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Deutschsprachige Zusammenfassung

Hydraulic-Fracturing (deutsch auch hydraulische Risserzeugung genannt) ist eine Ver-
fahrenstechnik, um die Durchlässigkeit des Gesteins zu erhöhen. Dabei wird das soge-
nannte Fracking-Fluid – eine Suspension aus Wasser, Stützmitteln und Additiven – unter
hohem Druck über eine Zugangsbohrung in den Boden gepresst, um bestehende Risse
im Gestein zu erweitern bzw. neue Risse zu erzeugen. Die hydraulische Risserzeugung
wird für eine Vielzahl von Anwendungen in gesättigten und ungesättigten porösen Ma-
terialien eingesetzt, wie zum Beispiel bei der Förderung fossiler Energieträger, bei der
Tiefen-Geothermie, bei der Erschließung tiefer Grundwasservorkommen und bei der Ab-
fallentsorgung. Obwohl diese Technik in der Praxis weit verbreitet ist, wird das Verfahren
kontrovers diskutiert. Gegenüber wirtschaftlichen Vorteilen stehen Umwelt- und Gesund-
heitsrisiken wie die Verunreinigung von Grundwasser, die Freisetzung von Treibhaus-
gasen oder die Gefahr von Mikroerdbeben. Die Anwendungen beruhen in erster Linie
auf empirischen Methoden, da die Wechselwirkungen bei der hydraulischen Risserzeu-
gung wissenschaftlich noch nicht vollständig erfasst sind. Die erwähnten Risiken des Ver-
fahrens verdeutlichen die Relevanz, den Rissprozess zu verstehen, um das Gefährdungspo-
tential weitestgehend ausschließen zu können. Eine Herausforderung ist die komplexe,
mehrphasige Gesteinszusammensetzung im Untergrund, welche aufgrund der schwierigen
Zugänglichkeit nicht direkt beobachtet werden kann. Es ist deshalb wichtig, ein effizientes
Modell und Simulationsverfahren für fluidgetriebene Risse zu entwickeln, um ein besseres
Verständnis der Wirkzusammenhänge zu erlangen und somit Verfahrensrisiken präventiv
vorbeugen zu können.

Hydraulisch induzierte Risse in vollständig gesättigten porösen Materialien wurden be-
reits umfangreich untersucht. Diese Dissertation erweitert das Verständnis gekoppelter
Rissprozesse in teilgesättigen porösen Medien basierend auf der Entwicklung eines theo-
retischen Modells. In diesem Fall ist der Porenraum des Festkörperskeletts nun sowohl mit
einer inkompressiblen Flüssigkeit, wie Wasser oder Öl, als auch mit einem kompressiblen
Porengas, wie Luft oder Erdgas, gefüllt. Hierzu müssen zwei Phänomene gleichzeitig
betrachtet und gekoppelt werden: Einerseits die mehrphasigen Wechselwirkungen zwi-
schen Festkörper und Fluiden im porösen Medium und anderseits die Rissentstehung und
-ausbreitung im Festkörperskelett.

Die Theorie Poröser Medien (TPM) ermöglicht eine konsistente Formulierung des gekop-
pelten Verhaltens der drei oben genannten Phasen. Der Aufbau des kontinuumsmecha-
nischen Modells basiert auf den Grundsätzen der Thermodynamik. Über eine virtuelle
statistische Homogenisierung der Elementarvolumina wird ein makroskopisches Modell
mit sich überlagernden Konstituierenden geschaffen. Durch die Einführung von Volu-
menanteilen wird die lokale Zusammensetzung weiterhin berücksichtigt. Für jeden Be-
standteil des porösen Mediums werden in der TPM eine individuelle Bewegungsfunktion
und ein spezifischer Satz an Bilanzgleichungen betrachtet. Letztere sind über sogenan-
nte Produktionsterme miteinander gekoppelt. In Hinblick auf hydraulische Risserzeugung
ermöglicht dieses Vorgehen die Kopplung der Festkörperverformung mit dem Druckfeld
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VI Deutschsprachige Zusammenfassung

des injizierten Fluids. Somit kann der Einfluss der Injektion (besser gesagt der Druck des
injizierten Fluids) auf das Verzerrungsfeld des Festkörpers beschrieben werden, welches
wiederum die Rissausbreitung hervorruft.

Um den Bruchprozess im porösen Medium einzubeziehen, wird die Phasenfeldmethode in
das zuvor erarbeitete TPM-Modell eingebettet. Dabei wird mithilfe einer skalaren Vari-
able – das Phasenfeld – zwischen intaktem und gerissenem Zustand des Festkörperskeletts
unterschieden. Durch einen Längenskalenparameter wird das Phasenfeld geglättet, was
eine kontinuierliche Übergangszone zwischen intaktem und vollständig gerissenem Mate-
rial ermöglicht. Dieser Ansatz vermeidet Sprünge im Bruchprozess und erleichtert somit
die numerische Umsetzung. Das Phasenfeld wird als Prozessvariable eingeführt und in die
Formulierung des Helmholtz-Potentials integriert. Letzteres basiert auf einer spektralen
Zerlegung der Festkörperverzerrung, so dass das Phasenfeld die elastische Energie allein
unter Zug und nicht unter Druck verringert. Darüber hinaus wird für die Phasenfeld-
variable eine Evolutionsgleichung vom Typ Ginzburg-Landau in den Satz der Bilanzglei-
chungen aufgenommen. Um die Irreversibilität des Bruchprozesses zu gewährleisten, wird
ein lokales Geschichtsfeld eingeführt, welches den Maximalwert der spannungsinduzierten
Festkörperenergie aufzeichnet.

Weiterhin wird das Modell um den sogenannten Crack-Opening-Indicator innerhalb der
konstitutiven Beziehungen der Fluide erweitert. Dieses Verfahren ermöglicht die Un-
terscheidung zwischen offenen und geschlossenen Rissen, begleitet von einem bidirek-
tionalen Wechsel zwischen einer Darcy-Strömung im intakten porösen Bereich und einer
Navier-Stokes-Strömung in vollständig gebrochenen Gebieten. Neben dem veränderlichen
Flussverhalten spielt auch der Fluiddruck im teilgesättigten Medium eine wichtige Rolle
und wird in dieser Dissertationsschrift ausführlich untersucht. In teilweise gesättigten
porösen Materialien interagieren die flüssigen und gasförmigen Phasen im Gleichgewichts-
zustand unter Kapillarkräften. Dieses Verhalten wird z. B. durch die bekannten Modelle
von Brooks und Corey oder van Genuchten beschrieben. Da es sich bei der Injektion
und den hydraulischen Rissvorgängen allerdings um einen hochdynamischen Prozess han-
delt, sind die üblichen hydromechanischen Beziehungen nicht anwendbar. In dieser Ar-
beit wird daher eine modifizierte Differenzdruck-Sättigungs-Beziehung ausgearbeitet, die
sowohl statische als auch dynamische Prozesse abbildet.

Darüber hinaus basiert die numerische Studie auf der Finite-Elemente-Methode. Die
gekoppelten partiellen Differentialgleichungen werden monolithisch mithilfe des numeri-
schen Codes PANDAS gelöst. Es werden verschiedene numerische Beispiele gerechnet. Um
die Konsistenz des mehrphasigen Modells zu überprüfen, wird ein Entwässerungsvorgang
berechnet und mit experimentellen Daten verglichen. Zur Verifizierung des Bruchmodells
werden ferner die Ergebnisse einer Rissausbreitung unter Druck mit den analytischen
Ergebnissen der linear-elastischen Bruchmechanik verglichen. Ziel dieser Arbeit ist es,
die Relevanz der dreiphasigen Modellierung für Brüche auch unter dynamischen Bedin-
gungen zu verstehen. Hierfür wird – ausgehend von einem einzelnen Riss – das gekop-
pelte Verformungs- und Bruchverhalten des Festkörperskeletts durch die verschiedenen
Energieanteile untersucht. Anschließend wird die Wechselwirkung der Fluide während
des Risses umfassend betrachtet. Unter anderem werden eine Gaskompression und ein
anschließender Gasrückfluss in den Riss beobachtet. Ein Vergleich der Ergebnisse von
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vollständig und teilweise gesättigten Medien verdeutlicht zudem, dass das Einbeziehen
gasförmiger Fluide den Rissbildungsprozess verlangsamt. Diese Verlangsamung resultiert
aus einem verzögertem Aufbau des Porendrucks, der durch die Kompressibilität des Gases
verursacht wird.

Um einen weiteren Schritt in Richtung realistischer Szenarien zu gehen, werden schließlich
zwei Arten von Heterogenitäten untersucht.

Erstens werden (globale) Heterogenitäten, die durch äußere Lasten verursacht werden,
berücksichtigt. Dieser Fall ist relevant, da Böden und Gesteine in der Natur häufig exter-
nen Belastungen ausgesetzt sind, z. B. aufgrund tektonischer und thermischer Spannungen
oder durch die Belastung des darüber liegenden Gesteins. Es werden numerische Beispiele
mit zwei unterschiedlich orientierten Rissen unter verschiedenen Belastungsbedingungen
berechnet und verglichen. Diese Beispiele zeigen die Fähigkeit des Modells, offene und
geschlossene Risse zu beschreiben. Das Fließverhalten der flüssigen und gasförmigen
Phasen wird für beide Fälle diskutiert.

Zweitens werden (lokale) Heterogenitäten in der porösen Struktur durch die Definition
statistisch verteilter, ortsabhängiger Materialparameter betrachtet. Hierbei wird der fluid-
getriebene Rissbildungsprozess im homogenen Fall gegenüber einem Modell mit vordefi-
nierten Bereichen höherer Steifigkeit verglichen. Infolgedessen wird im Zweifeld-Modell
eine Rissverzweigung beobachtet. Durch eine statistisch verteilte Implementierung der
geomechanischen Eigenschaften wird das Modell zusätzlich erweitert. Um den Einfluss
dieser Felder zu untersuchen, werden numerische Beispiele mit unterschiedlichen statis-
tischen Korrelationslängen verglichen. Durch die statistisch verteilten Festkörpereigen-
schaften variieren die lokalen Spannungen räumlich, und der Risspfad weicht charakteris-
tisch ab.

Zusammenfassend wird in dieser Arbeit die Phasenfeldmethode im Rahmen der Theorie
Poröser Medien für dynamische Rissvorgänge in teilgesättigten poröser Medien angewen-
det. Es wird gezeigt, dass die Gasphase die Rissausbreitung verlangsamt. Des Weiteren
wird untersucht, inwieweit lokale und globale Heterogenitäten das Riss- und Strömungs-
verhalten beeinflussen. Das vorgestellte methodische Modell kann für viele Anwendungen,
z. B. im Bereich der Geoenergie, genutzt werden.





Abstract

Hydraulic fracturing is a technique, where fracking fluids are pressed into the ground to
initiate and open fractures, increasing the rock’s permeability. This stimulation technique
is used for a wide variety of geophysical applications in saturated and unsaturated porous
materials, such as for the exploitation of oil and natural gas, for geothermal purposes,
for the stimulation of deep ground-water resources and for waste disposals, to give some
examples. Although this technique is widely used in practice, the fracturing process is
controversially discussed. The economic benefits conflict with environmental and health
hazards, like water contamination, air pollution, the triggering of earthquakes, and re-
sulting risks to public health. In addition, interactions during hydraulic fracturing are
scientifically still not well established, and applications are primarily based on empirical
methods. The main difficulty is based on the fact that the underground is a complicated
matter of rock or soil filled with fluids, such as water and air, and that direct subsurface
observation is challenging. The risks of hydraulic fracturing mentioned above highlight
the necessity of understanding the fracturing process and the importance of developing
an appropriate and efficient model and simulation technique for fluid-driven fractures.

Many contributions consider hydraulically induced fractures in fully saturated porous
materials, where a single pore fluid saturates the solid – only a few treat partially saturated
media. Based on methodical developments, this doctoral thesis enlarges the understanding
of the coupled processes occurring during fluid-driven fracturing in partially saturated
porous media, where the pore space of the solid skeleton contains both an incompressible
liquid, such as water or oil, and a compressible pore gas, such as air or natural gas. Two
main issues are treated simultaneously: the multiphasic nature of solid-fluid interactions
in porous media and the crack initiation and propagation in the solid skeleton.

The Theory of Porous Media (TPM) allows a rigorous and consistent formulation of the
coupled behaviour of the abovementioned three phases. The setup of the continuum-
mechanical model is based on first principles of continuum thermodynamics. Moreover,
following a virtual statistical homogenisation over a representative elementary volume, the
microscopic structure is smeared out, leading to a macroscopic model of superimposed
and interacting continua. The volume-fractions concept considers the local composition.
Furthermore, the TPM provides for each constituent of the porous medium an individual
motion function and a set of balance equations coupled to each other by introducing so-
called production terms. In the context of hydraulic fracturing, this approach enables
to couple the deformation of the solid skeleton with the pressure field of the injected
fluid under the thermodynamic restrictions of the entropy inequality. Thus, the injection
(pressure) triggers the solid strain field, which induces crack propagation.

In addition, considering the fracturing process in porous media, the phase-field approach
to fracture is embedded in the previously elaborated TPM model. Thereby, the unbroken
and broken states of the solid skeleton are differentiated with a scalar phase-field variable.
This variable is smoothened according to a length-scale parameter, leading to a diffuse
transition zone between the two extreme states of intact and fully broken material. This
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method avoids the occurrence of a discontinuous jump in the fracturing process and fa-
cilitates numerical implementation. The phase field is added to the process variables and
integrated into the free-energy formulation. The latter is based on a spectral decomposi-
tion of the solid strain, such that the phase-field variable reduces the elastic energy only
under tension and not under compression. In addition to that, a Ginzburg-Landau-type
evolution equation for the phase-field variable is added to the set of balance equations.
Therein, a history variable recording the maximum value of the tension-induced solid
strain energy is introduced to ensure the irreversibility of the fracturing process.

The model is further enhanced by introducing a crack-opening indicator into the fluid
constitutive relations. This procedure enables the distinction between open and closed
cracks accompanied by a switch between Darcy-type and Navier-Stokes-type flow situa-
tions in the intact porous domain and fully broken areas, respectively. Moreover, special
attention is given to the fluid pressure. The liquid and gas phases interact in partially
saturated porous material under equilibrium through capillary forces. This behaviour is
covered, for example, by the well-known Brooks-Corey or van Genuchten models. How-
ever, considering injection is a highly dynamic process, the standard hydromechanical
relations do not apply here. Therefore, a modified pressure-difference-saturation relation,
mapping both equilibrium and dynamic fluid interactions, is proposed and discussed in
this thesis.

The numerical study builds on the Finite-Element Method. The coupled partial differ-
ential equations are solved monolithically with the numerical code PANDAS. Different
numerical examples are computed. Specifically, to verify the consistency of the multi-
phasic model, a drainage problem is computed and compared to experimental data. For
verifying the fracture model, the results of pressurised crack propagation are compared
to analytical ones of linear-elastic fracture mechanics. This thesis aims to understand
the relevance of triphasic modelling for fracture under dynamic conditions. Therefore,
proceeding from a single crack, the solid skeleton’s coupled deformation and fracturing
behaviour is examined by considering the different energy proportions. Then, the mutual
interaction of the fluids during fracturing is considered in detail. Among others, a gas
pressure compression and subsequent gas reflux into the crack are observed. A comparison
of fully saturated and partially saturated simulations reveals that the existence of pore
gas mainly slows down the fracturing process. This deceleration results from a slower
pore pressure build-up induced by the gas compressibility.

Finally, two kinds of heterogeneities are assessed, going one step further towards realistic
scenarios.

First, (global) heterogeneities caused by external loads are evaluated. This case is rele-
vant as soils and rocks are frequently under external stresses in nature, i. e. due to the
loading of overlying rocks or tectonic and thermal stresses. Numerical examples with two
differently oriented cracks are computed under distinct loading conditions, and the results
are compared. These examples show the model’s capability to describe open and closed
cracks and lead to a discussion of the flow behaviour of the liquid and gas phases in both
cases.

Second, (local) heterogeneities in the porous structure are considered by defining location-
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dependent material parameters. In this sense, a fluid-driven fracturing process with pre-
defined imperfection areas of higher stiffness is juxtaposed to the homogenous case. As a
result, crack branching is observed in the two-field case. Additionally, the model is im-
proved by implementing statistical fields of geomechanical properties. In order to study
the influence of this latter, numerical examples with different statistical correlation lengths
are compared. Due to the statistical fields of the solid properties, the local stresses spa-
tially vary, and the crack path deviates characteristically.

In conclusion, this thesis applies the phase-field approach to fracture within the Theory
of Porous Media for fully dynamical problems of partially saturated porous media. It is
shown that the gas phase slows down the crack propagation and to what extent local and
global heterogeneities influence the crack and flow behaviour. The presented methodical
and basis-oriented model can be used for various applications.





Nomenclature

The notation in this thesis follows the conventions of modern tensor calculus, such as in
Ehlers [79] and de Boer [37]. Furthermore, the particular symbols used in the context
of porous-media theories are chosen according to the established nomenclature given by,
e. g., de Boer [39] and Ehlers [84, 86].

Conventions

General conventions

( · ) placeholder for arbitrary quantities

a, b, . . . or ϕ, ψ, . . . scalars (zero-order tensors)

a,b, . . . or φ,ψ, . . . vectors (first-order tensors)

A,B, . . . or Φ,Ψ, . . . tensors of second order

Index and suffix conventions

i, j, k, n, . . . indices (control variables) as super- or subscripts

( · )α subscripts indicate kinematic quantities of a constituent
within porous-media or mixture theories

( · )α superscripts indicate non-kinematic quantities of a con-
stituent within porous-media or mixture theories

( · )0 initial values at time t0
˙( · ) = d( · )/dt total time derivatives with respect to the overall aggregate φ

( · )′α = dα( · )/dt material time derivatives following the motion of φα

d( · ) differential operator

∂( · ) partial derivative operator

δ( · ) test functions of primary unknowns
ˆ( · ) production terms of mechanical quantities
¯( · ) prescribed quantities (boundary conditions)

( · )αEF extra (effective) quantities of a constituent φα

( · )αEQ, ( · )
α
NEQ equilibrium and non-equilibrium parts of quantities

( · )h spatially discretised quantities within numerical investigations

( · )n, ( · )n+1 discretised quantities in time within numerical investigations

( · )T , ( · )−1 transposed and inverse form of a tensor

XIII
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Symbols

Greek letters

Symbol Unit Description

α constituent identifier for L, G, S and F in super- and subscript

β identifier for the pore fluids L and G in super- and subscript

γβR [ N/m3 ] effective weight of a fluid constituent φβ

γs [ N/m ] surface tension

ΓS [ 1/m ] fracture energy of the solid per critical energy release rate

δji Kronecker symbol or Kronecker delta

ϵ [ m ] phase-field length-scale parameter

ε, εα [ J/kg ] mass-specific internal energy of φ and φα

ε̂α [ J/m3 s ] volume-specific direct energy production of φα

εi, εSi [ - ] eigenvalues of the (solid) deformation tensor

εtol. pre-defined tolerance used in the Newton solver

ζ̂α [ J/Km3 s ] volume-specific direct entropy production of φα

η, ηα [ J/Kkg ] mass-specific entropy of φ and φα

ηr , η
S
r [ - ] residual (solid) stiffness coefficient

η̂, η̂α [ J/Km3 s ] volume-specific total entropy production of φ and φα

θ, θα [ K ] absolute Kelvin’s temperature of φ and φα

κ [ - ] exponent governing the deformation dependency of KS

κβr [ - ] relative permeability factor of φβ

λ [ - ] pore size distribution parameter for Brooks-Corey law

λS [ N/m2 ] first Lamé constant of φS

µ [ · ] mean value

µβ, µβR [ N s/m2 ] partial and effective dynamic viscosity of φβ

µKG weighted scalar voxel information at the Gauss point KG

µS [ N/m2 ] second Lamé constant of φS

π [ - ] circle constant

ρ [ kg/m3 ] density of the overall aggregate φ

ρα, ραR [ kg/m3 ] partial and effective (realistic) density of φα

ρ̂α [ kg/m3 s ] volume-specific mass production term of φα

σ, σα scalar-valued supply terms of mechanical quantities in
Chapter 2

σ [ · ] standard deviation in Chapter 5

σc [ N/m2 ] critical tensile stress for crack propagation

ση, σ
α
η volume-specific external entropy supply of φ and φα in

Chapter 2
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τ [ kg/m s ] damping coefficient

Υ arbitrary field function (steady and steady differentiable)

φ, φα entire aggregate model and particular constituent

ϕ, ϕS [ - ] phase-field variable and solid phase-field variable

ψ, ψα [ J/kg ] mass-specific Helmholtz free energy of φ and φα

ψ±
0 [ J/kg ] mass-specific tensile/compression energy

Ψ, Ψα [ ·/m3 ] volume-specific densities of scalar mechanical quantities

Ψ̂, Ψ̂α [ ·/m3 ] volume-specific productions of scalar mechanical quantities

Ω, ∂Ω spatial domain and boundary of the aggregate body B

∂Ωu domain boundary of a primary variable

∂Ωu
D Dirichlet boundary with essential boundary conditions for u

∂Ω
(·)
N Neumann boundary with natural boundary conditions

Ωe, Ω
h a finite element and the discretised finite element domain

σ, σα vector-valued supply terms of mechanical quantities

Υ arbitrary field function (steady and steady differentiable)

φ, φα vector-valued efflux terms of mechanical quantities

φη, φ
α
η [ J/Km2 s ] entropy efflux vector of φ and φα

χα, χ
−1
α motion and inverse motion functions of the constituents φα

Ψ, Ψα [ ·/m3 ] volume-specific densities of vectorial mechanical quantities

εS [ - ] linearised contravariant Green-Lagrangean solid strain tensor

ε±S [ - ] linearised solid strain tensor containing only the posi-
tive/negative eigenvalues

µ [ · ] mean value field

σS
EF [ N/m2 ] linear effective solid stress

Σ covariance matrix with coefficients Σij

Ψ̂, Ψ̂α [ ·/m3 ] volume-specific productions of vectorial mechanical quantities

τα [ N/m2 ] Kirchhoff stress tensors of φα

Φ, Φα general tensor-valued mechanical quantities

Latin letters

Symbol Unit Description

a [ m ] half crack length in Section 5.1.2

a, b, c, d fitting parameter for pressure-difference-saturation relation

c [ m ] phase-field regularisation parameter in Section 2.5

ddata,n [ m ] spatial distance of material parameter data to the considered
integration point

dmα [ kg ] local mass element of φα
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dt [ s ] time increment

dv, dvα [ m3 ] current volume element of φ and φα

dVα [ m3 ] reference volume element of φα

êα [ J/m3 s ] volume-specific total energy production of φα

E [ - ],
[ N/m2 ]

number of non-overlapping finite elements Ωe in Chapter 4,
Young’s modulus elsewhere

El [ N/m2 ] Young’s modulus in plain strain cases

F identifier for the pore fluid constituent with φF = φL for fully
saturated case, φF =

⋃

β φ
β for partially saturated case

g [ - ] degradation function

G identifier for the pore gas φG

IS1, IS2, IS3 [ - ] principal invariants of the deformation tensors

Jα [ - ] Jacobian determinant of φα

KIc [ Nm−3/2 ] fracture toughness under mode I

KG integration points for the Gaussian quadrature scheme

Kβ [ m/s ] specific permeability of the fluid constituents φβ

Kβ
r [ m/s ] relative fluid conductivities

KS [ m2 ] isotropic (deformation-dependent) permeability of φS

ℓ [ m ] statistical correlation length

L identifier for the pore liquid φL

nα, nβ [ - ] volume fractions of φα and φβ

nF [ - ] porosity, total fluid volume fraction

nS [ - ] solidity, volume fraction of φS

N [ - ] number of nodal points

Nv [ - ] number of discretisation points

pc [ N/m2 ] critical pore pressure for fracture

pc, pC [ N/m2 ] microscopic and macroscopic capillary pressure

pCdyn. [ N/m2 ] dynamic macroscopic capillary pressure

pD [ N/m2 ] pressure difference between the pore gas and pore liquid

pGR
excess [ N/m2 ] excess gas pressure

pFR, pβR [ N/m2 ] overall pore pressure and fluid pore pressures

pnw, pw [ N/m2 ] microscopic pressure of the non-wetting and wetting fluid

P j nodal point in a finite element Ωe

Qj
dof scalar global basis function of a degree of freedom

r, rα [ J/kg s ] mass-specific external heat supply (radiation) of φ and φα in
Chapter 2

r [ m ] tube’s radius of an idealised pore at the microscale in
Chapter 3
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R [ J/molK ] universal gas constant

RKG
[ m ] influence radius for the weighting of voxel information

sβ [ - ] saturation function of the pore fluids φβ

sβr [ - ] residual saturation of the pore fluids φβ

sLeff. [ - ] effective liquid saturation

S identifier for the solid skeleton constituent φS

t, t0, tn, tn+1 [ s ] current/initial time and temporally discretised time steps

v̄β [ m3/m2 s ] area-specific volume efflux of φβ over the boundary

V , Vα [ m3 ] overall volume of B and partial volume of Bα

wdata,n [ - ] weight for the voxel information at the considered KG

W S [ J/m3 ] volume-specific solid strain energy function

W S± [ J/m3 ] tensile/compression part of the volume-specific solid strain
energy W S

W S+
e [ J/m3 ] effective tensile elastic energy

b, bα [ m/s2 ] mass-specific body force vector

dα [ m/s ] diffusion velocity vector of φα

da [ m2 ] oriented current area element

dAα [ m2 ] oriented reference area element of φα

dx [ m ] current line element

dXα [ m ] reference line element of the constituent φα

ei [ - ] (Cartesian) basis of orthonormal vectors

f , fα [ N ] volume force vector acting on B and Bα from a distance

g [ m/s2 ] constant gravitation vector with |g| = g = 9.81m/s2

h [ kg/m s ] local moment of momentum of the overall aggregate φ

ĥα [ N/m2 ] volume-specific total angular momentum production of φα

kα, kα
c , k

α
v [ N ] total, contact and volume force element of φα

m̂α [ N/m2 ] volume-specific direct angular momentum production of φα

n [ - ] outward-oriented unit surface normal vector

p̂α [ N/m3 ] volume-specific direct momentum production of φα

p̂α
EQ, p̂

α
NEQ [ N/m3 ] volume-specific equilibrium/non-equilibrium direct momen-

tum production of φα

q, qα [ J/m2 s ] heat influx (convection) vector of φ and φα

ŝα [ N/m3 ] volume-specific total momentum production of φα

t, tα [ N/m2 ] surface traction vector of the overall aggregate and φα

t̄, t̄β [ N/m2 ] surface traction vector of the overall aggregate and φβ (bound-
ary condition)

uS [ m ] solid displacement vector

wβ [ m/s ] seepage velocity vector of φβ
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x [ m ] current position vector of φ

Xα [ m ] reference position vector of Pα

ẋ, ẍ [ m/s ],
[m/s2 ]

barycentric velocity and acceleration of the aggregate φ

′
xα = vα,

′′
xα [ m/s ],

[m/s2 ]
velocity and acceleration of the constituent φα

Aα [ - ] contravariant Almansian strain tensor of φα (AC)

Bα [ - ] covariant left Cauchy-Green deformation tensor of φα (AC)

Cα [ - ] contravariant right Cauchy-Green deformation tensor (RC)

Dα [ ·/s ] symmetric deformation velocity tensor of φα

3

E [ - ] Ricci permutation tensor (third-order fundamental tensor)

Eα [ - ] contravariant Green-Lagrangean strain tensor (RC)

Fα [ - ] material deformation gradient of φα

I [ - ] identity tensor (second-order fundamental tensor)

KS [ m2 ] (anisotropic) intrinsic permeability of φS

Lα [ ·/s ] spatial velocity gradient of φα

Pα [ N/m2 ] first Piola-Kirchhoff or nominal stress tensors of φα

Qj
dof vectorial global basis function of a DOF

Sα [ N/m2 ] second Piola-Kirchhoff stress tensors of φα

T, Tα [ N/m2 ] overall and partial Cauchy (true) stress tensor of φ and φα

TS
EF [ N/m2 ] partial Cauchy effective stress tensor of φS

Tα
EQ, T

α
NEQ [ N/m2 ] equilibrium/non-equilibrium part of the partial Cauchy stress

tensor of the constituent φα

Wα [ ·/s ] skew-symmetric spin tensor

Calligraphic letters

Symbol Unit Description

Au ansatz (trial) functions of the primary variables

B, Bα aggregate body and body of the constituent φα

D [ J/m3 s ] dissipative part in the entropy inequality

Gu weak formulation of a governing equation related to a DOF

H [ J/kg ] history variable

H1(Ω) Sobolev space

O origin of a coordinate system

P , Pα material points of φ and φα

P [ N/m2 ] Lagrangean multiplier

R set of response functions
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S, Sα surface of the overall and the constituent body

T u test functions of the primary variables

V ,V1 set and reduced subset of independent process variables

f generalised force vector

F vector containing the global and local system of equations

Gu abstract function vectors containing the weak forms

u , u1 , u2 abstract vectors containing the set of the primary variables

y abstract vector containing all nodal DOF

∆yk
n vector of stage increments at current Newton step k

D generalised damping matrix

J k
n residual tangent (Jacobian matrix) at current Newton step k

K generalised stiffness matrix

Rk
n non-linear functional of residual at current Newton step k

Selected acronyms

Symbol Description

2-d, 3-d two-dimensional, three-dimensional

AC actual (current) configuration

BC boundary condition

COI crack-opening-indicator

DOF degrees of freedom

FEM finite-element method

FS fully saturated

GMRES generalised minimal residual method

IBVP initial-boundary-value problem

LBB Ladyshenskaya-Babuška-Brezzi

LEFM linear elastic fracture mechanics

PANDAS Porous media Adaptive Nonlinear finite element solver based
on Differential Algebraic Systems

PFM phase-field method

PS partially saturated

RAM random access memory

RC referential configuration

REV representative elementary volume

TM Theory of Mixtures

TPM Theory of Porous Media





Chapter 1:
Introduction and Overview

1.1 Motivation

Hydraulically induced fractures are frequently used in saturated and unsaturated porous
media for several exploitation techniques in the energy sector, even though the control
of this technique is still widely based on empirical methods. The main idea is to create,
widen and stabilise fractures in the deep subsurface to enhance the rock’s permeability.
In particular, for electricity generation in enhanced geothermal energy plants, naturally
occurring cracks of the rock are widened by the injection of highly pressurised cold water
to augment the rock’s permeability and, thus, increase the flow rate of heated water at the
output, see, e. g., Olasolo et al. [204]. Furthermore, in hydrocarbon exploitation, artificial
fissures and cracks are created by fluid injections to enhance the availability of oil and gas
in subterranean natural reservoirs. Therein, additives like propping agents and chemicals
are mixed with high-pressurised water to maintain the fracture open. The development
of this technology, also called “fracking”, is outlined, e. g., in the book of Smith & Mont-
gomery [224]. Besides these, hydraulically induced fractures are also applied to stimulate
deep aquifers for water extraction and for the measurements of in-situ stresses, see, Banks
et al. [17]. Moreover, fluid-driven fractures increase the rock’s permeability for waste dis-
posal. Mainly, hydraulically induced fractures enhance the effectiveness of remediating
volatile waste contaminants deep into rock. This process is particularly advantageous in
the case of soil vapour extraction. The interested reader is referred, e. g., to the work of
Frank & Barkley [110]. The permeability’s increase due to hydraulic fracturing is also
used for carbon reservoir injection and storage processes, compare Fu et al. [112] and
Huerta et al. [145]. Thus, there is a broad application of hydraulically driven cracks in
soil and rock.

Nevertheless, the potential environmental effects are disputed issues. Especially in the
context of hydrocarbon exploitation, the risk of water contamination is highly discussed,
compare, among others, Myers [201], Jackson et al. [150], Vidic et al. [242], Engelder
et al. [103] and Birdsell et al. [34]. Moreover, the stresses released during the fracturing
processes cause micro-seisms, see Howarth et al. [144], Kerr [157], Ellsworth [101] and
Olasolo et al. [204], to name a few. In addition, hydraulic fracturing activity implies
health risks, compare, for example, Finkel & Hays [107], Wright & Muma [252] and
Bamber et al. [16].

A systematic theoretical understanding of fluid-driven fractures in porous media is crucial
to enlarge the knowledge of the occurring processes and to prevent severe geological con-
sequences. Though, a fundamental difficulty is that the direct observation of propagating
fractures enveloped in the underground is complex, and only a few data are accessible,
namely monitoring the pressure variation at the injection pump and recording the acoustic
emissions at the soil surface, cf. Secchi & Schrefler [222]. Besides this, scattered subsurface

1
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samples can be analysed; however, these are small and inconclusive regarding the large
scale of geological applications.

For this reason, modelling and simulation techniques provide a good option for gaining
insight into the fracturing process and preventing severe consequences. In this context,
many contributions already consider hydraulically induced fractures in fully saturated
porous materials, where a single pore fluid percolates the pore space. Nonetheless, some
hydraulic fracturing techniques are also used in a partially saturated porous material,
see, for example, the work of Bruner & Smosna [59] and Engelder [102] for the shale-
gas extraction and the work of Frank & Barkley [110] for the waste remediation in the
vadose zone. This thesis aims to model and discuss fracturing porous solids with arbitrary
pore content to understand better the importance of triphasic modelling under dynamic
conditions, where a liquid and gaseous fluid fill the pore space of the deformable solid
skeleton.

1.2 Scope, Aims and State of the Art

Hydraulic fracturing describes a process of fracture initiation and propagation driven by
pressing fracking fluids into the pore space of porous media, such as soil or rock. In the past
decades, several numerical models on the continuum and the meso- and micro-scales have
been developed to describe fluid-driven fracture propagation scenarios. An overview and
discussion of the different approaches can be found, for example, in Lecampion et al. [168].
Modelling a hydraulic fracturing process, even in its simplest form, is challenging. The
main difficulty relies on the fact that two complex issues have to be treated simultaneously.
On the one hand, the strongly coupled behaviour of the deformable porous material
with arbitrary pore content has to be characterised adequately. On the other hand, the
fracturing process of the solid skeleton and its impact on the fluid flow have to be modelled.
Following this, the development of numerical techniques for hydraulic fracturing scenarios
is driven by advances in both issues, porous-media modelling and fracture mechanics.
This thesis restricts to continuum mechanics, refer, e. g., to the work of Gurtin [123],
Haupt [131, 132], Malvern [181] and Chadwick [63]. In contrast, fracture models based on
multiscale models, cf., e. g., Belytschko et al. [24], Nguyen et al. [203], molecular dynamics,
cf., e. g., Holian & Ravelo [141], Rountree et al. [212], and lattice models, cf., e. g., Pan
et al. [207], Schlangen & Van Mier [218], to name a few, are left out. The interested reader
of these approaches is referred to the citations above and references therein.

Porous media modelling

First, it is necessary to model the mechanical behaviour, particularly the deformation, of
the underlying porous material and the interaction between the multiple components of
the medium. Thereby, it is worth mentioning that the porous medium consists of a solid
skeleton containing an interconnected pore space filled with arbitrary fluids in which they
can flow. The inner pore structure is usually unknown when dealing with geomaterials
such as soil or rock. Thus, resolving the inner geometry and describing these materials
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with the standard singlephasic continuum mechanics is not possible. It is, therefore, con-
venient in most applications to proceed with a homogenisation technique and model the
material as a multiphasic aggregate on the macroscale. There are two main approaches
to describe this multi-component and multiphasic nature of solid-fluid interactions in
porous media on the macroscale. On the one hand, based on the consolidation study of
Biot [31–33], a poroelasticity theory has been established, compare, for example, Coussy
[67], Detournay & Cheng [72] and Steeb & Renner [231]. On the other hand, the contin-
uum Theory of Mixtures (TM) was established on the work of Truesdell [237, 238, 239],
Truesdell & Toupin [241] and Bowen [51]. The first advances in the TM are outlined in
Bedford & Drumheller [22], while an extensive overview of the TM can be found, e. g., in
the work of Hassanizadeh & Gray [127, 128] and Helmig [138]. Moreover, Katsube & Car-
roll [155] and Coussy et al. [68] provide a comparison between Biot’s theory and the TM.
Furthermore, for the description of miscible components, i. e. dissolved ions, the Hybrid
Theory of Mixture, cf., e. g., Bennethum & Cushman [25, 26], arising from the TM, is
advantageous. Besides this, Bowen enhanced the TM with the concept of volume fractions
(stating back to Woltman [251] and Delesse [71]) to capture the microscopic information
of the inner composition of the system for immiscible and incompressible constituents in
[52] and extended his considerations for more general compressible cases in [53]. On this
basis, the Theory of Porous Media (TPM) was developed, compare, particularly, the work
of de Boer [38, 39], de Boer & Ehlers [40, 42, 43] and Ehlers [84, 85, 86]. The interested
reader is referred to de Boer [38], de Boer & Ehlers [41] and Ehlers [87] for a historical
review of this theory. The TPM is a robust and rigorous framework for the macroscopic
modelling of flow and transport processes within multi-component and multiphasic ma-
terial in various fields, i. e. in geomechanics, cf., e. g., Ehlers [85], Graf [119], Häberle
[124], engineering applications, cf., e. g., Leichsenring et al. [169], Specht et al. [229], and
biomechanics, cf., e. g., Karajan [153], Wagner [243], Ehlers et al. [97], to name a few.
Moreover, the classical hydromechanical relations (like Darcy [70], Forchheimer [108] and
Brinkman [56] relations) are recovered in the consistent continuum mechanical and ther-
modynamical framework of the TPM, see Ehlers [88], even though these relations were
mainly discovered on field and laboratory experiments. Finally, for this monograph, the
TPM is regarded as suitable for successfully modelling the coupled nature of the hydraulic
fracturing problem. It will not only fulfil the first continuum-mechanical principles but
also satisfy thermodynamical restrictions by meeting the requirements of the second law
of thermodynamics.

Fracture mechanics

The field of brittle fracture mechanics inevitably leads to the pioneering work of Griffith
[120, 121]. Based on a global energy approach, Griffith stated that the crack propagates
when the energy required for crack propagation equals the available stored elastic energy.
An alternative method examines the stress state around the crack tip with Inglis [147]
analytical solution of the stress concentration at the crack tip. Irwin [148, 149] extended
the concept toward the stress intensity factors. These latter depend not only on the
applied load but also on the problem’s geometry. Moreover, Irwin [148] classified macro-
scopic fracture scenarios into three modes. Besides this, Dugdale [78] and Barenblatt [18]
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introduced a cohesive zone model, where cohesive traction stresses oppose the separation
of the material bonds. The abovementioned three fracture theories are equivalent and
can be linked. However, none of them is sufficient on its own to address the complete
fracture behaviour, including initiation, propagation and crack direction. A comparison of
additional fracture criteria can be found, for example, in the work of Bouchard et al. [48].
Moreover, all three theories treat the fracture as a local geometric (sharp) discontinuity.
Considering mesh-based numerical methods, like the Finite-Element Method (FEM), such
discrete approaches can lead to numerical problems, requiring explicit (cf., e. g., Bouchard
et al. [48], Ortiz & Pandolfi [206], Xu & Needleman [256]) or implicit (cf. eXtended Finite-
Element Method, e. g., in Belytschko & Black [23], Moës et al. [197]) re-meshing of the
discontinuity. These issues motivate the development of continuous fracture approaches,
where the displacement field remains continuous in the whole system while the stiffness
and stresses degrade gradually.

Phase-field method to fracture for brittle solids

One important method that has gained more and more attention in recent years in this
context is the phase-field method (PFM) to fracture which will be considered in this mono-
graph. Francfort & Marigo [109] proposed a variational formulation for brittle fracture
based on Griffith energy criterium (cf. Griffith [120]). To make it applicable to numerical
treatment, Bourdin et al. [50] regularised the variational formulation following the regu-
larisation idea of Ambrosio & Tortorelli [10] in image segmentation, cf. Mumford & Shah
[199]. Almost at the same time, a conceptually similar approach based on the Ginzburg-
Landau theory is introduced by Karma et al. [154] and Hakim & Karma [125]. All the
same, a scalar order parameter or phase-field variable is introduced to distinguish between
the intact and broken state of the material and regularises the sharp crack discontinuity
by a diffuse transition zone. Similar considerations can be found in damage models, also
compare de Borst & Verhoosel [47]. Since the phase-field approach to fracture provides
a continuous crack representation, it avoids the complexities associated with meshing
and re-meshing, which is a major advantage compared to discontinuous models. It can
simulate complex crack patterns including branching in two and three dimensions. Fur-
thermore, the phase-field approach is self-contained and naturally captures the initiation
and propagation of cracks within the energetic formulation through a degradation function
without additional ad-hoc criteria. Specifically, the crack evolution results implicitly from
the coupled system of equations. In this context, different approaches were developed for
the degradation function. Starting from a quadratic polynomial, cf. Bourdin et al. [50],
more complex polynomial functions were proposed in the literature, compare, for exam-
ple, the work of Kuhn et al. [166]. Moreover, the first energy density formulations were
isotropic1, inducing fracture in tension and compression, compare, among others, Bour-
din et al. [50] and Kuhn & Müller [164]. To overcome this unrealistic material behaviour,
anisotropic models of the stored energy function are introduced to prevent from cracking

1Note that in the literature of the PFM to fracture, the terms isotropic and anisotropic fracture
behaviour refer to an energy split and are unrelated to directional mechanical properties from continuum
mechanics. As far as the author is aware, this terminology was first introduced by Miehe et al. [193] and
further used in the community, refer, e. g., to the work of Ambati et al. [8] and Wu et al. [253].
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in compression. To name a few, Amor et al. [12] proposed decomposing the free energy
into volumetric and deviatoric contributions. A similar model but for shear fractures was
suggested by Lancioni & Royer-Carfagni [167]. Miehe et al. [190, 193] split the elastic
energy based on the spectral decomposition of the strain tensor. Moreover, Miehe et al.
introduced a history field of the maximum tension-induced strain energy to ensure the
irreversibility of the crack evolution. Besides these, Steinke & Kaliske [232] presented a
directional split of the energy density based on the decomposition of the stress tensor with
respect to the crack orientation. Ambati et al. [8] proposed a hybrid formulation within
a staggered approach, combining the advantage of computational costs of an isotropic
model with the realistic crack evolution comparable to an anisotropic model. In this case,
different energy functions are considered for the phase-field evolution and the solid stress
field. Another approach to converge faster and reduce computational cost is a higher-
order model formulation, as proposed, for example, by Borden et al. [45]. Therein, the
surface energy comprises higher-order derivatives of the phase-field variable. Note that
the abovementioned models deal with brittle solids. The interested reader for PFM to
ductile fracture is referred, e. g., to the work of Borden et al. [44], Miehe et al. [189], Am-
bati & De Lorenzis [6], Ambati et al. [7, 9] and Alessi et al. [3], and citations therein. In
subsequent studies, the latter research group extended their investigation into additional
aspects of phase-field modelling to fracture. They addressed topics such as predicting
fracture initiation in shell structures through isogeometric analysis in Kiendl et al. [158]
and simulating fatigue behaviour in Alessi et al. [4] and Carrara et al. [62]. Finally, an
extended discussion together with an overview of various applications of the phase-field
method to fracture can be found in the contribution of Ambati et al. [8] for brittle fracture
and Wu et al. [253] for a more global approach. In addition, a recent review article com-
paring the phase-field model to fracture with peridynamics has been published by Diehl
et al. [76], while a short review of variational fracture has been presented by Bourdin &
Francfort [49].

PFM to fracture for fully saturated porous media

In the framework of porous-media mechanics, Mikelić et al. [194] were among the first
researchers to apply the phase-field approach to fracture to solve fracking problems in
fluid-saturated porous media. In their article, use is made of a quasi-static Biot-type
u-p (displacement-pressure) formulation accompanied by a sequential coupling algorithm,
where the phase-field problem is firstly solved individually, followed by a computation of
the porous-media problem with the result of the phase-field variable computed before.
In an additional article, Mikelić et al. [195] investigated the coupling of the solid dis-
placement, the phase field and the pore pressure, thus providing a rigorous mathematical
justification in the sense of an existence proof of such models and extensions from there.
They furthermore proceeded from the exploitation of free energies. Besides, Miehe et al.
[192] and Miehe & Mauthe [191] applied their phase-field model (cf. [190, 193]) based on
minimisation principles to porous media with a Darcy-Biot-type fluid transport for finite
strain. In Mauthe & Miehe [188] they extended their development to a geometrically
linear framework. Wu & De Lorenzis [254] also combined Biot-theory with the phase-field
approach in porous media, focusing on diffusion. They coupled the PFM to diffusion
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and studied the diffusivity changes due to crack patterns. Apart from that, Wilson &
Landis [249] proceeded from a variational approach describing a linear poroelastic Biot-
type model combined with the phase-field approach to fracture and a Stokes-type flow
in the fracture regime. Further studies are made by Chukwudozie et al. [64], who used
a variational phase-field fracture model and combined this with a modified fixed-stress
splitting scheme for decoupling and iteratively solving the flow and mechanical models.
Santillán et al. [215] combined a poroelastic fracturing solid with the fluid-flow problem
in fractures based on the Reynolds lubrication equation, while Bilgen & Weinberg [30]
used the phase-field approach for the description of pneumatic fracture with anisotropic
crack resistance in plaque-covered arteries.

Based on the Theory of Porous Media (TPM), fully saturated problems under the assump-
tion of quasi-static situations have been studied by Markert & Heider [186] and Heider &
Markert [135], where the standard u-p formulation has been extended towards the inclu-
sion of the phase-field variable ϕS yielding a u-p-ϕS formulation. As in Mikelić et al. [194],
the porous-media problem has been computed monolithically, while a staggered procedure
has added the phase-field problem. In addition, Heider & Markert [135] considered local
physical changes of the porous material dependent on the phase field, such as the porosity
and permeability. Concerning the modelling approach, the abovementioned contributions
used materially incompressible solid and liquid constituents. Furthermore, Heider et al.
[136] added gas bubbles to the pore liquid such that the overall pore fluid becomes com-
pressible. In their contribution, they also compared qualitatively and quantitatively the
phase-field porous media model with experimental data. Also, Pise et al. [209] proposed
a quasi-static TPM model with embedded phase-field fracture for an elastoplastic porous
material, where the elastic and the plastic energy is coupled to the phase field. Regarding
a dynamic setting, Ehlers & Luo [93, 94] presented a fully dynamic model of hydraulic
fracturing homogeneous, fully saturated porous media within the TPM. Therein, a mono-
lithic scheme that derives all solutions simultaneously was applied. Moreover, Pillai et al.
[208] introduced a dynamic phase-field fracture model for heterogeneous saturated mate-
rial based on a macroscopic statistical distribution of material properties.

A challenge in modelling hydraulic fracturing in porous media concerns the fluid flow
within the fracture. Even if the fracturing process only occurs in the solid skeleton, it
significantly influences the flow behaviour of the fluids in the pore space. While the fluids
follow Darcy’s law in the intact bulk volume, the fluid velocity is higher in the broken
domains. An overview of modelling and discretisation methods for flow in fractured
porous media can be found, e. g., in the work of Berre et al. [28]. One approach to model
this particular behaviour is following the Poiseuille law for laminar flow within the crack
and interpolating to Darcy’s flow in the surrounding porous medium. Witherspoon et al.
[250] showed experimentally the validity of the cubic law for open and closed fractures.
In this context, Schrefler et al. [221] proposed a permeability dependent on the crack’s
aperture for the broken domains, yielding a Poiseuille-type flow within the crack based
on a cohesive model. This approach has also been applied to a phase-field fracture,
see, e. g., Miehe et al. [192], Wilson & Landis [249] and Heider & Markert [135]. A
different approach treats the damaged and intact areas separately as two subdomains
with distinct flow behaviour and couples these through adequate interface conditions,
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compare, for example, Mikelić et al. [196], Santillán et al. [214] and Yoshioka et al. [258].
Therein, special attention has to be paid to the formulation of the crack width. Besides
these, Ehlers & Luo [93] showed in a recent article on dynamic hydraulic fracturing in
saturated porous media that considering dynamical momentum balances of solid and pore
fluid not only provides the possibility to tackle dynamical fracturing problems but also
opens the chance to switch between a Darcy-flow regime in the porous medium and a
Navier-Stokes regime in fully broken zones. In a follow-up publication, Ehlers & Luo [94]
introduced the crack-opening indicator (COI). By means of the COI, one can distinguish
between open and closed fractures, such that not only freshly broken areas where fracking
fluid is pressed in can be described. Instead, pre-existing fractures of the soil or rock
body can also be tackled, whether or not they are open or closed or if they are opening
through the actual fracking. In this context, simplifications of the problem towards the
assumption that the velocities of solid and fluids are approximately the same, as sometimes
assumed in wave-propagation scenarios, do not meet the requirements of fully dynamical
systems. Quasi-static systems proceeding from the assumption that acceleration terms
can be neglected, such that the fluid velocities can be substituted by seepage velocities
that pressure gradients can furthermore express, do not only contradict the requirements
of fully dynamical problems but yield further implications by dropping out the liquid
and gas velocities as primary variables. Dropping out these terms hinders computing the
fluid deformation velocities, such that a description of the transition between Darcy and
Navier-Stokes flow of the pore liquid in porous and broken domains would not be possible.

PFM to fracture for partially saturated porous media

Apart from fully saturated media, the PFM has also been applied to quasi-static, variably
saturated and unsaturated porous media, compare, for example, Cajuhi et al. [61], Heider
& Sun [137] and Luo et al. [179]. These articles proceed from a staggered solution of the
porous media and the phase-field problem and consider also drying-induced fracturing.
In the category of partially saturated problems, the pore content can be split into liquid
and gaseous portions, or both, liquid and pore gas, can be treated together as a liquid-gas
mixture, including diffusion processes. In this context, Cajuhi et al. and Luo et al. used
the standard Biot formulation with a so-called passive air-phase assumption, where the
pressure of the pore gas is assumed to continuously stick to the atmospheric pressure. As
a result, the computation of the porous-media problem can be restricted to the overall
momentum balance and the fluid mass balance compared to the standard u-p formulation.
In contrast, Heider & Sun considered barotropic fluids and used the TPM of partially
saturated porous media for hydraulic fracturing. They restricted their computation to
a staggered procedure, where the porous-media problem and the (drying or hydraulic)
fracturing description are solved separately and then united by the staggered procedure.

In this regard, this thesis applies the PFM for dynamic hydraulic fracturing to partially
saturated porous media, where the interconnected pore space can be filled at the same
time with both a liquid, such as water or oil, and a gas, such as air or natural gas, and this
without the assumption of a passive or a static gas phase or a liquid-gas mixture. This
approach increases the complexity of the model made from a porous solid, a pore liquid
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and a pore gas. As a result, one obtains a ternary model with three different constituents
exhibiting simultaneously three different phases, namely a brittle elastic solid, a viscous
liquid and an ideal gas. The solid and the liquid are treated as intrinsically incompressible
constituents while the gas phase is assumed to be compressible.

An essential difficulty of modelling fracking scenarios in partially saturated media lies in
the circumstance that the interaction of the fluids in the pore space needs to be consti-
tutively described. In equilibrium state, where the fluids in the pore space react to the
capillary effect, a capillary-pressure law of either Brooks-Corey [57] or van Genuchten type
[115] can be used. However, hydraulic fracturing is a highly dynamic process, and the
abovementioned standard hydromechanical relations are no longer valid near the crack.
On this account, a modified pressure-difference-saturation relation, relating the pressure
difference to the liquid saturation, is developed in Sonntag et al. [226] and took up in this
thesis to encompass both equilibrium and dynamic fluid interactions.

Heterogeneities

Moreover, natural porous materials are generally heterogeneous, with material imperfec-
tions on the microscale. Therefore, modelling homogeneous porous material may oversim-
plify the behaviour of the fracturing process. Considering purely brittle solids, Nguyen
et al. [202] studied the PFM crack initiation and propagation in heterogeneous cemen-
titious materials. They defined the heterogeneities based on direct imaging of their mi-
crostructure. Späth et al. [227] presented a heterogeneous multi-phase-field model, com-
posed of brittle solid and ductile porous material, also under purely mechanical loading
conditions. Furthermore, Gerasimov et al. [117] applied stochastic phase-field modelling,
resulting in all possible fracture solutions and the probabilities of their occurrence. Re-
garding porous materials, Pillai et al. [208] addressed the PFM to fully saturated het-
erogeneous material within the TPM. They considered a variation of Young’s modulus
based on a Weibull distribution. This thesis considers heterogeneities in the partially
saturated porous media TPM model. The material imperfections and inhomogeneities
in the porous structure are included by defining location-dependent material parameters,
following a deterministic ansatz. Thereby, predefined imperfection areas and statistical
fields of geomechanical properties are assessed.

Numerical procedure

Regarding the numerical treatment, partial differential equations can be solved using
monolithic or staggered schemes. A comparison of the pros and cons of monolithic and
staggered computations of saturated porous media can be found in Markert et al. [187].
Gerasimov & De Lorenzis [116], on the other hand, focused on non-porous phase-field
fracture problems and employed a line-search approach to evaluate their findings in com-
parison to staggered computations. For more details regarding monolithic solutions, the
articles authored by Wick [248] and Kopaničáková et al. [162] provide additional informa-
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tion. Here, the finite-element solver PANDAS2 solves the coupled problem monolithically.
This research code has been started at the TU Darmstadt and is actively developed and
maintained at the Institute of Applied Mechanics (CE), Chair of Continuum Mechan-
ics, at the University of Stuttgart, see also Ehlers & Ellsiepen [90], Ellsiepen [100] and
Ammann [11].

To conclude, this thesis aims to develop a partially saturated porous model within the
Theory of Porous Media with an embedded phase-field approach to fracture for dynamic
hydraulic fracturing. The model focuses on the fluid interaction within the intact and
fractured porous medium. Moreover, the model is extended towards more realistic sce-
narios considering local and global heterogeneities. The methodical and basis-oriented
model can be employed in diverse applications and enlarged for further studies.

1.3 Outline of the Thesis

This monograph is divided into six main chapters. The current Chapter 1 introduces
the dissertation’s topic and motivates the model.

Chapter 2 provides the necessary theoretical fundamentals for understanding the devel-
oped model in the following chapters. First, it reviews the basic continuum-mechanical
principles of the Theory of Porous Media. Thereby, the modelling approach of the TPM,
as well as the relevant kinematics and general balance equations, are presented. Later, the
multiphasic model will be enhanced with a phase field to describe fracturing processes.
Therefore, Chapter 2 concludes with an overview of the phase-field approach to fracture.

After introducing in Chapter 2 both the TPM and the phase field method in general, the
specific triphasic model composed of an incompressible solid and liquid, a compressible
gas phase and an embedded phase field to fracture is discussed inChapter 3. The specific
balance equations and the entropy inequality are adapted and evaluated for the model
under study. This thermodynamically consistent formulation provides the framework for
the subsequent developed constitutive relations for the solid and fluids, whereby the focus
lies on the latter one, particularly on the interaction of the liquid and gas in the pore
space. The chapter finalises the theoretical aspect of the dissertation by providing the
closure problem of the specific triphasic model and a reduction to a biphasic model to
also consider fully saturated porous media with an embedded phase field for the later
numerical study.

Chapter 4 deals with the numerical treatment of the presented triphasic TPM model
with embedded phase field within the framework of the finite-element method. In this
context, Chapter 4 presents the weak forms of the balance equations and points out the
space and time discretisation of the model. Problem-specific requirements for the phase
field, particularly the fracture’s irreversibility condition and the definition of initial cracks,
are specified at the end of the chapter.

Chapter 5 applies the theoretical and numerical developments to several numerical ex-

2Porous media Adaptive Nonlinear finite element solver based on Differential Algebraic Systems,
http://www.get-pandas.com
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amples. Firstly, the model consistency concerning capillarity and fracture behaviour is
reflected. Then, proceeding from a single crack in a quasi-two-dimensional and three-
dimensional setting, the solid skeleton’s fracturing behaviour and the fluids’ mutual in-
teraction during the fracturing process are considered in detail. As the fracture evolution
reacts to pressures and forces exerted on the solid by the interacting pore fluids, a com-
parison of fully saturated and partially saturated simulations reveals that the existence
of pore gas mainly slows down the fracking process resulting from a slower buildup of
the pore pressure. In a second group of examples, two initial cracks, horizontal and
vertical, are applied to the specimen, accompanied by different ratios of horizontal to
vertical displacements to study open and closed cracks. Finally, a numerical model with
material heterogeneities is treated to enhance the model’s applicability. A deterministic
approach is proposed to account for predefined imperfection areas and statistical fields of
geomechanical properties.

A final summary of the thesis and an outlook on possible improvements of the presented
model are given in Chapter 6.

To conclude, an appendix provides additional information for better comprehensibility
of the thesis. Namely, Appendix A compiles the required mathematical aspects of the
tensor calculus, Appendix B some mechanical supplements and Appendix C numerical
complements.
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Chapter 2:
Theoretical Fundamentals

This chapter encompasses the theoretical fundamentals necessary for the presented con-
tinuum-mechanical problem with application to hydraulic fracturing of partially saturated
porous media. Thereby, special attention is given to the macroscopic consideration of the
porous material within the Theory of Porous Media (TPM), including its kinematics and
stress description. Then, the master balances are outlined as a key element of the TPM.
Finally, the phase-field approach for brittle solid fracture is introduced to describe the
fracturing process.

2.1 Macroscopic modelling approach

Porous materials show a complex, multiphasic character. They usually consist of a porous
solid skeleton saturated by one or more pore fluids, whereby the solid’s internal pore struc-
ture is often unknown in geoscience and engineering applications. However, this infor-
mation is required if the material is described with the standard singlephasic continuum
mechanics of solids and fluids on the microscale. It is, therefore, convenient to proceed
with a homogenisation technique and model the material as a multiphasic aggregate on
the macroscale. A continuum-mechanical framework which enables such a consideration
is the Theory of Porous Media. A comparison of the macroscopic view of the porous
medium by the TPM with the classical continuum mechanics approaches of single-phase
materials can be found in Ehlers [84, 86]. This monograph concentrates on a TPM model
for fracturing porous media as they occur in geomaterials, such as soil or rock. Please
refer to Wagner [244] and citations therein for applications considering biomaterials, plant
tissues or chemical components.

Proceeding from a virtual statistical homogenisation over a representative elementary vol-
ume (REV), the microscopical structure of the porous material is smeared out, leading
to a macroscopic model of superimposed and interacting continua. Thereby, the TPM
provides that all constituents simultaneously occupy the complete domain, which ensures
a continuous description of the material, compare Figure 2.1. Note that for proper ho-
mogenisation, the REV has to be sufficiently large to allow a statistical average, on the one
hand, and, on the other hand, small enough to allow a resolution of the local information
of the system.

The porous material is regarded as an immiscible mixture φ of interacting constituents
φα, where the index α stands for the individual constituent. In this monograph, either a
single liquid fluid φF = φL saturates the solid skeleton φS, or a liquid and a gaseous fluid,
φF = φL ∪ φG, percolate the interconnected pore space for the additional consideration

13
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of partially saturated porous material, i. e.:

φ =
⋃

α

φα = φS∪φF with

{

fully saturated: φF = φL,

partially saturated: φF =
⋃

β φ
β, β = {L, G} .

(2.1)

Note that the index F stands for the pore fluid and can take the following values in this
monograph: L when considering a fully saturated porous media and {L ∪ G} when a
partially saturated porous media is regarded. In other applications, the fluid might also
be composed of a fluid mixture or an immiscible combination of a fluid mixture and a
gas, compare, e. g., Bowen [52, 53], Wagner [243] and Heider et al. [136].

Figure 2.1 sketches the macroscopic, multiphasic modelling approach in this monograph.

Figure 2.1: Macroscopic modelling approach over an idealised representative elementary vol-
ume (REV).

As mentioned in the introduction, the TPM enhances the Theory of Mixtures with the
concept of volume fractions, taking the local composition of the aggregate into account
with a statistically averaged scalar variable nα. Thereby, the ratio of the partial volume
element dvα to the total volume element dv defines the volume fraction of the respective
component φα:

nα :=
dvα

dv
. (2.2)

It is assumed that the overall aggregate contains no vacant space. Consequently, the
saturation condition ∑

α

nα = nS + nF = nS + nL + nG = 1 (2.3)

has to be fulfilled at any point in the system. In order to avoid confusion, it should be
mentioned that in this monograph, the expression “partially saturated” does not refer to
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vacant space but rather to the fact that the solid skeleton is percolated by at least two
fluid phases, namely a liquid and a gaseous phase. Since these fluid phases are immiscible
and, therefore, occupy different pore volumes, it is convenient to introduce a saturation
variable

sβ :=
dvβ

dvF
with β = {L,G}, (2.4)

which accounts for the portion of occupied volume of the fluid phase φβ, viz. dvβ, with
respect to the total pore volume dvF , compare Figure 2.1. Obviously, the liquid saturation
equals one in the case of a fully saturated porous material. In analogy to (2.3), also the
saturations add up to one, i. e.

∑

β

sβ = 1. (2.5)

Note that the saturation condition (2.5) concerns the pore space, while the relation (2.3)
refers to the overall volume. As a result of (2.2) and (2.4), the specific pore-fluid volume
fraction of the constituent φβ can be rewritten to

nβ = sβnF . (2.6)

Proceeding from the concept of volume fractions, two densities are associated with each
constituent, namely

ραR :=
dmα

dvα
and ρα :=

dmα

dv
. (2.7)

With this, the material (realistic or effective) density ραR relates the local mass element
dmα to the volume element of the respective constituent dvα. In contrast, the partial
density ρα relates the local mass element dmα to the bulk volume element dv. Both
densities are linked to each other by the volume fraction, i. e.

ρα = nα ραR. (2.8)

Thus, material incompressibility, i. e. ραR ≡ const., does not lead to macroscopic incom-
pressibility of the constituent defined by ρα ≡ const., since this latter one may still change
with a variation of the volume fraction nα. Here, for the fully saturated model, the solid
and fluid are assumed to be materially incompressible, with ραR = const. Apart from that,
for the partially saturated model, the solid and liquid phases are considered materially
incompressible with ρSR = const. and ρLR = const., while the gas phase is compressible
in the sense of an ideal gas. Finally, the density of the overall aggregate results in

ρ =
∑

α

ρα. (2.9)

2.2 Kinematics

The kinematic relations of multiphasic material are based on the continuum mechanics of
singlephasic material. An overview of these latter is given, among others, in Altenbach
[5], Ehlers [82], Haupt [132] and Holzapfel [142]. In this section, the focus will be on
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the motion functions of the constituents in the considered aggregate and the essential
deformation and strain measures necessary for the following model approach. A detailed
description of the kinematic relations in multiphasic material can be found, e. g., in Ehlers
[84, 86].

2.2.1 Motion functions

The spatial manifold of material points P defines the overall aggregate body B. The set of
material points on the boundary demarcates the body’s surface S, on which the boundary
conditions will be applied in the later numerical investigation. The idea of superimposed
continua in the framework of the TPM implies that each spatial point is simultaneously
and only occupied by one single material point Pα of each constituent φα at time t > t0,
see Figure 2.2, right.

Figure 2.2: Kinematics of a triphasic material with a solid constituent φS , a gaseous pore fluid
φG and a liquid pore fluid φL.

Nevertheless, each constituent may come from an individual reference position Xα. In
that sense, the TPM provides each constituent with an individual Lagrangean motion
function χα(Xα, t), which relates the material point in its initial configuration at time
t = t0 to a spatial point in the current configuration (t > t0), viz.:

x = χα(Xα, t). (2.10)

Each constituent’s corresponding velocity and acceleration fields are given as

′
xα =

∂χα(Xα, t)

∂t
=

′
xα(Xα, t) and

′′
xα =

∂2χα(Xα, t)

∂t2
=

′′
xα(Xα, t) (2.11)

in a Lagrangean (material) representation. Considering an Eulerian (spatial) represen-
tation, where the quantities are expressed with regard to the current configuration, the
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requirement of a unique motion function becomes relevant through

Xα = χ−1
α (x, t) with Jα := det

∂χα

∂Xα

̸= 0, (2.12)

which yields the condition of a non-singular Jacobian determinant Jα. Following this, the
velocity and acceleration fields are given in an Eulerian (spatial) representation with

′
xα =

′
xα(χ

−1
α (x, t), t) =

′
xα(x, t) = vα(x, t) ,

′′
xα =

′′
xα(χ

−1
α (x, t), t) =

′′
xα(x, t).

(2.13)

Note that the spatial argument x depends implicitly on the time t in an Eulerian setting,
cf. (2.10). Thus, when considering the total time derivative in (2.13), one has to take into
account the local temporal changes at a fixed position and, additionally, the non-local
(convective) temporal change resulting from the inner derivation of x(t). In that context,
the total time derivative with respect to the constituent φα results for an arbitrary but
continuous and sufficiently often continuous differentiable field function (scalar-valued
Υ(x, t) or vector-valued Υ(x, t)) in

(Υ)′α =
dα

dt
Υ(x(t), t) =

∂Υ

∂t
+
∂Υ

∂x
·
(∂x

∂t

)

α
=

∂Υ

∂t
+ gradΥ ·

′
xα ,

(Υ)′α =
dα

dt
Υ(x(t), t) =

∂Υ

∂t
+
∂Υ

∂x

(∂x

∂t

)

α
=

∂Υ

∂t
+ (gradΥ)

′
xα .

(2.14)

Hereby, grad(·) denotes the spatial gradient operator in the current configuration with
grad(·) := ∂(·)/∂x.

Remark: Since the position vector x describes the location of material points of all
constituents in the current configuration at time t, it is not necessary to specify the
relative constituent when dealing with the spatial gradient grad(·). However, this is
different when considering the material gradient Gradα(·) := ∂(·)/∂Xα. This latter is
related to the reference configuration through Xα, making it essential to specify the
referred constituent through the subscript α. This clarification is particularly relevant
regarding the deformation and strain measures, cf. Subsection 2.2.2. 2

In addition, the local velocity ẋ of the centre of gravity of all constituents, also known as
barycentric velocity, is given by

ẋ :=
1

ρ

∑

α

ρα
′
xα . (2.15)

In this regard, the total time derivative with respect to the overall aggregate yields for
the scalar-valued field function Υ(x, t) and the vector-valued field function Υ(x, t):

Υ̇ =
dΥ

dt
=
∂Υ

∂t
+ gradΥ · ẋ and Υ̇ =

dΥ

dt
=
∂Υ

∂t
+ (gradΥ) ẋ . (2.16)

For the later numerical study, it is furthermore convenient to use the displacement function
uS and the spatial velocity vS to describe the motion of the solid skeleton via

uS = x−XS and vS = (uS)
′
S =

′
xS . (2.17)
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Moreover, it is suitable to consider the temporal changes of all constituents with respect
to the skeleton motion. Therefore, following (2.14), the total material time derivative
with respect to the fluid phases φβ, with β = {L,G}, of a scalar-valued or vector-valued
field function, Υ(x, t) and Υ(x, t), respectively, can be reformulated with respect to the
skeleton motion to

(Υ)′β = (Υ)′S + gradΥ ·wβ ,

(Υ)′β = (Υ)′S + (gradΥ)wβ .
(2.18)

Therein, the seepage velocities of the fluid phases are defined trough

wβ(x, t) =
′
xβ(x, t)−

′
xS(x, t) = vβ(x, t)− vS(x, t) . (2.19)

Finally, the diffusion velocity of mixture theories of a constituent φα is given by its relative
velocity to the barycentric velocity of the aggregate

dα :=
′
xα − ẋ . (2.20)

Considering the definition of the barycentric velocity (2.15), it can be concluded that the
sum of the local diffusion mass flows vanishes

∑

α

ραdα =
∑

α

ρα
′
xα

︸ ︷︷ ︸

ρ ẋ

− ẋ
∑

α

ρα

︸ ︷︷ ︸

ρ

= 0 . (2.21)

2.2.2 Deformation and strain measures

Deformation measures and transport theorems

The basis for deformation measures in continuum mechanics is the material deformation
gradient. From (2.10) and (2.12), the material deformation gradient Fα of the constituent
φα and its corresponding inverse F−1

α are defined as

Fα :=
∂χα(Xα, t)

∂Xα

=
∂x

∂Xα

= Gradαx ,

F−1
α =

∂χ−1
α (x, t)

∂x
=

∂Xα

∂x
= gradXα .

(2.22)

Remark: Note that per definition, in the undeformed state at time t = t0, the defor-
mation tensor results in the second-order identity tensor, viz. Fα(t0) = GradαXα = I,
whereby its determinant equals one, viz. detFα(t0) = det I = 1. From these consider-
ations and the condition of a non-singularity from (2.12)2, the domain of the Jacobian
determinant is finally restricted to

Jα = detFα > 0. (2.23)

2
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With the definition (2.22) of the deformation gradient and its inverse, one can directly
map differential line elements dXα from the referential configuration to the corresponding
elements dx in the current configuration and vice versa:

dx = Fα dXα ↔ dXα = F−1
α dx. (2.24)

This representation makes the two-field characteristic of the material deformation tensor
in a natural basis system apparent. The transport mechanism in (2.24)1 is termed push-
forward transformation (from reference to current configuration), while its counterpart
in (2.24)2 is called pull-back transformation (from current to reference configuration).
Further push-forward transport mechanisms can be derived for the local area and volume
elements in the reference configuration, dAα and dVα, respectively:

da = (detFα)F
T−1
α dAα ,

dv = (detFα) dVα ,
(2.25)

where da and dv are the corresponding area and volume elements in the current configu-
ration. Based on this, since there are no changes in the local partial mass element dmα,
the initial partial density ρα0 of the constituent φα at time t = t0 can now be derived from
(2.7)2 and (2.25)2:

ρα0 = (detFα) ρ
α . (2.26)

This latter relation will be of particular use for the constitutive modelling of the solid
skeleton, compare Chapter 3. Regarding the squares of the line elements introduced in
(2.24), one derives the right and left Cauchy-Green deformation tensors, Cα and Bα,
respectively:

dx · dx = Fα dXα · Fα dXα = dXα · (FT
α Fα) dXα =: dXα · Cα dXα ,

dXα · dXα = F−1
α dx · F−1

α dx = dx · (FT−1
α F−1

α ) dx =: dx · B−1
α dx .

(2.27)

Strain measures

Besides these deformation measures, it is convenient to introduce some strain measures,
which allow a comparison of the deformed state of the body with the undeformed one.
Proceeding from the difference of the squares of the local line elements introduced in
(2.27),

dx · dx− dXα · dXα = dXα · (Cα − I) dXα =: dXα · 2Eα dXα ,

dx · dx− dXα · dXα = dx · (I−B−1
α ) dx =: dx · 2Aα dx .

(2.28)

one identifies the Green-Lagrangean and Almansi strain tensors, Eα and Aα, respectively:

Eα = 1
2
(Cα − I) → Eα = 1

2
(FT

α Fα − I) ,

Aα = 1
2
(I−B−1

α ) → Aα = 1
2
(I− FT−1

α F−1
α ) .

(2.29)

Further strain tensors can be found, e. g., in Ehlers [86], but will not be subject of this
monograph.



20 2 Theoretical Fundamentals

Deformation and strain rate

For the later constitutive approach, it is convenient to introduce some quantities concern-
ing the temporal changes in deformation. In this context, the rate of the deformation
gradient Fα can be either introduced in a Lagrangean description via

(Fα)
′
α =

dα

dt

(
∂x

∂Xα

)

=
∂

′
xα(Xα, t)

∂Xα

= Gradα
′
xα , (2.30)

yielding the material velocity gradient, or in an Eulerian setting, considering

(Fα)
′
α =

dα

dt

(
∂x

∂Xα

)

=
∂

′
xα(x, t)

∂Xα

=
∂

′
xα

∂x

∂x

∂Xα

=: Lα Fα with Lα := grad
′
xα. (2.31)

Therein, Lα is denoted the spatial velocity gradient for the constituent φα. For con-
venience, this latter can be split into a symmetric (Dα = DT

α) and skew-symmetric
(Wα = −WT

α) part, namely

Lα = Dα +Wα with Dα = 1
2
(Lα + LT

α) and Wα = 1
2
(Lα − LT

α) . (2.32)

Moreover, from (2.31), the trace of the spatial velocity gradient can be reformulated as
the divergence of the velocity, viz.

Lα · I = grad
′
xα · I = div

′
xα. (2.33)

Finally, applying the differentiation rule and considering (2.27)1 and (2.31), the right
Cauchy-Green deformation rate results in

(Cα)
′
α =(FT

α Fα)
′
α = (FT

α)
′
α Fα + FT

α (Fα)
′
α

=FT
α LT

α Fα + FT
α Lα Fα = 2FT

α Dα Fα ,
(2.34)

leading to the rate of the Green-Lagrange strain tensor (2.29)

(Eα)
′
α = 1

2
(Cα)

′
α = FT

α Dα Fα . (2.35)

2.3 Forces and state of stress

An external load on a body does not only lead to deformation but also to an (inner) stress
state. In the context of the TPM, each constituent can be affected by individual volume
forces kα

v acting from a distance on every material point of the body B and contact forces
kα
c acting from the near vicinity on the material points at the surface S:

kα =

∫

B

fαdv

︸ ︷︷ ︸

kα

v

+

∫

S

tαda

︸ ︷︷ ︸

kα

c

. (2.36)
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Here, the external body force fα is postulated proportional to the partial density ρα and
body force bα per mass element, viz. fα = ρα bα. Moreover, bα is interpreted as the
gravitation force g acting on all constituents. Other possible external volume forces are,
e. g., magnetic forces. Finally, the external body force acting on the constituent φα results
in

kα
v =

∫

B

ραg dv . (2.37)

Furthermore, the contact force tα = tα(x, t, n) per surface area in (2.36) is a function of
the current position x, the time t and the outward-oriented surface normal vector n. In
order to avoid the dependency of the stress measure from the surface orientation, Cauchy’s
theorem is applied, yielding

tα(x, t, n) = [Tα(x, t)]n , (2.38)

where the partial Cauchy stress Tα of the constituent φα is independent of the surface
orientation. Thus, the contact force kα

c results in

kα
c =

∫

S

Tα da (2.39)

with da = n da as the oriented current area element.

Remark: The partial Cauchy stress Tα is also called true stress tensor since the contact
force tα and the oriented area element da are both in the current configuration. Alter-
native stress measurements can be introduced by pull-back transports of either the area
element or both the contact force and area element into the reference configuration, i. e.

Pα = (detFα)T
α FT−1

α : first Piola-Kirchhoff stress tensor,

Sα = (detFα)F
−1
α Tα FT−1

α : second Piola-Kirchhoff stress tensor.
(2.40)

Moreover, relating the contact force to a weighted area element of the current configuration
leads to the Kirchhoff stress τα, viz.

kα
c =

∫

S

τα dāα with

{

τα = (detFα)T
α

dāα = (detFα)
−1 da .

(2.41)

2

For completeness, the forces k acting on the overall aggregate arise from the forces acting
on the individual constituents:

k =

∫

B

f dv

︸ ︷︷ ︸

kv

+

∫

S

t da

︸ ︷︷ ︸

kc

with f =
∑

α

fα = ρg and t =
∑

α

tα . (2.42)

Thereby, the contact force t also follows Cauchy’s theorem with the Cauchy stress tensor
T of the overall aggregate, viz. t(x, t,n) = T(x, t)n.



22 2 Theoretical Fundamentals

2.4 Balance relations

After the introduction of the kinematic and stress quantities, it is now possible to look at
the balance relations as the fundament of continuum mechanics, stating the conservation
of mechanical and thermodynamical quantities. In this section, the master balance rela-
tions will be introduced both for the overall aggregate and for the individual constituents.
A detailed description and derivation of these relations can be found in Ehlers [84] and
citations therein.

2.4.1 Master balances

Balance relations presume an equilibrium between the temporal changes of a mechanical
(mass, momentum, moment of momentum) or thermodynamical (energy, entropy) quan-
tity with the external loads and the internal production of the physical quantity. It is
possible to embed all balance relations into an overall formula, the master balance, from
which the individual relations are axiomatically derived by inserting the corresponding
quantities.

Balances for the overall aggregate

The master balances for the overall aggregate are introduced according to the continuum
mechanics of singlephasic material. A detailed overview of these latter can be found, e. g.,
in Ehlers [83], Haupt [131, 132] and Holzapfel [142] and will not be deepened here. For
a scalar-valued and vector-valued physical quantity, Ψ and Ψ, respectively, the master
balances for the overall aggregate read

d

dt

∫

B

Ψdv =

∫

S

(φ · n) da +

∫

B

σ dv +

∫

B

Ψ̂ dv ,

d

dt

∫

B

Ψ dv =

∫

S

(Φn) da +

∫

B

σ dv +

∫

B

Ψ̂ dv .
(2.43)

Therein, φ · n and Φn are the effluxes through the body’s surface S (actions at the
vicinity), σ and σ are the supplies from an external source (actions from the body’s
distance), and Ψ̂ and Ψ̂ stand for the total production of the physical quantity within
the body B. The production terms describe the interaction of the aggregate with the
surrounding of the system. In this monograph, the overall aggregate is considered to be
a closed system, where there is no interaction of the balanced quantities of the aggregate
with the surrounding except for the entropy production according to the second law of
thermodynamics. Moreover, assuming steady and steadily differentiable integrands, the
local form of the master balance can be found with differentiation of the left-hand side
of (2.43) and transformation of the surface integral on the right-hand side in a volume
integral with the Gaussian theorem, yielding

Ψ̇ + Ψdiv ẋ = divφ + σ + Ψ̂ ,

Ψ̇ + Ψdiv ẋ = divΦ + σ + Ψ̂ .
(2.44)
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Truesdell’s metaphysical principles

In the context of multiphasic material, each constituent is provided with an individual
set of balance relations within the Theory of Mixture, cf. the work of Truesdell [239],
Truesdell & Toupin [241], Kelly [156] and Bowen [51]. Particularly, the formulation of the
constituents’ balances is based on Truesdell’s three “metaphysical principles” of mixture
theories [239], formulated as follows:

1. All properties of the mixture must be mathematical consequences of properties of the
constituents.

2. So as to describe the motion of a constituent, we may in imagination isolate it
from the rest of the mixture, provided we allow properly for the actions of the other
constituents upon it.

3. The motion of the mixture is governed by the same equations as is a single body.

These principles presume that the balance equations of multiphasic material can be de-
rived from the regular balance relations of continuum mechanics of singlephasic material,
provided the interaction between the different constituents is taken into account by addi-
tional production terms. Furthermore, these principles state that the balance equations
of the overall aggregate equate to those of singlephasic material.

Balances for the individual constituents

According to Truesdell’s second metaphysical principle, the individual balance relations
for each constituent φα are postulated in analogy to the master balances of the over-
all aggregate (2.43) and (2.44). Consequently, the scalar and vectorial master balance
equations for the individual constituents are given by

dα

dt

∫

B

Ψα dv =

∫

S

(φα · n) da +

∫

B

σα dv +

∫

B

Ψ̂α dv ,

dα

dt

∫

B

Ψα dv =

∫

S

(Φα n) da +

∫

B

σα dv +

∫

B

Ψ̂α dv
(2.45)

with (·)α the quantities of the constituent φα, and the corresponding local formulations
read

(Ψα)′α + Ψαdiv
′
xα = divφα + σα + Ψ̂α ,

(Ψα)′α + Ψαdiv
′
xα = divΦα + σα + Ψ̂α .

(2.46)

Remark: Even if the overall aggregate was assumed to be a closed system, each con-
stituent is considered an open system in the mixture. Thus the production terms of the
individual constituents are generally unequal zero. 2
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Coupling terms

Truesdell’s first metaphysical principle states that the summation of the constituents’ bal-
ances (2.46) and the overall aggregate’s balances (2.44) have to yield identical mechanical
results. From this postulation, the following restrictions for the coupling terms arise:

Ψ =
∑

α Ψ
α , φ · n =

∑

α[φ
α −Ψα(

′
xα − ẋ)] · n , σ =

∑

α σ
α , Ψ̂ =

∑

α Ψ̂
α ,

Ψ =
∑

α Ψ
α , Φn =

∑

α[Φ
α −Ψα ⊗ (

′
xα − ẋ)]n , σ =

∑

α σ
α , Ψ̂ =

∑

α Ψ̂
α .

(2.47)

2.4.2 Specific balance equations

In the above relations, the physical quantities Ψ and Ψ, as well as Ψα and Ψα, are
placeholders for the balanced quantities. In the following, the specific balance equations
for mass, momentum, angular momentum, energy and entropy will be summarised in their
local form for the overall aggregate φ and the constituents φα. For a complete derivation
of these equations, the interested reader is referred to Ehlers [84].

Conservation of mass

For the balance of mass, the mechanical quantity is the partial density, while the efflux
and supply terms are zero. Since the overall body is considered as closed system, mass
production is excluded for the aggregate. In the case of the constituents, the balance states
that the mass of the constituent is constant with respect to the production term ρ̂α. This
latter accounts for mass exchanges between the constituents within the aggregate, for
example, chemical reactions or phase transitions. For the latter one, the interested reader
is referred to Graf [119], Häberle [124] and Eurich [104]. The summary of the quantities
is given by

mechanical quantity: Ψ → ρ , Ψα → ρα ,

efflux: φ→ 0 , φα → 0 ,

supply: σ → 0 , σα → 0 ,

production: Ψ̂ → 0 , Ψ̂α → ρ̂α .

(2.48)

With (2.44)1 and (2.46)1, this yields the following local mass balances

ρ̇ + ρ div ẋ = 0 ,

(ρα)′α + ραdiv
′
xα = ρ̂α .

(2.49)

of the overall aggregate and individual constituents. Moreover, the correlations (2.47)1
request

ρ =
∑

α

ρα and
∑

α

ρ̂α = 0 . (2.50)

Note that the first condition is already given per definition in (2.9).
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Balance of linear momentum

The balance of linear momentum equates the temporal change of the local momentum, ρ ẋ

or ρα
′
xα, to the forces from the vicinity (efflux term), namely divT or divTα, the forces

from a distance (supply term), b and bα, e. g. gravitational forces g per unit volume, and
possible productions, viz.

mechanical quantity: Ψ → ρ ẋ , Ψα → ρα
′
xα ,

efflux: Φ → T , Φα → Tα ,

supply: σ → ρb , σα → ρα bα ,

production: Ψ̂ → 0 , Ψ̂α → ŝα .

(2.51)

In the constituent’s case, the production term is the total momentum production ŝα.
This latter comprises a direct part p̂α, standing for the interaction forces between the

constituents, and an additional part arising from the density production ρ̂α
′
xα, viz.

ŝα = p̂α + ρ̂α
′
xα . (2.52)

Inserting (2.51) in the local master balances (2.44)2 and (2.46)2 yields the local momentum
balances for the overall aggregate and the constituent

ρ ẍ = divT + ρb ,

ρα
′′
xα = divTα + ραbα + p̂α ,

(2.53)

respectively. The coupling terms (2.47)2 provide the following constraints:

ρ ẋ =
∑

α

ρα
′
xα , T =

∑

α

(Tα − ρα dα ⊗ dα) ,

ρb =
∑

α

ρα bα , 0 =
∑

α

ŝα =
∑

α

(p̂α + ρ̂α
′
xα) .

(2.54)

Thereby, (2.54)1 verifies the definition of the barycentric velocity, cf. (2.15), while (2.54)3
recovers the definition of the total density (2.9) in the case of uniform body forces, e. g.
gravitational forces b = bα = g. The restriction (2.54)2 is valid in mixture theories and
not treated further in the TPM.

Balance of angular momentum

The balance of angular momentum or rather moment of momentum (m.o.m.) states
that the temporal change of angular momentum of a body B corresponds to the sum of
moments of all forces acting on B related to the same origin point. The quantities of the
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master balances can be summarised to

mechanical quantity: Ψ → x× (ρ ẋ) , Ψα → x× (ρα
′
xα) ,

efflux: Φ → x×T , Φα → x×Tα ,

supply: σ → x× (ρb) , σα → x× (ρα bα) ,

production: Ψ̂ → 0 , Ψ̂α → ĥα .

(2.55)

Therein, ĥα denotes the spin production of the constituent. After some reformulations of
the master balance (2.44)2 and with the help of the mass and linear momentum balances,
(2.49)1 and (2.53)1, respectively, combined with the property of the axial vector, the local
m. o.m. balance of the overall aggregate results in the symmetry constraint of the Cauchy
stress tensor T, viz.

0 = I×T → T = TT . (2.56)

In analogy, the local m. o.m. balance for the constituent φα reads

0 = I×Tα + m̂α → (Tα)T = Tα + M̂α , (2.57)

where m̂α is the direct part of the spin production ĥα = m̂α + x× ŝα, and M̂α is called
the “angular momentum coupling tensor” and stands for the skew-symmetric part of Tα.
The constraint from (2.47)2 states with (2.55)4 that

∑

α ĥ
α = 0, yielding

∑

α m̂
α = 0 and

∑

α M̂
α
= 0. Consequently, the sum of the partial stress tensors must be symmetric, viz.

∑

α

Tα =
∑

α

(Tα)T . (2.58)

In the case of non-polar materials (Cauchy-Boltzmann continua), Hassanizadeh & Gray
[127] and Ehlers [84] showed by homogenisation that symmetric stresses on the microscale
lead to symmetric stresses on the macroscale, as homogenisations do not yield new infor-
mations. Therefore, for non-polar materials,

Tα = (Tα)T and m̂α ≡ 0 (2.59)

applies. However, in this other case of micropolar materials, the particles might rotate
and lead to asymmetric partial stress tensors. Micropolar materials (Cosserat continua)
in the framework of the TPM are presented, e. g., in Diebels & Ehlers [74], Diebels [73],
Ehlers [84], Scholz [219] and Bidier [29].

Energy conservation law

The energy conservation law, also known as the first law of thermodynamics, equals the
temporal change of the internal and kinetic energy of the body B with the mechanical
power at a vicinity and from a distance, and non-mechanical power from heat flux and
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heat supply. The summary of the master quantities for the overall aggregate and the
constituent is

mechanical quantity: Ψ → ρ (ε+ 1
2
ẋ · ẋ) , Ψα → ρα (εα + 1

2

′
xα ·

′
xα) ,

efflux: φ→ TT ẋ− q , φα → (Tα)T
′
xα − qα ,

supply: σ → ρ (b · ẋ+ r) , σα → ρα (bα ·
′
xα + rα) ,

production: Ψ̂ → 0 , Ψ̂α → êα .

(2.60)

Therein, ε and εα stand for the specific internal energies, q and qα denote the heat influxes
via the surface, and r and rα indicate the heat supplies from a distance for the overall
aggregate and the constituent, respectively. In addition, êα is the total constituent’s
energy production, which can be split into a direct part ε̂α and parts from the momentum
and mass exchanges. With the local master balance (2.44)1, the local energy balance for
the mixture yields

ρ ε̇ = T · L− divq+ ρ r . (2.61)

In analogy, the constituent’s local energy balance reads with (2.46)1, (2.49)1 and (2.53)1

ρα (εα)′α = Tα · Lα − divqα + ρα rα + ε̂α ,

where êα = ε̂α + p̂α ·
′
xα + ρ̂α (εα + 1

2

′
xα ·

′
xα) .

(2.62)

From the coupling constraints (2.47), the following dependencies can be derived

ε =
1

ρ

∑

α

ρα (εα + 1
2
dα · dα) ,

q =
∑

α

[qα − (Tα)Tdα + ρα εα dα + 1
2
ρα (dα · dα)dα] ,

r =
1

ρ

∑

α

ρα (rα + bα · dα) ,

0 =
∑

α

êα .

(2.63)

In thermal processes, the energy balance determines the temperature of the overall ag-
gregate and constituent, compare, e. g., Häberle [124] and Eurich [104]. In the case of
isothermal processes, the energy balance is only exploited for the formulation of the en-
tropy inequality.

Entropy principle

The entropy balance states that the temporal change of the entropy equals the sum of
external entropy changes (effluxes and supplies) and internal entropy production. Here,
the entropy effluxes and supplies are given by a priori constitutive assumptions in analogy
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to singlephasic materials, compare Ehlers [83–86]:

mechanical quantity: Ψ → ρ η , Ψα → ρα ηα ,

efflux: φ→ −
q

θ
, φα → −

qα

θα
,

supply: σ →
ρ r

θ
, σα →

ρα rα

θα
,

production: Ψ̂ → η̂ ≥ 0 , Ψ̂α → η̂α .

(2.64)

Therein, η and ηα are the mass-specific entropies, θ and θα the absolute temperatures in
Kelvin, and η̂ and η̂α the entropy productions of the overall aggregate φ and the con-
stituents φα, respectively. The interpretation (2.64) leads with the local master balances
(2.44)1 and (2.46)1, and the mass balances (2.49) to the local form of the entropy balance
for the aggregate and the specific constituent:

ρ η̇ + div
q

θ
−

ρ r

θ
= η̂ ,

ρα(ηα)′α + div
qα

θα
−

ρα rα

θα
= ζ̂α

(2.65)

with ζ̂α the direct part of the entropy production, viz. η̂α = ζ̂α+ ρ̂α ηα. The dependencies
arising from (2.47) request

η =
1

ρ

∑

α

ρα ηα ,

q

θ
=

∑

α

(qα

θα
+ ραηαdα

)

,

ρ r

θ
=

∑

α

ρα rα

θα
,

η̂ =
∑

α η̂
α ≥ 0 .

(2.66)

Remark: The postulate of a common entropy inequality of all constituents is a necessary
and sufficient condition for the existence of dissipation mechanisms within the mixture.
Therefore, only η̂ ≥ 0 is prescribed to fulfil the second law of thermodynamics in multi-
phasic materials. A detailed discussion of this topic can be found in Truesdell [238] and
Ehlers [86]. 2

The restriction (2.66)4 can be rewritten with (2.65)2 and the split of the direct entropy
production, i. e. ζ̂α = η̂α − ρ̂α ηα, to

η̂ =
∑

α

η̂α =
∑

α

[ ρα(ηα)′α + ρ̂αηα + div
qα

θα
−
ρα rα

θα
] ≥ 0 . (2.67)
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Here, it is convenient to introduce the mass-specific Helmholtz free energy ψα of the
constituent φα through

ψα := εα − θαηα . (2.68)

Finally, by substituting the entropy ηα with (2.68) in (2.67) and with the energy balance
(2.62), the second law of thermodynamics is recovered for multiphasic materials in the
so-called Clausius-Duhem inequality:

∑

α

1

θα

[

Tα · Lα − ρα[(ψα)′α + (θα)′αη
α]− p̂α ·

′
xα−

−ρ̂α(ψα + 1
2

′
xα ·

′
xα)−

qα

θα
· grad θα + êα

]

≥ 0.

(2.69)

No physical quantity will be directly derived from the entropy inequality (2.69), though,
it is the basis for the constitutive modelling in Chapter 3.

2.5 Phase-field method to solid fracture mechanics

The phase-field method (PFM) to fracture has gained significant attention in recent years
due to its ability to model crack initiation, propagation, and branching in a computation-
ally efficient and physically realistic manner. Unlike discrete approaches like the linear
elastic fracture mechanics (Griffith [120] and Irwin [149]) or cohesive zone models (Dug-
dale [78] and Barenblatt [18]), the phase-field approach represents cracks as continuous
and diffuse interfaces within a material, allowing a continuous displacement field across
the fracture surfaces on a fixed mesh. An extensive review of the historical development
of the phase-field method of fracture can be found, for example, in the work of Ambati
et al. [8], Wu et al. [253], Spatschek et al. [228] or in the article of Heider [134] with a
focus on hydraulic fracturing. In the following, the PFM to brittle solid fracture is briefly
introduced.

The phase-field variable

The physics and mechanics communities have developed the phase-field method for frac-
ture processes independently. Even though the overall approach and the derivation of the
constitutive equations are different, both communities propose a continuous field variable,
the phase-field variable or order parameter ϕ, to differentiate the cracked and unbroken
states of the solid skeleton, i. e.

ϕ(x, t) ∈ [0, 1] with







ϕ = 0 : intact solid phase,

0 < ϕ < 1 : diffuse interface,

ϕ = 1 : fully broken solid phase.

(2.70)

Remark: Most of the contributions in the field of phase-field method to fracture intro-
duce the phase-field variable as in (2.70). However, some groups define the phase field
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alternatively as ϕ = 0 for the broken and ϕ = 1 for the intact state, compare, among
others, the group of Aranson et al. [15], Bourdin et al. [50], Kuhn & Müller [164], Mikelić
et al. [196], Heider & Markert [135] and related groups. 2

Figure 2.3: Depiction of a smoothed phase field ϕ with respect to different length-scale pa-
rameters ϵ, where the axial position x = 0 defines the crack center. The abscissa of the tangent
at x = 0 corresponds to the length-scale parameter (depicted here for ϵ = 1m, dashed line).

In the damaged zone 0 < ϕ < 1, the phase-field variable is smoothed out according to a
length-scale parameter ϵ with ϕ = exp−|x|/ϵ, cf. Lancioni & Royer-Carfagni [167] and Miehe
et al. [193], see Figure 2.3. This approach leads to a diffuse transition zone between the
unbroken and broken domain without a discontinuous jump, which is a major advantage
of the phase-field method compared to a discrete approach. The length-scale parameter
has the dimension of a length and regulates the transition zone’s width. For the case
that ϵ becomes infinitesimally small, a discrete crack pattern is recovered. However, due
to the arbitrary choice of the length-scale parameter, the phase-field method is limited
when determining the aperture of a fracture. Moreover, the element’s size within a finite
element formulation has to be small enough with respect to the length-scale parameter
to resolve the diffuse interface, leading to computational costs.

Energy functional

In the physics community, the energetic formulation of the phase-field method to fracture
initially stems from the Ginzburg-Landau theory, which was developed for the phase
transition of supra-conductive materials, cf. Ginzburg & Landau [118]. From this, different
energetic formulations have been developed. Among the most popular are the models
according to Aranson et al. [15], Karma et al. [154], Henry & Levine [139] and Spatschek
et al. [228].

In contrast, the approaches of the mechanical community originate from the variational
formulation by Francfort & Marigo [109]. Based on the classical Griffith criterion, cf.
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Griffith [120], this mathematical model treats the quasi-static growth of brittle fracture in
elastic solids. Unlike Griffith’s theory, the model can capture crack initiation and predict
the crack path by minimisation of an energy functional. Thereupon, Bourdin et al. [50]
suggested a regularised version of the variational formulation introducing a secondary
field variable ϕ – the crack parameter – to enable efficient numerical implementation.
The proposed total energy functional to minimise reads

E(ε, ϕ) =

∫

Ω

g(ϕ)ψ0(ε) dv +Gc

∫

Ω

(
ϕ2

4c
+ c |gradϕ|2

)

dv

with g(ϕ) = (1− ϕ)2 + ηr ,

(2.71)

where ψ0 stands for the elastic energy density function, c is a regularisation parameter,
Gc represents the material fracture toughness, and g(ϕ) denotes the degradation function
with a dimensionless parameter ηr assuring an artificial residual stiffness in the fully
broken case. Note that Bourdin et al. [50] defined the field variable alternatively to (2.70)
with ϕ = 0 for the broken and ϕ = 1 for the intact state in the original article and that the
notation has been adapted in (2.71) for unification purpose. Moreover, the regularisation
parameter c corresponds to the double length-scale parameter used in this monograph,
viz. c = 2ϵ in (2.71). When the parameter c tends to zero, the regularised formulation
(2.71) converges to the energy functional of Francfort & Marigo [109], which complies with
Griffith’s fracture theory, compare Bourdin et al. [50]. Besides the applied degradation
function g(ϕ) = (1−ϕ)2+ηr according to Bourdin et al., other groups developed different
models to link the mechanical behaviour and the phase field. A review of some energetic
degradation models can be found, e. g., in Sargado et al. [216] and Wu et al. [253].

Remark: In [190, 193], Miehe et al. introduced an energy functional in a geometric
context with regard to the definition of a dissipation potential. Even if the approach
differs from the derivation of the energy functional according to Bourdin et al. [50] based
on the definition of a regularised surface energy, both models lead to similar results. 2

Evolution equation

In addition to (2.71), Hakim & Karma [125], Kuhn & Müller [164, 165] and Miehe et al.
[190, 193], among others, define a Ginzburg-Landau type evolution equation, cf. [118], for
the phase-field variable:

ϕ̇ =
1

M

[

2(1− ϕ)ψ0(ε)−Gc

( ϕ

ϵ
− ϵ div gradϕ

)]

. (2.72)

The notation of ϕ has been adapted according to (2.70) for unification purposes. Moreover,
in their original paper, Hakim & Karma and Kuhn & Müller define the mobility parameter
M , which controls the energy dissipation rate within the fracturing process, reciprocally
to (2.72).
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“Anisotropic” stored energy

So far, the elastic energy density function ψ0 corresponds to the Helmholtz free energy
of isotropic1 material behaviour for an elastic material. However, this isotropic material
behaviour can lead to unrealistic fracturing processes, predicting, for example, fracturing
under compression. To cope with this shortcoming, several groups proposed an anisotropic
fracture model through a split of ψ0 into a positive part ψ+

0 , contributing to damage,
and a negative part ψ−

0 , resisting damage. Some anisotropic fracture models consider,
for example, a volumetric and deviatoric split of the elastic energy, such as Lancioni &
Royer-Carfagni [167] and Amor et al. [12]. Besides these, Miehe et al. [193] define an
energy function for anisotropic fracture behaviour based on a spectral decomposition of
the linearised strain

ε =
3∑

i=1

εi ni ⊗ ni (2.73)

with εi the principal strains and ni the principal strain directions. A summary of the
spectral decomposition of the strain tensor can be found in Appendix B.1. With this, the
positive (tension) and negative (compression) parts of the elastic energy yield

ψ±
0 (ε) := λS

⟨ε1 + ε2 + ε3⟩
2
±

2
+ µS

[

⟨ε1⟩
2
± + ⟨ε2⟩

2
± + ⟨ε3⟩

2
±

]

. (2.74)

Therein, λS and µS are the Lamé constants and the Macauley brackets are defined through
⟨·⟩± = (|·| ± ·)/2. The degradation function only affects the tension part of the elastic
energy, leading to the stored elastic energy

ψ(ε, ϕ) =
[
(1− ϕ)2 + ηr

]
ψ+
0 (ε) + ψ−

0 (ε) . (2.75)

This anisotropic material model completely prevents cracking in compression.

In the following chapter, the phase-field method is embedded in the prior framework of
the TPM to evaluate hydraulic fracturing processes in a triphasic porous material.

1Note that as mentioned in the introduction, Section 1.2, the terms isotropic and anisotropic fracture
behaviour refer to an energy split in the literature of the PFM to fracture and are unrelated to directional
mechanical properties from continuum mechanics.



Chapter 3:
Model adaptation and constitutive
modelling

This chapter applies the previously introduced theoretical fundamentals to hydraulic frac-
turing porous media. First, the model assumptions for the problem under study are out-
lined, and the specific balance equations are reformulated. Since there are more unknown
variables as balance equations, further relations must be determined to close the problem.
As mentioned in Subsection 2.4.2, the entropy inequality will give the restrictive frame for
these relations. Therefore, the entropy inequality is adapted to the particular problem.
The constitutive modelling will be developed exemplarily for a partially saturated porous
material. Finally, the closure problem for the coupled system is recapitulated at the end
of the chapter.

3.1 Preliminary model assumptions

For this monograph, two multiphasic models are considered. Either a single liquid pore
fluid saturates the solid, leading to a biphasic model φ = φS∪φL, or a liquid and a gaseous
pore fluid inhibit the solid skeleton for the additional consideration of partially saturated
porous material, leading to a triphasic model φ = φS ∪φL∪φG. In both cases, a common
(spatially and temporally) constant temperature is assumed for the mixture and all con-
stituents, viz. θ = θα ≡ constant. Note that the energy balance is not considered further
from this assumption of isothermal processes. Apart from that, an inert, brittle-elastic
solid skeleton φS is regarded in both models. For the consideration of elastoplastic or
viscoelastic solid skeletons within the TPM, the interested reader is referred, e. g., to the
work of Ehlers [80–82, 86] and Ehlers & Markert [95, 96], respectively. Also, incompress-
ibility is assumed for the solid skeleton φS and the pore liquid φL in both the partially
and the fully saturated model:

{ρSR, ρLR} ≡ constant. (3.1)

In the case of the triphasic model, the gas phase is considered compressible in the sense
of an ideal gas, yielding ρGR = ρGR(pGR).

Moreover, in this thesis, no mass exchanges, such as phase transitions or chemical reac-
tions, are regarded. Thus, the mass production vanishes for all constituents, viz.

ρ̂α ≡ 0 . (3.2)

In addition, all constituents are subject to gravity as the only and constant body force,
i. e. b = bα = g.

33
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Furthermore, the material is considered non-polar. Therefore, the angular momentum
balance results in the symmetry statement of the stress tensors, namely

T = TT and Tα = (Tα)T . (3.3)

3.2 Adaptation of balance relations

The adaptation of balance relations and the following constitutive approach will be pre-
sented for the triphasic model. However, the biphasic model can be recovered by leaving
out the gas phase. Besides, a detailed derivation of the biphasic fracturing model can
be found in Luo [178]. In Section 3.5, the closure problem will be summarised for both
models.

3.2.1 Mass and volume balances

The local mass balance (2.49)2 for the constituent φ
α simplifies with the exclusion of mass

exchanges (3.2) to

(ρα)′α + ραdiv
′
xα = 0 . (3.4)

For easier readability, the spatial velocity
′
xα of the constituent φα will be substituted in

the following by vα, compare (2.13)1.

Using the material time derivative (2.18) and the definition of the seepage velocity (2.19),
the mass balances of the pore fluids φβ, with β = {L,G}, can be rewritten with respect
to the solid motion via

(ρβ)′S + grad ρβ ·wβ + ρβ div (wβ + vS) = 0 . (3.5)

Sorting the terms and applying the divergence theorem (cf. Appendix A.2), viz.

(ρβ)′S + grad ρβ ·wβ + ρβ divwβ
︸ ︷︷ ︸

div (ρβ wβ)

+ ρβ divvS = 0 , (3.6)

yields with the definition of the partial density (2.8)

(nβρβR)′S + div (nβρβR wβ) + nβρβR divvS = 0 . (3.7)

According to (3.6), the gas mass balance reads

(ρG)′S + div (ρGwG) + ρGdivvS = 0 . (3.8)

Assuming material incompressibility for the solid and liquid, compare (3.1), the mass
balances of these constituents can further be reduced to volume balances, i. e.

(nS)′S + nSdivvS = 0 ,

(nL)′S + div (nLwL) + nLdivvS = 0 .
(3.9)
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Remark: The solid volume balance can be integrated analytically over time, yielding a
relation for the solidity nS relative to the initial solidity nS

0 and the deformation gradient
FS. Therefore, the material derivative of the Jacobian determinant is rewritten with the
tensor calculus rules from Appendix A via

(detFS)
′
S = cofFS · (FS)

′
S = detFS F

T−1
S · LS FS = (detFS) divvS , (3.10)

leading to

(nS)′S
nS

= − divvS = −
(detFS)

′
S

detFS

→ nS = nS
0 (detFS)

−1 . (3.11)

With the relation between the partial density and volume fraction (2.8), the definition
(2.26) of the solid initial partial density, namely ρS0 = (detFS) ρ

S, is recovered. 2

3.2.2 Momentum balances

With the assumption of gravitational forces as uniform and constant body forces, the
momentum balance (2.53)2 of the constituent φα is given by

ρα(vα)
′
α = divTα + ραg + p̂α . (3.12)

Again, considering all balances relative to the solid motion via (2.18), the fluid momentum
balances result in

ρL
[
(vL)

′
S + (gradvL)wL

]
= divTL + ρLg + p̂L ,

ρG
[
(vG)

′
S + (gradvG)wG

]
= divTG + ρGg + p̂G .

(3.13)

Furthermore, for the numerical studies in Chapters 4 and 5, it is convenient to consider
the momentum balance of the overall aggregate instead of the solid one. Thereby, the
complete load of the aggregate can be determined as a boundary term in the numerical
treatment, allowing the individual constituents to hold as much of the external load as
corresponds to their states of deformation and motion. The overall momentum balance
is obtained by summation of all constituents’ momentum balances1

∑

α

[
ρα(vα)

′
α

]
=

∑

α

[
divTα + ραg + p̂α

]
. (3.14)

Finally, with restriction of the momentum production (2.54)4 under the assumption of
no mass exchanges between the constituents, yielding

∑

α p̂
α = 0, the overall momentum

balance reads

ρS(vS)
′
S + ρL

[
(vL)

′
S + (gradvL)wL

]
+ ρG

[
(vG)

′
S + (gradvG)wG

]

= div (TS +TL +TG) + ρg .
(3.15)

Hereby, ρ stands for the overall density, i. e. ρ = ρS + ρL + ρG, according to (2.9).

1Equally, the overall momentum balance can be derived from the momentum balance (2.53)1. Consid-

ering ρ ẍ =
∑

α
[ρα

′′

x
α−div (ραdα⊗dα)+ ρ̂α

′

x
α] and assuming no mass transfer leads with the restriction

(2.54)2 to the balance
∑

α
[ρα

′′

x
α−div (ραdα⊗dα)] = div [

∑

α
(Tα−ραdα⊗dα)]+ρg. This formulation

finally yields
∑

α
ρα

′′

x
α = div [

∑

α
Tα] + ρg, recovering (3.15).
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3.2.3 Entropy inequality

The entropy inequality poses the basis of a thermodynamically consistent framework. Due
to the assumption of isothermal processes and the restriction (2.63)4, the Clausius-Duhem
entropy inequality (2.69) can be simplified to the Clausius-Planck inequality:

∑

α

[

Tα · Lα − ρα(ψα)′α − p̂α · vα − ρ̂α(ψα + 1
2
vα · vα)

]

≥ 0. (3.16)

Since mass production is omitted here, (3.16) reduces further to

∑

α

[

Tα · Lα − ρα(ψα)′α − p̂α · vα

]

≥ 0. (3.17)

Moreover, the solid momentum production can be reformulated with respect to the fluid
constituents by exploiting the coupling relation (2.54)4, viz.

∑

α

p̂α = 0 → − p̂S · vS = (p̂L + p̂G) · vS . (3.18)

Thus, the entropy inequality can be rewritten as follows

TS · LS − ρS(ψS)′S +TL · LL − ρL(ψL)′L − p̂L · (vL − vS)
︸ ︷︷ ︸

wL

+

+TG · LG − ρG(ψG)′G − p̂G · (vG − vS)
︸ ︷︷ ︸

wG

≥ 0 .
(3.19)

A further restriction stems from the saturation condition, (2.3). To include this mechan-
ical condition in the thermodynamical process, it is convenient to consider its material
time derivative with respect to the skeleton motion, namely

(nS + nL + nG)′S = 0 . (3.20)

Therein, the material time derivatives of the individual volume fractions relative to the
solid motion can be recast with the mass balances (3.4) and under consideration of (2.18)
to

(nS)′S = −nSdivvS ,

(nL)′S = −nLdivvL − gradnL ·wL ,

(nG)′S =
1

ρGR

[

− nG(ρGR)′G − nGρGR divvG

]

− gradnG ·wG .

(3.21)

Inserting (3.21) in (3.20) and multiplying with a Lagrangean parameter P leads to

P
{
nSdivvS + nLdivvL + gradnL ·wL+

+
1

ρGR

[

nG(ρGR)′G + nGρGRdivvG

]

+ gradnG ·wG

}
= 0 .

(3.22)
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The method of Lagrangean multipliers is a strategy to comprise conditions into a mathe-
matical optimisation problem and has proven helpful for considering the saturation con-
dition in the thermodynamical process, compare, e. g., Liu [176]. Thus, to ensure that the
saturation condition is satisfied at any time and for arbitrary processes, (3.22) is added
to the entropy inequality (3.19):

TS · LS − ρS(ψS)′S + P nSdivvS +TL · LL − ρL(ψL)′L −

− (p̂L − P gradnL) ·wL + P nLdivvL +TG · LG − ρG(ψG)′G −

− (p̂G − P gradnG) ·wG + P
nG

ρGR
(ρGR)′G + P nGdivvG ≥ 0 .

(3.23)

As a result of the symmetry property of the partial stress tensors, see (3.3), the stress
power Tα · Lα can be substituted by Tα · Dα. Moreover, the divergence of the velocity
can be reformulated with the relation (2.33), namely divvα = I · Lα = I ·Dα. With this,
the entropy inequality for the current model reads

(
TS + P nS I

)

︸ ︷︷ ︸

TS
E

·DS − ρS(ψS)′S +
(
TL + P nL I

)

︸ ︷︷ ︸

TL
E

·DL − ρL(ψL)′L −

− (p̂L − P gradnL)
︸ ︷︷ ︸

p̂L
E

·wL +
(
TG + P nG I

)

︸ ︷︷ ︸

TG
E

·DG − ρG(ψG)′G −

− (p̂G − P gradnG)
︸ ︷︷ ︸

p̂G
E

·wG + P
nG

ρGR
(ρGR)′G ≥ 0 .

(3.24)

Therein, the so-called extra quantities are introduced according to the work of Truesdell
& Noll [240]. This approach allows splitting the partial stresses Tα and direct momentum
productions p̂α into an undetermined part resulting from the Lagrangean multiplier P
and an extra term (·)E. One approach is to determine the constitutive relations for these
extra terms, compare, e. g., Ehlers [84]. However, to improve clarity, the partial stresses
and direct momentum productions will be split into equilibrium and non-equilibrium
proportions for the constitutive approach in this monograph.

3.3 Evaluation of the entropy inequality

In the context of a continuum mechanical approach, the complete state of motion, as
well as the initial conditions of the problem, are assumed to be known. For all other
quantities that cannot directly be determined through the balance equations, reasonable
and thermodynamically consistent constitutive relations must be found. However, the set
of possible constitutive equations is not arbitrary but follows the principles of rational
thermodynamics in analogy to the principles in the classical continuum mechanics of
singlephasic materials, compare the work of Truesdell [239], Truesdell & Noll [240] and
Truesdell & Toupin [241]. In the following, the principles are introduced and adapted for
the current problem under study.
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3.3.1 The basic thermodynamical principles

Identification of the constitutive variables The set R of undetermined response
functions, which cannot be computed solely from the motion and balance relations, reads
for the entropy inequality (3.24)

R = {ψS, ψL, ψG, TS, TL, TG, p̂L, p̂G, P} . (3.25)

Following the principle of determinism, suitable constitutive equations must determine
these yet undefined response functions.

Determination of the independent process variables The principle of equipresence
states that the response functions can depend on the complete thermodynamical process,
i. e. R = R(V). In this context, Ehlers [86] introduces the fundamental set V of process
variables for a general porous material via

V ={θα, grad θα, nβ, gradnβ, ραR, grad ραR, FS,

GradS FS, vβ, Gradβ vβ, Xα}
(3.26)

As isothermal processes are considered in this monograph, the temperature θα and its
gradient can be omitted as process variables.

Moreover, according to (2.3), (2.5), and (2.6), the volume fractions nβ can be computed
via the solidity nS and liquid saturation sL. Therefore, nβ is replaced by solely the liquid
saturation sL in the set of process variables. Note that the solid volume fraction nS is
skipped as an independent process variable since it directly results from FS through the
integrated volume balance (3.11).

Furthermore, in the case of the material incompressible solid skeleton and pore liquid, the
effective densities are constant, cf. (3.1), and are not considered further as variables.

In addition, the principle of material frame indifference states that the response functions
must be independent of the observer’s position. In that sense, the fluid velocities vβ are
substituted by the seepage velocities wβ according to (2.19), and their gradients by the
respective symmetric part Dβ of the spatial velocity gradient, compare, e. g., the work of
de Boer & Ehlers [40] and Ehlers [86].

The reference position Xα plays a role as a process variable only in the case of inho-
mogeneities of the constituents φα in their initial state and can, therefore, be neglected
here.

Note that V comprises the gradients of the respective basis variables, allowing the descrip-
tion of second-grade materials. However, within the principle of local action, the response
functions for a material point Pα of the current configuration only depend on the values
of the process variables at and in the near vicinity of the material point Pα. Thus, the
gradients of the process variables in (3.26) can be dropped, cf. Truesdell & Noll [240],
Bowen [52, 53] and Ehlers [86].

Taking into account these considerations, the specific set V1 of independent process vari-
ables for the current model reads

V1 = {sL, ρGR, FS, wβ, Dβ, ϕ
S, GradS ϕ

S} (3.27)
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Note that to describe the fracture behaviour of the solid skeleton, a solid phase-field
variable ϕS and its gradient GradS ϕ

S have been added to the set V1 of process variables.
Thereby, ϕS can be identified with a damage variable, compare Miehe et al. [190], while
the crack-growth direction is represented by GradS ϕ

S.

Finally, Ehlers [80] introduced the principle of phase separation. This principle assumes
a priori that the Helmholtz free energy of the constituent φα only depends on the non-
dissipative variables, which are directly related to φα. The process variables wβ and
Dβ refer to dissipative quantities and are, therefore, omitted in the dependencies of the
Helmholtz free energies. From this follows

ψS = ψS(FS, ϕ
S, GradS ϕ

S) , ψL = ψL(sL) , ψG = ψG(ρGR) . (3.28)

According to the principle of material frame indifference, the deformation gradient FS

can equally be expressed by the Green-Lagrangean strain tensor ES, cf. (2.29), for the
Helmholtz solid free energy, viz.

ψS = ψS(ES, ϕ
S, GradS ϕ

S) . (3.29)

This results from the fact that the deformation gradient can be decomposed through
a polar decomposition into a rigid body rotation and a stretch. Since the former is
invariant to the observer’s position, it does not affect the free energy. Consequently, ψS

can be expressed via the stretch or, rather, the right Cauchy-Green deformation tensor
CS, which in turn can be substituted by the Green-Lagrangean strain ES. The interested
reader is referred to Ehlers [82, 86] and Wagner [243] and citations therein.

3.3.2 Thermodynamical restrictions for the model

The last principle, the principle of dissipation, provides the restrictions for the constitutive
relations. Here, the procedure based on Coleman & Noll [65] is applied. An alternative
exploitation of the entropy inequality is proposed by Liu & Müller [177]. It leads to
basically identical results but is more demanding, which is why the procedure of Coleman
& Noll is preferred here. A detailed discussion about this topic can be found, e. g., in the
work of Bowen [51] and Ehlers [86].

First, the entropy inequality (3.24) is processed with the material time derivative of the
free energies. According to the dependencies (3.28)2,3 and (3.29), the derivatives (ψα)′α
read

(ψS)′S =
∂ψS

∂ES

· (ES)
′
S +

∂ψS

∂ϕS
(ϕS)′S +

∂ψS

∂GradSϕS
·GradS(ϕ

S)′S ,

(ψL)′L =
∂ψL

∂sL
(sL)′L ,

(ψG)′G =
∂ψG

∂ρGR
(ρGR)′G .

(3.30)
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The first addend of the time derivative of the solid free energy can be expressed by the
velocity gradient according to (2.35):

∂ψS

∂ES

· (ES)
′
S = FS

∂ψS

∂ES

FT
S ·DS . (3.31)

Moreover, applying the divergence theorem (A.10) to the last term of (3.30)1 gives

∂ψS

∂GradSϕS
·GradS(ϕ

S)′S = DivS

(
∂ψS

∂GradSϕS
(ϕS)′S

)

− (ϕS)′S DivS

(
∂ψS

∂GradSϕS

)

. (3.32)

In addition, rewriting the liquid saturation with (2.6) and applying the differentiation
rule leads to

(sL)′L =

(
nL

nF

)′

L

=
(nL)′L n

F − nL (nF )′L
(nF )2

=
(nL)′L − sL(nF )′L

nF
. (3.33)

Also, using the saturation condition (2.3) and the reformulation of the material time
derivative relative to the solid motion (2.18), (nF )′L can be rewritten with respect to φS:

(nF )′L = (1− nS)′L = −(nS)′L = −[(nS)′S + gradnS ·wL] , (3.34)

whereby the derivative of the solid volume fraction is given by (3.21)1. Furthermore, (nL)′L
can be substituted by the local mass balance (3.4) and simplified with the incompressibility
assumption (3.1) to

(nL)′L = −nL divvL . (3.35)

Given these reformulations, the material time derivative of the liquid saturation yields

(sL)′L =
1

nF

[
− nLdivvL + sL(−nSdivvS + gradnS ·wL)

]

= − sL divvL
︸ ︷︷ ︸

DL · I

− sL
nS

nF
divvS
︸ ︷︷ ︸

DS · I

+
sL

nF
gradnS ·wL .

(3.36)

Finally, the specific entropy inequality for the current model inserting the material time
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derivatives (3.30) of the free energies under consideration of the reformulations (3.31),
(3.32) and (3.36) and sorting the terms reads

[

TS + nS
(

P + ρLR (sL)2
∂ψL

∂sL

)

I− ρSFS
∂ψS

∂ES

FT
S

]

· DS −

− ρS
[
∂ψS

∂ϕS
−DivS

(
∂ψS

∂GradSϕS

)]

(ϕS)′S −

− ρS DivS

(
∂ψS

∂GradSϕS
(ϕS)′S

)

+

+

[

TL + nL
(

P + ρLR (sL)
∂ψL

∂sL

)

I

]

· DL −

−

[

p̂L − P gradnL + ρLR (sL)2
∂ψL

∂sL
gradnS

]

· wL +

+

[

TG + nGP I

]

· DG −

[

p̂G − P gradnG

]

· wG +

+ nG

[
P

ρGR
− ρGR ∂ψ

G

∂ρGR

]

(ρGR)′G ≥ 0 .

(3.37)

The Coleman-Noll procedure states that the entropy inequality (3.37) has to be fulfilled
for all possible but fixed values of the process variables included in ψα and an arbitrary
choice of their derivatives. Moreover, this approach distinguishes between the equilibrium
and the dissipation (non-equilibrium) contributions of the entropy inequality. In that
sense, also the stresses and momentum productions are split into equilibrium (·)EQ and
non-equilibrium (·)NEQ terms:

Tα = Tα
EQ +Tα

NEQ ,

p̂α = p̂α
EQ + p̂α

NEQ .

(3.38)

Since this model only considers a brittle-elastic solid skeleton, TS
NEQ ≡ 0 holds and the

total partial solid stress results in

TS ≡ TS
EQ . (3.39)
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Equilibrium (reversible) parts

The equilibrium parts (·)EQ of the entropy inequality (3.37) are found by transforming
the inequality into an equality condition DEQ, viz.

DEQ =

[

TS
EQ + nS

(

P + ρLR (sL)2
∂ψL

∂sL

)

I− ρS FS
∂ψS

∂ES

FT
S

]

· DS −

− ρS DivS

(
∂ψS

∂GradSϕS
(ϕS)′S

)

+

+

[

TL
EQ + nL

(

P + ρLR (sL)
∂ψL

∂sL

)

I

]

· DL −

−

[

p̂L
EQ − P gradnL + ρLR (sL)2

∂ψL

∂sL
gradnS

]

· wL +

+

[

TG
EQ + nGP I

]

· DG −

[

p̂G
EQ − P gradnG

]

· wG +

+ nG

[
P

ρGR
− ρGR ∂ψ

G

∂ρGR

]

(ρGR)′G = 0 .

(3.40)

To satisfy this latter, each addend has to fulfil the equality condition on its own. Particu-
larly, the factors belonging to the arbitrary process variables have to vanish for arbitrary
values of Dα, wβ and (ρGR)′G. It follows:

0 = TS
EQ + nS

(

P + ρLR (sL)2
∂ψL

∂sL

)

I− ρS FS
∂ψS

∂ES

FT
S ,

0 = DivS

(
∂ψS

∂GradSϕS
(ϕS)′S

)

,

0 = TL
EQ + nL

(

P + ρLR (sL)
∂ψL

∂sL

)

I ,

0 = p̂L
EQ − P gradnL + ρLR (sL)2

∂ψL

∂sL
gradnS ,

0 = TG
EQ + nGP I ,

0 = p̂G
EQ − P gradnG ,

0 =
P

ρGR
− ρGR ∂ψ

G

∂ρGR
.

(3.41)
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The equilibrium restrictions (3.41) serve to determine the Lagrangean multiplier P and the
equilibrium variables. In addition, the condition (3.41)2 has to be considered separately.
In equilibrium, it is intrinsically fulfilled with (ϕS)′S = 0. Beyond this, (3.41)2 leads to a
continuity equation for the term in bracket when (ϕS)′S ̸= 0. Integrating the term over an
arbitrary volumetric domain Ω0 in the reference configuration and applying the Gaussian
theorem yields

∫

Ω0

DivS

(
∂ψS

∂GradSϕS
(ϕS)′S

)

dV =

∫

∂Ω0

∂ψS

∂GradSϕS
(ϕS)′S · n dA = 0 , (3.42)

with ∂Ω0 the corresponding surface, while dV and dA are the volume and surface elements
in the reference configuration, respectively. Considering closed surfaces, the equation
holds when

∂ψS

∂GradSϕS
· n = 0 , (3.43)

for ϕS between zero and one, and (ϕS)′S between zero and positive values. This equation
will define the boundary condition for the phase-field evolution in the later numerical
study, see Chapter 4.

Remark: Finally, note that the bracket term belonging to the phase-field derivative
(3.37)2 is not considered in the equilibrium condition (3.40). This term vanishes trivially
in an equilibrium state with (ϕS)′S = 0. However, the evolution equation of (ϕS)′S will
be determined as a function of this term by means of the dissipation inequality since
fracturing is an irreversible, dissipative process. 2

Identification of the Lagrangean multiplier and equilibrium quantities

The Lagrangean multiplier P can be identified with the equilibrium condition (3.41)7 as
the gas pore pressure following Ehlers [85]:

P := pGR = (ρGR)2
∂ψG

∂ρGR
, (3.44)

yielding for the equilibrium gas stress

TG
EQ = −nG pGR I . (3.45)

In analogy, the equilibrium liquid stress is postulated to

TL
EQ =: −nL pLR I with pLR := pGR + ρLRsL

∂ψL

∂sL
, (3.46)

where pLR is the liquid pressure. Here, it is convenient to introduce the pressure difference
between the pore gas and the pore liquid as

pD := pGR − pLR = −ρLRsL
∂ψL

∂sL
. (3.47)
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This pressure difference is comparable to the capillary pressure pC in the vadose zone of
unsaturated soil, cf. Bear [20], Fredlund & Rahardjo [111], Helmig [138] and Ehlers [85],
among others. However, pC is always positive in a capillary system, which restricts the
gas pressure to be larger than or equal to the liquid pressure, compare, e. g., the work of
Brooks & Corey [57] and van Genuchten [115]. In contrast, as the injection system of a
fracking process needs a liquid pressure pLR larger than or equal to the gas pressure pGR,
pD can generally become negative. Subsection 3.4.2 will address this issue in detail.

Additionally, inserting (3.44) and (3.46)2 in the equilibrium condition (3.41)1 and consid-
ering the saturation condition (2.5), one obtains for the equilibrium solid stress

TS
EQ + nS

[
(1− sL) pGR + sLpLR
︸ ︷︷ ︸

=: pFR

]
I = ρS FS

∂ψS

∂ES

FT
S . (3.48)

Hereby, the overall pore pressure pFR is given as the sum of the weighted effective fluid
pressures pβR with the respective saturation sβ.

Remark: While pFR is found here as a result of the Clausius-Planck inequality, this
relation recovers Dalton’s law of 1802 [69]. 2

Introducing furthermore the effective solid stressTS
EF as the stress portion that is obtained

from the solid deformation, and considering (3.39), the solid (equilibrium) stress results
in

TS ≡ TS
EQ = −nS pFR I+TS

EF with TS
EF = ρS FS

∂ψS

∂ES

FT
S . (3.49)

Thus, the equilibrium solid stress tensor splits into a weighted pore-pressure part and the
effective stress for which an appropriate constitutive equation will be determined in the
following section. The concept of effective stresses goes back to early investigations in
geomechanics on saturated soils by Fillunger [105, 106] and von Terzaghi [235, 236], and
matches the general definition of extra stresses formulated by Truesdell & Noll [240] in
simpler systems, for example in purely liquid-saturated porous media. A historical review
on the subject can be found, e. g., in the article of de Boer & Ehlers [42].

Moreover, inserting (3.44) and (3.47) in the equilibrium conditions (3.41)4 and exploiting
(2.6), (2.3) and the differentiation rule (A.10), leads for the equilibrium liquid momentum
production p̂L

EQ to

p̂L
EQ = pGR gradnL − sLpD gradnS

= pLR gradnL + pDgrad (sLnF )− sLpD gradnS

= pLR gradnL + pD[sLgradnF + nFgrad sL]− sLpD gradnS

= pLR gradnL + pDnFgrad sL ,

(3.50)

Finally, the equilibrium gas momentum production p̂G
EQ results with (3.44) in (3.41)6 in

p̂G
EQ = pGR gradnG . (3.51)
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Summing-up of stresses and drag forces

Based on the above considerations, it is worth collecting the stresses and drag forces of
all constituents. Given (3.38), (3.45), (3.46)1 and (3.49)1, the individual stresses of solid,
liquid and gas read

TS = −nS pFR I +TS
EF ,

TL = −nL pLR I +TL
NEQ ,

TG = −nG pGR I +TG
NEQ .

(3.52)

Besides, the drag forces of pore liquid and gas can be summarised by use of (3.50) and
(3.51) towards

p̂L = pLRgradnL + pDnFgrad sL + p̂L
NEQ and

p̂G = pGRgradnG + p̂G
NEQ .

(3.53)

Dissipation (non-equilibrium) parts

In contrast to the equilibrium equation (3.40), the dissipation inequality represents the
total dissipation of the system. It is acquired by taking the remainder of (3.37) for the
non-equilibrium, non-vanishing dissipation terms Tβ

NEQ, p̂
β
NEQ and (ϕS)′S:

DNEQ =TL
NEQ · DL − p̂L

NEQ · wL +TG
NEQ · DG − p̂G

NEQ · wG −

− ρS
[ ∂ψS

∂ ϕS
−DivS

∂ψS

∂(GradSϕS)

]

(ϕS)′S ≥ 0 ,
(3.54)

Proceeding again from the Coleman-Noll approach, the above inequality is sufficiently
fulfilled, if each of the single terms is positive on its own. Thus, exploiting the positive
property of proportionality yields

TL
NEQ ∝ DL , p̂L

NEQ ∝ −wL , TG
NEQ ∝ DG , p̂G

NEQ ∝ −wG ,

(ϕS)′S ∝ −ρS
[ ∂ψS

∂ ϕS
−DivS

∂ψS

∂(GradSϕS)

]

.
(3.55)

3.4 Constitutive relations

In the following section, constitutive relations for the solid skeleton and the pore fluids
are elaborated. The choice of the constitutive relations is not arbitrary but follows the
physical behaviour of the constituents and must fulfil the restrictions (3.49) and (3.55)
arising from the entropy inequality of the preceded section.
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3.4.1 Fracturing solid skeleton

In hydraulic fracturing processes, a fracking fluid is pressed into the porous solid, which
answers with tensile stresses forcing the onset and the development of fractures. Whether
a fully saturated or a partially saturated medium is concerned, the fracturing itself is solely
attached to the solid. The stored solid deformation and fracture energy, the effective solid
stress and the phase-field evolution are presented in a geometric linear setting in what
follows.

Linearisation

So far, all quantities have been introduced in a finite kinematic setting, compare Section
2.2. However, for the problem under study, assuming small solid deformations is common
and convenient. In this sense, a geometric linearisation around the undeformed reference
configuration simplifies the formulation of the kinematic and stress quantities. The inter-
ested reader of finite deformations in the context of the TPM is referred, for example, to
the work of Eipper [99], Mahnkopf [180] and Markert [184].

According to Haupt [132], the deformations are considered small when the norm of the
solid displacement gradient is small, viz.

∥ GradSuS ∥≪ 1 . (3.56)

Thus, expressing the solid material deformation gradient FS via the solid’s motion, one
recognises that the solid material deformation gradient nearly equates to the identity
tensor in the context of small deformations, viz.

FS =
∂x

∂XS

=
∂(XS + uS)

∂XS

= I+GradS uS , → ∥ FS − I ∥≪ 1 . (3.57)

From this, linearising the Green-Lagrangean strain tensor ES, cf. (2.29), with regard to
the solid displacement gradient and omitting the higher-order non-linear terms yields

(ES)lin = 1
2
(GradS uS +GradT

SuS) . (3.58)

Moreover, (3.57) implies that the referential and current configurations are close to each
other, allowing the following approximations for the gradient and divergence operators:

GradS(·) ≈ grad(·) , DivS(·) ≈ div (·) , (3.59)

This simplification leads to the final linearised form of the Green-Lagrangean strain tensor:

εS := (ES)lin = 1
2
(graduS + gradTuS) . (3.60)

Regarding the effective solid stresses, the relation (3.49)2 can be expressed in terms of the
Kirchhoff stress tensor τ S

EF with (2.26) and (2.41), viz.

(detFS)T
S
EF

︸ ︷︷ ︸

τ S
EF

= ρS0 FS
∂ψS

∂ES

FT
S , (3.61)
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and further reformulated according to the second Piola-Kirchhoff stress tensor SS
EF , com-

pare (2.40)2, viz.

τ S
EF = FS S

S
EF FT

S → SS
EF = ρS0

∂ψS

∂ES

. (3.62)

Introducing additionally the weighted Helmholtz free energy with the initial solid density
as the solid stored energy W S per bulk volume, i. e. W S := ρS0 ψ

S(ES, ϕ
S,GradS ϕ

S),
yields

SS
EF =

∂W S

∂ES

. (3.63)

Finally, the transport mechanisms are negligible in a geometric linear setting, compare
(3.57). Thus, the stress tensors mentioned above coincide, leading to the linear solid
effective stress

σS
EF := (TS

EF )lin = (τ S
EF )lin = (SS

EF )lin =
∂W S

∂εS
, (3.64)

with W S = W S(εS, ϕ
S, gradϕS).

Besides this, linearising the Jacobi determinant JS and its inverse, cf. (2.23), with regard
to the solid displacement gradient and neglecting the higher-order non-linear terms, yields
with (3.59)

(JS)lin = 1 + div uS and (J−1
S )lin = 1− div uS . (3.65)

Considering this, the solid partial density after (2.26) and the solid volume fraction (3.11)
result in

ρS ≈ ρS0 (1− divuS) and nS ≈ nS
0 (1− divuS) . (3.66)

Finally, the boundary condition (3.43) and the thermodynamical restriction for the phase-
field evolution (3.55)5 simplify in a geometric linear setting with (3.59) to

∂ψS

∂gradϕS
· n = 0 and (ϕS)′S ∝ −ρS

[ ∂ψS

∂ ϕS
− div

∂ψS

∂(gradϕS)

]

. (3.67)

Solid stored energy

Considering that a fracture is induced due to tension and not compression, Miehe et al.
[190] proposed the stored energy for a pure solid based on the spectral decomposition of
the strain, allowing for differentiation of a purely tensile and compression part, compare
Section 2.5. Thereby, the solid strain tensor εS is decomposed relative to the sign of its
eigenvalues εSi into positive and negative principle strains, viz.

εS = ε+S + ε−S with







ε+S =
∑

i

εSi + |εSi|

2
nSi ⊗ nSi ,

ε−S =
∑

i

εSi − |εSi|

2
nSi ⊗ nSi .

(3.68)

Therein, the plus/minus superscripts mark the positive/negative principal strains, and
nSi denotes the eigenvectors. Hence, the proposed formulation of Miehe et al. splits the
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solid stored energy into an elastic tensile energyW S+, an elastic compression energyW S−

and a fracture energy Gc Γ
S:

W S(εS, ϕ
S, gradϕS) =

[
(1− ϕS)2 + ηSr

]
W S+(ε+S ) +W S−(ε−S )+

+Gc Γ
S(ϕS, gradϕS) ,

where







W S+(ε+S ) = µS
(
ε+S · ε+S

)
+

1

2
λS

(
tr εS + |tr εS|

2

)2

,

W S−(ε−S ) = µS
(
ε−S · ε−S

)
+

1

2
λS

(
tr εS − |tr εS|

2

)2

,

ΓS(ϕS, gradϕS) =
1

2ϵ
(ϕS)2 +

ϵ

2
gradϕS · gradϕS .

(3.69)

Therein, µS and λS denote the solid Lamé constants. The viscous stress resistant ηSr
represents a residual artificial stiffness of the solid skeleton, which prevents zero stiffness
in a fully cracked zone. Furthermore, the fracture energy is composed of the critical energy
release rate Gc of brittle solids and the crack-surface density function ΓS. For a detailed
discussion of the critical energy release rate in the model, the interested reader is referred
to Wang et al. [247]. The crack-surface density function ΓS depends on the phase-field
variable ϕS, its gradient and the internal length-scale parameter ϵ, which is responsible
for the thickness of the fractured zone. Note that the phase-field variable only affects the
stored tensile energy and the fracture energy in (3.69).

Solid effective stress

Inserting the proposed formula of the solid stored energy (3.69) into the linearised restric-
tion resulting from the equilibrium part of the entropy inequality (3.64), the linearised
solid effective stress reads

σS
EF =

[

(1− ϕS)2 + ηSr

][

2µSε+S + λS
(
tr εS + |tr εS|

2

)

I

]

+

+ 2µSε−S + λS
(
tr εS − |tr εS|

2

)

I .

(3.70)

With this formulation, the stiffness of the fractured solid skeleton decreases only in tension
direction with an evolving phase field.

Evolution of the phase-field variable

The proportionality request of the dissipation relation (3.67)2 for the phase-field evolution
(ϕS)′S can be satisfied by a linear dependency following Ehlers & Luo [93], i. e.

(ϕS)′S = −
1

M

[
∂W S

∂ϕS
− div

( ∂W S

∂gradϕS

)]

. (3.71)
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Therein,M is introduced as a non-negative mobility parameter responsible for the dissipa-
tion upon stable crack propagation, compare Kuhn & Müller2 [164]. Under consideration
of the formulated solid stored energy (3.69), the evolution equation for the phase-field
variable can be determined as

(ϕS)′S =
1

M

[

2(1− ϕS)W S+ −Gc

( ϕS

ϵ
− ϵ div gradϕS

)]

(3.72)

with
gradϕS · n = 0 (3.73)

as the corresponding boundary condition according to the restriction (3.67)1.

To avoid a singularity caused by a zero-value denominator, the evolution equation (3.72)
is reformulated to:

M(ϕS)′S = 2(1− ϕS)W S+ −Gc

( ϕS

ϵ
− ϵ div gradϕS

)

. (3.74)

Remark: In Ehlers & Luo [93], the mobility parameterM has been explained physically
as a viscosity parameter. There, it was found that in case of M larger than 106 Pa s,
while W S+ and Gc/ϵ are in the range of 106 − 107 J/m3, an increase of M results in a
delay of crack nucleation and propagation. However, the mobility parameter can also be
understood as a purely numerical parameter that has a stabilising effect on the computa-
tion, also compare Miehe et al. [193] for a monolithic solution and Miehe et al. [190] for
a staggered solution of a purely solid fracturing process. 2

3.4.2 Fluid pressure

The following subsections present the constitutive relations for a partially saturated
porous material, where two immiscible fluid phases percolate the fracturing solid skele-
ton. The constitutive relations concern the interaction between the fluids themselves and
the interaction forces between the fluid phases and the solid. Multiphasic flow processes
in intact porous material are discussed in detail, for example, in the work of Bear [20],
Hassanizadeh & Gray [129, 130], Helmig [138] and Ehlers et al. [92]. Moreover, a detailed
description of the liquid behaviour in a fully saturated fracturing porous media can be
found, e. g., in Luo [178].

As the two fluid phases are considered immiscible, they occupy different pore volumes
of the porous material and are separated on the microscale by a mobile interface. They
exhibit, accordingly, different pressures. At this interface, the molecular cohesion within
and adhesion between the phases cause surface tension without external load. The re-
lated displacement of the fluids in the pore space responds to capillary effects at the
microscale. The following briefly introduces it before considering the resulting effects
on the macroscale. Finally, the pressure behaviour during a dynamic injection will be
discussed.

2In Kuhn & Müller [164], the mobility parameter is the inverse of M in (3.71)-(3.74).
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Capillarity on the microscale

A pore can be considered a vertical tube in an idealised representation on the microscale,
compare Figure 3.1. In the case of a liquid-gas mixture in the pore space, the solid
molecules attract the liquid molecules at the interfacial area due to adhesive forces. By
this, the liquid displaces the gas and wets the solid. Due to the surface tension, the
interfacial area curves, here with a circular cross-section with an angle ω, see Figure 3.1,
and involves a spontaneous pressure drop.

Figure 3.1: Depiction of an idealised pore at the microscale.

According to their characteristics, the fluid with an acute angle to the solid is termed
the wetting fluid, here the liquid, and the fluid with an obtuse angle is referred to as
non-wetting fluid, here the gas. The (always positive) pressure difference between the
non-wetting and the wetting pressures, pnw and pw, respectively, is termed microscopic
capillary pressure pc. It can directly be related to the surface tension γs and the tube’s
radius r via

pc := pnw − pw =
2 γs cosω

r
. (3.75)

Note for clarity that the superscripts for microscopic values are lowercase letters, and
those for macroscopic values are capital letters. For a complete overview of capillary and
wettability effects at the microscale, the reader is referred, e. g., to the work of Bear [20],
Hassanizadeh & Gray [129, 130], Helmig [138] and Blunt [36] and citations therein.

The Young-Laplace equation (3.75) states equilibrium in pressure between the two sides
of the interface at the pore scale. Analogously, the macroscopic phase-pressure difference
captures the capillary effects on the macroscale. This pressure is always measured at equi-
librium and cannot represent dynamic processes. Since an injection, as it is considered
for hydraulic fracturing, poses a highly dynamic process, a modified description of the
pressure difference is needed in this case. In the following paragraph, (equilibrium) cap-
illarity at the macroscale is first discussed, and then, in a further paragraph, a modified
description of the pressure within dynamic injection processes is proposed.

Capillarity on the macroscale

The phase-pressure difference pC at equilibrium on the macroscale, also named the macro-
scopic capillary pressure, is defined in analogy to (3.75) as the pressure difference between
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the effective gas pore pressure pGR and the effective liquid pore pressure pLR, viz.

pC := pGR − pLR . (3.76)

The dependence of the microscopic capillary pressure on the surface tension and interface
curvature in (3.75) is then expressed on the macroscale in a relation between the phase-
pressure difference, the saturation and the geometry of the pores, compare Brooks &
Corey [58]. There are many experimental and empirical approaches to determine this
relationship specific to the system’s properties, for example, the combination of the three
phases, the temperature, the grain size distribution, and the hysteresis of the process’s
direction (drainage or imbibition), to name a few. An overview of the different approaches
and their applicability can be found, e. g., in the work of Sheta [223]. One important
aspect here is that all states of the pressure-difference-saturation models are equilibrium
states. In particular, the laboratory techniques, which involve changing fluid saturation
in small increments, ensure that the saturation level remains stable, allowing enough
time for equilibrium. Among the best-known empirical approaches for liquid-gas systems
are those of Brooks & Corey [57] and van Genuchten [115]. Both models deal with the
effective saturation sLeff., defined as

sLeff. =
sL − sLr

1− sLr − sGr
(3.77)

for sLr ≤ sL ≤ 1− sGr , see, e. g., Mualem [198]. Therein, sLr and sGr are the residual liquid
and gas saturations, respectively, and stand for the saturation portions above which the
respective fluid becomes mobile. Note that Brooks & Corey assumed that sGr = 0, see
also the work of Corey [66]. A discussion of the different definitions of effective saturation
can be found, for example, in the textbook of Helmig [138].

Brooks & Corey [57] established a function between the slope of the effective saturation’s
logarithmic curve and the phase-pressure difference’s logarithm, leading to

sLeff.(p
C) =

[ pd
pC

]λ

for pC ≥ pd → pC(sLeff.) = pd [s
L
eff.]

− 1

λ , (3.78)

with λ > 0 the pore size distribution factor and pd the displacement pressure. Therein, λ
has a small value for a porous medium with a wide range of pore sizes and a large value
for a porous medium with a uniform pore size. Moreover, Brooks & Corey described pd
as the approximate minimum of the capillary pressure at which a continuous gas phase
exists in the porous medium during drainage.

Besides this, van Genuchten [115] formulated the macroscopic capillary-pressure-saturation
function with respect to the definition of the effective saturation (3.77) as follows

sLeff.(p
C) = [1 + (αG p

C)n]−m for pC > 0 → pC(sLeff.) =
1

αG

[
(sLeff.)

− 1

m − 1
] 1

n (3.79)

with the pore space geometry parameters αG, m and n determined based on experimental
data.
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Figure 3.2: Phase-pressure difference-saturation curve with respect to the Brooks-Corey [57]
and van Genuchten [115] model. Parameters after Lenhard et al. [171].

Remark: Lenhard et al. [171] derived correlations between Brooks & Corey’s and van
Genuchten’s model parameters. 2

The two models are depicted in Figure 3.2. In the case of a spontaneous drainage process,
the (positive) pressure difference increases, and the gas displaces the liquid through the
pore space, by which the liquid saturation decreases. In contrast, in the case of a spon-
taneous imbibition process, the pressure difference decreases, and the liquid displaces the
gas.

Remark: When successive imbibition and drainage processes occur, the macroscopic
capillary-pressure-saturation curve undergoes hysteresis effects. These latter are omitted
here as no recurring imbibition and drainage processes are regarded in this monograph.
However, concepts with hysteresis effects can be found, e. g., in the work of Mualem [198],
Kool & Parker [161] and Lenhard [170]. For an overview of this topic, the interested
reader is referred to Bear [20], Helmig [138] and Blunt [36], among others. 2

Injection process

In fracturing processes, the liquid is injected into the porous solid domain. In this case, no
equilibrium state is achieved. This is a decisive difference compared to the capillary effects
described in the previous paragraphs. In order to capture the significance of the dynamic
process, Manthey [182] discussed, based on a dimensional analysis, the dominating forces
related to the viscous, dynamic and equilibrium (capillary) effects within multiphasic sys-
tems. The dynamic effects dominate with increasing flow velocity and decreasing length
scale of a system. Therefore, in the case of hydraulic fracturing, where high liquid veloc-
ities are reached, the dynamic process of the liquid injection is the system’s driving force
and needs to be considered in detail. While the pressure-difference-saturation relation was
unique for equilibrium conditions, it is no longer the case when dynamic processes are
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considered. Particularly, the pressure-difference-saturation relation becomes a function of
the rate-dependent behaviour of the saturation. Different approaches, experimental and
theoretical, have been developed to capture this dependence. Most of them, e. g., Stauf-
fer [230], Kalaydjian [152] and Hassanizadeh et al. [126], suggest the difference between
a dynamic and an equilibrium capillary pressure, pCdyn and pC , respectively, as a linear
function of the rate of change of saturation, viz.

pCdyn − pC(sLeff) = −τ
∂sLeff
∂t

, (3.80)

where τ is the damping coefficient. This latter has to be carefully determined by me-
thodical or laboratory studies. Manthey [182] found out that the relationship between
the difference in capillary pressure and the rate of saturation change is non-linear at low
rates of saturation change. The complexity of such dynamic processes is high and can
not be represented in conventional hydromechanical equations. Here, the change of equi-
librium and dynamic processes will be represented by a mathematical sign change in the
pressure-difference-saturation relation pD(sL), whereby the equilibrium and dynamic cap-
illary pressure are united in the pressure term pD = pC ∪ pCdyn. Thus, in order to include
both equilibrium and dynamic processes in one single simplified function, the liquid free
energy is introduced a priori as

ψL(sL) =
a

ρLR

[
b

sL
+ c ln

(
sL

1− sL

)

− d ln sL
]

, (3.81)

such that with (3.47) the pressure difference reads

pD(sL) = −ρLRsL
∂ψL

∂sL
= a

[
b

sL
−

c

1− sL
+ d

]

. (3.82)

The fitting constants a, b, c and d allow an adjustment in the above equations. Finally, the
curve of pD(sL) describes an asymptotic function satisfying equilibrium capillary effects
for pD ≥ 0, while a dynamic injection is described in the range of pD < 0, compare
Figure 3.3. In the present context, the switch between capillary effects and dynamic
injection, where pGR = pLR holds, has been set at sL = 0.7. This state will also be the
initial state for all numerical examples of hydraulic fracturing in Chapter 5. On the left
side of this starting point, equilibrium capillary effects hold, where the gas can displace
the liquid (drainage) or vice versa (imbibition). Thereby, pGR > pLR is valid. On the
other hand, in this model, the liquid displaces the mobile gas during a dynamic liquid
injection with pLR > pGR. Note that the pressure-difference-saturation function restricts
sL ̸= {0, 1} and implicitly includes residual liquid and gas saturations.

Remark: Similar curves at the pore level can be found in petroleum engineering for
water-oil mixtures, see, e. g., Amott [13], Anderson [14], Kovscek et al. [163], Blunt [35, 36],
Øren et al. [205], Dixit et al. [77], Al-Futaisi & Patzek [2], among others. However, the
change from the “spontaneous displacement” to the “forced injection” processes (where
the water pressure exceeds the oil pressure) is correlated with a wettability change of the
water and oil. In this monograph, no wettability changes are present. 2
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Figure 3.3: Pressure-difference function pD over liquid saturation sL with following values:
pD = 0 [Pa] at sL = 0.7 [ - ] and a = 5 · 10−3 [Pa], b = 4000.5 [ - ], c = 1714.5 [ - ] and d = 0 [ - ].

Considering Figure 3.3, the capillary suction − and therewith the gas pressure − is rel-
atively low compared to the liquid pressure during the injection process, which is in the
range of MPa. For this reason, some contributions neglect the role of capillary suction
during the injection process, e. g., Heider & Sun [137]. However, since this thesis aims to
study in detail the interaction among the fluid phases during the hydraulic crack propaga-
tion, the pressure-difference-saturation function plays a significant role here. This effect
will be shown in the numerical examples in Chapter 5, Section 5.2.

3.4.3 Fluid flow

Based on the restrictions arising from the dissipation inequality (3.55)1−4, the non-equilib-
rium momentum productions and frictional fluid stresses, p̂β

NEQ and Tβ
NEQ, are assumed

proportional to either the seepage velocities wβ or the fluid velocity gradients Dβ, re-
spectively. Following the work of Ehlers & Luo [93, 94], these quantities are introduced
via

p̂β
NEQ = −(1− ϕS)2(nβ)2

γβR

Kβ
r

wβ , Tβ
NEQ = 2(ϕS)2nβµβRDβ , (3.83)

where γβR = ρβR|g| is the specific weight of φβ and µβR the effective shear viscosity of the
pore fluids. Moreover, Kβ

r defines the relative fluid conductivity and will be introduced
in the next subsection.

By inclusion of ϕS in the above equations, the pore fluids undergo a transition between
a Darcy-type flow in the unbroken porous-media domain with ϕS = 0, governed by the
drag forces p̂β

NEQ, and a Navier-Stokes flow in fully broken zones with ϕS = 1, governed

by the frictional Newton terms Tβ
NEQ. A detailed derivation of these limit states is shown

in Appendix B.2. This result is in line with the observations of Beavers & Joseph [21],
who investigated the transition zone of pore liquids between a porous-media flow and a
free flow, compare also Ehlers & Luo [94] and Luo [178].
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However, more than this consideration is required when geological materials are regarded.
Notably, in naturally grown soil and rock, not only open but also closed fractures occur.
The fractured zones might close again, or there might even be closed precracks due to the
amount of confining stresses caused by the load of the upper layers of the stratum. In
these cases, the fluids permeate the fractured but closed domain by a Darcy-type flow,
like in the surrounding unbroken porous material. This is in contradiction to (3.83),
where the evolution of a fracture with growing values of ϕS is interpreted as a fracture
opening. While this might not be of interest in the frame of standard solid mechanics, it
matters strongly when porous media are concerned. As a result and in order to distinguish
between open and closed cracks, Ehlers & Luo [94] introduced another variable into this
constitutive approach, namely the crack-opening indicator I (COI). Since an enlarging
pore space is an indicator for open fractures and nF is growing when nS is shrinking
through positive values of divuS, compare (2.3) and (3.66)2, the COI takes the binary
values zero or one as follows:

I =

{
1: for increasing porosity nF > nF

0 with divuS > 0 ,
0: for decreasing or constant porosity nF ≤ nF

0 with divuS ≤ 0 ,
(3.84)

where nF
0 is the initial porosity. Embedding the COI in the relations (3.83) through

p̂β
NEQ = −[1− I + I(1− ϕS)2](nβ)2

γβR

Kβ
r

wβ , Tβ
NEQ = 2 I(ϕS)2nβµβRDβ , (3.85)

leads to the properties:

Table 3.1: Hydraulic fracturing and flow in porous media depending on ϕS and I after [94]

Phase field ϕS COI I Description Flow type

0 1 intact solid with enlarging pores Darcy

0 0 intact solid with shrinking pores Darcy

1 1 fractured solid with open cracks Navier-Stokes

1 0 fractured solid with closed cracks Darcy

Thus, for an intact porous material with ϕS = 0, the extra momentum productions
dominate the fluid flow and yield a Darcy-type flow, regardless of the porosity evolution,
i. e. I = {0, 1}. Nevertheless, in the case of fully broken material with ϕS = 1, two states
are distinguished through I. On the one hand, the frictional forces div Tβ

NEQ govern the
fluid flows and follow the Navier-Stokes equation when I = 1. On the other hand, when
I = 0, the broken domain behaves like an intact one, and the fluid flows follow the Darcy
law again. Between these cases, when 0 < ϕS < 1, the phase-field variable determines the
transition between these flow types.

A full description of the introduction and applicability of the COI can be found in the
work of Ehlers & Luo [94] and Luo [178].
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3.4.4 Fluid conductivity

When multiple fluid phases are present in the pore space, they interfere with each other’s
flow behaviour. Therefore, the drag forces p̂β

NEQ included in (3.83)1 and (3.85)1 depend on

relative fluid conductivitiesKβ
r , which are related to the standard hydraulic conductivities

Kβ through relative permeability factors κβr :

Kβ
r := κβrK

β . (3.86)

Note that Kβ is also known as Darcy permeability and governs the permeating behaviour
of a single fluid (liquid or gas) under fully saturated conditions. It is defined in [m3/(m2 s)],
in short [m/s]. The dimensionless relative permeability factors regulate the permeability
of the particular fluid φβ by its saturation in the pore space, viz. κβr = κβr (s

β). Through
the relation (2.5), both saturation variables can be expressed over the liquid saturation sL,
leading to κβr = κβr (s

L). The dependence of the relative permeability on the saturation was
already recognised experimentally in soil science and petroleum engineering in the 1930s,
cf. Richards [211], Muskat et al. [200] and Leverett [172], among others. Since then, many
empirical approaches have been developed to determine the relative permeability factors,
compare, e. g., the work of Ahmed [1] and Sheta [223] for an overview of these relations.
Among the most prominent concepts is the Brooks-Corey approach [57]. Brooks & Corey
substituted their capillary-pressure-saturation relation (3.78) into the capillary tube model
after Burdine3 [60], leading to the following formulation for the relative permeability
factors

κLr = [sL]
2+3λ

λ and κGr = (1− sL)2 [ 1− (sL)
2+λ
λ ] . (3.87)

Remark: Strictly speaking, Brooks & Corey formulated this relation for the effective
liquid saturation sLeff instead of sL, cf. (3.77). However, since residual saturations are
implicit in the asymptotic curve of the pressure-difference-saturation function, compare
Figure 3.3, sLeff has been replaced by sL here. 2

Figure 3.4 displays the permeability factors κLr and κGr as a function of sL for a poorly
sorted and a well-sorted soil, with λ = 1 and λ = 3, respectively, according to Brooks &
Corey [57]. Generally speaking, when the saturation increases, the fluid displaces the other
fluid phase and takes up more space, which allows the particular fluid to flow more easily.
This phenomenon is reflected in the relative permeability factor, which increases until one
with the saturation. Conversely, when the saturation falls below a certain threshold, in
other words, when the amount of interconnected fluid particles decreases towards zero,
κβr vanishes, and the system is impermeable for the particular fluid constituent.

Remark: The increase of the relative permeability factor in the range of lower saturations
is more decisive for the pore gas than for the pore liquid. This difference is because
the liquid, as the wetting phase here, prefers to fill the smaller pores. There, the flow
conditions are more difficult than in the larger pores, where the pore gas, the non-wetting

3Therein, the porous medium is modelled via several parallel capillary tubes with different cross-
sections (pore sizes) perpendicular to the direction of flow and constant cross-sections in the direction
of flow. In contrast, the van Genuchten model [115] for the relative permeability factors is based on
Mualem’s capillary tube model with variable pore size in both directions, cf. Mualem [198].
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phase, is mainly located. This behaviour is accentuated in the case of poorly sorted soil,
compare the dashed to the solid line in Figure 3.4. 2
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Figure 3.4: Relative permeability factors after Brooks & Corey [57] as a function of the liquid
saturation sL for poorly sorted soil (λ = 1, dashed line) and well-sorted soil (λ = 3, solid line).

Note that different flow behaviours can occur at the same saturation depending on whether
wetting or drying is in process. Accordingly, similar to the hysteresis effect in capillarity,
history effects on saturation may also occur for relative permeabilities. An overview of
the different hysteresis models can be found, e. g., in the work of Sheta [223]. In this
monograph, no hysteresis will be considered.

While Kβ describes the conductivity behaviour of a single fluid under fully saturated
conditions, Kβ can be related to the intrinsic solid permeability KS through

KS

µβR
=
Kβ

γβR
(3.88)

with KS in [m2] and µβR in [Pa s], compare Ehlers [88]. The deformation-dependent solid
intrinsic permeability is defined following Eipper [99] via

KS :=

(
1− nS

1− nS
0

)κ

KS
0 . (3.89)

Therein, KS
0 stands for the initial solid permeability in the reference configuration, and

κ > 0 is a material parameter adjusting the dependency of the permeability on the
solid deformation. In this monograph, κ is chosen as one. Note that KS can be a
tensorial quantity KS in non-isotropic permeability circumstances. The interested reader
on this topic is referred, e. g., to the work of Markert [185] and citations therein. Further
information on permeability estimations in porous media with regular structure can be
found in Wagner et al. [245].
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3.4.5 Pore gas density

As the pore gas has been assumed to represent an ideal gas following Boyle’s law, it can
be described by the free-energy function

ψG(ρGR) = RGθ ln ρGR , such that pGR = RGθρGR , (3.90)

where (3.44) has been used. In the above equations, RG is the specific gas constant and
θ the absolute temperature after Kelvin, which is assumed constant in this study. Note
that the absolute values can be employed as excess values relative to the atmospheric
pressure patm. In that sense, the absolute gas pressure pGR is defined as the sum of the
atmospheric pressure with a mean value (at sea level) of approximately patm = 101 325Pa
and the gas excess pressure pGR

excess, viz.

pGR = pGR
excess + patm , (3.91)

such that the gas excess pressure reads

pGR
excess = RGθρGR − patm . (3.92)

From this, the following relation holds for the gas density:

ρGR =
pGR
excess

RGθ
+ ρGR

atm with ρGR
atm =

patm
RGθ

. (3.93)

In order to simplify the appearance of the following equations, the term pGR
excess is substi-

tuted by the term pGR in the numerical study, such that

pGR := pGR
excess . (3.94)

It should be noted that, as pGR is defined as excess pressure, the same is applied to the
liquid pressure pLR.

3.5 Closure problem for the fully coupled system

Finally, this section summarises the previous constitutive modelling of the coupled TPM
model with an embedded phase-field approach to fracture. The closure problem is detailed
for the partially saturated porous material, and the governing equations for the biphasic,
fully saturated porous material are outlined.

3.5.1 Triphasic material

The governing equations for the numerical computation of the triphasic problem under
study can be taken from Table 3.2. Therein, the momentum balances have been taken from
(3.13) and (3.15), and the mass and volume balances from (3.8) and (3.9)2, respectively.
These equations together with the phase-field evolution equation (3.72), the constitutive
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relations and the initial and boundary conditions define the strong form of the initial-
boundary-value problem resulting in a system of 12 scalar differential equations that have
to be solved in a monolithic manner. Note that the solid displacement-velocity relation
does not count here, as it is solved locally in order to reduce the order of time derivatives
of the solid motion from second to first order.

As mentioned, the overall momentum balance has been included instead of the solid
momentum balance here. This choice is due to the fact that the overall external load can
only be placed onto the overall surface, while a distribution to the individual constituents
remains a result of deformations, velocities and stiffnesses of the constituents. Concerning
the corresponding numerical solution derived in the next chapter, the primary variables
for this coupled system are chosen as the solid displacement uS, the solid, liquid and gas
velocities, vS, vL and vG, the liquid saturation sL, the gas pressure pGR and the phase-
field variable ϕS, respective to the equations in Table 3.2. Moreover, all temporal changes
are considered with respect to the skeleton motion, making use of the seepage velocities
wβ = vβ − vS, with β = {L,G}.

Table 3.2: Summary of the governing partial differential equations in their strong forms of the
partially saturated model.

Solid displacement-velocity relation

(uS)
′
S = vS

Overall momentum balance

ρS(vS)
′
S + ρL

[
(vL)

′
S + (gradvL)wL

]
+ ρG

[
(vG)

′
S + (gradvG)wG

]
=

div (σS
EF +TL

NEQ +TG
NEQ − pFR I) + ρg

Liquid momentum balance

ρL
[
(vL)

′
S + (gradvL)wL

]
= divTL

NEQ + ρLg + p̂L
NEQ − nLgrad pLR + pDnFgradsL

Gas momentum balance

ρG
[
(vG)

′
S + (gradvG)wG

]
= divTG

NEQ + ρGg + p̂G
NEQ − nGgrad pGR

Liquid volume balance

(nL)′S + nLdiv (uS)
′
S + div (nL wL) = 0

Gas mass balance

(ρG)′S + ρGdiv (uS)
′
S + div (ρGwG) = 0

Phase-field evolution equation

(ϕS)′S =
1

M

[

2(1− ϕS)W S+ −Gc

(ϕS

ϵ
− ϵ div gradϕS

)]

In the following, the secondary equations are summarised. This set of coupled equations
is the basis for the numerical implementation.
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First, the volume fractions are defined through the integrated solid volume balance (3.11),
the condition (2.3) and the saturation definition (2.6):

nS = nS
0 (1− divuS) ,

nF = 1− nS ,

nL = sL nF ,

nG = (1− sL)nF .

(3.95)

Besides the gas pore pressure, which is a primary variable, the fluid pressures are given
by

pD = pD(sL) , depending on the specific problem,

pLR = pGR − pD ,

pFR = sL pLR + (1− sL) pGR .

(3.96)

Therein, the pressure-difference-saturation relation depends on the specific problem. More-
over, the solid and liquid phases are assumed incompressible, with ρSR ≡ const. and
ρLR ≡ const., while the gas density reads

ρGR =
pGR

RGθ
+ ρGR

atm with ρGR
atm =

patm
RGθ

. (3.97)

The elastic strain tensor can be computed based on the solid displacement and split to

εS = ε+S + ε−S with







ε+S =
∑

i

εSi + |εSi|

2
nSi ⊗ nSi ,

ε−S =
∑

i

εSi − |εSi|

2
nSi ⊗ nSi ,

(3.98)

with εSi the eigenvalues and nSi the eigenvectors of the strain tensor εS. From this and
the phase-field (primary) variable, the linearised solid stress tensor yields

σS
EF =

[

(1− ϕS)2 + ηSr

][

2µSε+S + λS
(
tr εS + |tr εS|

2

)

I

]

+

+ 2µSε−S + λS
(
tr εS − |tr εS|

2

)

I .

(3.99)

The momentum productions and frictional fluid stresses read

p̂β
NEQ = −[1− I + I(1− ϕS)2](nβ)2

γβR

Kβ
r

wβ ,

Tβ
NEQ = 2 I(ϕS)2nβµβRDβ ,

(3.100)

whereby the relative permeabilities are calculated by

Kβ
r = κβrK

β = κβr
γβRKS

µβR
(3.101)
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with the intrinsic solid permeability

KS =

(
1− nS

1− nS
0

)

KS
0 , (3.102)

and the relative permeability factors according to Brooks & Corey [57], namely

κLr = [sL]
2+3λ

λ and κGr = (1− sL)2 [ 1− (sL)
2+λ
λ ] . (3.103)

Finally, with the equations of Table 3.2 and the constitutive setting summarised above,
the continuum-mechanical problem is closed for the partially saturated case.

3.5.2 Reduction to biphasic material

Regarding a fully saturated porous material, only one single fluid fills the pore space.
This fluid is usually a materially incompressible pore liquid. In this case, the liquid
saturation sL reduces to one, and the pressure-difference-saturation condition becomes
unnecessary. Moreover, the governing equations simplify, such that the gas balances of
mass and momentum vanish. For convenience, the reduced set of governing equations is
listed in Table 3.3. For a complete description of the theoretical and numerical treatment
of fully saturated porous media combined with the phase-field approach to fracture, the
interested reader is referred to Ehlers & Luo [93, 94], Luo [178], Ehlers & Wagner [98]
and Appendix C.2.

Table 3.3: Summary of the reduced set of governing equations in their strong forms of the fully
saturated model.

Solid displacement-velocity relation

(uS)
′
S = vS

Overall momentum balance

ρS(vS)
′
S + ρL

[
(vL)

′
S + (gradvL)wL

]
= div (σS

EF +TL
NEQ − pLR I) + ρg

Liquid momentum balance

ρL
[
(vL)

′
S + (gradvL)wL

]
= divTL

NEQ + ρLg + p̂L
NEQ − nLgrad pLR

Liquid volume balance

(nL)′S + nLdiv (uS)
′
S + div (nL wL) = 0

Phase-field evolution equation

(ϕS)′S =
1

M

[

2(1− ϕS)W S+ −Gc

(ϕS

ϵ
− ϵ div gradϕS

)]





Chapter 4:
Numerical Treatment

The governing equations of the closure problem must be fulfilled simultaneously at each
point of the considered domain occupied by the mixture body. Solving this system of
partial differential equations analytically is not possible for arbitrary problems. Therefore,
the domain is discretised in space and time, and the set of equations is solved numerically
for the discretised domain. A typical numerical technique in engineering applications is the
Finite-Element Method (FEM). Therein, the problem is divided into smaller subdomains
called finite elements, and a global system of equations is formed by assembling the
equations from all the elements. This system represents the entire problem domain and
can be solved numerically to obtain approximate solutions for the unknowns within the
domain. A comprehensive overview of this method is given, e. g., in Bathe [19], Braess
[54], Zienkiewicz & Taylor [260]. For the solution of multiphasic problems within the
FEM framework, Eipper [99], Ellsiepen [100], and Ammann [11] set up the fundamentals
for the numerical tool PANDAS. This solver is particularly suitable for treating strongly
coupled problems and proceeds from a monolithic solution of the complete system of
partial differential equations.

This chapter encompasses the numerical implementation of the triphasic porous media
model to fracture within PANDAS. The weak formulations of the governing equations
are derived, and the spatial and temporal discretisation are introduced. After that, par-
ticular numerical treatments are outlined concerning the fracturing problem such as the
implementation of the irreversibility condition and the definition of pre-fractured areas.

4.1 Finite-Element Method

The governing equations of Table 3.2 together with the initial and boundary conditions
define the strong form of the initial-boundary-value problem (IBVP). As mentioned in the
previous chapter, the set of primary variables used in this monograph consists of the solid
velocity vS belonging to the overall momentum balance, the liquid and gas velocities, vL

and vG, corresponding to the fluid momentum balances of pore liquid and pore gas, the
liquid saturation sL corresponding to the liquid volume balance, the gas pressure pGR

corresponding to the gas mass balance, and the phase-field variable ϕS corresponding
to the phase-field evolution equation. Moreover, the solid displacement uS corresponds
to the displacement-velocity relation (uS)

′
S = vS in order to reduce the set of partial

differential equations from second to first order in time. Summarising the variables in an
abstract vector u leads to

u(x, t) = [uS vS vL vG sL pGR ϕS]T . (4.1)

63
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Remark: This set of primary variables has been chosen based on the specific IBVP
computed in Chapter 5 and assures a robust solution scheme. For other IBVP, another
combination of primary variables for the liquid volume and gas mass balance might be
appropriate, such as pLR and pGR, compare, e. g., Helmig [138]. A detailed discussion on
the choice of primary variables for multiphase flow in porous media can be found in Wu
& Forsyth [255]. 2

To build the particular IBVP, initial conditions for the primary variables need to be
specified, i. e.

u(x, t0) = u0(x) . (4.2)

Moreover, the boundaries ∂Ω of the spatial domain Ω are split into Dirichlet (essential)
boundaries ∂ΩD and Neumann (natural) boundaries ∂ΩN . For any arbitrary boundary,
either a Dirichlet boundary condition or a Neumann boundary condition has to be defined
exclusively for each primary variable in order to have a unique solution of the equation:

∂ΩvS
= ∂ΩvS

D ∪ ∂Ωt̄

N , ∅ = ∂ΩvS

D ∩ ∂Ωt̄

N ,

∂ΩvL
= ∂ΩvL

D ∪ ∂Ωt̄
L

N , ∅ = ∂ΩvL

D ∩ ∂Ωt̄
L

N ,

∂ΩvG
= ∂ΩvG

D ∪ ∂Ωt̄
G

N , ∅ = ∂ΩvG

D ∩ ∂Ωt̄
G

N ,

∂ΩsL = ∂ΩsL

D ∪ ∂Ωv̄L

N , ∅ = ∂ΩsL

D ∩ ∂Ωv̄L

N ,

∂ΩpGR = ∂ΩpGR

D ∪ ∂Ωv̄G

N , ∅ = ∂ΩpGR

D ∩ ∂Ωv̄G

N ,

∂ΩϕS = ∂ΩϕS

D ∪ ∂Ωv̄φ
S

N , ∅ = ∂ΩϕS

D ∩ ∂Ωv̄φ
S

N .

(4.3)

Therein, the Dirichlet boundary conditions define the exact value of the primary variable
on the boundary, while the Neumann boundary conditions address the flux of the pri-
mary variable over the respective boundary. The fluxes {t̄, t̄L, t̄G, v̄L, v̄G, v̄ϕ

S

} on the
Neumann boundaries will be specified in Subsection 4.1.1. Finally, note that no bound-
ary statement for the solid displacement-velocity relation has been listed. Although the
solid displacement-velocity relation will be discretised in space to determine the solid
displacement, it does not involve a Neumann boundary, see Subsection 4.1.1.

The ansatz (trial) functions of the primary variables (4.2) read

AuS(t) := { uS ∈ H1(Ω)d : uS(x) = ūS(x, t) on ∂ΩuS

D } ,

AvS(t) := { vS ∈ H1(Ω)d : vS(x) = v̄S(x, t) on ∂ΩvS

D } ,

AvL(t) := { vL ∈ H1(Ω)d : vL(x) = v̄L(x, t) on ∂ΩvL

D } ,

AvG(t) := { vG ∈ H1(Ω)d : vG(x) = v̄G(x, t) on ∂ΩvG

D } ,

AsL(t) := { sL ∈ H1(Ω) : sL(x) = s̄L(x, t) on ∂ΩsL

D } ,

ApGR

(t) := { pGR ∈ H1(Ω) : pGR(x) = p̄GR(x, t) on ∂ΩpGR

D } ,

AϕS

(t) := { ϕS ∈ H1(Ω) : ϕS(x) = ϕ̄S(x, t) on ∂ΩϕS

D } ,

(4.4)
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with d ∈ {1, 2, 3} as the spatial dimension of the problem. The ansatz functions are
chosen from the Sobolev space H1(Ω)d in order to ensure the square-integrability of their
first derivative on Ω (cf. Braess [54]). The respective test (weighting) functions are given
by

T uS := { δuS ∈ H1(Ω)d : δuS(x) = 0 on ∂ΩuS

D } ,

T vS := { δvS ∈ H1(Ω)d : δvS(x) = 0 on ∂ΩvS

D } ,

T vL := { δvL ∈ H1(Ω)d : δvL(x) = 0 on ∂ΩvL

D } ,

T vG := { δvG ∈ H1(Ω)d : δvG(x) = 0 on ∂ΩvG

D } ,

T sL := { δsL ∈ H1(Ω) : δsL(x) = 0 on ∂ΩsL

D } ,

T pGR

:= { δpGR ∈ H1(Ω) : δpGR(x) = 0 on ∂ΩpGR

D } ,

T ϕS

:= { δϕS ∈ H1(Ω) : δϕS(x) = 0 on ∂ΩϕS

D } .

(4.5)

Note that on the Dirichlet boundary, the ansatz functions satisfy the Dirichlet boundary
conditions, viz. u(x, t) = ū(x, t), while the test functions vanish, viz. δu(x) = 0.

4.1.1 Governing equations in their weak formulation

Since it is not possible to solve the governing equations at each material point of the
domain, the equations are handled in an integral manner and no longer point-wise at
each material point. In that sense, the set of local governing equations of Table 3.2 is
recast in a weak (global) form Gu . Therefore, the governing equations in their strong form
are multiplied with the respective test functions δu and integrated over the domain Ω.

For example, the solid displacement-velocity relation reads in its weak form:

GuS
(u , δuS) ≡

∫

Ω

[ (uS)
′
S − vS ] · δuS = 0 . (4.6)

Moreover, to introduce the (natural) Neumann boundary, particular volume integrals are
transformed into surface integrals by applying the Gaussian theorem.

By this, the weak form of the overall momentum balance reads

GvS
(u , δvS) ≡

∫

Ω

[
ρS(vS)

′
S + ρL(vL)

′
S + ρG(vG)

′
S

]
· δvS dv+

+

∫

Ω

[
ρL(gradvL)wL + ρG(gradvG)wG

]
· δvS dv+

+

∫

Ω

(
σS

EF +TL
NEQ +TG

NEQ − pFR I
)
· gradδvS dv−

−

∫

Ω

ρg · δvSdv −

∫

∂Ωt̄

N

t̄ · δvS da = 0 ,

(4.7)
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with t̄ :=
(
σS

EF +TL
NEQ +TG

NEQ − pFR I
)
n as the stress vector acting on the Neumann

boundary ∂Ωt̄

N of the overall mixture. Thereby, the applied surface load acts on the
overall surface, such that the portion of the load carried by each constituent has not to
be specified. In analogy, the weak forms of the liquid and gas momentum balances result
in

GvL
(u , δvL) ≡

∫

Ω

[ ρL(vL)
′
S + ρL(gradvL)wL ] · δvL dv+

+

∫

Ω

(TL
NEQ − nLpLR I ) · gradδvL dv−

−

∫

Ω

(pLRgradnL + ρL g + p̂L
NEQ + pDnFgradsL) · δvL dv−

−

∫

∂Ωt̄L

N

t̄L · δvL da = 0 ,

(4.8)

GvG
(u , δvG) ≡

∫

Ω

[ ρG(vG)
′
S + ρG(gradvG)wG ] · δvG dv +

+

∫

Ω

(TG
NEQ − nGpGR I ) · grad δvG dv−

−

∫

Ω

(pGRgradnG + ρG g + p̂G
NEQ ) · δvG dv−

−

∫

∂Ωt̄G

N

t̄G · δvG da = 0 ,

(4.9)

with t̄L =
(
TL

NEQ − nLpLR I
)
n and t̄G =

(
TG

NEQ − nGpGR I
)
n the external forces of the

liquid and gas, respectively. Note that Tβ
NEQ included in t̄β usually vanishes and only

comes into play when the pore fluids are connected to an external shear flow. The weak
formulation of the liquid volume balance and the gas mass balance read

GsL(u , δs
L) ≡

∫

Ω

{ [
(nL)′S + nLdivvS

]
δsL − nLwL · gradδsL

}
dv+

+

∫

∂Ωv̄L

N

v̄LδsL da = 0 ,
(4.10)

GpGR(u , δpGR) ≡

∫

Ω

[
ρGR(nG)′S + nG(ρGR)′S + nGρGRdiv (uS)

′
S

]
δpGR dv−

−

∫

Ω

nGρGRwG · gradδpGR dv +

∫

∂Ωv̄G

N

ρGR v̄G δpGR da = 0 .
(4.11)
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Therein, v̄L = nLwL · n and v̄G = nGwG · n denote the fluid volume effluxes over the
Neumann boundaries ∂Ωv̄L

N and ∂Ωv̄G

N , respectively.

Combining the weak formulations of the fluid momentum balances, (4.8) and (4.9), with
the volume and mass balances, (4.10) and (4.11), respectively, may lead to numerical
problems when modelling an injection process. The reason is that impermeability for the
liquid and gas flow requires v̄L = 0 and v̄G = 0 for the liquid volume balance (4.10) and
the gas mass balance (4.11), the former with an exception at the liquid injection point.
At the same time, the momentum balances of liquid and gas require a no-flow condition
in the form of n · δvβ = 0 at these edges with the exception at the notch, where the liquid
pressure pLR has to be applied in such a way that it physically fits the flow resistance
of the liquid volume injection v̄L included in the surface term of (4.10). As the liquid
and gas pressures are coupled through the pressure difference pD after (3.47) and the
pore pressure pFR after (3.48), the liquid boundary-pressure term p̄LR has to fulfil the
condition p̄LR = pLR with pLR as a function of the primary variables uS through vS, s

L

and pGR obtained from the internal solution of the problem. Problems like this can only
be solved successfully using a weakly imposed implicit boundary condition, compare, for
example, Ehlers & Acartürk [89] and citations therein. This procedure, however, causes
a lot of computational effort and should therefore be avoided.

Instead of using an implicit boundary condition, the pressure terms pLR and pGR included
in (4.8) and (4.9) are taken back from the surface integral and re-integrated into the
volume integrals. This results in a rearranged liquid momentum balance:

GvL
(u , δvL) ≡

∫

Ω

[ ρL(vL)
′
S + ρL(gradvL)wL ] · δvL dv +

∫

Ω

TL
NEQ · gradδvL dv+

+

∫

Ω

nLgrad pLR · δvL dv −

∫

Ω

(ρL g + p̂L
NEQ + pDnFgradsL) · δvL dv−

−

∫

∂Ωt̄L

N

t̄L · δvL da = 0 , with t̄L = TL
NEQ n ,

(4.12)

and a rearranged gas momentum balance:

GvG
(u , δvG) ≡

∫

Ω

[ ρG(vG)
′
S + ρG(gradvG)wG ] · δvG dv +

∫

Ω

TG
NEQ · grad δvG dv+

+

∫

Ω

nGgrad pGR · δvG dv −

∫

Ω

(ρG g + p̂G
NEQ ) · δvG dv−

−

∫

∂Ωt̄G

N

t̄G · δvG da = 0 , with t̄G = TG
NEQ n ,

(4.13)

thus substituting the momentum balances (4.8) and (4.9).
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This procedure might be unconventional, but it works, as the equations are simply rear-
ranged. This can be seen from a proof of concept included in the Appendix C.1, where a
consolidation problem of a triphasic medium of solid, liquid and gas is computed by use of
(4.7)-(4.14) and by substituting (4.8) and (4.9) through the above-rearranged equations
(4.12) and (4.13), respectively. As the set of equations is highly coupled, the pressure
boundary condition is not lost but is still active through the pore pressure pFR included
in the surface integral of the overall momentum balance (4.7). As pFR also depends on
the unknown boundary term pLR = p̄LR, the solution profits from the fact that a Dirich-
let boundary condition can be used by setting the test function n · δvS normal to the
boundary to zero, such that pFR can freely attune.

Finally, the weak formulation of the phase-field evolution equation results in

GϕS(u , δϕS) ≡

∫

Ω

[M(ϕS)′S − 2(1− ϕS)W S+ +
Gc

ϵ
ϕS ] δϕS dv+

+

∫

Ω

Gc ϵ gradϕ
S · grad δϕS dv−

−

∫

∂Ωv̄φ
S

N

v̄ϕ
S

δϕSda = 0 , with v̄ϕ
S

= Gc ϵ gradϕ
S · n .

(4.14)

Note that in order to satisfy the condition (3.73) resulting from the entropy equality, i. e.

gradϕS · n = 0, the phase-field variable efflux v̄ϕ
S

has to vanishes on all boundaries Ωv̄φ
S

N .

For completeness, the numerical treatment for fracturing fully saturated porous media is
given in Luo [178] and summarised in Appendix C.2.

Finally, the problem to solve can be formulated by

Find u ∈ Au(t) such that Gu(u , δu) = 0 ∀ δu ∈ T u , t ∈ [t0, T ] . (4.15)

In order to solve this problem numerically for any time t, the domain is discretised in
space and time in the following.

4.1.2 Discretisation in space

In the framework of the FEM, the continuous domain Ω of the overall body B is discretised
into the domain Ωh with E non-overlapping finite elements Ωe:

Ω ≈ Ωh =
E⋃

e=1

Ωe , (4.16)

compare also Figure 4.1. Each finite element is formed with connected nodal points P j,
denoted as nodes. Thereby, adjacent elements share the same nodes and connections.
The entire set of N nodes and their connections forms the finite-element mesh.
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Figure 4.1: Sketch of the spatial discretisation of a continuous domain Ω.

Also, the weak formulations (4.7)-(4.14) have to be discretised in space. Therefore, the
primary variables u are approximated with the discrete ansatz (approximation) functions
uh as follows

uS(x, t) ≈ uh
S(x, t) = ūh

S(x, t) +
N∑

j=1

Qj
uS
(x)uj

S(t) ∈ AuS h(t) ,

vS(x, t) ≈ vh
S(x, t) = v̄h

S(x, t) +
N∑

j=1

Qj
vS
(x)vj

S(t) ∈ AvS h(t) ,

vL(x, t) ≈ vh
L(x, t) = v̄h

L(x, t) +
N∑

j=1

Qj
vL
(x)vj

L(t) ∈ AvL h(t) ,

vG(x, t) ≈ vh
G(x, t) = v̄h

G(x, t) +
N∑

j=1

Qj
vG
(x)vj

G(t) ∈ AvG h(t) ,

sL(x, t) ≈ sLh(x, t) = s̄Lh(x, t) +
N∑

j=1

Qj
sL
(x) sL j(t) ∈ AsL h(t) ,

pGR(x, t) ≈ pGRh(x, t) = p̄GRh(x, t) +
N∑

j=1

Qj
pGR(x) p

GRj(t) ∈ ApGR h(t) ,

ϕS(x, t) ≈ ϕS h(x, t) = ϕ̄S h(x, t) +
N∑

j=1

Qj
ϕS(x)ϕ

S j(t) ∈ AϕS h(t) .

(4.17)

Therein, {uj
S ,v

j
S ,v

j
G ,v

j
G , s

L j, pGRj, ϕS j} are the unknown nodal quantities at the finite-
element node P j, also termed degrees of freedom (DOF) of the system, and N is the total
number of nodes. Moreover, {Qj

uS
,Qj

vS
,Qj

vL
,Qj

vG
, Qj

sL
, Qj

pGR , Q
j
ϕS} are the global basis

functions. Note that the basis functions of the displacement and velocities are vectorial
quantities, i. e. Qj

uS
= [Qj

uS1
, ... , Qj

uSd
]T and Qj

vα
= [Qj

vα1
, ... , Qj

vαd
]T , respectively. Note

furthermore that the discrete ansatz functions satisfy the discrete Dirichlet boundary
conditions {ūh

S , v̄
h
S , v̄

h
G , v̄

h
G , s̄

Lh, p̄GRh, ϕ̄S h}.



70 4 Numerical Treatment

The corresponding test functions read

δuS(x) ≈ δuh
S(x) =

N∑

j=1

Qj
uS
(x) δuj

S ∈ T uS h ,

δvS(x) ≈ δvh
S(x) =

N∑

j=1

Qj
vS
(x) δvj

S ∈ T vS h ,

δvL(x) ≈ δvh
L(x) =

N∑

j=1

Qj
vL
(x) δvj

L ∈ T vL h ,

δvG(x) ≈ δvh
G(x) =

N∑

j=1

Qj
vG
(x) δvj

G ∈ T vG h ,

δsL(x) ≈ δsLh(x) =
N∑

j=1

Qj
sL
(x) δsL j ∈ T sL h ,

δpGR(x) ≈ δpGRh(x) =
N∑

j=1

Qj
pGR(x) δp

GRj ∈ T pGR h ,

δϕS(x) ≈ δϕS h(x) =
N∑

j=1

Qj
ϕS(x) δϕ

S j ∈ T ϕS h

(4.18)

with δuh as the discretised test functions. Here, following the Bubnov-Galerkin method,
the same basis functions {Qj

uS
,Qj

vS
,Qj

vL
,Qj

vG
, Qj

sL
, Qj

pGR , Q
j
ϕS} are applied both to the

ansatz and test functions. Besides this, it is also possible to define different basis functions
for the ansatz and test spaces. This more general approach called the Petrov-Galerkin
method is relevant, e. g., in the context of numerical stabilisation techniques, compare
also Ehlers et al. [91].

Remark: As stated in (4.17), the basis functions only depend on the position x while
the degrees of freedom only depend on the time t. Therefore, the DOF can be mapped
by the basis functions at any position inside the discrete domain, allowing the evaluation
of physical quantities besides the nodes P j. A detailed view on the basis functions can
be found in Ellsiepen [100], Ammann [11] and Rempler [210], among others. 2

In addition, the test functions δuh have to satisfy the concept of Partition-of-Unity, stating
that the basis functions sum up to one for every point x ∈ Ωh and vanish at all other
nodes.

Thus, the space-discrete system to solve can be formulated as

Find uh ∈ Au h(t) such that G
h
u(u

h, δuh) = 0 ∀ δuh ∈ T u h , t ∈ [t0, T ] , (4.19)

for a given set of Neumann boundary conditions at any time t. In order to account
for the strong coupling of the system, see Section 3.5, the spatially discretised problem
(4.19) is solved monolithically within PANDAS. Therefore, all DOF are approximated
simultaneously.
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Finding suitable ansatz functions is one of the difficulties within such a mixed finite-
element formulation. From a mathematical point of view, the set of ansatz functions has to
fulfil the inf-sup condition (also called Ladyshenskaya-Babuška-Brezzi (LBB) condition)
or the patch test to ensure a stable solution, compare, e. g., Zienkiewicz et al. [259],
Brezzi & Fortin [55] and Hughes [146]. A more mechanical approach considers the overall
momentum balance (cf. Table 3.2). There, the partial stresses and the pore pressure
constitute the overall stress from which the divergence has to be computed. As the partial
stresses σS

EF , T
L
NEQ, T

G
NEQ are obtained from the gradient of the solid displacement uS

and the gradients of the fluid velocities vL and vG, respectively, their approximations need
to be one order higher than the pore pressure pFR, which is linearly determined by the
saturation sL and the gas pressure pGR. Thus, quadratic shape functions are chosen for
the solid displacement and the constituent’s velocities, and linear ones for the saturation,
the gas pressure and the phase-field variable. This choice of quadratic and linear shape
functions yields the usage of an element type denoted as an extended Taylor-Hood element
from the serendipity family of quadrilateral elements, depicted in Figure 4.2. The original
Taylor-Hood element was introduced in the work of Taylor & Hood [234] and Hood &
Taylor [143]. Note that original Taylor-Hood elements fulfil the inf-sup condition and lead
to numerical stability and accuracy, compare the work of Bercovier & Pironneau [27] and
Brezzi & Fortin [55] for a mathematical proof for the original 2-d and Stenberg [233] for
the 3-d element.

Figure 4.2: Extended plane (2-d) and hexahedral (3-d) Taylor-Hood elements.

Moreover, the numerical integration of the weak balance equations is carried out locally
at a reference element. The results are then mapped from the local coordinates of the
reference element to the global (physical) coordinates with the Gauss quadrature method.
Thereby, an isoparametric concept is applied, where the basis functions correspond to the
geometry functions. The interested reader in the geometry transformation between the
reference and global elements and in the numerical integration is referred, e. g., to the
work of Hughes [146] and Mardal & Langtangen [183].

Finally, to enable a compact formulation of the coupled problem, the nodal unknowns of
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each primary variable are brought together in abstract vectors, viz.

uS := [u1
S ...u

N
S ]

T ,
vS := [v1

S ...v
N
S ]

T ,
vL := [v1

L ...v
N
L ]

T ,
vG := [v1

G ...v
N
G ]

T ,
s
L := [sL 1 ... sLN ]T ,

p
GR := [pGR 1 ... pGRN ]T ,
φS := [ϕS 1 ... ϕS N ]T ,

(4.20)

and then collected in a global vector of unknowns y ∈ R
DOF, with DOF the total number

of degrees of freedom:

y := [uS vS vL vG s
L
p
GRφS]T . (4.21)

Moreover, the material time derivative of the vector of unknowns with respect to the
solid skeleton is expressed for convenience through (y)′S = ẏ . This leads to the compact
formulation of the space-discrete system of coupled equations:

F(t,y , ẏ) ≡ G
h
u(t,y , ẏ) ≡ Dẏ +Ky − f

!
= 0 , (4.22)

with f as the general external load vector. The global damping and stiffness matrices, D
and K, respectively, are defined as follows

G
h
u =













I 0 0 0 0 0 0
0 D22 D23 D24 0 0 0
0 0 D33 0 0 0 0
0 0 0 D44 0 0 0
0 0 0 0 D55 0 0
0 0 0 0 D65 D66 0
0 0 0 0 0 0 D77













︸ ︷︷ ︸

D

ẏ +

+













0 −I 0 0 0 0 0
K 21 K 22 K 23 K 24 K 25 K 26 K 27

0 K 32 K 33 0 K 35 K 36 K 37

0 K 42 0 K 44 K 45 K 46 K 47

K 51 K 52 K 53 0 K 55 0 0
0 K 62 0 K 64 K 65 K 66 0
0 0 0 0 0 0 K 77













︸ ︷︷ ︸

K

y = f .

(4.23)

Note that the individual matrices Dij and Kij can contain coupling terms, non-coupled
terms, and zeros.
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4.2 Discretisation in time

The space-discrete system (4.23) is still time-continuous and needs to be discretised in
time for the numerical solution. Therefore, time-discretisation schemes discretise the time
domain into a sequence of time steps, and the solution is approximated at each time step.
In this monograph, the time-discretisation method will only be briefly introduced. For
more details on time-discretisation methods used in the context of coupled systems, the
work of Ehlers & Ellsiepen [90], Diebels et al. [75] and Ellsiepen [100] are recommended.

Here, a finite difference scheme is applied to approximate the time. Thereby, the numerical
solution only depends on the previous time step, i. e. the current time step is defined as
∆tn = tn − tn−1 > 0, with tn the current time and tn−1 the time of the previous time
step. By considering the solid displacement-velocity relation (4.6), the inertia terms of the
momentum balances are computed via the derivative of the respective velocity. Therewith,
the system (4.23) is of first order in time. Hence, the implicit (backward) Euler method
can be applied from the implicit Runge-Kutta (IRK) time-stepping algorithms available
in PANDAS. This algorithm is unconditionally stable and can handle stiff equations and
large time steps without numerical instability. However, computationally expensive efforts
are taken into account compared to explicit methods. Note that a semi-explicit-implicit
splitting scheme is also possible in PANDAS, compare, e. g., Markert et al. [187] and Heider
[133].

Within the implicit Euler method, the temporal change of the solution vector, namely
ẏn, at the current time tn reads

ẏn =
yn − yn−1

∆tn
=

∆yn

∆tn
with yn = yn−1 +∆yn . (4.24)

Therein, the Taylor series expansion is truncated after the linear terms. The differential-
algebraic equation system (4.22) can then be evaluated at the current time tn by

Fn(t,yn, ẏn(yn)) =: Rn
!
= 0 , (4.25)

introducing the nonlinear functional Rn. This latter is solved iteratively by applying
the Newton-Raphson method. In this sense, the residual tangent (Jacobian matrix) is
required. For the problem under study, it is not possible to use a numerical tangent since
it leads to unstable solutions. Therefore, the tangent at the current Newton iteration step
k is defined analytically via

J k
n =

dRk
n

d∆yk
n

=
1

∆tkn

∂Fk
n

∂ẏk
n

∣
∣
∣
∣
z
+
∂Fk

n

∂yk
n

∣
∣
∣
∣
z
, (4.26)

with z = (tkn , y
k
n , ẏ

k
n ) as the current set of arguments. Therein, Dk

n = ∂Fk
n/∂ẏ

k
n represents

the damping matrix and K
k
n = ∂Fk

n/∂y
k
n the stiffness matrix after analytical linearisation,

respectively. After updating the solution vector yk+1
n = yk

n+∆yk
n , the procedure is iterated

via the next Newton step until the norm of the residual is below a predefined tolerance,
i. e. Rk+1

n < εtol..



74 4 Numerical Treatment

For the numerical solution procedure, the generalised minimal residual method (GMRES)
of Saad & Schultz [213] with an incomplete LU preconditioner is applied in PANDAS. If
no convergence can be achieved, time adaptivity starts, and the time-step control reduces
the step size. For more details on the time adaptivity scheme in PANDAS, the interested
reader is referred to Ellsiepen [100].

4.3 Solid fracturing process

For the consideration of solid fracturing, supplementary numerical treatments are neces-
sary. In what follows, the procedure to ensure the irreversibility of the fracturing process
and the implementation of initial cracks is outlined.

4.3.1 Irreversibility of the fracturing process

Since the solid skeleton involved in fracking cannot self-heal, the fracturing process is
irreversible. In order to capture this characteristic, the fracture evolution must always be
positive or zero, such that

(ϕS)′S = max

{
1

M

[

2(1− ϕS)W S+ −Gc(
ϕS

ϵ
− ϵ div gradϕS)

]

, 0

}

≥ 0 . (4.27)

Therefore, Miehe et al. [190] introduced a local history field H of the maximum stored
tensile energy W S+ for the numerical implementation, viz.

H = max
t≥ t0

W S+ . (4.28)

In the numerical treatment, the history variable for the current time step tn is defined
through

H := H(x, tn) =

{

W S+(ε+S ) for W S+(ε+S ) > Hn−1

Hn−1 otherwise ,
(4.29)

with Hn−1 the history variable at the previous time step. Thereby, H comprises the
maximum tensile strain attained in the deformation history and is responsible for crack
propagation. A detailed description of the implementation scheme for a staggered solution
for a purely solid phase-field fracture with a history field can be found, e. g., in Miehe
et al. [190] and Hofacker [140].

Finally, the evolution equation (3.72) is rewritten as

(ϕS)′S =
1

M

[

2(1− ϕS)H−Gc

(ϕS

ϵ
− ϵ div gradϕS

)]

, (4.30)

leading to the weak form

GϕS(u , δϕS) ≡

∫

Ω

[M(ϕS)′S − 2(1− ϕS)H +
Gc

ϵ
ϕS ] δϕS dv+

+

∫

Ω

Gc ϵ gradϕ
S · grad δϕS dv −

∫

Ωv̄φ
S

N

v̄ϕ
S

δϕSda = 0 .
(4.31)
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4.3.2 Defining pre-fractured areas

There are two possibilities to define pre-fractured areas in a numerical setting. On the
one hand, they can be included by modelling a discrete crack in the mesh geometry. On
the other hand, for the phase-field model to fracture, an initial crack can be defined by
exploiting the term in brackets of (4.30), also compare Borden et al. [46]1. This latter
approach is advantageous since initial cracks can be defined as mesh independently in the
whole domain. With ϕS = 1 in fully pre-fractured zones, and, as ϕS cannot grow further,
leading to (ϕS)′S = 0 and gradϕS = 0, (4.30) yields

(ϕS)′S = 0 =
1

M

[

2(1− ϕS)H−Gc

(ϕS

ϵ
− ϵ div 0

)]
∣
∣
∣
∣
ϕS=1

. (4.32)

Following this, the term in brackets can be solved with respect to H yielding

H0 =
Gc ϕ

S

2 ϵ(1− ϕS)
(4.33)

with H0 as the initial value of H for pre-fractured areas. As H0 would grow to infinity at
ϕS = 1, ϕS is usually set approximatively to one, i. e. ϕS ≈ 1.

1Note that Borden et al. [46] consider the double length-scale parameter 2ϵ = c, compare also (2.71),
which results in a factor of 4 in the work of Borden et al. instead of 2 in (4.33).





Chapter 5:
Numerical Examples

This chapter presents representative numerical simulations to show the capabilities and
advantages of the material model proposed in Chapter 3 and the numerical scheme pre-
sented in Chapter 4. The simulations focus on different scenarios of partially saturated
porous material with application to hydraulic fracturing to examine the occurring pro-
cesses. First, the model is verified on consistency regarding the multiphasic character of
the porous material and the material’s response to fracture. Then, proceeding from a
quasi-two-dimensional hydraulic fracturing simulation of a single crack, the coupled be-
haviour of the solid skeleton and the interaction of the fluid phases are examined in detail.
It is extended to three dimensions to show the full scope of the model. Finally, two kinds
of heterogeneities are assessed: global ones caused by confining stresses and local ones
induced by inhomogeneous material properties.

5.1 Model consistency

For the presented model of hydraulic fracturing in partially saturated porous media, two
complex phenomena are considered: the porous material’s multiphasic behaviour with
the specific interaction of the fluids in the pore space and the fracturing problem. In
order to verify both phenomena, two numerical examples are presented in the following
section. The first example deals with the capillary behaviour of the fluids in the pore
space. Therefore, a leaking problem is computed and compared to experimental data.
The second numerical example aims to verify the fracturing process. For it, a crack in an
infinite, impermeable elastic medium under pressure is modelled and verified to the linear
elastic fracture mechanic’s solution.

5.1.1 Liakopoulos’ leaking problem

A common problem in validating the constitutive setting of a triphasic model for partially
saturated soil is the drainage of a soil column. Therefore, the well-documented leaking
problem of Liakopoulos [175] is modelled, and the obtained numerical results are compared
to the experimental ones. Further numerical solutions to this problem can be found, e. g.,
in the work of Gawin et al. [113, 114], Jommi et al. [151], Schrefler & Scotta [220], Ehlers
et al. [92] and Cajuhi et al. [61].

In 1964, Liakopoulos published his experimental study of the leaking of a soil column
in his PhD thesis [175]. The experiment comprised a one-meter-high impermeable vessel
filled with fine Del Monte sand. In an independent experiment, Liakopoulos determined
the initial porosity to 29.75% and the bulk density to 1 724 g/cm3 for the particular sand.
The pressure at the top and bottom of the sample corresponded to atmospheric pressure,
i. e. patm. = 101 325Pa. Moreover, the sample’s sides and bottom were rigid, and no
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vertical load was applied on the top. First, a constant liquid flow through the column
was imposed in the initial step to saturate the sand. Then, in a second step, the top and
bottom of the cylindrical vessel were opened, inducing air to flow in and out and water
to drain due to the gravitational forces. The experimentally measured outflow rate at the
bottom of the soil column is presented in Figure 5.6.

Table 5.1: Material parameters for the Liakopoulos leaking problem.

Parameter Symbol Value Parameter Symbol Value

Lamé constants µS 4.64 · 105 Pa Effective liquid viscosity µLR 10−3 Pa s

λS 1.857 · 106 Pa Effective gas viscosity µGR 1.8 · 10−5 Pa s

Intrinsic permeability KS 4.5 · 10−13 m2 Specific gas constant RG 287.17Nm/(kgK)

Initial porosity nF
0 0.2975 [ - ] Temperature θ 293.15K

Initial liquid saturation sL0 0.999 [ - ] van Genuchten parameter αvG 2 · 10−5 1/Pa

Effective solid density ρSR 2 000 kg/m3 van Genuchten parameter m 1.03 [ - ]

Effective liquid density ρLR 1 000 kg/m3 van Genuchten parameter n 1.5 [ - ]

Atmospheric gas density ρGR
atm 1.246 kg/m3 Pore-size distribution factor λ 3 [ - ]

Gravitation value g 9.806m/s2 Residual liquid saturation sLr 0.2 [ - ]

In his thesis, Liakopoulos did not define all the material parameters needed to compute
the leaking problem. In particular, the parameters for the solid skeleton were not specified
further. As the European Network ALERT Geomaterials framework used the Liakopoulos
problem as a benchmark for multiphasic flow in porous media, the group completed the
list of material parameters, see Jommi et al. [151] and Klubertanz et al. [160]. The relevant
parameters are listed in Table 5.1.
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Figure 5.1: Capillary-pressure-saturation curve with respect to the van Genuchten model [115]
and Liakopoulos [175].

Moreover, in this thesis, the van Genuchten model [115] is adopted for the pressure-
difference-saturation condition, given in (3.79), and the Brooks-Corey model [57] for the
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relative permeability factors, given in (3.87). Figure 5.1 depicts the related pressure-
difference-saturation curve. The corresponding van Genuchten parameters αG, m, and n
are chosen according to Ehlers et al. [92]. The pore size distribution factor λ, which plays
a role in the calculation of the relative permeability factors after Brooks & Corey [57], is
set to λ = 3 according to Gawin et al. [113]. This value corresponds to well-sorted soil,
as is the Del Monte sand. Next, the residual saturation is set to sLr = 0.2 for the liquid
and sLr = 0.0 for the gas. The final set of material parameters is given in Table 5.1.

Figure 5.2: Geometry and boundary conditions for the Liakopoulos leaking problem.

Since Liakopoulos’ experiment is rotationally symmetric, the numerical simulation is car-
ried out in a quasi two-dimensional setting. For the present computation, a regular mesh
of 4 000 elements is used, whereby the mesh length of one element comprises h = 5mm.
In order to reduce the effort in time, a simplified quasi-static triphasic model without a
phase field is used for the computation. Thereby, only the balances for the overall mo-
mentum, the liquid volume and the gas mass are considered. The set of primary variables
reduces consequently to the solid displacement uS, the effective liquid saturation sLeff and
the effective gas pressure pGR. An overview of the relevant balances is given in Appendix
C.3. The initial conditions are set to atmospheric pressure for both fluids, leading to
the effective gas pressure pGR

0 = 0Pa and the liquid saturation sLeff(t = t0) = sL0 = 1.
Since this latter condition would lead to numerical instability caused by an infinity tan-
gent of the pressure-difference-saturation relation, the initial liquid saturation is finally
fixed at sL0 = 0.999. Furthermore, for the volume and mass balances of the fluid phases,
(C.8) and (C.9), respectively, Neumann boundary conditions equal to zero are chosen for
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the sides of the model, reproducing the impermeable vessel, i. e. v̄L = 0m3/(m2 s) and
v̄G = 0m3/(m2 s). For the top and bottom edges, the experimental setting is fulfilled
for the gas by the Dirichlet condition p̄GR = 0Pa, allowing the gas to flow arbitrarily.
For the bottom boundary, atmospheric pressure is also assumed for the liquid phase, i. e.
p̄LR = 0Pa. According to the definition of the capillary pressure after the van Genuchten
model (3.79), this condition corresponds to a saturation equal to one. Thus, the Dirichlet
boundary condition s̄Leff = 0.999 is set at the bottom of the column, enabling an un-
hindered liquid flow. At last, as no water flows in, the Neumann condition at the top
boundary is v̄L = 0m3/(m2s). Figure 5.2 sketches the applied boundary conditions and
employed mesh.

Figure 5.3: Development of the liquid saturation during the draining process.

As a result of the gravitational forces, the liquid drains off at the bottom of the sand
column. However, some liquid is retained relative to the capillary effects in the pore
space. The temporal development of the saturation variable sLeff is shown in Figure 5.3
and Figure 5.4. The saturation profile over the height is in agreement with other numerical
computations, compare, e. g., Gawin et al. [113], Ehlers et al. [92] and Cajuhi et al. [61].

While the liquid leaks out, the gas undergoes a pressure suction before equilibrium with
the atmospheric pressure. The distribution of the effective gas pressure over the height
for different time values is depicted in Figure 5.5. The maximal gas-pressure suction of
pGR = −6000Pa is reached at a time t = 45min. These values are in accordance with
the numerical results of Ehlers et al. [92]. However, the gas suction is significantly lower
than predicted by Gawin et al. [113] and Lewis & Schrefler [173]. The choice of pressure-
difference-saturation relation can explain this discrepancy. The two latter groups consider
the pressure-difference-saturation relation obtained experimentally by Liakopoulos [175]
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for sLeff ≥ 0.91, also depicted in Figure 5.1. Above a saturation of 0.934, the experimentally
captured capillary pressure of Liakopoulos exceeds the predicted capillary pressure of the
considered van Genuchten model (depicted in blue in the same figure). For this reason, the
gas pressure after Liakopoulos’ model surpasses the gas pressure of the considered model
here. After approximately 150 h, the gas pressure reaches the atmospheric pressure, and
the system is in equilibrium.
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Finally, Figure 5.6 presents the numerical results of the water outflow rate over time at
point A (cf. Figure 5.2) compared to the experimental measurements from Liakopou-
los [175]. At the beginning of the draining process, the numerical computation fits
the experimental results quite well. The initial vertical outflow rate counts nLwL2 =
5 · 10−6 m3/(m2s) = 0.03 cm/min. After one hour of leaking, the computation overesti-
mates the liquid outflow compared to the experimental measurements. Besides impreci-
sion in the experimental measurements, one possible source of discrepancy is the chosen
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pressure-difference-saturation relation. Since the considered van Genuchten model under-
estimates the capillary pressure for sLeff compared to Liakopoulos experimental results, cf.
Figure 5.1, the outflow is overestimated for the further course of the leaking process. At
last, the presented model predicts the final distribution adequately.

Overall, the current model yields reasonable results concerning the interaction of the
fluid phases in the pore space depending on the considered pressure-difference-saturation
relation and the determination of the relative permeabilities.
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Figure 5.6: Outflow rate at the bottom of the sand column versus time according to the
experimental measurements of Liakopoulos [174] and the numerical results at point A.

5.1.2 Linear-elastic fracture mechanics

In order to verify the PANDAS code with respect to fracturing, a typical problem of
the linear elastic fracture mechanics (LEFM) is modelled and compared to the specific
analytical solution of the LEFM.

Here, a central straight crack of length 2a is subjected to uniformly distributed tensile
stresses σ in an infinite plate, see Figure 5.7 (left). This load state corresponds to a mode I
crack with a symmetric crack opening normal to the crack plane according to Irwin [148].
Considering early approaches to this problem in fracture mechanics, compare, for example,
Griffith [120, 121] and Sneddon [225], the critical tensile stress σc for crack propagation
is given by

σc =

√

2Elγs
πa

, (5.1)

where El = E in the plain stress and El = E/(1− ν2) in the plain strain case, with E the
Young’s modulus, ν the Poisson ration, γs the surface tension of the solid material and a
the half-crack length. Besides this, Irwin [148, 149] correlates the surface tension γs with
the critical energy release rate Gc and fracture thoughness KIc under mode I, via

Gc =
K2

Ic

El

= 2γs . (5.2)
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Figure 5.7: Single crack under tensile stress (left) and geometry of the corresponding initial-
boundary-value problem (right).

A detailed description of this relation can be found, for example, in the work of Yarema
[257] and Gross & Seelig [122]. Under consideration of (5.2), the crack propagates when
the tensile stress exceeds the critical value

σc =

√

ElGc

πa
. (5.3)

Wilson & Landis [249] adopted this analytical critical stress to verify their poroelastic
model with an embedded phase field, considering a pressurised crack under plane-strain
conditions. They enhanced (5.3) with the phase-field length-scale parameter ϵ, thus ob-
taining a dimensionless relation for the critical pore pressure pc for crack propagation:

pc
σ0

=

√
ϵ

πa
with σ0 =

√

ElGc

ϵ
. (5.4)

The analytical solution of the LEFM for the problem under study was elaborated for
purely elastic, brittle solid material. Therefore, the fully saturated model outlined in
Subsection 3.5.2 and Appendix C.2 is used for the following numerical problem and the
permeability is set to KS = 10−15 m2, such that the material is very close to the imper-
meable state. The complete set of material parameters is listed in Table 5.2.

The IBVP follows the example of Wilson & Landis [249] and is sketched in Figure 5.7
(right). The initial crack half-length is set to a = 100mm. The inflow rate amounts
v̄L = 5 ·10−3 tm/s at the crack center, where t is the current time. The right and bottom
edges are impermeable and fixed, while the right and top edges are permeable.
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Table 5.2: Material parameters for the LEFM problem.

Parameter Symbol Value Parameter Symbol Value

Lamé constants µS 8.077 · 1010 Pa Effective liquid density ρLR 1 000 kg/m3

λS 1.211 · 1011 Pa Effective liquid viscosity µLR 10−3 Pa s

Intrinsic permeability KS 1.0 · 10−15 m2 Crack resistance Gc 2 700Pam

Initial porosity nF
0 0.20 [ - ] Length-scale parameter ϵ 0.01m

Effective solid density ρSR 3 000 kg/m3 Residual stiffness ηSr 0.001 [ - ]
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Figure 5.8: Normalised pore pressure pFR/σ0 at point A over the normalised crack length a/ϵ.

As an outcome, the normalised pore pressure pFR/σ0 at point A (compare Figure 5.7) is
plotted over the normalised crack length a/ϵ in Figure 5.8. The numerical results are very
close to the exact solution of the LEFM with pc = pFR in (5.4).

5.2 Coupled hydraulic fracturing process in partially

saturated porous media

The following numerical study shows a hydraulically induced crack propagation in a par-
tially saturated porous material, where the coupling between the solid, the liquid and
the gas and the fracturing process are considered in detail. Table 5.3 lists the material
parameters that have been used. Moreover, the interaction between the pore fluids fol-
lows the pressure-difference-saturation function pD(sL) after (3.82) with a = 5 · 10−3 Pa,
b = 4000.5, c = 1714.5 and d = 0, as displayed in Figure 3.3.

5.2.1 Initial-boundary-value problem in quasi-two dimensions

First, the computation is carried out in a three-dimensional setting with no solid deforma-
tions and no fluid fluxes perpendicular to the e1-e2-plane, yielding a quasi-two-dimensional
procedure. Figure 5.9 (left) exhibits the geometry and boundary conditions of the model.
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Table 5.3: Material parameters for the coupled hydraulic fracturing problem.

Parameter Symbol Value Parameter Symbol Value

Lamé constants µS 8.077 · 1010 Pa Effective liquid viscosity µLR 10−3 Pa s

λS 1.211 · 1011 Pa Effective gas viscosity µGR 1.8 · 10−5 Pa s

Intrinsic permeability KS 1.0 · 10−14 m2 Specific gas constant RG 287.17Nm/(kgK)

Initial porosity nF
0 0.20 [ - ] Temperature θ 283K

Initial liquid saturation sL0 0.7 [ - ] Crack resistance Gc 2 700Pam

Effective solid density ρSR 3 000 kg/m3 Length-scale parameter ϵ 0.01m

Effective liquid density ρLR 1 000 kg/m3 Residual stiffness ηSr 0.001 [ - ]

Atmospheric gas density ρGR
atm 1.246 kg/m3 Pore-size distribution factor λ 3 [ - ]

Figure 5.9: Geometry and mesh (left) of the initial-boundary-value problem of the hydraulic
fracturing problem with an area of interest as detail of the numerical computation (right).

A fracking process is typically a problem of the underground that could either be con-
sidered a half-space or a restricted domain. Proceeding from the latter, the size of the
system under study is relevant for the influence of the liquid- and gas-flow behaviour on
the overall solution. Accordingly, the larger the control area is chosen, the more fluid
must be moved. When a liquid is injected into a fully liquid-saturated domain, the pore
space expands such that a part of the additional liquid can be stored. However, another
part leaves the domain towards the external environment while the total solid and liquid
bodies are displaced. Enlarging the domain under study also includes an enlargement of
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the liquid body. As a result, when a larger liquid body has to be moved by the injection
process, this leads to increasing resistance in the entire area, such that the pore pressure
rises faster at the same amount of injected fluid in a time span compared to a smaller area
that could have been used. In the unsaturated case, this process is basically the same.
However and as a result of the compressibility of the pore gas, the injection pressure leads
to a strong compression of the gaseous volume, such that more liquid has to be injected
into the unsaturated domain compared to the fully saturated domain in order to obtain
the same frack. At the same time, the fracking liquid displaces the pore gas out of the
fractured area. In order to reduce the influence of the domain boundary on the compu-
tation of the fracking process, the domain of interest with a length and width of 0.6m is
embedded in an environment with an edge length of 1.5m, compare Figure 5.9. With the
material-parameter set of Table 5.3, the computed domain has proven large enough such
that the boundary conditions do not influence the results obtained for the area under
discussion.

Due to the system’s symmetry, only the upper part is considered. This part is based on
158 746 DOF and 5 751 elements with an element size h of 2mm≤ h ≤ 80mm. Particu-
larly, the mesh has been chosen fine in the vicinity of the initial notch and in areas where
the crack is expected to propagate (2mm≤ h ≤ 5mm) and coarser elsewhere, see Figure
5.9 (left). The domain is fixed at the left and lower edges. As a result, the displacements
are constrained normally to the bearing directions. The upper and right edges of the
model are fully permeable at atmospheric pressure, whereas the left and lower edges are
impermeable. At the beginning of the computation, atmospheric pressure not only holds
along the boundary but is also prescribed for the liquid and gas pressures in the porous
domain. The initial liquid saturation is set to 70%.

In the first step of the following computation, an initial crack is imposed on the left edge
of the system by applying an initial pseudo-elastic energy according to relation (4.33),
such that H0 = 134.865MJ/m3 corresponding to a phase field of ϕS = 0.999 with the
given parameters of Table 5.3. Additionally, the end of the initial crack is rounded to
prevent artificial singularities that sharp edges may cause. In the second step, a liquid
flow is injected at the initial notch with an increasing flow rate of v̄L = 5·10−3 tm3/(m2s).
Gravitational forces are neglected, as well as the non-equilibrium frictional gas stresses
TG

NEQ.

The driving force of the crack propagation is the pressure field induced by the liquid
injection. Based on the pore pressure, tensile stresses in the porous solid grow, such that
the stored tensile energy W S+ grows and the fracture evolves. Figure 5.10 shows the
phase field, the pore pressure and the liquid saturation at different time steps during the
fracturing process. As a result of the isotropic permeability of the solid with constant KS,
the injected liquid initially induces a more or less radial distribution of the pore pressure
pFR until the crack starts to evolve, thus inducing a reduction of the fracture resistance.
With increasing pore pressure also the liquid saturation grows, partly leading to a nearly
complete displacement of the pore gas.

To better understand the highly coupled situation during fracking, the fracturing solid
skeleton is examined first, before the interaction between the solid and the pore fluids is
discussed in detail.
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Figure 5.10: Evolution of the phase-field variable, the pore pressure and the liquid saturation
during the fracking process.

5.2.2 Fracturing solid skeleton

Based on the constitutive setting of the solid skeleton and the phase-field variable, the
coupled deformation and fracturing process is uniquely controlled by the solid stored
energy W S and consequences thereof, compare (3.69). However, the liquid injection and
the coupled fluid flow in the entire domain induce these terms. To track the development
of the total stored energy W S and its effective tensile elastic and fracture contributions,
W S+

e and GcΓ
S, respectively, consider Figure 5.11. There, these energies are displayed at

point C of Figure 5.9, together with the values of the phase field ϕS and its time derivative
(ϕS)′S. The effective tensile energy W S+

e is defined as W S+
e = [(1− ϕS)2 + ηSr ]W

S+. Note
that the solid material at point C is in front of the initial crack and, therefore, unaffected
by the fracture energy at time t0.

During the liquid injection, the strain field evolves, and with it, the effective tensile elastic
energy W S+

e , see the black dotted line. With the growth of W S+ as the strain-depending
part of W S+

e , the phase-field evolution (ϕS)′S also increases after (4.27). Unlike a sharp
crack, the phase-field approach to fracture allows for a transition zone between the intact
case with ϕS = 0 and the fully broken case with ϕS = 1. As a result, the material un-
dergoes an irreversible damage process between these bounding states. The phase-field
variable grows from zero to one with its increasing derivative, see the solid red and brown
lines in Figure 5.11. In addition, the crack energy GcΓ

S rises driven by the phase field
and its gradient according to (3.69)4, compare the dashed black line.
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Figure 5.11: Temporal development of the stored solid energy and its contributions, and the
phase field and its derivative, all values at point C of Figure 5.9 in front of the initial crack tip.

At a certain point, here around t = 22.6 s, the damage in the material reaches an amount
where the bonding forces of the material cannot stand more strains. In the constitutive
model, the factor (1−ϕS)2 of the effective elastic energy describes this stiffness loss between
the undamaged and broken state. This factor becomes so tiny that W S+

e decreases, even
if the strains are still growing due to the injection. Consequently, also the phase-field
evolution (ϕS)′S shrinks until it finally reaches zero. Note that the condition (ϕS)′S ≥ 0 is
fulfilled at any time to guarantee an irreversible fracturing process, cf. Subsection 4.3.1.
Once (ϕS)′S has reached zero, ϕS has grown up to one, and the material is entirely broken.
Moreover, the fracture energy is at its maximum, corresponding to GcΓ

S ≈ Gc/2ϵ =
135 kPa. At this point, the energy released during the crack propagation correlates to the
energy necessary for the fracturing process. Finally, note that the effective elastic tensile
energy is adjusted with a residual stiffness ηSr to prevent zero stiffness values. As a result
of ηSr , both the effective elastic energy W S+

e and the total stored energy W S formally
increase again, even at ϕS = 1.

5.2.3 Fluid interaction in the fracturing process

After initiating the fracturing process at t0, the liquid fills the initial crack and saturates
the region around it at the beginning of the injection until time t1 = 22 s, compare
Figure 5.10. As the saturation sL reaches 0.9 in the centre of this area, the gas is mainly
driven out of the domain due to the increasing pressure. When the evolving fracture
opens, the newly gained “vacant” space fills with fluids, particularly liquid, since the
liquid is continuously injected into the notch at the left edge of the crack. As a further
result of the initiation of the crack propagation, the saturation in the fracture nearly
remains at sL = 0.9, see Figure 5.10 (time t2) and Figure 5.12 (solid blue line). However,
since the pore gas cannot flow out rapidly enough, it is compressed in front of the crack,
compare the solid yellow line in Figure 5.12. Note that the gas could escape more quickly
if a smaller boundary value area is selected. In this latter case, there would be a lower
gas overpressure in front of the crack. After a while, the injection rate and the amount of
liquid in the surrounding area are insufficient to saturate the newly created crack space. In
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turn, the gas expands in the crack while the gas pressure decreases, compare Figure 5.12
(dashed yellow line). This pressure drop initiates a reverse gas flow from the surrounding
area into the fracture. Thus, the liquid saturation decreases, cf. Figure 5.10 (time t3)
and Figure 5.12 (dashed blue line), and the accessible amount of gas fills the crack. This
phenomenon slows down crack propagation.

Figure 5.12: Phase-field variable, liquid saturation and effective gas pressure over the length
of the specimen (point A to D) at time t2 = 24 s (solid lines) and t3 = 30 s (dashed lines).

5.2.4 The gas phase as a retardant of the fracturing process

To analyse the influence of the degree of saturation on the fracturing process in detail,
three partially saturated (PS) models with different pressure-difference-saturation func-
tions are examined. The corresponding curves are depicted in Figure 5.13, where the
red curve (PS, case 2) corresponds to the previous example (Subsections 5.2.2 and 5.2.3).
Together with two further pressure-difference-saturation curves (PS, cases 1 and 3), the
partially saturated situation is compared to a fully saturated setting, where the material
parameters and the boundary conditions remain the same as before. For this latter model,
the numerical treatment is introduced in Appendix C.2.
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Figure 5.13: Pressure-difference functions over liquid saturation for the three partially satu-
rated (PS) cases.



90 5 Numerical Examples

0 10 20 30
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

φ
S
[-
]

0 10 20 30
Time [s]

0

25

50

75

100

125

150

175

200

W
S
[k
P
a]

Fully saturated

PS, case 1

PS, case 2

PS, case 3

Figure 5.14: Temporal development of the phase field (left) and the stored energy (right) at
point C in front of the initial crack tip. The horizontal dashed line depicts the crack energy of
WS

crack = 156 kPa.

In this comparison, Figure 5.14 displays the temporal development of the phase-field
variable ϕS and the stored energy W S in front of the initial crack tip (point C in Figure
5.9) for both the partially and the fully saturated situations. From this figure and the
following Figure 5.15, it is seen that the crack evolves earlier for the fully saturated model
than for the three partially saturated ones. Nevertheless, the stored energy W S

crack =
156 kPa necessary for the crack propagation is the same for all models, no matter whether
or not the models are considered fully or partially saturated or, as in the latter case,
what pressure-difference-saturation function is chosen, see the right image of Figure 5.14.
Although the pore fluids trigger the fracking process, the fracturing itself is solely attached
to the solid. This insight is consistent with the constitutive setting, where the solid strain
energy W S includes the fracture energy GcΓ

S, compare (3.69). Concerning the peak of
the W S curves in Figure 5.14, the reader is referred to the arguments in Subsection 5.2.2.
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Figure 5.15: Temporal development of the pore pressure pFR at the initial crack tip (point B).
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Furthermore, the delay in crack propagation of the partially saturated models compared
to the fully saturated one can be related to the mutual interaction of the fluid phases. As
was shown in Subsection 5.2.3, the liquid displaces the gas at the beginning of the injection
and compresses it when the resistance becomes too high. This interaction between the
pore liquid and the pore gas causes a decrease in the overall pore pressure. Figure 5.15
illustrates this phenomenon by exhibiting the pore pressure over time at the initial crack
tip (point B in Figure 5.9) for the different models. It is seen that the increase in pore
pressure is lower for the partially saturated models than for the fully saturated case.

Figure 5.16: Pore-pressure fields over the length of the specimen (point A to D) at the respec-
tive time of the initial crack evolution.
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Figure 5.17: Temporal development of the effective gas pressure pGR at the initial crack tip
(point B).

Moreover, Figure 5.16 plots the pore-pressure distribution from point A to point D at the
time of the first crack propagation for the different models. Here, the pressure in front of
the initial crack presents higher values for the fully saturated than for the partially satu-
rated models. In the latter cases, the gas compression affects the effective pore pressure
in the whole domain, such that the crack evolves later. This effect is highlighted by a
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comparison of the three partially saturated cases: the more the gas is compressed (case
1 vs case 3 as shown in Figure 5.17), the more the pore-pressure growth is delayed, and
the lower the pressure field is around the crack (Figure 5.15 and Figure 5.16), the later
evolves the fracture.

Finally, the mutual interaction of the pore fluids and, notably, the compressibility of the
pore gas hinder the crack propagation in the partially saturated porous medium compared
to the same fracturing process in a fully saturated one. Therefore, it is essential to include
the interplay of the pore fluids in the fracturing process when dealing with hydraulically
induced fractures in solids.

5.2.5 Coupled fracturing process in three dimensions

The following numerical example shows the coupled process of dynamic hydraulic frac-
turing in three dimensions, revealing the possibilities of the realised three-dimensional
implementation for partially saturated porous media. The geometry, boundary condi-
tions and mesh configuration are depicted in Figure 5.18. A three-dimensional IBVP for
hydraulic fracturing of fully saturated porous material can be found in Ehlers & Luo [94].

Figure 5.18: Geometry (left) and mesh (right) of the three-dimensional initial-boundary-value
problem of hydraulic fracturing.

A quarter of a cylindrical specimen with a radius and height of one meter is fixed on its
bottom surface. The system is fully axial-symmetric and counts 2 850 elements. The mesh
is refined in the expected crack areas, see Figure 5.18, right. The liquid injection with
an increasing flow rate of v̄L = 20 · 10−3 tm3/(m2s) is carried out through a borehole of
0.0445m radius. The borehole is fixed in the normal direction and only permeable at the
bottom edge. The system’s bottom, top and outer circular surfaces are permeable for both
fluids, whereas the symmetry surfaces (e1- and e2-plane, respectively) are impermeable.
Atmospheric pressure is set at the beginning of the computation, and the initial porosity is
nF
0 = 0.015, while the length-scale parameter amounts ϵ = 0.005m. All the other material

parameters follow the previous example, cf. Table 5.3. The pressure-difference-saturation
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curve is given in (3.82) and depicted in Figure 3.3. Finally, note that no initial notch is
defined.

Figure 5.19: Evolution of the phase-field variable, the pore pressure and the liquid saturation.

Figure 5.19 displays the crack propagation, pore pressure field and saturation evolution for
different time steps. At the beginning of the computation, the phase-field variable states
zero for the whole domain. As the pressure at the bottom of the borehole augments, the
phase field increases to one, and the crack propagation starts. This development shows
the ability of the phase-field method to model crack initiation. At time t = 55 s, the crack
propagates from the borehole bottom as a quarter circle surface, see also Figure 5.21. The
pore pressure evolves more or less radially in the crack direction, similar to the quasi-two-
dimensional computation in Subsection 5.2.1. Also, the liquid saturation exhibits a more
or less radial distribution around the notch. The IBVP was chosen large enough that the
boundary conditions do not affect the calculation at time t3 = 61 s. Selecting a larger
area in the future would be advantageous to study further crack propagation.

The fluid behaviour examined in detail in Section 5.2 for the quasi-two-dimensional setting
is recovered for the fully three-dimensional case. Figure 5.20 displays the gas pressure.
The gas is compressed in the surrounding, particularly in front of the evolving crack. This
compression is accompanied by an expansion of the gas particles in the crack, resulting in
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gas reflux to the crack. This phenomenon can be observed in Figure 5.21, where the liquid
and gas streamlines are illustrated for a detailed area of 250mm× 250mm× 300mm. In
contrast, the incompressible liquid flows through the crack towards the permeable surfaces.

Figure 5.20: Evolution of the effective gas pore pressure.

Figure 5.21: Streamlines of the liquid (top) and gas (bottom) flow with crack evolution (red)
for the detailed area 250mm×250mm×300mm.

Finally, the three-dimensional computation reproduces and confirms the results of the
quasi-two-dimensional computation. However, a fully three-dimensional boundary value
problem causes enormous computational effort. For instance, the present example has
taken 52 days on a single core of a standard computer with 32 GB RAM. The following
studies are, hence, carried out on quasi-two-dimensional numerical examples with plain
strain and flow.
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5.3 Fracturing porous media under confining stresses

When dealing with soil and rock, it is essential to consider confining stresses. In nature,
rocks under in situ conditions are subjected to the pressure of the gravitational loading
of overlying rocks, tectonic or even thermal stresses. In the near-surface, also topographic
anomalies or geological discontinuities can trigger stresses. The confining stresses influence
the fracturing process, as they present a constraint for the deformation process and can,
additionally, open or close fractures. Both effects will be treated in the following section.

5.3.1 Influence of confining pressures on a single crack

The following numerical example extends the previous quasi-two-dimensional investiga-
tions of Section 5.2, compare Figure 5.9, with confining stresses. Figure 5.22 displays the
current boundary conditions. The applied mesh is depicted in Figure 5.9 (left).

The computation starts by applying the same initial pseudo-elastic energy as in the pre-
vious example to generate the initial crack (step 1). Then, displacements are applied to
yield confining stresses (step 2). Here, use is made of ∆u1 > ∆u2 with ∆u1/∆u2 = 12.5.
The displacements are generated by increasing vS1 = 0.15mm/s and vS2 = 0.012mm/s
within the next 10 s. After 600 s, the time-dependent drainage process of both fluids is
accomplished and the pressure field remains constant (step 3). Finally, in the fourth step,
liquid is injected at the left side of the precrack with the same initial conditions and at
the same flow rate of v̄L = 5 · 10−3 tm3/(m2s), compare Subsection 5.2.1.

Figure 5.22: Geometry and loading history of the initial-boundary-value problem of the frack-
ing process under confining stresses.

Figure 5.23 shows the evolution of the phase field at the deformed body, where a dashed
red line indicates the undeformed geometry. As before, only a detailed area of 0.6m ×
0.6m (cf. Figure 5.9, right) is displayed. The deformation is scaled by a factor of 150.
It is seen that the crack evolves later than in the comparable model without confining
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stresses, compare Figure 5.10 in Subsection 5.2.1. Note that the injection in the present
example starts at t = 600 s instead of t = 0 as in Subsection 5.2.1.

Figure 5.23: Evolution of the phase-field variable at the deformed skeleton (scaled by a factor
of 150) during the fracking process. The dashed red line sketches the initial configuration.
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Figure 5.24: Temporal development of the effective pore pressure at the initial crack tip (point
B) with and without confining stresses after the liquid injection.

The temporal evolution of the effective pore pressure starting at the initiation of the liquid
injection for both models with and without confining stresses is displayed in Figure 5.24.
As shown in the previous section, the fluid interaction, especially the gas compressibility,
controls the pore-pressure growth. Therefore, the pore-pressure increase is the same for
both boundary-value problems. However, in the current example, the confining stresses
compress the pore space, thus hindering the undisturbed evolution of solid tensile strains.
Instead, the pore-pressure increase resulting from the injection process must overcome
the confining conditions to enable the necessary strain field and, therewith, the energy
evolution necessary for crack propagation. As a result, the maximum pore pressure is
higher than in the unconfined model, and the solid material breaks later under confining
stresses than without. Nevertheless, the required stored energy for crack propagation is
the same for both models, namely W S

crack = 156 kPa. This is consistent with the previous
analysis, compare Figure 5.14.
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5.3.2 Open and closed fractures

Confining stresses do not only slow down the crack propagation but may also yield hy-
draulically closed fractures. This feature will be discussed by introducing two initially
closed cracks, compare Figure 5.25. Two numerical examples with different displace-
ment ratios of ∆u1 to ∆u2, namely example 1 with ∆u1/∆u2 = 2.5 at vS1 = 0.03mm/s
and vS2 = 0.012mm/s, and example 2 with ∆u1/∆u2 = 12.5 at vS1 = 0.15mm/s and
vS2 = 0.012mm/s, are chosen, using the same ratios as have been investigated by Ehlers
& Luo [94].

Figure 5.25: Geometry and loading history of the initial-boundary-value problem of the frack-
ing process under confining stresses (examples 1 and 2) with two initial precracks.

Figures 5.26 and 5.27 show the area of interest for the examples 1 and 2, where the phase
field ϕS, the effective pore pressure pFR and the liquid saturation sL are displayed at
different time steps of the fracking process. As has been expected, the fractures evolve
differently depending on the ratio of the confining stresses. Although the area is com-
pressed in both directions, both initial precracks remain open in the case of example 1.
In the case of example 2, however, the horizontal compression is so strong that the ver-
tical precrack is closed. This can be seen from Figure 5.28, where the divergence of the
solid displacement uS is exhibited. As divuS > 0 is the criterion for open or opening
cracks, divuS ≤ 0 is the criterion for closed or closing cracks, compare the crack-opening
indicator I from (3.84).

In the case of example 1, both precracks are open with divuS > 0 and thus I = 1. In
addition, the fracture has evolved at t = 675 s at positive divuS at the top of the vertical
precrack by wing-like fractures under an angle of approximately 40◦ to the right. As
a result of the fracture opening, the Darcy-type flow in the porous domain has changed
towards a Navier-Stokes-type flow in the open fractures. This switch is displayed in Figure
5.29, where the liquid velocity profile is shown for the wing-like fracture. The transition
zone regulates the velocity between the two extreme states of Darcy-type and free flow.
The corresponding liquid and gas streamlines can be seen in Figure 5.30. It is also seen
from Figure 5.26 that the pore pressure increases around both cracks and the evolving
fracture, and that the saturation field likewise follows the crack pattern.
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Figure 5.26: Evolution of the phase field, pore pressure and saturation for example 1.

Figure 5.27: Evolution of the phase field, pore pressure and saturation for example 2.
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Figure 5.28: Divergence of the solid displacement for example 1 at time t = 675 s and for
example 2 at time t = 720 s.

Figure 5.29: Liquid velocity profile in the wing-like fracture for example 1 at time t = 675 s.

Figure 5.30: Streamlines of the liquid and gas flow for example 1 during the fracking process
under confining stresses with two initial precracks.

In the case of example 2, the ratio of ∆u1 to ∆u2 is much higher, such that also the
horizontal confining stress is much higher than in example 1. Thus, the vertical pre-
crack remains almost closed, compare Figure 5.28. As a result, the whole area is under
compression with divuS ≤ 0 and thus I = 0 except for the horizontal precrack and the
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evolving fracture in horizontal direction. As a result, Darcy-type flow can be observed in
the whole area without the horizontal fracture, where the flow type has changed towards
Navier-Stokes-type flow, also compare Figure 5.31. Here, it is also seen from the liquid
and gas streamlines that the whole domain behaves like a porous medium without frac-
tures except for the horizontal crack. Comparing these results with those of Figure 5.27,
one again recognises that the fracturing process only touches the horizontal precrack with
expectable consequences for the pore pressure and the liquid saturation.

Finally, the gas streamlines included in Figures 5.30 and 5.31 exhibit gas reflux due to
the gas expansion in the crack. Similar to the computation with only one initial crack,
compare Subsection 5.2.3, this reverse gas flow into the crack slows down the fracture
evolution compared to a fully saturated model.

Figure 5.31: Streamlines of the liquid and gas flow for example 2 during the fracking process
under confining stresses with two initial precracks.

5.4 Hydraulic fracturing in heterogeneous porous me-

dia

So far, the dynamic hydraulic fracturing problem has been evaluated for homogeneous
porous media. However, natural porous materials exhibit material heterogeneities. In
this sense, the inclusion of location-dependent material parameters is derived here. In
contrast to stochastic phase-field modelling approaches, such as in Gerasimov et al. [117],
a deterministic ansatz is studied. Thereby, predefined imperfection areas, as well as
statistical fields of geomechanical properties, are considered. The main focus is discussing
the impact of local heterogeneities in porous media on crack evolution and path. Here,
a triphasic porous material is considered. Local heterogeneities in a biphasic porous
material are discussed, for example, in Wagner et al. [246].
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5.4.1 Consideration of material imperfection domains

First, a numerical example with a homogeneous domain is compared with a two-zone
model containing a stiffer, predefined (rectangular) imperfection area.

Figure 5.32: Sketch of the initial-boundary-value problem (left) and finite-element mesh
(right).

Figure 5.32 (left) shows the basic two-dimensional initial-boundary-value problem. The
initial and boundary conditions are comparable to those of the numerical model in Section
5.2. The considered domain of 1m in length and 2m in height is impermeable on its
left and permeable on all the other edges. In the middle of the left edge, an initial
notch of 100mm length and 10mm height is imposed via the initial pseudo-elastic energy
H0 = 134.865MJ/m3, compare (4.33). A liquid flow is injected with an increasing flow
rate of v̄L = 5 · 10−3 tm3/(m2s), where t is the current time. The model is mechanically
fixed at the left edge of the initial notch and constrained in normal direction on the
whole left edge. The other three edges, the bottom, the right and the top, are free to
move. Thereby, the boundary conditions induce a symmetric system in the e2-direction.
The gravitational forces and frictional gas forces are neglected. Moreover, note that no
external forces are imposed on the system to avoid an influence on crack propagation
despite the local heterogeneities of the material properties. The material parameters are
the same as in Section 5.2 and listed in Table 5.3. Regarding the spatial discretisation
of the model, a symmetric mesh with 8 848 two-dimensional elements is chosen with a
refined central area of the domain, see Figure 5.32 (right).
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Figure 5.33: Crack propagation in the homogeneous model at different time steps.

In the case of a homogeneous model with constant material parameters in the whole area,
i. e. using the Lamé constants from Table 5.3, the crack evolves horizontally through the
model until reaching the right edge at time t = 31.3 s. Figure 5.33 shows the evolution of
the phase-field variable for the homogeneous model.

In the next step, a rectangular area of 600mm × 100mm is predefined in the direction
of the crack propagation to model a two-zone domain. There, the Lamé constant λS is
prescribed as a hundred times higher than in the rest of the model, see Figure 5.34. Note
that the transition between the two areas is rather sharp. Such a material composition
can be motivated, e. g., by layered rocks.

Figure 5.34: Distribution of the Lamé constant λS in the idealised heterogeneous (two-zone)
model.

As can be seen in Figure 5.35, where the phase-field evolution for this latter model is de-
picted, the crack splits into two branches in order to circumvent the stiffer area. Moreover,
the crack branches reach the right edge later than in the homogeneous model, compare
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Figure 5.33 and Figure 5.35, time t4. Once the stiffer area is bypassed, the crack straight-
ens towards the permeable right edge. The system is still symmetric due to the choice of
the ideal (symmetric) problem. Note that the computation is carried out in a dynamic
setting. However, caused by the local heterogeneity of the ideal material inclusion, the
crack would split even in a fully quasi-static setting.

Figure 5.35: Crack propagation in the two-zone model at different time steps.

In analogy to the numerical examples of Sections 5.2 and 5.3, the gas is compressed around
the branching crack, see Figure 5.36. This compression causes gas reflux into the crack
while the liquid strictly flows to the permeable boundaries.

Figure 5.36: Gas pressure (left) and fluid streamlines (right) in the idealised heterogeneous
(two-zone) model at time t5 = 35 s.
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5.4.2 Statistical fields of geomechanical properties

In the following, a further generalisation of predefined zones of material imperfections,
discussed in the previous subsection, towards a statistical distribution of geomechanical
parameters is carried out. To start with, a normal distribution with possible enhancement
towards more complex distributions is used. Since the statistical fields of the solid prop-
erties induce spatially varying local stresses, an influence on the crack path is expected.

Statistical definition of a parameter

To generate random realisations of material parameters, a Gaussian variogram is assumed,
compare, e. g., Kitanidis [159]. Similar to the previous example, the focus is here on a
statistical distribution of the Lamé constant λS. In this regard, the distribution of λS

satisfies the following Gaussian variogram

pG(λ
S) = (2π)

Nv
2 |Σ|

1

2 exp
(
1
2
µTΣ−1µ

)

with Σij = σ2
{
1− exp[−(|xi − xj|/ℓ)

2]
}
.

(5.5)

Thereby, µ contains at each entry the mean value µ of the field, Nv represents the number
of discretisation points, and Σ stands for the covariance matrix with coefficients Σij.
Moreover, σ2 signifies the variance of the field, xi and xj are the vectors describing the
positions of discretisation points, and ℓ is the so-called statistical length-scale parameter,
also termed correlation length. This latter determines the spatial variance of the material
parameter. Particularly, the smaller ℓ is chosen, the more significant is the variance of λS

to the next point, whereas, conversely, the larger ℓ is chosen, the smaller is the change to
the next point, see Figure 5.38. In particular, the parameters shown in Table 5.4 are used
in this work. The corresponding normal distribution, which is fulfilled at each material
point, is depicted in Figure 5.37. The generation of random material parameter fields is
implemented on a regular grid using MATLAB. In addition, a customised algorithm is
implemented after Wagner [243] in PANDAS to assign the spatially dependent material
parameters. The approach is briefly introduced in Appendix C.4.

Table 5.4: Statistical parameters.

Parameter Symbol Value

Mean value µ 5.05 · 1011 Pa

Standard deviation σ 1.65 · 1011 Pa

Correlation lengths ℓ 7, 70, 140, 700mm

Number of discretisation points Nv 120

On the influence of a statistical distribution of the first Lamé constant

To study the influence of statistical fields of geomechanical properties, the IBVP of Sub-
section 5.4.1 is now studied for different random distributions of the Lamé constant λS.
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Figure 5.37: Density curve of the Lamé constant λS .

The geostatistical fields are considered in terms of the definition and implementation
described above and in Appendix C.4. The mean value, which is chosen around five times
higher than the Lamé constant from Table 5.3, and the standard derivation are the same
for all of the following examples, see Table 5.4. Only the statistical length-scale parameter
is varied, namely to 7mm (model 1), 70mm (model 2), 140mm (model 3) and 700mm
(model 4). This choice results in different structures of the Lamé-constant variations with
the same (global) statistic distribution, see Figure 5.38.

Figure 5.38: Distribution of the Lamé constant λS for four different heterogeneous models
using a Gaussian variogram.

Each sample structure can be related to the microstructure of a specific porous material,
namely with many smaller (model 1) or a few larger (model 4) areas with higher or lower
stiffness, respectively. Note that the smeared λS-variation in the upper and lower parts
of model 1 is due to the coarser mesh in these areas, see Figure 5.32 (right), since the
influence radius for the weighting of the material parameter (i. e. the voxel information)
depends on the individual element size, compare Appendix C.4.
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Figure 5.39: Crack propagation for the four heterogeneous models at different time steps.
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Figure 5.39 shows the crack evolution for each model at intermediate time steps before
the crack reaches the right edge. In model 1, the statistical length-scale parameter ℓ is
chosen small, and the heterogeneities are in the order of a few elements. Physically, the
crack always follows the path with the lowest resistance. Consequently, the crack evolves
not straight horizontally to the right edge in model 1 but interferes with the material
parameter variations and shows many fluctuations. Since the variations in the properties
are very local in this model, the disturbed crack path is compensated such that the crack
as a whole hits the right edge more or less in the centre.

The most significant deflection of the crack path is visible in model 2 and model 3. Here,
the statistical length-scale parameter is chosen to be moderate such that the inclusions
are in the order of magnitude of the initial notch length. As a result, the crack bypasses
the areas of greater stiffness and winds around these inclusions, creating a wave-like crack
field, see Figure 5.39 (model 2, model 3). To emphasise this phenomenon, Figure 5.40
shows the crack path in black colour (for ϕS ≥ 0.85) over the distribution of the Lamé
constant at time t5 = 34.5 s. It can be seen that the crack is deflected by the areas with
higher stiffness.

Figure 5.40: Crack paths in black colour (ϕS ≥ 0.85) and distribution of the Lamé constant
λS at time t5 = 34.5 s for the four heterogeneous models.

Finally, the correlation length is set to 700mm in model 4, corresponding approximately
to the half-domain width. Here, the heterogeneous inclusions are large in comparison
to the notch dimensions. The crack evolves more or less horizontally, as in the case of
the homogeneous model, even though there is a large area of higher stiffness in front of
the crack, similar to the idealised two-zone model from Subsection 5.4.1. However, the
crack path differs significantly from the two-zone model, where the crack branches. This
different behaviour is caused by the transition characteristics from softer to stiffer areas.
The transition is rather sharp in the two-zone model, causing the crack branching, whereas
the transition in model 4 is relatively smooth, without a significant stiffness change at the
crack tip. Moreover, the difference in stiffness values is more significant in the two-zone



108 5 Numerical Examples

model than in model 4. As a result, the crack slows down for the latter case but stays on
its original path and does not turn in a different direction.

Figure 5.41 displays the crack evolution for three statistical distributions with the same
correlation length to show the randomness of each statistical field. The crack path is
depicted in black colour (ϕS ≥ 0.85) and the distribution of the Lamé constant in the
back. Example 1 corresponds to the results of model 2 of the previous figures. Even
if all statistical properties are the same for the three examples, the local assignment of
the stiffer areas varies, and so does the crack path. This insight shows that the crack
propagation does not depend only on the choice of the correlation length but is specific
to each statistical field.

Figure 5.41: Crack paths in black (ϕS ≥ 0.85) and distribution of the Lamé constant λS at
time t5 = 34.5 s for three examples with the same correlation length ℓ = 70 mm (model 2).

In conclusion, an effect on the crack path is identified in models with minor and mod-
erate length-scale parameters caused by the local variations of elastic stiffness properties
representing a heterogeneous porous solid skeleton. Moreover, each statistical field yields
an exclusive crack path.



Chapter 6:
Summary and Outlook

6.1 Summary

Hydraulic fracturing has raised concerns regarding environmental and health risks, such
as groundwater contamination, air pollution and microseismic activities. Understanding
the ongoing processes of fluid-driven fractures in porous media is crucial to minimise
risks and prevent these hazards. This thesis enlarged the knowledge of dynamic processes
of brittle fracturing in unsaturated porous media. A continuum-mechanical model for
partially saturated porous media was developed, which includes the possibility of describ-
ing hydraulically driven fracturing processes. The model is thermodynamically consistent,
resulting in a highly coupled system of partial differential equations solved monolithically.

Based on the Theory of Porous Media (TPM), the model consists of a brittle, materially
incompressible elastic solid with two immiscible pore fluids, an incompressible liquid and
a compressible gas, both percolating the interconnected pore space. The TPM consid-
ers an individual motion function and a set of balance equations for every constituent,
coupled to each other by production terms. In the context of hydraulic fracturing, this
approach enabled coupling the solid deformation to the fluid pressure. The TPM model
was enhanced by the phase-field approach to fracture to describe fluid-driven fracturing
processes. The phase field yields diffuse interfaces between broken and unbroken material
and prevents discontinuities during the fracturing process. Since a crack is solely induced
under tension and not compression, the phase field reduced only the tensile part of the
solid stiffness in this monograph. Therefore, a spectral decomposition was applied to split
the solid strain into positive and negative values and distinguish between tension and
compression. Moreover, a history variable, responsible for the phase field’s evolution as it
covers the maximum tensile energy obtained in the deformation process, was used in this
model. Although the phase-field evolution is solid-based, the interaction of the pore flu-
ids strongly influences the fracturing behaviour. This interaction was examined in depth
within the scope of this thesis. A constitutive relation for the pressure difference between
liquid and gas described as a function of the liquid saturation was developed for the par-
ticular problem. Since hydraulic fracturing is a highly dynamic process, the standard
hydromechanical relations for capillary effects valid in an equilibrium state do not apply
to this model. A specific constitutive relation was proposed to encompass the equilibrium
(capillary) behaviour with a positive pressure difference and the dynamic fluid reaction
with a negative pressure difference. Using this relation, both the dynamic behaviour
near the crack and injection as well as the capillary effects in the distant vicinity of the
crack were considered in the overall process. Furthermore, the crack-opening-indicator
was included in the constitutive setting of the fluid phases. This additional scalar variable
distinguishes between an hydraulically open and closed crack. Depending on these two
states, the liquid flow switches between a Darcy-flow regime in the intact porous medium
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and a Navier–Stokes regime in fully broken zones.

The coupled partial-differential-equations system was solved monolithically using the
Finite-Element code PANDAS. The numerical scheme consisted of the pore fluids’ vol-
ume/mass and momentum balances, the overall momentum balance adding all individual
momentum balances, and the phase-field evolution. Instead of transferring the pressure
terms of the fluid momentum balances towards the boundary, they were left in the volume
integral. Nevertheless, these terms are still active at the boundary as they are considered
within the boundary term of the overall momentum balance. This procedure has massive
numerical advantages when injection processes are computed since different boundary
conditions have to be coupled.

Based on this procedure, several numerical examples were investigated. First, the model
of fluid interaction under equilibrium and the solid fracturing process were verified with
experimental and analytical results, respectively. Then, proceeding from a single crack,
the fracturing behaviour of the solid skeleton was examined in detail. For this purpose,
the stored solid energy was split into components, and the effect of crack propagation on
the different proportions was analysed. In the same example, the mutual interaction of
the fluids during the fracking process was also assessed. Gas pressure compression at the
crack tip and subsequent gas reflux into the crack area were identified. By comparing
fully to partially saturated models, it was shown that the presence of pore gas primarily
hinders the fracturing process. This deceleration was attributed to the slower build-up of
pore pressure caused by the gas compressibility.

A second group of numerical examples displayed more realistic scenarios by assessing two
types of heterogeneities in partially saturated porous media. First, global heterogeneities
induced by external loads were evaluated. Such a consideration is essential as soils and
rocks in nature are often subjected to external stresses, such as overlying rock loads,
tectonic forces, or thermal stresses. In this context, two initial cracks – one horizontal and
one vertical – were applied to the specimen, accompanied by different ratios of horizontal
to vertical displacements. Both initial fractures opened in the first of these examples, so
the fluids dominantly searched their flow directions along these cracks. In contrast, an
increase in the displacement ratio hydraulically closed the vertical fracture in the second
example, and the fluid flow exhibited a flow behaviour without taking notice of the closed
crack. The gas reflux observed in the single-notch model was recovered in both cases.

The second type of heterogeneity considered variations within the porous structure by
including location-dependent material parameters. This model introduced predefined re-
gions of higher stiffness, namely variations of the elastic Lamé constant, to simulate
material imperfections. Crack branching caused by this latter was observed. The model
was furthermore improved by implementing statistical fields of geomechanical properties.
Numerical examples with different statistical correlation lengths were compared to study
the influence of material variations. As a result, an effect of the statistical fields on the
crack evolution was made out. The spatially varying local stresses caused characteristic
deviations in the crack path.

In conclusion, this thesis applied the phase-field approach to fracture within the The-
ory of Porous Media to address fully dynamic fracturing problems in partially saturated
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porous media. The presented methodical and numerical model holds promise for various
applications.

6.2 Future aspects

At this stage, the proposed triphasic TPM model can describe partially saturated porous
material, where a liquid and a gaseous pore fluid percolate the solid skeleton pore space,
with particular application to dynamic hydraulic fracturing processes. The theoretically
developed and numerically implemented model already allowed the study of the inter-
action of fluids and the effect of heterogeneities in the fracturing process. Nevertheless,
there exist several (unresolved) issues that require further consideration.

First, the presented model considers equilibrium and dynamic effects for the fluid inter-
action in the pore space and distinguishes between Darcy and Navier-Stokes flow within
the intact and broken areas, respectively, for the liquid phase. However, the frictional gas
stresses have been neglected in the numerical examples, resulting in a Darcy-type flow in
the whole domain for the gas phase. This assumption is justifiable since the effective gas
viscosity is two orders of magnitude smaller than the liquid one in the specific problem.
Nevertheless, if the interaction of the two phases in the pore space has to be studied in
detail, it would be advantageous also to resolve the gas stresses.

A further step towards a more realistic model concerns the model’s dimension. The
numerical examples were proposed in quasi-two and axial-symmetric three dimensions at
this stage. One step towards a more realistic view of the fracturing process in nature is to
compute fully non-symmetric three-dimensional numerical examples. However, this comes
along with an enormous computational effort. In this context, particular attention must
be paid to the mesh to achieve results in a realistic time period. Notably, the mesh has
to be chosen very fine around the crack tip to resolve the transition between broken and
intact material with respect to the length-scale parameter, while it can be chosen large in
the surrounding areas. An adaptive mesh refinement would be advantageous for fully non-
symmetric three-dimensional numerical examples. With this approach, the mesh could
adaptively refine solely at the crack tip and widen in the surrounding, saving valuable
computational costs. Besides mesh adaptivity, an extension towards a parallelisation
scheme for the monolithic solution of the partial differential equations is promising to
save computational efforts. In this context, combining PANDAS with the commercial
Finite-Element tool Abaqus is promising, compare Schenke [217].

Up to now, two types of heterogeneities were considered separately. On the one hand,
global heterogeneities arising from loading conditions and, on the other hand, local inho-
mogeneities in the porous structure were examined. Regarding this latter case, hydraulic
parameters, such as porosity and permeability, could be considered apart from the me-
chanical parameters. Moreover, the pressure-difference-saturation relation could also be
varied in a more complex system. In addition, the crack path deviation due to statis-
tical variation of the material parameters was only discussed so far. A further step in
this matter could be the quantification of these deviations. Finally, a mix of both het-
erogeneity types could be evaluated to improve the understanding of heterogeneities on
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the fracturing behaviour in a more general manner. In particular, the question of which
inhomogeneity type is decisive for a crack path deviation when both are active could be
assessed.

Last, also drying-induced fractures play a role in unsaturated media besides fluid-driven
fractures. In this case, the fractures result from drying shrinkage. Particularly, the
solid stresses are coupled not only with the phase field but also with the saturation.
For example, Cajuhi et al. [61] linked the fracture energy to the water content, directly
connected to the liquid saturation. Furthermore, Heider & Sun [137] coupled the solid
free energy to the phase field and the pressure suction, which is, in turn, linked to the
saturation. In both cases, desiccation induces stiffness loss, which can foster or lead to
fracture. These aspects could be further considered in the presented model to assess
drying-induced in addition to hydraulic fractures.



Appendix A:
Selected relations of tensor calculus

This appendix section offers a condensed set of essential rules for vector and tensor oper-
ations. For a more extensive discussion, the reader is referred to the vector- and tensor
script of the Institute of Applied Mechanics (Chair of Continuum Mechanics) at the Uni-
versity of Stuttgart, cf. Ehlers [79], which is partly based on the fundamental textbook of
de Boer [37].

A.1 Tensor algebra

For the following considerations arbitrary placeholders are introduced, viz.:

{α, β} ∈ R : scalars (zero-order tensors) as rational quantities,

{a,b, c} ∈ V3 : vectors (first-order tensors) of the proper

Euklidian 3-d vector space V3,

{A,B,C} ∈ V3 ⊗ V3 : tensors (of second order) of the corresponding

dyadic product space V3 ⊗ V3.

Collected rules for products of second-order tensors with scalars or vectors:

α (βA) = (αβ)A : associative law

A (α a) = α(Aa) = (αA) a : associative law

(α + β)A = αA+ βA : distributive law

α (A+B) = αA+ αB : distributive law

A (a+ b) = Aa+Ab : distributive law

(A+B) a = Aa+Ba : distributive law

αA = Aα : commutative law

a = Ab : linear mapping

I a = a : I : identical element (linear mapping)

0 a = 0 : 0 : zero element (linear mapping)

(A.1)

Collected rules for scalar (inner) products of tensors:

(αA) ·B = A · (αB) = α (A ·B) : associative law

A · (B+C) = A ·B+A ·C : distributive law

A ·B = B ·A : commutative law

A ·B = 0 ∀ A , if B ≡ 0

A ·A > 0 ∀ A ̸= 0

(A.2)
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Collected rules for tensor products of second-order tensors:

α (AB) = (αA)B = A (αB) : associate law

(AB) a = A (Ba) : associate law

(AB)C = A (BC) : associate law

A (B + C) = AB + AC : distributive law

(A + B)C = AC + BC : distributive law

AB ̸= BA : no commutative law

IA = AI = A : I : identical element (linear mapping)

0A = A0 = 0 : 0 : zero element (linear mapping)

(A.3)

Collected rules for transposed and inverse second-order tensors:

(a⊗ b)T = (b⊗ a)

(αA)T = αAT

(AB)T = BTAT

a · (Bb) = (BTa) · b

A · (BC) = (BTA) ·C

(A + B)T = AT + BT

A−1 = (detA)−1 (cofA)T

→ A−1 exists if detA ̸= 0

AA−1 = A−1 A = I

(A−1)T = (AT )−1 =: AT−1

(AB)−1 = B−1A−1

(A.4)

The computation rules of the determinant and the cofactor are given via

detA = 1
6
(A

�

�

@

@

�

�

@

@ A) ·A = 1
6
(trA)3 − 1

2
(trA) (AT ·A) + 1

3
(AA)T ·A

cofA = 1
2
A

�

�

@

@

�

�

@

@ A , where cofA = 1
2
(aik ano einj ekop) (ej ⊗ ep) =:

+
ajp (ej ⊗ ep)

can be evaluated using (A.7) and index notation. Thus, the coefficient matrix
+
ajp contains

at each position ( · )jp the corresponding subdeterminant, e. g.,
+
a11 = a22 a33 − a23 a32 .

Collected rules for the determinant and the inverse of second-order tensors:

(cofA)T = cofAT

detAT = detA

det (AB) = detA detB

det (αA) = α3 detA

det I = 1

det(cofA) = (detA)2

detA−1 = (detA)−1

det(A+B) = detA + cofA ·B+

+ A · cofB + detB

(A.5)

Collected rules for the trace operator of second-order tensors:

trA = A · I

tr(a⊗ b) = a · b

tr(AB) = tr(BA)

= A ·BT = AT ·B

tr(αA) = α trA

trAT = trA

tr(ABC) = tr(BCA)

= tr(CAB)

(A.6)
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In index notation, the properties of the permutation tensor are given, viz.:

3

E = eijk (ei ⊗ ej ⊗ ek) with the “permutation symbol” eijk

eijk =







1 : even permutation

−1 : odd permutation

0 : double indexing

−→







e123 = e231 = e312 = 1

e321 = e213 = e132 = −1

all remaining eijk vanish

(A.7)

A.2 Tensor analysis

The product rule of derivatives of products of functions:

(a⊗ b)′ = a′ ⊗ b + a⊗ b′ and (AB)′ = A′ B + AB′
(A.8)

Collected derivatives of tensors and their invariants:

∂A

∂A
= (I⊗ I)

23

T =
4

I

∂AT

∂A
= (I⊗ I)

24

T

∂A−1

∂A
= − (A−1 ⊗AT−1)

23

T

∂ trA

∂A
= I

∂ detA

∂A
= cofA = (detA)AT−1

∂ cofA

∂A
= detA [(AT−1 ⊗AT−1)−

− (AT−1 ⊗AT−1)
24

T ]

(A.9)

Selected computation rules for the gradient and the divergence operators:

grad(αβ) = α gradβ + β gradα

grad(αb) = b⊗ gradα + α gradb

grad(αB) = B⊗ gradα + α gradB

div (αb) = b · gradα + α divb

div (a⊗ b) = a divb+ (grada)b

div (αB) = B gradα + α divB

div (Ab) = (divAT ) · b+AT · gradb

div
(b

α

)

=
1

α
divb−

1

α2
b · gradα

(A.10)





Appendix B:
Mechanical supplements

B.1 Spectral decomposition of the strain tensor

This section briefly introduces the spectral decomposition of the strain tensor. For a
detailed discussion of this topic, the interested reader is referred, e. g., to Ehlers [79],
Markert [184] and Luo [178].

First, the eigenvalue problem is evaluated for the linearised solid strain tensor εS via

εS =
∑3

i=1 εSi nSi ⊗ nSi ↔ (εS − εS I)nS = 0 (B.1)

where εSi ∈ R
+ (for i = 1, 2, 3) denote the real and positive eigenvalues of the positive

definite strain tensor εS. If there are corresponding non-trivial orthogonal eigenvectors
nSi ̸= 0, the eigenvalue problem (B.1) can be solved via the characteristic polynomial

det (εS − εS I) = ε3S − IS1 ε
2
S + IS2 εS − IS3 = 0 . (B.2)

Therein, the principal invariants are defined in terms of the strain tensor as

IS1 = tr εS = εS · I ,

IS2 = tr (cof εS) = 1
2
[(tr εS)

2 − tr(εS εS)] ,

IS3 = det εS .

(B.3)

Moreover, the principal invariants are related to the eigenvalues through

IS1 = εS1 + εS2 + εS3 ,

IS2 = εS1 εS2 + εS2 εS3 + εS3 εS1 ,

IS3 = εS1 εS2 εS3 .

(B.4)

Finally, splitting the strain tensor according to the sign of its eigenvalues leads to

εS = ε+S + ε−S with







ε+S =
∑

i

εSi + |εSi|

2
nSi ⊗ nSi ,

ε−S =
∑

i

εSi − |εSi|

2
nSi ⊗ nSi .

(B.5)

B.2 Fluid flow state in the unbroken and broken case

In this section, the fluid flow is specified for the two extreme states of unbroken and broken
material. On the one hand, regarding the limit case of intact material when ϕS = 0, the
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frictional stresses Tβ
NEQ vanish, and the non-equilibrium momentum productions yield

according to (3.83)1

p̂β
NEQ = −(nβ)2

γβR

Kβ
r

wβ for ϕS = 0 . (B.6)

Considering the fluid momentum balances (3.13) under creeping-flow conditions, i. e.
(vβ)

′
β ≈ 0 and gradvβ ≈ 0, and inserting the relations for the total, equilibrium and

non-equilibrium quantities (3.38), (3.45), (3.46)1, (3.50), (3.51) and (B.6), leads with the
differentiation rule (A.10) for the pore liquid to

0 = divTL
EQ + ρL g + p̂L

EQ + p̂L
NEQ

= div (−nL pLR I) + nLρLRg + pLR gradnL + pDnFgrad sL − (nL)2
γLR

KL
r

wL

= −nL grad pLR + nLρLR g + pDnFgrad sL − (nL)2
γLR

KL
r

wL

→ nLwL = −
KL

r

γLR
(
grad pLR − ρLR g −

pD

sL
grad sL

)

(B.7)

and in analogy for the pore gas to

0 = divTG
EQ + ρG g + p̂G

EQ + p̂G
NEQ

= div (−nG pGR I) + nGρGRg + pGR gradnG − (nG)2
γGR

KG
r

wG

= −nG grad pGR + nGρGR g − (nG)2
γGR

KG
r

wG

→ nGwG = −
KG

r

γGR

(
grad pGR − ρGR g

)

(B.8)

Thus, for ϕS = 0, Darcy-like filter velocities nLwL and nGwG are recovered, compare
Darcy [70]. Note that the liquid filter velocity contains a term with the saturation gradient,
which is not included in the original Darcy filter law.

On the other hand, the non-equilibrium momentum productions p̂β
NEQ vanish for the limit

case ϕS = 1, and the frictional stresses Tβ
NEQ read

Tβ
NEQ = 2nβµβR Dβ for ϕS = 1 . (B.9)

Including this formulation in the fluid momentum balances (3.13) and considering the
relations (3.38), (3.45), (3.46)1, (3.50), (3.51) and (B.9), yields for the pore liquid

ρL(vL)
′
L = div (TL

EQ +TL
NEQ) + ρL g + p̂L

EQ

= div (−nL pLR I+ 2nLµLR DL) + ρLg + pLR gradnL + pDnFgrad sL

= div (2nLµLR DL)− nL grad pLR + ρL g + pDnFgrad sL
(B.10)
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and for the pore gas

ρG(vG)
′
G = div (TG

EQ +TG
NEQ) + ρG g + p̂G

EQ

= div (−nG pGR I+ 2nGµGR DG) + ρGg + pGR gradnG

= div (2nGµGR DG)− nG grad pGR + ρG g ,

(B.11)

similar to the Navier-Stokes equation of a single, incompressible Newtonian fluid. Note
that here as well, the liquid balance additionally includes a term with the saturation
gradient, arising from the interaction of the two fluids in the pore space.





Appendix C:
Complement numerical treatment

C.1 Proof of concept of rearranged weak fluid-mo-

mentum formulations

As a proof of concept for the numerical treatment of partially saturated porous media
either by use of (4.7)-(4.14) (standard formulation) or by substituting (4.8) and (4.9)
with (4.12) and (4.13) (rearranged formulation), the well-known consolidation problem is
considered. Table C.1 lists the material parameters for the current problem.

Table C.1: Material parameters for the consolidation problem.

Parameter Symbol Value Parameter Symbol Value

Lamé constants µS 5.58 · 106 Pa Atmospheric gas density ρGR
atm 1.246 kg/m3

λS 8.37 · 106 Pa Effective liquid viscosity µLR 10−3 Pa s

Intrinsic permeability KS 1.0 · 10−11 m2 Effective gas viscosity µGR 1.8 · 10−5 Pa s

Initial porosity nF
0 0.33 [ - ] Specific gas constant RG 287.17Nm/(kgK)

Initial liquid saturation sL0 0.7 [ - ] Temperature θ 283K

Effective solid density ρSR 3 000 kg/m3 Pore-size distribution factor λ 3 [ - ]

Effective liquid density ρLR 1 000 kg/m3

The geometry and boundary conditions are shown in Figure C.1, where the load q =
15MPa substitutes a building wished in place within 5 s onto partially saturated soil.
The left, bottom and right edges are impermeable and fixed. The top edge is divided into
three parts: the left and right parts (dashed lines) are permeable, while the middle part is
impermeable and loaded. The system is discretised with a regular mesh of 200 elements.

Figure C.1: Sketch of the IBVP of the consolidation problem.
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Figure C.2: Temporal development of the pore pressure and vertical stresses at point A.

After having applied the external load, this latter is kept constant until the end of the
consolidation process. For both models, standard and modified, Figure C.2 shows the
effective pore pressure pFR and the negative values of the effective vertical stress TEF 22

at point A together with the negative values of the total vertical stress T22 as the sum
of both. During the application of the external load within the first 5 seconds of the
consolidation process, there is a sudden vertical displacement of 0.3m at point A due to
the compressibility of the pore gas, compare Figure C.3.
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Figure C.3: Temporal development of the vertical displacement at point A.

This leads to a fast pore-pressure relaxation starting from 15MPa at t = 5 s together with
a first buildup of the effective stress. Once this has happened, the proper consolidation
process initiates, where the pore fluids are squeezed out of the domain, while the solid
deforms with a shrinking pore space. Further on, this leads to an ongoing but slower
relaxation of the pore pressure accompanied by a corresponding buildup of the effective
stress until the pore pressure vanishes and the total load is carried by the soil alone, thus
marking the end of the consolidation process.
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Figure C.4: Temporal development of the liquid saturation at point A.

Figure C.4 exhibits further details at point A, displaying the evolving liquid saturation.
According to the pressure jump of Figure C.2, the liquid saturation increases in the first
5 seconds and decreases thereafter until the consolidation process has finished.

As a result of this proof of concept, it can be stated that both the standard and the
rearranged numerical formulations lead to exactly the same computational results, thus
justifying the numerical procedure used for treating fracking processes in partially satu-
rated porous media.

C.2 Governing equations of the biphasic model

A detailed numerical treatment for this biphasic model can be found in Luo [178]. There,
the primary variables are the solid displacement uS corresponding to the displacement-
velocity relation, the solid velocity vS belonging to the overall momentum balance, the
liquid velocity vL corresponding to the momentum balance of the pore liquid, the effective
pore pressure pLR corresponding to the liquid volume balance, and the phase-field vari-
able ϕS corresponding to the phase-field evolution equation. Summarising the primary
variables of the biphasic model in an abstract vector u1 leads to

u1(x, t) = [uS, vS, vL, p
LR, ϕS]T . (C.1)

With this set u1(x, t), the governing equations of Table 3.3 read in their weak form:

Overall momentum balance:

GvS
(u1, δvS) ≡

∫

Ω

[
ρS(vS)

′
S + ρL(vL)

′
S + ρL(gradvL)wL

]
· δvS dv+

+

∫

Ω

(
σS

EF +TL
NEQ − pLR I

)
· gradδvS dv −

∫

Ω

ρg · δvSdv−

−

∫

δΩt̃

N

t̃ · δvS da = 0 , with t̃ :=
(
σS

EF +TL
NEQ

)
n− pLR n ,

(C.2)
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Liquid momentum balance:

GvL
(u1, δvL) ≡

∫

Ω

[ ρL(vL)
′
S + ρL(gradvL)wL ] · δvL dv +

∫

Ω

TL
NEQ · gradδvL dv+

+

∫

Ω

nLgrad pLR · δvL dv −

∫

Ω

(ρL g + p̂L
NEQ) · δvL dv−

−

∫

Ωt̄L

N

t̄L · δvL da = 0 , with t̄L = TL
NEQ n ,

(C.3)

Liquid volume balance:

GpLR(u1, δp
LR) ≡

∫

Ω

divvS δp
LR dv −

∫

Ω

nLwL · gradδpLR dv+

+

∫

Ωv̄L

N

v̄LδpLR da = 0 , with v̄L = nLwL · n ,
(C.4)

Phase-field evolution equation:

GϕS(u1, δϕ
S) ≡

∫

Ω

[M(ϕS)′S − 2(1− ϕS)H +
Gc

ϵ
ϕS ] δϕS dv +

∫

Ω

Gc ϵ gradϕ
S · grad δϕS dv−

−

∫

Ωv̄φ
S

N

v̄ϕ
S

δϕSda = 0 , with v̄ϕ
S

= Gc ϵ gradϕ
S · n .

(C.5)

C.3 Excerpt of the numerical treatment of the quasi-

static triphasic model without fracture

For the simplified triphasic model, no dynamic or fracturing processes need to be taken
into account. Thus, the set of primary variables for the quasi-static triphasic model can be
reduced to the solid displacement uS, the effective liquid saturation sLeff and the effective
gas pressure pGR, viz.

u2(x, t) = [uS, s
L
eff, p

GR]T . (C.6)

Moreover, the viscous effective stresses of the fluid components are negligible compared
to the fluid extra momentum productions, compare Ehlers et al. [91]. In addition, the
fluid velocities are computed based on Darcy’s filter law. A complete overview of the me-
chanical model can be found, e. g., in Ehlers [85]. The corresponding weak formulations
of the governing equations for the quasi-static model are finally given by
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Overall momentum balance:

GuS
(u2, δuS) ≡

∫

Ω

(
σS

EF − pFR I
)
· grad δuS dv −

∫

Ω

ρg · δuSdv−

−

∫

δΩt̃

N

≈

t · δuS da = 0 , with
≈

t :=
(
σS

EF − pFRI
)
n ,

(C.7)

Liquid volume balance:

GsL
eff
(u2, δs

L
eff) ≡

∫

Ω

[
(nL)′S + nLdivvS

]
δsLeff dv −

∫

Ω

nLwL · gradδsLeff dv+

+

∫

Ωv̄L

N

v̄LδsLeff da = 0 , with v̄L = nLwL · n ,
(C.8)

Gas mass balance:

GpGR(u2, δp
GR) ≡

∫

Ω

[
ρGR(nG)′S + nG(ρGR)′S + nGρGRdiv (uS)

′
S

]
δpGR dv−

−

∫

Ω

nGρGRwG · gradδpGR dv +

∫

Ωv̄G

N

ρGR v̄G δpGR da = 0

with v̄G = nGwG · n .

(C.9)

Note that only the arguments and the weak formulation of the overall momentum balance
changes compared to (4.7), (4.10) and (4.11).

C.4 Assignment of spatially dependent material pa-

rameters

A customised algorithm is used for the assignment of the arbitrary heterogeneous param-
eter fields onto the meshing grid. In general, the spatial discretisation of the meshing
grid is independent of material parameter data, given here in a regular distribution (Fig-
ure C.5). It is often sufficient that each integration point KG is basically equipped with
the spatially closest material parameter data for a suitable spatial fit (Figure C.5, green
circle). However, a mismatch of integration points (Figure C.5, red circle) combined with
(sparse) data can cause inaccurate results. In this regard, a customised algorithm after
Wagner [243] is implemented and provides a suitable averaging process to allocate and
store the material parameter information at each integration point KG in a preceding cal-
culation step for the subsequent numerical simulation. Thereby, a (scalar-valued) material
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parameter µKG is linearly weighted at the considered integration point KG, viz.:

µKG =

∑

n µ
data,nwdata,n

∑

nw
data,n

(C.10)

with wdata,n = 1 − ddata,n/RKG
. Therein, ddata,n is the spatial distance of the material

parameter data to the considered KG within a certain (influence) radius RKG
for KG, see

Figure C.5. The superscript n is used to label the included material data points. The
considered surrounding of KG can either be chosen constant for the overall domain or
location-dependent on the individual element size.

Figure C.5: Two-dimensional example of material-parameter assignment onto the integration
points from Wagner [243].
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13 (1848), 379–388.

[72] Detournay, E. & Cheng, A. H.-D.: Fundamentals of poroelasticity. In Fairhurst, C.
(ed.): Analysis and Design Methods. Pergamon, Oxford 1993, pp. 113–171.

[73] Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf der Basis der Theo-
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[229] Specht, S.; Bluhm, J. & Schröder, J.: Continuum mechanical description of an
extrinsic and autonomous self-healing material based on the theory of porous media.
In Hager, M. D.; van der Zwaag, S. & Schubert, U. S. (eds.): Self-healing Materials.
Springer International Publishing, Cham 2016, pp. 143–184.

[230] Stauffer, F.: Einfluss der kapillaren Zone auf instationäre Drainagevorgänge. Dis-
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anläßlich des 50. Geburtstages von Herrn Prof. Dr.-Ing. Wolfgang Ehlers, 2001.

II-8 Jack Widjajakusuma: Quantitative Prediction of Effective Material Parameters of
Heterogeneous Materials, 2002.

II-9 Alexander Droste: Beschreibung und Anwendung eines elastisch-plastischen Ma-
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