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Chapter 1

Introduction

New manufacturing techniques like additive manufacturing and in particular 3D laser print-
ing are the latest trends that might make manufacturing components with low-production
numbers a lot cheaper than conventional subtractive manufacturing like cutting, drilling
or grinding. At the same time, they allow for far more complex structures to be crafted,
such as bent ducts in a solid part that could not be achieved with a conventional drill.
All this seems very profitable for the aerospace industry where alloys based on aluminium
are very common. In particular, aluminium alloys with a small copper percentage have
been used in aeroplanes for about a century now, one of the most well-known being Dura-
lumin. Using alloys instead of pure metals allows for fine-tuning properties like hardness,
thermal conductivity or corrosion resistance. But not only is the production of parts made
from these alloys with 3D laser printing a promising method, the laser treatment of alloys
might be able to delay fatiquing of components which could greatly increase the lifetime
of the parts.
In order to improve these techniques, we have to expand our knowledge about how metals
and alloys behave under laser irradiation. Computer simulations allow such insights into
the properties and material dynamics of all kinds of materials whereas analytical calcula-
tions can only be done on simple and idealised systems. While there are many approaches
to modelling materials, such as density functional theory, molecular dynamics or fluid
simulations, we choose the first one because it allows us to gain insight into quantum me-
chanical processes. Also, some results can be used for molecular dynamics simulations that
reach time and length scales that are close to real-world experiments. In the past, there
have been few similar investigations, however they were mostly focussed on semiconductors
and silicon in particular. In this work, we therefore want to extend our understanding of
laser excited materials to metals and alloys and compare them to the semiconductor silicon.

We start by going over the theoretical fundamentals of the calculations performed using
density functional theory and how it can be extended for practically all materials. We also
discuss properties that can be used to describe solids even at different degrees of excitation.
Next, we explain how the calculations were performed and how computation time can be
used most effectively and efficiently.
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CHAPTER 1. INTRODUCTION

We then first search for appropriate parameters for the calculations that are capable of
producing reliable data. Then, we validate our methods by calculating ground state prop-
erties of aluminium, copper and their alloys and compare them to other theoretical and
experimental investigations done by other groups. Afterwards, we finally calculate electron
temperature-dependent properties of solids to get more insights into how metals and alloys
behave under laser irradiation.
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Chapter 2

Theoretical background

This work focusses on the examination of metals and alloys under laser irradiation using
density functional theory. We therefore start by giving an overview of the processes in
matter under laser irradiation and how we can model them. Then, we explain the ba-
sic concepts of density functional theory, discuss how we can couple these calculations to
molecular dynamics simulations and how we can incorporate laser excitation.
Since we want to investigate properties of solids under laser irradiation, we describe the
properties of solids that can and will be used to characterise materials under laser irradi-
ation, i.e. the elastic constants, phonon spectra and the density of states.

2.1 Laser processes

During laser irradiation of a solid, the electrons are excited to an excited state almost
immediately while the atoms remain in their initial positions. Electron-phonon coupling
then causes energy to be transferred from the electrons to the atoms. In this context,
it makes sense to introduce separate temperatures for the atoms Tl and the electrons Tc.
Models that incorporate these two temperatures belong to the class of Two-Temperature
Models (TTMs). If the material is not excited or long after the laser irradiation, the two
temperatures are identical. The time evolution of both temperatures before, during and
after laser irradiation is summarised in figure 2.1. Theoretic models have been developed
to treat electron-phonon coupling and the TTM. In this work, however, we focus on static
properties of materials obtained using density functional theory. This method still gives a
lot of insights in the behaviour of laser-excited materials while not having to work with an
overly complicated model. Using Density Functional Theory (DFT), it is also possible to
treat the excitations in a statistical way by occupying the states only partially. While this
approach seems primitive compared to purely analytical methods, it has proven to yield
results that capture an extend of properties that most analytical methods can’t, especially
in large and dynamic systems [1, 2]. The details on how DFT calculations can mimic
excitations are presented later.
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Figure 2.1: Time evolution of the lattice temperature Tl and the electron temperature Tc
after laser irradiation of a solid.

2.2 DFT

2.2.1 Introduction to Density Functional Theory

Solving Schrödinger’s equation is the key to insights into the quantum mechanical nature of
any material. It is a difficult task to solve this equation which is why different computer-
based methods have been introduced, also since analytical approaches are very limited.
Hohenberg and Kohn realised that we can solve Schrödinger’s equation exactly even if we
don’t use the single-particle wave functions directly but instead the electron density [3]

n(~r) =
N∑
i=1

|Ψi(~r)|2 (2.1)

which consists of the single-particle wave functions Ψi of particle i. This expression leads
to the total energy functional in appropriate units (me = 1, h̄ = 1)

E[n(~r)] = T [n(~r)] + U [n(~r)] + V [n(~r)]

=
1

2

∫
d~r ~∇Ψ∗(~r)~∇Ψ(~r) +

1

2

∫
d~r d~r′ n(~r)n(~r′)

|~r − ~r′| +

∫
d~r v(~r)n(~r), (2.2)

where T [n(~r)] is the kinetic energy functional, U [n(~r)] is the Coulomb interaction of the
electrons and V [n(~r)] is the energy functional due to an external potential v(~r), i.e. the
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2.2. DFT CHAPTER 2. THEORETICAL BACKGROUND

specific system.
The reason why this approach can solve the Schrödinger equation is summarised in the
first Hohenberg-Kohn theorem which states that the external field contribution is a unique
functional of the electron density [3]. A detailed proof of this theorem is given in ap-
pendix A. The second Hohenberg-Kohn theorem states that the ground state energy can
be found for the exact electron density which is trivial using the Rayleigh-Ritz principle
[4].
We can go one step further and split the total energy functional (2.2) into different parts.

F [n(~r)] = T [n(~r)] + U [n(~r)] (2.3)

is then the universal functional that contains no contribution from the system that enters
through the external potential v(~r). In (2.3), the Coulomb contribution, which can be
calculated, can then be split from the rest, resulting in

F [n(~r)] =
1

2

∫
d~r d~r′ n(~r)n(~r′)

|~r − ~r′| +G[n(~r)]. (2.4)

G[n(~r)] then contains the kinetic contributions, as well as exchange and correlation effects
that no other part in (2.2) takes into account. These exchange and correlation effects
are summarised in the exchange-correlation functional EXC that will be discussed in more
detail later.
By varying the electron density, we arrive at the Kohn-Sham equations [5][

−1

2
~∇2 +

∫
d~r′ n(~r′)
|~r − ~r′| + v(~r) +

δEXC

δn(~r)

]
Ψ̃i(~r) = εiΨ̃i(~r) (2.5)

with the Lagrange multiplier εi and an approximate electron density

n(~r) =
N∑
i=1

∣∣∣Ψ̃i(~r)
∣∣∣2 (2.6)

computed from the Kohn-Sham orbitals Ψ̃i(~r) which have no physical meaning. Starting
with some n(~r), the Schrödinger equation (2.5) is constructed and solved to find the Ψi

from which then a new density can be calculated. This process is repeated until a conver-
gence criterion is reached, i.e. self-consistency is achieved.

This formalism is equivalent to Schrödinger’s equation and it is important to note that
until here, no approximations have been made. However, the exchange-correlation func-
tional EXC is not known in general. Hohenberg and Kohn were able to reproduce the
Thomas-Fermi equation for an electron gas with slowly varying density. They also sug-
gested a gradient expansion of G[n(~r)] for a more general description. Both approaches to
approximate EXC are described in the next section.
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2.2. DFT CHAPTER 2. THEORETICAL BACKGROUND

It should be mentioned that the DFT code Vienna Ab initio Simulation Package (VASP)
that will be used in this work is only considering the valence electrons, as opposed to
all-electron codes like Wien2K [6]. This method is called the frozen-core approximation
[7] and is justified for the excitations here since the non-valence electrons are much more
tightly bond, as can be seen in the ionization energies.
We should also note that the concept of DFT can be extended in many ways. Since DFT
is based on Schrödinger’s equation which is non-relativistic, we don’t include spin-orbit
coupling in this theory. However, DFT can be extended to also include relativistic effects.
Also, perturbations to a system can be taken into account within Density Functional
Perturbation Theory (DFPT). Since DFPT is only used for the calculation of the phonon
spectra in this work, we don’t go into detail here. A great overview of the topic can be
found in [8]. We also derive the first-order correction within DFPT in appendix C.

2.2.2 Approximations for exchange-correlation

Local Density Approximation
The Local Density Approximation (LDA) assumes that the exchange-correlation functional
only depends on the local electron density according to

EXC
LDA =

∫
d~r n(~r)εXC[n(~r)]. (2.7)

It is local in space and doesn’t take correlation effects into account. For a homogeneous
electron gas, an exact expression can be derived.
Since electrons in metals mostly behave like a homogeneous electron gas, this approxima-
tion is observed to reproduce properties of metals well.

Generalised Gradient Approximation
To allow the exchange-correlation functional to represent more of a non-local behaviour, the
Generalised Gradient Approximation (GGA) also includes the dependency on the gradient
of the local electron density

EXC
LDA =

∫
d~r n(~r)εXC

[
n(~r), ~∇n(~r)

]
. (2.8)

similar to a Taylor expansion of a function. This technically doesn’t make the functional
non-local but rather semi-local. To improve the accuracy of EXC, higher orders can be
included - at the cost of efficiency. Since it’s only semi-local, GGAs cannot take long-range
interaction into account, such as van der Waals forces. Such interaction usually require
different approaches. A great overview can be found in [9].
One of the most commonly used formulations of GGAs is the Perdew-Burke-Ernzerhof
(PBE) functional [10]. It has proven to be reliable and very accurate in most situations
while still being computationally cheap considering the increase in accuracy and flexibility
compared to LDA. Since van der Waals interactions play a minor role in metals and alloys,
we can safely use PBE in this work.
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2.2.3 DFT methods with molecular dynamics

DFT calculations as we introduced them require that we provide a structure to calculate
and optimise the wave functions to minimise the energy. In some cases, we also want to
include dynamics in our systems. This might be of interest if the exact structure is not
known prior and we want to find the ground state structure or if one wants to study phase
transitions on a quantum mechanical level. In these and other cases, DFT calculations
have to be coupled to Molecular Dynamics (MD) calculations.
In order to couple a DFT calculation to an MD simulation, one has to calculate the forces
from the electronic configuration of the DFT calculation in order to update the atomic
positions. Starting from the energy in Dirac notation

Eλ = 〈Ψλ|Hλ |Ψλ〉 , (2.9)

we find its derivative with respect to some parameter λ

∂Eλ
∂λ

=

〈
∂Ψλ

∂λ

∣∣∣∣Hλ

∣∣∣∣Ψλ

〉
+

〈
Ψλ

∣∣∣∣ ∂Hλ

∂λ

∣∣∣∣Ψλ

〉
+

〈
Ψλ

∣∣∣∣Hλ

∣∣∣∣ ∂Ψλ

∂λ

〉
=Eλ

(〈
∂Ψλ

∂λ

∣∣∣∣Ψλ

〉
+

〈
Ψλ

∣∣∣∣ ∂Ψλ

∂λ

〉)
+

〈
Ψλ

∣∣∣∣ ∂Hλ

∂λ

∣∣∣∣Ψλ

〉
=Eλ

∂

∂λ
〈Ψλ|Ψλ〉+

〈
Ψλ

∣∣∣∣ ∂Hλ

∂λ

∣∣∣∣Ψλ

〉
=Eλ

∂(1)

∂λ
+

〈
Ψλ

∣∣∣∣ ∂Hλ

∂λ

∣∣∣∣Ψλ

〉
=

〈
Ψλ

∣∣∣∣ ∂Hλ

∂λ

∣∣∣∣Ψλ

〉
. (2.10)

Now replacing the derivative with respect to λ with a spatial derivative, we end up with
the so-called Hellmann-Feynman force [11, 12, 13].
Having found the forces, we can integrate the equations of motion of atom i

~Fi = mi
~̈ri (2.11)

using the usual techniques that we will not go into more detail because we use a slightly
different approach to optimising structures. We use the so-called Conjugate Gradient
(CG) algorithm [14, 15] which uses the local gradient of the energy surface to move the
atoms. Usually, this method of optimising a structure is a lot faster compared to MD-DFT
calculations since we are not bound to a fixed time step.
It is important to note that we we assuming that Ψλ in Equation 2.10 is the eigenfunction
of the Hamiltonian Hλ from an infinite basis set. In reality, only finite basis sets can be
used for DFT calculations. One then has to choose between having an error in the energies,
known as Pulay stress [16], having to correct for the finite set by calculating the derivatives
of the wave functions - which is computationally very costly - or increasing the basis set
until the error is neglectibly small.
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2.2.4 Finite-temperature DFT calculations

Pure DFT calculations are used for ground state calculations. However, only one year
after its introduction, the concept was extended to finite-temperature calculations [17] by
smearing out the occupancies of the states. This is useful since it allows us to calcu-
late properties of excited materials in which the same happens. While it’s technically an
equilibrium distribution, the Fermi-Dirac distribution

f(E, Tc) =
1

exp((E − µ)/(kBTc)) + 1
(2.12)

is most commonly used to smear out the states due to its physical significance. In figure 2.2,
it is shown for three different temperatures, i.e. smearings. The entropic contribution of
the electron gas changes the total energy functional that is used in DFT calculations. A
quick description of how the total energy functional is changed is given in appendix D.
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Figure 2.2: Fermi-Dirac distribution at three different temperatures.
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2.3 Properties of solids

This chapter is devoted to properties that can be used to describe solids. The first set
of properties are the elastic constants which give a general idea of the behaviour under
deformations along different axes. Next, we describe phonon spectra which represent the
lattice vibrations. Lastly, we describe the electron Density of States (DOS) which can be
used as a tool for the theoretical description of thermodynamic properties of solids such as
the internal or free energy, heat capacity and pressure.

2.3.1 Elastic constants

In this section, we quickly go over the basics of elastic constants and their meaning. Most
information is taken from [18].
As long as Hooke’s law holds, we assume that that the stress σ is proportional to the strain
ε = ∆L/L with L being the undeformed length or volume and ∆L being the quantity of
the elastic transformation and thus with the elastic constant C

σ = Cε =
F

A
. (2.13)

The latter expression is an alternative definition of stress, i.e. the force F that acts on an
area A. Until now, we didn’t specify in which direction a material is deformed. We can
extend the definition of stress to the stress tensor

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ22 σ33

. (2.14)

With that and a similar extension of the strain in each possible direction, we can write
(2.13) as

σij =
∑
k,l

Cijklεkl. (2.15)

This expression can be reduced to

σm =
6∑

n=1

Cmnεn (2.16)

using the Voigt notation [19]. In the case of cubic systems which are the most important
ones for this work, this reduces to only C11, C12 and C44. From these, more properties of
solids can be derived, such as the bulk modulus

B =
C11 + 2C12

3
. (2.17)

While C11 is related to the uniaxial stress and strain, C12 gives insight into the expansion
in a perpendicular direction to a strain and C44 contains information about the shearing
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Figure 2.3: Visualisation of the components of the stress tensor in Voigt notation. The
arrows indicate the stress components upon a general strain.

behaviour. Finally, the bulk modulus describes the change in volume under a uniform
compression over the entire body. Technically, there are more elastic moduli that we can
calculate from the elastic constants. Since we are not going to use any modulus that we
haven’t mentioned yet, we are not going to describe them. Details on these moduli can be
found elsewhere, for example [18].
Born derived three stability criteria for cubic systems based on the elastic constants [20]
which were extended to structures with other symmetries. An overview of these criteria
can be found in [21]. In cubic systems, the criteria read

C11 − C12 > 0 , C11 + 2C12 > 0 and C44 > 0. (2.18)

These criteria can be reformulated to

C11 > 0 , C11 > C12 and C44 > 0. (2.19)

In the python module Elastic [22, 23, 24], a scheme that calculates the elastic constants C11,
C12 and C44 is already implemented. Here, a number of atom configurations are created
that differ by a given percentage from the energetically most favourable one. Among
the distorted ground state structure are systems with rescaled atom positions, as well as
shearing of the simulation box. For each of these systems, stress and strain are calculated
and combining results from each system, the elastic constants are obtained.

2.3.2 Phonons

Phonons are the quasiparticles of the lattice vibrations. In classical theory, they can be
derived from the equation of motion of e.g. a one-dimensional chain of one or two types

14
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of atoms. Details on the classical theory can be found in many textbooks, such as [18].
Here, we only note the most important results from classical theory. We differentiate be-
tween acoustical modes and optical modes. In acoustical modes, neighbouring atoms move
in phase similar to how pressure waves propagate, thus the name. In optical modes, the
atoms move out of phase. The name stems from the fact that due to the movement out of
phase, dipole moments can be induced which can be excited by light in the visible range.
Both optical and acoustical modes can be further divided into transversal and longitudinal
modes depending on the direction of propagation with respect to the movement of the
atoms. Generally, the frequencies of the longitudinal mode is higher than the optical mode
which makes identifying the modes easier. In the three-dimensional case of a periodic sys-
tem containing N atoms, there are 3N modes, three acoustical modes and 3N − 3 optical
modes. That means that in a monoatomic system, there are only three acoustical modes
and no optical modes.

For the derivation of phonons of a general many-body system and the basics on phonon
calculations, we closely follow [25]. Let H be the Hamilton operator of a system of N
interacting atoms. H thus has the form

H =
N∑
i=1

~p2
i

2mi

+ V (~r1, ..., ~rN). (2.20)

Assuming that there is an equilibrium position ~r
(0)
i of each atom i and that the atoms are

moved out of their equilibrium positions by ~ui, the actual positions are given by

~ri = ~r
(0)
i + ~ui. (2.21)

Next, we can expand the interaction potential around the equilibrium positions as

V (~r1, ..., ~rN) =V
(
~r

(0)
1 , ..., ~r

(0)
N

)
+

N∑
i=1

∂V (~r1, ..., ~rN)

∂~ri

∣∣∣∣(
~r
(0)
1 ,...,~r

(0)
N

)
(
~ri − ~r(0)

i

)

+
1

2

N∑
i,j=1

∂2V (~r1, ..., ~rN)

∂~ri∂~rj

∣∣∣∣(
~r
(0)
1 ,...,~r

(0)
N

)
(
~ri − ~r(0)

i

)(
~rj − ~r(0)

j

)
+O

(
(~ri − ~rj)3)

≈V
(
~r

(0)
1 , ..., ~r

(0)
N

)
+

N∑
i=1

∂V (~r1, ..., ~rN)

∂~ri

∣∣∣∣(
~r
(0)
1 ,...,~r

(0)
N

)ui;α

+
1

2

N∑
i,j=1

∂2V (~r1, ..., ~rN)

∂~ri∂~rj

∣∣∣∣(
~r
(0)
1 ,...,~r

(0)
N

)ui;αuj;β. (2.22)

Only taking contributions up to the second order in u into account, we find the harmonic
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approximation within which we can conveniently write

V (~r1, ..., ~rN) ≈V
(
~R(0)
)

+
N∑
i;α

∂V (~r1, ..., ~rN)

∂ri;α

∣∣∣∣
~R(0)

ui;α

=
1

2

∑
i,j;α,β

∂2V (~r1, ..., ~rN)

∂ri;α∂rj; β

∣∣∣∣
~R(0)

ui;αuj;β (2.23)

where
~R(0) =

(
~r

(0)
1 , ..., ~r

(0)
N

)
(2.24)

and α and β run over the spacial dimensions. The term linear in u vanishes since the forces

~Fi = −∂V (~r1, ..., ~rN)

∂~ri
(2.25)

vanish in the equilibrium positions ~r
(0)
i . Furthermore, we know that the matrix

Φi,j;α,β :=
∂2V (~r1, ..., ~rN)

∂ri;α∂rj;β

∣∣∣∣
~R(0)

= −∂Fi;α(~r1, ..., ~rN)

∂rj;β

∣∣∣∣
~R(0)

(2.26)

contains all force constants. We can write the equation of motion for particle i with the
mass mi in the potential of all N atoms as

miüi;α = Φi,j;α,βuj;β. (2.27)

With a suiting ansatz, we can find the eigenvalue problem∑
j;β

Di,j;α,β(~q)εj;β;ν(~q) = ω2
ν(~q)εi;α;ν(~q) (2.28)

with

Di,j;α,β(~q) =
1

√
mimj

Φi,j;α,βei~q·(
~Rj−~Ri). (2.29)

Therefore, we can find the phonon modes εi;α;ν(~q) and their respective frequencies ων at
any given point in reciprocal space ~q. One can identify the dynamical matrix Di,j;α,β as
the Fourier transform of the matrix containing all the force constants (2.26). As in classi-
cal theory of phonons, there are 3N modes, indicated by the dimension of the dynamical
matrix.
We can relate phonon frequencies to bond strength. In the simple case of a 1D-chain with
one or two types of atoms, an analytical calculations reveals that the phonon frequencies
are proportional to the root of the force constants between neighbouring atoms. In general,
with the help of the dynamical matrix, we find that the phonon frequencies increase with
the force constants.
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2.3. PROPERTIES OF SOLIDS CHAPTER 2. THEORETICAL BACKGROUND

When doing DFT phonon calculations, all the force constants can in principle be obtained
by displacing atoms in the finite difference method or from DFPT calculations. While both
methods are mathematically equivalent, we choose to do the calculations with DFPT due
to the elegance of this method and the reduced number of separate calculations that are
needed compared to the method using displacements.
Either way, we calculate the phonon dispersion along some path connecting important
points in reciprocal space. Suggested paths can be found using tools like SeeK-path [26]
which in turn uses spglib [27]. Of course, one has to ensure that the proposed path is
reasonable and one has to be careful when comparing phonon spectra with publications
which might have chosen a different path.

2.3.3 Density of state

The DOS either describes the number of states that have an energy within a certain range
D(E) or the number of states within a given volume in reciprocal space.
The easiest approach to the concept of the DOS is to consider a free electron gas. The
gas is described in more detail in appendix B. For the free electron gas, we find that the
allowed states are equidistant in reciprocal space. Assuming that the states are Li apart
in direction i and the dimension of the system is n, we find that if cutting equally large
bodies which only contain one state, each body has a volume of

Vr =
(2π)n∏n
i=1 Li

. (2.30)

Also taking both spin direction into account, the density of the states are twice the inverse
of Vb, i.e.

Z(k) = 2

∏n
i=1 Li

(2π)n
= 2

V

(2π)n
. (2.31)

This is the DOS in k-space. Alternatively, the DOS can be stated in energy space from
the conservation of states

Z(k) d3k = D(E) dE . (2.32)

This equation can be solved for a free electron gas in the volume Ω, the calculation is given
in appendix B, in three dimensions resulting in the well-known square root-like shape

D(E) =
Ω

2π2

(
2m

h̄2

)3/2√
E. (2.33)

This concept can of course also be applied to materials that cannot be described by the
free electron gas, e.g. atoms with d-electrons like copper. Still, it can be used for more
insight into the electronic configurations without the knowledge of exact wave functions.
Since the expression of the free electron DOS is fairly simple, it can be used in combination
with the Sommerfeld model. The Sommerfeld model is a low-temperature approximations
of thermodynamic properties from the DOS. In appendix B, we derive several of such ther-
modynamic properties within this approximation so that we can compare this theoretical
approach to our DFT calculations.
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Chapter 3

Computational details

At the beginning of this work, the calculations were performed on a dedicated machine at
our institute. There, calculations could be run on up to 12 cores, however, less than that
was actually used due to the limited memory available. We were limited to smaller sys-
tems containing around 30 atoms with calculation runtimes around one day for structural
optimizations. Since we wanted and sometimes had to consider larger systems, especially
for the alloys, we switched to the supercomputer Hawk at the Hochleistungsrechenzentrum
Stuttgart (HLRS). Doing so allows us to perform calculations on thousands of cores. We
limit ourselves to single-node jobs, i.e. a maximum of 128 cores.
For an efficient usage of expensive computational time, we first perform benchmark calcu-
lations to find the ideal number or range of cores to use for a single calculation. As with all
computer-based calculations with several cores and compute nodes, one has to find a com-
promise between the computational load on a single core and the communication between
the cores. We therefore performed a static electronic optimization of an aluminium system
containing 108 atoms in an Face-centered cubic (fcc) structure using VASP on different
numbers of cores in a reasonable range. We repeat this three times to get an estimate of
the deviations among runs. The needed runtimes are shown in figure 3.1. The minimum
runtime for the benchmark calculation lies at 55 cores. For most calculations, however, we
only use 50 cores due to the enormous memory requirements and to have a larger buffer
for avoiding out of memory situations where the calculations require more memory than
is available. In figure 3.2, we also show the parallelisation speedup of the calculations with
the increase in the number of cores. Unfortunately, the code doesn’t scale very well with
the number of cores and quickly deviates from the ideal parallelisation speedup.
For a more efficient use of the entire node, we perform two calculations simultaneously. We
track the process IDs of each newly started VASP calculation and regularly check if they
are still running. If we detect that one calculation has finished, i.e. the number of process
IDs has reduced, we start a new calculation. At first glance, this might not look like it
saves a lot of computational time. However, if we only started two calculations at the
same time and wait for both having finished before we start the next pair, half of the node
might not be used for some time if one of the calculations needs significantly more time
than the other. Especially when performing a series of calculations at different electron
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temperatures, we found that this method greatly accelerates the calculations and uses the
available resources more efficiently.
For the calculations of the DOS, we increase the number of k-points significantly. Since we
are limited in terms of memory for all the wave functions, we reduce the size of the system
and reduce the number of cores reserved for the calculations to 70 while only using 50 of
them. This helps to avoid out of memory situations even further.
The phonon calculations were done again on 50 cores, however not in parallel. This is due
to the increased memory requirements since we used a 9x9x9 k-space grid and fairly large
systems.
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Figure 3.1: Runtimes of an electronic optimization using VASP on different numbers of
cores.
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Figure 3.2: Speedup of an electronic optimization using VASP on different numbers of
cores.
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Chapter 4

DFT parameter analysis

Even though DFT calculations belong to the ab initio calculations, i.e. calculations that
require no prior knowledge of the systems, several parameters can be tweaked in such
calculations. In particular, the cutoff energy of the wave functions that will be taken into
account, the density of the k-space grid, the convergence criterion of the electronic and
atomic optimisation, as well as the system size have an effect on the quality of the results.
In this chapter, we test each of these parameters and discuss their influence and which
parameters will be chosen for the production of results.
All calculations for this parameter analysis were performed for pure aluminium and copper
in an fcc structure consisting of 32 atoms, i.e. two unit cells in each direction. To ensure
that the parameters are also appropriate for larger systems, we repeated some calculations
for the larger system but will not show them here since the results were the same. Some
calculations for the Al-Cu alloys were repeated with different sets of parameters but found
the same convergence as for the pure metals. In order to avoid redundancy in this chapter,
we only show the results on pure aluminium and copper. Since we didn’t decide on an
exchange-correlation functional at this point, we performed all calculations with both, LDA
and PBE.

4.1 Cutoff energy

As the complete wave functions are assumed to be a superposition of plane waves, the
kinetic energy of such waves can be arbitrarily high. Since wave functions with high
energies are energetically unreasonable and thus barely contribute, only plane waves with
a maximum energy

Ecut =
h̄2G2

cut

2m
,

∣∣∣~k + ~G
∣∣∣ < Gcut (4.1)

or lower are taken into account. The DFT code VASP that is used in this work suggests
an appropriate value but we found it worth investigating whether the energy actually
converges when increasing the cutoff energy. The calculated energies per atom depending
on the cutoff energy for each of the combinations of material and exchange-correlation
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4.2. K-SPACE GRID DFT PARAMETER ANALYSIS

functional are shown in figure 4.1a and shifted for an easier presentation in figure 4.1b.
From the latter plot, it can be seen more easily that a cutoff energy Ecut = 500 eV is a
reasonable cutoff and will therefore be used in all following calculations. This value is
much higher for both Al and Cu than suggested by VASP but since we expect more wave
functions with higher energies to be relevant at higher electron temperatures, we will use
this higher cutoff energy. Also, by using such a high cutoff energy, we also avoid Pulay
stresses that arise due to the incompleteness of our basis set.
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Figure 4.1: Energy per atom depending on the cutoff energy used during VASP calculations
of 32 Al or Cu atoms using LDA or PBE. In (a), the exact values are shown. In (b), the
energies are shifted so that the energy per atom at the largest cutoff energy is the same in
all plots.

4.2 K-space grid

Next, the density of the k-space grid has to be adjusted such that the energy converges. As
can be seen in figure 4.2a and shifted for an easier presentation in figure 4.2b, the energy
converges quickly when increasing the density of the k-space grid and only changes by a
small amount starting at four points per dimension for each material and functional. To
be safe, a 6x6x6 grid is chosen and convergence is checked regularly in case this choice isn’t
applicable for different structures or electron temperatures.
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Figure 4.2: Energy per atom depending on the k-space grid size used during VASP cal-
culations of 32 atoms in an fcc structure using LDA or PBE. In (a), the exact values are
shown. In (b), the energies are shifted so that the energy per atom at the largest cutoff
energy is the same in all plots.

4.3 Convergence criteria of DFT

Besides the cutoff energy and k-space grid, also the convergence criterion of our DFT
calculation can be adjusted. In all calculations with the focus on structural information
and thermodynamic properties of the structures, an accuracy Econv = 1 · 10−4 eV is chosen.
For the phonon spectra, we choose Econv = 1 · 10−6 eV since phonon calculations rely on
small differences in the energies.
Besides the energy convergence, it is checked regularly whether the structure is relaxed as
well by ensuring that the forces are small. As a criterion, all forces have to be smaller than
1 · 10−3 eV/Å for the structural optimisation. Since we fix the structures for the phonon
calculations, this atomic convergence criterion is irrelevant for these calculation.

4.4 Number of MD steps

During the production runs, the atoms are allowed to change their positions according
to a CG algorithm. In case, the atoms were in an originally unfavourable configuration,
they can thus move towards an energetically more favourable configuration according to a
CG algorithm. Benchmarking runs with 32 and 108 atoms in different configurations have
shown that the maximum number of MD steps of 30 is generally sufficient but is checked
regularly if a structural optimisation is performed starting with a structure that differs
greatly from the relaxed structure.
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4.5. SYSTEM SIZE DFT PARAMETER ANALYSIS

4.5 System size

Of course, the number of atoms in the system has an effect on the accuracy of the physical
quantities acquired by statistics. Benchmark calculations, however, revealed that due to
Periodic boundary conditions (PBCs), the energies are only slightly influenced by the
system size. As will be shown later, the elastic constants showed an improvement for a
larger system compared to a smaller system.
Since phonon calculations rely on small energy differences, the system has to be chosen as
large as possible, whereas for the calculations of the electron DOS, the quality of the DOS
barely depends on the system size. Also, we can’t choose the system size as large as we
otherwise do due to the increased density of the k-space grid needed for DOS calculations.
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Chapter 5

Analysis

This chapter is mainly divided into two parts. The first part consisting of section 5.1 and
section 5.2 is dedicated to finding the ground state structures, their cohesive energies and
the elastic constants of pure aluminium and copper, as well as their alloys. The second
part consisting of section 5.3 and section 5.4 is dedicated to the change in properties
occurring in excited materials. In section 5.3, we calculate the relaxed structures at different
electron temperatures, several thermodynamic properties in the relaxed structures and the
unexcited structures, electron temperature-dependent elastic constants and phonon spectra
and the density of states of pure aluminium and copper and repeat the same in section 5.4
for the Al-Cu alloys.

5.1 Properties of non-excited Al and Cu

We start the analysis by doing ground state calculations on pure aluminium and copper. We
first discuss two methods of finding the relaxed structure. Having found these structures,
we can calculate the cohesive energy, as well as elastic constants and compare them to
other investigations of the materials of interest.

5.1.1 Most favourable structures of Al and Cu

In order to find the relaxed structure, we have in principle two different approaches with
different advantages and disadvantages. One is performing several DFT calculations on
systems with different volumes and each with fixed atomic positions and fixed box volume.
The minimum energy among these calculations yields the relaxed structure. We will call
this method static relaxation because the structure remains static during each calculation.
On the other hand, one can use some MD-DFT method, or in our case a CG algorithm
with a simulation box that is allowed to change in volume and shape and atom positions
that can change to relax the structure that we will call dynymic relaxation. While the
latter seems like an easy choice, this relaxation method can take a long time or might not
relax into the correct structure if the initial structure differs too much from the relaxed
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structure. Furthermore, within the atomic convergence criterion of the dynamic relaxation,
the dynamic relaxation could yield a much more precise relaxed structure given the same
electronic convergence criterion. What’s more is the fact that we can find the energetically
most favourable structure for structures that are not as stable as the true ground state
structure, for example the Basis-centered cubic (bcc) and Simple cubic (sc) structure in
aluminium even though the fcc structure is the most stable one. The atomic relaxation
could potentially lead to a phase transformation which in some cases is not wanted when
starting in a structure that is not the ground state structure.
We test both methods on pure aluminium and copper systems, consisting of 32 atoms in
an fcc structure, a bcc structure with 16 atoms and an sc structure with eight atoms, i.e.
two unit cells in each direction for each structure. For the fcc structure, we also perform
the structure relaxation for a system consisting of 108 atoms in the fcc structure to show
the accuracy of the smaller systems compared to the larger ones.
In figure 5.1, the energies per atom are shown for these three structures depending on the
lattice constant using an LDA or PBE functional since at this point, we haven’t chosen
the exchange-correlation functional that we want to use for the rest of the calculations
yet. Each curve is accompanied by a flat-looking line which is obtained from a dynamic
relaxation. In figure 5.2, the energy per atom is shown in the same way for Cu.
Especially for copper, we find that during a dynamic relaxation, the starting lattice con-
stant must be very close to the energetically most favourable one. Therefore and in general,
the starting configuration has to be chosen with care and plausibility has to be checked.

The lattice constants which lead to the minimum energy in Al and Cu for each structure
and using the LDA and PBE exchange-correlation functional are listed in table 5.1. As can
be seen, calculations with the LDA functional leads to slightly smaller lattice constants
compared to calculations with the PBE functional. This overbinding of LDA functionals
is well-known, as well as the fact that LDA generally produces lower energies as shown in
figure 5.1. The larger systems yielded the exact same ground state lattice constant. The
obtained lattice constants of aluminium and copper are comparable to the ones obtained
from x-ray diffraction experiments 4.046 Å and 3.597 Å respectively [28].
Since the DFT calculations are performed at zero-temperature, some deviations from exper-
imental results which usually are performed at room temperature, are expected. However,
this technically incorrect temperature should only barely affect the calculated structures
since even room temperature is a comparably low temperature. We assume that the short-
comings of the exchange-correlation functionals are much greater than the error introduced
by different but low temperatures.

5.1.2 Cohesive energy of Al and Cu structures

The cohesive energy is the energy gained by atoms when forming structures that are
energetically more favourable than unbound atoms. It can be obtained from ab initio
calculations by calculating the energy of a single atom Es and the bulk structure consisting
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Figure 5.1: Energy per atom depending on the lattice constant used during VASP calcula-
tions of 32 Al atoms using LDA or PBE. Each curve is accompanied by a flat-looking line
which is obtained from a structure with the given lattice constant but was allowed to move
to the structure with the lowest energy by changing the shape and size of the simulation
box.
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Figure 5.2: Energy per atom depending on the lattice constant used during VASP calcula-
tions of 32 Cu atoms using LDA or PBE. Each curve is accompanied by a flat-looking line
which is obtained from a structure with the given lattice constant but was allowed to move
to the structure with the lowest energy by changing the shape and size of the simulation
box.
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Table 5.1: Lattice constants which result in minimal energy in different structures using
an LDA or PBE functional. All values constants are given in Å.

FCC LDA FCC PBE BCC LDA BCC PBE SC LDA SC PBE
Al 3.99 4.04 3.19 3.24 2.69 2.73
Cu 3.52 3.64 2.81 2.90 2.33 2.40

Al, large 4.03 4.04 - - - -
Cu, large 3.63 3.64 - - - -

of ns atoms Ebulk. Then, the cohesive energy per atom is given by

Ecoh =
Ebulk − nsEs

ns

. (5.1)

In the case of the single-atom calculations, the spin polarization of the atom has to be
taken into account. Technically, spin polarization could be included in all calculations but
it is known that in bulk, spin polarization doesn’t occur and can therefore be neglected.
Furthermore, it has to be ensured that the system is large enough so that the atom doesn’t
interact with itself due to PBCs. Therefore, single-atom calculations are performed for
different system sizes. The resulting energies depending on the system size for aluminium
and copper calculated with LDA and PBE are shown in figure 5.3
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Figure 5.3: Single-atom energies of aluminium and copper calculated with LDA and PBE
depending on the system size.
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As can be seen in figure 5.3, the single-atom energy converges nicely. To be save, the
value corresponding to the largest system is chosen to calculate the cohesive energy. The
single-atom energies and bulk energies of an fcc structure consisting of 108 atom are listed
in table 5.2 together with the resulting cohesive energy calculated using (5.1). The exper-
imentally determined cohesive energy of aluminium are also given in table 5.2. Note that
in literature, the cohesive energy is often stated as a positive value. However, calculated
from (5.1), the cohesive energy is negative for a stable structure. Only looking at the abso-
lute value of the cohesive energy, it can be concluded that the calculations using PBE are
very close to the experimental values with deviations of a few percent but the calculations
using LDA generally result in cohesive energies that are too large. This behaviour was also
observed in other investigations using these functionals [29].

Table 5.2: Single atom energies and bulk energies from fcc structures consisting of 108
atoms using LDA and PBE for aluminium and copper, as well as the resulting cohesive
energies.

Material Functional Es [eV] Ebulk [eV] Ecoh [eV] Eexp
coh [eV ]

Al
LDA -0.135 -405.846 -3.622

3.39 [30]
PBE -0.197 -404.383 -3.547

Cu
LDA -0.187 -400.922 -3.525

3.49 [30]
PBE -0.242 -402.448 -3.484

5.1.3 Stresses and elastic constants of Al and Cu

In this section, we calculate the elastic constants of pure aluminium and copper using the
python module Elastic [23, 24]. For each independent direction, we distort the relaxed
structure in five steps up to a maximum distortion of 2 %. While we found that the num-
ber of distortions per type of transformation barely affects the elastic constants, the size
of the distortion is chosen in accordance to usual experimental values.
We perform the elastic constants calculations on systems consisting of 108 atoms of Al and
Cu respectively, each in an fcc structure using both LDA and PBE and use the results of
these calculations together with the previous results to decide whether we should use LDA
or PBE for all following calculations.

In table 5.3, the elastic constants of aluminium and copper are given for both, LDA and
PBE. Comparing these values to values that have been obtained experimentally by mea-
suring the velocity of ultrasonic waves in longitudinal and transversal direction that are
also listed in table 5.3, we see excellent agreement for copper using PBE and fairly good
agreement for aluminium using PBE; the calculations using LDA seem closer to the exper-
imental values for aluminium but greatly differ for copper.
Still it should be noted that the experimental values for both metals were obtained from
experiments performed at temperatures around 4 K.
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Table 5.3: Elastic constants C11 and C12 obtained from VASP calculations using an LDA
and PBE functional applied to aluminium and copper.

Material Functional C11 [GPa] C12 [GPa] C44 [GPa]

Al
LDA 133.671 42.646 50.540
PBE 136.331 47.475 55.145

Experiment ([31]) 116.3 64.8 30.9

Cu
LDA 145.353 115.182 58.763
PBE 175.263 119.485 79.408

Experiment ([32]) 176.99 124.97 81.45
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5.2 Properties of non-excited Al-Cu alloys

Aluminium and copper form a multitude of alloys depending on the fraction of either metal,
as well as conditions like temperature. This can clearly be seen in the alloy phase diagram
displayed in figure 5.4. For the applications this thesis is aimed at, the phases with low
copper percentage, namely the θ and θ′ phase, as well as the Guinier-Preston (GP) phase
are the most important structures.
The GPI phase describes disk-like layers with a thickness of one atom and a radius of a
few nanometres. In Al-Cu alloys, the copper atoms lie in the (100)-plane of the aluminium
crystal. Here, the GPI phase is modelled by a monolayer of copper between 11 layers of
aluminium. While this doesn’t capture the full extent of this phase, it does accurately
reproduce the correct copper percentage and has successfully been used previously [33].
The GPII zone, sometimes referred to as θ′′ phase consists of two or more layers of (100)
layers of copper separated by three layers of aluminium. In our case, two layers of copper
between three layers of aluminium will be used as was in a previous DFT investigation
[34].
The θ′ phase is the most important phase for precipitation hardening of Al-Cu alloys. It is
built up by a tetragonally distorted cubic fluorite structure when embedded in aluminium.
Finally, the θ structure is incoherent to both the aluminium and the copper crystal. At
lower copper percentages in the entire system, the θ structure is embedded into the sur-
rounding aluminium lattice. If the copper percentage of the entire system is sufficiently
high, the structure can form globally. The latter can only happen at T 6= 0 since this
structure is entropically stabilised as was shown in [35].
The crystal structure of all four structures that will be considered in this work are shown
in figure 5.5.
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Figure 5.4: Phase diagram of Al-Cu alloys. Taken from [36].
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(a) (b)

(c) (d)

Figure 5.5: Al-Cu structures that will be considered in this work. (a) shows the structure
that represents the GPI zone, (b) the GPII zone, (c) the θ’ structure and (d) the θ structure.

5.2.1 Formation energies of non-excited Al-Cu alloys

Similar to (5.1), the formation energy of an alloy consisting of nAl aluminium atoms and
nCu copper atoms can be calculated via

EForm =
Ealloy

bulk − nAlE
Al
bulk − nCuE

Cu
bulk

nAl + nCu

. (5.2)

Here, Ealloy
bulk , EAl

bulk and ECu
bulk are the bulk energies per atom of the alloy, or pure aluminium

and copper respectively. To calculate the formation energies of the four alloys that we
want to focus on in this work, we use a θ (I4-mcm) structure consisting of 64 Al atoms
and 32 Cu atoms, a θ’ structure (I4-mmm) also consisting of 64 Al atoms and 32 Cu
atoms, a GPI structure consisting of 88 Al atoms and 8 Cu atoms and a GPII structure
consisting of 48 Al atoms and 32 Cu atoms. The resulting formation energies are given in

36



5.2. PROPERTIES OF NON-EXCITED AL-CU ALLOYS ANALYSIS

table 5.4. It turns out that the calculated formation energies of the θ and θ’ structure are
in line with previous investigations [34, 35]. As before, LDA delivers formation energies
that are lower than the ones obtained from PBE. Still, both functionals reproduce the fact
that the θ’ structure has a lower energy than the θ structure at zero-temperature, as first
noted by [35]. Since the θ structure is known to be entropically stabilised at temperatures
far above room temperature, it can be expected that this will change at some point once
electronically excited materials will be considered.

Since the formation energies are almost identical using both exchange-correlation function-
als, we finally decide that PBE will be used in all further calculations, especially since the
elastic constants of copper are greatly underestimated using LDA. LDA might yield slightly
better results for aluminium but we want to keep all calculations consistent and since the
error introduced by using LDA for copper is much greater than the error introduced by
using PBE for aluminium here and in the previous section, we choose PBE for all further
calculations.

Table 5.4: Bulk energies of a GPI structure consisting of 96 atoms, a GPII structure
consisting of 80 atoms, a θ’ structure consisting of 96 atoms and a θ structure consisting of
96 atoms using LDA and PBE, as well as the resulting formation energies of each structure.

Structure Functional Ealloy
bulk [eV] EForm [eV]

GPI
LDA -363.123 -0.028
PBE -362.051 0.029

GPII
LDA -305.300 -0.077
PBE -305.103 -0.077

θ’
LDA -375.634 -0.170
PBE -375.329 -0.172

θ
LDA -374.059 -0.154
PBE -373.752 0.155
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5.3 Properties of excited Al and Cu

In this chapter, we want to extend the previous calculations to excited aluminium, copper
and their alloys. Even though, we originally weren’t interested in it, we also extend many
calculations in this chapter to silicon since we have more reference data for it and expect
effects like bond-softening due to the excitation that is in contrast to the bond-hardening
that has previously been observed in several metals.
We start by determining the relaxed structures at different electron temperatures and
calculate thermodynamic properties like the internal energy, free energy in the excited
and unexcited structures. Based on these calculations, we then calculate elastic constants
at various degrees of excitement. Next, we want to get more insight into the structural
stability which influences the melting behaviour during laser treatment by calculating the
phonon spectra and make an attempt to compare our findings to an analytical approach
using the DOS of each material.

5.3.1 Thermodynamic properties of excited Al and Cu

We start this part by calculating the structures in which the excited systems are relaxed.
To do so, we perform a structure relaxation using the CG method mentioned previously.
Doing so also gives us some insight in the free energy and the internal energy, i.e. the free
energy calculated by VASP without entropy. As shown in figure 5.6, the system expands
if the electron temperature is increased in aluminium and copper. We suspect that this is
due to the increase in degeneracy pressure. Later, we will go into more detail as to how
we get to this conclusion. Furthermore, we can see in figure 5.7 that the free energy per
atom decreases for both systems. This comes to no surprise since the entropic contribution
−TcSe to the free energy decreases with the electron temperature Tc. On the other hand,
as can be seen in figure 5.8, the internal energy increases. In a simple perception of bond
strength, this would indicate bond weakening as can be observed in silicon [37]. It is very
important to note that the concept of a lattice constant is not valid anymore if the internal
energy is larger than zero since this indicates a purely repulsive bonding behaviour. The
DFT calculations most likely only converge since, at these very high electron temperatures,
the atoms have such a large distance due to the increase in pressure in the simulation box
that they barely interact with each other. Within the convergence criterion, the forces at
the end of a self-consistent loop and before the next MD step during the DFT calculation
are small enough for convergence to be achieved.
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Figure 5.6: Volume per atom in Al, Cu and Si at different electron temperatures.
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Figure 5.7: Free energy per atom in Al, Cu and Si at different electron temperatures.
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Figure 5.8: Internal energy per atom in Al, Cu and Si at different electron temperatures.

In these previous plots, we also include silicon as a comparison. The results for silicon are
qualitatively very much in line with what was presented in [1]. Quantitative differences
most likely only stem from the fact that in [1], LDA calculations were performed there and
PBE is used here.

Since we initially didn’t expect to see this expansion and increase in internal energy in
metals like Al and Cu as we did in silicon, we next check whether the parameters used
in our DFT calculation are appropriate for high-Tc calculations. For that, we repeat sev-
eral calculations with a more strict convergence criterion, a denser k-space grid, a higher
energy cutoff and number of bands considered in the calculation, as well as taking spin-
polarization into account. We also test the exchange-correlation function for its validity in
excited materials and limit the symmetries that VASP uses in order to accelerate the calcu-
lations. To not interrupt the reading flow too much and to avoid redundancy, we collected
all the plots in appendix E. In summary, we found the parameters previously used to still
be appropriate at higher Tc. Deviations between the calculations exist but are negligible
since they only affect the accuracy of the calculations slightly but not their general trend.
Here, it is important to note that some calculations are not repeated for the entire range
of electron temperature due to the computational expense of these calculations.
As a last test, we want to avoid any simulation cell relaxation-related issues and perform a
series of static relaxations in a broad range of volumes. Repeating this for several different
electron temperatures yields the free energy curves shown in figure 5.9 for aluminium and
in figure 5.10 for copper. Plotting the minima of the free energy curves again results in the
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minimum free energy volume per atom shown in figure 5.6. Since these volumes per atom
nicely match those of the complete relaxation with variable cell shape and size, we can now
safely assume that no problems arise during the complete relaxation and that the volume
per atom of the relaxed structure does indeed increase with the electron temperature.
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F
re

e
en

er
gy

p
er

at
om

[e
V

]

kBTc=0.0 eV
kBTc=0.4 eV
kBTc=0.8 eV
kBTc=1.2 eV
kBTc=1.6 eV
kBTc=2.0 eV

Figure 5.9: Free energy curves depending on the volume per atom for aluminium at different
electron temperatures. The dots indicate the minimum of the free energy.
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Figure 5.10: Free energy curves depending on the volume per atom for copper at different
electron temperatures. The dots indicate the minimum of the free energy.

We can get more information about the expansion of our systems upon electronic excita-
tion by performing an electronic optimization for the fixed structure at different electron
temperatures. We therefore show the pressure depending on the electron temperature in
Al, Cu and Si after an electronic relaxation in the ground state unexcited structures re-
spectively. Similarly to the minima of the free energy curves at different volumes shown
in figure 5.6, the pressure increases with the electron temperature for Al, Cu and Si as is
shown in figure 5.11. Extrapolating the pressure in silicon to Tc = 6 eV, we end up with
a pressure that comes close to the 200 GPa stated in [38]. Again, an exact quantitative
comparison is meaningless since in [38], LDA calculations were performed.
As indicated earlier, we also want to get more insight in the pressure arising upon electronic
excitation by considering the free energy depending on the volume as was done in [39] for
magnesium. For that, we use the definition of the degeneracy pressure that is described
in more detail in appendix B in a simulation box with the volume Vi and approximate it
using the midpoint rule

pi = −∂F
∂V

∣∣∣∣
N,T,Vi

≈ −F (Vi+1)− F (Vi−1)

Vi+1 − Vi−1

. (5.3)

We thus calculate the numerical derivative of the free energy at the ground state volume.
Doing so for aluminium, copper and silicon yields the values shown in figure 5.11. The
pressure obtained with this method are almost exactly the same pressures as directly
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given by VASP in the ground state structure. This finally allows us to call the pressure we
observed degeneracy pressure. We want to go ahead and try to compare the final expression
of the expansion pressure given in (B.33) to the numerically obtained pressures.
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Figure 5.11: Pressure in the Tc = 0 structure depending on the electron temperatures in
aluminium, copper and silicon. The line represents the direct output by VASP after an
electronic relaxation and the dots represent the pressure from a numerical derivative of the
free energy with respect to the volume from figure 5.9 and figure 5.10.

At this point, we are very certain that the results from the calculations at Tc > 0 are
correct within the accuracy of the chosen parameters and approximations. In the next
sections, we will look at other properties that sets silicon apart from the metals.
Since we’re interested in ultrafast processes during laser treatment of materials, we now
have to look at two kinds of systems separately: The system in which the atomic structure
is unchanged while the electrons are highly excited and the completely relaxed but excited
systems. This distinction will become clearer in the following section.
To get more insights in the bonding behaviour and to further validate the findings so far,
we calculated both the band structure and the phonon spectra for Al, Cu and Si at different
Tc. This should also allow us to compare our calculations with a wider variety of other
DFT calculations.
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5.3.2 Elastic constants of excited Al and Cu

We now turn to the elastic constants of pure aluminium, copper and silicon. We include
silicon in these calculations since we can compare our calculations to the ones shown in
[1]. Also, silicon is well-known to show bond-weakening during laser irradiation and even
non-thermal melting [37, 40]. Since we expect some kind of bond-hardening in metals, we
hope to differentiate between the metals and the semiconductor already from the elastic
constants.
We calculate the elastic constants C11, C12 and C44, as well as the bulk modulus K in sys-
tems with their unexcited structures and the completely relaxed structures and first look
at the elastic constants based on the relaxed structures at different electron temperatures.
Please note again that one has to be careful with these results since they don’t represent
the reality of ultrafast processes where the atoms reside in the unexcited structure.
In figure 5.12, figure 5.13 and figure 5.14, the calculated elastic constants based on the
relaxed structures at several given electron temperatures are shown for Al, Cu and Si
respectively. Compared to the dissertation of Alexander Kiselev [1] where the elastic con-
stants of silicon were already calculated in the same way, there is only a small deviation the
elastic constants of silicon that, as before, most likely stems from the different exchange-
correlation functionals. The elastic constants in figure 5.12 all decrease monotonously
except for a jump in the beginning. We checked again whether this initial jump was due to
a faulty calculation but this doesn’t seem to be the case. The elastic constants of copper
shown in figure 5.13 on the other hand show a non-monotonous behaviour.
We can apply Born’s criteria (2.18) for lattice stability here. Since all three elastic con-
stants of aluminium and silicon decrease, we expect the lattice to be unstable at electron
temperatures slightly above kBTc = 2 eV in both materials. Due to the non-monotonous
behaviour of the elastic constants of copper, we can’t make a clear prediction of the lattice
stability. This behaviour will become more obvious for all three materials when calculating
the elastic constants based on the unexcited structures.
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Figure 5.12: Elastic constants and bulk modulus K of Al depending on the electron tem-
perature based on the relaxed structure at the respective electron temperature.
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Figure 5.13: Elastic constants and bulk modulus K of Cu depending on the electron
temperature based on the relaxed structure at the respective electron temperature.
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Figure 5.14: Elastic constants and bulk modulus K of Si depending on the electron tem-
perature based on the relaxed structure at the respective electron temperature.

In figure 5.15, figure 5.16 and figure 5.17, the elastic constants are shown for Al, Cu and
Si based on the relaxed structure at Tc = 0.
In silicon, we expect the second of Born’s stability criteria to be broken at temperatures
not far above kBTc = 2 eV from previous investigations [41, 1]. As shown in figure 5.17,
C11 and C44 show a similar behaviour to when the structure is free to relax. C12 on the
other hand increases monotonously. Especially since C11 and C12 approach each other at
higher electron temperatures, we expect the lattice to become completely unstable just
above kBTc = 2 eV.
The elastic constants of aluminium, shown in figure 5.15, on the other hand shows a non-
monotonous behaviour. Both C11 and C44 initially decrease, then slowly increase. C44 has
a somewhat inverted behaviour, increasing quickly at first, then staying mostly flat. Due
to the inverse behaviour of C11 and C12, the bulk modulus stays mostly constants with a
small increase at higher electron temperatures. Applying Born’s stability criteria (2.18)
again, we expect the stability to increase slightly since C11−C12 increases slightly and C44

increases after the initial decrease.
The elastic constants of copper, shown in figure 5.13, again behave differently to the other
materials. C11 and C44 first decrease, then increase noticeably, while C12 stays more or less
constant. Due to the much stronger increase of C11 compared to the decrease of C12, the
bulk modulus increase after a small dip at around kBTc = 0.4 eV.
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Figure 5.15: Elastic constants and bulk modulus K of Al depending on the electron tem-
perature based on the unexcited structure.
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Figure 5.16: Elastic constants and bulk modulus K of Cu depending on the electron
temperature based on the unexcited structure.
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Figure 5.17: Elastic constants and bulk modulus K of Si depending on the electron tem-
perature based on the unexcited structure.

5.3.3 Phonon spectra of excited Al and Cu

Next, in order to confirm the stability changes under excitation and to get a prediction of
the melting dynamics under laser irradiation, we calculate phonon spectra of aluminium
and copper and compare them to the semiconductor silicon. For these calculations we
increased the accuracy by using a 9x9x9 k space grid and a cutoff energy of 1 · 10−6 eV
since these calculations rely on small energy differences and we found the previously used
parameters to yield incorrect results.
The calculated phonon spectra are shown in figure 5.18 for aluminium, in figure 5.19 for
copper and in figure 5.20 for silicon. In the phonon spectra of aluminium and copper, we
can see the three acoustical and no optical modes that we expected since the primitive
cell of the fcc structure only contains one atom. In the phonon spectrum of silicon, on the
other hand, we can see the three acoustical modes again and also three optical mode since
the unit cell of the diamond structure in silicon contains two atoms.
Furthermore, all phonon spectra are qualitatively and quantitatively very well in line with
other DFT calculations and experimental investigations [42, 43, 38].
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Figure 5.18: Calculated phonon spectrum of non-excited aluminium.
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Figure 5.19: Calculated phonon spectrum of non-excited copper.

51



5.3. PROPERTIES OF EXCITED AL AND CU ANALYSIS

Γ X Γ L W X
0

2

4

6

8

10

12

14

Wave vector

F
re

q
u

en
cy

[T
H

z]

Figure 5.20: Calculated phonon spectrum of non-excited silicon.

Next, we calculate the phonon spectra at different degrees of excitation to investigate the
changes in the bond strength in different materials. From the calculation of the elastic
constants, we learned that the structure these calculations are based on have a big impact
on the results and only the results from the relaxed structure at Tc = 0 are truly mean-
ingful in the context of ultrafast laser ablation. We therefore focus on the results from the
Tc = 0 structures and only quickly comment on the results from the relaxed structures at
each electron temperature afterwards.
The phonon spectra of Al, Cu and Si at different electron temperatures in the unexcited
structures are shown in figure 5.21, figure 5.22 and figure 5.23. A clear difference between
the metal and semiconductor phonon spectra becomes obvious. While the frequencies in
aluminium stay more or less unchanged during excitation, the frequencies in copper are
shifted towards higher values upon increase in electron temperature, indicating what is
generally referred to as bond-hardening, that has already been observed in similar DFT
calculations concerned with magnesium and gold [39, 38, 44]. In particular, we can repro-
duce a very similar change in the different modes in copper as was previously only seen in
gold. In the semiconductor that is silicon, we see a completely different picture. Here, the
frequencies are shifted to lower values with increasing electron temperature, even reaching
negative, sometimes called imaginary, values. This indicates the lattice instability that is
also found during laser irradiation experimentally.
We choose the modes with the highest frequencies at the symmetry points L and X and
plot these frequencies over the electron temperature in figure 5.24 for aluminium, in fig-
ure 5.25 for copper and in figure 5.26 respectively for silicon. Note that the change in
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bond strength can be seen in the highest frequency at X in an fcc structure and at L in a
diamond structure.
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Figure 5.21: Calculated phonon spectrum of aluminium at different electron temperatures
Tc in the relaxed Tc = 0 structure.
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Figure 5.22: Calculated phonon spectrum of copper at different electron temperatures Tc
in the relaxed Tc = 0 structure.
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Figure 5.23: Calculated phonon spectrum of silicon at different electron temperatures Tc
in the relaxed Tc = 0 structure.
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Figure 5.24: Phonon frequency of the mode at X and L depending on the electron temper-
ature in aluminium in the relaxed in the relaxed Tc = 0 structure.
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Figure 5.25: Phonon frequency of the mode at X and L depending on the electron temper-
ature in copper in the relaxed Tc = 0 structure.
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Figure 5.26: Phonon frequency of the mode at X and L depending on the electron temper-
ature in silicon in the relaxed Tc = 0 structure.

Very similar to the elastic constants, the high-temperature behaviour of the phonon spectra
is very different in the relaxed structure at each electron temperature. As did the elastic
constants in aluminium, copper and silicon, the frequencies both at X and L decrease with
the temperature due to the expansion and the vanishing pressure in the simulation box.
The bond-softening in silicon is thus still present but far less prominent than in the case of
the fixed box size. Now, we encounter no negative frequencies and thus no complete lattice
instability. This means that silicon is more stable during strong excitations in its relaxed
structure than it is in the unexcited structure. On the other hand, aluminium and copper
are less stable in the relaxed structures than they are in the unexcited structures.
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Figure 5.27: Phonon frequency of the mode at X and L depending on the electron temper-
ature in aluminium in the relaxed structure of each electron temperature.
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Figure 5.28: Phonon frequency of the mode at X and L depending on the electron temper-
ature in copper in the relaxed structure of each electron temperature.
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Figure 5.29: Phonon frequency of the mode at X and L depending on the electron temper-
ature in silicon in the relaxed structure of each electron temperature.

5.3.4 Density of states of excited Al and Cu

We begin this section by displaying the DOS of non-excited aluminium and copper. It is
important to note here that VASP doesn’t write a usable DOS for electron temperatures
below a certain temperature. We don’t know the reason for this behaviour since the
integrated DOS

N(E) =

∫ E

−∞
D(Ẽ) dẼ (5.4)

is output without any problems. We tried reproducing the DOS from the integrated DOS
but due to the limited decimal places of the DOS output which - as far as we know -
cannot be adjusted without access to the source code, the DOS was not usable for further
calculations. We also don’t know the limit for this phenomenon but found kBTc = 0.01 eV
to work fine. This issue doesn’t appear again at higher electron temperatures. Since
kBTc = 0.01 eV is still very low compared to the next larger value, we assume that the
DOS and properties calculated with it are not effected by this. Furthermore, we should
also note that we again increased the accuracy of the calculations. We use the convergence
criterion ∆Econv = 1 · 10−4 eV and a k-space grid of 31x31x31 points. Sampling the k-
space grid accurately is very important for these kinds of calculations since non-physical
fluctuations decrease with increasing density of the k-space grid. For all DOS calculations,
we also use smaller systems only consisting of only two unit cells.
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We start by calculating the DOS of unexcited aluminium which is an attractive starting
point since we can compare it to the one of a free electron gas. Details on the theoretical
DOS can be found in appendix B. As derived there, the DOS D(E) at energy E of a free
electron gas in the volume Ω is given by

D(E) =
Ω

2π2

(
2m

h̄2

)3/2√
E. (5.5)

As shown in figure 5.30, the DOS of aluminium obtained using VASP is in great accor-
dance to the square root-like DOS of a free electron gas which is expected to be a valid
approximation for aluminium. On the other hand, the DOS of copper shown in figure 5.31
cannot be compared to the free electron gas. This is due to the d-electrons that aluminium
doesn’t have.
The DOS of both aluminium and copper directly from the VASP output contained unphys-
ical fluctuations. In order to handle these fluctuations while making the physically relevant
details visible, we average the data. Originally written with 3001 DOS data points, we
average 51 in aluminium and only 9 in copper. There’s a difference between the number
of data points that are averaged since we saw stronger fluctuations in aluminium than in
copper and we couldn’t average over more data points in copper due to its narrower peaks
in the DOS. The standard deviations arising from the averaging are also shown in the DOS
plots of non-excited aluminium figure 5.30 and copper figure 5.31.
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Figure 5.30: Calculated density of states and its standard deviation of non-excited alu-
minium with a fit to the free electron gas (5.5).
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Figure 5.31: Calculated density of states and its standard deviation of non-excited copper.

The Fermi energy and the DOS at the Fermi energy are indicated in figure 5.30 and
figure 5.31 by black lines. These values are given in table 5.5. Even though both DOS
look similar to other DFT investigations [45], we clearly lack a lot of detail but couldn’t
find a set of parameters that resulted in a more detailed DOS. Averaging our data clearly
has an impact on the level of detail we can achieve. Without it, however, we have clearly
unphysical oscillations in our DOS that are distinctly different to those from the DFT
calculations presented in [45].
According to the Sommerfeld model, the degeneracy pressure is proportional to the DOS
at the Fermi energy, to be exact

p =
2

5

N

Ω
EF +

π2

18
(kBTc)

2D(EF). (5.6)

This expression was derived in appendix B. Revisiting the pressure in the unexcited struc-
tures shown in figure 5.11, we unfortunately cannot exactly reproduce this behaviour.
While at low temperatures, where the Sommerfeld model is more accurate, the pressure
follows a more or less quadratic curve, the pressure becomes rather linear with electron
temperature at higher electron temperatures. This discrepancy could potentially stem from
higher-order contributions to the Sommerfeld expansion that we left out. However, what’s
most different between the Sommerfeld model and our calculations is the fact that copper
shows higher pressures in the unexcited structure compared to aluminium even though
aluminium has a higher DOS at the Fermi energy than copper. Since we aren’t completely
satisfied with our DOS, it might be the cause of the DOS at the Fermi energy and thus
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the pressures according to the Sommerfeld model to show a different behaviour than what
we expected.

Together with the electron temperature-dependent DOS of aluminium in figure 5.32 and
of copper in figure 5.33, these values will be used to calculate the temperature-dependence
of the chemical potential. Note again that the derivation of the chemical potential and
other thermodynamic properties are given in appendix B. To no surprise, the electron
temperature-dependent DOS become smoother at very low and very high energies due to
the smearing of the states. Also, as a consequence of the partial occupancies from the
smearing, we loose a lot of detail in the electronic structure. This is the main reason why
we can’t calculate thermodynamic properties besides the chemical potential with great
accuracy and will leave them out here. Since the number of electrons still has to remain
the same at higher temperatures, the chemical potential can still be obtained with good
accuracy.

Table 5.5: Fermi energy and DOS at the Fermi energy in non-excited aluminium and
copper.

System EF [eV] D(EF ) [states/eV/atom]
Al 8.021 0.402
Cu 7.394 0.307
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Figure 5.32: Calculated DOS of aluminium at different electron temperatures.
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Figure 5.33: Calculated DOS of copper at different electron temperatures.

The chemical potential within the Sommerfeld expansion is given by

µ = EF

[
1− π2

12

(
kBTc
EF

)2
]

(5.7)

and is automatically calculated by VASP from the conservation of electrons. Results
from the Sommerfeld expansion and our VASP calculations are shown in figure 5.34 for
aluminium and in figure 5.35 for copper. To no surprise, the Sommerfeld model predicts
the change in chemical potential of aluminium very well at lower temperatures and with
small deviations at high temperatures. Since the Sommerfeld model in our case only takes
terms up to the second order in kBTc into account and is therefore a low-temperature
approximation, this deviation seems reasonable. In fact, the DOS at Tc = 0 has been
used in other DFT investigations [45] with different Fermi smearings without the need of
high-temperature DFT calculations and found the same electron temperature-dependence
of the chemical potential.
In copper we see a different behaviour. While the Sommerfeld model might make correct
predictions at very low temperatures, it completely fails above kBTc = 0.2 eV since the
chemical potential increases with Tc.
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Figure 5.34: Chemical potential of aluminium depending on the electron temperature
calculated directly from the conservation of electrons with a comparison to the Sommerfeld
model prediction.
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Figure 5.35: Chemical potential of aluminium depending on the electron temperature
calculated directly from the conservation of electrons with a comparison to the Sommerfeld
model prediction.

We can understand both changes in the chemical potential remembering the conservation
of electrons. In aluminium, the DOS increases monotonously. Therefore, with increasing
temperature, the Fermi smearing allows for occupation of higher energy regions with a
higher DOS. To keep the number of electrons constant, the chemical potential then has
to be shifted towards lower energies. In copper on the other hand, the d-electrons below
the Fermi energy have a very high DOS. With increasing smearing, more d-electrons are
excited to energy regions with lower DOS. To keep the number of electrons constant in
this case, the chemical potential has to be shifted towards higher energies.

We tried calculating other properties like the internal energy. However, we found the
quality of our electron temperature-dependent DOS insufficient for these properties and
need more time to investigate the issues that arose. Since we could reproduce the behaviour
of the chemical potential that was also shown in the only work we found addressing the
electron temperature-dependence of thermodynamic properties from the DOS [45] without
the need for actual temperature-dependent DOS, this might not even be worth looking
into.
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5.4 Properties of excited Al-Cu alloys

In this chapter, we extend our analysis to Al-Cu alloys and perform analogous calculations
to the ones we did for pure aluminium and copper. Similarly to the pure metals, we start by
looking at the thermodynamic properties of the alloys, calculating the relaxed structure at
different electron temperatures and the respective internal and free energies, as well as the
pressure in the ground state structure. Then, we calculate the elastic constants and phonon
spectra and conclude this chapter with the DOS. While we calculate the thermodynamic
properties in all four alloy structures we introduced earlier, that being GPI, GPII, θ and
θ’, we only consider the θ’ structure when calculating the elastic constants, phonon spectra
and DOS. The reason for this is that GPI and GPII aren’t truly stable structures that we
only took into account in this work since they are in the range of copper percentage we’re
interested in and because of their importance in the formation of more stable Al-Cu alloy
structures. The θ structure on the other hand is not taken into account for the latter
three types of calculations since it’s entropically stabilised at temperatures far above room
temperature. In [35], it is stated that the θ structure is only stable at temperatures of
150 ◦C to 200 ◦C. In the context of ultrafast laser excitation, we assume that the lattice is
heated fast enough so that the phase transition from one solid structure to the other does
not occur and instead the lattice melts due to the electron-phonon coupling.

5.4.1 Thermodynamic properties of excited Al-Cu alloys

We start the investigation of the Al-Cu alloys with thermodynamic properties. We calculate
the relaxed structures and their internal and free energy. In figure 5.36, the volume per
atom is depicted depending on the temperature. As can be seen there, all three structures
expand very similarly to the pure metals. This expansion is greater in the more stable θ

and θ’ structures than in the GPI and GPII structure. Next, the internal energy per atom
depending on the electron temperature is displayed in figure 5.37. The absolute value of the
internal energy decreases due to the increasing distance between the atoms and therefore
decreasing binding energy.
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Figure 5.36: Volume per atom of different Al-Cu alloy structures depending on the electron
temperature.
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Figure 5.37: Internal energy per atom of different Al-Cu alloy structures depending on the
electron temperature.

Finally, the free energy per atom of all four structures depending on the electron temper-
ature is shown in figure 5.38. As for the pure metals, the free energy decreases due to the
increasing contribution of the electronic entropy to the free energy. We can also see that
for electron temperatures above kBTc = 0.6 eV, the θ structure has a lower free energy
than the θ’ structure. This confirms the assumption about the entropic stabilization of the
θ structure that we made earlier. In a proper laser ablation simulation, we will however
most likely not see a phase transition from the θ structure to the θ’ structure since the
heating due to the electron-phonon coupling will probably lead to melting of the structure
before such a solid-to-solid phase transition could take place.
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Figure 5.38: Internal energy per atom of different Al-Cu alloy structures depending on the
electron temperature.

In figure 5.39, the pressure in the unexcited structure is shown depending on the electron
temperature. The pressures increase with the electron temperature in all three structures
which will eventually lead to the expansion of the structure if it is allowed to do so. The
only exception to this is the GPII structure which exhibits a small dip a low temperatures.
Interestingly, this dip can’t be seen in the volume of the structure. One cause of this could
be the convergence criterion for the atoms. In that case, the ionic convergence criterion
is reached even though the net force within the simulation box is not zero. Another
explanation could be a non-uniform expansion of the structure since it’s non-cubic. This
can be investigated for both the GPI and GPII structure since both are non-cubic. We
therefore calculate the relative 1D-expansion, shown in figure 5.40. It becomes obvious
that both the GPI and GPII structure expand in x- and y-direction and contract in z-
direction with increasing electron temperature. This effect is much more prominent in the
GPII structure which leads to the negative pressure in the unexcited structure. In the
GPI structure, however, the expansion in x- and y-direction compensate the contraction
in z-direction so that the pressure increases monotonously with electron temperature.
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Figure 5.39: Pressure in the unexcited structure at depending on the electron temperature
in the four Al-Cu alloys structures.
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Figure 5.40: Relative expansion of the GPI and GPII structure of the Al-Cu alloys in x-,
y- and z-direction depending on the electron temperature

5.4.2 Elastic constants of excited Al-Cu alloys

We now calculate the elastic constants and bulk modulus of the θ’ structure of the Al-Cu
alloys. The elastic constants and the bulk modulus are displayed in figure 5.41 depending
on the electron temperature and based on the unexcited structure. Except for the values
between kBTc = 0.2 eV and kBTc = 0.8 eV, we have a similar behaviour as copper. At
first, C11 and C12 decrease while C44 almost decreases monotonously. Since C11 and C12

behave very similarly, the bulk modulusK behaves just the same. Applying Born’s stability
criteria (2.18) here, it is rather difficult to make a concrete prediction on the stability of the
θ’ structure. While both C11 and C12 increase at higher electron temperatures, C11 always is
larger than C12, indicating stability, C44 decreases indicating that the third criterion might
be violated at even higher electron temperatures leading to a lattice instability. Since the
θ’ structure isn’t the most stable structure at high electron temperatures, repeating the
calculations of the elastic constants but with the θ structure might confirm the stabilisation
of the θ structure by electronic entropy.

72



5.4. PROPERTIES OF EXCITED AL-CU ALLOYS ANALYSIS

0 0.5 1 1.5 2

40

60

80

100

120

140

160

Electron temperature [eV]

E
la
st
ic

co
n
st
an

ts
[G

P
a]

C11

C12

C44

K

Figure 5.41: Elastic constants and bulk modulus of the θ’ structure of the Al-Cu alloys
based on the unexcited structure.

5.4.3 Phonon spectra of excited Al-Cu alloys

In this chapter, we will present the phonon spectra of the θ’ structure of the Al-Cu alloys to
further analyse their bond strength. We only show these spectra in the unexcited structure
at different electron temperatures due to the reasons discussed when we calculated the
phonon spectra in pure metals in section 5.3.
In figure 5.42, the phonon spectrum of the alloys is shown at Tc = 0. To no surprise, we
can see three acoustical branches and six optical branches since the primitive cell contains
three atoms. We also show the phonon spectrum at four different electron temperatures in
figure 5.43. Due to the greater amount of modes, it is rather difficult to see all differences.
We therefore also show the frequencies of the mode with the highest frequency at X and
L in figure 5.44. As can be seen there, the frequencies at both X and L increase almost
completely monotonously indicating bond-hardening. The bond-hardening is determined
by the highest frequency at X.
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Figure 5.42: Calculated phonon spectrum of the unexcited θ’ structure of the Al-Cu alloys.
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Figure 5.43: Calculated phonon spectrum of the unexcited θ’ structure of the Al-Cu alloys
at different electron temperatures.
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Figure 5.44: Frequencies at X and L of the unexcited θ’ structure of the Al-Cu alloys
depending on the electron temperature.

5.4.4 Density of states of excited Al-Cu alloys

For this chapter, we calculate the DOS of a single unit cell of the θ’ structure of the Al-Cu
alloys. The ground state DOS is shown in figure 5.45. We again use the convergence
criterion ∆Econv = 1.0 · 10−4 eV and a k-space grid of 31x31x31 points. Since this DOS
again contains unphysical oscillations, we average every 9 data point out of the 3001 data
points output by VASP. As for the pure metals, we planned to expand our investigations
by calculating the temperature-dependent DOS but ran into the same problems as with
the pure metals. We still calculate the DOS at various electron temperatures as shown in
figure 5.46, hoping that we can at least extract the change of the chemical potential with
electron temperature which is shown in figure 5.47. Since the DOS below the Fermi energy
is higher than at and above the Fermi energy, the chemical potential is shifted towards
higher energies at higher electron temperatures.
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Figure 5.45: Calculated density of states of the unexcited θ’ structure of the Al-Cu alloys.
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Figure 5.46: Calculated density of states of the θ’ structure of the Al-Cu alloys at different
electron temperatures Tc.
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Figure 5.47: Electron temperature-dependent chemical potential of the non-excited θ’
structure of the Al-Cu alloys compared to the Sommerfeld model.
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Chapter 6

Summary and outlook

In this work, we investigated the excitation-induced effects in pure aluminium and copper,
as well as in several Al-Cu alloys. We started by investigating the structures in which each
system relaxes if it is allowed to do so. Doing so, we found that all of them expand due to
the increasing degeneracy pressure of the electrons.
Now that we knew that we could expect some kind of non-thermal effects as a consquence
of the excitation in our metallic systems, we mainly focused on the unexcited structure
with the electrons being in different degrees of excitation. We did this since during ultra-
fast laser-excitations, the electrons are excited almost immediately while the atoms take a
comparably long time to relax into a new equilibrium structure. In these unexcited struc-
tures, we first calculated the elastic constants and found a non-monotonous behaviour in
both pure aluminium and copper. Analysing Born’s stability criteria, we found the sta-
bility of aluminium and copper to be increasing with the electron temperature. This is
opposed to silicon in which we found an increasing instability at least at higher electron
temperatures. Al-Cu alloys are different than metals and semiconductors in this regard
and we unfortunately couldn’t make a clear prediction of the lattice stability of the alloys
based on the elastic constants alone.
This motivated us further to calculate the phonon spectra of all our systems of interest.
Doing so, we found bond-weakening at low temperatures and bond-hardening at high tem-
peratures in aluminium, bond-hardening in copper, as well as bond-hardening in the Al-Cu
alloys.
Finally, attempts were made to calculate the electron temperature-dependent density of
states of the materials of interest to confirm thermodynamic properties beyond the Som-
merfeld expansion. This part of the work, however, wasn’t fruitful but could be revisited in
a separate work in the future. Also, we found that the pressure plays an important role in
the bond strength. Therefore, it could be worth calculating phonon spectra and elastic con-
stants under different pressures to see the influence of pressure waves arising during laser
treatment of a solid. Next, one could of course repeat the calculations performed in this
work with different materials to build up a database of excitation-induced effects. Lastly,
coming back to the original purpose of this work, a logical step is to develop interatomic
potentials that can be used for molecular dynamics simulations. From what we’ve learned
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in this work, we can assume that in MD-simulations with only an interaction potential for
Tc = 0, the melting temperature following laser irradiation would be underestimating the
more accurate melting temperature obtained from a Tc-dependent interatomic potential.
In the case of laser ablation simulations, this would mean that the ablation threshold would
also be underestimated. It is difficult to make predictions on how the material dynamics
differ when using a Tc-dependent or a Tc-independent potential since more properties than
just the interaction strength play a role in the material dynamics, such as the heat capacity,
electron-phonon coupling constants. With a Tc-dependent interaction potential, one could
investigate how the non-thermal effects affect the laser ablation processes in detail. From
similar works on silicon [2], we know that this could allow for completely new insights into
the melting and ablation dynamics. Work in this direction has already started but due to
the complicacy of developing electron temperature-dependent interatomic potentials is not
finished yet.
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Appendix A

Proof of the first Hohenberg-Kohn
theorem

The fact that the external field contribution to the energy functional is a unique functional
of the electron density is the first Hohenberg-Kohn theorem. It can be shown by assuming

E = 〈Ψ|H |Ψ〉 < E ′ = 〈Ψ′|H ′ |Ψ′〉 . (A.1)

We can rewrite this inequality as

E
(∗)
< 〈Ψ′|H |Ψ′〉 = 〈Ψ′|H +H ′ −H ′ |Ψ′〉 = 〈Ψ′|H ′ |Ψ′〉+ 〈Ψ′|H −H ′ |Ψ′〉

= E ′ + 〈Ψ′|H −H ′ |Ψ′〉 . (A.2)

Analoguously, we find

E ′
(∗)
< 〈Ψ|H |Ψ〉 = 〈Ψ|H +H ′ −H ′ |Ψ〉 = 〈Ψ′|H ′ |Ψ〉+ 〈Ψ|H −H ′ |Ψ〉

= E ′ + 〈Ψ|H −H ′ |Ψ〉 . (A.3)

In (∗), we used the Rayleigh-Ritz principle which states that varying an eigenvector of an
operator will always lead to a higher eigenvalue [4, 46].
Also asuming that the two energy functionals E[n(~r)], E ′[n′(~r)] can be written as

E[n(~r)] = T [n(~r)] + U [n(~r)] +

∫
d~r v(~r)n(~r) (A.4)

and

E ′[n′(~r)] = T ′[n′(~r)] + U ′[n′(~r)] +

∫
d~r v′(~r)n′(~r), (A.5)

we find

E < E ′ +

∫
d~r [v(~r)− v′(~r)]n′(~r) (A.6)

and

E ′ < E +

∫
d~r [v′(~r)− v(~r)]n(~r). (A.7)
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Adding both expressions yields

E + E ′ < E + E ′ +

∫
d~r [v(~r)− v′(~r)]n′(~r) +

∫
d~r [v′(~r)− v(~r)]n(~r). (A.8)

If we now also assume
n(~r) = n′(~r), (A.9)

we find the contradicting expression

E + E ′ < E + E ′. (A.10)

Therefore, the assumption (A.1) doesn’t hold; the energy functional is indeed a unique
functional of the electron density and also, the electron density is unique given an external
potential.
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Sommerfeld expansion

The Sommerfeld expansion [47, 48] is a low-temperature approximation for some integral
of the form

〈H〉 :=

∫ ∞
−∞

H(E)f(E, T ) dE (B.1)

with the Fermi-Dirac distribution

f(E, T ) =
1

exp
(
E−µ
kBT

)
+ 1

(B.2)

and some function H(E) which we assume only depends on the single-particle energy E.
Note that even though the temperature that is of interest here is the electron temperature.
Still, we will write T instead of Tc here. We define

H(E) =
∂K(E)

∂E
⇒ K(E) =

∫ E

−∞
H(E ′) dE ′ (B.3)

Therefore, we can write

〈H〉 =

∫ ∞
−∞

∂K(E)

∂E
f(E, T ) de

P.I.
= [K(E)f(E, T )]∞−∞ −

∫ ∞
−∞

K(E)
∂f(E, T )

∂E
dE

= lim
E→∞

K(E)f(E, T )− lim
E→−∞

−
∫ ∞
−∞

K(E)
∂f(E, T )

∂E
dE

=−
∫ ∞
−∞

K(E)
∂f(E, T )

∂E]
dE . (B.4)

The first contribution in the second line vanishes since

lim
E→∞

f(E, T ) = 0 (B.5)

and the second contribution vanishes due to the assumption

lim
E→∞

K(E) = 0 (B.6)
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which is justified from the original definition of K(E) in (B.3). Expanding K(E) in a
Taylor series around µ yields

K(E) = K(µ) +
∂K(E)

∂E

∣∣∣∣
µ

(E − µ) +
∂2K(E)

∂E2

∣∣∣∣
µ

(E − µ)2

2
+O

(
(E − µ)2

)
(B.7)

and thus

〈H〉 ≈
∫ ∞
−∞

[
K(µ) +

∂K(E)

∂E

∣∣∣∣
µ

(E − µ) +
∂2K(E)

∂E2

∣∣∣∣
µ

(E − µ)2

2

]
∂

∂f(E, T )
dE

=−
∫ ∞
−∞

K(µ)
∂f(E, T )

∂E
dE −

∫ ∞
−∞

∂K(E)

∂E

∣∣∣∣
µ

(E − µ)
∂f(E, T )

∂E
dE (B.8)

+

∫ ∞
−∞

∂2K(E)

∂E2

∣∣∣∣
µ

(E − µ)2

2

∂f(E, T )

∂E
dE . (B.9)

In order to avoid lenghty expression, we split this expression up into the three contributions.
The first one reduces to

−
∫ ∞
−∞

K(µ)
∂f(E, T )

∂E
dE =K(µ)[f(E, T )]∞−∞ = −K(µ)[f(∞)− f(−∞)]

=K(µ)
!

=

∫ µ

−∞
H(E) dE (B.10)

To obtain this, we used limE→∞ f(E, T ) = 0 and limE→−∞ f(E, T ) = 1, as well as the
definition (B.3). The second contribution to (B.9) reads∫ ∞

−∞

∂K(E)

∂E

∣∣∣∣
µ

(E − µ)
∂f(E, T )

∂E
dE

=− ∂K(E)

∂E

∣∣∣∣
µ

∫ ∞
−∞

(E − µ)
∂

∂E

 1

exp
(
E−µ
kBT

)
+ 1


=
∂K(E)

∂E

∣∣∣∣
µ

∫ ∞
−∞

(E − µ)

1
kBT

exp
(
E−µ
kBT

)
[
exp
(
E−µ
kB

)
+ 1
]2 = 0 (B.11)
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since the integrand is asymmetric in E. The third contribution to (B.9) is

−
∫ ∞
−∞

∂2K(E)

∂E2

∣∣∣∣
µ

(E − µ)

2

∂f(E, T )

∂E
dE

=

∫ ∞
−∞

∂2K(E)

∂E2

∣∣∣∣
µ

(E − µ)

2

1
kBT

exp
(
E−µ
kBT

)
[
exp
(
E−µ
kBT

)
+ 1
]2 dE

=
1

2

∂2K(E)

∂E2

∣∣∣∣
µ

kBT

∫ ∞
−∞

(
E − µ
kBT

)2 exp
(
E−µ
kBT

)
[
exp
(
E−µ
kBT

)
+ 1
]2 dE

=
(kBT )2

2

∂2K(E)

∂E2

∣∣∣∣
µ

∫ ∞
−∞

x2 exp(x)

[exp(x) + 1]2
dx︸ ︷︷ ︸

=π2

3

=
π2

6
(kBT )2∂

2K(E)

∂E2

∣∣∣∣
µ

(B.12)

where we used the transformation x := E−µ
kBT

. Putting everything together, we find

〈H〉 ≈
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µ

(B.13)

This expression can now be used to approximate several thermodynamic properties. In
the following, we will derive expressions for the chemical potential, the internal energy, the
heat capacity, the entropy, the Helmholtz free energy and the pressure.

Chemical potential:
The chemical potential is defined indirectly by the number of electrons which - within the
Sommerfeld expansion up to second order in kBT - can be approximated as

N =

∫ ∞
−∞

f(E, T )D(E) dE ≈
∫ µ

−∞
D(E) dE +

π2

6
(kB)2∂D(E)

∂E

∣∣∣∣
µ

. (B.14)

87



APPENDIX

Using the DOS of a free electron gas from (2.33), we can write
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(B.15)

Here, we used the definition of the number of electrons at zero-temperature

N =
Ω

2π2

(
2m

h̄2

)3/2 ∫ EF

−∞

√
E dE . (B.16)

Rewriting this, immediately yields

D(EF)(µ− EF) = −π
2

6

∂D(E)
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EF

(kBT )2 (B.17)

and finally

µ = EF −
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EF

D(EF)
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(B.18)

where we used the fact that D(E) ∝
√
E.

Internal energy:
The internal energy - again using the Sommerfeld expansion up to second order in kBT is

U =

∫ ∞
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(B.19)

As before, we split this expression into its three constituents. The first one, also referred
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to as ground state energy can be written as∫ EF
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From (B.16), we know that
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On the other hand, we know from (B.20) that the ground state energy density is given by

u0 =
U0

N
=

2

5

D(EFE
2
F

N
=

3

5
EF. (B.22)

This is in contrast to an ideal gas with E
N

= 3
2
kBT , which for zero-temperature vanishes.

For the second contribution, we use (B.17) to write∫ µ
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The third contribution reads
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Plugging these three parts together, we end up with

U =U0 −
π2

12
(kBT )2D(EF) +

3π2

12
(kBT )2D(EF)

=U0 +
π2

6
(kBT )2D(EF). (B.25)

Heat capacity:
The heat capacity at constant volume CV is given by

CV =
∂U

∂T
=

∂
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[
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6
(kBT )2D(EF)
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Entropy:
From the heat capacity, the entropy directly follows

S =

∫
CV
T

dT =

∫
π2

3
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BD(EF) dT =
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3
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BTD(EF). (B.27)

Helmholtz free energy:
Using the usual definition of the Helmholtz free energy, it can be written as

F =U − TS = U0 +
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6
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Pressure:
From the Helmholtz free energy, as well as the definition of the ground state energy (B.20)
and (B.22), the pressure can be calculated

p =− ∂F
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. (B.29)
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Here, it is important to notice that the Fermi energy depends on the volume Ω. Rewriting
(B.21), we find
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Taking the derivative of this expression with respect to the volume Ω, we arrive at
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and similarly
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Plugging these findings into the definition of the pressure, we end up with
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We want to point out that the ground state contribution to the pressure can be found
in literature. We could however not find any source stating the pressure’s temperature-
dependence. Furthermore, we want to point out that as can already be seen by only
considering the ground state pressure at zero-temperature, the free electron gas experiences
a pressure. This pressure emerges from the Pauli exclusion principle and would not be seen
in an ideal gas at zero-temperature.
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Appendix C

DFPT

Let
HSCF |ψn〉 = εn |ψn〉 (C.1)

be the unperturbed Schrödinger equation. From first-order perturbation theory, we obtain

(HSCF + ∆VSCF ) |ψn + ∆ψn〉 =HSCF |ψn〉+HSCF |∆ψn〉+ ∆VSCF |ψn〉
+ ∆VSCF |∆ψn〉

=εn |ψn〉+HSCF |∆ψn〉+ ∆VSCF |ψn〉
+ ∆εn |∆ψn〉

!
=(εn + ∆εn) |ψn + ∆ψn〉
=εn |ψn〉+ εn |∆ψn〉+ ∆εn |ψn〉+ ∆ε |∆ψn〉

⇔ (HSCF − εn) |∆ψn〉 =− (∆VSCF −∆εn) |ψn〉 (C.2)

with the first-order energy correction

∆εn = 〈ψn|∆V |ψn〉 (C.3)

and the perturbation ∆V which contains changes in the external field contribution to the
energy, as well as the Coulomb interaction and exchange-correlation effects due to their
dependence on the electron density (2.2). We find that we can solve the system analogously
to the unperturbed Kohn-Sham equations (2.5).
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Appendix D

FT-DFT

Following [49], we can find an expression for the change in the energy in the case of finite-
temperature DFT calculations due to the smearing of the electron occupations with the
Fermi-Dirac distribution

fi := f(Ei, T ) =
1

exp(β(Ei − µ)) + 1
(D.1)

where β = 1
kBT

is the inverse electron temperature. In order to take partial occupancies
into account, we have to add

∆E =
∑
i

∫
dfiEi(fi) (D.2)

to the energy functional. Here, the values Ei are taken as the inverse function of the
Fermi-Dirac distribution

Ei =
1

β
ln

(
1− fi
fi

)
+ µ. (D.3)

Inserting this into (D.2) and performing the integration, as well as assuming the conserva-
tion of electrons, we end up with

∆E =
1

β

∑
i

[fi ln(fi) + (1− fi) · ln(1− fi)]. (D.4)

In units of kBT , the free energy is thus modified to [50]

F = E −
∑
i

σS(fi) (D.5)

where σ is the smearing and

S(fi) = −[fi ln(fi) + (1− fi) · ln(1− fi)] (D.6)

the entropy. Similar expressions can be derived for other types of smearing but are irrele-
vant here.
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Appendix E

Plausibility tests of non-thermal
effects

Here, we present the results of several plausibility checks to make sure that the effects
that we see from finite-temperature DFT calculations are not related to parameters of
methods that are inadequate. We start by repeating our calculations with a stricter con-
vergence criterion EDIFF, a denser k-space grid, a higher cutoff energy ENCUT, as well
as taking spin-polarisation into account (ISPIN) and using more bands for the calculations
(NBANDS). The resulting free energy per atom is shown in figure E.1 for aluminium and
in figure E.4 for copper, the internal energy per atom is shown in figure E.2 for aluminium
and in figure E.5 for copper and the volume per atom is shown in figure E.3 for aluminium
and in figure E.6 for copper. In all plots, it becomes obvious that none of these parame-
ters change the general trend of either of the thermodynamic properties. We also tested
whether it makes a difference if we turn off the symmetries that VASP uses to accelerate
the calculations with no noticeable difference.
As the next step, it has to be ensured that the exchange correlation functional PBE is
still capable of reproducing the correct trend with high Tc. Thus, the free energy, internal
energy and lattice constant are calculated using the LDA functional at different Tc. From
the free energy shown in figure E.7, the internal energy shown in figure E.8 and the lattice
constant shown in figure E.9, it becomes obvious, that DFT calculations with both, LDA
and PBE exchange-correlation functionals reproduce the same behaviour.
This finding finally ensures us that the trends of the thermodynamic properties are not
influences by the parameters used in our calculations and that they are save to use even
at high electron temperatures.

97



APPENDIX

0.2 0.4 0.6 0.8 1

−4.4

−4.3

−4.2

−4.1

−4

−3.9

−3.8

Electron temperature [eV]

F
re
e
en
er
g
y
p
er

at
om

[e
V
]

Default parameters
smaller EDIFF
higher KPOINTS
higher ENCUT
with ISPIN
higher NBANDS

Figure E.1: Free energy per atom in Al at different electron temperatures using the pre-
viously stated parameters, as well as a more strict convergence criterion, a denser k-space
grid, a higher energy cutoff and number of bands considered in the calculation, as well as
taking spin-polarization into account.
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Figure E.2: Internal energy per atom in Al at different electron temperatures using the
previously stated parameters, as well as a more strict convergence criterion, a denser k-
space grid, a higher energy cutoff and number of bands considered in the calculation, as
well as taking spin-polarization into account.
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Figure E.3: Lattice constant in Al at different electron temperatures using the previously
stated parameters, as well as a more strict convergence criterion, a denser k-space grid, a
higher energy cutoff and number of bands considered in the calculation, as well as taking
spin-polarization into account.
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Figure E.4: Free energy per atom in Cu at different electron temperatures using the pre-
viously stated parameters, as well as a more strict convergence criterion, a denser k-space
grid, a higher energy cutoff and number of bands considered in the calculation, as well as
taking spin-polarization into account.
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Figure E.5: Internal energy per atom in Cu at different electron temperatures using the
previously stated parameters, as well as a more strict convergence criterion, a denser k-
space grid, a higher energy cutoff and number of bands considered in the calculation, as
well as taking spin-polarization into account.
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Figure E.6: Lattice constant in Cu at different electron temperatures using the previously
stated parameters, as well as a more strict convergence criterion, a denser k-space grid, a
higher energy cutoff and number of bands considered in the calculation, as well as taking
spin-polarization into account.
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Figure E.7: Free energy per atom in Al and Cu using a LDA and PBE exchange-correlation
functional at different electron temperatures.
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Figure E.8: Internal energy per atom in Al and Cu using a LDA and PBE exchange-
correlation functional at different electron temperatures.
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Figure E.9: Lattice constant in Al and Cu using a LDA and PBE exchange-correlation
functional at different electron temperatures.
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Ausführliche Zusammenfassung in
deutscher Sprache

Neue Fertigungstechniken wie die additive Fertigung und insbesondere das 3D-Laserdrucken
gehören zu den neuesten Trends, die die Herstellung von Bauteilen in geringen Stückzahlen
wesentlich günstiger machen als die subtraktiven Techniken wie das Schneiden, Bohren
oder Schleifen. Gleichzeitig erlauben diese Methoden wesentlich komplexere Konstruk-
tionen als die konventionelle Fertigungstechniken. All das scheint lohnenswert für den
Flugzeugbau, in dem Aluminium-basierte Legierungen üblich sind. Besonders Aluminium-
basierte Legierungen mit geringem Kupferanteil werden bereits seit annähernd einhundert
Jahren eingesetzt, möglicherweise die prominenteste ist Duralumin. Die Verwendung von
Legierungen hat aufgrund der feineren Abstimmung von Härte, Wärmeleitfähigkeit oder
Korrosionsbeständigkeit klare Vorteile gegenüber reinen Metallen. Nicht nur die Fertigung
von Bauteilen aus Legierungen mit 3D-Laserdruck ist eine verheißungsvolle Methode, auch
das Verzögern von Ermüdungserscheinungen in den Bauteilen kann die Lebensdauer der
Bauteile wesentlich verlängern.
Um diese Techniken weiterzuentwickeln, müssen wir unser Wissen über das Verhalten
von Metallen und deren Legierungen unter Lasereinwirkung erweitern. Computersimula-
tionen erlauben hier Einblicke in die Eigenschaften der Materialien und deren Dynamik,
wohingegen rein analytische Modelle nur für einfache und idealisierte Systeme anwendbar
sind. Für diese Arbeit wählen wir deshalb die Dichtefunktionaltheorie, da sie uns Ein-
blicke in die quantenmechanischen Prozesse erlaubt und die Ergebnisse dieser Methode in
Molekulardynamik-Simulationen verwendet werden können, mit denen Zeit- und Größen-
skalen erreicht werden können, die mit Experimenten vergleichbar sind. Bisher gab es
wenige solcher Untersuchungen, die sich aber zumeist auf Halbleiter, besonders Silizium,
konzentrierten. Daher möchten wir mit dieser Arbeit unser Verständnis von durch Laser
angeregte Materialien auf Metalle und deren Legierungen erweitern und sie mit dem Hal-
bleiter Silizium vergleichen.

Wir beginnen mit einer theoretischen Einführung in die Dichtefunktionaltheorie und deren
Erweiterungen auf nahezu jegliche, auch angeregte, Materialien. Anschließend werden
wir die Eigenschaften diskutieren, mit denen wir Festkörper auch im angeregten Zustand
charakterisieren können. Weiter beschreiben wir, wie unsere Rechnungen durchgeführt
werden und wie Rechenzeit effektiv und effizient verwendet werden kann und suchen nach
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angemessenen Parametern, mit denen unsere Rechnungen zuverlässige Daten produzieren.
Wir bestätigen unsere Methoden, indem wir durch Experimente oder vergleichbare Rech-
nungen anderer Gruppen bekannte Größen wie die Gitterstruktur, sowie die elastischen
Konstanten, Phononenspektren und Zustandsdichten der Materialien im Grundzustand
berechnen und fanden dabei eine exzellente Übereinstimmung.
Wir bestimmen im nächsten Schritt die äquilibrierten Strukturen bei unterschiedlichen
Anregungsgraden, beziehungsweise Elektronentemperaturen und finden, dass sich sowohl
die Metalle, deren Legierungen, als auch Silizium ausdehnen, da der Entartungsdruck der
Elektronen in der Grundzustandsstruktur steigt. Im Kontext der ultraschnellen Prozesse
bei der Laserbearbeitung von Werkstoffen konzentrieren wir uns weiter auf die Grundzu-
standsstruktur und berechnen die elastischen Konstanten bei unterschiedlichen Elektro-
nentemperaturen. Es zeigt sich, dass die elastischen Konstanten von Aluminium nahezu
unverändert bleiben, in Silizium steigen und in Silizium sinken. Dies lässt auf eine na-
hezu unveränderte Gitterstabilität in Aluminium, eine erhöhte Stabilität in Kupfer und
eine verminderte Stabilität in Silizium schließen. Die elastischen Konstanten der Al-Cu-
Legierungen verhalten sich nicht monoton und machen eine klare Aussage über die Gitter-
stabilität, die nur auf den elastischen Konstanten basiert, unmöglich.
Als weiterer Test der Stabilität berechnen wir die Phononenspektren und finden ein ähn-
liches Bild wie in den elastischen Konstanten. Nach einer anfänglichen leichten Abnahme
der Stabilität steigt diese in Aluminium, wohingegen die Stabilität in Kupfer monoton
steigt und in Silizium monoton sinkt. Erstmals können wir demonstrieren, dass die Sta-
bilität der Al-Cu-Legierungen mit dem Anregungsgrad steigt.
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noch in Teilen Gegenstand eines anderen Prüfungsverfahrens gewesen ist, dass ich diese
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115


	Acronyms
	Introduction
	Theoretical background
	Laser processes
	DFT
	Introduction to Density Functional Theory
	Approximations for exchange-correlation
	DFT methods with molecular dynamics
	Finite-temperature DFT calculations

	Properties of solids
	Elastic constants
	Phonons
	Density of state


	Computational details
	DFT parameter analysis
	Cutoff energy
	K-space grid
	Convergence criteria of DFT
	Number of MD steps
	System size

	Analysis
	Properties of non-excited Al and Cu
	Most favourable structures of Al and Cu
	Cohesive energy of Al and Cu structures
	Stresses and elastic constants of Al and Cu

	Properties of non-excited Al-Cu alloys
	Formation energies of non-excited Al-Cu alloys

	Properties of excited Al and Cu
	Thermodynamic properties of excited Al and Cu
	Elastic constants of excited Al and Cu
	Phonon spectra of excited Al and Cu
	Density of states of excited Al and Cu

	Properties of excited Al-Cu alloys
	Thermodynamic properties of excited Al-Cu alloys
	Elastic constants of excited Al-Cu alloys
	Phonon spectra of excited Al-Cu alloys
	Density of states of excited Al-Cu alloys


	Summary and outlook
	Appendices
	Proof of the first Hohenberg-Kohn theorem
	Sommerfeld expansion
	DFPT
	FT-DFT
	Plausibility tests of non-thermal effects
	Bibliography
	Ausführliche Zusammenfassung in deutscher Sprache
	Ehrenwörtliche Erklärung

