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A.3. Confusion matrices for all models in Switzerland . . . . . . . . . . . . . . . . . iv
A.4. MODIS-inferred and simulated SCAs (in %) for selected validation days in

Switzerland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
A.5. MODIS-inferred and simulated snow covered days for different years in

Switzerland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

B.1. Sensitivity analysis results for NDSI, cloud percentage, and SWE thresholds
in Switzerland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

B.2. Sensitivity analysis results for NDSI, cloud percentage, and SWE thresholds
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Abstract

Snow is one of the most important components of the hydrological cycle, providing tempo-
rary reservoir of available water during accumulation phase to be released for the down-
stream during ablation, thereby governing the hydrological variations in the mountainous
regions. Given the crucial relevance to mountain hydrology and high sensitivity to climate
change, it is highly pertinent to have a solid understanding of the seasonal snow evolution
and subsequent estimation of the available water for not only the water resources devel-
opment trajectories, but also to better plan against snow-related disasters. However, with
a high spatio-temporal variability observed in the inherent snow-related processes owing
to the complex topographical and climatological variations in the snow-dominated regions,
reliable representations of spatial distribution of seasonal snow and subsequent snow-melt
remain critical challenges for monitoring the seasonal evolution of snow and in turn for any
hydrological estimations in these regions.

Though snow-dominated regimes are often associated with data scarcity, different measure-
ment and monitoring techniques ranging from expanded observational station network
and dedicated research sites, to Remote Sensing (RS) based snow-cover monitoring are
currently in place to understand and quantify the snow-related processes. However, the
spatio-temporal heterogeneity in the mountains limits the reliable extrapolation of obser-
vational data, which is also the case with experimental sites, rendering these data as non-
representative as they are highly prone to localized influences. Likewise, lack of snow-depth
information and persistent cloud cover often limit the standalone usage of RS data. Snow-
melt modeling approaches, thus remain the widely accepted tools in practice to simulate
the snow processes and the resulting contribution to discharge. Depending upon the simu-
lation strategy, these models are also constrained with data availability and the degree of de-
tail required for simulation to represent the underlying processes. Complex, data intensive
physically based models are more accurate but are often restricted by the lack of detailed
input, whereas conceptual models are more prone to uncertain predictions due to simplis-
tic representation of the underlying processes driven by non-representative meteorological
data. The trade-off between the model complexity given the data unavailability, especially
in snow-melt modeling, thus requires a flexible model structure that can accommodate dif-
ferent details of model complexities in regimes with different levels of data availability.

Furthermore, to deal with the uncertainties associated with the estimated model parameters,
it is very important to critically select a calibration variable that offers spatio-temporal repre-
sentation and reasonable amount of information at an implementable spatial detail. Given
the data limitations, the choice of the calibration data and the appropriateness of calibra-
tion routine can further help avoid parameter compensation. This compensation normally
happens in the absence of a dedicated calibration routine and a representative calibration
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variable, where the calibration approach tries to match the whole simulation to the non-
representative data by imparting compensation within the parameter subsets representing
the sub-processes. Remote sensing based snow-cover images have been increasingly incor-
porated into modeling context in recent years that provide a plausible alternative to ground
based data especially in the data scarce mountain regions as they contain a very relevant
information on the spatio-temporal distribution of snow. A crucial research gap was thus
identified on how to best utilize the pixelwise qualitative information from these images to
improve the snow-melt modeling approaches thereby reducing the uncertainties in snow-
processes simulation.

This thesis introduces a novel standalone calibration technique using MODIS snow-cover
images for calibration of independent conceptual snow-melt models, thereby estimating
model parameters from individual or sets of MODIS images. The aim was to exploit the
pixel-wise binary (’snow’, ’no snow’) information that MODIS snow-cover images offer
on a daily scale at a reasonable spatial resolution. Switzerland and Baden-Württemberg
were selected as study snow regimes, with the former representing partly longer duration
snow and the latter associated with a shorter duration. The standalone calibration approach
was evaluated on different extensions of conceptual snow-melt models in different layers of
scrutiny. The extended snow-melt models were devised incorporating factors governing the
different aspects of snow accumulation and ablation processes to evaluate the improvement
in the simulation of snow-cover distribution with minimal data input for future implemen-
tation in data scarce regions. All the calibrated models adeptly simulated the snow-cover
distribution and the best performing model, i.e. the radiation-based model, was identi-
fied. An upside to this approach is that it allows future implementation in conjunction with
any snow-melt models that can simulate snow-cover distribution, in reliably identifying the
model parameters. Furthermore, the selection of binary MODIS information as calibration
variable permits relatively complex snow-melt modules to be calibrated with more robust-
ness as a result of reduced uncertainty associated with the calibration data.

Different simulation thresholds were also identified for defining the calibration data (NDSI
thresholds), selecting the images for calibration (cloud cover thresholds), and reclassify-
ing the snow water equivalent (SWE) outputs to snow-cover information (SWE thresholds).
The results of the sensitivity analysis of this calibration algorithm align with various studies
carried out in snow-melt modeling. The approach was found to exhibit lesser sensitivity
towards cloud thresholds, meaning the flexibility to calibrate on patches of snow and no-
snow in the images. This thesis further discusses the selection of images or a set of images
representing a period during snow season for calibration in different regimes. It was ob-
served that the estimated parameters based on calibration in different periods within the
season were transferable to other periods, with the ones estimated from melt season im-
ages in longer duration snow conditions and the ones from onset season images in shorter
duration snow conditions observed to be more robust.

Similarly, another important goal of this thesis was to evaluate the efficacy of the calibration
approach on the resulting SWE and its implications on the hydrological discharge at catch-
ment level. For this five catchments namely Reuss at Seedorf, Thur at Andelfingen and Aare
at Brienzweiler in Switzerland, and Neckar at Rottweil and Horb in Baden-Württemberg,
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were selected. The hydrological simulation and the comparison was done based on two hy-
drological models; the standard HBV model calibrated solely on discharge and a modified
HBV model designed to receive the melt from the snow-melt model calibrated on MODIS
images, as standalone input. It was observed that the standalone approach reduced the un-
certainty in the representation of snow-accumulation and melt processes, HBV calibrated
solely on discharge exhibited parameter compensations with other non-snow parameters in
the snow routine, thereby leading to uncertain snow processes simulation. This uncertainty
becomes very critical in reliably understanding the underlying sub-processes, as even if the
discharge simulation is found to be reliable, it leads to right for wrong reasons conclusion.
The estimation of the parameters solely from any MODIS information not only eliminated
the reliance on a single calibration variable ’discharge’ which is already an availability con-
straint in the higher altitudes but also preserves the spatial heterogeneity at a more regional
level.

In addition, the standalone melt outputs to the modified HBV was found to further in-
crease the reliability of discharge prediction and for a right reason as the snow processes are
adeptly represented by process-informed parameters. Moreover, the individual calibration
parameter space is also reduced for both snow-melt and the truncated hydrological models,
which favors a reduced equifinal parameter space, thereby contributing to reduced model-
ing uncertainties in either cases. This further allows additional relevant parameterization
aided by better computational efficiency while calibrating the snow-melt models in contrast
to increased complexities when done with a hydrological model calibrated on discharge
alone. The independent calibration thus, facilitates a dedicated simulation of snow pro-
cesses without passing the snow simulation through a more complex hydrological model.
This further holds a crucial relevance for discharge simulation in areas with episodic days
of snow, where the snow processes can be calibrated quickly on images without having to
calibrate the entire hydrological model.

The whole concept was replicated in mimicking a data scarce scenario in the Bavarian state
of Germany. The snow-melt model was driven by freely available global meteorological
inputs downscaled to match MODIS resolutions. In this case as well, the snow-cover dis-
tribution was well simulated and the resulting melt improved the hydrological predictions
at catchment level. This highlights the applicability of the MODIS based calibration in data
scarce regions.

The thesis concludes that the addition of snow-cover information in estimating the parame-
ters of snow-melt models utilizing the snow/no-snow information and a modest and glob-
ally available input data demand, facilitates a simple, spatially flexible approach to cali-
brate snow-cover distribution in mountainous areas with reasonably accurate precipitation
and temperature data, especially in data scarce regions. Furthermore, this also allows the
possibility for immediate verification with point measurements, especially crucial during
episodic days of snow. The uncertainty reduction with snow-cover estimation and subse-
quently discharge prediction is a critical value addition in improving the conceptualization
of snow-melt model routines which in turn complements the distributed hydrological mod-
eling framework.





Kurzfassung

Schnee ist eine der wichtigsten Komponenten des Wasserkreislaufs, da er während der
Akkumulationsphase ein temporäres Reservoir an verfügbarem Wasser bildet, das während
der Ablation für den Abfluss freigegeben wird und so die hydrologischen Schwankungen
in Bergregionen bestimmt. Angesichts der entscheidenden Bedeutung für die Hydrologie
in Gebirgsregionen und der hohen Empfindlichkeit gegenüber dem Klimawandel ist ein
solides Verständnis der jahreszeitlichen Schneeentwicklung und der anschließenden Ab-
schätzung des verfügbaren Wassers nicht nur für die Entwicklung der Wasserressourcen,
sondern auch für eine bessere Planung gegen schneebedingte Katastrophen von großer Be-
deutung. Da jedoch aufgrund der komplexen topografischen und klimatologischen Vari-
ationen in den schneedominierten Regionen eine hohe räumlich-zeitliche Variabilität bei
den schneebezogenen Prozessen zu beobachten ist, bleiben zuverlässige Darstellungen der
räumlichen Verteilung des saisonalen Schnees und der anschließenden Schneeschmelze eine
kritische Herausforderung für die Überwachung der saisonalen Entwicklung des Schnees
und damit für alle hydrologischen Schätzungen in diesen Regionen.

Obwohl schneedominierte Regime oft mit Datenknappheit verbunden sind, werden derzeit
verschiedene Mess- und Überwachungstechniken eingesetzt, die von einem erweiterten
Netz von Beobachtungsstationen und speziellen Forschungsstandorten bis hin zur fern-
erkundungsbasierten Überwachung der Schneedecke reichen, um die schneebezogenen
Prozesse zu verstehen und zu quantifizieren. Die räumlich-zeitliche Heterogenität in den
Bergen schränkt jedoch die zuverlässige Extrapolation von Beobachtungsdaten ein, was
auch bei Versuchsstandorten der Fall ist, so dass diese Daten nicht repräsentativ sind, da sie
sehr anfällig für lokale Einflüsse sind. Ebenso schränken das Fehlen von Informationen über
die Schneehöhe und die anhaltende Bewölkung die eigenständige Nutzung von Fernerkun-
dungsdaten ein. Modellierungsansätze für die Schneeschmelze bleiben daher die in der
Praxis weithin akzeptierten Werkzeuge zur Simulation der Schneeprozesse und des daraus
resultierenden Beitrags zum Abfluss. Je nach Simulationsstrategie sind diese Modelle auch
durch die Datenverfügbarkeit und den für die Simulation erforderlichen Detaillierungs-
grad zur Darstellung der zugrunde liegenden Prozesse eingeschränkt. Komplexe, daten-
intensive physikalisch basierte Modelle sind genauer, werden aber oft durch den Mangel an
detaillierten Eingangsdaten eingeschränkt, während konzeptionelle Modelle aufgrund der
vereinfachten Darstellung der zugrunde liegenden Prozesse, die durch nicht repräsentative
meteorologische Daten gesteuert werden, anfälliger für unsichere Vorhersagen sind. Der
Kompromiss zwischen der Modellkomplexität und der Nichtverfügbarkeit von Daten, ins-
besondere bei der Modellierung der Schneeschmelze, erfordert daher eine flexible Modell-
struktur, die verschiedene Details der Modellkomplexität in Regimen mit unterschiedlichem
Grad der Datenverfügbarkeit berücksichtigen kann.
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Darüber hinaus ist es für den Umgang mit den Unsicherheiten, die mit den geschätzten
Modellparametern verbunden sind, sehr wichtig, eine Kalibrierungsvariable kritisch
auszuwählen, die eine räumlich-zeitliche Darstellung und eine angemessene Menge an
Informationen in einem implementierbaren räumlichen Detaillierungsgrad bietet. An-
gesichts der Datenbeschränkungen können die Wahl der Kalibrierungsdaten und die
Angemessenheit der Kalibrierungsroutine dazu beitragen, eine Parameterkompensation zu
vermeiden. Diese Kompensation erfolgt normalerweise in Ermangelung einer speziellen
Kalibrierungsroutine und einer repräsentativen Kalibrierungsvariablen, wobei der Kalib-
rierungsansatz versucht, die gesamte Simulation an die nicht repräsentativen Daten anzu-
passen, indem eine Kompensation innerhalb der Parameterteilmengen, die die Teilprozesse
darstellen, vorgenommen wird. In den letzten Jahren wurden zunehmend fernerkundungs-
basierte Schneedeckenbilder in die Modellierung einbezogen, die insbesondere in den date-
narmen Gebirgsregionen eine plausible Alternative zu bodengestützten Daten darstellen,
da sie sehr relevante Informationen über die räumlich-zeitliche Verteilung von Schnee en-
thalten. Es wurde daher eine wichtige Forschungslücke identifiziert, wie die pixelweisen
qualitativen Informationen aus diesen Bildern am besten genutzt werden können, um die
Modellierungsansätze für die Schneeschmelze zu verbessern und dadurch die Unsicher-
heiten bei der Simulation von Schneeprozessen zu verringern.

In dieser Arbeit wird eine neuartige, eigenständige Kalibrierungstechnik vorgestellt,
die MODIS-Schneedeckenbilder zur Kalibrierung unabhängiger konzeptioneller
Schneeschmelzmodelle verwendet und dabei Modellparameter aus einzelnen oder
mehreren MODIS-Bildern schätzt. Das Ziel war es, die pixelweise binäre Informa-
tion (’Schnee’, ’kein Schnee’) zu nutzen, die MODIS-Schneedeckenbilder auf täglicher
Ebene bei einer angemessenen räumlichen Auflösung bieten. Als Schneeregime wur-
den die Schweiz und Baden-Württemberg ausgewählt, wobei erstere teilweise länger
andauernde und letzteres eine kürzer andauernde Schneebedeckung aufweist. Der
eigenständige Kalibrierungsansatz wurde an verschiedenen Erweiterungen konzep-
tioneller Schneeschmelzmodelle in unterschiedlichen Betrachtungsebenen evaluiert. Die
erweiterten Schneeschmelzmodelle wurden unter Einbeziehung von Faktoren entwickelt,
die die verschiedenen Aspekte von Schneeakkumulations- und Ablationsprozessen berück-
sichtigen, um die Verbesserung der Simulation der Schneedeckenverteilung mit minimalem
Dateninput für die künftige Implementierung in datenarmen Regionen zu bewerten. Alle
kalibrierten Modelle simulierten die Schneedeckenverteilung sehr gut, wobei das Modell
mit der besten Leistung, d. h. das strahlungsbasierte Modell, ermittelt wurde. Ein Vorteil
dieses Ansatzes besteht darin, dass er eine künftige Implementierung in Verbindung mit
beliebigen Schneeschmelzmodellen, die die Schneedeckenverteilung simulieren können,
ermöglicht, indem die Modellparameter zuverlässig bestimmt werden. Darüber hin-
aus ermöglicht die Auswahl binärer MODIS-Informationen als Kalibrierungsvariable
eine robustere Kalibrierung relativ komplexer Schneeschmelzmodule, da die mit den
Kalibrierungsdaten verbundene Unsicherheit geringer ist.

Es wurden auch verschiedene Simulationsschwellenwerte für die Definition der Kalib-
rierungsdaten (NDSI-Schwellenwerte), die Auswahl der Bilder für die Kalibrierung
( Wolkenbedeckungsschwellenwerte) und die Reklassifizierung der SWE-Ausgaben in
Schneedeckeninformationen (SWE-Schwellenwerte) ermittelt. Die Ergebnisse der Sen-
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sitivitätsanalyse dieses Kalibrierungsalgorithmus stimmen mit verschiedenen Studien
überein, die im Bereich der Schneeschmelzmodellierung durchgeführt wurden. Es wurde
festgestellt, dass der Ansatz eine geringere Empfindlichkeit gegenüber Wolkenschwellen-
werten aufweist, was bedeutet, dass die Kalibrierung auf schneebedeckten und schneefreien
Flächen in den Bildern flexibel ist. Es wurde festgestellt, dass die geschätzten Parameter,
die auf der Kalibrierung in verschiedenen Perioden innerhalb der Saison beruhen, auf an-
dere Perioden übertragbar sind, wobei die Parameter, die aus Bildern der Schmelzsaison
bei länger anhaltenden Schneeverhältnissen geschätzt werden, und die Parameter, die aus
Bildern der Zeit des Schneebeginns bei kürzer anhaltenden Schneeverhältnissen geschätzt
werden, sich als robuster erweisen.

Ein weiteres wichtiges Ziel dieser Arbeit war es, die Wirksamkeit des Kalibrierungsansatzes
auf die resultierende SWE und ihre Auswirkungen auf den hydrologischen Abfluss im
Einzugsgebiet zu bewerten. Der Vergleich wurde anhand von zwei hydrologischen Mod-
ellen durchgeführt: dem HBV-Standardmodell, das ausschließlich auf der Grundlage des
Abflusses kalibriert wurde, und einem modifizierten HBV-Modell, das die Schmelze aus
dem auf MODIS-Bildern kalibrierten Schneeschmelzmodell als eigenständigen Input er-
hielt. Es wurde festgestellt, dass der eigenständige Ansatz die Unsicherheit bei der
Darstellung von Schneeakkumulations- und Schmelzprozessen reduzierte, während HBV,
das ausschließlich auf der Grundlage des Abflusses kalibriert wurde, Parameterausgle-
iche mit anderen Nicht-Schnee-Parametern in der Schneeroutine aufwies, was zu einer
unsicheren Simulation von Schneeprozessen führte. Diese Unsicherheit ist für ein zu-
verlässiges Verständnis der zugrundeliegenden Teilprozesse sehr kritisch, denn selbst wenn
sich die Abflusssimulation als zuverlässig erweist, führt sie zu einer ’richtigen Schlussfol-
gerung aus falschen Gründen’. Durch die Schätzung der Parameter allein aus MODIS-
Informationen entfällt nicht nur die Abhängigkeit von einer einzigen Kalibrierungsvari-
ablen für den Abfluss, die in den höheren Lagen bereits eine Verfügbarkeitsbeschränkung
darstellt, sondern es bleibt auch die räumliche Heterogenität auf regionaler Ebene erhalten.

Darüber hinaus wurde festgestellt, dass die eigenständigen Schmelzausgaben des modi-
fizierten HBV die Zuverlässigkeit der Abflussvorhersage weiter erhöhen, und zwar aus
gutem Grund, da die Schneeprozesse durch prozessinformierte Parameter angemessen
dargestellt werden. Darüber hinaus wird der individuelle Kalibrierungsparameterraum
sowohl für die Schneeschmelze als auch für die abgeschnittenen hydrologischen Modelle re-
duziert, was einen reduzierten äquifinalen Parameterraum begünstigt und damit in beiden
Fällen zu einer Verringerung der Modellierungsunsicherheiten beiträgt. Dies ermöglicht
außerdem eine zusätzliche relevante Parametrisierung, die durch eine bessere Rechenef-
fizienz bei der Kalibrierung der Schneeschmelze-Modelle unterstützt wird, im Gegensatz zu
der erhöhten Komplexität bei der Kalibrierung eines hydrologischen Modells, das auf eine
einzige Variable, d.h. den Abfluss, kalibriert ist. Die unabhängige Kalibrierung begünstigt
somit eine dedizierte Simulation von Schneeprozessen, ohne dass die Schneesimulation
durch ein komplexeres hydrologisches Modell geleitet wird.

Das gesamte Konzept wurde in einem datenarmen Szenario im Freistaat Bayern in Deutsch-
land nachgebildet. Das Schneeschmelzmodell wurde durch frei verfügbare globale meteo-
rologische Daten angetrieben, die auf die MODIS-Auflösung heruntergerechnet wurden.
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Auch in diesem Fall wurde die Schneedeckenverteilung gut simuliert, und das Schmelz-
ergebnis verbesserte die hydrologischen Vorhersagen auf Einzugsgebietsebene. Dies unter-
streicht die Anwendbarkeit der MODIS-basierten Kalibrierung in datenarmen Regionen.

Die Dissertation kommt zu dem Schluss, dass die Hinzunahme von Schneedeckeninforma-
tionen bei der Schätzung der Parameter von Schneeschmelzmodellen unter Verwendung
von Schnee/Nicht-Schnee-Informationen und einem bescheidenen und global verfügbaren
Bedarf an Eingabedaten einen einfachen, räumlich flexiblen Ansatz zur Kalibrierung der
Schneedeckenverteilung in Gebirgsregionen mit einigermaßen genauen Niederschlags- und
Temperaturdaten ermöglicht, insbesondere in Regionen mit wenigen Daten. Darüber hin-
aus bietet dies auch die Möglichkeit einer sofortigen Verifizierung mit Punktmessungen,
was insbesondere bei episodischen Schneetagen von entscheidender Bedeutung ist. Die
Verringerung der Unsicherheit bei der Schätzung der Schneedecke und der anschließenden
Abflussvorhersage ist ein entscheidender Zusatznutzen bei der Verbesserung der Konzep-
tualisierung von Schneeschmelzmodellroutinen, die wiederum die verteilte hydrologische
Modellierung ergänzen.



1. Introduction

1.1. Motivation

Snow is one of the most important components of the hydrological cycle providing a reser-
voir for available water lagged for subsequent discharge in downstream reaches. Snow por-
trays a very complex dynamics with high spatio-temporal variability observed in the inher-
ent processes in the mountainous regimes. The temporal variability is controlled by variabil-
ity associated with the accumulation process such as the amount and distribution of solid
precipitation, and with the ablation process such as the ambient air temperature, humidity
and incident radiation. The spatial variability is explained by topography and land cover in
the mountains which in turn govern the temporal variability [Clark et al., 2011]. Due to this
high spatio-temporal variability, reliable representations of spatial distribution of seasonal
snow and subsequent snow-melt still remain critical challenges for monitoring the seasonal
evolution of snow and in turn for any hydrological estimations despite the crucial relevance
in mountainous regimes in determining the available water for the human settlement and
operational management [Gyawali and Bárdossy, 2022]. The snow-cover distribution holds
very important information on snow accumulation and melt in the mountainous regimes,
and can add a crucial detail, especially for simulation of the snow-melt and accumulation
processes and reasonably predict the spatial distribution of snow-water equivalent and its
partition from evapotranspiration, runoff and percolation and spring discharge. This work
is motivated by the challenge to accurately account for the contribution of snow-cover evo-
lution in mountain hydrology.

1.2. Challenges in snow estimations

Highly localized point measurements, snow-melt models and to some extent Remote Sens-
ing (RS) based observations, are currently being employed to estimate and analyze the ac-
counting of snow-processes. Owing to the inherent large scale spatial variability of the snow
characteristics, widespread measurement of snow-depth as well as the simulation of the
snow processes is very challenging. Limitation of reliable snow-melt estimation via mod-
eling in mountainous regions is, also, further exacerbated by data scarcity. This lack of
highly pertinent data severely impacts the reliable understanding of snow-related processes
in the mountainous regions in different layers, namely reliability and representativeness of
the available data, choice of model complexity, and appropriateness for a reliable calibra-
tion and model evaluation [Tarasova et al., 2016]. In addition to the complex climatic and
physiographic conditions, the limitations of the snow-melt models can also be inferred as a
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function of the modelling approach, and the model application. A general case is that the
models are limited by data whereas a case-by-case unique problems are generally the func-
tions of the model choice and the climatic characteristics of the regions [Leavesley, 1989].
Following sections briefly explain these limitations.

1.2.1. Non-representative case of measurements

The widely used point measurements of snow provide an accurate measure of snow-depth
and the water equivalent, however, these in-situ measurements can seldom cover a wider
spatial extent and are prone to be non-representative due to local influences. These point
measurements of Snow Water Equivalent (SWE) such as the snow-pillows have the tendency
to not represent the spatial and temporal variability in the mountainous areas [Rittger et al.,
2016] as these primary sources of snow-related data are often located in the valleys and often
lack the information about areas above them and along the slopes. Interpolation of the SWE
and snow-depth data are often limited by the fact that the spacing distance between these
measurements are often greater than the correlation-length scale of measurements [Molotch
and Margulis, 2008].

In the context of snow-melt modeling, the mountainous areas are mostly characterized by a
very low density of rainfall and climate observation stations. Among all the climatic vari-
ables, the precipitation exhibits a very complex behaviour with topography and is highly
prone to be underestimated due to under-catch even at the gauging stations. The extrapo-
lation of this uncertain precipitation to higher altitudes is more non-representative as this
important driver is very prone to local climatic patterns, thereby rendering the simulation
very uncertain.

1.2.2. Model complexities and data limitations

Various modeling and measurement techniques are in practice to account for the snow pro-
cesses but these methods hold their own limitations. Prior studies on the comparison of
snow models [Feng et al., 2008; Rutter et al., 2009] have highlighted the better reliability of
complex model structures in simulating the snow processes. However, depending upon the
complexities of the models, there exists big differences in model results. Relatively accu-
rate and process based physically based models are highly data intensive, which is often a
big limitation in mountainous catchments around the world. More widely used conceptual
snow-melt model applications are either lumped (mean basin/regional parameters/inputs)
or distributed (dividing the region into smaller areas with distributed inputs/parameters)
to define the physical and hydrological features of the basin. Distributed models somewhat
take the spatial heterogeneity into account, however the model complexities increases with
added layer of detail thus straining the model with more data requirement.

The simplified energy-balance and temperature index based approaches are popular owing
to their simplistic representation of the snow-processes. The former uses a simplified energy
budget for a snowpack to calculate the snow-melt. However, limited availability of required
input data such as wind speed, net solar radiation, vapour pressure, and the techniques
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to extrapolate these information on a distributed scale further restricts the energy-balance
models usage in a larger scale [Anderson, 1976]. The temperature-index models are more
empirical in nature, where a melt factor and the air temperature are used to account for the
energy-interactions in the snow-pack. These models, owing to their simplistic algorithm
and less data requirement have been widely used around the world in snow-melt modeling
and as a core component in hydrological models.

The trade-off between the model complexity given the data unavailability, however, remains
a critical question especially in snow-melt modeling. Tarasova et al. [2016] argues that
the discharge from ablation processes in snow-dominated catchments are often more pre-
dictable than, for instance, the discharge from small-scale stochastic rainfall events, which
often allows a more simplistic and better prediction with less complex (lumped, or semi-
distributed) models than with distributed models with high data requirement. Depending
upon the regimes with different levels of data availability, it is thus very important to have
a flexible structure that can accommodate different details of model complexities without
much loss in model performance, thereby reducing the model uncertainties.

1.2.3. Uncertainties in snow parameters estimation

The uncertainties associated with the calibration technique of a model is a multi-pronged
effect of the data scarcity and the resulting implementation of unrepresentative input data;
model complexities and the appropriateness of the calibration routine and the reference
data given these conditions. The parameter related uncertainties, though to some extent
are unavoidable, given the data limitations, the choice of the calibration data remains a
critical deciding factor that can further determine the complexities of the model structure. In
hydrological modeling, the snow-processes are generally calibrated on a single variable, i.e
the discharge at the outlet. Due to this, the snow processes are impacted by a compensating
effect with other non-snow parameters, leading to a possible accurate discharge but a very
uncertain representation of the underlying snow processes. This is further described in
subsequent chapters in detail. Furthermore, the SWE and snow-depth based calibration also
often lack the spatial detail as the extrapolation of these variables is highly uncertain owing
to the complex spatio-temporal variability in these catchments. Multiple data set modeling
has gained traction in recent years to identify and target the specific modules inside these
models but the question remains on to what level the model complexities in terms of added
parameterization can be allowed for better simulation given the data-scarcity constraints.
These uncertainties thus highlight the need in critically selecting a calibration variable that
offers reasonable amount of information at a implementable spatial detail.

1.2.4. Limitations of standalone usage of satellite imageries

With the advances in space technology, various satellite based snow-products have been
made available to researchers and other end-users for snow-cover monitoring. However,
the lack of snow-depth information and persistent cloud cover in the mountains severely
limit the standalone usage of Remote-sensing images in snow-cover estimation [Tran et al.,
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2019]. Another limitation of the satellite based information is also associated with the com-
plexities in converting the qualitative pixel-level data to quantitative information required
for hydrological modeling [Corbari et al., 2009].

The Remote Sensing images can, however, provide a plausible alternative to ground based
data especially in the data scarce mountain regions, since their resolution and availability
do not depend on the mountainous terrain [Parajka and Blöschl, 2008(a)]. In particular, the
snow-cover distribution from these images not only hold a crucial information on the spatial
distribution of snow, but also contain the proxy information on accumulated snow precip-
itation during the snow season, which can be further analysed to update the existing SWE
estimates. The snow-cover depletion rate showcases an inverse relationship to the the avail-
able snow water equivalent and the resulting snow-melt discharge [Rango and Itten, 1976].
This information is very relevant for simulating snow-melt and accumulation processes and
the spatial detail offered by freely available satellite images of snow-cover distribution pro-
vides a solid foundation for distributed snow-melt modeling. This research aims to exploit
this crucial information from freely available images of snow-cover distribution to under-
stand and analyze the snow processes in data scarce snow-dominated regimes.

1.2.5. Sensitivity to climate change

Considering the snow effect on land and atmospheric processes which is further exacerbated
by high sensitivity to climate change, accurate representation of seasonal snow evolution
is thus highly imperative to strengthen and better plan the competing priorities of water
resources development trajectories in these regions [Kirkham et al., 2019; Schmucki et al.,
2014; He et al., 2014]. Climate change, in particular the increasing trend of temperature,
complicates the problem with snow-estimation in the data scarce regions as the temperature
fluctuations impart uncertainty in terms of timings and volume of snow accumulation and
melt. The temperature changes alter the regional atmospheric circulation patterns, which
further has a cascading effect on the distribution and phases of precipitation resulting in
less snow precipitation in the accumulation season and accelerated melt well before spring
with early onset of spring discharge. This has been observed in most of the mountainous
areas around the world which raises a crucial question for the water resources strategies,
particularly on spatiotemporal distribution of snow accumulation, the rate and timing of
depletion and resulting availability to the downstream reaches. The spatio-temporal snow
cover variation provides a pertinent information on this aspect, as these changes strongly
correlate with changing climatic trends. Global and regional snow-cover monitoring based
on the RS based snow cover information have been in place and highly prioritized in recent
years to assess these spatiotemporal changes. However, a robust snow assessment technique
that can capture the influence of the change including changing precipitation and tempera-
ture, at a regional scale, to (a) reconstruct a snow cover time series (b) to accurately quantify
the volume of water stored in the snowpack, (c) to locate precisely where the snow is ac-
cumulated and (d) to estimate the timing and quantity of melt for downstream availability,
is very crucial, under a changing climatic regime, for better snow estimation and adequate
management of the downstream water demand for different socio-economic needs.
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1.3. Research objectives and questions

As discussed above, with the topographical complexities and various limitations of data in
the mountainous terrain, it is imperative to develop a simplistic, less data-intensive and an
adaptive methodology applicable in mountainous regimes. In general, this research aims to
develop a standalone calibration technique with which conceptual and parsimonious snow-
melt models can be calibrated on spatial snow-cover distribution from the satellite images
at a pixel level using reasonably accurate precipitation and temperature model forcings,
thereby formulating a flexible snowmelt model useful for distributed hydrologic modeling.
In this context, following specific objectives were envisioned and these try to address the
questions that follow:

(a) To develop and extend different variants of distributed temperature-index snow-melt
incorporating different aspects governing snow hydrology such as the elevation, as-
pect, solar radiation

• This will address the question on how well the increasing model complexities
with modifications concerning aspects of the underlying snow-processes impact
the mimicry of snow-cover distribution.

(b) To develop and evaluate a pixel-based binary calibration methodology to calibrate
the snow-melt model variants with parameters estimated from a single or a set of
Moderate-resolution Imaging Spectroradiometer (MODIS) images during the snow
season.

• The research question addressed here is if the binary calibration on snow (’1’)
or no snow (’0’) spatial distribution is able to simulate the MODIS snow-cover
distribution well. This will also analyze if the uncertainty in model simulation is
reduced with the selection of a robust binary information used for calibration.

• How will the model performance vary in different elevation zones? Which is the
best model to use?

(c) To identify and recommend different thresholds used for calibration using MODIS
images. The research questions that would be addressed are:

• What NDSI threshold should be used to demarcate between snow/no-snow pixel
for the observed MODIS snow-cover?

• What is the minimum cloud percentage threshold for the observed MODIS im-
ageries to be used for the proposed calibration?

• What is the minimum SWE threshold value to demarcate between snow/no-
snow pixel for the simulated snow-cover distribution?

(d) To assess the spatio-temporal transferability of the parameters estimated with the pro-
posed calibration technique.

• This will answer the pertinent question on how well the calibrated parameters
perform in different phases of the snow season and within different regions.
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(e) To investigate the performance of the SWEs from the snow-melt models calibrated on
MODIS snow-cover distribution in a modified hydrological model.

• How does the distribution-based calibration reduce uncertainties related to
snow-processes simulation in hydrologic modeling?

(f) To evaluate the methodology in a data scarce scenario. This evaluates the methodology
in the absence of observed precipitation and temperature inputs.

(g) To investigate the model inversion to obtain seasonal estimates of accumulated snow
in a semi-distributed manner.

1.4. Scope and structure of this thesis

This thesis aims to address the research objectives and is structured as following sections.

Chapter two gives a brief introduction of the Remote Sensing concept. This chapter provides
the background on how snow-cover monitoring is being done with optical satellite sensors
along with the overview of existing space-borne snow products. Further discussed is the
problems associated with the cloud obscurity in remote sensing images. The chapter then
details the literature review on Remote Sensing integration in hydrological modeling as well
as assimilation in snow-modeling context.

Chapter three provides an overview of the study regions selected for snow-melt modeling
along with the justification for selection in terms of snow-cover regime, topography and
climate. The section then introduces the different hydrometeorological dataset used in the
study to drive the snow-melt and the hydrological models. Finally, the chapter describes in
detail about the MODIS snow-cover product and the cloud removal methodology as a data
preparation step.

Chapter four discusses the geostatistical interpolation of the meteorlogical inputs employed
in the study. The chapter first provides a brief introduction on the concept of Kriging. It fur-
ther provides a detailed introduction of ordinary Kriging along with the limitations of the
intrinsic hypothesis, external drift Kriging and residual Kriging methodologies. The chap-
ter then discusses the Kriging methodologies employed in the study regions along with a
description of the directional smoothing methodology used in conjunction with a multi-
ple linear regression based residual Kriging approach for precipitation interpolation in the
mountains. Furthermore, results of Kriging in the study regions in the form of leave-one-out
cross validation statistics are also presented in this chapter.

Chapter five starts with a introduction to snow-melt modeling along with the types of mod-
els commonly used for snow estimation. This chapter then highlights the different exten-
sions to the simplistic degree-day model devised and used in this study. The extended
models show a gradual added model parameterization with different aspects governing
the snow evolution in the mountains. The chapter also discusses about the data input re-
quirement for the snow models. The overall methodological approach of the study is also
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presented. The chapter then describes different components and the schematics of a hydro-
logical model, Hydrologiska Byråns Vattenbalansavdelning (HBV).

Chapter six is the backbone of this thesis. This chapter focuses on the novel calibration
methodology proposed in this study in detail. The chapter discusses the problem statement
on how traditional snow-routine calibration is being done and the novelty of this study to
tackle this challenge. The calibration methodology, along with the objective functions used
are also described in detail. The Robust Parameter Estimation (ROPE) methodology is also
discussed briefly. Finally, the results of snow-cover simulations in both the study regions
are also compared and discussed in different layers of detail. The best performing model
variant is identified in this chapter.

Chapter seven explains the sensitivity analysis carried out in terms for identifying the best
thresholds regarding snow/no snow differentiation (Normalized Difference Snow Index
(NDSI) threshold for MODIS and SWE threshold for simulated series), selection of images
(cloud threshold). The sensitivity in relation to the selection of periods within a snow sea-
son is also discussed in this section along with calibration and validation in different sea-
sons. This chapter further explains the results of validation of the calibration methodology
in terms of hydrological modeling. The snow-cover simulation from the snow-routine of
HBV calibrated on discharge and the snow-cover simulation from MODIS are compared
and described in detail. Furthermore, the translation of MODIS calibrated melt to discharge
is also analysed and compared against HBV modeled discharge. The chapter is concluded
with a discussion on hydrological model uncertainties and how it can be reduced with the
proposed methodology.

Chapter eight describes two practical extensions of the research methodology using MODIS
snow-cover data. The first section covers the snow-melt modeling and MODIS based cal-
ibration in a data scarce scenario, using freely available global data. Likewise, a MODIS
snow-cover based SWE reconstruction at Hydrologic Response Unit (HRU) level is also dis-
cussed in this chapter.

Chapter nine concludes the thesis with a summary of the approach comparing the findings
in line with the set research objectives.



2. Remote Sensing (RS) in snow estimation

2.1. Brief concept of Remote Sensing

Remote sensing is the science and art of acquiring the information pertaining to an object,
area or a phenomenon via abstraction of the information obtained by a sensor without direct
contact with the concerned target. Generally, the remote sensing information refers to the
information coming in from the electromagnetic spectrum acquired via airborne or space-
borne sensors, generally classified as the active and passive sensors [Ritchie and Rango,
1996]. Despite the niche of potential information, remote sensing missions were historically
driven by political and technological motives [Wagner et al., 2009], rather than the needs of
the scientific community. However, in the recent years, the need to close the gap between
the scientific user groups and the remote sensing providers have been identified and accord-
ingly followed up by increasing space-based missions. Remote sensing data now has found
its application particularly in environmental sector including, hydrology, snow-cover mon-
itoring, agriculture, forestry, oceanography, meteorology, geology as well as for planning
purposes [Gafurov, 2010].

Both the active sensors (sending a pulse and measuring the reflected backscatter) and pas-
sive sensors (measuring the reflected sun light from natural surfaces) provide valuable in-
formation about reflective, thermal and dielectric properties of the Earth’s surface [Engman
and Gurney, 1991]. This information, particularly in hydrology, can be used as a proxy for
different hydrological variables, later transformed into hydrologically relevant information
empirically or with different transfer functions. With ever-evolving Remote sensing mis-
sions, this data has been a valuable alternative or supplement to existing operational and
research hydrology sector. The major advantage of the RS data is pronounced in the un-
gauged areas (especially inaccessible high mountains) where this valuable information can
act as a driver for various hydro-meteorological operations, as the resolution and availabil-
ity of these data do not depend on the terrain.

2.2. Snow-cover monitoring with optical satellite observations

Remote sensing offers a very effective option to monitor the snow-cover distribution, at a
reasonable spatio-temporal detail, with the value more highlighted in the topographically
inaccessible regions, which are characterized by low density of monitoring observation sta-
tions [Huang et al., 2017]. The areal extent of snow is a very pertinent hydrological variable
and this spatial information needs to be ’judiciously’ integrated into snow-melt and in turn
hydrological modeling in order to improve seasonal streamflow forecasts in the data scarce
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mountainous regimes. Snow can be considered as one of the most ’colorful’ natural surface
covers [Dozier et al., 2009] as the inherent spectral reflectance can range from high (albedo)
in a visible wavelength spectrum with minimal sensitivity to the grain size, to low in the
mid- InfraRed spectrum [Kongoli et al., 2012] where it becomes sensitive to the grain size.
This unique spectral response in different wavelengths allows snow to be distinguished
from other natural surfaces such as the soil, water as well as vegetation. Due to this high
albedo of snow presenting a good contrast with most other natural surfaces and the need
to effectively map the snow distribution in the mountains, the spatial monitoring of snow-
covered area has been carried out with the help of space-borne sensors since the inception
of the satellite based remote sensing. Prior to the availability of these satellites, there was
no efficient way of identifying the snow-cover extents [Rango and Itten, 1976; Dozier et al.,
2009]. Various RS based techniques and their satellites are currently in operation to moni-
tor the condition of snow. A summary of different examples of space-borne instruments or
satellites generally used in snow cover monitoring related studies, along with their general
properties classified by type of sensors is shown in table 2.1.

The optical sensor based observations are more useful in providing information on snow-
cover extents. Passive optical sensors utlilize a multi-spectral imaging system in the visible
and infrared domain to detect the snow, with spatial resolutions ranging from 1m to 1 km
and a temporal revisit of 1 day to 16 days [Largeron et al., 2020]. MODIS, Advanced Very-
high-resolution Radiometer (AVHRR), Proba-V, Sentinel-3, and Visible Infrared Imaging Ra-
diometer Suite (VIIRS) are the examples of this category. MODIS and AVHRR products are
widely favored due to their reasonable spatial temporal resolution and a longer time-series
of snow-cover data. Satellites with higher spatial resolution such as the SPOT 6/7, Sentinel 2
and Landsat 8 are limited by a longer revisit. Active optical sensors i.e. Light Detection and
Ranging (LIDAR) based observations are more useful in regional scale snow-depth map-
ping. However, these observations highly depend on the availability of an accurate DEM
and are susceptible to long revisit times (as high as 91 days with Ice Sat-2) which limits the
practical integration of these observations into hydrological context.

Similarly the thermal infrared sensors monitoring the snow and ice surface temperatures
MODIS also provide a basis to couple the surface temperature amplitude at daily scales for
SWE prediction. However, based on the satellites, they are also limited by either high spa-
tial resolution and low revisit (Landsat 30m), or low spatial resolution (1km with MODIS)
and higher revisit frequency. The passive microwave sensors have been used monitoring
snow cover at global and regional scales but among other limitations, the spatial resolu-
tion of these sensors (upto 25km) limit the applicability in the mountains where finer pro-
cesses are more relevant, though the concept of estimation of brightness temperature and
in turn snow-depth via the measurement of spectral luminance energy is very suitable to
get information under all atmospheric conditions [Largeron et al., 2020]. The Active mi-
crowave radar such as the active imaging Synthetic Aperture Radar (SAR) sensors mea-
sure the backscatter signal to estimate snow cover roughness and in turn snow-depths at
very high resolution which makes them very well-suited to snow hydrological applications
[Leinss et al., 2014]. The Airborne observations offer another possibility for snow cover
monitoring but the high spatial resolution offered compared to satellite-based observations
is again limited by restricted domain and less-frequent revisit schedule.
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Due to the reasonable spatial resolution and a shorter temporal resolution, this study con-
cerns with passive optical sensor-based monitoring, more so with MODIS products. This
satellite-based snow monitoring basically identifies the snow-covered land masses from
snow-free areas and to an extent from clouds. The snow is detected on a pixel-by-pixel
basis by automated algorithms based on different spectral thresholds using different indices
via analysis of the reflectance and brightness temperature in different spectral bands mea-
sured by on-board sensors. The widely used NDSI is calculated as the normalized difference
between reflectance of the visible and middle InfraRed Spectra and is used to detect snow-
pixels in MODIS [Hall et al., 2002] as shown in Eq.2.1. The reflectance of the majority of
clouds is higher in the short-wave Infra-red spectra, where the snow reflectance remains
low. In contrast, the snow and ice reflectance is more in the visible spectrum. Based on
this high contrast in reflectance between the two wavelengths, NDSI becomes very useful
tool in better identifying the snow-extents as it offers a better demarcation with clouds. The
snow-covered area can then be defined based on NDSI thresholds for snow-detection. The
snow-covered fraction is estimated using a linear relationship with NDSI value [Salomon-
son and Appel, 2004].

NDSI =
Rband4 −Rband6

Rband4 +Rband6
(2.1)

where,
Rband4 = Reflectance from visible spectrum (green), and
Rband6 = Reflectance from Middle IR spectrum
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2.2.1. The problem of clouds in snow-cover images

Well identified problem in this satellite-based approach is the obscurity due to cloud con-
tamination. One of the major drawbacks with the optical sensors stems from their inability
to measure the land surface reflectance through clouds [Mullen et al., 2021]. This cloud
contamination hinders the true identification of what lies beneath and is regionally and sea-
sonally dependent [Parajka and Blöschl, 2008(a)]. In case of snow-cover, the winter season
images are more prone to be obscured with clouds. Apart from the case by case requirement
of the spatio-temporal resolution of satellite images, the obscurities due to clouds limit the
direct integration of the satellite products into hydrological research and/or operations.

Several studies have been carried out using different methodology to reduce the cloud con-
tamination from the images. This section focuses more on the context of snow-related stud-
ies as snow and cloud exhibit similar colour and textural properties and it is deemed very
important to correctly and reliably distinguish between the two features for the subsequent
interpretation and assimilation for different purposes. The cloud removal techniques in
practice, can generally be categorized as spatial (spatial patterns of snow), temporal (tem-
poral changing correlation), spatio-temporal (combination of the former two), and multi-
source fusion (combining complementary information from stations or other RS observa-
tions)[Li et al., 2019]. Parajka and Blöschl [2008(a)] introduced a three-step (Aqua-Terra
combination, spatial filter based on 8-pixel neighbourhood search, and a temporal filtering
method) cloud-removal method to reduce the cloud coverage of snow cover using a spatio-
temporal combination of MODIS data. They found a remarkable reduction in cloud-covered
pixels. Gafurov and Bárdossy [2009] also used a six step filtering MODSNOW algorithm to
reduce the cloud-covered pixels from the MODIS snow-cover data in Kokcha River Basin.
The technique utilizes a subsequent and gradual removal of cloud pixels from MODIS in-
cluding spatial combination of Terra and Aqua images followed by different temporal com-
binations for the composite images from the first image. The later steps use a more spatial
setup comparing highest and lowest pixel elevations with and without snow followed by a
spatial neighbourhood search in a four and eight pixels neighbourhood. The results suggest
that validation accuracy differed from step to step but the overall methodology was able
to fully remove the cloud pixels from snow-cover time-series. A more detailed review of
studies related to cloud-cover removal can be read from Li et al. [2019].

2.3. RS Integration in hydrological modeling

Remote sensing integration in hydrological sciences has made important strides in recent
years. The critical observation on spatio-temporal alterations in hydrological states and
variables has historically been crucial for hydrological studies [Ritchie and Rango, 1996].
The relevance of RS integration in hydrology has surpassed the usage of traditional geo-
physical air/space borne products such as the land cover, DEMs to a more widened realm
of dynamic land surface variables such as the skin temperature, soil moisture, snow-cover,
vegetation cover and so on [Wagner et al., 2009]. Increasing number of studies now attempt
to exploit the novelty of the advances in RS technology to better understand and comple-
ment the traditional concepts of hydrological applications.
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Majority of these studies employ these data in constraining the calibration of the hydrologi-
cal models or for assimilating the RS information into land surface models. The question on
to what extent remote sensing information can complement hydrological modeling is high-
lighted in Parr et al. [2015] in which they investigated the effect of satellite based Leaf Area
Index (LAI) to drive the evapotranspiration ET simulation in a hydrological model and later
combine the simulated ET with a satellite based ET to propose a bias-correction algorithm.
They concluded that the LAI driven ET routine significantly improved the simulation of
temporal variability of discharge. They also conclude that this integration into modeling
context helps characterize the model-related uncertainties in simulating the underlying pro-
cess. Sirisena et al. [2020] used remote sensing-based evapotranspiration data along with
discharge to calibrate hydrological models and concluded that the multi-variable calibra-
tion with globally available remote sensing data along with traditionally used discharge
based calibration can lead to better representation of the hydrological processes, especially
in data scarce regions. Sun et al. [2015] used satellite observations derived river width to cal-
ibrate a hydrological model in an ungauged basin leading to good agreement with monthly
discharge data. Mattia et al. [2009] proposed a promising approach to merge SAR data with
hydrological modeling to use the simulated soil moisture fields at coarse spatial scale as
a priori information for the retrieval algorithm to transform into multi-temporal and high
spatial resolution soil moisture maps. Parajka et al. [2009] implemented a calibration for
a conceptual hydrological model in Austria using ERS scatterometer derived surface soil
moisture data and discharge. They concluded that the combined use of discharge and soil
moisture improves the simulation of soil moisture while maintaining the discharge perfor-
mance of the model. They further discussed that the augmentation of satellite data allows
for a more robust parameter estimation. Liu et al. [2012] investigated the applicability and
significance of RS data (precipitation, ET and LAI) in a distributed hydrological model in
data scarce scenario. MODIS Snow Cover Area (SCA) was also used for model initialization
and validation. They concluded that the differences in model results (between station based
and RS based simulations) were very small and thus, the RS data holds a very good poten-
tial as the required model inputs in data scarce regions as well as provide a reliable ground
for model initialization and validation.

Similarly increasing number of studies have been carried out by coupling satellite-based
snow related state variables such as the snow-cover in hydrological and snow-melt mod-
eling. Parajka and Blöschl [2008(b)] implemented a snow-cover (MODIS) and discharge
constrained calibration to simulate flows in 148 catchments in Austria and concluded that
this multi-objective calibration scheme improved the snow-model performance though the
overall performance of the hydrological model was similar or improved in validation pe-
riod. MODIS snow-cover was used by He et al. [2014] to estimate distributed degree-day
factors for snow-melt modeling. Udnæs et al. [2007] discussed the operational application
of MODIS SCA in the Hydrologiska Byråns Vattenbalansavdelning (HBV) [Bergström, 1995]
model for spring flood prediction. They concluded that the combined calibration with SCA
and discharge resulted in better prediction of the snow-cover distribution, albeit a similar
performance with discharge. Tekeli et al. [2005] used MODIS products in identifying the
snow duration curve to be used in a snow-melt model and concluded that the coupling pro-
vides crucial information on snow-melt timing and magnitude. Rodell and Houser [2004]
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evaluated a updating routine for snow-water storage in a land surface model using MODIS
snow cover observations and concluded that the updated simulations were characterized
by more reliable snow coverage comparing in favor with in situ time series. Gan et al. [2022]
also assessed an assimilation technique with blended in-situ SWE products for improving
snow and streamflow forecasts in two basins in the US. Thirel et al. [2013] conclude that
the particle filter based assimilation of MODIS SCA products into a distributed hydrologi-
cal model yielded better snow-cover simulation and in many cases improved the modeled
discharge.

These studies suggest that the integration of remotely sensed information to modeling led
to a better representation of the hydrological processes, reduced uncertainty, and to some
extent improved hydrological predictions.



3. Study area and data

The overview of the areas considered and data used in this research is presented in this
chapter.

3.1. Study area

In this research, the study area was split into two distinct snow-regimes, to develop and test
the extended degree-day models.The domain selection was done on the basis of the average
availability of snow over the season, namely (a) characterized by intermittent snow and (b)
characterized by partly longer-duration snow. For the former, the southern German state of
Baden-Württemberg (BW) and for the longer duration regime, whole of Switzerland were
considered. Figure 3.1 shows the study domain.

Figure 3.1.: Study area domain with elevation
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3.1.1. Baden-Württemberg

The federal state of Baden-Württemberg is located in the south-west of Germany with an
area of around 35,751km2. The region includes the Swabian Alps and the Black Forest and is
characterized by an accentuated topography with elevation ranging from a low of 88 m.a.s.l
in the Rhine valley to 1465 m.a.s.l. at Feldberg in the Black Forest. The forested mountain
range, Black forest, lines the south-western border of the state with the Rhine basin to the
west. The Neckar river originates from these ranges and drains the majority of the region
of BW. The Swabian Jura (Alps) extends from southwest to northeast with a peak elevation
of around 1000 m.a.s.l. Furthermore, low mountain ranges such as the Odenwald mountain
range in the north and a pre-alpine range in the south-eastern tip further add diversity to the
topography of the region. Figure 3.2 shows the topographical map of Baden-Württemberg.

Figure 3.2.: Topographical map of the Baden-Württemberg region

Strongly influenced by the Atlantic Westerlies, the mean annual precipitation in BW ranges
from 1800-2200mm in the Black forest. However, the mean annual amount reduces to less
than 700mm in the Rhine valley. Precipitation in BW is strongly influenced by orographic
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effects due to high altitude differences, but with non-uniform distribution of rain with in-
creasing elevation. The precipitation increase is disproportionately higher on the western
side of the mountains where it rains more. The highland regions receive regular rainfall
throughout the year but the lowlands on the lee-side such as Stuttgart experience higher
intra-annual variations, with the highest amount in June and the lowest in March.

Temperature variability is also very strong in BW because of the differences in altitude. The
average annual temperature is around 4◦C at Feldberg in the Black Forest which rises to
more than 10 ◦C in the Neckar Valley. The highlands in the Black Forest exhibit a relatively
lower temperature fluctuation throughout the year and are characterized by subdued ex-
treme temperature due to higher frequency of winds and heavy clouds in the summer. The
coldest month is February with an average minimum temperature of around -12 ◦C which
increases to a average maximum of around 22 ◦C in July. In the Swabian Alps, the average
minimum temperature fluctuates from -12◦C in February to almost 30◦C in July. In the flat-
ter regions of Stuttgart, the maximum temperature ranges from around 14◦C in the winter
to above 30◦C in July/August. The minimum temperature also reaches upto -10◦C in these
regions.

The average number of days with mean air temperature less than 0◦C for BW is around 46.
A more detailed elevation zone-wise description can be referred from table 3.1.

Table 3.1.: Elevation zone-wise characteristics in BW
Zones, m.a.s.l % of total area Mean annual temperature,◦C Avg. no. of days, Tmean<0◦C

<300 21% 11 26
300-600 47% 9 40
600-900 28% 8 52
>900 4% 7 68

Due to this unique elevation dependent precipitation and temperature phenomena, BW re-
gion observes a uniform increase in snow duration and accumulation with increasing el-
evation. The snow season starts from October and with the snow ablation completed by
mid-May in the higher areas of the Black Forest. However, in the lower regions, the snow
season is more sporadic with snow season starting from November till April. These regions
are characterized by episodic snowfall events. The melting water exiting the snow-regimes
feeds the Neckar river which drains a large area in the BW region. This snow-melt is very
imperative to the water supply for this region as well as for flood risk management. The case
of 1862 flood is one such example, when a drastic temperature increase by 10◦C within 24
hours from 25 to 26 December, in addition to a persistent rain the succeeding day, incited a
rapid melting of the accumulated snow. This triggered a severe flooding in the tributaries of
and subsequently the Rhine River [Bárdossy et al., 2020]. Prior to the melt triggering event,
heavy snowfall was recorded in the Black forest region. Owing to these unique characteris-
tics, this region was thus selected as a shorter duration snow regime to assess the potential
of the proposed methodology in terms of snow-cover simulation.

In addition, to assess the performance of the snow-melt modeling in hydrological simula-
tion, two catchments in the upper-Neckar River Basin were considered in this study, namely
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Neckar at Rottweil and Neckar at Horb. Figure 3.1 shows the location of these catchments
in the study domain. These catchments are henceforth termed as Rottweil and Horb in this
thesis. They are relatively higher elevation catchments in the Black Forest region and are
snow-fed in nature. The elevation in the bigger Horb catchment ranges from 390 to around
1000 m.a.s.l, whereas the elevation in Rottweil ranges from about 750 to around 1000 m.a.s.l.
The mean annual precipitation amount hovers around 1200mm and the mean temperature
is about 8◦C. The mean annual flow (1981-2018) is about 5.2 cumecs for Rottweil and 15
cumecs for Horb. Further details about these catchments are provided in table 3.2.

Table 3.2.: Properties of selected catchments

River Outlet Catchment Area, km2 Catchment Elevation, m.a.s.l.
Glaciation,%

Max Min Mean
Neckar Rottweil 412 1006 555 705 0
Neckar Horb 1110 1006 386 656 0
Reuss Seedorf 837 3416 437 2010 6.4
Thur Andelfingen 1702 2217 372 770 0
Aare Brienzwiler 555 3798 580 2135 15.5

3.1.2. Switzerland

Within an area of around 41,284 km2, Switzerland exhibits a unique blend of topographic
variation with a quarter of its land covered by glaciers, mountains, and lakes with elevation
ranging from below 200 in the Ticino Canton to the summit of the Monte Rosa at 4634 m
a.s.l in the Alps. The northern part includes the mid-range plateaus with higher elevation
range towards the southern side. The Jura mountains line the western part of Switzerland.
The Swiss Alps traverses through the country from the south-west towards the central re-
gion. The Alps includes the perennial snow/glacier area with approximately 120 glaciers
according to the Swiss Glacier Monitoring Network. The topographical map of Switzerland
is shown in figure 3.3.

Topography ranging from lowlands in the north and the presence of Alps in the south,
clearly distinguishes the climatic pattern in the North and Southern regions of the country.
The climate in Switzerland is strongly affected by the Atlantic westerlies allowing humid
current in Switzerland, which in turn offers cooling effect in summer and a thermal en-
velope during winter. This also favors an annual precipitation of around 2200mm in the
high mountainous region. In addition to this, the Alps also trigger different climatic pat-
terns such as the inner Alpine valleys in the south east and south west which are in the rain
shadow from both south and north, leading to drier conditions throughout the year. On an
average, the annual precipitation ranges from 500mm - 700m in these valleys. However, the
northern foothills of the Alps, the Alps and southern Switzerland receive around 2000mm
in annual rainfall. The northern plateau experiences from 1000 - 1400mm of annual rain.
The precipitation mostly occurs in the summer and is almost the double of winter precipi-
tation (Meteoswiss). The mean temperature fluctuations in the Alps can reach a minimum
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Figure 3.3.: Topographical map of Switzerland

of around -1◦C in January to a maximum of 17◦C in July. The mountainous regions are
characterized by Alpine temperatures.

The average number of days with mean temperature less than 0◦C is around 28 in the flat-
lands whereas for areas above 2500 m.a.s.l the average number of days in a year rises to 213.
A more detailed picture can be inferred from table 3.3.

Table 3.3.: Elevation zone-wise characteristics in Switzerland
Zones, m.a.s.l % of total area Mean annual temperature,◦C Avg. no. of days, Tmean<0◦C

< 0-500 17% 10.5 28
500-1000 29% 9.0 43
1000-1500 16% 6.3 76
1500-2500 27% 2.4 136
>2500 11% -1.7 213

Above 1200 m.a.s.l, the winter precipitation predominantly falls as snow, with the snow
pack lasting for weeks to months in the higher altitudes. The low-lying areas in the west-
ern and northern parts have transient snow characteristics, as the snow is very short-lived
in these regions. The average snow season in Switzerland ranges from September to July.
However, it is not uncommon to have the low lying areas completely devoid of snow and the
higher elevation having snow all year round. For mid-elevation, the snow season starts in
November and recedes completely by May. The summer discharge in Switzerland is highly
influenced by the snow and glacier melts from the mountainous regions. Major European
rivers such as the Rhine (375km) draining into the North sea, the Rhone (264 km) flowing
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into the Mediterranean and the Inn (90km) draining into the Black sea originate in Switzer-
land. Due to the paramount importance of the snow-melt driven tributaries in Switzerland
which feed these major rivers, the analysis of the performance of the methodology was de-
signed to simulate the snow-cover distribution in partly longer duration snow conditions in
this region.

For hydrological modeling, three catchments viz. Reuss at Seedorf, Aare at Brienzwiler and
Thur at Andelfingen were considered. The Reuss and Aare catchments consist of 6.4% and
15.5% glaciated areas and experience a higher duration of snow cover. The mean annual
flow in Reuss is about 42 cumecs with the peak flow month in June. Aare at Brienzwiler
shows a mean annual discharge of about 37 cumecs with June/July as the peak flow month.
Likewise for the Thur catchment at Andelfingen, the annual discharge is around 37 cumecs
and the peak flow occurs in March/April. The further characteristics of these catchments
are shown in table 3.2.

3.2. Data

3.2.1. Hydro-meteorological data

Both Germany and Switzerland have a well-distributed network of observation stations for
meteorological variables. Switzerland, despite the mountainous terrain, boasts a reasonably
denser network of precipitation and temperature monitoring stations, than other moun-
tainous regimes around the world. Exploiting this data availability, daily station measured
meteorological drivers, namely precipitation and minimum, maximum, and mean tempera-
tures from 2010–2018 were acquired for the Swiss region from the Federal Office of Meteorol-
ogy and Climatology (MeteoSwiss). Likewise for Germany as well, the same variables were
acquired for 2010-2015 on a daily scale, from the Deutsche Wetterdienst (DWD). Similarly
for the hydrological modeling part, daily discharge time series for the selected catchments
were obtained from the Bundesanstalt für Gewässerkunde (BFG) for Germany and the Fed-
eral Office for the Environment (FOEN) for Switzerland for the same time period as the
meteorological data.

3.2.2. Topography

To depict the topographical structure of the study regions, the Shuttle Radiation Topogra-
phy Mission (SRTM) 90m resolution digital elevation model (DEM) [Jarvis et al., 2008] was
used in this study. The DEM was upscaled to match the MODIS resolution of 500m, for con-
sistency. Likewise, the aspect and the slope information were extracted from the resampled
DEM.

3.2.3. MODIS snow-cover data

With the rapid advancement in RS technology, the global change monitoring, especially in
the environmental field have been increasingly incorporating these RS products in different
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aspects of environmental processes. The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) is one of these widely used platforms for earth and climate measurements.
First launched as one of the sensors in the Terra satellite of the National Aero-Space Agency
(NASA) Earth Observing System (EOS) in 1998 and later on board the Aqua satellite in 2002,
MODIS has increasingly found its application in different fields of environmental monitor-
ing, owing to it superior temporal resolution (daily) and comparable spatial resolution (upto
250m) on a global scale which allows the research community to track changes in the land-
scape over time globally. The further advantage of MODIS is that the passes of Aqua and
Terra are envisioned in such a way that one passes the Equator from north to south in the
morning and the other passes from south to north in the afternoon. This allows the space for
accuracy enhancement by optimizing cloud-free remote sensing and minimising any other
optical obscurities such as shadow or aerosols that are unique to morning or afternoon sun-
light [Gafurov, 2010] for an intra-diurnal assessment of the global surface conditions such
as the snow-cover, cloud cover, skin temperatures, etc. MODIS has a viewing swath width
of 2,330 km monitoring the entire Earth surface in every 1-2 days. The orbital distance of
the Terra and Aqua satellites is around 705km from the Earth. With sensors measuring 36
spectral bands ranging from 0.405 and 14.385 µm, MODIS acquires the surface information
in 3 spatial resolutions, 250 meter in bands 1 and 2, 500 meter resolution in bands 3 to 7,
and 1000 meter. MODIS inferred data include the global coverage distributed data pertain-
ing to the land surface such as vegetation indices, surface albedo, land surface temperature,
snow cover and surface reflectance. MODIS based products have been widely implemented
in vegetation monitoring, long term land cover changes, global snow cover trends, water
levels, and mapping wildfires, around the world.

In this study, the MODIS snow-cover products MOD10A1 from Terra and MYD10A1 from
Aqua [Hall and Riggs., 2016] were acquired, processed and integrated in snow-melt mod-
eling as a reference variable for calibration. These dataset are the version 6 products from
MODIS and contain daily, gridded snow cover and albedo estimated using the radiance in-
formation measured by the MODIS on board both Terra and Aqua satellites. The snow cover
information in these data is identified using the NDSI method (Eq. 2.1), mapping the global
snow-cover at a resolution of 500m (at nadir) at a daily resolution. The NDSI measures the
magnitude of the differences between the reflectance in visible and shortave infrared spec-
tra. The snow cover information indicates the single best observation of the day for each
pixel, and each observation depicts the best sensor view of surface in cell based on solar
elevation, distance from nadir, and cell coverage. [Hall and Riggs., 2016].

The Aqua and Terra’s sun-synchronous, near-polar circular orbit is timed in such a way
that Aqua crosses the Equator from south to north at approximately 1:30 P.M. local time and
Terra passes via the descending node, i.e. from north to south at around 10:30AM local time,
thereby acquiring a global coverage in 1-2 days. These data are available from July 2002 for
Aqua and February 2000 for Terra till date. In addition to the NDSI based snow cover data,
the dataset also incorporates additional gridded information on the raw NDSI, information
on the qualities of the NDSI snow cover and the NDSI algorithm, and snow albedo.

Among a wide pool of available satellite-based snow-cover products, MODIS snow-cover
data was selected for this study mainly due to the high temporal resolution and mapping
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accuracy relevant for modeling purposes, at a reasonably acceptable spatial detail. There
have been many studies regarding the application of MODIS snow-cover data [Tong et al.,
2009a; NSIDC] which have highlighted the accuracy of MODIS inferred snow-cover in terms
of snow-cover change monitoring, and the assimilation in hydrologic and land surface mod-
els. Different studies have compared MODIS snow cover data with other satellite products
and ground based snow depth measurements, and found accuracies between 90 - 95% in
cloud-free conditions, however depending upon land cover, and the condition and depth
of snow [Nester et al., 2012; Tong et al., 2009b; Parajka and Blöschl, 2012]. The MODIS
snow cover products have found their applications ranging from SCA forcing for Snowmelt
Runoff models [Immerzeel et al., 2009; Li and Williams, 2008; Tahir et al., 2011], for model
evaluation [Shamir and Georgakakos, 2007; Bavera and De Michele, 2009], as an input to
the models in data assimilation schemes [Zaitchik and Rodell, 2009], as integrated addi-
tional data in calibrating conceptual models [Parajka and Blöschl, 2008(b); Şorman et al.,
2009; Franz and Karsten, 2013], for reconstructing the spatial distribution of SWE using
distributed hydrologic models [Rittger et al., 2016; Molotch and Margulis, 2008], and for
correcting basin-scale snowfall in mountainous basin [Shrestha et al., 2014].

Despite the wide-scale applicability of MODIS owing to its superior coverage and high
spatio-temporal resolution, as indicated by numerous studies, the persistent cloud cover-
age, more often than not significantly limits MODIS application for snow cover mapping as
well as integrating into the hydrological modeling context. However, as explained in Chap-
ter 2, different spatio-temporal cloud filtering techniques have been devised recently. Here
in this study, the MODSNOW algorithm [Gafurov and Bárdossy, 2009; Gafurov, 2010] was
adopted for the cloud removal procedure in the study.

A gridded schema was extracted for both study regions assuming MODIS snow-cover data
as a reference grid. This schema (464m × 464m) aws used as the reference gridded domain
for the data interpolation and modeling. The schema resulted in 210566 cells in Switzerland
and 167528 cells in BW.



4. Geostatistical Interpolation of
meteorological inputs

4.1. Brief concept of kriging

The principle of Geostatistics mainly stems from the empirical works regarding interpola-
tion techniques for mining purposes from a mining engineer Danie Gerhardus Krige from
South Africa, later formalized by Georges Matheron, a French mathematician [Daya Sagar
et al., 2018]. Since the inception of the approach , geostastical techniques have remained
virtually synonymous to ’kriging’ [Jieru, 2018] and have since then evolved from geological
investigations in gold mining, to different fields inclduding interpolation of hydrological
and hydro-geological variables in recent years.

Virdee and Kottegoda [1984] discuss that the economical aspects related to gold mining sec-
tor where kriging application found its roots benefitted from higher sampling density of
observation owing to the value of gold. Regarding the hydrological investigations, with
water being ’cheaper’ than gold though equally valuable, the observational station density
is limited. The variables such as precipitation, temperature, hydraulic transvissivity are
generally limited to station observations at specific locations. Due to the spatial variability
inherent in these hydrological variables, interpolation steps are required to regionalize these
variables to unknown locations, thereby capturing the spatial distribution, for various prac-
tical implementation like distributed hydrological modeling [Lebrenz and Bárdossy, 2019].
However, the challenge lies in choosing the interpolation technqiues that best interpolates
observed data [Caruso and Quarta, 1998]. Compared to other methods, kriging offers better
suitability for data with inherent higher degrees of natural variability [Virdee and Kotte-
goda, 1984].

Kriging interpolation are based on the concept of statistical dependence or the spatial auto-
correlation assuming the random variable values between a pair of points to be similar to a
function of the distance between them. Kriging estimates the values of the variable at un-
known locations or a spatial field by finding the weights (λs) of a linear estimator (Eq. 4.1)
along with the uncertainty estimates related to each interpolated value. The linear estimator
considers a linear relationship of the values in the neighbouring known samples xi as:

Ẑ(x) =

n∑
i=1

λiZ(xi) (4.1)

where Ẑ(x) is estimation of a random function Z(x) with known values at n locations in the
space Z(xi), where each value of z(x) is the realization of Z(x), λis are the weights which
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are chosen a priori in such a way that the estimation is unbiased (Eq.4.2) and the estimation
variance is minimized i.e. the condition of optimality (Eq.4.3) [Ahmed and Devi, 2008].

E[Z(x)− Ẑ(x)] = 0 (4.2)

σ2(x) = var[Z(x)− Ẑ(x)] = −
n∑

j=1

n∑
i=1

λjλiγ (xi − xj) + 2

n∑
i=1

λiγ (xi − x) → minimum

(4.3)

where E[Z(x)] is the expected value of the random function Z(x) and σ2(x) is estimation
variance quantifying the uncertainty in the estimation of Z at an unknown location.

Matheron [1965] explained the intrinsic hypothesis of the ordinary kriging technique in two
conditions: (i) the expected value of the random function Z(x) remains constant throughout
the domain under study (Eq. 4.2), i.e the first moment is stationary and (ii) the correlation
between the two random variables or the variance of increment solely depends on the spatial
distance between them (Eq. 4.5). By extension, Eq.4.2 then becomes Eq.4.4 as the mean is
constant the the mean of the increment remains 0.

E[Z(x)] = m (4.4)

Var
[
Z(x+ h)− Z(x)

]
= 2γ(h) (4.5)

where, m is the constant mean, h is the separation distance and γ(h) is the semivariogram
also called the variogram. This (semi) variogram is calculated for all x, x+h ∈ domain D as:

γ(h) =
1

2
E[Z(x+ h)]− Z(x)]2 (4.6)

Using the linear estimator Eq. 4.1 and the unbiasedness assumption in Eq.4.4, one can get
Eq.4.7.

n∑
i=1

λi = 1 (4.7)

The estimation variance from Eq.4.3 can then be minimized to obtain the sets of weights for
the best linear unbiased estimators. These weights reflect the ’structural’ closeness of the
known locations to the unknown ones. The optimization problem is solved by introducing
a term Lagrange multiplies µ using linear equation system in Eq.4.8.

n∑
j=1

λjγ(xi − xj) + µ = γ(xi − x) for i = 1, · · · , n (4.8)

n∑
j=1

λj = 1 (4.9)
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Substituting the kriging weights into Eq.4.8, the optimum minimum variance also termed
as the kriging variance can be simplified as in Eq. 4.10. This equation has no theoretical
significance but facilitates a simplistic estimation variance calculation.

σ2
K(x) =

n∑
i=1

λiγ(xi − x) + µ (4.10)

There are known limitations of the intrinsic hypothesis assumed in the ordinary kriging
methodology as described in Lebrenz and Bárdossy [2019]:

(a) The stationarity assumption in the first condition of the intrinsic hypothesis (Eq. 4.4),
forces an unbiased estimation error in the entire domain, as the variable is required
to be stationary throughout the domain. This unbiased error imposes a systematic
under-estimation in high observational magnitudes and over-estimation in locations
with low values.

(b) The magnitude of observations have no influence on the magnitude of the estimation
variance as it depends only on the observational spatial structure i.e on the a-priori
variance of the observations and the selected variogram model [Jieru, 2018; Goovaerts,
2000]. However, the variograms are derived from the observations.

(c) The Gaussianity assumption for the marginal distribution of the observed data should
be maintained for adequate performance, which is often not the ideal case with most
of the observed variables [Journal and Alabert, 1989; Lebrenz and Bárdossy, 2019].

Different geostatistical methodologies have been devised to overcome these shortfalls in
ordinary kriging. The External Drift Kriging (EDK) [Ahmed and De Marsily, 1987] allows
the trend of the regionalized variable, which adds value to the non-stationarity requirement
to avoid the aforementioned problem of unbiased estimation error. However, the other
limitations remain the same with the EDK. However, EDK has found wide implementation
in practical applications in different disciplines ranging from mining to hydrgeological and
climatological studies [Bourennane et al., 2000] . Likewise, indicator kriging and probability
kriging aim to address the inherent non-Gaussiantity of the marginal distributions of the
environmental variables to fit the kriging assumptions [Carr and Mao, 1993; Carr, 1994].

This study uses EDK method for temperature interpolation and residual kriging for the
interpolation of precipitation in the study domain. The employed techniques are further
explained in the subsequent sections.

4.2. External drift kriging

EDK is the theoretical extension to ordinary kriging where one or more auxiliary variables
are incorporated in the interpolation algorithm to estimate the variable of concern at un-
known points. This allows the prediction of a variable Z using another deterministic vari-
able(s) Y exhaustively known in the same domain [Bourennane et al., 2000] and is linearly
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correlated to Z. This linear relationship has to be maintained in EDK approach. In case of
a non-linear function describing the relation between the two variables exists, the auxiliary
data should be first be transformed to a linear relationship and then transformed data can
be then introduced as external drift [Bourennane et al., 2000]. The trend variable allows the
expectation of Z to be non-stationary, thereby formulating the first condition of the intrinsic
hypothesis as:

E[Z(x)] = a.Y (x) + b (4.11)

where a and b are the coefficients of the linear relationship between Z and Y assumed to
be constant throughout the domain. The linear estimator (Ẑ(x)) remains the same as Eq.4.1
and the unbiased estimation constant holds as Eq.4.2. The equality constraint can be further
expanded from Eq.4.11 as:

a ·
[ n∑

i=1

λiY (xi)− Y (x)

]
+ b ·

[ n∑
i=1

λi − 1

]
= 0 (4.12)

Similarly, the unbiased condition requires the following constraints Eqs.4.13 and 4.14 for
constant and nonzero a and b. The optimization for the weights is done by minimizing the
estimation variance through introduction of two Lagrange multipliers viz. µ1 and µ2 and
the linear equation equation system can be expanded as Eq.4.15.

n∑
i=1

λi = 1 (4.13)

n∑
i=1

λiY (xi) = Y (x) (4.14)

n∑
j=1

λj(xi − xj) + µ1 + µ2Y (xi) = γ(xi − x) for i = 1, · · · , n (4.15)

where, γ is the semi-variogram, Y (x) is the trend variable that needs to be known through-
out the domain in all known and unknown locations, where the estimations are to be made.
The estimation uncertainty or the kriging variance is also modified to:

σ2
K =

n∑
i=1

λi(xi − x) + µ1 + µ2Y (x) (4.16)

In theory, the theoretical variograms should be calculated using variable Z conditioned on
the explanatory variable Y , i.e. using the regression residuals. However in practice, due
to the computational simplicity, the estimation of variogram of residuals is usually skipped
and calculated based on the variable Z only [Hengl et al., 2003; Ahmed and De Marsily,
1987])
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4.3. Residual Kriging (RK)

The residual kriging approach [Phillips et al., 1992; Martı́nez-Cob, 1996] allows a linear re-
gression (Eq.4.17) of the dependent variable Zx at all points xi on auxiliary variables Yx and
then ordinary kriging is done on the regression residuals, in contrast to the EDK where the
kriging is done directly with the auxiliary variable. In general, the Ordinary Least Squares
(OLS) method of regression is used. The residual rx at for all the known locations are then
calculated as in Eq.4.18 and is expected to follow the intrinsic hypothesis in kriging. How-
ever, as a result of the added information or the drift, a part of variability explained by the
drift is lost, however the spatial variability is retained [Odeh et al., 1995; Prudhomme and
Reed, 1999].

Zy(x) = aY (x) + b (4.17)

r(xi) = Z(xi)− Zy(xi) (4.18)

For the unknown locations, the Ẑy is calculated using the regression coefficients a and b from
Eq.4.17 and the residual r̂(x) is obtained from the ordinary kriging of the residuals at known
locations as in Eq.4.19.

Ẑ(x) = Ẑy(x) + r̂(x) (4.19)

As per the assumption of the OLS regression, the residuals are uncorrelated with the de-
pendent variable Zy, i.e. independently identically distributed irrespective of the location.
In this case the regionalization fails and variogram does not exist. Techniques like General-
ized Least Squares (GLS) method are available for the regression to tackle the contradiction,
however, due to complexities in practical implementation, OLS (owing to the simplicity)
has been preferred widely especially for the interpolation of environmental variables such
as rainfall, temperature and evaporation [Prudhomme and Reed, 1999; Jieru, 2018; Martı́nez-
Cob, 1996].

4.4. Evaluation of interpolation schemes

Leave-one-out cross validation (LOOCV) method was used in this study to validate or test
the performance of RK in precipitation and EDK in temperature interpolation. LOOCV is
generally used to evaluate different kriging techniques to identify the suitable approach
for interpolation. However since kriging is not the main focus of the study, LOOCV was
employed just to check if the adopted methods would have satisfactory performance in the
region.

With LOOCV, stations are sequentially left out one by one and the Kriging is carried out
for the left out station using the information from other available stations as training data.
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The kriged estimates were then validated against original samples using different evalu-
ation criteria. The error statistics used for the evaluation were Root Mean Square Error
(RMSE) to measure the difference, Nash-Sutcliffe Efficiency (NSE), Pearson’s correlation and
Spearman’s correlation for the whole season and winter season over different years in both
Switzerland and BW.

4.5. Application of Kriging in this study

Due to the strong orographic effects in the mountains and the resulting spatial heterogene-
ity, rainfall interpolation is very complex [Bárdossy and Pegram, 2013] leading to anisotropy
[Bacchi and Kottegoda, 1995]. This complexity coupled with data scarcity is hard to avoid
even with the sophisticated kriging algorithms as the bias enforced by under-sampling
at higher elevation still persists [Briggs and Cogley, 1996; Prudhomme and Reed, 1999].
The residual kriging offers the influence of other explanatory variables in explaining the
precipitation dynamics thereby compensating for the lack of data in these regions [Odeh
et al., 1995]. The RK was thus carried out in this study in conjunction with a Multiple Lin-
ear Regression (MLR) based approach using directionally smoothed elevation. Directional
smoothing of elevation was done using half-space smoothing [Bárdossy and Pegram, 2013].
They found out that precipitation is influenced by the shadow effect due to the orographic
impact on the first rising slope from valleys towards the uplifted terrain structure.

hs(x) =

G∑
g=1

w(x− xg)h(xg) (4.20)

where,

w(x− xg) =


0 if |x− xg| > d or ⟨v, (x− xg)⟩ < 0

cw

(
1− |x−xg |

d

)
otherwise

(4.21)

where for a given location x, h(x) is the local elevation, hs(x) is the shifted and smoothed
elevation, G is the number of elevation grid points, v is the vector indicating advection
direction, with a north and east component, and xgs are the grid points of the DEM, cw is
the constant selected such that

∑G
g=1w(x − xg) = 1. The difference between x and xg is a

2-D vector which provides the direction from xg to x. ⟨, ⟩ is the scalar product of the vectors.

Following Bárdossy and Pegram [2013], transformed elevation was considered instead of
the local elevation. This transformation of terrain, i.e smoothing and shifting, was done to
identify the directional advection for each day. Eight different directions with 45 degrees in-
cremental angles, and 3 different smoothing distances (2, 3 and 5 kms) were used. For each
time-step, a simple optimization was done to assess the correlation of the precipitation with
the shifted DEMs, and the best direction and the smoothing radius for the timestep were
identified. This shifted and smoothed elevation was then used along with X and Y coordi-
nates of the stations in the MLR to obtain precipitation estimates for stations. The residuals
were then calculated for each day, then intepolated using ordinary kriging to obtain the
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kriged residuals. MLR estimated precipitation surfaces for each time step employing XY co-
ordinates and the directionally transformed elevation for each grid point were summed with
the kriged residual surfaces to obtain the final precipitation fields. 224 stations in BW and
449 stations in Switzerland were used to interpolate station based precipitation observations
on to the schema grids.

Likewise, External Drift Kriging was opted for the study for temperature interpolation, with
station elevation extracted from the DEM as a drift [Hudson and Wackernagel, 1994]. The
station elevation correlation was checked with the temperature observations, and was found
to be strongly correlated with monthly and seasonal temperatures. Daily minimum, maxi-
mum, and mean temperature observations from 85 stations in Baden-Württemberg and 365
stations for Switzerland were used for interpolation.

The summary of LOOCV for the interpolation are presented in table 4.1. It is well evi-
dent from the table that the overall mean kriging performance is satisfactory for both of
the adopted interpolated methods. The winter performance was observed to be slightly de-
creased in both regions for temperature. However, winter precipitation was interpolated
with higher accuracy. The kriging evaluation scores are similar for both regions.

A closer scrutiny at elevation zones, as shown in figure 4.1b with the case of RK interpolated
precipitation in Switzerland, shows an overall decline in NSE performance in the winter sea-
son was observed with increasing elevation. NSE was selected here to evaluate how well
the kriging process interpolated the large precipitation values during cross-validation, as
these higher precipitation during the winter can in turn result in higher accumulation of
snow. The idea was to not underestimate these events. This aforementioned loss in perfor-
mance can be attributed to less density of stations in the higher elevation. Within a specific
elevation zone, the elevation dependent decline was not observed. The NSEs range from
0.56 to 0.97 for the time period between 2010 and 2018. The station locations along with the
corresponding NSE performance are shown in figure 4.1a. The NSE values of greater than
0.6 for all but one station indicate that the Kriging process works satisfactorily in the region.
For temperature interpolation, however, no elevation specific trend was observed with EDK
interpolation. The RMSE values were analysed in the case of temperature interpolation. The
values ranged from 0.38 ◦C at elevation 432 m.a.s.l to 4.17 ◦C in one of the stations at around
2490 m.a.s.l. The values for the RMSEs for majority of the stations remained below 2.5◦C.
With an overall RMSE of about 1.28 ◦C for the winter period, the kriging methodologies
were considered as well-validated in Switzerland.

The results for precipitation interpolation in Baden-Württemberg region (refer figure 4.3)
also highlight the applicability of the kriging in the region. The lowest NSE was reported at
a lower elevation of 252 masl. However, overall, the NSE performance shows a satisfactory
performance of above 0.65 for all other stations. No elevation related trend was observed
in this case. Similar results have been reported with the case of temperature interpolation
with a mean winter RMSE of about 0.98◦C. With these cross-validation results, the overall
performance of winter for the whole as well as winter season was deemed adequate for
further modeling purposes in the study.
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(a) Station-wise NSE performance in winter
(b) Elevation-wise NSE performance in win-

ter

Figure 4.1.: Residual Kriging performance for precipitation in Switzerland

Figure 4.2.: Elevation-wise RMSE performance in winter for temperature interpolation in
Switzerland

Figure 4.3.: Elevation-wise NSE performance in winter for precipitation interpolation in
Baden-Württemberg
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5. Snow-melt models and their extension

Snow is a crucial component of the water cycle that governs the annual variations in hydrol-
ogy in the mountainous areas as well as in the mid- and high latitude regions around the
globe. The accumulation in the snow pack provides a temporary reservoir of available water
to be released at a favorable temperature for melt, which in turn recharges the hydrological
discharge. The quantification of this accumulated snow water equivalent is highly imper-
ative as the water coming from ablation governs water resources development trajectories
such as hydropower, agriculture and navigation, as well as to balance the ecological envi-
ronment [Girons Lopez et al., 2020; Hannah et al., 2007; Barnett et al., 2005]. Snow-related
disasters such as avalanches and rapid onset of melt triggering floods also raises the need of
accurately and reliably understanding the snow evolution and estimating the available wa-
ter from snow as this need becomes starker given the evident impacts of rising temperatures
and climate change.

As discussed in previous chapters, there have been advances in understanding and quanti-
fying the underlying snow processes, ranging from expanded observational networks, ex-
perimental catchments for snow research [Pomeroy and Marks, 2020] to RS based snow
monitoring. However, given the complexities of the snow-dominated terrain, the limita-
tions of being non-representative with observational network and experimental sites, and
limitations regarding standalone usage of RS data, still persist hindering the reliable esti-
mation of underlying snow processes in a regional context. Snow-melt modeling remains
the most widely used methods in practice to understand the accumulation, storage and ab-
lation of snow and its resulting impact on the hydrology. Depending on the types, these
models predict snow-related variables such as snow depth, SWE, snow density or resulting
discharge which usually drive different operational applications [Avanzi et al., 2016]. How-
ever, based on the simulation strategy, these models are also restricted with data availability
and the degree of detail required for simulation. The following section discusses the two
major modeling techniques being used for snow-related studies.

5.1. Energy budget models

These models are physically based in nature and deemed to provide better representation
of snow processes. These models consider the incoming solar radiation as the major control
of the variability of the energy available for melting the snowpack [Girons Lopez et al.,
2020] and are useful for distributed modeling context. Energy balance of the snow-pack is
calculated at each time step and uses the basis as Eq. 5.1 [Todd Walter et al., 2005].
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λFρw∆M = S + La − Lt +H + LE +G+R− CC (5.1)

where,

λF : latent heat of fusion, 335 kJkg−1,

ρw : density of water, 1000 kg/m3,

∆M : Melt from the snow-pack (m),

La: atmospheric long wave radiation, kJm−2

Lt: terrestrial long wave radiation, kJm−2

LE: energy flux associated with the latent heats of vaporization and condensation at
the surface, kJm−2

G: ground heat conduction to the bottom of the snowpack, kJm−2

R: heat added by precipitation, kJm−2

CC: change of snowpack heat storage, kJm−2

Owing to the physical basis, the simulation of snow-melt particularly in complex terrain as
well as under vegetation cover, is realistic with these models. However, they require de-
tailed information on elevation, wind speed and direction, cloud cover information, snow
density and so on which are generally not available from conventional observational sta-
tions. Added to that is the limitation on methods to extrapolate of these ’rarer’ inputs to the
complex mountain terrain. Also the accurate spatial parameterization of model parameters
often limit these models application on a regional context as the model complexities increase
[Zhou et al., 2021].

Because of the data-intensive model requirements and in line with the research’s objective
to develop simplistic melt models with less data requirement, energy budget models are not
considered in this study.

5.2. Temperature Index (TI) models

The temperature index models also known as the degree-day models are conceptual models
which assume melt rate as a linear function of the air temperature [Martinec, 1960], if the
temperature is above the freezing value, controlled by a proportionality constant commonly
termed as the degree-day factor. The fundamental basis for these models is the assumption
that the temporal variability in air temperature can be used as a proxy for the temporal
variations in the incident solar radiation [Ohmura, 2001]. The simplest TI model basis is
shown in Eq. 5.2.

M = DDF.(Tair − Tcrit) (5.2)
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where, M(mmday−1) is the snow-melt, DDF is the degree day factor (mm◦C−1day−1), Tair

is the air temperature (◦C) and Tcrit is the threshold temperature above which snow starts to
melt (◦C) generally set to 0◦C. The DDF parameter is often the parameter to be calibrated
but also can be calculated based on measurements of snow density and through an empirical
relationship [Zhou et al., 2021] as Eq. 5.3

DDF = 1.1 ∗ ρs
ρw

(5.3)

where, ρs and ρw are the densities of snow and water respectively.

Simplistic formulation, computational efficiency and good performance in terms of snow-
related simulations have allowed these models to be successfully applied in different con-
texts. The main attraction towards these models is the low and easily available data re-
quirement which makes them a fit for data-scarce regions as well. However, the simplistic
assumption of these models sometimes become the limitations as well. Representation of
solar radiation by air temperature does not always hold true especially in high mountains
where the temperature often stay within the freezing point [Gabbi et al., 2014; Pellicciotti
et al., 2005] or wherever there is significant effect of sublimation of the snow water require-
ment on the snow processes [Girons Lopez et al., 2020]. To account for these drawbacks,
there have been a lot of studies to extend the model formulation incorporating different
variables such as radiation to create a hybrid model using energy balance and TI approaches
[Hock, 1999]; or incorporating wind speed or relative humidity in TI models by Zuzel and
Cox [1975]. Brubaker et al. [1996] proposed Eq.5.4 incorporating the net radiation into the
basic degree day model.

M = mQRd + arTd (5.4)

where, M(mmday−1) is the snow-melt, mQ is a physical constant that converts energy
to water mass or depth ((mmday−1)(Wm−2)−1), ar is the restricted degree-day factor
(mm◦C−1day−1), and Td is the degree- day index (◦C), i.e Tair - Tcrit whenever the Tair

exceeds the Tcrit value.

Some studies introduced the spatial heterogeneity of degree day factors in terms of basin
characteristics such as forest covers [Kuusisto, 1980] and elevation zones in the snow-
component of widely used hydrological models such as Snowmelt Runoff Model (SRM)
[Martinec, 1975] and HBV (Bergström [1995]). Likewise, changing the model structure to a
distributed approach to better capture the spatial heterogeneity with inputs distributed in
space and time, has also been carried out in different studies at different spatio-temporal
resolutions [Cazorzi and Dalla Fontana, 1996; Pellicciotti et al., 2005; Jost et al., 2012; Hock,
2003].

Girons Lopez et al. [2020] also evaluated various formulations of the temperature index
approach to analyze their response via the HBV model in 54 mountainous European catch-
ments. They found out that the rather simplistic snow routine in HBV was enough to re-
liably simulate snow processes and the resulting discharge. Specific modifications to the
snow-module such as using an exponential melt function and incorporating a seasonally
variable degree-day factors were found to be valuable additions among the modifications
tested. Caicedo et al. [2012] also identified the best-performing variants of degree-day cal-
culations for different regions in Colombia. They concluded that these specific targeted
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alterations could improve the performance in terms of snow processes, however, not neces-
sarily in all contexts. A careful scrutiny of these alterations to the model structure is highly
pertinent as it relates to the application, availability of the data required to drive the mode
as well as the purpose of study.

5.3. Snow-melt model variants

In line with the first research objective and with the degree-day approach as a basis, this
research also extends Eq.5.2 to different variants incorporating different aspects governing
snow hydrology such as precipitation-induced melt, radiation, and topographical charac-
teristics. Due to inherent large-scale spatial variability in mountainous regions, distributed
meteorological inputs were employed to drive the different variants of the extended degree-
day snowmelt models on a daily timescale. The major parameters used in the models are
defined below:

P (t, x)= precipitation amount at location x at time t, mm

S(t, x)= snow water equivalent amount at location x at time t, mm

Tav(t, x)= mean temperature at location x at time t, ◦C

Ps(t, x) = water equivalent of precipitation falling as snow at location x at time t, mm

Ms(t, x) = melt water amount at location x at time t, mm

TT = threshold critical temperature defining snow or no snow, ◦C

Ds = dry degree day factor, mm◦C−1

Tmx(t, x)= maximum temperature at location x at time t, ◦C

Tmn(t, x)= minimum temperature at location x at time t, ◦C

scf= snow correction factor to account for the gauge undercatch of snow

The following model variants were used to estimate the Snow Water Equivalent (SWE) (mm)
and the resulting snow-cover in each pixel. Different nomenclatures are given to the models
for the ease of understanding. Each successive model represents a gradual parameter wise
modification to the basic degree-day model.

5.3.1. Basic Degree-day Model (Model 1)

This model is the most basic of all model variants and was also used in the original HBV
model. This model estimates the melt for each time-step as a linear function of the dif-
ference between daily mean temperatures and a threshold temperature value demarcating
liquid precipitation and snow precipitation phases. A degree day factor controls the rate of
melt. Equation 5.5 calculates the amount of SWE available in pixel ’x’ at time ’t’. Similarly
the snow-precipitation and the resulting melt are calculated with Eq.5.6 as the model basis
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for each pixel, ‘x’ in the study domain. A correction factor to account for the snowfall un-
dercatch by the gauges and the vegetation interception scf is also used in this model and
extended to all models in the study.

S (t, x) = S (t− 1, x) + Ps (t, x)− Ms (t, x) , (5.5)

Where,

Ps (t, x) =

{
P (t, x) · scf if Tav(t, x) < TT

0 if Tav(t, x) ≥ TT

(5.6a)

Ms (t, x) =

{
0 if Tav(t, x) < TT

min(S (t, x) , Ds (Tav (t, x)− TT ) if Tav(t, x) ≥ TT

(5.6b)

5.3.2. Wet Degree-day Model (Model 2)

This variant adds a precipitation melt factor which controls the melt rate based on air tem-
perature and the precipitation amount falling on the pack. This factor was incorporated to
account for the melt induced by rain at temperatures higher than the critical threshold tem-
perature. From an energy point of view, this model does not find higher relevance as the
heat transfer due to the liquid rain entering the snow pack is relatively small. However, this
model was formulated to compare the effect of heat transfer from the air temperature to the
snowpack and its effect on the snow melt, in wet versus dry winter conditions. Bárdossy
et al. [2020] used a similar precipitation induced melt in their version of HBV. This melt fac-
tor, referred to as Dw increases the melt from Eq.5.6b on days with precipitation higher than
a threshold value. For a given wet day i.e., P (t, x) > PT , the melt is calculated as in Eq.5.7.
For a dry day, melt is calculated as Eq.5.6b.

Ms (t, x) =

{
0 if Tav(t, x) < TT

min(S (t, x) , D(t, x) (Tav (t, x)− TT ) if Tav(t, x) ≥ TT

(5.7)

Where,
D(t, x) = Ds + Dw(P (t, x) - PT )

PT = threshold precipitation depth beyond which the liquid precipitation contributes to
melt, mm

Dw = the wet melt factor, mm.mm◦C−1

D(t, x) = combined melt factor on wet days, mm◦C−1

5.3.3. Wet Degree-day Model with snowfall and snow-melt temperatures
(Model 3)

The instantaneous forms of precipitation as snow and liquid gives a clear indication of two
temperature thresholds which demarcate the solid and liquid state of precipitation [Schaefli
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et al., 2005]. This model includes different snowfall and snow-melt temperatures in Model 2
for a more accurate representation of the liquid to snow phase partition and melt initiation.
This has been previously discussed in [Debele et al., 2009; Girons Lopez et al., 2020]. For
temperatures in between, snow is linearly interpolated for the day as a proportion of the
precipitation. The formulation of the model are given by Eqs.5.8 and 5.9.

Ps (t, x) =


P (t, x) if Tav(t, x) < TS

P (t, x) ·
(
Tav(t,x)−TM

TS−TM
if TS ≤ Tav(t, x) ≤ TM

0 if Tav(t, x) > TM

(5.8)

Ms (t, x) =

{
0 if Tav(t, x) < TM

min(S (t, x) , D(t, x) (Tav (t, x)− TM )) if Tav(t, x) ≥ TM

(5.9)

Where,
TS and TM are the snowfall and snow-melt temperatures respectively.

5.3.4. Aspect distributed snowfall temperatures (Model 4)

This model was envisioned with an assumption that topographical aspect plays a major part
in the spatial distribution of snow-fall and snow-melt temperatures. In general, south facing
slopes are warmer in the Northern hemisphere resulting in a faster melt of snow compared
to the north facing slopes. Based on this assumption, this variant distributes the snowfall
temperature in Model 3, according to the topographical aspect. The snowfall temperature
distribution is done by Eq.5.10 below:

TS,x = TSmin + (TSmax − TSmin) ∗ [0.5 ∗ cos (aspectx) + 1]PF (5.10)

Where,

TSmin = lower bound of the snowfall temperature, (◦C)

TSmax = upper bound of the snowfall temperature, (◦C)

aspectx = topographical aspect of grid ’x’, (radians)

PF = power factor to distribute the aspect

5.3.5. Aspect distributed snow-melt temperatures (Model 5)

This model distributes the snow-melt temperature in Model 3 within a range defined by
minimum and maximum snowfall temperature, according to the topographical aspect. The
snow-melt distribution is represented by Eq.5.11 below:

TM,x = TMmin + (TMmax − TMmin) ∗ [0.5 ∗ cos (aspectx) + 1]PF (5.11)
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Where,
TMmin = lower bound of the snow-melt temperature (◦C)

TMmax = upper bound of the snow-melt temperature (◦C)

5.3.6. Radiation Induced melt Model (Model 6)

The integration of radiation information in degree-day models can lead to better estimation
of snow-melt [Hock, 2003]. This model was formulated to accommodate the radiation data
in addition to the aspect-based temperature distribution. The radiation induced melt was
added to Model 5 by incorporating the diffused incident radiation on the snow pixel on a
cloud-free day. The incident global radiation is calculated using a viewshed based algorithm
’r.sun’ [Hofierka and Suri, 2002; Neteler and Mitasova, 2002] and has an added advantage
of radiation distribution in the valleys. Daily temperature difference (tmax− tmin) for each
grids was also calculated using interpolated daily minimum and maximum temperatures
and was used as a cloud cover proxy. For this study, pixels with a daily temperature dif-
ference above a certain threshold were assumed to be cloud free and this is where radiation
induced melt became active. Likewise, temperature differences lesser than the threshold
render the pixels cloudy. The diffusion factor ranging from 0.2 for clear sky conditions to
0.8 for overcast conditions diffuses the incoming radiation. The radiation induced melt is
added to the melt outputs from the preceding models on cloud-free pixels and is calculated
using Eq.(5.12). Figure 5.1 below shows an example of diffused radiation calculated for a
cloud free day in Baden-Württemberg.

Ms−R (t, x) =

{
(1− alb) · rind ·RD (t, x) if Tmx (t, x)− Tmn (t, x) ≥ 5°C

0 if Tmx (t, x)− Tmn (t, x) < 5°C
(5.12)

Where,
Ms−R (t, x) = Radiation induced melt at grid x at time t, mm
RD (t, x) = Diffused radiation at gird x at time t, Wh ·m−2day−1

alb = Albedo of snow
rind = Radiation melt factor, mm · (Wh.m−2day−1)

(Tmx(t, x) − Tmn(t, x)) = temperature difference at time t, as a cloud proxy to define
clear-sky and overcast conditions

5.3.7. Data requirement of the models

The main objective of this study was to develop simplistic model variants with less input
data requirement and propose a calibration methodology driven by freely available data.
The idea was to drive these variants with reasonably accurate input data, to facilitate the
extent to different mountainous contexts. Table 5.1 summarizes the input data requirement
for each model. The major inputs are the elevation data (DEM), and daily interpolated
precipitation and temperature. The other variables are the derivatives from these major
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Figure 5.1.: Illustration of potential radiation calculated using r.sun.daily algorithm for
Baden-Württemberg on 2015-03-12

inputs. For instance, daily temperature difference was considered as a proxy for the cloud
information. The aspect information and daily global radiation are derived from the DEM.
In addition to the data presented in the table, the daily MODIS snow-cover distribution is
also required for model calibration and evaluation. Freely available inputs such as the DEM
and the MODIS images provide a crucial flexibility with minimum data requirement to drive
the snow-melt models. Likewise, daily observed stream-flows are also used for calibration
and validation of the HBV model.

This study presents a distributed modeling approach with model computations done at
pixel level of a gridded domain. A gridded 464m x 464m schema was extracted for both
regions using the MODIS snow-cover data as a reference. This schema was considered as
the reference gridded domain for the data interpolation and model run. For this, the input
data were pre-processed and interpolated onto the aforementioned grid cells. Though grid-
ded precipitation and temperature data are availble from both DWD and Meteoswiss for
Germany and Switzerland, the interpolation was opted for to maintain the uniformity with
MODIS snow-cover data.

A general methodological snow-melt modeling approach considered in this study is shown
in figure 5.2 and is further discussed in subsequent sections.

5.4. HBV Model

In this study, to assess the performance of the standalone calibration approach employed
on the snow-melt models on discharge response, a widely used conceptual model Hydrol-
ogiska Byråns Vattenbalansavdelning (HBV) [Bergström, 1995] was also used at catchment
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Figure 5.2.: Methodological approach for the study

level. A basic introduction to the standard HBV model is given in the following section and
the details can be read from Bergström [1995].

The HBV model is a conceptual model which has been widely used around the world due to
the simplistic representations of the hydrological processes [Das et al., 2008; Götzinger and
Bárdossy, 2007]. The main drivers of the HBV are precipitation, temperature and estimates
of potential evapotranspiration [Seibert, 1996]. Primarily developed as a semi-distributed
model, the model has been used in distributed configuration over the years. The model has
three distinct subroutines, the snow accounting routine, soil moisture accounting routine,
and the runoff response routine, explained in brief below:

5.4.1. Snow accumulation and melt

The phase partion between snow and liquid precipitation is done based on a critical temper-
ature Tcrit and is calculated as in Eq.5.6(a). Similarly, the melt is calculated as Eq.5.6(b). In
addition, the HBV model introduces a refreezing component in the snow routine. The melt
waters and incident rainfall are retained within the snowpack with the outflow determined
by the exceedance of a certain fraction of the SWE. Likewise, the liquid water within the
snow pack is refrozen by a refreezing coefficient, CFR [Seibert, 1996].
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Table 5.1.: Inputs required for the different model variants

Models
Spatial inputs Spatio-temporal inputs (daily)

DEM Precipitation, mm Mean Temp.,°C Max. / Min Temp, °C
Model 1 yes yes yes -
Model 2 yes yes yes -
Model 3 yes yes yes -
Model 4 yes yes yes -
Model 5 yes yes yes -
Model 6 yes yes yes yes

refreeze = CFR ·Ds (Tcrit − T (t, x)) (5.13)

The accumulated SWE of the snow pack is calculated by Eq.5.14.

S (t, x) =

{
S (t− 1, x) + P (t, x) if T (t, x) <= Tcrit,

S (t− 1, x)−M (t− 1, x) else.
(5.14)

LP (t, x) =

{
0.0 if T (t, x) <= Tcrit,

P (t, x) +min(S (t− 1, x) ,M (t, x)) else.
(5.15)

where S (t, x) is the water equivalent of the snowpack in pixel x at t, P (t, x) is the precipi-
tation falling on the snowpack in pixel x, M (t, x) is the melt water exiting the regime and
LP (t, x) is the liquid water content that can come from melt or precipitation or both. All
units are in mm.

5.4.2. Evapotranspiration and soil moisture

The field capacity, FC (mm) of the soil pack and the soil moisture content SM (mm) control
the amount of water divided into soil moisture recharge and the ground water recharge.
The available moisture AM (mm) at a given time t in pixel i is given by:

AM (t, x) = SM (t− 1, x) +

(
LP (t, x) ·

(
1−

(
SM (t− 1, x)

FC

)β
))

(5.16)

Actual evaporation from the soil profile is then calculated based on the antecedent soil mois-
ture (SMt−1,x, mm) and the permanent wilting point (PWP , mm) as follows:

AE (t, x) =

{
min(AM (t, x) , PE (t, x)) if SM (t− 1, x) > PWP,

min(AM (t, x) , (SM (t− 1, x) /FC) · PE (t, x)) else.
(5.17)
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Figure 5.3.: The HBV model schematics, [Singh, 2010]

where, β is a unitless constant related to the soil profile’s ability to retain moisture, PE (t, x)

is the potential evapotranspiration in mm and ET (t, x) is the actual evapotranspiration in
mm. The soil moisture SM at time t in pixel x is then calculated as in Eq.5.18.

SM (t, x) = max(0.0, AM (t, x)− ET (t, x)) (5.18)

5.4.3. Runoff reservoir routing

This routine follows the tank model approach. Two reservoirs are available to simulate the
runoff response as either direct runoff or as percolation. The runoff from the upper reser-
voir RN (t, x) (mm) is the amount of water that is not retained by the soil and is available
for routing through the model reservoirs and is calculated as in Eq.5.19. Likewise, once
the upper reservoir storage UR−ST (t, x) (mm) exceeds a threshold of UT , the direct runoff
UR−UO (t, x) is allowed from the upper outlet of the reservoir (Eq.5.20). This is controlled
by a coefficient Ku−U . Similarly the lower outlet allows the delayed runoff UR−LO (t, x) as
given by Eq.5.21 and is controlled by another coefficient Ku−L . Likewise, the amount of wa-
ter percolating downwards to the lower reservoir URLR (t, x) recharging the groundwater
storage is controlled by a percolation coefficient Kd and is calculated as Eq.5.22.

RN (t, x) = LP (t, x) ·
(
SM (t− 1, x)

FC

)β

(5.19)
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UR−UO (t, x) = max (0.0, (UR−ST (t− 1, x)− UT ) ·Ku−U ) (5.20)

UR−LO (t, x) = max (0.0, (UR−ST (t− 1, x)− UR−UO (t, x)) ·Ku−L) (5.21)

URLR (t, x) = max (0.0, (UR−ST (t− 1, x)− UR−UO (t, x)− UR−LO (t, x)) ·Kd) (5.22)

UR−ST (t, x) = max (0.0, (UR−ST (t− 1, x)− UR−UO (t, x)− UR−LO (t, x)− URLR (t, x) +RN (t, x)))

(5.23)

Likewise, for the lower reservoir routing, the groundwater recharge is then calculated as
Eq.5.24 and the lower reservoir storage LR−ST controlled by a lower reservoir runoff coeffi-
cient KL−L is given by Eq.5.25.

LR−O (t, x) = max(0.0, (LR−ST (t− 1, x) ·KL−L)) (5.24)

LR−ST (t, x) = max(0.0, (LR−ST (t− 1, x) + URLR (t, x)− LR−O (t, x))) (5.25)

The simulated discharge is then calculated for each pixel x at time t as:

Qs (t, x) = (UR−UO (t, x) + UR−LO (t, x) + LR−O (t, x)) · CC (5.26)

where CC is a conversion constant that converts mm/day to m3/sec in this case, Qs is the
simulated discharge in m3/sec.
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The previous chapters on interpolation and cloud removal of MODIS products explained the
preparation of the driving input variables required for the proposed snow-melt modeling
approach. This chapter describes the calibration methodology in detail along with different
validation techniques employed to evaluate the models’ performance in different layers of
scrutiny.

6.1. Calibration of snow routine

The choice of calibration methodology is one of the governing factors that defines the
model’s ability to understand and simulate the underlying processes, especially in the snow-
dominated regimes where compensation can occur between the snow processes and runoff
generation [Ismail et al., 2020]. As already discussed, the model complexities and the data
availability limit the spatial understanding of the snow processes in the mountains. Due
to this, the traditional calibration approaches are limited to either calibrating on discharge
only which can cause parameter compensation with the snow routine, or calibration with lo-
calized snow-depth information and SWE measurements. Owing to the non-representative
case with the widely used point-based snow depth and snow water equivalent measure-
ments, the calibration and simulation is very uncertain due to the high variability of snow
accumulation. Also due to the compensation and because of the conceptual basis, the sim-
plistic representations driven by non-representative data can pose a very critical challenge
of uncertain and unreliable estimation of water flowing out of the snow regime often leading
to the “right for the wrong reasons” conclusion, even if the calibrated discharge is deemed
accurate enough. [Kirchner, 2006; Seibert, 2000]. The studies done by Parajka and Blöschl
[2008(b)] and Duethmann et al. [2014] concluded that solely discharge based simulations can
not reproduce the snow-cover distribution adequately. Similar results were found out by
Finger et al. [2015] where erroneous glacier mass balance was observed even with a higher
accuracy of runoff simulation by the model.

This highlights the crucial need to identify and reliably simulate these internal processes,
which have not undergone validation against observations [Seibert, 2000]. The addition of
internal catchment variables can help improve internal process identification and model pa-
rameter identifiability to avoid the parameter compensation and maintain model-internal
consistency [He et al., 2018; Parajka et al., 2009; Seibert, 2000]. For this, multi-objective
calibration techniques are being employed in snow melt modeling in many snow-related
research such as incorporating measured snow depths [Parajka et al., 2007], with satellite
snow cover images [Parajka and Blöschl, 2008(b); Duethmann et al., 2014], and using glacier
mass balance [Stahl et al., 2008; Schaefli and Huss, 2011]. These studies highlight the value
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of the additional variable in a more reliable understanding and simulation of the underlying
processes.

However, despite of this well-researched fact of added reliability, increased robustness of
parameter estimation and decreased uncertainty [Konz and Seibert, 2010] with incorpora-
tion of additional observation, the data limitations in the mountains often restrict the desired
implementation of this approach. The limited or under-representative input data can com-
promise model accuracy, due to the equifinality problem with estimated parameters as well.
This become more pronounced when the results are extrapolated to ungauged settings or
projections under climate change [de Niet et al., 2020]. To overcome the data limitation in the
mountainous regimes, the RS imageries pertaining to snow (MODIS, Landsat, AVHRR and
so on) have been increasingly used in the recent years in conjunction with snow-melt mod-
els and hydrological models for calibration purposes [Nourani et al., 2021] as an additional
variable. The added value for this is that the data is the free and global availability and ac-
ceptable results in many studies. Conceptual models like SRM [Martinec, 1975] make use of
the snow covered area information from the earth observation satellites in constraining the
model objective function. While the RS snow-cover information like MODIS do not contain
the snow depth or the SWE information, the spatial distribution they offer at a reasonable
spatio-temporal resolution offers a very pertinent basis for the formulation and evaluation
of distributed models. These data can add value to the dishcarge time-series as well, which
are spatially integrated but provide a quantitative proxy information on the water balance
particularly in the mountains [Duethmann et al., 2014; Finger et al., 2011]).

Parajka and Blöschl [2008(b)] employed a weighted sum based multi-criteria objective func-
tion to calibrate a hydrological model using satellite-based SCA and discharge calibration
in an extensive study in over 148 Austrian catchments and concluded that the inclusion of
MODIS snow cover during model calibration led to better SCA simulation and similar or
better runoff simulations during the validation period. Likewise, a study from Finger et al.
[2011] suggested better performance of a Monte-Carlo based calibration of a hydrological
model combining discharge and snow cover data showed the best results among calibra-
tion against discharge, satellite snow cover, and glacier mass balance. Shrestha et al. [2014]
also used a multi-objective calibration of a distributed model based on MODIS snow-cover
and discharge to optimize a snow-fall correction factor for a snow-dominated basin in Japan
with the result suggesting improved correlations in SCA and discharge after the optimized
correction factor was used. Apart from the multi-calibration approaches, Széles et al. [2020]
calibrated a hydrological model by implementing a step-based technique to calibrate the
individual modules of a hydrological model including snow, soil moisture and runoff gen-
eration processes, which they concluded to be a well-informed runoff simulation. MODIS
snow-cover data was used in the implementation as a gap-filling information for the miss-
ing observed time-lapse photos of snow-cover. Franz and Karsten [2013] implemented a
MODIS Fractional Snow Cover Area (fSCA)-based calibration of a distributed hydrological
model, SNOW17, with an areal snow depletion concept in which they concluded that cali-
brating only on MODIS SCA did not bring any improvement in the hydrological predictions.
Corbari et al. [2009] using a AVHRR based pixel wise elevation based procedure to correct
snow coverage retrieved from National Oceanic and Atmospheric Administration (NOAA)
AVHRR satellite image using a SCA based calibration approach. They also concluded that
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the calibration of the distributed hydrological model solely on SCA brought a better perfor-
mance in terms of discharge simulation. All these recent and ongoing studies highlight the
added value of freely available data like MODIS in calibrating snow routines in conjunction
with other variables leading to improved representation of the underlying processes and in
some cases the hydrological predictions.

6.2. Novelty of the study

This research is motivated from the aforementioned studies to improve the simulation of
snow accumulation and ablation in data-scarce mountainous regions, exploiting the vital
snow-cover distribution from freely available data like MODIS snow-cover products. A
standalone calibration of snowmelt modules based solely on pixel-wise MODIS snow-cover
information was not found to be widely implemented despite being already identified as
a crucial hydrological information. The need to further explore the gap in incorporating
the spatial distribution information of snow, which MODIS snow-cover data can provide
on a daily basis and with a reasonable spatial detail was thus identified. The standalone
approach was considered because estimation of the parameters solely from any RS based
snow-cover information would then eliminate the reliance on a single calibration variable
such as SWEs or discharge which are not readily available in the higher altitudes, and when
available only at point locations, thereby preserving the spatial heterogeneity as well. Like-
wise, calibrating the simplistic and computationally efficient parsimonious snow routines
against the snow-cover images allows seamless and independent evaluation of the snow
processes thereby eliminating the need to pass the snow simulation through a more com-
plex hydrological model.

The presented approach using MODIS snow-cover images for calibration against the
satellite-based spatial binary (“snow”, “no-snow”) observations estimates model parame-
ters from individual or sets of MODIS images. This allows independent evaluation snow
accumulation and melt just relying on snow-cover information, offers a wide range of appli-
cability across a wide geographical context, allows immediate verification with point mea-
surements, and holds a high relevance in data-scarce regions, particularly in identifying
time-continuous snow extents (with depth information) free from highly localized influ-
ences. One can calibrate relatively complex snowmelt modules with reasonably accurate
precipitation and temperature data without over-calibration, mainly owing to the robust
binary data selected for calibration and the spatial extent of the satellite images. This also
facilitates the formulation of a flexible snowmelt module useful for distributed hydrologic
modeling around the world.

6.3. The Calibration Methodology

The interpolated precipitation, temperature and the calculated solar radiation data were
used to drive the snow-melt model variants and the cloud-reduced MODIS snow-cover
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images were used to calibrate these models both Switzerland and Baden-Württemberg re-
gions. All the model variants were run to obtain the SWE estimates at each pixel using the
distributed input variables. The model outputs were calibrated on a pixel-by-pixel basis
against binary (’0’ for no snow and ’1’ for snow) information coming in from a set of cloud-
reduced MODIS composite images for the snow season of 2012-13 for both regions. The
snow season was selected as October–May for Baden-Württemberg and September–June
for Switzerland, assuming a possible snow cover being present for the time period. The
calibration was initially done for both regions on daily snow-cover images with more than
60% valid pixels (< 40% cloud cover) for the snow season in different years. These thresh-
olds of cloud cover were also explored with a sensitivity analysis. Similarly, the calibration
methodology was also tested using snow-cover images in different periods during the snow
seasons to identify which duration in each region gives the better performance.

6.3.1. Reclassification of the model outputs

The first step for the calibration was the reclassification of the modeled SWE outputs to
binary information, i.e. the snow cover. A pixel was classified as snow-covered if the simu-
lated SWE exceeded 0.5 mm of water which corresponds to a snow depth of approximately
2.5 mm. This assumption was later tested with different thresholds to demarcate ’snow’ and
’no snow’ pixels to identify the actual basis for SWE to snow-cover reclassification.

SC (t, x) =

{
0 if S (t, x) < 0.5mm

1 if S (t, x) >= 0.5mm
(6.1)

where,
SC (t, x) is the binary snow-cover information at time t for a pixel x
S (t, x) is the SWE simualted by the models time t for a pixel x.

6.3.2. Objective function

The evaluation of the proposed calibration is based on a simple Brier Score (BS) (Eq.6.2). The
BS is a score function, proposed by Glenn W. Brier, that measures the accuracy of probabilis-
tic predictions of mutually exclusive discrete outcomes or classes [Brier, 1950]. In this study,
the BS shows the mean squared error between observed binary values of snow and no snow
occurrences between MODIS and those simulated by the extended degree-day models. The
values of BS vary from 0 to 1 with the values tending to ’0‘ showing better agreement be-
tween the model outputs and the MODIS.

BS(t) =
1

N

N∑
t=1

(fi(t)−Oi(t))
2 (6.2)

Where,
fi(t) = simulated snow-cover (0/1) on day t and pixel i, oi(t) = observed snow-cover

(0/1) on day t and pixel i
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The calibration is done by minimizing the objective function in Eq.6.3 which is expressed as
the sum of the BS values over the days with observed MODIS snow-cover:

OF =

K∑
k=1

BS(tk) (6.3)

Where,
tk are the days with observed MODIS snow-cover.

The snow model parameters were estimated by minimizing objective function Eq.6.3. In
order to reflect the equifinality of the model, the Robust Parameter Estimation (ROPE)
[Bárdossy and Singh, 2008] methodology was applied for the model parameter optimiza-
tion. A brief concept of ROPE is given in next section.

6.3.3. Robust Parameter Estimation (ROPE)

ROPE uses the concept of data depths to identify best-performing robust parameter sets
and their properties for different calibration periods in different catchments, with an under-
lying assumption that it identifies parameters sets without overemphasizing the processes
defined by the parameters. Data depths provide a quantitative estimate of the central ten-
dency compared to a dataset or a distribution [Bárdossy and Singh, 2008]. Tukey [1975] first
used the concept of depth functions to analyse multivariate dataset followed by the different
generalizations in [Rousseeuw and Struyf, 1998; Liu et al., 1999; Zuo and Serfling, 2000]. The
data depth concept is based on the computational geometry and gives the information if a
point is at or near the center of a point cloud corresponding to higher data depth values or at
the periphery (lower data depth values). In hydrological models, there exists a deep-lying
problem of equally performing parameter vectors which renders the decision to select one
of the sets for prediction, difficult. Bárdossy and Singh [2008] investigated the properties of
the set of best performing parameter sets using the data depth concept. This study analyzes
models with more than 5 parameters.

Different applications of the concept of data depths in hydrology can be found in [Chebana
and Ouarda, 2011] to identify weights of a non-linear regression models for flood estimation,
[Singh and Bárdossy, 2012] for ICE algorithm, [Bárdossy and Singh, 2011] for regionalization
of hydrological model parameters, and [Singh et al., 2013] to define predictive uncertainty.
The fundamental concept of depths of data applied in hydrology is provided in [Singh,
2010]. The half space depth of a point p for a d dimension dataset can be defined as the
minimum number of points that lie on either side of the hyperplane through p calculated
over the infinite number of hyper-planes slicing through the point cloud. The half space
depth of the point p in reference to a set X in a D-dimensional space as can be expressed as :

DX (p) = min
nh

(min (|{x ∈ X⟨nh, x− p⟩ > 0}|) , (|{x ∈ X⟨nh, x− p⟩ < 0}|)) (6.4)

The ROPE methodology followed the following sequential steps for this study:

1. The bounds for the model parameters were set.
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2. ‘N’ random parameter sets (XN ) were generated in the ‘d’ dimensions space limited
by the bounds set in Step 1.

3. The models were run for each parameter sets and the corresponding objective func-
tions were calculated.

4. Based on the model performance, a pre-defined subset of the best performing param-
eter sets X

′
N were drawn.

5. 2*N random parameter sets were again generated within the bounds of the best per-
forming sets from Step 3.

6. A set of YM parameters were identified where for each vector θ ∈ YM , the depth cal-
culated with respect to the subset X

′
N is greater than 0, i.e D(θ) > 0.

7. Within the bounds defined by the ‘deep’ parameter sets in Step 6, further ‘N’ parame-
ter sets were generated so that XN = YM .

8. Steps 3-6 were repeated for various iterations assuming that the performance corre-
sponding to YM does not differ more than what one would expect from the observation
errors.

With the ROPE methodology, a set of 1000 heterogeneous parameter vectors with similar
model performance were obtained. These sets of ‘good’ points can be defined as the param-
eter sets that are less-sensitive and transferable, thereby providing a ‘compromised’ solu-
tion. These parameter vectors were estimated for each region assuming spatio-temporally
constant/variable (wherever possible) parameter distribution and were estimated within a
plausible range as described in different snow modeling studies. For the ease of result in-
terpretation, the modeling results are shown based on the parameter vector with the best
objective function value.

6.4. Calibration Results

6.4.1. Switzerland

To evaluate the methodology in a longer duration snow context, a set of MODIS images for
the whole snow season of 2012-09-01 till 2013-06-30 was considered as the reference snow-
cover distribution in Switzerland to calibrate the extensions of the snow-melt models . All
the models were calibrated with the same objective function and the calibration performance
of each variants were evaluated in terms of the Brier scores. The results are analyzed on the
basis of confusion matrices showing the proportion of true and false identifications of snow
and no-snow pixels. The Brier score is the overall error imparted by the model, i.e. the sum
of falsely identified instances of snow and no-snow pixels.

Table 6.1 summarizes the performances of all six variants after the ROPE calibration. The
results in the table depict the normalized confusion statistics calculated for the reference



50 MODIS based calibration

time period for Switzerland with the columns indicating the proportions of true negatives
(both ‘no snow’), false positives (MODIS: ‘no snow’, simulated: ‘snow’), true positives (both
‘snow’) and false negatives (MODIS: ‘snow’, simulated: ‘no snow’). All model variants
reported very good simulation of the snow-cover distribution with the BS ranging from
0.084 to 0.095. The results indicate a very close performance in Switzerland, when calibrated
using the images for the whole season. However, in comparison among all, the Model 6 with
the radiation component performed the best in terms of overall BS as well as the reduction
in the false recognition of snow, although slight overestimation of snow was observed with
the simulation from Model 6.

Table 6.1.: Normalized confusion matrices for the calibration period of 2012-09-01 till
2013-06-30 for Switzerland

True positive False positive True negative False negative BS
Model 1 0.625 0.036 0.280 0.059 0.095
Model 2 0.621 0.039 0.289 0.050 0.089
Model 3 0.626 0.035 0.289 0.051 0.086
Model 4 0.625 0.035 0.289 0.050 0.085
Model 5 0.622 0.039 0.293 0.047 0.086
Model 6 0.610 0.050 0.306 0.034 0.084

To further scrutinize the performance of the model variants at different elevation zones, the
region of Switzerland was divided into five elevation zones, i.e. <500 masl, 500-1000 masl,
1000-1500 masl, 1500-2500 masl and >2500 masl. The areal proportion of these zones can
be observed from table 3.3. The total errors, over-estimation errors and under-estimation
errors were calculated for each elevation zones for all the models. The under-estimation
error refers to the average normalized false negative instances, over-estimation error shows
the average normalized false positive instances and total error refers to the mean values of
BS for each elevation zones. Figure 6.4 shows the results of this elevation based evaluation.
It is evident from the figure that a clear reduction in over-estimation error is observed in all
the elevation zones with Model 6. The model however, underestimates the snow for lower
elevation zones. The Brier scores remain the lowest for <500 masl (17% of the total area)
and >2500 masl (11% of the total area), i.e. the low and the high snow-dominated zones
are best represented by this model. For the mid-elevation zones, the model errors are com-
parable to other variants and with the lowest mean error, i.e the Brier score, this was the
best performing variant in Switzerland. Model 1, the simplest of the models, overestimates
snow throughout the elevation zones and the overall error also remains the highest. Models
3, 4 and 5 show similar attributes in terms of over and under-estimating the snow detection.
Owing to the comparatively superior performance among the models, Model 6 with the ra-
diation induced melt was selected as the reference model for further analysis in Switzerland.
This has also been pointed out by [Hock, 1999] that including inclusion the effect of solar
radiation on melt provides a more realistic spatial distribution of snow accumulation and
melt.



6.4 Calibration Results 51

The results were validated in different cloud-free days at the start, mid and late winter in
different years. The validation time-series of Brier scores are shown in Annex A.1. It is
to be noted that red highlights in the figure show the best performance for the day. The
results suggest that the simulated snow-distribution is adequately represented by the model
variants with models 5 and 6 exhibiting better agreement in most of the days. Figure 6.1
shows an example of the validation of the radiation-based model on the snow-cover image
for a relatively cloud-free day of 2013-01-08. The illustration shows that the model calibrated
on the images for the whole season very well simulates the MODIS snow-cover distribution
for the day with a very good BS of 0.077.

Calibration on a single day image

In addition, the calibration was also tested on a relatively cloud-free single image for 2012-
01-18 in Switzerland. The normalized confusion matrices are shown in Annex A.3. The
figures suggest gradual improvement in the model performance with additional parame-
ters, with the BS ranging from 0.044 to 0.0365. Model 6 including the radiation induced
snow-melt shows the best performance among the models, with a BS value of 0.0365. Model
5 has the next closest match. The models 5 and 6 both improve the true negatives and true
positives with Model 6 exhibiting lesser false recognition of snow. The simulation of the
snow-cover by Model 6 for this day is shown in figure 6.3. The single day calibrated pa-
rameters were used to run the radiation variant using all the images available for the period
of 2011-01-01 till 2018-12-31. The normalized confusion matrix of MODIS snow-cover and
snow-cover simulated by the model in figure 6.2 reflects very good capability of the model
to identify and predict snow (’1’) with 0.947 and no-snow pixels (’0’) with 0.932 as a propor-
tion of all the valid pixels. The false negatives and true negatives amount to less than 10 %
of the total pixels.

Figure 6.1.: MODIS inferred (left) vs Model 6 simulated snow distribution (centre) and
differences between MODIS and simulated image (right) for Switzerland



52 MODIS based calibration

Figure 6.2.: Normalized confusion matrix for the simulation of 2011-01-01 till 2018-12-31 for
Switzerland

Figure 6.3.: Single day (2012-01-18) calibration result of Model 6 for Switzerland

Both the seasonal calibration and the single day calibration suggest that this approach of cal-
ibrating against MODIS on a pixel level is very flexible in the sense that selective images can
be selected to tune the snow-melt model parameters thereby identifying the spatial extent
of snow-cover without much loss in model performance.
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6.4.2. Baden-Württemberg

Likewise, the entire approach was replicated in the southern German region of BW to test
the efficacy of the approach in a lesser duration snow context. For this, a set of images
corresponding to the winter season of 2012-13 i.e 2012-10-01 till 2013-05-31 were used for
calibration. The results were similar to the Swiss calibration, as all the models adequately
simulated the snow-distribution pattern for the reference season. Table 6.2 shows the re-
sult of the calibrations in terms of Brier scores, and true and false identification scores of
snow. Here as well, the Model 6 was the best performing variant among all based on the
proportions of the true and false instances. A gradual improvement in model performance
with additional parameterization was observed in BW. Though the results are comparable
to the Swiss context, the BS values exhibit a starker Model 6 performance when compared
to other models. With better representation of truly identified instances and a subsequent
reduction in false identification as shown by Model 6 performance reflects the importance of
radiation component in melting the snow in diverse regions. All other models show similar
performances in the region. An illustration of the validation of Model 6 on a cloud free day
of 2013-03-04 is shown in figure 6.6. The simulation shows a very close match with MODIS
image for the day with about 93% accuracy when calibrated on seasonal images.

Table 6.2.: Normalized confusion matrices for the calibration period of for 2012-10-01 till
2013-05-31 for Baden-Wur̈ttemberg

True positive False positive True negative False negative BS
Model 1 0.758 0.031 0.169 0.042 0.073
Model 2 0.759 0.032 0.168 0.041 0.073
Model 3 0.760 0.034 0.167 0.040 0.074
Model 4 0.758 0.032 0.168 0.041 0.073
Model 5 0.756 0.030 0.171 0.043 0.073
Model 6 0.762 0.027 0.173 0.037 0.064
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Figure 6.5.: MODIS inferred (left) vs Model 6 simulated snow distribution (centre) and
differences between MODIS and simulated image (right) for BW

The calibration for all the models were further analyzed in different elevation zones in BW.
The region was divided into four elevation classes, namely <300 masl, 300-600 masl, 600-
900 masl, >900 masl, for which the proportion of the area covered within are shown in
table 3.1. The results shown in figure 6.8 suggest Model 1 and Model 6 show the lowest
under-estimation error. This error is seen to be increasing with increasing elevation zones.
The over-estimation error decreases with increasing elevation for all models except Model
1 which shows a different trend of highest over-estimation in the snow-dominated part of
the region with a corresponding reduced under-estimation error. The simplistic approach is
Model 1 tends to falsely identify snow pixels in the upper zones. Rest of the models show
similar behaviour across the elevation zones. As indicated by the rightmost plot, the overall
error is reduced with Model 6 throughout all elevation zones.

Calibration on a single day image

Similar to the case in Switzerland, the single day image calibration was done here as well
with a relatively cloud-free MODIS image for the day 2010-02-27 selected as the reference
image. As in Switzerland, all models were able to mimic the snow-distribution pattern for
the reference day reasonably well where Model 6 performed the best in terms of the BS and
is shown in figure 6.6. The models were further validated for different cloud free days in
different years as well and can be inferred from Annex A.2. The simulations were able to
capture the snow-distribution reasonably well in BW, albeit not as good as in Switzerland
as reflected by the Brier scores for single day calibration. Short duration snow or lesser
snow availability can be attributed to this drop in model performance, as it imparts added
uncertainty in model prediction. Figure 6.7 shows the normalized confusion matrix based
on Model 6 simulation from 2011-01-01 till 2015-12-31 using the images during the time-
period. It is evident from the figure that the model is able to simulate the snow-distribution
well enough with 83% of correctly identified ‘snow’ pixels. This performance, however,
shows that the model still has room for improvement especially in regions like BW, where
snow-melt has a major implication on water availability.
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Figure 6.6.: Single day (2010-02-27) calibration result of Model 6 for BW

Figure 6.7.: Normalized confusion matrix for the simulation of 2011-01-01 till 2015-12-31 for
BW

The calibration and validation statistics suggest that all models perform reliably in terms of
identifying MODIS snow-cover distribution in the overall scenario. However, based on the
validation, and model performance throughout the elevation zones, Model 6 was selected
for both Switzerland and Baden-Württemberg as reflected by the lowest overall error and
from hereon used as the reference model for further analysis.



Fi
gu

re
6.

8.
:M

od
el

pe
rf

or
m

an
ce

s
in

di
ff

er
en

te
le

va
ti

on
zo

ne
s

(l
ef

t:
ov

er
-e

st
im

at
io

n
er

ro
r,

m
id

dl
e:

un
de

r-
es

ti
m

at
io

n
er

ro
r,

ri
gh

t:
to

ta
l

er
ro

r
(B

S)
,d

as
he

d:
m

ea
n

er
ro

r
fo

r
al

le
le

va
ti

on
zo

ne
s)

in
BW



58 MODIS based calibration

6.4.3. Reference model parameters

The calibration of the reference model i.e. Model 6 using ROPE for the reference period
i.e. 2012-13 winter season for each region, yielded 1000 good parameter vectors. Figure 6.9
shows the box-plots of the set of these best calibrated reference model parameter vectors.
The parameter values are normalized in the figure based on the parameter bounds set for
calibration which are further shown in table 6.3 along with the parameter vector with the
best Brier score value for the calibration period. The box-plots suggest that, the temperature
related parameters and the radiation more sensitive, and more so with melt temperatures
TMmin and TMmax, and the radiation melt factor Rind that directly govern the snow-melt.
The median values of the Ds parameter is around 1.9 mm.◦C−1 whereas for BW it is around
2.2 mm.◦C−1, which are within accepted range for this parameter. Likewise, the median
values for Ts is similar for both regions (-1.8◦C for Switzerland and -1.6◦C for BW). The
median melt temperature TM was found to be slightly higher for Switzerland than BW, in-
dicating a faster snow-melt in BW. Similarly, the median calibrated albedo value was around
0.66 for both regions, a plausible value for snow. The median under-catch correction factor
scf value for both regions were around 1.3, meaning 30% of missed precipitation as snow,
which is again an acceptable figure. The calibrated parameters thus can be considered as
being within a plausible range. The precipitation threshold PT , wet degree-day factor Dw

and power factor PF are the least sensitive ones in reference to the objective function.

Table 6.3.: Best performing reference model parameter sets with respective calibration
bounds

Parameters
Calibration bounds Best performing vectors
Upper Lower Switzerland BW

Ds 3 1.5 1.77 1.60
PT 10 0 2.52 6.98
Dw 1 0 0.53 0.73
Ts 3 -3 -2.53 -1.40
TMmin 3 -3 0.74 -0.43
TMmax 3 -3 1.11 -0.23
PF 10 0 4.83 9.57
rind 1 0 0.07 0.01
alb 0.9 0 0.80 0.28
scf 1.5 1.01 1.40 1.47
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Figure 6.9.: Boxplot of 1000 best reference model parameters estimated with ROPE

6.5. Transferability of calibrated parameters

To test for the transferability of the model parameters through different seasons, the cal-
ibrated model parameters were also validated on the set of available snow cover images
for the average onset and average melting seasons of different years. The goal here, was
to investigate a relatively stable parameter-set across the time domain that can depict com-
parable model performance for different seasons. A calibrated well-performing parameter
vector was used to compare the results in different seasons. The best model (Model 6) is
used as the reference model in this analysis. Peak snow onset periods (October - Decem-
ber for Switzerland and November - December for BW) and peak melting periods (January
- April for Switzerland and January - March for BW) for 2010 - 2015 were selected as the
calibration and validation periods. The models were calibrated for onset periods for each
year and then run to predict the snow distribution in the corresponding melting season as
well as to hindcast the snow distribution in the onset and melting seasons of preceding year.
Tables 6.4 and 6.5 summarize the model performance (BS) for different simulation periods
for Switzerland and BW, respectively. The ’*’, ’**’ and ’***’ highlights depict hindcast, cali-
bration and prediction for each year.

For the ease of understanding, the case of model calibrated for 2011 October - December
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period for Switzerland is taken here for discussion. The best calibrated parameter vector
from the Swiss model run was used to hindcast the snow cover distribution in the preced-
ing onset (2010 October - December) and melt (2011 January - April) seasons, and predict
for the corresponding melting season (2012 January - April). The 2011 model performance
was then compared with the hindcast of the succeeding calibration and the prediction of the
previous calibration. Here in this example the hindcast performance (0.068 for Oct-Dec 2010
and 0.0661 for Jan-Apr 2011) is very close to the ones simulated by the 2010 model (0.0675
for calibration period and 0.061 for forecast period). The other results are also comparable
throughout the years. These results are again compared with the model calibrated on a sin-
gle day image in the last column (2012-01-18) as described in earlier sections. Here as well,
the model calibrated on a single image is able to adeptly track the distribution in different
snow-onset and melt seasons in different years, without much loss in performance.

Likewise in the BW region as well, the transferability of the parameter sets was tested. Based
on the results shown in table 6.5, the calibration performance and the performance during
validation of hindcast and forecast remain fairly close, albeit not as good as in Switzerland.
Due to a more uncertain distribution of snow, the onset season in BW is more strong and
defined, with a more uncertain melting rates. This can be observed with the hindcast per-
formance based on the calibration during onset season of the succeeding year, which gets
worse as compared to the performance of the forecast for the same period. However, the
drop in Brier scores is not that significant and the results are considered to be acceptable.

As an illustration, a set of good parameter vector for the aforementioned seasons and the
reference day are shown below in figures 6.10(a) and 6.10(b). The PT and Dw parameters are
less sensitive and the fluctuations in these parameters do not have major implications on the
model performance. Apart from these parameters, it is apparent that the individual param-
eter values do not fluctuate a lot and are more or less stable in Switzerland. The calibrated
parameters from the single day calibration, understandably shows quicker melt with low
values of snow-melt temperatures, apart from which the parameter sets can be inferred as
temporally stable for the said periods for this region. However, individual parameter values
here have a wider spread in BW for the same periods in comparison with Switzerland. As
discussed above, this can be attributed more to the lesser and more uncertain availability
snow in different seasons. This shows that with continuous updating of the approach for
each season, the approach has the potential to forecast the snow-availability.
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(a) Switzerland

(b) Baden-Württemberg

Figure 6.10.: Calibrated parameter sets for onset periods in different years
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6.6. Simulated snow-cover characteristics

To analyze the characteristics of simulated snow-cover, several diagnostics were compared
with MODIS as an evaluation of the calibration methodology. The average simulated and
MODIS derived fractional areal extents of SCA different validation days are shown below
in for selected validation (cloudfree) days are also presented below in figure 6.11. It can be
inferred that the model can adequately track the seasonal evolution of the snow covered
area in Switzerland.

Figure 6.11.: Mean Areal Extent of snow cover for different validation days in different
years

For the further analysis of spatio-temporal snow characteristics, cumulative SCAs below dif-
ferent elevation levels, Snow Cover Duration (SCD), Snow Cover Onset Date (SCOD), and
Snow Cover Melt Date (SCMD) for hydrological years (09-01 to 08-31) from 2010 to 2018
were analyzed using the MODIS and simulated snow distribution. Due to persistent cloudy
pixels even after cloud filtering in daily MODIS images, the SCDs for MODIS 8 day prod-
ucts containing the maximum occurrence of snow/no snow within an 8-day period were
compared with the 8-day aggregated simulated values. Figure 6.12 below shows the cumu-
lative SCA for the reference day (2012-01-18). The plot shows a very good agreement of the
simulated hypsographic curves with the MODIS inferred elevation discretized cumulative
SCAs. These plots are analyzed for different validation days and are presented in the Annex
A.4 section.

For the snow-cover duration, an average percentage of days with snow, throughout the
hydrological years of 2010/11 till 2017/18 were considered. This was anlayzed using an
’agreement’ index, given by Eq.6.5 below.

Agreement =

(
1− |SCDsim − SCDMODIS |

SCDMODIS

)
∗ 100 (6.5)
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Figure 6.12.: Cumulative simulated and MODIS SCAs at different elevation zones

where, SCDMODIS is the proportion of snow-covered days aggregated from MODIS and
SCDsim is the simulated proportion of the snow-covered days.

The average SCDs of the hydrological years for MODIS-8day and modeled outputs is shown
below in Figure 6.13. The graph represents a consistent agreement of mean snow-covered
days except for pixels with elevation less than 600m. A slight over-estimation can be ob-
served in the pixels from 2800 – 3600m range. Year wise comparison of the SCDs is provided
in Annex A.5. Apart from the pixels below 200m elevation, the simulated SCDs replicate the
MODIS SCDs, albeit with slight underestimation in most of the years. However, it should
be pointed out that the MODIS 8-day products are also not completely free from cloudy pix-
els. Likewise the spatial comparison of mean snow cover days shown in figures 6.14a and
6.14b suggest that the higher and mid elevation show good agreement with more erroneous
predictions in the lower elevation zones. These low lying areas are usually characterized by
transitional snowfall events which is not captured adequately with the model simulation.
However, with majority of the pixels showing agreement above 50%, it was considered a
reliable simulation in this study.

6.6.1. Comparison with station observed snow depths

The snow depths measurements from 30 available stations with complete set of daily data
for water years (2010/11 – 2017/18) in Switzerland were used to further assess the model
results. A snow depth threshold of 2.5mm was considered as a threshold to omit the tran-
sient snow fall events. Values higher than this threshold snow depth were considered as
‘1’ and the lower ones as ’0‘. For comparison with the station data, the pixel bounding the
station was considered. The mean SCDs for hydrological years 2010-11 to 2017-18 were also
calculated, summing the days of snow. The figure 6.15 shows the mean SCDs for the afore-
mentioned years. It can be observed from the figure that the SCDs are well simulated by the
models except for the stations within 500 -1000m elevation.
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Figure 6.13.: MODIS derived and simulated mean days of snow (expressed as % days in a
year)

(a) Mean agreement
(b) Histogram of pixel elevation with agreement

less than 50%

Figure 6.14.: Mean agreement between MODIS and simulated snow-cover duration across
the water years of 2010/11 - 2017/18

Figure 6.15.: Simulated mean SCDs vs mean SCDs calculated from the snow stations
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Snow Cover Onset Date (SCOD) and Snow Cover Melt Date (SCMD)

In order to track the snow-cover onset and melt dates, an approach adopted in Wang and
Xie [2009], was used in the study. To calculate the snow onset day, the snow cover duration
(SCD′) during the onset phase (September 1 onwards) is calculated by summing up the
values of a pixel with ’1’ i.e. snow till a fixed date after which it is assumed to have more or
less a constant snow cover in the region. The snow cover onset date was then calculated by
Eq.6.6.

SCOD = FD1 − SCD′ (6.6)

where, FD1 is the fixed date after which constant snow cover is present. The choice of
the fixed date depends on the climate and topography of the region of interest [Wang and
Xie, 2009]. The assumption made in this approach is a continuous snow-cover present in
a pixel such that the fallen snow remains in the pixel and doesn’t deplete till the melting
onset, thereby excluding the transient snow-fall events. These transient snow events are
still noticed by MODIS as snow pixels and can cause earlier detection of snow as compared
to the station data. However, a general idea of snow cover onset and melt can be reliably
garnered in higher elevations with this assumption. Since the simulated data comes from
the calibration against MODIS, the simulation result was assumed to be the truth and was
validated against the station data. Dec 22 (Julian day: 355) was assumed as the fixed date
FD1 for Switzerland with SCD′ as the snow covered days from September 1 till December
22.

Likewise, the snow cover melt date (SCMD) is the date when the snow starts to melt in the
pixels. The SCMD is calculated as:

SCMD = FD2 + SCD′ (6.7)

where, FD2 is the fixed date after which snow starts to melt. SCD′ is the duration during
the melt period till the snow is completely melted in the pixel. Here as well, the assumption
is that after the fixed date, the transient snow events are not counted within the pixel, i.e.
the pixel remains snow-free till the next snow season. This can again lead to a delayed melt
as MODIS pixels still observe the pixel as snow. For this, the FD2 was assumed to be at a
fixed date of 32 (February 1).

Figures 6.16a and 6.16b compare the observed and simulated snow onset days and snow
melt dates in the availble 30 stations. Mean agreement for SCOD was 99% whereas for
SCMD was around 91%. It can be inferred that the drop in performance in simulating
the SCMDs in the stations between 500-1000 masl is due to an early melt in the simulated
pixel. A fixed date assumption for all elevation zones might not work, especially in the mid-
elevations where the snow availability is harder to assess. The lower elevation are more or
less snow-free by the onset of melt whereas at higher elevations, the snow remains in the
pixel for a longer time. This can be one of the future direction of the research. However, the
combined agreement of of greater than 90% suggests that the model does well in simulating
the Mean SCOD and SCMD for the station data.
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(a) Snow cover onset dates

(b) Snow cover melt dates

Figure 6.16.: Comparison of simulated and station observed mean SCODs and mean
SCMDs for Switzerland (WY 2010/11 - 2017/18)

6.6.2. Snow onset and disappearance timings

To analyze the snow onset and disappearance timings, four stations at different elevation
zones were selected, namely MER (588 masl), CHM (1136 masl), ARO (1878 masl) and SAE
(2502 masl). The figure shows the comparison of the simulated and observed snow ap-
pearance and disappearance timings. The snow hydrographs (in green) are the actual daily
snow depths observed at the stations whereas the blue boxes indicate the period of snow
persistence before it disappears from the station pixel.

It is clear that the blue boxes well bound the daily snow hydrographs in the higher elevations
(stations ARO and SAE) with the exception of events in 2014. The patterns also match in the
mid elevation station CHM and the lowest elevation station selected MER. The transient
events towards the melt period are not captured well in the station MER which led to the
earlier melt. The results suggest that the timings along with the distribution of snow as
discussed in the earlier plots are well matched by the calibrated model and can be deemed
applicable for further analysis.
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(a) Station MER (588m)

(b) Station CHM (1136m)

(c) Station ARO (1878m)

(d) Station SAE (2502m)

Figure 6.17.: Comparison of snow appearance and disappearance timing between simulated
and station data



7. Sensitivity analysis and validation of the
methodology

The preceding chapter discussed the parameter estimation approach and the results asso-
ciated with it. This section deals with the sensitivity tests on different assumptions made
and the validation of the methodology at catchment levels and in hydrological modeling.
As identified in the earlier chapter, Model 6, i.e the model with the radiation component is
used as the ’reference model’.

7.1. Sensitivity analysis based on thresholds

Assumptions on different thresholds and periods were made during the calibration in the
study, broadly categorized as thresholds for snow/no-snow differentiation on a pixel level,
and set of images used for calibration. These assumptions raise a question on what are the
best possible minimum thresholds for these key factors, given the uncertainties in MODIS
as well as interpolated meteorological drivers, and which set of images to select for cali-
bration. Since the parameter estimation approach is governed by these assumptions, the
entire calibration routine was tested via a sensitivity analysis, which is further explained in
subsequent sections.

7.1.1. Thresholds for ’snow/no snow’ differentiation

As this methodology relies on binary ’snow’ or ’no snow’ calibration, it is very pertinent to
have a plausible and reliable choice of threshold value to define as pixel as snow-covered or
not. Three specific thresholds were assumed in this category:

1. The cloud threshold as a percentage of valid pixels was assumed to demarcate the
number of daily images to be used as a reference series to calibrate against. This thresh-
old governs the number of images (i.e. days) selected for calibration. As discussed
earlier, the cloud obscurities severely limit the integration of RS into snow-melt and
hydrological modeling context. For the earlier runs, a baseline cloud threshold was
assumed as 40% so that only the images with more than 60% valid pixels within the
whole or a certain period of the snow-season. The resulting simulated snow-cover dis-
tribution as shown by the results were very well simulated. However, the sensitivity
analysis was carried out to assess how sensitive the entire approach is to the selection
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of images based on clouds and to find what minimum percentage of clouds is permis-
sible to achieve a similar or even better model performance. Since this approach works
on a pixel-by-pixel basis, the initial hypothesis is that the cloud obscurities do not have
a significant impact on the calibration and can be even done on patches of pixels rather
than a whole cloud free image without much loss in performance. Thresholds ranging
from 10% to 90% were used for the sensitivity runs.

2. NDSI thresholds to demarcate the snow and no snow pixels in the reference MODIS
images was also assumed as 0.1 (values ranging from 0-100) for baseline runs. A pixel
with a NDSI value greater than 0 is assumed to have some snow present and that with
<=0 is snow free. The commonly used threshold of NDSI is 0.4 [Hall and Riggs, 2007;
Dozier, 1989]. For this analysis, thresholds ranging from 0.01 - 0.95 were used for the
analysis.

3. SWE thresholds are assumed in the study to transform the simulated SWEs to binary
information. It basically can be defined as the minimum required simulated SWE in
a pixel to classify it as a snow pixel. Different thresholds ranging from 0 to 5mm
have been assumed in different studies. SWE thresholds are interchangeably used as
detection threshold in this thesis.

Sensitivity analysis was carried out for different thresholds using the reference model for
both Baden-Württemberg and Switzerland to identify the best snow/no snow differentia-
tion. The time period used for the calibration was from 2013-2015 for uniformity and the
entire winter season images were considered for both regions to meet the cloud criteria. Fig-
ures 7.1a and 7.1b show the synopsis of the sensitivity analysis for cloud thresholds upto
50% and NDSI threshold upto 0.7. A more detailed presentation is available in Annex B.1
and B.2. The figures present NDSIs as multiples of 10, i.e actual NDSI multiplied by 100.

From the figures, it can be clearly inferred that the best performance can be achieved with a
NDSI threshold of 0.3, cloud threshold of 10% and a SWE threshold above 0.5 mm in terms
of Brier scores in Switzerland. Likewise, for BW, the results show that, a SWE detection
threshold of 2.0 mm or above, along with the NDSI threshold of 0.3 and a cloud threshold
of 10% simulates the snow cover distribution best. The similarity in terms of best perform-
ing thresholds highlights the applicability of the adopted methodology in different snow
regimes.

Further scrutinizing the results as illustrated in the Annex figures, it is clear that for Baden-
Württemberg, the NDSI thresholds of 0.3 and 0.4 show similar performance with SWE
threshold higher than 2.0mm during model calibration when the MODIS images fitting
cloud threshold criteria of 10% is implemented. For Switzerland, a NDSI threshold of 0.3
along with SWE thresholds higher than 0.5 mm gives the best result. In Switzerland, the
model simulation is more sensitive to the selection of NDSI thresholds as the model perfor-
mance severely drops after NDSI of 0.6. In contrast, in BW, the model performance drop is
not so drastic as in Switzerland, as the NDSI values upto 0.7 give comparable results. De-
tection thresholds of 2mm and above show a good simulation, with NDSI thresholds of 0.3
and 0.4 giving similar results when the SWE threshold of higher than 2.0mm is used with
10% cloud thresholds.
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(a) Switzerland

(b) Baden-Württemberg

Figure 7.1.: Model performance for different thresholds; left plot: The shaded part shows the
performance for different SWE thresholds. right plot: Dashed and solid lines
respectively show performance for 10% and 20% cloud thresholds. Detection
threshold in the X-axis level refers to the SWE threholds. NDSIs are presented
as actual NDSI multiplied by 100.
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There have been different studies to analyse the threshold defining snow or no-snow condi-
tions such as Härer et al. [2018] who used seasonally and locally optimized NDSI thresholds
ranging from 0.15 to 0.74 to reliably estimate the SCA in local context. They conclude that for
500m resolution, a NDSI threshold of 0.40 remains valid. Tong et al. [2020] investigated the
sensitivity and the related accuracy of different NDSI thresholds to evaluate the spatial sea-
sonal patterns of the thresholds in Austria. They compared the snow cover mapping based
on different thresholds with the established NDSI threshold of 0.4 and concluded that they
are very sensitive to the snow depth threshold demarcating snow cover at the ground. They
found out that the NDSI threholds have a distinct spatial and seasonal pattern, i.e strong
variability during seasons, decreasing trends with increasing elevation and generally lower
in the forested areas than on open land. Zhang et al. [2019] tested different criteria to select
NDSI threshold for MODIS products based on the locally optimal NDSI threshold, a thresh-
old of 0.1 and the globally accepted NDSI threshold of 0.4. They found out that for China,
0.1 NDSI threshold had the best results in snow cover mapping than the widely used 0.4
threshold. The results from this analysis also fits well among the results from these studies
in terms of NDSI. However, in this study, MODIS was employed as the observed snow cover
distribution whereas in reality, the spatial detail of MODIS and the associated uncertainty
[Tong et al., 2020] makes it harder to reliably detect where the snow actually is. Added to
that the uncertainty with the interpolated precipitation data in the higher elevations, make a
very hard case for a clear recommendation of a definite threshold for future applications. We
can however, safely conclude that a NDSI threshold of 0.2 -0.5 can be used to classify snow
and no-snow pixels for snow-melt modeling employing MODIS information as a calibration
reference. Likewise, in conjunction to this, SWE thresholds of 0.5 - 5mm for longer duration
snow conditions and 2 - 5mm for shorter duration snow locations can be used without a ma-
jor loss in performance. Nester et al. [2012] also identified a SWE threhold of 2.5mm as an
optimum threshold for error analysis with MODIS SCA. A snow depth threshold of 20mm
was implemented by Tong et al. [2009a] in their study in Canada for cloud cover reduction
in MODIS. These SWE thresholds are in general more sensitive to the type and the density of
vegetation [Roy et al., 2010] for studies pertaining to higher resolution simulation. Parajka
and Blöschl [2008(b)] and Zhang et al. [2019] employed a 10mm snow depth ( 2mm of SWE
considering 20% snow pack density) to demarcate the snow depth to binary snow informa-
tion. The snow depth less than 1cm can be considered as traces and usually introduce more
uncertainties [Zhang et al., 2019]. The results presented here are in line with these studies,
though numerous other adopted values are found in different literature and are more site
specific. For a 500m resolution study using MODIS, the recommended range is plausible.

Different studies have identified the cloud threshold to be one of the critical factor for evalu-
ating the model errors in terms of SCA or resulting discharge [Parajka and Blöschl, 2008(b);
Nester et al., 2012; Şorman et al., 2009; Udnæs et al., 2007]. Şorman et al. [2009] adopted a
cloud threshold of 20% in hydrological modeling context for a multi-variable constrained
calibration. Parajka and Blöschl [2008(b)] recommended a 60% cloud threshold as a reason-
able compromise between snow data availability and SCA robustness. Udnæs et al. [2007]
incorporated the snow cover data in a hydrological model with images showing cloud ob-
scurity less than 30% of the catchment. Rodell and Houser [2004] in their study of updating
snow-water storage in a land surface model using MODIS, assumed a minimum of 6% vis-
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ibility (94% cloud threshold) for MODIS to be useful. Nester et al. [2012] suggested a cloud
threshold of 80% as no significant differences were observed in model errors for <50% and
50-80% cloud cover in their study. In this study, A cloud threshold of 10% (i.e images with
more than 90% of valid data) was found to be the ideal threshold for the selection of MODIS
images for calibration. However, the results suggest that the methodology is not very sensi-
tive in terms of cloud coverage. This highlights the fact that the calibration on binary pixel
information is adept in simulating only based on on patches of snow-covered pixels free
from clouds, which further showcases the flexibility of this calibration.

7.2. Sensitivity analysis on the selection of calibration periods

The selection of images for calibration is an important criteria for successful calibration and
resulting impact on parameter transferability. The snow season has a onset phase, which
governs the availability of water stored in the snow-pack in the mountainous and mid-
latitude regions, and the melt phase which determines the timing of availability of water.
It is thus, very pertinent to know which minimal set of images are enough for calibrating
the snow-melt models. The MODIS images for whole season fitting a certain cloud criteria
were selected for baseline simulations. However, to assess the performance of the selec-
tion of calibration images, whole or different periods within the snow season of 2012-13
was carried out to analyse the resulting temporal transferability within the different periods
in the season. For this, the reference model was calibrated against sets of MODIS images
representative of different phases of the snow-season, i.e whole season (September-June for
Switzerland and October – May for BW); snow accumulation period (September – February
for Switzerland and October - February for BW); ablation period (March – June for Switzer-
land and March – May for BW), peak snow month (February for both) and the cloud-free
day with peak amount of snow (February 18 for Switzerland and February 12 for BW). The
thresholds were then considered as defined in the sensitivity analysis in the earlier section
as NDSI threshold: 0.3, cloud threshold%: 10%, SWE threshold: 2.5mm for BW and NDSI
threshold: 0.3, cloud threshold %: 10%, SWE threshold: 0.5 mm for Switzerland). The model
was calibrated with ROPE and 1000 best performing parameter vectors were estimated for
each season for both regions.

These calibrated parameter vectors for each of the calibration periods were then iteratively
compared with the parameters from other periods (’validation parameters’) based on the
concept of convex hull and data depths. The depth of each set of calibrated parameter vec-
tors were iteratively estimated in reference to the convex hull defined by the validation
parameters. The analysis was done to check to what degree, the calibrated set of param-
eters were contained by the convex hull. Higher values of the half space depth indicate a
deeper residence of the reference values inside the hull defined by the validation vectors.
All the parameter vectors whose depths are greater than ’0’ were then divided by the total
number of parameter vectors i.e, 1000 to obtain the proportion of parameter sets contained
by the convex hull. This containment proportion gives a measure of the transferability of
the parameters with higher proportion meaning the calibrated parameters have similar per-
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formance in the validation period as well. The calibrated parameters were validated for
each season to analyze the temporal transferability of the parameter vectors and identify
the calibration period with a ’good’ performance in all the seasons/periods.

Figure 7.2a and 7.2b show the transferablity of the calibrated parameter vectors in different
seasons in terms of the percentage of reference parameter vectors for each period within the
snow season contained by the hull of the validation parameter vectors for BW and Switzer-
land respectively. This transferability of parameters was used to evaluate which period is
suitable for calibration in different snow regimes.

Figure 7.2.: Percentage of calibrated parameter sets contained by the convex hull of the val-
idation parameter vectors

It is evident from the figures that the parameters estimated using the whole season images
impart better validation in both regions, as reflected by the higher containment of the cali-
bration parameters in reference to the validation periods. This is understandably so, because
the whole season images capture the dynamics of snow accumulation and ablation. How-
ever, BW and Switzerland exhibit different results when it comes to period based calibration.
In Switzerland, the melt season calibration offered better temporal transferability as higher
proportion of the parameter vectors estimated with ablation period images were contained
in the convex hull from different reference periods. In contrast, BW exhibits higher trans-
ferability with onset period calibration as the percentage of contained vectors is relatively
higher compared to other calibrated sets. This is further clarified by figures 7.3a and 7.3b
which shows the dispersion of Brier score values in different calibration and validation peri-
ods. These figures clearly show that in BW, the onset season calibrated parameters are well
validated for the peak snow season and the single day event. The parameters estimated
with the melt phase calibration can also be deemed reasonably comparable to onset season
performance. The whole season calibration show better validation in the onset and melt
seasons but the spread of the box plot suggests higher uncertainty towards with peak snow
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month and peak snow day images. In Switzerland, melt season estimated parameters show
a very good validation throughout the seasons or periods considered. The whole season
calibration also performs reasonably well during the validation with comparable results for
almost all the seasons. It can thus be concluded that, based on these results, a more robust
set of parameters were estimated when calibrating the model using the onset period im-
ages for BW and the melt period images for Switzerland. This indicates that for a shorter
duration snow regime like BW, the images available during the accumulation/onset period
can be effectively used for more robust calibration as these regimes exhibit a strong onset
of snow but a more uncertain melt season with lesser availability of snow due to quicker
melt. However, for longer duration of available snow as in Switzerland, the melt season is
well-defined due to which the images towards the end of the season are adequate enough to
simulate the snow accumulation and ablation in the region with higher accuracy and these
calibrated parameters were found to be robust as shown by the spread of Brier-scores in the
validation periods. This calibration approach is thus, flexible enough to utilize the image
available for a certain period of time within the snow season to simulate the snow-cover
distribution with a reliable detail. This indicates that the set of images available towards the
end of the season can simulate the whole snow season very well.

7.3. Validation of the parameter estimation

The validation of the snow-melt model and the calibration, in this study, was carried out
distinctly as regional validation, i.e for Switzerland and BW regions, and validation at the
catchment level. Validation of estimated parameters and the resulting snow-cover distri-
bution on a regional basis, have already been discussed in the earlier chapter where the
calibrated parameters were used to validate the simulated snow-patterns for different sea-
sons using the sets of MODIS images representative of the season as well as on individual
images representing unique isolated events, for both BW and Switzerland. Based on the
performance of the model variants in terms of overall Brier scores and in different elevation
bands, the best performing model variant was used for this analysis. This section deals with
the validation approach at catchment level.

7.3.1. Validation in hydrological modeling

To evaluate the performance of the snow models at a catchment level and subsequently for
the discharge evaluation, five catchments viz. Neckar-Horb and Neckar-Rottweil in BW,
and Reuss-Seedorf, Thur-Andelfingen and Aare-Brienzwiler in Switzerland, were selected.
In addition to the simulated SWEs, the melt models also calculate the distributed melt-water
outputs. Once the snow-melt model performance was adequately validated for each catch-
ments and the parameters were deemed ‘applicable’, the models were run again to obtain
the gridded melt outputs, assuming the model predicted both the snow distribution as well
as the water content adequately. To evaluate and validate the snow-melt exiting the regime
and its resulting impact on the discharge, a hydrological modeling based validation was
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(a) BW

(b) Switzerland

Figure 7.3.: Model performance in different validation periods (a) Switzerland (left plot: val-
idation results for melt season calibrated parameters, right plot: validation re-
sults for whole season calibrated parameters) (b) Baden-Württemberg (left plot:
validation results for onset season calibrated parameters, right plot: validation
results for whole season calibrated parameters); X-axis labels ’calib.’: calibration
performance for the same season, ’valid.’: validation performance using the ref-
erence season parameters
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carried out on a catchment scale using two hydrolgical models, namely the widely used
hydrological model HBV [Bergström, 1995], henceforth termed as ’standard HBV’ and a
modified HBV model which accommodates the the distributed melt outputs from the best
performing snow-routine variant as standalone inputs (from hereon termed as the ’modified
HBV’).

7.3.1.1. Comparison of snow simulation

For the catchment based evaluation, the first stage was to compare the efficacy of the stan-
dalone calibration on MODIS images with the snow-routine of the standard HBV calibrated
on discharge. The reference snow-melt model (Model 6) was calibrated for all five catch-
ments on snow-cover distribution for the winter season through 2010-2015 for BW and 2010-
2018 for Switzerland. ROPE was used to calibrate the catchment models and subsequently
1000 sets of best performing parameter vectors for each catchment were estimated, based on
the overall Brier-scores. Figure 7.4 shows the boxplots of 1000 best parameters for all catch-
ments. The Y-axis has the normalized parameter values based on their min-max range set
for optimization. The parameter ranges were found to be plausible. It is indicative from the
figure that all parameters are relatively stable and less sensitive to the model performance,
except the radiation melt factor rind, TMmax, TMmin and to some extent TS . Since these pa-
rameters directly govern the snow accumulation and melt, they are understandably more
sensitive and prone to be constrained by the objective function.

Figure 7.4.: Model 6 parameter dispersion for different catchments

The simulated snow-cover distribution was then compared with snow-cover distribution
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simulated by the standard HBV’s snow sub-routine as an evaluation of the representation of
the snow snow accumulation and melt processes within. The objective here was to compare
the calibrated snow routine parameters based on images and that from the ones calibrated
on discharge, and to further investigate the possible parameter compensation in the model.
For this, the standard HBV was first calibrated with ROPE and the 1000 best parameter sets
were obtained. From these vectors, a subset of 1000 HBV snow parameter sets was drawn
and then the snow-routine of HBV was run with these parameters and the respective Brier-
scores were obtained. The comparison was done based on the performance of snow-cover
simulation using these two distinct calibrated parameters, in terms of Brier scores.

The violin plots from the figure 7.5 clearly show that the snow-melt model calibrated on im-
ages simulates the snow-cover distribution with better reliability and performance than the
HBV’s snow routine in all catchments, with the median Brier-score values for the snow-melt
models in all catchments significantly lesser than their counterparts. Moreover, the shape of
the violin plots indicate that the Brier-score values for the snow-melt models depict a very
narrow spread in contrast to a much wider spread from the standard HBV snow routine.
This highlights the higher uncertainty pertaining to the simulation of snow accumulation
and melt processes. This further hints that the snow-routine parameters suffer from com-
pensation with other parameters when the standard HBV is calibrated on discharge only.
This parameter compensation has been highlighted in different snow related studies [Ismail
et al., 2020; Parajka and Blöschl, 2008(b); Duethmann et al., 2014; Finger et al., 2015]. This
compensation often leads to unreliable estimation of melt-waters exiting the snow regime,
drawing “right for the wrong reasons” conclusion, even if the calibrated discharge seems
well simulated [Seibert, 2000].

It is to be noted from the figure that the spread of the Brier scores is more pronounced in
the shorter duration snow regimes, viz. Horb and Rottweil for the HBV simulations. The
HBV calibrated on discharge is not able to capture the snow processes well in these BW
catchments, albeit the performance is slightly better in the Swiss catchments which boast a
longer duration of snow. Standalone calibration based on images thus adds value to these
regions in estimating the snow cover distribution and the available melt, as these catchments
have a strong dependence on the melt waters.
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7.3.1.2. Comparison of discharge simulation

After the comparison of the snow routines based on snow-cover distribution simulation,
the melt output from the snow-melt models were also evaluated to analyse if the standalone
calibrated melt brings about improvement in discharge simulations, to look for a snow-
processes informed discharge estimation. For this, the best performing parameter vector
from the snow-melt models for each catchment was used to simulate the distributed melt
outputs exiting the snow-regime, which was in turn, used as an standalone input in the
modified HBV model. Both hydrological models were calibrated on a catchment scale daily
discharge for the period of 2011-2015 for BW and 2011-2018, with 2010 as the warm-up
year. Nash-Sutcliffe Efficiency (Eq.7.1) was used to evaluate the performance of discharge
simulations, where the simulated and observed variables refer to modelled and observed
discharge at time t.

NSE = 1−
∑T

t=1

(
Y t
o − Y t

m

)2∑T
t=1

(
Y t
o − Ȳ T

o

)2 (7.1)

Where,
Y t

m = Simulated variable at time t,
Y t

o = Observed variable at time t,
Ȳ T

o = mean of observed variable for the time period T,
T = length of time series,

The melt outputs were evaluated as a comparison of two different simulated discharge se-
ries for the winter periods based on their NSE values. 1000 best NSEs were obtained with
ROPE calibration. Due to the reduced number of parameters required for calibration for
the modified variant of HBV, the calibration was done in three ROPE iterations whereas the
calibration of the standard HBV was done with five iterations of ROPE. The results of the
calibration are shown in table 7.1 and figure 7.7.

Table 7.1.: Comparison of HBV and Modified HBV NSE performance

HBV NSEs Modified HBV NSEs
Min Max Median Min Max Median

Rottweil 0.595 0.672 0.609 0.663 0.724 0.676
Horb 0.653 0.700 0.663 0.738 0.821 0.755
Aare 0.395 0.566 0.424 0.658 0.678 0.663
Reuss 0.635 0.779 0.656 0.781 0.796 0.785
Thur 0.702 0.768 0.712 0.731 0.776 0.739

The results clearly suggest that the modified HBV well outperforms the standard HBV sim-
ulations. The addition of melt significantly improves the hydrological model performance
in each of the catchments, notably the most in the snow dominated ones in Reuss and Aare.
The median NSEs are improved throughout the catchments in the study domain. The spread
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of NSEs as indicated by the violin plots is also smaller with the modified HBV. Due to the re-
duced parameter space in the case of the modified variant, the hull containing the equifinal
parameter vectors is smaller as compared to the ones representing the calibrated standard
HBV parameters. This attributes to the uncertainty reduction in the simulation as depicted
by the narrower spread of the NSEs. The results thus indicate towards a well-informed
discharge simulation with the improvement in model performance coming with a better
computational efficiency and a better simulation of the snow accumulation and melt. As an
illustration of the winter flow simulation, figures 7.6a and 7.6b show the case of an isolated
hydrological simulation in Horb catchment for the winter of 2012-13. The figures show that
the melt input adds value to the discharge simulation during the season quite efficiently
as compared to its HBV counterpart. The 1000 best hydrographs envelope the observed
discharge better than the HBV model indicating a better representation of the snow-melt
process.

(a) Standard HBV simulation

(b) Modified HBV simulation

Figure 7.6.: Simulated hydrographs for the 2012-13 winter in Horb
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It is to be clarified that this study’s objective is not to assess the model performance of HBV
and its predictions but rather to evaluate the performance of the melt outputs of snow-melt
models calibrated on snow-cover distribution in a basic hydrological model. Also, it is im-
portant to note that though Aare and Reuss catchments are glaciated, the glacial-melt was
not taken into account. This was intentionally not included in the simulation because of the
MODIS’ limitation to identify the glaciers [Muhammad and Thapa, 2020] and to avoid fur-
ther parameterization of the hydrological model by including glacier component. Since, the
objective was to evaluate the snow-melt model calibration and the implication of standalone
melt inputs, both hydrological models were calibrated on equal terms with similar approach
with results comparable to each other. With the standalone melt, the NSE performance of
the hydrological models were improved. The value of adding snow cover in hydrological
context has been highlighted by different studies. Parajka and Blöschl [2008(b)] pointed out
that the median runoff model efficiency was improved with MODIS data incorporated in a
multi-variable weighted calibration in comaparison to discharge based calibration. Bennett
et al. [2019] also found that in their study, the inclusion of MODIS fSCA improved the in-
ternal snow timings and the hydrological simulations. Finger et al. [2011] also concluded
that the models combining discharge and snow cover data showed the better discharge per-
formance in comparison to other combinations used. Similar finding was put forward by
Corbari et al. [2009] in which they concluded that the calibration of a hydrological model
solely based on SCA showed a better performance in terms of discharge simulation. The
results in this thesis are in line with these studies, thereby adding value to the importance
of MODIS data in snow and hydrological modeling context.

7.3.2. Discussion on model uncertainty

One of the well known problems in hydrological modeling is the model complexity and the
accuracy of the estimated parameters of the models. The complex models go into the de-
tails of sub-processes thereby demanding an intensive set of data to drive them. As snow
is one of the major components of the hydrological cycle, it is imperative to have an exten-
sive set of data to run the complex hydrological models. The rugged topography and the
high spatial variability of the factors associated with snow processes such as the land cover,
radiation, aspect, etc add more complexity to the snow simulation as they impart a high spa-
tial and temporal variability in both accumulation and ablation processes. This poses a big
question over the representativeness and accuracy of the in-situ observations [Clark et al.,
2011]. Coupled with this, conceptual models which are the simplistic representations of the
complex processes and their drivers are under constant scrutiny over the accuracy of the
parameters estimated during calibration. Wagner et al. [2009] argues that due to the limited
number of observations driving the models, different model structures and the estimated
parameter sets may explain the observations equally well. Due to this well known problem
of equifinality [Beven, 2001], only a set of acceptable model parameters can be assessed. A
targeted inclusion of a specific additional information in the models can then lead to a re-
duction in the acceptable model parameter space, which in turn will lead to the reduction in
uncertainty.

In the case of simulation of snow processes, the parameters associated with a hydrological
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model can then be split into two distinct sets of parameters, namely the parameters driv-
ing the snow accumulation and ablation processes θs and the parameter governing other
processes (θm). With an independent calibration of the snow related parameters thetas ir-
respective of the parameters θm, then a parameter set of Ms can be obtained. However,
the equifinality can occur here as well with the snow-model calibration, albeit the equifinal
parameter space becomes smaller. Then for each parameter vector θs ∈ Ms, the hydrolog-
ical model parameters θm can be calibrated leading to a set of other parameters, say Mm.
With this we can obtain a well performing parameter set Msm = Ms × Mm. However, if
the parameters of the model θm are estimated such that the model quality is the same as for
calibrating the parameters (θs, θm) jointly (without using snow observations) obtaining the
parameter set M , then the parameter set Msm = Ms × Mm ⊂ M . This is because all pa-
rameter combinations in Msm could also be obtained from the traditional discharge based
model calibration. However the important thing to consider here is that the set M might
succumb to parameter compensations, that can lead to unreasonable snow parameters θs
which are not acceptable for the snow model evaluation. Due to this, the standalone model
calibration of the conceptual model may not lead to a better model performance, but instead
can reduce uncertainty. On the other hand, the separate calibration of the hydrological and
the snow-melt models allows the user to include more relevant parameters into the snow
model, as it won’t add complexity to the entire hydrological model. If the snow routine is
calibrated together with the hydrological model, the increase in parameter space would then
lead to a much more complex and uncertain calibration procedure with possible parameter
compensation which have been well highlighted by the results.

For the evaluation of the uncertainties in simulation of snow accumulation and melt pro-
cesses, the simulated snow-cover distribution based on snow-melt models calibrated on
MODIS snow-cover and the snow-cover distribution simulated by the snow-routine of the
standard HBV calibrated on discharge, were compared. The results show that indepen-
dently calibrated snow parameter set θs provide a more reliable simulation of the snow-
processes. As observed with the reduced spread of the violin plots in figure 7.5, the uncer-
tainty related to snow processes simulation is greatly reduced with the snow-cover based
calibration. A subsequent reduction in model uncertainties in terms of hydrological dis-
charge prediction was also observed with the inclusion of melt inputs as shown by the re-
sults. The parameter set θm reduces to θm′ when the truncated hydrological model with
standalone melt inputs are used. This reduced parameter space, in addition to the snow-
processes informed input, also allows a subsequent reduction in modeling uncertainties as
the equifinal set of calibrated parameters becomes smaller. This comes with better compu-
tational efficiency as it takes lesser time to calibrate a model with reduced parameterization.
This improvement in model performance can be attributed to ’a right reason’ with a better
representation of the underlying snow processes. Finger et al. [2015] have also discussed
that additional calibration data add more value to the modeling than more complex and
sophisticated parameterization of the processes. Due to the standalone nature of the cal-
ibration, incorporation of additional parameters in the independent snow-melt models to
better represent the snow dynamics is possible which in contrast would have added further
uncertainty during the calibration of the hydrological model with additional parameters. Di
Marco et al. [2021] also concluded that a combination of MODIS fractional snow-cover area
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and streamflow data led to a reduction of predictive uncertainty of a hydrological model
thereby leading to sharper and reliable flow simulations. The approach of calibration at
pixel level based on binary information allows relatively complex snowmelt modules to be
calibrated with more robustness, as the uncertainty associated with calibration data is signif-
icantly reduced. This is often the case with calibration based on snow depth or snow water
equivalent, as these data are prone to inaccuracies and to be severely under-representative
in most of the mountainous areas around the world. In addition, calibrating on ’1’ and ’0’,
instead of a continuous values, allows the snow-melt model calibration to converge faster
thereby gaining computational efficiency. A dedicated snow-melt model thus allows this,
as it is relatively quicker to calibrate on the images and the resulting melt can be used in
the hydrological models for efficient calibration with reduced uncertainties. The calibrated
discharge, even if it is similar to that calibrated by the a hydrological model, is considered
to be good as it simulates the snow processes reliably and is for a right reason.

With these results, it can be concluded that the presented approach of estimating the snow
model parameters using readily available MODIS images, offers adequate flexibility, albeit
the simplicity, to calibrate snow cover distribution in different snow regimes with reason-
ably accurate precipitation and temperature data. The use of a standalone snow-melt model
was observed to provide a relatively more stable and reliable simulation of the snow-cover
distribution and the subsequent melt volumes. Furthermore, this independent calibration
can prove crucial for episodic snow days in the winter season in areas with lesser snow
while calibrating a hydrological model, as the snow routine can be efficiently calibrated with
MODIS information, without having to calibrate the whole hydrological model. This can
save computational time as this independent calibration permits flexibility on these episodic
days and the results can be passed through the hydrological model as standalone inputs.



8. Practical extension of the approach

The earlier chapters established the validity of the calibration methodology adopted in this
study. Based on this, the practical implementation of the snow-cover based calibration was
further explored. This chapter deals with two case studies, (i) extension of this approach
in a data scarce scenario, and (ii) an implementation of MODIS based model inversion to
calculate the seasonal snow accumulation.

8.1. Application in a data scarce scenario

To test the extension of the study hypothesis to a data scarce scenario, a case study was done
in the Bavaria region of south-east Germany. The Bavaria region, with an area of around
70,548 km2 is the largest German state with elevations ranging from 106 to 2962 m.a.s.l.
The Bavarian region is constituted by the high plateaus and mid-sized mountains with the
German part of the Alps lining the southern border with Austria. The Bavarian Alps are
lower than the regional climatic snow line or 3200 m.a.s.l reaching the highest elevation of
2962 m.a.s.l at Zugspitze. Figure 8.1 shows the map of Bavaria with the topography of the
region. The region is drained by Main River in the north and Danube river through the
center.

The entire region of Bavaria was used for simulating the snow-cover data incorporating both
the relatively longer duration snow conditions in the Alps in the south and short duration
snow conditions for the rest of the study area. Likewise, for the validation of the snow-cover
simulation in hydrological model, two catchments namely, Isar at Plattling and Amper at
Stegen were chosen.

8.2. Data used

The following driving datasets were used in this component of the study:

8.2.1. Meteorological inputs

Though the Bavarian region of Germany has a well-distributed network of observational
stations, the observation data was not used in the study in order to mimic a data scarce
scenario. Furthermore, it was deemed a pertinent part of the research, to evaluate the
methodological approach with a ’reasonably’ accurate meteorological data. For this, the
interpolated daily gridded climate dataset, called the European Observations (E-OBS) was
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Figure 8.1.: Bavaria region as the study domain in south eastern Germany with selected
catchments
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considered in this study. The data is a product of the interpolation of 7852 weather stations
from the European Climate Assessment and Dataset (ECA&D) project [Haylock et al., 2008].
The used data is on a 0.25◦ resolution which roughly translates to a spatial resolution of
30×30 km and is available on a daily scale. The variables obtained for the E-OBS data were
daily precipitation, and min., max. and mean temperature data for a period of 2011 till 2019.

In addition to these data, the WorldClim (WClim) climate surfaces were also used for down-
scaling the coarser E-OBS data into a more MODIS friendly resolution. WorldClim [Hijmans
et al., 2005] provides a set of climate surfaces as the long-term average of different climatic
variables such as minimum and maximum temperature, precipitation, and 19 derived bio-
climatic variables at a global scale. The spatial resolution of these data is 0.0083◦ (roughly
around 1000x1000m). For each variable, each pixel consists of 12 monthly values. In this
study only the precipitation surfaces and min., max., and mean temperatures were em-
ployed. The WorldClim data is developed with a thin-plate smoothing spline method from
Hutchinson [1995], and is calculated based on data from 47554 weather stations around the
world. For the interpolation, the DEMs from SRTM and GTOPO30 from the United States
Geological Survey (USGS) [Moreno and Hasenauer, 2016] are used in the WClim methodol-
ogy.

8.2.2. Spatial downscaling of E-OBS data

A downscaling methodology was carried out to bring the coarse resolution E-OBS data to a
finer 1000×1000m resolution using the WClim surfaces to estimate the required daily precip-
itation and temperature data. The spatial downscaling was adopted and slightly modified
from Moreno and Hasenauer [2016]. The spatial delta method was combined with a Or-
dinary Kriging of the anomalies. Moreno and Hasenauer [2016] used the monotone cubic
interpolation to interpolate the residuals. The general methodology of the downscaling is
shown in figure 8.2. Following steps were carried out for the downscaling procedure:
Step 1: The first step upscales the WClim monthly data to the E-OBS resolution of 30x30km

by averaging the 1x1km WClim pixels contained within the E-OBS pixels.
Step 2: The anomalies were calucated between the upscaled monthly WClim pixels and the

daily E-OBS pixels for both temperature and precipitation, to obtain daily anomalies based
on monthly long-term means. To temperature anomalies were calculated as the differences
between the cell values of upscaled WClim and E-OBS temperature data (Eq.8.1).

dT = WC30 − EOBS (8.1)

To avoid the negative precipitation values, for precipitation a ratio of E-OBS data to WClim
monthly upscaled estimates was considered as an anomaly.

dP =
EOBS

WC30
(8.2)

where, EOBS and WC30 are the 30x30 km daily E-OBS and upscaled WClim data, and dT

and dP respectively are the temperature and precipitation anomalies.
Step 3: This step calculates the daily variograms of the anomalies. Ordinary kriging was
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then applied using these variograms to interpolate the anomalies to a finer 1 x 1km pixel.
For this, 4 immediate neighbors from the 30x30km resolution surrounding the 1 x 1km res-
olution pixel were selected.

Step 4: The final step then calculates the downscaled value at each finer pixel using the
original WClim data and the interpolated anomalies. The final downscaled values were
calculated as

T1km = WCT − dTanom (8.3)

P1km = WCP × dPanom (8.4)

where, T1km and P1km are the downscaled temperature and precipitation; dTanom and
dPanom are the interpolated temperature and precipitation anomalies from step 3; and WCT

and WCP are the original WClim temperature and precipitation data.

8.2.3. Results and discussion

Downscaling results

The downscaled precipitation and temperature data were compared and analyzed against
the interpolated surfaces of station-based precipitation and temperature data estimated by
kriging, assuming the interpolated data as the reference observed baseline. Figures 8.3 (a)
and (b) show the winter RMSEs for temperature and precipitation respectively, calculated
against the observed kriged data.

The results show that based on the winter RMSEs, the downscaling results are acceptable,
given the coarse resolution global dataset considered for this analysis. Very few pixels report
RMSE values greater than 2◦C for temperature, with a mean value of 0.46 ◦C. Elevation-
based scrutiny shows that the elevation zones around 1000 m.a.s.l show higher RMSEs for
both temperature and precipitation. RMSEs less than 5mm were predominantly observed
with the downscaling approach which was assumed to be reasonably accurate enough for
snow-cover simulation. The mean RMSE for winter precipitation was found to be 2.64mm.

Likewise, figures 8.4 (a) abnd (b) respectively show the spatial distribution of mean daily
temperature differences and differences in mean winter precipitation sums for the time pe-
riod considered in the study. The results indicate that the temperature downscaling works
adequately except for some pixels in the southern high elevation region. The maximum
pixel by pixel basis difference is around 5.5 ◦C and the minimum is around -2.4 ◦C.However,
for precipitation, the winter precipitation sums in the mountains is underestimated by
around 200mm and in few pixels by 400-500 mm. The north-eastern part shows an overes-
timation by around 200mm after downscaling. The spatially averaged mean error remains
at around 30mm for the entire region. This highlights the need to further explore and refine
downscaling techniques other than the simplistic spatial delta methodology in the future
research but given the resolution of the E-OBS data and the WClim climate surfaces used
as the predictor variable, the results were considered to be reasonably adequate enough to
mimic a data scarce scenario.
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Figure 8.2.: Spatial downscaling of meteorological data (modified from Moreno and Hase-
nauer [2016])

Snow-melt model results

With Model 5 as the reference model to avoid additional parameterization with radiation
data, the inputs were prepared on a 1x1km resolution. The SRTM derived elevation infor-
mation as well as the MODIS snow-cover data were also resampled to 1000m resolution by
averaging the elevation and the NDSI values. The snow-cover data was then classified into
snow or no-snow covered values using a NDSI threshold of 0.4. Once the model inputs
were setup, the reference model was run for the winter periods of 2016-2018. The best over-
all Brier score value for the calibration period was observed to be 0.0136 for Isar and 0.0286
for Amper among the 1000 best values obtained from ROPE calibration. The Brier score
values as well as their dispersion are very low as depicted by the ranges in table 8.1. This
shows a very reliable simulation of the MODIS snow-cover distribution even when using
a simplistically downscaled global dataset. Likewise the parameter dispersion in figure 8.5
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(a) Mean temperature

(b) Precipitation

Figure 8.3.: Winter RMSEs estimated for downscaled variable with respect to the interpo-
lated observed data; left panel: spatial distribution of winter RMSEs, right panel:
histogram showing frequency of pixels and elevation with RMSEs >2◦C for tem-
perature and RMSEs >5mm for precipitation
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(a) Mean temperature differences for winter (b) Differences in winter precipitation sums

Figure 8.4.: Mean differences for winter season calculated at pixel level for the period of
2015-2018

suggests that the parameters are within plausible ranges and are more or less stable, with-
out much outliers. As in the case with Isar catchment (not shown here), the precipitation
threshold triggering the rain on snow melt (Pcpth) and the power factor governing the dis-
tribution of the snow-melt temperature (PF ) are more or less insensitive and are prone to
more fluctuations during calibration. Rest of the parameters exhibit relative stability.

Table 8.1.: Snow-melt model performance (Brier scores) in Amper and Isar

Min. Max. Median
Amper 0.0286 0.029 0.0289
Isar 0.0136 0.0138 0.137

Hydrological modeling results

Likewise, the best parameter vector for each catchment was then used for a period of 2016-
2018 to estimate the melt output from the calibrated model. The melt output was used as
standalone input to the modified HBV model. The standard HBV model was also calibrated
on discharge for both catchments for a period of 2015-2018 with 2015 as the warmp up year.
The corresponding best performing NSEs were estimated by calibration and compared as
shown in table 8.2.

It can be inferred from the figures, that the calibration on snow-cover distribution and the
resulting melt improved the hydrological simulations to some extent in both overall and
winter periods (October to April) in both catchments. The results suggest that as long as the
models are run and calibrated on equal grounds, here the downscaled precipitation and tem-
perature, the calibration on snow-cover distribution can bring about improved hydrological
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Figure 8.5.: Simulated parameter ranges for Amper catchment (based on 1000 best parame-
ter vectors from ROPE

Table 8.2.: NSE performance for HBV and modified HBV in different periods; the bolded
text shows the better performance of the model.

Catchments Period HBV Modified HBV
Amper Winter 0.72 0.722

Overall 0.566 0.579
Isar Winter 0.733 0.754

Overall 0.593 0.627

predictions in the catchments. Despite a modest increase in the NSE values, the improve-
ment can be again deemed for a right reason and with a reduced uncertainty pertaining to
the snow processes simulation. This extension to data scarce region was envisaged to as-
sess whether a reasonably accurate model forcing could drive the calibration methodology
and in turn impart improved hydrological predictions. This can be a very valuable tool
in the data scarce mountainous catchments where using MODIS and freely available global
datasets with established regionalized parameters can allow decision makers to estimate the
availability of snow and the resulting melt waters in the regime. However, the regionaliza-
tion of parameters must be studied in more detail in future studies so that this methodology
can be extended to different areas.



8.3 Model inversion 95

8.3. Model inversion

The snow cover is one of the key components of the hydrology in snow-dominated regimes,
where the evolution of snow cover governs the amounts and timings of the water available
for the downstream areas. The mountainous areas have a very significant dependence on
the spatio-temporal availability of the runoffs triggered by the snow ablation process. This
available water is not only the source for water supply and ecosystem, but also a very impor-
tant variable governing the water resources trajectories in the regions such as hydropower
systems as well as the occurrences of natural hazards such as floods and avalanches [Viviroli
et al., 2011; Largeron et al., 2020]. Monitoring and forecasting the evolution of snow-cover
is thus very important and is challenging at the same time owing to the strong variability in
snow characteristics and the subsequent less observational network. Remote sensing based
snow cover monitoring approaches to some extent provide some overview on the seasonal
snow evolution. The importance and applicability of the snow-cover products such as the
MODIS have been already established and discussed in detail in this study. However, in
addition to the distribution of snow, the depletion pattern of the snow-cover also hold a
crucial proxy information on the available accumulated SWE in the mountainous regimes.
This accumulated SWE can be translated to total discharge volume during the snowmelt
season [Rango and Itten, 1976]. The accurate estimates of the SWE have been one of the
unsolved problems in mountain hydrology. Operational models often lack the accuracy in
estimating the water coming in from snowmelt due to high uncertainties [Bair et al., 2013].
The scarce and sparse observational networks also render it practically impossible to deter-
mine the areal distribution of available water stored in the snow cover [Martinec and Rango,
1981]. With the snow-cover depletion information coming in from the snow-cover images,
it is however, possible to retroactively estimate the SWE values at a reasonable spatial de-
tail by incorporating the SCA and a snow-melt model. This reconstruction has been used
by Molotch [2009] in the Rocky mountains and in Sierra Nevada by Rittger et al. [2016].
This approach has crucial advantage in the mountainous areas, where the extensive obser-
vations are not available. Raleigh and Lundquist [2012] have highlighted the importance
of this reconstrution of SWEs with model inversion as the better approach compared to
forward based modeling for SWE estimation in areas with highly uncertain precipitation.
The amount of snow melted at a reference point when the snow fully disappears can be
estimated with a reliable spatial temperature interpolation and the estimation of melting
degree-days. This inversion approach can be used to improve the areal SWE estimates dur-
ing the ablation period, correct the winter precipitation as well as can be utilized to forecast
the spring discharge [Martinec and Rango, 1981]. With this backdrop, in this study, a MODIS
snow-cover based inversion was tested based on the Model 6 with radiation component as
the basis, utilizing minimal meteorological inputs, i.e. only temperature and radiation data
were used as the drivers. Switzerland was selected as the study area mainly because of
the diverse distribution of topography and a dense network of temperature measurements
which allows a more reliable interpolation.



96 Practical extension of the approach

8.3.1. The concept

This technique, first implemented by Martinec and Rango [1981], utilizes the satellite-
derived snow-cover depletion as an information on melt rates to retroactively estimate the
availability of snow at different spatial scales. For this inversion (widely known as recon-
struction of SWE), the SWE S(N,x) at a point x at day N is calculated as:

S(N,x) = S(0,x) −
N∑
j=1

M(j,x) (8.5)

where, S(0,x) is the maximum snow water equivalent before the melt initiation and M(j,x) is
the melt at any time j. N is the number of days during the melt. M(j,x) continues through j

till N and is calculated as:

M(j,x) = MP (j,x) × fsca(j,x) (8.6)

where MP (j,x) is the maximum potential melt induced by temperature and radiation, and
widely adopted from the restricted degree day model of Kustas et al. [1994] which is shown
below in Eq.8.7.

MP (j,x) = mq ·Rd +Br · Td (8.7)

where, mq is the factor controlling the radiation induced melt, Rd is the mean daily net ra-
diation, Br is the degree day melt factor and Td is the average daily air temperatures greater
than 0◦C. Usually, Td is considered to be 0 if the air temperature is below 0. This is the under-
lying assumption in the reconstruction approach that once the snow-cover depletion starts,
all the accumulation occurring during the ablation period are considered traces without ac-
cumulating to the snowpack and thereby neglected. Furthermore, the evaporation from and
condensation on the snowpack are also neglected in the mountainous basins.

8.3.2. Methodology and Data

The motivation for this case study was to evaluate the estimation of accumulated snow pre-
cipitation in Switzerland using the minimal and freely available RS data inputs to allow
for the extension to different ungauged mountainous basins around the world. Earlier re-
construction approaches are carried out in elevation zones without taking the forest canopy
effect into consideration. However, in mountainous terrain, the effect of canopy cover is a
very critical aspect as the forest cover can impart significant differences in the accumulated
SWEs than from the open areas, mainly attributed to (a) the canopy interception of snow
reduces the snow accumulation on ground, and (b) the canopy also limits the incident so-
lar radiation [Jenicek et al., 2018]. The latter part is more important during the melt season
which delays the melt in the forested areas. To incorporate this uneven distribution of snow,
this study utilized a semi-distributed approach in which the whole region of Switzerland
was divided into Hydrologic Response Unit (HRU) which are spatial units depicting unique
combinations of elevation zones and land cover types, as shown in table 8.3. Each pixel in
the study domain was classified based on landcover classes and elevation zones and later
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combined to establish 27 HRUs in Switzerland. Figure 8.6 shows the spatial distribution of
the HRUs in Switzerland. The MODIS landcover data was utilized to classify the landcover
classes along with elevation data to demarcate the HRUs in the study.

The major input for this inversion approach was only the interpolated daily mean tem-
peratures. Daily potential radiation was calculated from DEMs as explained in the earlier
sections. In addition to this, MODIS snow cover images were also incorporated to define the
snow cover depletion curves at hydrologic response unit (HRU) levels. The MODIS cloud-
Gap filled snow-cover product MOD10A1F (Terra) was opted for in this case as the they are
considered to be more accurate than other MODIS snow-cover products [Hall et al., 2019].
Furthermore, the Terra and Aqua combined MODIS Land Cover Type (MCD12Q1) Version
6 [Friedl and Sulla-Menashe, 2015] was considered for the year of 2017-18 for the catego-
rization of the study area into different HRUs. The classification system selected for the
landcover data was Food and Agriculture Organization - Land Cover Classification System
(FAO-LCCS 2). The elevation data was as before from resampled SRTM data. Moreover,
the MOD44B MODIS/Terra Vegetation Continuous Fields which includes pixel wise for-
est cover fraction, and vegetation and non-vegetation cover fractions [DiMiceli et al., 2022],
was also incorporated in the study for the evaluation of the effect of tree cover, in the study.
All the inputs including temperature, solar radiation, MODIS snow-cover and forest cover
proportions were then lumped to each HRU based on their averages.

8.3.2.1. MODIS based snow cover depletion curves

For the identification of the snow depletion curves, MODIS NDSI data was preprocessed to
obtain the fractional SCA for each pixel. A NDSI threshold based approach was employed
for the data preprocessing. The threshold was assumed to be 0.4, as established by earlier
results, and was used to demarcate the snow contained in each pixel. The unforested pixels
with NDSI values less than the threshold were assumed to be snow-free and the values
higher than 0.4 were classified as snow pixels. For the forested pixels, a threshold of 0.1 for
pixels with forest cover more than 25% was used assuming the underestimation of snow
under forest canopy by MODIS. The average NDSI values at each HRU was assumed to be
the fractional snow-covered area (fSCA) as the NDSI pixel values higher than the assumed
thresholds are often comparable to the fraction of snow available at the pixel level [Hall et al.,

Table 8.3.: Classification of elevation and land cover units in Switzerland

Elevation zones Z class Landcover LC class
<500 Z 1 Barren land LC 1

500 - 1000 Z 2 Water/Ice LC 2
1000 - 1500 Z 3 Forest LC 3
1500 - 2500 Z 4 Cropland/Shrubland LC 4
2500 - 3500 Z 5 Urban LC 5

<3500 Z 6
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Figure 8.6.: Spatial distribution of HRUs in Switzerland; LC refers to the land cover class
and Z refers to the elevation zones

2019]. Based on this, the snow-depletion curves were identified for each HRU. The HRU
LC5 − Z6, i.e urban area in elevation zone Z6 was not included in this study because the
variation of snow, judging by the SCA curves, is nominal owing to the alpine characteristics
and also due to very low areal coverage.

The most critical information for the inversion approach is the identification of the melt
onset and snow disappearance dates. The model retrospectively calculates the melt from
the day of snow disappearance, going backwards till the maximum accumulation point in
time, when the melt onset starts. For this, the snow depletion curve for each HRU was
manually inspected to identify the onset and melt dates. Figure 8.7 shows the illustration of
the snow depletion curves for the elevation zone 4 for different HRUs.

8.3.2.2. Maximum potential melt

With the semi-distributed basis, this methodology modifies the maximum potential melt
from Eq.8.7 based on vegetation cover fraction to incorporate the impact of forest canopy
cover. The maximum potential melt, MP (j,x) was modified for a HRU, x as shown in Eq.8.8.
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MP (j,x) =


(
mfx + (1− alb) · rind ·RD(j,x)

)
·
(
Tav(j,x) − T(M,x)

)
if Tav(j,x) ≥ T(M,x)(

mfx + (1− alb) · rind ·RD(j,x)

)
·
(
Tav(j,x) − T(S,x)

)
if T(S,x) ≤ Tav(j,x) < T(M,x)

−refrx ·
(
Tav (j, x)− T(S,x)

)
if Tav(j,x) < T(S,x)

(8.8)

where,

mfx is the melt factor for an HRU x that governs the melt and is differentiated based
on forest cover fraction as shown in Eq.8.9.

mfx =


afx · (1− treefrac,x) + bfx · treefrac,x if LC = 3 and treefrac,x ≥ 0.25

afx · (1− treefrac,x) + bfx · treefrac,x if LC ̸= 3 and treefrac,x ≥ 0.4

afx · (1 + cfac,x) else
(8.9)

afx and bfx are the melt factors for non-tree and tree cover in the HRU x,

treefrac,x is the proportion of tree cover in the HRU x,

LC is the land cover class. LC = 3 refers to an HRU x marked as forest cover,

cfac,x is a factor for non-forested HRU x.

refr is the refreeze coefficient if the air temperature was below the snowfall tempera-
ture which allows the SWE to be refrozen into the pack.

The assumed actual melt for the time-step j, M(j,x) is calculated as in Eq.8.10 and the corre-
sponding SWE, S(j,x) is estimated from Eq.8.11.

M(j,x) = min
(
Sj−1,x,MP (j,x) × fsca(j,x)

)
(8.10)

S(j,x) = max
(
0, S(j−1,x) −M(j,x)

)
(8.11)

where, S(j−1,x) is the availble SWE from the earlier time-step and fsca(j,x) is the fractional
snow covered area at x in time j.

8.3.2.3. Calibration

The calibration was done with ROPE for each HRU, to optimize the initial SWE till the SWE
depletion matches the snow curve depletion pattern at the end of the season when snow
fully disappears. The parameters to be calibrated were the initial snow water content, the
melt factors af and bf , the refreezing coefficient refr, threshold temperatures for snowfall
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and snowmelt TS and TM respectively, and the radiation factors rind and albedo alb. The ob-
jective function used for the calibration was the Pearson correlation calculated as in Eq.8.12.
It allows the comparison of patterns between two variables.

r =

∑(
X − X̄

)
·
(
Y − Ȳ

)√[∑(
X − X̄

)2 ·∑(
Y − Ȳ

)2 ] (8.12)

where, X and Y are the fractional snow covered area and the simulated SWE timeseries for
the ablation limb in this case, and X̄ and Ȳ are the mean values for X and Y .

8.3.3. Results

The snow-melt model was setup for the winter season of 2017-18. The Snow Depletion
Curve (SDC)s were identified for each HRU class. As an illustration, the SDCs for differ-
ent HRUs in elevation zone Z4 are shown in figure 8.7. It is evident from the figure that
the snow-cover remains in the HRUs related to snow/water landcover class (LC = 2) and
barren land (LC = 1) for a longer duration. The urban HRUs (LC = 1) depict the quicker
depletion within a month from the onset of melt in April. The urban areas are known to be
acting as a heat sink that triggers a faster melting. The HRUs with forest cover (LC = 3) also
show lesser duration of snow-cover with a delayed depletion than the urban class. How-
ever, this could relate to the limitation of the RS approach in identifying the snow present
under the canopy. Due to this, the forest related HRUs were further scrutinized with addi-
tional parameterization using tree proportion in the study. Any snow-precipitation after the
onset of melt was considered transient and thus neglected.

Once the SDCs were identified and the inputs were lumped to the HRU level, the snow-
melt model was run to retrospectively calculate the accumulated snow precipitation prior
to the onset of melt. Figure 8.8 shows the estimated snow-precipitation in the season in
different HRUs against the observed solid precipitation, prior to the onset of melt. It can be
inferred from the figure that the median values in the box plot are very close to the observed
accumulation (denoted by ’∗’) and are contained by the box-plot of 1000 best parameter
estimates from ROPE, except in few HRUs. The results show reasonable accuracy given that
the input was just the mean temperature and the SDCs.

Furthermore, the simulated depletion of SWE (with best objective function values) com-
pared against the SDCs for selected HRUs for higher elevation zones is shown in figure 8.9.
The figures suggest that the simulation does well in mimicking the snow-cover depletion in
most of the HRUs. Large discrepancies were observed in few HRUs such as the LC1 Z5,
LC2 Z4, LC4 Z5 and LC4 Z4. No clear trend of simulation errors was observed with these
anomalous results, though elevation zone 4 showed similar discrepancies in the barren land
and water/ice landcover classes, with a rapid onset of melt simulated in these areas. In the
forested HRUs, the SWE depletion and the SCF depletion follow similar trends in the higher
elevation areas. Erroneous predictions are observed with the cultivated/shrubland HRUs
where the model does not capture the depletion trends with good accuracy.

Given the uncertainties in the precipitation observations from under-catch in the higher el-
evations owing to wind displacement, canopy interception and the inadequate accuracy of
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Figure 8.7.: Snow-cover evolution for the winter season of 2017-18 for different HRUs; the
red bounding box shows the depletion curves considered in the study

temperature interpolation, the results were considered to be satisfactory as it can add a cru-
cial value to mountainous regions with the maximum snow-accumulation approximated us-
ing freely available MODIS data and temperature inputs. However, as a future outlook, this
presented methodology though promising, requires further polishing and more research
in identifying pixel wise maximum accumulation and the resulting contribution to spring
discharge which is a very pertinent information to water resources projects, especially for
hydropower generation purposes.
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Figure 8.9.: Depletion curves for simulated SWE and MODIS based SCA for selected HRUs

8.3.4. Extension using RS based Land Surface Temperature (LST)

Due to very sparse network of meteorological stations in most of the mountainous regions
around the world, it is very imperative to find the alternatives to station measurement to
estimate the snow-cover with a reasonable accuracy. The presented approach of reconstruc-
tion requires temperature data at minimum, to allow the calculation of the melting degree
days even with the simplest of the models being employed. With the advancement of the
satellite based products, there have been a global coverage of critical land surface param-
eters such as surface temperature and vegetation indices, etc. Owing to this reason, this
study further attempted to implement the skin temperatures, also known as Land Surface
Temperature (LST), in snow-melt modeling to evaluate the efficacy of these data for mod-
eling purpose. The LST measures the thermal radiance emission from the land surface and
offers a unique perspective on land surface energy balances as it can be considered a very
pertinent proxy for the energy partitioning at the land surface and atmosphere boundary



104 Practical extension of the approach

[Hulley et al., 2019] and are retrieved from space-based Thermal Infrared (TIR) data. How-
ever, the vegetation cover and spatially changing surface conditions render this variable
sensitive in terms of temperature distribution. The LST have a very wide applicability in
terms of assessing the temperatures of the surface cover such as canopy temperatures, soil
top layer temperatures, snow-cover temperatures and so on in spatial resolution ranging
from leaf to landscape level. This environmental variable gives crucial information about
the redistribution of the energy into latent and sensible heat fluxes and is a very prominent
actor in processes related to surface energy distribution and water balances [Li et al., 2013]
measuring the thermal heterogeneity of the earth surface [Jin and Dickinson, 2010]. Increas-
ing number of studies have highlighted the importance of LSTs in ecological context such as
land cover classification in combination with vegetation indices [Lambin and Ehrlich, 1995;
Nemani and Running, 1989], land cover dynamics monitoring [Julien and Sobrino, 2009],
as a indicator for soil moisture for monitoring droughts [Anderson et al., 2007; Wan et al.,
2004], and so on.

Due to the redistribution properties in the form of heat fluxes, the LST is considered one
of the most important variables describing the diurnal variation of air temperatures. The
relationship between air temperature and LSTs has been explored in numerous studies.Fu
et al. [2011] estimated the daily minimum air temperature with reasonable accuracies (1.78
- 2.77 ◦C RMSE) in an alpine meadow on the northern Tibetan Plateau using a linear re-
lationship between MODIS LST and maximum observed temperature. Hengl et al. [2012]
simulated the air temperature as a function of latitude, longitude, distance from the sea, ele-
vation, time, insolation, and the MODIS LST images using a regression kriging method with
an accuracy of around ±2.7◦C. The popular Temperature Vegetation Index (TVX) method,
proposed by Nemani and Running [1989] and Goward et al. [1994] also used LSTs to esti-
mate the air temperature based on the assumption that a strong negative correlation exists
between LST and vegetation index. It further assumes that the temperature of a fully vege-
tated canopy is the same as the temperature within it. Zhu et al. [2013] used this method to
estimate daily maximum and minimum air temperature using the NDVI and the LST data
with reasonable accuracy. There are many studies, that have been carried out incorporating
the LST in simple snow-melt modeling to tackle the problem of data scarcity. Mostovoy et al.
[2006] studied the sensitivity of different factors such as the pixel resolution, satellite over-
pass time, season, land cover type, and the vegetation fraction on the estimation of daily
maximum and minimum temperatures and the resulting correlation coefficient. Colombi
et al. [2007] employed a linear regression technique to estimate daily mean air temperature
from instantaneous values of station based temperature and LST data, with a good accu-
racy of about 1.89◦C. Shen and Leptoukh [2011] also estimated the air temperature from
MODIS LST data over central and eastern Eurasia with a reasonable estimation performance
of about 3◦C as the mean absolute error. Yang et al. [2014] implemented a simple linear re-
gression based approach to estimate the daily air temperatures from MODIS LST images to
improve the temperature index snow-melt routine in a hydrological model. They suggest
that the estimated temperature can be a valuable source of information in extending the
input data in data sparse conditions.

As a practical implementation of the MODIS snow-cover related reconstruction approach
in this study, an attempt was made to estimate the daily mean air temperatures based on
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MODIS LST data to assess its applicability in data scarce regions. For this the MODIS LST
products MOD11A1 (on board Terra satellite)[Wan et al., 2021] and MYD11A1 (on board
Aqua satellite) were considered in this study. As explained above, MODIS LST products
have been widely used for different studies including the estimation of daily air tempera-
tures, especially owing to free global availability with a reasonable accuracy of about 1◦K at
a daily temporal resolution. The sun-synchronous nature of Aqua and Terra satellites offers
a relatively close temporal proximity of about 3 hours between the overpasses from these
two satellites [Crosson et al., 2012]. Both the Aqua ( 1:30 AM/PM) and Terra satellites ( 10:30
AM/PM) make two overpasses in a day, bringing up a total of four overpasses in a day. The
10:30 AM Terra overpass senses a cooler surface temperature than Aqua at 1:30 PM overpass
and in contrast, a warmer surface is sensed by Terra at 10:30 PM than Aqua’s overpass at
1:30AM.

8.3.4.1. Linear regression approach

Many studies have highlighted the linear relationship between air temperature and the
LSTs. Several explanatory variables such as elevation, vegetation indices, land cover, dis-
tance from the seas, latitude etc have been incorporated in determining the optimal relation-
ship between air temperature and LSTs. The main goal of this practical extension was also to
find a relationship between air temperature and LST via a regression technique, which could
in turn be used in snow-melt modeling context in different data scarce mountainous regimes
across the world. In this study, the four LST datasets within a day, i.e. day and night passes
of Aqua and Terra were used. The LSTs were extracted to the Swiss temperature station lo-
cations assuming the LST of the cell bounding the station to be representative of the station.
Aqua-day, Aqua-night, Terra-day and Terra-night were used as the explanatory variables to
derive mean air temperature in a simple linear regression technique employed to derive the
relationship.

An example of the regression implementation in Bavaria is shown in this section. Figure
8.10 shows that the LSTs have the potential to predict the mean air temperature with high
levels of accuracy. For the winter season of October to April, the overall RMSE is around
1.25◦C which is a very good prediction as figure 8.10(a) shows a very dense scatter in the
central part with few outliers around it. The very low and very high tails are also tapered,
meaning good prediction accuracy for the tail values. However, for snow-melt modeling,
the relevant temperature range is from -3◦C below which there is always accumulation till
+3 ◦C, above which snow melts. The goal of this section was to estimate this range of tem-
perature with adequate accuracy. However, as figure 8.10(b) shows, there is a high level of
uncertainty in the prediction of mean air temperature especially for the -3 till +3 ◦C zone.
The estimated values at the lower end range from -4◦C to +1◦C, whereas in the higher tail,
the estimated values range from -3◦C to +4 ◦C for an observed temperature of +3 ◦C. The ob-
served and estimated rank scatter plot (figure 8.10 (c)) also depicts a dense cluster at the tails
which shows that LSTs explain the mean air temperature to some extent. However, a slight
asymmetric structure can be observed from the figure as the cluster of data points towards
the bottom right of the plot indicates that higher observed values are under-predicted. The
low observed values are reasonably simulated well compared to the higher counterparts, as
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shown by the less density of points in the top-left corner.

It is very important to get the prediction of this temperature range right for snow-melt stud-
ies. Due to time limitation, this topic was unfortunately not explored further. Different
variables were tested for the study regions such as the NDSI and NDVI values, landcover
and elevation classes, distance from the coastline, and so on. However, the results were
similar for this range. This was also not found well studied upon in different literature as
most of them have quoted overall or seasonal accuracies in terms of RMSEs. Tang et al.
[2010] in their work have argued that the LSTs as a proxy for air temperature should be
used only in applications where the sensitivity of algorithm to temperature is very small.
Snow-melt modeling is highly temperature sensitive, thus can lead to rapid onset and dis-
appearance of snow, as opposed to the reality, rendering the whole simulation completely
unusable. Due to this reason, this estimated temperature was not used further. However, a
clear correlation between LST and air temperature was observed. It is thus to be highlighted
that this relationship can be exploited in the future works as an extension of this thesis by
deeply understanding the various factors influencing air temperature and the associated er-
rors in prediction, i.e. random or systematic. Furthermore, the improved estimates of air
temperature from LSTs can be employed to drive the reconstruction approach in data scarce
mountainous regimes to estimate the peak snow accumulation and the resulting melt vol-
ume, which is as discussed, a crucial and well-informed information in the mountainous
regimes.
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9. Conclusion

It has been well established that accurate and reliable estimation of snow-cover distribu-
tion is highly crucial in the snow-dominated regions around the world, to predict the river
discharge with higher certainty and reliability. This thesis aimed at addressing the prob-
lem of unreliable estimation of snow-cover distribution owing to sparse unrepresentative
observations. The study was carried out in two different mountainous regimes in Europe,
with an overarching goal to assess the capability of freely available with global coverage
RS images in reliable identification of snow-cover distribution through parsimonious snow-
routines. Specifically, the study extended the TI-based snow-melt modeling approach to
different variants and evaluated a novel pixel-wise snow-cover calibration scheme for esti-
mating the parameters of the models for Switzerland and Baden-Württemberg in Germany,
solely based on MODIS snow-cover images. This chapter discusses the outcomes of this
research against the set core objectives in terms of following aspects:

Extension of snow-melt models and simulation of snow-cover distribution

Different model modifications incorporating factors governing the different aspects of snow-
accumulation and ablation processes, were employed to identify the best model variant and
to evaluate the improvement in the simulation of snow-cover distribution with minimal
data input, i.e. design template for implementation in data scarce regions. All the variants
mimicked the snow-cover distribution in both regions with high accuracy. Daily radiation
was found to be the most influential additional variable in terms of model performance
during simulation the snow-cover distribution. Any future implementation of the proposed
methodology is not limited to the model variants used in this study as the approach is flex-
ible enough to accommodate any snow-routine capable of simulating the snow-cover dis-
tribution. Furthermore, the parameters were found to be transferable to different regimes
without much loss in performance. The model setup including the model inputs were de-
signed to be minimalistic, thus incorporating only precipitation and temperature as the ob-
servational model drivers. All other model inputs including the net radiation were extracted
or estimated with the DEM.

Thresholds for simulation

Due to the cloud contamination of the MODIS snow-cover images and the calibration design
to accommodate binary dataset, different thresholds were set, identified and recommended
in the study for a MODIS based model snow-melt model calibration. NDSI thresholds for
MODIS and SWE thresholds for snow/no snow differentiation for simulated snow-cover,
and the cloud percentage threshold critical for the selection of MODIS images for calibration
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were identified. NDSI thresholds were the most sensitive and the globally accepted 0.4
works well in this methodology as well. However, the spatial detail and the uncertainties
associated with MODIS snow-cover algorithms, do not allow the reliable detection of actual
snow. Due to this and the precipitation interpolation uncertainties at higher elevations, a
clear recommendation on threshold was not made, rather a range was put forward for these
thresholds. The further advantage offered by this snow-cover based calibration was the
lesser sensitivity towards cloud thresholds. This allows the flexibility to calibrate on patches
of snow and no-snow in the images, with the model performance not so much affected by
the cloud cover.

Selection of images for calibration

The selection of MODIS images based on different stages of the snow season for calibration
is a crucial question as it governs the identifiability of the parameters in terms of under-
standing the relevant processes. The MODIS based standalone calibrated parameters were
found to be more or less transferable to different seasons within a snow period. Depending
upon the snow regimes, a set of MODIS images within a period during the snow season
was observed to be adequate to adeptly simulate the snow-cover distribution for the whole
season [Gyawali and Bárdossy, 2022].

Robustness and uncertainty reduction

The selection of calibration data, i.e. as binary MODIS information, and the spatial extent
of snow cover bolsters the calibration at pixel level allowing relatively complex snow-melt
modules to be calibrated with more robustness. This can be attributed to the reduction in
the uncertainty associated with calibration data, as one is only dealing with ’0’ or ’1’, which
is often a critical limitation with the case of snow-depth or snow-water equivalent based
calibration. Furthermore, the uncertainty in the representation of snow-accumulation and
melt processes can be reduced with the standalone calibration of the snow-melt models, as
calibrating only on discharge generally permits parameter compensations with other non-
snow parameters, even if the discharge simulation is found to be reliable leading to ’right for
wrong reasons’ conclusion. Estimation of the parameters solely from any RS based snow-
cover information not only eliminates the reliance on a single calibration variable discharge
which are not readily available in the higher altitudes, but also thereby preserves the spatial
heterogeneity as well with the spatial information coming in from MODIS.

Furthermore, the melt outputs used as standalone input to the hydrological model increased
the reliability of discharge prediction as highlighted by the hydrological model performance
comparison. This improvement in model performance can be attributed to ’a right reason’
with a better representation of the underlying snow processes With the reliable simulation of
snow-cover distribution using the MODIS based calibration, the estimated parameters can
be considered ’snow-processes informed’ parameters and any improvement in the hydro-
logical model performance can be deemed for ’a right reason’ with a better representation
of the underlying snow processes. The standalone calibration further makes it possible to
add more relevant parameters into the snow model which if calibrated in conjunction with
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the hydrological model would then lead to a much more complex and uncertain calibra-
tion procedure, due to these additional parameters. The reduced parameter space in sepa-
rate snow-model and hydrological model calibrations, thus offers a subsequent reduction in
modeling uncertainties as the equifinal set of calibrated parameters becomes small, which
in turn leads to reliable discharge simulation. In addition, a better computational efficiency
can be garnered with this approach as the model calibration with reduced parameterization
requires lesser computational time. It is to be noted that calibration on binary information
imparts additional efficiency as it is relatively quicker to calibrated on ’0’ and ’1’.

In conclusion, this thesis showcased a novel approach of exploiting MODIS snow-cover in-
formation in calibrating snow-melt models on the snow/no-snow information using a mod-
est input data demand. The solidity of the approach used in this thesis lies in the simplicity,
spatial flexibility and global availability of the model input data which can be very useful
for snow-melt and hydrological predictions in data scarce regions. The calibration using
readily available images used in this method offers adequate flexibility to calibrate snow
distribution in mountainous areas across a wide geographical extent with reasonably accu-
rate precipitation and temperature data, especially in data scarce regions, with parameters
estimated with MODIS [Gyawali and Bárdossy, 2022]. This independent calibration offers
independent evaluation of snow processes without passing the snow simulation through a
more complex hydrological model. In addition, this also allows immediate verification with
point measurements. Future implementation can also include snow-depth information from
geodetic approaches as well as cloud mask information from geostationary satellites.

It is a big and a highly imperative challenge to improve the snow-estimation in the moun-
tains via improvement of the snow-melt routines in widely and successfully used hydro-
logical models like HBV. The reduction in uncertainties regarding snow-cover estimation
and discharge prediction with this methodology thus adds pertinent value to the improved
conceptualization of the temperature-index model routines and further potential model up-
dating in future works.
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T. Das, A. Bárdossy, E. Zehe, and Y. He. Comparison of conceptual model performance using
different representations of spatial variability. Journal of Hydrology, 356(1):106–118, 2008.
ISSN 0022-1694. doi: 10.1016/j.jhydrol.2008.04.008. URL https://www.sciencedirect.
com/science/article/pii/S002216940800173X.

10.1007/BF02089244
10.1007/BF00894777
https://www.sciencedirect.com/science/article/pii/S0898122198001011
https://www.sciencedirect.com/science/article/pii/0022169495029133
https://www.sciencedirect.com/science/article/pii/0022169495029133
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1027
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1027
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR010745
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR010745
https://hess.copernicus.org/articles/13/639/2009/
https://hess.copernicus.org/articles/13/639/2009/
https://www.sciencedirect.com/science/article/pii/S0034425712000077
https://www.sciencedirect.com/science/article/pii/S002216940800173X
https://www.sciencedirect.com/science/article/pii/S002216940800173X


114 Bibliography

B. Daya Sagar, Q. Cheng, and F. Agterberg. Handbook of Mathematical Geosciences. Springer
Cham, 2018. ISBN 978-3-319-78999-6. doi: 10.1007/978-3-319-78999-6.

J. de Niet, D. C. Finger, A. Bring, D. Egilson, D. Gustafsson, and Z. Kalantari. Benefits of com-
bining satellite-derived snow cover data and discharge data to calibrate a glaciated catch-
ment in sub-arctic iceland. Water, 12(4), 2020. ISSN 2073-4441. doi: 10.3390/w12040975.
URL https://www.mdpi.com/2073-4441/12/4/975.

B. Debele, R. Srinivasan, and A. Gosain. Comparison of process-based and temperature-
index snowmelt modeling in swat. Water Resources Management, 24(6):1065–1088, 2009.
doi: 10.1007/s11269-009-9486-2.

N. Di Marco, D. Avesani, M. Righetti, M. Zaramella, B. Majone, and M. Borga. Reducing
hydrological modelling uncertainty by using modis snow cover data and a topography-
based distribution function snowmelt model. Journal of Hydrology, 599:126020, 2021. ISSN
0022-1694. doi: 10.1016/j.jhydrol.2021.126020. URL https://www.sciencedirect.com/
science/article/pii/S0022169421000676.

D. DiMiceli, R. Sohlberg, and J. Towsend. Modis/terra vegetation continuous fields yearly
l3 global 250m sin grid. http://doi.org/10.5067/MODIS/MOD44B.061, 2022.

J. Dozier. Spectral signature of alpine snow cover from the landsat thematic mapper. Re-
mote Sensing of Environment, 28:9–22, 1989. ISSN 0034-4257. doi: https://doi.org/10.
1016/0034-4257(89)90101-6. URL https://www.sciencedirect.com/science/article/pii/
0034425789901016.

J. Dozier, R. O. Green, A. W. Nolin, and T. H. Painter. Interpretation of snow properties from
imaging spectrometry. Remote Sensing of Environment, 113:S25–S37, 2009. ISSN 0034-4257.
doi: 10.1016/j.rse.2007.07.029. URL https://www.sciencedirect.com/science/article/pii/
S0034425709000777. Imaging Spectroscopy Special Issue.

D. Duethmann, J. Peters, T. Blume, S. Vorogushyn, and A. Güntner. The value of satellite-
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diction of daily temperatures using time-series of modis lst images. Theoretical and Ap-
plied Climatology, 107:265–277, 2012. doi: 10.1007/s00704-011-0464-2. URL 10.1007/
s00704-011-0464-2.

R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. Very high resolution
interpolated climate surfaces for global land areas. International Journal of Climatology, 25
(15):1965–1978, 2005. doi: 10.1002/joc.1276. URL https://rmets.onlinelibrary.wiley.com/
doi/abs/10.1002/joc.1276.

R. Hock. A distributed temperature-index ice- and snowmelt model including poten-
tial direct solar radiation. Journal of Glaciology, 45(149):101–111, 1999. doi: 10.3189/
S0022143000003087.

R. Hock. Temperature index melt modelling in mountain areas. Journal of Hydrology, 282
(1):104–115, 2003. ISSN 0022-1694. doi: 10.1016/S0022-1694(03)00257-9. URL https:
//www.sciencedirect.com/science/article/pii/S0022169403002579. Mountain Hydrol-
ogy and Water Resources.

J. Hofierka and M. Suri. The solar radiation model for open source gis: implementation and
applications. Proceedings of the Open source GIS - GRASS users conference 2002, 2002.

X. Huang, J. Deng, W. Wang, Q. Feng, and T. Liang. Impact of climate and elevation on snow
cover using integrated remote sensing snow products in tibetan plateau. Remote Sensing
of Environment, 190:274–288, 2017. ISSN 0034-4257. doi: 10.1016/j.rse.2016.12.028. URL
https://www.sciencedirect.com/science/article/pii/S0034425716305077.

G. Hudson and H. Wackernagel. Mapping temperature using kriging with external drift:
Theory and an example from scotland. International Journal of Climatology, 14(1):77–91,
1994. doi: 10.1002/joc.3370140107. URL https://rmets.onlinelibrary.wiley.com/doi/abs/
10.1002/joc.3370140107.
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A. Snow-melt model results

Annex A.1 and A.2 show the temporal validation of all the employed models on different
cloud-free days in Switzerland and Baden-Württemberg respectively. The red highlights
show the best performance in terms of Brier scores among the models for the day. Annex
A.3 shows the normalized confusion matrices for all the models calibrated against a single
day image (2012-01-18) in Switzerland.

Likewise, Annex A.4 compares the MODIS inferred and reference model simulated cumula-
tive snow covered areas (in percentage) for different validation days. Annex A.5 shows the
number of days with snow for different years as calculated from MODIS and with reference
model.



ii Snow-melt model results

Annex A.1.: Brier scores for all models on different validation days in Switzerland



iii

Annex A.2.: Brier scores for all models on different validation days in Baden-Württemberg



iv Snow-melt model results

Annex A.3.: Confusion matrices for all models in Switzerland



v

Annex A.4.: MODIS-inferred and simulated SCAs (in %) for selected validation days in
Switzerland



vi Snow-melt model results

Annex A.5.: MODIS-inferred and simulated snow covered days for different years in
Switzerland



B. Sensitivity analysis of different adopted
thresholds for simulation

Annex B.1 and B.2 show the performance of the reference model in terms of Brier scores for
different thresholds adopted in the study, respectively for Switzerland and Baden-Württem-
berg. Detection threshold in the figures refers to the SWE thresholds assumed to differentiate
the simulated SWE as ’snow’ or ’no-snow’.
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