
Mapping method Linear -

TEDS template: AC or DC coupling DC -
High-level Sensor output impedance 1 Ohms
Voltage output Response time 0.001 s
(154 to 253 bits) Excitation/power requirements Power supply/excitation

source
-

Power supply level, nominal 24 V
Power supply level, minimum 14 V
Power supply level, maximum 30 V
Power supply type DC -
Maximum current at nominal power
level

0.001 A

Calibration date 11/3/2016 -
Calibration initials NWH -
Calibration period 365 days
Measurement location ID 1 -

User data - -

Device

System

SensingDevice

Sensor

Platform

Service

iot-lite:isSubSystemOf
ssn:hasSubsystem

iot-lite:exposedBy

iot-lite:
hasQuantityKind

iot-lite:exposes

iot-lite:hasUnit

ssn:onPlatform

SubclassOf

hasObjectProperty

Entity

Attribute

QuantityKind

Metadata

iot-lite:hasAttribute

Coverage

iot-lite:hasCoverage

SSN (Sensors/Devices)

Circle

Rectangle

Polygon

ActuatingDevice

TagDevice

Unit

QU (QuantityKinds/
Units)

Geo (location)

Point

VirtualEntity

geo:location geo:location

iot-lite:hasMetadata

iot-lite:isAssociatedWith

IoT-Lite (Resources/Entities/Services)

Figure 4. IoT-Lite ontology (based on [23]).

IoT-Lite is generic and aims at reducing the complexity of other IoT models by describing only
the main IoT concepts; however, it can be extended to represent IoT concepts in detail and in different
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domains. In conclusion, IoT-Lite enables describing IoT environments throughout all the IoT layers
depicted in Figure 1.

The IoT-Stream ontology [24,25] is a lightweight model to semantically annotate IoT data streams
generated within IoT environments. This model corresponds to an extension of the SSN ontology
and its lightweight core Sensor, Observation, Sample, and Actuator (SOSA) [26]. Their information
model focuses on modeling stream observations and their analysis and events that are detected
from it, which are captured in four classes: IotStream, StreamObservation, Analyticsprocess, and Event
classes. IoT-Stream includes modules for annotation, consumption, and querying of data. Furthermore,
tools are included that facilitate the use of semantics in IoT. IoT-Stream focuses on the IoT application
logic layer, as depicted in Figure 1.

The IoT Architectural Reference Model (IoT ARM) [27] was developed in the scope of the
European Lighthouse project IoT-A (https://cordis.europa.eu/project/id/257521) and consists of
several sub-models that address architecture views for the IoT. Its primary model is the IoT Domain
Model, which describes the main concepts of the IoT (e.g., devices, services, virtual entities) and
the relations among theses concepts. Furthermore, this model supports the modeling of users and
their interaction with physical entities in the physical world. A physical entity is represented in the
digital world by a virtual counterpart called the virtual entity. Interactions with a physical entity are
realized through devices, which provide interfaces, for example to gain information about sensors
or to control actuators. In conclusion, IoT ARM focuses on the physical layer and the digital twin
depicted in Figure 1.

The Open Connectivity Foundation (OCF) IoT Management and Control specification enables
standardized device and service descriptions for the management and control of IoT environments
using Universal Plug and Play (UPnP) technology [28]. One of its main goals is to describe sensors
and actuators of UPnP and non-UPnP networks as well; thus, it considers network characteristics,
as well as physical characteristics. It also provides a means to define general-purpose devices that are
connected to sensors and actuators. A reference implementation of the OCF specification has been
developed in the IoTivity project [29]. OCF IoT Management and Control is generic and does not focus
on a specific IoT domain; hence, it can be applied to different use cases and applications. Furthermore,
it describes the physical layer, as well as the digital twin layer depicted in Figure 1.

IoT-O is an ontology proposed by Alaya et al. [30], which extends the oneM2M standard to
support semantic data interoperability. IoT-O handles the sensing, actuating, and service concepts
of M2M devices. In order to cover all relevant IoT concepts, it comprises a set of existing ontologies,
i.e., DUL (Dolce-UltraLite), SSN, SAN, QUDV, OWL-TIME, and MSM ontologies, which were
selected to describe five main concepts: sensor, observation, actuator, actuation, and services models.
Consequently, IoT-O is a very comprehensive ontology combining different existing approaches;
however, it is currently not a standard, and no reference implementation could be found. In conclusion,
IoT-O is generic and enables a wide range of use case scenarios in different IoT domains. IoT-O also
enables description throughout all layers of the IoT (cf. Figure 1).

The Nexus Augmented World Model (AWM) is part of the Nexus Platform, a framework for
context-aware applications [31]. Nexus AWM is an abstract model for temporal-spatial context data,
which is composed of tuples containing location, time, and type attributes. Furthermore, the abstract
model can be extended to be employed in specific domains, such as a smart factory or a smart home.
Nicklas et al. [32] proposed the Nexus metadata model, which enables the representation of physical
and logical entities. This metadata model serves as a foundation for the Nexus AWM, as well as an
integration schema to achieve global integration architectures for mobile, context-aware applications.
Similar to IoT-O and other models, Nexus AWM enables description throughout all layers of the IoT
(cf. Figure 1).

The oneM2M base ontology [33] is an IoT standard that specifies the semantics of the data
handled in the oneM2M specification. This ontology defines a device as a derivation of a generic thing
designed to accomplish a particular task through functions of the device. These functions are exposed

https://cordis.europa.eu/project/id/257521
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in the network as services of the device. In the context of oneM2M, a device is assumed to be always
capable of communicating via a network. Furthermore, sensors and actuators are abstracted as devices,
whose concrete functionalities can be expressed as services. Thus, sensors and actuators are implicitly
represented via their services. In conclusion, the oneM2M base ontology describes the physical and
digital twin layers.

The OPC UA Information Model (IEC 62541-5) [34] belongs to the OPC Unified Architecture
(OPC UA) standard, which focuses on the interoperable, secure, and reliable exchange of data in the
scope of industrial communication. It guarantees, therefore, platform independence and seamless flows
of information among devices from multiple vendors. OPC UA defines a client-server communication
paradigm, in which an OPC UA server provides access to data and functions structured as defined
by the OPC UA Information Model. OPC UA clients can then interact with the information model
through standardized services [35]. An open-source implementation of OPC UA in the programming
language C is open62541 (https://open62541.org). OPC UA focuses mostly on the digital twin layer,
i.e., the services and interfaces of the IoT devices, but also enables the description of the physical layer,
i.e., the IoT devices, sensors, and actuators.

Sensor Measurement Lists (SenML) is an IETF Internet draft specification for media types
to represent measurements and device parameters [36]. SenML provides a common data model
to describe measurements and simple metadata about measurements and devices, which can be
represented in JavaScript Object Notation (JSON), Concise Binary Object Representation (CBOR),
eXtensible Markup Language (XML), and Efficient XML Interchange (EXI). In this model, the data are
structured as a single array containing so-called SenML records. Each record contains fields, such as
the sensor’s unique identifier, the measurement time, value, and unit. An example of a temperature
sensor measurement in the JSON syntax is shown in the following.

[ { "n": "urn:dev:ow:10e2073a01080063",
"u": "Cel",
"v": 23.1 } ]

In this example, the array has a single record, in which the sensor measures the value 23.1 degrees
Celsius. However, SenML does not provide a model to describe an entire IoT environment with its
resources, connections, and services. Hence, SenML exclusively focuses on the description of the
physical layer. SenML is a standard (RFC 8428 [37]) of the Internet Engineering Steering Group (IESG)
and is primarily prominent in scientific publications, such as by Su et al. [38] or by Kaivonen and
Ngai [39]. A reference implementation of SenML is provided on the open-source platform GitHub
(https://github.com/core-wg/senml-spec).

The Sensor Model Language (SensorML) [6] is an Open Geospatial Consortium (OGC)
implementation standard, which provides models and XML schema encoding to define processes and
processing components involved in measurements and the transformation of observations. Its focus
lies on the process of measurement and observation; however, it also provides a means to define the
physical characteristics and capabilities of sensors and actuators. Components, such as sensors and
actuators, are modeled as physical processes, which can accept one or more inputs and produce one
or more outputs. SensorML also supports the linking between processes and, thus, the concept of
process chains or workflows. Hence, SensorML is able to describe all layers of the IoT (cf. Figure 1).
SensorML is generic; however, the focus lies on physical processes, interconnecting sensed data
with actions. Besides the XML representation, an ontology model for SensorML is provided online
(http://www.sensorml.com/ontologies.html). In the following, a minimalist example of how a sensor
can be described in SensorML is provided.

https://open62541.org
https://github.com/core-wg/senml-spec
http://www.sensorml.com/ontologies.html
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<sml:PhysicalComponent gml:id="temperature_sensor" ... >
<gml:description>Temperature sensor</gml:description>
<gml:identifier codeSpace="uid">1</gml:identifier>

<!-- Observed Property = Output -->
<sml:outputs>
<sml:OutputList>
<sml:output name="temp">
<swe:Quantity definition=
"http://sweet.jpl.nasa.gov/2.2/quanTemperature.owl#Temperature">

<swe:label>Air Temperature</swe:label>
<swe:uom code="Cel"/>
</swe:Quantity>
</sml:output>
</sml:OutputList>
</sml:outputs>

<!-- Sensor Location -->
<sml:position>
<gml:Point gml:id="stationLocation"
srsName="http://www.opengis.net/def/crs/EPSG/0/4326">
<gml:coordinates>47.8 88.56</gml:coordinates>
</gml:Point>
</sml:position>

</sml:PhysicalComponent>

The measurements of a sensor are described by the element sml:outputs, while the element
sml:position corresponds to the location of the sensor.

The SSN ontology is an OWL 2 ontology to describe sensors and observations, which was
developed by the W3C Semantic Sensor Network Incubator group (SSN_XG) [40]. Being a W3C
standard, currently, SSN is a widely used ontology, which serves as a basis for many other ontology
models, e.g., IoT-Lite [41], IoT-O [30], or the ontology model introduced by Hirmer et al. [11]. The SSN
ontology [42] describes sensors with respect to their capabilities, measurement processes, observations,
and deployments. It applies the Stimulus-Sensor-Observation (SSO) ontology design pattern to
describe the relationships between sensors, stimulus, and observations. SSN provides a good
foundation to be extended in order to fit specific use cases. Furthermore, SSN mostly focuses on
the physical layer and the digital twin layer. Last year, Janowicz et al. [26] introduced the Sensor,
Observation, Sample, and Actuator (SOSA) ontology, which acts as a replacement of SSN’s core
ontology (SSO). The SOSA ontology is lightweight and general-purpose and models interactions
among observations, actuation, and sampling. SOSA resulted in the process of rethinking the SSN
ontology based on changes in scope and target audience, technical developments, and lessons learned.

The TDLIoT (Topic Description Language for the IoT) is a language for the description of sensors
and actuators in the form of topics. Topics can be realized through different communication models,
such as publish-subscribe or request-response, using different protocols (e.g., HTTP, MQTT, CoAP,
or OPC UA). The TDLIoT descriptions define characteristics of the sensors and actuators (physical
location, endpoint, hardware type) and of the communication type (protocol, message structure,
message format). The following listing shows an example of such a description for a temperature
sensor in JSON. In this example, a topic representing a temperature sensor is described with a given
location, the structure of the message, the endpoint to access the data, the owner, the protocol used,
and the type of topic.
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{ "data_type": "float",
"hardware_type": "temperature_sensor",
"location": {
"location_type": "city_name",
"location_value": "Stuttgart"
},
"message_format": "JSON",
"message_structure": {
"metamodel_type": "JSON_schema",
"metamodel":"{
"title": "provider_schema",
"type": "object",
"properties": {
"value": {"type": "float"},
"timestamp": {"type": "integer"},
"time_up": {"type": "string"} },

"required": ["value", "timestamp"]}"
},
"middleware_endpoint": "test.mosquitto.org:1883",
"owner": "city_of_stuttgart",
"path": "/temperature/celsius",
"protocol": "MQTT",
"topic_type": "subscription"

}

Currently, the TDLIoT is a research prototype presented by Franco da Silva et al. [43] and focuses
on the description of topics. The main goal of the TDLIoT is being extendable in order to fit all IoT
related domains. Consequently, concrete parametrization of topic descriptions based on the TDLIoT
can be conducted tailored for each specific domain and use case. Hence, the TDLIoT does not focus on
a specific domain. In regards to the layers depicted in Figure 1, the TDLIoT focuses on the physical
layer, describing sensor and actuator characteristics, and the digital twin layer, describing the data
and services provided by the topics. The application logic layer, however, needs to be specified by
the IoT applications themselves. The TDLIoT is implemented and open-source available on GitHub
(https://github.com/IPVS-AS/TDLIoT).

Eclipse Vorto [44] is an IoT open-source development infrastructure for the creation and
management of agnostic, abstract device descriptions. A simple language is provided in which
devices (e.g., a fitness band) and their functionality (e.g., heart rate monitor and step counter) can
be described. These descriptions are then published as information models in a centralized Vorto
repository. Since Vorto is provided with a comprehensive programming language, all layers of the IoT
can be described. Vorto is an implementation focused approach, which provides several tools to create
device descriptions. It aims at a practical approach to describe devices so that they can be directly
used for application development. As part of the Eclipse Foundation, Vorto has been developed as
open-source and is available on GitHub (https://github.com/eclipse/vorto).

Figure 5 depicts an overview of all aforementioned IoT models and on which aspects of the
IoT layers they focus. This figure refers to Figure 1, which shows the different layers of the IoT,
the physical layer, including IoT objects, and the digital layer, including the digital twin, as well as
the IoT application logic. As shown in Figure 5, most of the investigated models cover the physical
layer, as well as the digital twin. Some models, i.e., homeML, IEEE 1451.2, and SenML, only focus on
the physical layer. Other models cover all layers, e.g., IoT-O or SensorML, whereas only IoT-Stream
focuses on the IoT application logic only. However, since IoT-Stream is an extension of SSN/SOSA,

https://github.com/IPVS-AS/TDLIoT
https://github.com/eclipse/vorto
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other layers could be modeled as well. Which model to choose highly depends on the requirements of
the specific use case they should be applied and over which layers these requirements spread.
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Figure 5. IoT models mapped on layers of the Internet of Things.

4. Criteria-Based Comparison

In order to compare the IoT environment models, we provide five criteria covering their most
important characteristics. These criteria are Ê maturity, Ë support of hierarchies, Ì availability and
community support, Í implementation, and Î geolocation support. We identified these criteria by
a thorough investigation of available IoT environment models. Furthermore, these criteria originate
from experiences in the scope of the German industry projects SmartOrchestra [12] and IC4F [13].
These projects have many industry partners with expertise in IoT applications. These five criteria form
the foundation for our survey and are explained in Sections 4.1–4.5. Furthermore, we evaluate the
surveyed models based on whether they fulfill the criteria. The criteria-based comparison of the IoT
environment models are summarized in Table 2.

Table 2. Criteria-based comparison. Ê: Maturity, Ë: hierarchy, Ì: availability, Í: implementation,
Î: geolocation. Models marked with * were suggested by industry partners.

Model Ê Ë Ì Í Î Year Remarks

homeML non-standard 7 7 7 3 2007 Designed for smart homes [14,15]
IEEE 1451.2 * standard 7 3 3 7 1998 Focuses on sensors [16,17,19]
IoT ARM non-standard 3 7 7 3 2013 Generic reference model [27]
IoT-Lite submitted 3 3 3 3 2016 Uses SSN ontology [7,23,41]
IoT-Stream non-standard 3 3 3 3 2019 Uses SSN ontology [24,25]
IoT MC * standard 3 3 3 7 2013 Also known as IoTivity [28,29]
IoT-O standard ext. 3 7 7 7 2015 Uses SSN ontology [30]
Nexus AWM * non-standard 3 7 3 3 2004 Focuses on geo-localization [31,32]
oneM2M base standard 3 3 3 3 2018 Focuses on services of IoT devices [33]
OPC UA * standard 3 3 3 7 2016 Established in smart factories [34,35]
SenML * standard 7 3 3 3 2012 Focus on sensors and sensor values [36,37]
SensorML standard 7 3 3 3 2014 Supports processes [6]
SSN standard 3 3 3 3 2005 Well-established IoT ontology [26,42]
TDLIoT * non-standard 7 3 3 3 2018 Research prototype [43]
Vorto * non-standard 7 3 3 7 2017 Provided as programming language [44]
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4.1. Criterion Ê: Maturity (Standard/Non-Standard)

The first criterion specifies the maturity of the models, for example whether a model is an
approved standard of an organization, such as OASIS, W3C, or OGC, or not. We assume that a
standard that was approved by such organizations went under a thorough reviewing process and,
thus, has been checked for feasibility. Furthermore, we assume that a standard has an advantage in
contrast to, for example, a work that was published in scientific papers and might have not yet been
properly validated or used in real scenarios. Consequently, maturity is an important factor for the
evaluation of IoT environment models.

homeML is an academic approach proposed as a collaboration work of the universities of Ulters
and Luleå. The TDLIoT is also an academic approach presented by the University of Stuttgart.
The IoT-O ontology is an academic collaboration of the National Center for Scientific Research (CNRS)
and the university of Toulose. It is not a standard, but uses the oneM2M standard as a basis and extends
it. Furthermore, IoT ARM was developed within a European Lighthouse research project, while Nexus
AWM was the result of a collaborative research center funded by the German research foundation DFG.
IoT-Stream is not a standard; however, it is very mature, including a detailed documentation and a
corresponding implementation.

In contrast to the aforementioned models, several models are approved standards by well-known
organizations: IEEE 1451.2 and 21450 are standards by the IEEE organization; IoT Management and
Control is a standard by the Open Connectivity Foundation (OCF); OPC UA is a standard by the
International Electrotechnical Commission (IEC); SensorML is an Open Geospatial Consortium (OGC)
implementation standard; and the SSN ontology is a standard by the W3C Semantic Sensor Network
group; furthermore, the oneM2M base ontology is a published specification to the oneM2M organization,
while SenML is a standard by the Internet Engineering Steering Group (IESG). The IoT-Lite ontology is
currently in submission at the W3C organization.

Finally, Vorto is not a standard, but is an open-source tool that has been supported and developed
by the Eclipse Foundation.

4.2. Criterion Ë: Support of Hierarchies

Representation of hierarchies is an important factor when modeling environments in the IoT,
since they normally contain hierarchical deployments among the different existing IoT objects.
There are two main types of hierarchies, grouping and abstraction. For example, through grouping,
it should be possible to model complex systems, such as production machines in a smart factory,
which contain a high amount of devices, sensors, and actuators. This enables group-based querying.
Such relations can be of vital importance, for example, when conducting monitoring for predictive
maintenance [45]. Furthermore, through abstraction, generic types can be defined. For example,
different sensor modules measuring temperature can be derived from the generic type temperature
sensor. Consequently, we investigate whether some support of hierarchies can be expressed in the IoT
environment models. For example, an ontology-based model supports natively both mentioned types
of hierarchies. Other models normally need to provide such a means separately.

With respect to the surveyed models, many of them do not distinguish among device, sensor,
and actuator, i.e., sensors and actuators are abstracted as a device, a thing, or a system, which has
specific functionalities for sensing or acting. In this case, we analyze whether hierarchies can be
built among devices, things, or systems. If a model provides concepts for grouping, it is indicated in
our evaluation.

The first version of homeML provides a two level deep hierarchy: A smart home must contain
at least one room, and a room can contain zero or more devices. Hierarchies among devices cannot
be modeled. Furthermore, devices can be grouped by rooms, i.e., a group of devices existing in a
specific room. In the latest version of homeML (Version 2.2), the described hierarchy and grouping are,
with minor changes, still kept.
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The IoT-Lite and SSN ontologies define a device as a system, which can be a subsystem of other
systems, enabling in this way hierarchical relations among devices. Similarly, the IoT-O ontology
defines a device as a thing, which can consist of other things, enabling in this way hierarchical relations
as well. Since IoT-Stream builds on SSN/SOSA, it also supports hierarchical relations. The oneM2M
base ontology defines a device, which can consist of other devices, also enabling hierarchical relations.

The Nexus Augmented World Model defines several objects and enables building a hierarchy,
in which the root object is called the NexusObject. Its children are then NexusData Objects containing
data of the augmented world. The OCF IoT Management and Control standard models hierarchies
between devices and sensors. Furthermore, it enables a device to group its sensors into sensor
collections. Moreover, sensors of the same type, i.e., temperature sensors, can be modeled as a sensor
group, even though they might not belong to the same device.

The OPC UA Information Model defines an AddressSpace, which contains Nodes that can be organized
hierarchically or by grouping. The IoT ARM abstracts sensors and actuators as devices; however, it is
possible to build hierarchies among devices. Furthermore, groups can be modeled as well.

Finally, IEEE 1451.2 describes only one device at once, i.e., no hierarchy or groups can be modeled.
Similarly, SenML, SensorML, TDLIoT, and Vorto do not support the description of hierarchies.

4.3. Criterion Ì: Availability and Community Support

The third criterion specifies whether the model is publicly available or not and, furthermore,
if a wide community is involved in its future development. Clearly, a large community of users
and developers, or a larger organization, is required in order to establish and to further develop an
IoT environment model. To realize this, the model should either be available open-source, or, if it is
closed-source, it should be developed and used by a larger organization.

For homeML, a simple link to the XML schema was provided by Nugent et al. [14]; however,
the link is not working. No schema could be found for IoT ARM; however, there are many UML
diagram examples in several related publications [27]. The IoT-O ontology is also not available online;
the authors only provide a figure of their model.

For the Nexus Augmented World Model, the XML schemata could be found in the Nexus project
website (https://nexus.uni-stuttgart.de); however, the website was recently deactivated. Regarding
the TDLIoT, a prototypical implementation is available on GitHub (https://github.com/IPVS-AS/
TDLIoT), which provides data storage for topics using the TDLIoT notation and a REST API to publish,
update, and search for topics descriptions in this storage.

The IEEE 1451.2 and IEEE 21450 standards, W3C IoT-Lite, IoT-Stream, OCF IoT Management and
Control, the oneM2M base ontology, OGC SensorML, and the SSN_XG SSN ontology are available online
by their corresponding organizations. The OPC UA Information Model is available to download upon
registration on the OPC Foundation website. Furthermore, the SenML specification is available as
an Internet draft on the IETF organization website. Finally, Eclipse Vorto is available open-source,
providing tool support to create information models.

4.4. Criterion Í: Implementation

The fourth criterion specifies whether an implementation for the IoT environment models
exists. In scientific papers, for example, interesting concepts are created that, however, might not
have a corresponding implementation. For the usage in real scenarios we aim for in this article,
an available implementation is of vital importance. This also includes available tools for model
creation and management. For models without a corresponding implementation, we discuss whether
an implementation could be realized.

For almost every surveyed model, there are implementations or examples. Only for homeML,
IoT ARM, and IoT-O, no implementations were found. A web address to the homeML suite was
provided by McDonald et al. [15]; however, the address is not accessible. An implementation of IoT-O

https://nexus.uni-stuttgart.de
https://github.com/IPVS-AS/TDLIoT
https://github.com/IPVS-AS/TDLIoT
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is not available as well. The Nexus Platform was implemented; however, this implementation is not
available publicly.

An implementation of the IEEE 1451.2 for sensors with a web address was provided by
Wobschall et al. [46]. Furthermore, several implementation examples of the IoT-Lite ontology are
provided in the submitted document in the W3C organization. IoT-Stream provides an implementation
of their standard, which is available online (http://iot.ee.surrey.ac.uk/iot-crawler/ontology/iot-
stream). A reference implementation of the OCF IoT Management and Control specification has been
developed in the IoTivity project. An open-source implementation of OPC UA in the programming
language C is open62541 (https://open62541.org). Implementations of the oneM2M base ontology
and SSN ontology are provided as OWL files. SenML examples for the different formats, as well as
an XML schema are provided in the Internet draft. The SensorML specification document provides
several examples, as well as XML schemata. A prototypical implementation employing the TDLIoT
is available on GitHub (https://github.com/IPVS-AS/TDLIoT). Finally, several Vorto information
models for devices, such as Philips Hue and Bosch XDK, are provided.

4.5. Criterion Î: Geolocation Support

Finally, the fifth criterion defines whether the model can describe the (geo-)location of devices,
which enables sophisticated features, such as location-based querying. Especially in the IoT, location
is important, for example, when recognizing situations, i.e., events that might require a reaction,
which occur in a specific room of a smart home.

Some of the surveyed models do not explicitly provide a concept for the modeling of locations.
In this case, we analyze whether the models provide a means to be extended with customized properties
in order to enable the definition of the location.

homeML provides the element DeviceLocation, which can be used to provide the absolute
coordinates (x, y, z) of the device. In IoT ARM, a PhysicalEntity can contain so-called Tags, which
can be used to model the location of the physical entity in various formats. The IoT-Lite ontology and
SensorML enable the description of locations. The SSN ontology enables the description of locations
through the DUL (Dolce-UltraLite) ontology, which provides location concepts. Since IoT-Stream builds
on SSN/SOSA, it also supports geolocation. In their documentation, they also provide an example of
how to model geolocation data using their ontology. The Nexus Augmented World Model was designed
to support location-aware applications; therefore, it provides a means to model location information.

Furthermore, the oneM2M base ontology does not explicitly describe locations; however, this can
be modeled as a variable, denoting a property of a device, e.g., the location. In the OPC UA Information
Model, the location can be defined using the so-called axis. Each axis is defined by coordinates (x, y, z).
SenML also does not explicitly describe locations, but its format can be extended with custom attributes.

IEEE 1451.2 allows the self-description of transducers with respect to static, technical properties.
Therefore, locations are not described in TEDS. The IoT Management and Control standard and the IoT-O
ontology do not provide a means to describe locations. Finally, the Eclipse Vorto information model
does not explicitly support location descriptions.

To summarize, currently, there are many application domains for IoT environments. For example,
Gubbi et al. [47] provided the following classification of IoT environments based on implemented
testbeds: smart home, smart retail, smart city, smart agriculture, smart water, and smart transportation.
Moreover, many models to describe IoT environments exist (cf. Section 3). Therefore, application
developers have the difficult task of choosing a suitable model for their IoT applications since, typically,
the IoT environment model used in such applications cannot be easily exchanged afterwards.

In Table 2, the comparison results based on the introduced criteria are shown. From the surveyed
models, homeML is suitable, for example, to describe a smart home, since homeML was explicitly
designed for this domain. On the other side, IEEE 1451.2 and OPC UA are rather to be applied in smart
factory scenarios. Finally, many models do not define specific domains and are, therefore, generic

http://iot.ee.surrey.ac.uk/iot-crawler/ontology/iot-stream
http://iot.ee.surrey.ac.uk/iot-crawler/ontology/iot-stream
https://open62541.org
https://github.com/IPVS-AS/TDLIoT
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enough to be employed in different application domains, such as the models IoT ARM, IoT-Lite, IoT-O,
Nexus AWM, oneM2M base, IoT MC, SenML, SensorML, SSN, TDLIoT, and Vorto.

Table 2 shows that there are several models that fulfill all five criteria, i.e., IoT-Lite, IoT-Stream,
oneM2M base, and SSN. Note that our comparison only gives a suggestion about which models are
suitable for a generic use, i.e., can be used in different application domains. If for example, a smart
home application should be developed, specific domain models, such as homeML, might be more
suitable, since it was designed for this specific domain and provides additional means to describe
home-related concepts (e.g., rooms, floors, inhabitants). However, generic models can also be employed
since they normally can be extended or adapted if needed to meet the requirements of a smart home
application. Furthermore, a combination of compatible models (e.g., ontologies) is normally possible
as well.

In our comparison, we excluded the analysis of the encoding efficiency of the investigated
models. Generally, IoT environment models are not created and processed by resource-constrained
IoT devices, but rather by more powerful systems, such as IoT platforms hosted on, for example,
cloud infrastructures or servers. Hence, we omitted this aspect of the models in this article. However,
it is important to note that specifically ontology-based environment models are heavyweight and
require a certain amount of main memory, depending on the size of the ontology. In contrast,
JSON-based environment models are more lightweight and, thus, easier to create and process. This
enables the handling of such environment models by resource-constrained devices as well. Hence, if it
is necessary to process the models on resource-constrained devices or transfer them through resource
constrained networks, we recommend using lightweight formats, such as SenML, which is able to
create compact descriptions of devices that can be used for discovery purposes.

5. Related Work

Compton et al. [48] provided a survey of sensor ontologies. In their work, they focused on
the semantic specification of sensors. Their comparison included ontologies such as SWAMO,
CSIRO, OntoSensor, and scientific contributions, such as the work introduced by Avancha et al. [49],
Matheus et al. [50], or Eid et al. [51]. The criteria for comparison are comprised of (i) sensor
specific characteristics, such as sensor hierarchy, identity, manufacturing, contacting, and software,
(ii) physical characteristics, such as location, power supply, and operating conditions, (iii) observation
specific characteristics, such as accuracy, frequency, and the response model, and (iv) domain specific
characteristics, such as units of measurements, feature/quality, or time.

In contrast to Compton et al., our work does not focus on ontologies for the semantic specification
of sensors. We compare all kinds of IoT environment models, including semantic and non-semantic
models. Furthermore, we do not focus on sensors specifically, but on IoT environments including
devices, sensors, and actuators. Moreover, we focus on other criteria, which, in our opinion,
are essential to model and describe IoT environments. Finally, most of the models compared by
Compton et al. are approximately 10 years old, and newer approaches are therefore missing.

Gyrard et al. [52] created a collection of different vocabularies for the IoT focusing on scientific
publications. By doing so, exclusively, ontologies were added to the collection. In contrast, our work
focuses not only on ontologies, but on different kinds of models for the IoT.

Chen et al. [53] surveyed several sensor standards, including ECHONET, SensorML, IEEE 1451,
Device Kit, and DDL. The authors categorized these standards according to their affiliation to the
physical world or the digital world, meaning whether these models describe physical characteristics
such as pins or ports or digital characteristics such networking protocols or configuration. In addition,
the models were compared regarding the criteria encoding, design perspective, device model,
measurement modeling, etc. In our article, we consider non-standard models to enable a wider
comparison of the state-of-the-art concepts. Furthermore, this paper was published in the year 2008
and does not consider recent advances in the field of the Internet of Things, including newly emerged
models, such as IoT-Lite or the oneM2M base ontology.
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Darmois et al. [54] provided a state-of-the-art analysis for IoT standards. Their work was published
in the year 2012. Darmois et al. looked at IoT standards in general, not focusing on IoT environment
models. They categorized these standards into three layers: (i) the application layer containing
high-level IoT applications, (ii) the IoT layer, i.e., the digital representation of the physical world,
and (iii) the network layer dealing with the communication. Their overall goal is the recognition of the
gaps in the standards of these layers. However, they did not provide a comparison of these standards
based on a set of criteria. In contrast, they described existing standards extensively and tried to find
gaps that were not addressed by them. Our work does not focus on finding gaps; it aims at providing
an overview of existing models to describe IoT environments.

Grangel-González et al. [55] presented a landscape of standards for the Industry 4.0 from a
semantic integration perspective. In their work from 2017, they extensively investigated existing
standards related to Industry 4.0. These standards include, for example, AML or OPC UA. However,
in their work, they did not focus on IoT environment models, but gave an overview of general
standards that could be applicable to Industry 4.0. In contrast to their work, the focus of our paper
does not lie on Industry 4.0, exclusively. We provide an overview of generic existing IoT environment
models, applicable to a wide range of scenarios. In addition, we focus on the digital description of
these IoT environments and not, for example, on communication standards.

6. Summary

In this article, we present a comparative survey of models that can be employed to describe IoT
environments, including devices, their attached sensors, and actuators. Some of the evaluated models
have been developed and maintained by large organizations; others have been created in research
projects or have been standardized. This survey supports IoT application developers in finding a
suitable model for their use cases, as well as researchers in getting an overview of the state-of-the-art
IoT environment models.

In order to compare these different models, we define five criteria that summarize important
characteristics of the models to be employed in the IoT domain, such as maturity and available
implementations. Based on these criteria, we evaluate and compare the surveyed models. Furthermore,
we present related work that analyzes and discusses further models to be used in IoT scenarios.

We are aware that many other models exist that could be relevant for our survey, for example
the underlying models used by established IoT products in the smart home domain, such as Amazon
Echo, Google Home, or ZigBee Alliance Dotdot [56]. However, to keep the focus clear, we considered
some exclusion criteria, as described in Section 3. We did not include the IoT standard Dotdot [56],
which is a universal application language provided by the ZigBee Alliance for IoT devices, since it
focuses mostly on the device-to-device communication and does not provide a holistic description of
IoT environments, including all the involved devices, sensors, and actuators. Furthermore, Amazon
Echo and Google Home are also not included, since they do not explicitly provide models to describe
them as IoT devices and the corresponding IoT environment of which they are a part.
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