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Abstract

Finding optimal routes in public transportation networks is a challenging and complex algorithmic
task. Compared to routing in road networks, public transportation routing algorithms also have to
take factors like schedules and transfer times into consideration. Because of this, shortest-path-
algorithms that are used in road networks have to be modified in order to be useable in public
transportation networks.
One method that is used to calculate shortest paths in road maps is the PHAST Hardware-Accelerated
Shortest path Trees (PHAST) approach. It makes use of hierarchical structures in transport networks
to allow a fast and efficient computation. As shown in [SZ21], it can also be used as a heuristic for
the A*-algorithm [HNR68].
Given that PHAST has been observed to have a good performance in road networks and A* being
an algorithm that provides great flexibility, the question rises whether a combination of both could
also be used in public transportation networks.
This thesis presents the new algorithm PUBPHAST which combines the A*-Search Algorithm
with the PHAST heuristic in a public transportation network context. It is experimentally explored
whether A* in combination with PHAST also has similar performance advantages in public
transportation networks as in road networks. To this end, openly available public transportation data
in format of the General Transit Feed Specification (GTFS) [Goo05] is transformed into a fitting
graph structure which serves as foundation for the algorithm. PUBPHAST is then compared to
public transportation adjusted implementations of Dĳkstra’s algorithm [Dĳ22] and the Connection
Scan Algorithm (CSA) [DPSW17].
It became clear that PUBPHAST is both faster than the CSA and Dĳkstra’s algorithm, suggesting
that hierarchical routing has performance advantages in public transportation networks.

Kurzfassung

Das Finden von optimalen Pfaden im öffentlichen Personenverkehr ist ein komplexer Themenbereich
und aus algorithmischer Sicht eine herausfordernde Aufgabe. Im Gegensatz zur Routenplanung
im Straßenverkehr müssen zum Beispiel auch Fahrpläne und Umstiegszeiten in Betracht gezogen
werden. Deswegen können herkömmliche Distanzberechnungsverfahren für den Straßenverkehr
nicht ohne weitere Modifizierung auch für den öffentlichen Personenverkehr verwendet werden.
Eine Methode, die für die Distanzberechnung im Straßenverkehr entwickelt wurde, nennt sich
PHAST [DGNW11]. Dieses Verfahren nutzt hierarchische Strukturen im Transportnetz aus, um
eine effiziente Distanzberechnung zu gewährleisten. In [SZ21] wurde PHAST dazu verwendet, die
Heuristikfunktion im A*-Algorithmus zu berechnen. Dieses Verfahren verknüpft die Flexibilät des
A*-Algorithmus mit der Schnelligkeit des PHAST-Ansatzes.
Ziel dieser Arbeit ist es daher, diese Kombination im Kontext von öffentlichen Personenverkehrnet-
zen zu implementieren.
Es wird der neue Algorithmus PUBPHAST vorgestellt, der die beiden Ansätze A* und PHAST
vereint. PUBPHAST wurde mittels GTFS-Daten getestet und anschließend mit anderen Routenpla-
nungsverfahren für den öffentlichen Personenverkehr verglichen.
Es hat sich herausgestellt, dass PUBPHAST sowohl im Vergleich zum Connection Scan Algorithmus
(CSA) als auch genenüber Dĳsktra’s Algorithmus Geschwindigkeitsvorteile bietet.
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1 Introduction

1.1 Motivation

PHAST [DGNW11] is a road network routing algorithm that is also used as an A* heuristic. It
takes advantage of hierarchical network structures to be efficient and provide a good performance.
However, so far it is only tested in road networks. Due to public transportation networks being
different in nature, it is not known whether PHAST would perform well in them.
On one hand there are fundamental differences between public transportation and road networks,
the main one being the introduction of the time element resulting from having schedules for buses,
trains, and so on. However, another critical difference could potentially be the structure and layout
of the network.
Road networks inherently have few network nodes that connect to many other network nodes. This is
due to the way streets are built and structured. Most longer routes will lead through highways. This
results in a small number of nodes being present in many routes. PHAST exploits this hierarchical
structure to achieve its performance advantages.
But hierarchical structures could potentially also be found in public transportation networks.
Looking at transit routes between two cities for example, a lot of routes would use the same train to
get to their destination. This potential network characteristic would make advantages of PHAST
applicable to public transportation networks as well.
Therefore, the goal of this work is to implement PHAST in a public transportation context and to
experimentally evaluate whether PHAST has advantages compared to other routing algorithms in
public transportation networks.
This thesis aims to implement the new algorithm PUBPHAST, which is an extension of the
combination of A* and PHAST that makes it useable in public transportation networks. To this end,
public transportation data in GTFS format is first transformed to a graph structure that can be used
as an input for PUBPHAST. Using this data as underlying foundation, PUBPHAST is then tested
and compared to Dĳkstra’s Algorithm and the CSA to measure its performance. The goal of this
work is to give an indication whether the hierarchical routing approach of PHAST has advantages
or disadvantages in public transportation networks.

1.2 Outline of this Thesis

Chapter 2 sets the necessary theoretical foundations of this work, introducing Connection Scan,
Dĳkstra and A* Algorithms. It also explains the functionality of Contracted Hierarchies and
PHAST.
The implementation of PUBPHAST and the extraction of its input graphs from the raw public
transportation GTFS data is shown in Chapter 3.
The test results of this implementation and of the other public transportation network routing
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1 Introduction

algorithms are presented in Chapter 4. It also explains on the test method and draws a comparison
between the algorithms shown in Chapter 2.
Lastly, Chapter 5 draws a conclusion of the results and gives an outlook.

1.3 Related Work

1.3.1 Shortest Paths

While implementing PHAST in the context of public transportation is new, there has been done
plenty of research in the field of public transportation or road network routing.
Given an arbitrary graph 𝐺 = (𝑉, 𝐸) with 𝑉 being a set of nodes and 𝐸 being a set of edges, there
are different techniques to find the shortest distance between a source 𝑠 and a target 𝑡.
Basic techniques include Dĳkstra’s algorithm [Dĳ22], the Bellman-Ford algorithm [Bel58] or the
Floyd-Warshall algorithm [Flo62]. These algorithms do not require preprocessing.
Goal-directed techniques try to search for the target more purposefully. Compared to Dĳkstra’s
algorithm for instance, these techniques do not visit the nodes that are in the opposite direction
of the target. Examples for such methods are the A*-algorithm [HNR68], Geometric Containers
[WWZ05] or Arc Flags [HKMS09].
On planar graphs, the computation expense and the size of graph separators is small [LT77]. In
these cases separator-based techniques that separate nodes or edges have its merits.
Contraction Hierarchies [GSSD08], a technique which PHAST [DGNW11] is based on, belongs to
the Hierarchical Techniques. These techniques use the hierarchical structure of road networks.
Another category of techniques are the Bounded-Hop techniques, like for example labeling
algorithms [Pel00] such as Hub Labeling [Wel14]. They precompute distances between pairs of
nodes to create a new graph which has additional shortcut edges.
The above mentioned techniques can all be combined with each other or extended to serve different
functionalities. [BDG+16]

1.3.2 Public Transportation Networks

Public transit data usually comes in the form of a timetable which contains stops, routes and trips.
To each trip belongs a vehicle (i.e. bus, train, ferry) which traverses the stops of a route at a certain
time of day. The above mentioned shortest path algorithms cannot be used in this timetable format
which is why it is natural to try to build a graph 𝐺 = (𝑉, 𝐸) corresponding to a timetable of public
transit information.
One way to build such a graph is letting each node be correspondent to a departure or arrival event
of the timetable. The edges are then used to connect the sequential events. These kinds of graphs
are called Time-Expanded Models [PSWZ08][BDG+16].
On the other hand, Time-Dependent Models [PSWZ08][BDG+16] are created by assigning each
node to a stop. Edges between two nodes are added when the two correspondent stops have at least
one connection in the timetable. The cost of the edges is determined by a travel time function,
which also takes the time of departure and the resulting waiting period into account.

18



2 Theoretical Foundations

2.1 Dijkstra’s Algorithm

Dĳkstra’s algorithm [Dĳ22] is a one-to-all search algorithm, meaning it computes the distance of
one source node to all other nodes. It is a greedy algorithm and requires no preprocessing.
It uses two different data containers. The priority queue 𝑄 contains elements that are ordered by
their distance to the source 𝑠 (from small to big). The second container dist(𝑛) is an array that keeps
track of the current shortest distances from 𝑠 to each node 𝑛.
Initially, 𝑄 contains only 𝑠 and every distance is set to infinity, except dist(𝑠) = 0. The algorithm
then iteratively extracts the current top node 𝑢 from 𝑄 and looks at all edges 𝑒 = (𝑢, 𝑣) ∈ 𝐸 . For
each edge it computes the distance to 𝑣 by adding the current shortest distance to 𝑢 and the length
𝑙 (𝑢, 𝑣) of the edge. If this new distance to 𝑣 is smaller than the current shortest distance dist(𝑣), the
value in the distances array is updated and the node 𝑣 is pushed to the priority queue.
The running time of Dĳkstra’s algorithm using a standard binary heap is O((|𝑉 | + |𝐸 |)log|𝑉 |)
[BDG+16].

Algorithm 2.1 Dĳkstra’s Algorithm
1: Input: source 𝑠, target 𝑡 with 𝑠, 𝑡 ∈ 𝑉
2: Let 𝑄 be a priority queue; 𝑄.push(𝑠, 0)
3: Let dist be an array; dist(𝑛) = infinity for 𝑛 ∈ 𝑉 \ {𝑠}, dist(𝑠) = 0
4: while 𝑄 is not empty do
5: 𝑢 ← 𝑄.pop()
6: for all edges 𝑒 = (𝑢, 𝑣) ∈ 𝐸 do
7: if dist(𝑢) + 𝑙 (𝑢, 𝑣) < dist(𝑣) then
8: dist(𝑣) = dist(𝑢) + 𝑙 (𝑢, 𝑣)
9: 𝑄.push(𝑣, dist(𝑣))

10: end if
11: end for
12: end while
13: Output: dist(𝑡)

A variation to this algorithm is the Bidirectional Dĳkstra. This extension computes a one-to-one
search from a source node 𝑠 to a target node 𝑡. In this form, the Dĳkstra computation is not only
started from the source but also from the target. It terminates once the distances in the priority
queue are higher than the current shortest distance between source and target.
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2.2 A* Search Algorithm

The A* Search Algorithm [HNR68] is a goal-directed method. In its functionality it is very similar
to Dĳkstra’s algorithm, with the crucial difference being the value that determines the position of
an element in the priority queue 𝑄.
It uses a potential function ℎ(𝑛) : 𝑉 → R which is a lower bound estimate of the distance of an
arbitrary node 𝑛 to the target 𝑡. This estimate is dependent of the context of the search. In case of a
road network, such an estimate might be the airline distance between 𝑛 and 𝑡.
Instead of just ordering the elements of 𝑄 by their distance from the source node 𝑠, the A* Search
Algorithm computes a evaluation function 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛). The value 𝑔(𝑛) of a node 𝑛 is the
current minimal distance from 𝑠 to 𝑣 and the value ℎ(𝑛) is the estimated lower bound distance from
𝑛 to 𝑡. So ultimately, the elements of 𝑄 are sorted by the estimated distance between 𝑠 and 𝑡 that
result from the path the algorithm has taken to get to those elements.

Algorithm 2.2 A* Search Algorithm
1: Input: source 𝑠, target 𝑡, heuristic ℎ(𝑛) with 𝑠, 𝑡, 𝑛 ∈ 𝑉
2: Let 𝑄 be a priority queue; 𝑄.push(𝑠, 0)
3: Let dist be an array; dist(𝑛) = infinity for 𝑛 ∈ 𝑉 \ {𝑠}, dist(𝑠) = 0
4: while 𝑄 is not empty do
5: 𝑢 ← 𝑄.pop()
6: for all edges 𝑒 = (𝑢, 𝑣) ∈ 𝐸 do
7: if dist(𝑢) + 𝑙 (𝑢, 𝑣) < dist(𝑣) then
8: dist(𝑣) = dist(𝑢) + 𝑙 (𝑢, 𝑣)
9: 𝑓 = dist(𝑣) + ℎ(𝑣)

10: 𝑄.push(𝑣, 𝑓 )
11: end if
12: end for
13: end while
14: Output: dist(𝑡)

2.3 Contraction Hierarchies

Construction Hierarchies (CH) [GSSD08] is a hierarchical route planning technique that uses node
contraction, which is the method of replacing the shortest paths going through a node with new
shortcut edges. It also orders nodes by their importance. Both node contraction and node ordering
are done in a preprocessing phase and are later used for routing during the query phase.
In more detail, a node 𝑛 is contracted by removing it from the original graph while still preserving
the shortest paths in the remaining graph. This is done by replacing paths of the form ⟨𝑢, 𝑣, 𝑤⟩ by a
shortcut edge ⟨𝑢, 𝑤⟩. However, it is important to point out that this shortcut edge is only needed if
⟨𝑢, 𝑣, 𝑤⟩ is the only shortest path from 𝑢 to 𝑤.
The order in which nodes are contracted is determined by their importance (the less important nodes
are first in the sequence) which is derived by a linear combination of several terms. Arguably the
most important term is the edge difference which is computed by subtracting the incident edges
from a node 𝑛 of the number of shortcuts introduced when contracting 𝑛. The other terms used in
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the linear combination are the uniformity, the cost of contraction, the cost of queries and global
measures. Their functionality can be found in [GSSD08].
After preprocessing the shortcuts and the ordering of the nodes, one can conduct a query by starting
a bidirectional shortest-path search. Doing this, the forward search uses only edges leading to more
important nodes while that backward search uses only edges leading to less important ones.
This leads to a correct result because the shortest path must be a up-down path [GSSD08]. If there
exists a shortest path from source node 𝑠 to target node 𝑡, there must be a middle node 𝑚 with 𝑠→ 𝑚

being a path only consisting of up-edges and 𝑚 → 𝑡 being a path only consisting of down-edges.

2.4 PHAST

PHAST (for PHAST Hardware-Accelerated Shortest path Trees) [DGNW11] is an algorithm that
solves the non-negative single-source shortest path problem (NSSP). It computes shortest paths
from one source 𝑠 to all other nodes. It works well on graphs with low highway dimension (like
road networks), which intuitively are graphs in which a small number of nodes is sufficient to hit all
long shortest paths. It is based on the previously presented Contraction Hierarchies.
The preprocessing phase of PHAST is the same as the preprocessing of CH, resulting in set of
shortcuts and an ordering of nodes.
In the query phase, PHAST initially sets all distances 𝑑 (𝑛) = ∞ (for all 𝑛 ≠ 𝑠) and sets 𝑑 (𝑠) = 0.
The NSSP search is then done in two subphases. First, it executes a forward CH search by running
Dĳkstra’s algorithm from 𝑠 in the upward graph 𝐺↑ = (𝑁, 𝐸↑). This upward graph 𝐺↑ entails all
edges (𝑣, 𝑤) ∈ 𝐸 from the original graph 𝐺 and the additional shortcuts, which fulfill the condition
rank(𝑣) < rank(𝑤) (rank(𝑛) being the rank of node 𝑛 in the preprocessed CH node ordering).
In the second subphase, the algorithm iterates through all nodes in 𝐺↓ = (𝑁, 𝐸↓) (𝐸↓ = {(𝑢, 𝑣) ∈
𝐸 : rank(𝑢) > rank(𝑣)}) in descending CH rank order and scans them. Scanning is done by
looking at each incoming edge (𝑢, 𝑣) ∈ 𝐸↓ and setting 𝑑 (𝑣) = 𝑑 (𝑢) + 𝑙 (𝑢, 𝑣) if 𝑑 (𝑢) + 𝑙 (𝑢, 𝑣) < 𝑑 (𝑣).

2.5 PHAST as an A* Heuristic

PHAST can also be applied as a heuristic for the A* Search Algorithm [SZ21]. The idea behind
this is that one can apply PHAST on a lower bounds graph to swiftly compute heuristic estimations
from all nodes to the target.
In the preprocessing phase of this A* variation, the algorithm gets an input lower bounds graph 𝐺𝑙

and computes the CH shortcuts and node ordering, outputting 𝐺+
𝑙

and the node ranks.
After receiving a 𝑠 to 𝑡 shortest path query, one first executes a backward CH search from the target
𝑡 on graph 𝐺+

𝑙
, as can be seen in algorithm 2.3.
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2 Theoretical Foundations

Algorithm 2.3 CH Backward Search
1: Input: graph 𝐺+

𝑙

2: Let 𝐵[𝑥] be an array that stores the tentative distance from 𝑥 to target 𝑡
3: 𝐵[𝑥] ← ∞ for all 𝑥 ≠ 𝑡, 𝐵[𝑡] ← 0
4: Let 𝑄 be a priority queue; 𝑄.push(𝑡, 0)
5: while 𝑄 is not empty do
6: 𝑦 ← 𝑄.pop()
7: for (𝑥, 𝑦) is down-edge in 𝐺+

𝑙
do

8: if 𝐵[𝑥] > 𝑙 (𝑥, 𝑦) + 𝐵[<] then
9: 𝐵[𝑥] ← 𝑙 (𝑥, 𝑦) + 𝐵[<]

10: 𝑄.push(𝑥, 𝐵[𝑥])
11: end if
12: end for
13: end while
14: Output: 𝐵[𝑥]

After completing the backward search, the algorithm now computes the all-to-one PHAST search
and stores each lower bound distance in an array. This array is then used as heuristic by simply
looking up the lower bound distance of the respective node.
The all-to-one PHAST search (shown in algorithm 2.4) iterates over the nodes of the different CH
ordering levels (from most to least important). It looks at all outgoing up edges from each node and
updates the value if it improves the current one. After completion, the algorithm runs a standard A*
algorithm, which uses the computed lower bound distances as a heuristic to find the shortest path
between 𝑠 and 𝑡.

Algorithm 2.4 PHAST All-To-One Search
1: Input: array 𝐵[𝑥] that stores the tentative distances from 𝑥 to target 𝑡
2: for all CH levels 𝐿 from most to least important do
3: for all up edges (𝑥, 𝑦) in 𝐺+

𝑙
with 𝑥 ∈ 𝐿 do

4: if 𝐵[𝑥] < 𝐵[𝑦] + 𝑙 (𝑥, 𝑦) then
5: 𝐵[𝑥] ← 𝐵[𝑦] + 𝑙 (𝑥, 𝑦)
6: end if
7: end for
8: end for
9: Output: 𝐵[𝑥]

This PHAST step however is comparatively expensive. In [SZ21], the authors propose a CH-
Potentials algorithm. Algorithm 2.5 recursively follows the up-edges in 𝐺+

𝑙
to update the respective

values and uses memoization to save time. Compared to algorithm 2.4, it is not computed before
iterating over the priority queue. The heuristic is computed via the CH-Potentials algorithm
whenever a new node is added to the queue.
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2.6 Connection Scan Algorithm

Algorithm 2.5 CH-Potentials
1: Input: array 𝐵[𝑥] that stores the tentative distances from 𝑥 to target 𝑡, which were computed

by the backward CH search
2: Let 𝑃[𝑥] be an array that stores the memoized potential of a node; initially 𝑃[𝑥] =⊥ for all

𝑥 ∈ 𝑁
3: function Pot(𝑥)
4: if 𝑃[𝑥] =⊥ then
5: 𝑃[𝑥] ← 𝐵[𝑥]
6: for all up edges (𝑥, 𝑦) in 𝐺+

𝑙
do

7: 𝑃[𝑥] ← min{𝑃[𝑥], 𝑙 (𝑥, 𝑦) + Pot(𝑦)}
8: end for
9: end if

10: return 𝑃[𝑥]
11: end function

2.6 Connection Scan Algorithm

Compared to the before mentioned public transportation routing algorithms, the CSA [DPSW17]
does not rely on a time-dependent or a time-expanded graph as input. Instead, it makes use of a
timetable, a list of connections sorted by their departure time.
Formally, this timetable is a quadruple (𝑆, 𝐶, 𝑇, 𝐹) with 𝑆 being a list of stops, 𝐶 being a list
of connections, 𝑇 being a set of trips and 𝐹 being a set of footpaths. A connection is a vehicle
that moves from one stop to another without interruptions. Such a connection 𝑐 is defined as the
quintuple (𝑐dep_stop, 𝑐arr_stop, 𝑐dep_time, 𝑐arr_time, 𝑐trip). Similarly, a footpath 𝑓 is a link between two
stops which can be traveled by foot. It is defined as the triple ( 𝑓dep_stop, 𝑓arr_stop, 𝑓dur).
There are multiple variants of the Connection Scan algorithm, fitted for different problem cases.
For this work however, only the Earliest Arrival Connection Scan variant is relevant.
Similar to Dĳkstra’s and the A* Search Algorithm, CSA employs a tentative arrival time array
which stores each stop’s earliest known arrival time. However, in contrast to Dĳkstra and A*, CSA
does not maintain a priority queue. Instead, it iterates over all connections which are sorted by
increasing departure time.
In every iteration, the algorithm tests whether the current connection 𝑐 is reachable or not. To this
end, the algorithm verifies whether it has visited a connection with the same trip ID as 𝑐 or if the
currently known earliest arrival time of the departure stop is earlier than the departure time of the
connection.
After the algorithm is finished iterating over the connections, the result of the one-to-one query
from 𝑠 to 𝑡 is the value of the arrival time array at index 𝑡.
Algorithm 2.6 uses an array 𝑆 to keep track of the tentative arrival times and an array 𝑇 which stores
a bit for every trip. This bit is set whenever the algorithm first reaches the trip, indicating that this
trip and every connection in it is reachable.
There are several optimizations that can be done to improve CSA’s running time. For example,
one can limit the amount of connections that need to be iterated over, by finding a first and a last
connection. The first connection can be determined by employing a binary search that finds the
first connection 𝑐0 with a departure time higher than 𝜏. The last connection, or the condition under
which the algorithm stops execution, is the first iteration in which 𝑆[𝑡] ≤ 𝑐dep_time holds true.
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2 Theoretical Foundations

Algorithm 2.6 Connection Scan Algorithm
1: Input: source 𝑠, target 𝑡, departure time 𝜏 with 𝑠, 𝑡 ∈ 𝑁 and 𝜏 ∈ N
2: Let 𝑆 be an array; 𝑆(𝑛) ← infinity for 𝑛 ∈ 𝑁
3: Let 𝑇 be an array; 𝑇 (𝑛) ← false for 𝑛 ∈ 𝑁
4: for all footpaths 𝑓 from 𝑠 do
5: 𝑆[ 𝑓arr_stop] ← 𝜏 + 𝑓dur
6: end for
7: for all connections 𝑐 increasing by 𝑐dep_time do
8: if 𝑇 [𝑐trip] == true or 𝑆[𝑐dep_stop] ≤ 𝑐dep_time then
9: 𝑇 [𝑐trip] ← true

10: 𝑆[𝑐arr_stop] ← min{𝑆[𝑐arr_stop], 𝑐arr_time}
11: for all footpaths 𝑓 from 𝑐arr_stop do
12: 𝑆[ 𝑓arr_stop] ← min{𝑆[ 𝑓arr_stop], 𝑐arr_time + 𝑓dur}
13: end for
14: end if
15: end for
16: Output: 𝑆[𝑡]
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3 PUBPHAST

3.1 Approach

In this chapter, the A* search algorithm combined with the PHAST heuristic is implemented to
be used on public transportation networks instead of road networks. This new algorithm called
PUBPHAST1 is implemented in C++. It is tested whether A* in combination with PHAST also
provides efficiency advantages in public transportation. To conduct this test, PUBPHAST is
compared to Dĳkstra’s algorithm and the CSA. The public transportation networks that are used in
the tests are in GTFS format.
The implementation process is as follows: First, the original public transportation networks in
GTFS format are processed to graph structures. Two different graph structures are needed for
PUBPHAST. On the one hand, a time dependent graph is needed for the A* search. This graph
is used to compute the actual shortest paths. On the other hand, the PHAST heuristic requires a
graph consisting of lower bound edges. For this graph, the time variable is completely excluded.
Each edge is compared to all other edges with the same source node, target node and trip ID and is
only kept in this lower bounds graph if it is the edge with the minimal cost compared to its peers.
Resulting from this procedure are two different graph files, one containing the lower bounds and
one containing the whole, time dependent network.
The lower bounds graph is then expanded by a CH Constructor that creates the shortcut edges and
CH ordering that are needed in the algorithm (see Section 3.3).
The lower bounds CH graph and the graph that stores the whole public transportation network are
now used as inputs to the PUBPHAST algorithm.
Section 3.4 explains the implementation of the PUBPHAST algorithm: The A* first extracts
both the CH lower bounds file and the whole network file to fitting data structures. It is then
similarly implemented as the algorithm in [SZ21], using PHAST as a heuristic and is adjusted to
the characteristics of public transportation networks.
In its foundation the CH-Potentials algorithm is the same as the PHAST all-to-one search, except
for the optimization of using memoization. Thus, PUBPHAST makes use of CH-Potentials instead
of implementing the standard PHAST algorithm.

3.2 Features and Restraints

First and foremost, PUBPHAST should be able to execute a one-to-one search in a public
transportation network. This means, given an input 𝑖 = (𝑠, 𝑡, 𝑑0) with source node 𝑠, target node 𝑡
and departure time 𝑑0, it should return the arrival time 𝑎 as output. Other features or restraints of
this implementation are:

1Code can be looked up at https://github.tik.uni-stuttgart.de/st167120/Bachelorarbeit-DavidBruns
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3 PUBPHAST

Transfer Times. They are implemented to create a realistic environment of public transit. Transfer
times are considered by only allowing transfers (which are defined as choosing an outgoing edge
that has a different trip ID than edge that was used to get to the current node) after a certain amount
of time. In this implementation, this duration is set as five minutes. While this is only a simple
approach to implementing transfer times, this should make the setting considerably more realistic
than just leaving them out all together.

Day Limit. For the sake of simplicity, only edges of one day are extracted to create the whole
network input graph. GTFS input data contains, as is closer described in Section 3.3.1 two text files
called calendar.txt and calendar_dates.txt. The former gives information about in which time span
and on which weekdays a trip is active, the later adds exception dates to this, that inform on which
dates a trip is not active. This makes its possible to extract edges from only one day which can be
determined by the user.
For the lower bounds graph, all edges are used to calculate the lower bounds. This is not a problem
however, as underestimating the lower bounds is fine, although this might lead to a less effective
PHAST implementation.

Footpaths. They are added using the station_edges, which will be described in Section 3.3.1.
Footpaths allow the algorithm to “walk” inside a station to change platforms. GTFS uses the concept
of stations and platforms. Only the platforms have edges, as the structure of stations defined by
GTFS is hierarchical. One parent station has at least one and potentially many platforms. When
extracting, station_edges are created between all platform nodes. This means one can walk to every
platform of a station by using only one station_edge (as opposed to requiring multiple edges to get
to the desired platform).
Due to this, the algorithm can restrict the use of footpaths to only one consecutive edge. No chains
of more than one consecutive footpaths are allowed.

Zero Cost Edges. The GTFS inputs also include edges that have a cost of zero, meaning the
departure time of one stop of a trip is equal to the arrival time of the next stop. Because the departure
times are often equal to the arrival times, this creates situations in which the departure times of two
subsequent stops of a trip are equal.
This poses a problem for the CSA, since the departure times within one trip can no longer be clearly
sorted. It also causes difficulties when implementing PUBPHAST, because the query push can not
be simply implemented by checking if the arrival time at a target node 𝑡 is smaller than the current
earliest arrival at that target. The inclusion of transfer times makes its necessary to also push nodes
that arrive later at 𝑡. This makes endless cycles possible.
Due to this, the trips that contain zero cost edges are removed from the graph, as the remaining
graph is still of sufficient size for the purpose of testing.

3.3 Deriving the Input Graphs

3.3.1 GTFS Format

The data used to test PUBPHAST is formatted in General Transit Feed Specification (GTFS)
[DGNW11]. This format defines the formalities and rules for public transportation networks. Bus,
train and other vehicles follow routes. Routes are used in cycles, multiple times a day. These
iterations are called trips. Trips have their own trip ID and consist of a sequence of multiple stops.
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3.3 Deriving the Input Graphs

Listing 3.1 Example for a GTFS stops.txt file

stop_name,parent_station,stop_id,stop_lat,stop_lon,location_type

's-Heerenberg Gouden Handen,,560069,51.87225,6.2473383,1

's-Heerenberg Gouden Handen,560069,241176,51.87228,6.247406,

's-Heerenberg Molenpoort,,64315,51.87649,6.247513,1

's-Heerenberg Molenpoort,64315,170535,51.87649,6.247513,

...

Each of these stops has an arrival time and a departure time.
GTFS stores this data in multiple text files. The relevant files for this implementation are
stop_times.txt, stops.txt, trips.txt, calendar.txt and calendar_dates.txt. There are other files to
store more information about the public transportation network available in GTFS, but those are
not needed for PUBPHAST. The goal of this section is to create two graphs 𝐺 = (𝑉, 𝐸) and
𝐺𝑙 = (𝑉, 𝐸𝑙) from the source GTFS data.

Extracting Nodes

The nodes can be read from the stops.txt (see Listing 3.1) file by extracting the stop_id and location
and saving it in a vector.
Important to note is the functionality of the parent_station column. This column defines the
hierarchy of nodes. GTFS differs between stations and platforms. While stations have an empty
parent_station entry, platforms use this field to reference their parent station. These parent stations
however are not used as stops in trips. Due to this, only the platform stops need to be stored.
Platform stops with the same parent station are saved in additional vectors and are called station_edges.
These stops are then connected by creating edges between all of them. The cost of these edges are
set as the estimated walking duration which are calculated using a walking speed of 1.42 m/s and
assuming direct paths between the coordinates. The station_edges vectors are later added to the
edges extracted from by the GTFS data. This enables footpaths inside of a station and for example
makes it possible to walk from platform 1 to platform 2 of the same station.

Extracting Edges

Edges are derived using the stop_times.txt file (Listing 3.2). This file lists the stops of each trip,
their arrival and departure times and their number in the sequence of their respective trips. To get
edges, one can now take two consecutive lines at a time and store the two nodes as source and target
node of the edge. The edge cost is calculated by subtracting the departure time of the source node
from the arrival time of the target node. The trip_id is also stored to be able to identify transfers
between trips during route computation.
The files calendar.txt and calendar_dates.txt, which store the weekdays a trip is active and the
exception dates, are used to sort out the edges that are not in the desired time span of the query.
Besides the day limit, another restriction being done is the removal of the trips that contain edges
with a cost of zero. This is necessary because the CSA requires the departure times of the stops of
one trip to be unequal.
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3 PUBPHAST

Listing 3.2 Example for a GTFS stop_times.txt file

trip_id,arrival_time,departure_time,stop_id,stop_sequence,pickup_type,drop_off_type

1000092,20:48:00,20:48:00,87162,0,,

1000092,20:50:00,20:50:00,250088,1,,

1000092,20:51:00,20:51:00,371578,2,,

1013119,26:58:00,26:58:00,439766,0,,

...

In the next step, the previously saved station_edges are added to the vector that was used to store all
edges extracted from the GTFS data. This vector is then sorted by ascending source node IDs.
To get the lower bound edges 𝐸𝑙 , one must now compute the lower bounds. This is done by iterating
over the edges with the same source and target node and keeping only the edge with the lowest
cost.

Graph Format

After extracting the nodes and the edges, both graphs are put out as two different text files, one
containing the lower bounds, the other the whole network. The graph format is divided into three
parts. In the first part, the amount of nodes and the amount of edges is displayed. After that come
the nodes of the graph. And at the end, the edges are stored.

Nodes. The information that is stored for each node is their ID, their old ID and the longitude
and latitude values of the nodes’ coordinates. The old ID is the stop_id of the original GTFS data
correspondent to the node. Because the parent station nodes are excluded and the enumeration of
stops starts at one instead of zero, nodes are assigned a new ID. This new ID starts from zero and
has no missing IDs in its enumeration.

Lower Bounds Graph Edges. The edges of the lower bounds graph only consist of the source
node, the target node and the cost. This graph does not require any information about the time, so
these three values are sufficient.

Whole Network Graph Edges. Edges of the whole network graph need some more data. Same
as the lower bounds graph edges, they store the source and target nodes and the cost of each edge.
But they also display the departure time (in seconds) and the trip ID of the edges. The trip ID of
footpaths is defined as −3, so that they can be detected by the algorithm.

3.3.2 Computing Contraction Hierarchies

The lower bounds graph still has to be processed further to obtain the CH shortcuts and the node
ordering. A CH-Constructor2 by the Institute of Formal Methods in Computer Science of the
Universität Stuttgart is used to process the lower bounds graph. This CH-Constructor creates a
graph file which contains the original lower bounds graph plus the shortcut edges and an extra value

2https://theogit.fmi.uni-stuttgart.de/nusserae/chconstructor/, accessible only in Universität Stuttgarts network
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3.4 Implementation

Listing 3.3 Edges-Struct of the A*-Algorithm

struct Edge

{

int target;

int cost;

int tripID;

std::vector<int> departures;

};

that determines each node’s CH-level. This level value can be used to order the nodes.
Its nodes now additionally store a value the determines the CH-level of each node, with which up-
and down edges can be determined.

3.4 Implementation

3.4.1 Definitions

In this section, the data structures that are used in the implementation are defined and described. It
is important to note that the PHAST and A* parts of the algorithm are implemented in different
classes. In the code of the A* algorithm, an object of the PHAST class is created and is used
to compute the heuristics’ values. Due to this separation, one part this section is reserved for
definitions in the A* class, the other for definitions of the PHAST class.

A*-Search Algorithm:

• std::vector<Node> graph
The whole network graph that serves as input for the A* is stored in the graph vector. This
vector contains elements of the struct Node. Each Node has a vector edges which is made of
Elements of the struct Edge (see Listing 3.3). Each Edge stores a target node ID, the cost, the
trip ID and a vector of integers called departure_times. Resulting from this, edges are not only
differentiated by their source and target nodes, but also by their trip ID. The departure_times
vector contains departure times of its particular edge. This vector is needed as trips can
use the same connection between to nodes multiple times. In the further description of the
algorithm, this data container is called graphA*.

• std::vector<int> arrivals
This vector contains the current earliest arrival time of each node. Its size is defined by the
amount of nodes in the graph.

• std::priority_queue<State, std::vector<State>, std::greater<State>> pq
The priority queue pq contains states 𝑠 = (heuristic, time, node_id, trip_id). It is ordered
by the value of heuristic (with the smallest heuristic value being on top). To be able to
differentiate it from the priority queue used in the PHAST implementation it is called PQA*
in the following sections.
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3 PUBPHAST

• std::vector<int> lowerBounds
This vector stores the estimated lower bounds of the different nodes. Its size is also defined
by the amount of nodes. The lowerBounds vector is used to cache heuristic values, as is later
described in Section 3.4.3.

PHAST:

• Graph g
The input lower bounds graph is stored in g. As can be seen in Listing 3.4, g entails the
node_count of the graph, a vector that contains all nodes 𝑛 = (id, level) (with level being the
CH-level) and two vectors that separately store the up- and the down-edges 𝑒 = (target, cost).
An edge with a source 𝑠 and a target 𝑡 is an up-edge if the CH-level of 𝑡 is greater that that of
𝑠. Vice versa, it is a down-edge if the CH-level of 𝑡 is smaller that that of 𝑠. In the following
this data container is called graphPHAST.

• std::vector<int> B, P
Both the vectors B and P store tentative distances (in seconds) to the target. Their size is defined
by the amount of nodes in the lower bounds graph. While B is used to store the intermediate
values computed by the backward CH-search, P contains the actual CH-Potentials.

• std::priority_queue<State, std::vector<State>, std::greater<State» Q
This priority queue contains states 𝑠 = (node_id, distance) and is ordered by distance (with
the smallest distance value being on top). This priority queue is called PQPHAST in the
following sections.

Listing 3.4 Graph-Struct of the PHAST-Algorithm

struct Graph {

int node_count;

std::vector<Node> nodes;

std::vector<std::vector<Edge>> up_edges;

std::vector<std::vector<Edge>> down_edges;

};

3.4.2 Data Structures

The nodes are stored in a vector and each respective node has a vector of outgoing edges. The
edge structure is different for the lower bounds graph and the whole network graph. While the
lower bounds graph only requires a target node and the edge cost as information for its edges, the
whole network graph also needs the trip ID and the different departure times. A rough sketch of the
organization of the whole network graph data structure can be seen in figure 3.1.
The trip ID is needed to identify transfers between trips. Different departure times result from
multiple edges having the same source node, target node and trip ID in the original graph file. In
these cases the different departure times are stored as an extra vector for each edge. Due to this,
each edge has a unique combination of source node, target node and trip ID and has a vector that
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3.4 Implementation

Figure 3.1: Graph Data Structure for Whole Network Graph

stores at least one and potentially multiple departure times.
The algorithm now has two main data structures, one graph data structure for the lower bounds
graph and one graph data structure for the whole network graph.

3.4.3 Algorithm

Given a query consisting of source node 𝑠, target node 𝑡 and departure time 𝑑, the algorithm first
starts with an initialization phase. After that begins the computation phase of the A* algorithm.
The A* is fundamentally implemented the same as the pseudo code given in Section 2.2, with the
biggest difference being the usage of PHAST as heuristic function. When computing the heuristic,
the algorithm uses an object of the PHAST-class to call the CH-potentials function which returns
the estimated lowest distance to the query target 𝑡 (in seconds). The final result is then calculated by
subtracting the query departure time 𝑑 from the value in arrivals[𝑡] (which is the earliest arrival
time at target 𝑡) to get the minimal time it takes to traverse the graph from source 𝑠 to target 𝑡.

Initialization Phase

The initialization first sees to resetting all values of vectors that contain distances (arrivals, B and
P) to infinity. Also, the priority queues PQA* and PQPHAST are cleared.
Next, arrivals[𝑠] is set to the departure time 𝑑 and B[𝑡] is set to 0. The first element of the priority
queue PQPHAST is now pushed. It is defined as the state 𝑠0,PHAST = (𝑡, 0).
After that, the backward CH-search with input 𝑡 is run, to get the values of vector B. This backward
CH-search only needs to be done once at the start of the algorithm. Its implementation can be
seen in Listing 3.5. Remember that the queue 𝑄 that is used in the code corresponds to PQPHAST
in this description of the algorithm. As mentioned above, the first element of this queue is the
state 𝑠0,PHAST. The algorithm now pops the top element from this queue until the queue is empty.
For each state 𝑠 that is taken from the queue, the algorithm looks at all down-edges with 𝑠.𝑖𝑑 as
source node. It checks, whether the value for B at the edge target is set to infinity or is set to a value
greater than the cost of the edge plus value of B at the edge source. If that is the case, the value
B[edge.target] is updated and a new state 𝑛 is pushed to PQPHAST.
To be able the push the first state to the priority PQA*, the heuristic that gives the estimated value
for the earliest arrival time at 𝑡 when departing at 𝑠 is needed. Because the backward CH-search has
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Listing 3.5 Implementation of backward CH-Search

void PHAST::backward_ch(const int t){

State s;

while(!Q.empty()){

s = Q.top();

Q.pop();

for(Edge edge : g.down_edges[s.id]){

if((B[edge.target] == INF) || (B[edge.target] > edge.cost + B[s.id])){

B[edge.target] = edge.cost + B[s.id];

State n; n.distance = B[edge.target]; n.id = edge.target;

Q.push(n);

}

}

}

}

already been done, it is now possible to run the CH-Potentials function which computes the lower
bound estimate. The code for this function can be seen in Listing 3.8 and is closer described in the
computation phase section.
After calculating the heuristic ℎ, one can now push the state 𝑠0,A* = (𝑑 + ℎ, 𝑑, 𝑠,UNDEF), with
𝑑 + ℎ being the earliest estimated arrival time at the target 𝑡, 𝑑 being the departure time, 𝑠 being the
source node and UNDEF being the trip ID.

Computation Phase

The implementation of the while-loop that entails the computation phase can be seen in Listing 3.6.
The algorithm now takes the top state from the queue PQA* until it is empty.
First, the algorithm verifies whether it is possible to transfer between trips in the current state. To
this end, it checks if currentState.time is smaller than the current earliest arrival value stored in
arrivals[currentState.node] plus the fixed transfer time. If that is the case, no transfers are allowed.
After that, the algorithm iterates over all outgoing edges of currentState.node. For each edge it first
verifies whether it is a footpath edge or a public transit edge. If it is a footpath, the algorithm makes
sure that the edge that was taken to arrive at currentState.node was not also a footpath (to avoid
chains of footpaths). It then uses the updateArrivalsAndPush function (see Listing 3.7) to set the
new arrivals[edge.target] value and push a new state to the priority queue.
If the edge is not a footpath, the algorithm checks if a transfer is needed to take this edge and, in
case transfers are not allowed, skips the iteration. It also sets the variable transfer_time either to
zero or to the fixed TRANSFER_TIME of five minutes, depending on whether a transfer is needed
to use this edge.
In case the current time of the state added plus transfer_time is greater than the latest departure
time of the edge, the iteration is also skipped.
If the algorithm has made it through all the checks, it now searches for the next possible departure
time using binary search, updates the arrivals vector and pushes a new state to the queue PQA*.
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Listing 3.6 Implementation of the A* While-Loop

while(!pq.empty()){

State currentState = pq.top();

pq.pop();

transferAllowed = true;

if(currentState.time < arrivals[currentState.node] + TRANSFER_TIME){

transferAllowed = false;

}

for(const Edge& edge : graph[currentState.node].edges){

if(edge.tripID == FOOTPATH){

if(currentState.tripID != FOOTPATH){

updateArrivalsAndPush(currentState, edge, currentState.time);

}

continue;

}

if(edge.tripID != currentState.tripID && !transferAllowed){

continue;

}

transferTime = 0;

if(edge.tripID != currentState.tripID){

transferTime = TRANSFER_TIME;

}

if(currentState.time + transferTime > edge.departures.back()){

continue;

}

auto nextDeparture = std::lower_bound(edge.departures.begin(), edge.departures.end(),

currentState.time + transferTime);

updateArrivalsAndPush(currentState, edge, *nextDeparture);

}

}

The updateArrivalsAndPush function computes the PHAST heuristics, writes to the arrivals vector
and pushes new states in the priority queue PQA*.
It first computes the lower bound estimate from the edge target to the query target 𝑡. This is done
with the phast.pot function (see Listing 3.8). If this lower bound distance is a negative number it
means that there has been no path found between the edge target and 𝑡. In this case the function
returns without updating arrivals or pushing to PQA*, as taking this edge will not lead to the shortest
path from 𝑠 to 𝑡.
After that, the function differentiates between three cases. If the edge target has not been visited yet
(which means that arrivals[edge.target] is still set to infinity), the arrivals entry for edge.target is
set and a new state is created and pushed to the queue.
If the edge target has already been visited but the arrival time taking this edge (which is the departure
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Listing 3.7 updateArrivalsAndPush-Function

void updateArrivalsAndPush(const Edge& edge, const int departureTime){

int lowerBoundDistance = phast.pot(edge.target);

if (lowerBoundDistance < 0) { return; }

if(arrivals[edge.target] == INF){

arrivals[edge.target] = departureTime + edge.cost;

pq.push(State(departureTime + edge.cost + lowerBoundDistance, departureTime + edge.

cost, edge.target, edge.tripID));

return;

}

if(arrivals[edge.target] + TRANSFER_TIME > departureTime + edge.cost){

pq.push(State(departureTime + edge.cost + lowerBoundDistance, departureTime + edge.

cost, edge.target, edge.tripID));

}

if(arrivals[edge.target] > departureTime + edge.cost){

arrivals[edge.target] = departureTime + edge.cost;

}

}

time plus the edge cost) is smaller than the arrivals entry for the edge target plus the transfer time, a
new state is created and pushed.
A specification of this is when the departure time plus the edge cost is even smaller than
arrivals[edge.target] (without the added transfer time). In this case the function also assigns the
smaller arrival time to the arrivals entry at the edge target.

The estimated lower bounds, or the CH-Potentials are computed by the pot function (see Listing
3.8) of the PHAST class. This function recursively calls itself to traverse the up-edges of the lower
bounds graph.
When the function is called, the vector B is already filled by the backward CH-search. The entries
of B are now the shortest paths between each node and the query target 𝑡 that are reachable by only
using down-edges. If there is no down-edges path from a node 𝑛 to 𝑡, then B[𝑛] = ∞.
The first thing the function does is to check whether P[𝑥] is undefined (𝑥 being the argument given
to the function, a node ID). If that is the case, P[𝑥] is set to B[𝑥]. This means that the value of P[𝑥]
is by default set to the shortest path between 𝑥 to 𝑡 using only down-edges.
Now, the function iterates over all outgoing up edges of 𝑥. It calls itself again, but this time with the
edge target 𝑦 as its argument. The return value of that function call is the lower bound estimate
distance of the path from 𝑦 to 𝑡. This return value is stored in the variable pot.
After that P[𝑥] is reassigned as the minimum of itself (which at this point is still equal to B[𝑥]) and
the edge cost plus pot. This is done because it is possible, that the shortest path between 𝑥 and 𝑡 is
only made up of down-edges. In that case, the P[𝑥] (= B[𝑥]) value is smaller than edge.cost + 𝑝𝑜𝑡.
Because every shortest path between 𝑥 and 𝑡 is an up-down path, meaning there exists a middle
node 𝑚 with 𝑥 → 𝑚 being a path that only consists of up-edges and 𝑚 → 𝑡 being a path that only
consists of down-edges, this function returns the correct lower bound estimate.
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3.4 Implementation

Listing 3.8 Pot-Function

int pot(const int x){

if(P[x] == UNDEF){

P[x] = B[x];

for(Edge edge : g.up_edges[x]){

int pot = pot(edge.target);

if(P[x] != INF){

if(pot != INF){

P[x] = min(P[x], edge.cost + pot);

}

else {

P[x] = P[x];

}

}

else {

if(pot != INF){

P[x] = edge.cost + pot;

}

else{

P[x] = INF;

}

}

}

}

return P[x];

}

Optimizations

There are some optimizations that can be implemented to make PUBPHAST faster.

• The implementation of a stopping criterion for the A* while-loop makes sense, as it
unnecessarily processes many nodes even after improving the arrivals[𝑡𝑎𝑟𝑔𝑒𝑡] value is no
longer possible.
This criterion is implemented by checking directly after popping the current state from the
queue whether currentState.heuristic is greater or equal the value of arrivals at target 𝑡. If
that is the case, we can stop the algorithm as the heuristic is a lower bound and all other
heuristic values left in the queue are greater than the heuristic of the current state.

• Skipping queue iterations is also possible because it is not needed to take priority queue states
into consideration whose current time is greater than the smallest known arrival time plus the
fixed transfer time. In short, this means if

currentState.time > arrivals[currentState.node] + TRANSFER_TIME

holds true, then the iteration can be skipped. This is correct because every possible state that
can be pushed to the queue in this iteration could’ve also been pushed in the iteration which
set the arrivals[currentState.node] entry.
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3 PUBPHAST

• Implementing a vector for the CH-Potential values is another way of saving time. Instead of
computing the pot function each time updateArrivalsAndPush is called, it is more efficient to
store the already computed potentials in a vector.
Now, one can check at the beginning of the updateArrivalsAndPush function whether the
CH-Potential of the respective node ID has already been calculated and, if that is the case,
use the corresponding value of the vector.
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4 Evaluation

4.1 Dijkstra and Connection Scan

This section gives a short overview of the implementation of Dĳkstra’s algorithm and the CSA
which is used as comparison to the PUBPHAST algorithm. Essentially they were implemented as
they were defined in Chapter 2, but to provide full context of the results presented in this chapter,
the following gives a brief description of both implementations.

4.1.1 Dijkstra’s Algorithm

Dĳkstra’s algorithm is implemented exactly the same as PUBPHAST, except that it does not use a
heuristic. Instead, its priority queue is sorted by the current time of the state.
It only requires the whole network graph as input as it does not need to compute lower bound
estimates.
The algorithm terminates once the time of the current state is greater than the earliest known arrival
time at the target.

4.1.2 Connection Scan

Input Timetable: Opposed to PUBPHAST, this implementation does not extract nodes and edges
but connections. A connection consists of source, target, departure time, arrival time and trip ID.
Footpaths are stored separately. Each footpath entails a source, a target and the cost in seconds.
The connections are sorted by their departure time with the lowest departure time value being the
first connection and the highest departure time value being the last connection. Due to the exclusion
of zero cost edges, each departure time of connections within the same trip is unequal.

Algorithm: The implementation of the CSA algorithm is done very akin to the pseudo code
presented in Algorithm 2.6. A vector stops is used to store the earliest arrival times of the different
stops and a vector trips is used to indicate whether a trip has already been visited or not.
The algorithm (see Listing 4.1) now iterates over all connections and updates the stops value if
either the trips entry of the trip ID of the current connection is set, or the departure time of the trip
is greater than the current earliest arrival time of the current stop plus the fixed transfer time.
The updateStops function that is used in the code checks whether the arrival time of the input
connection is lower than the currently know earliest arrival time at that stop. If that is true, it updates
the stops vector. It then iterates over all footpaths that have the arrival stop of the input connection
as source and updates the stops entry for each of the target stops (if the footpath arrival time is an
improvement over the old entry).
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Listing 4.1 Implementation of the CSA For-Loop

for(int i = 0; i<connections.size(); i++){

if(stops[connections[i].depStop] == INF){

continue;

}

if(trips[connections[i].tripID]){

updateStops(connections[i]);

}

else {

if(stops[connections[i].depStop] + TRANSFER_TIME <= connections[i].depTime){

updateStops(connections[i]);

trips[connections[i].tripID] = true;

}

}

}

Optimizations: The usage of both a starting criterion and a stopping criterion creates a speed-up.
Instead of iterating over the whole connections vector, it is possible to start at the “first” connection
after the query departure time 𝑑, skipping all connections which have a departure time smaller than
𝑑.
It is also possible to stop the for-loop earlier by checking if the departure time of the current
connection is greater than the stops value of the input target 𝑡. If that is the case, the value of
stops[𝑡] can no longer be improved which means the algorithm can be terminated.

4.2 Method of Testing

This section explains the testing procedure. It takes a closer look at inputs and outputs of the tests.
The tests were made with 10 000 randomly generated queries on four different public transportation
networks. The algorithms under test, PUBPHAST, Dĳkstra and CSA, were all tested with the same
queries and public transportation network feeds.
Each query consists of a source node ID, a target node ID and a departure time. The source and
target node have to be between zero and the node count of the respective graph. The departure time
must be between 00:00:00 and 23:59:59.
The input networks are German public transit data. The four different variations are:

• DE_FERN (“Schienenfernverkehr Deutschland”), the long-distance rail transport of Germany.
This network consists of ICE and IC train routes. The whole network graph generated from
this feed has 939 nodes and 11 340 edges.

• DE_REG (“Schienenregionalverkehr Deutschland), the regional rail transport of Germany.
This data set includes “S-Bahn” and “Regionalbahn” routes (regional railway routes). It
results in a graph with 12 977 nodes and 693 733.
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• DE_NAH (“Öffentlicher Nahverkehr Deutschland”), the close public transportation. In this
network, the short range public transports like buses, trams or subways are represented. The
resulting graph consists of 407 684 nodes and 10 721 255 edges.

• DE_GES (“Deutschland gesamt”), the combination of all of the above mentioned networks.
All together, the graphs combine to 419 121 nodes and 11 462 026 edges.

These GTFS data sets were created from the officially released German public transportation
schedules [19]. They contain data for January 2024. However, as mentioned in chapter 3, only the
trips of one particular day is taken to create the input graphs. For this evaluation in particular, the
public transport data of January 8, 2024 is used as input.
As using completely random query inputs and restricting the used trips on one day will lead to
a substantial amount of cases where there is no path between source and target, the values that
the algorithms are tested for are presented once for all 10 000 queries and once for the successful
queries only.
The values that are observed in the tests are the average computation time (in ms) and the amount of
visited nodes. The average computation times are presented for every algorithm. The amounts of
nodes that are visited by the algorithm is only shown for PUBPHAST and Dĳkstra, as CSA does
not use a graph with nodes as underlying data set.
For PUBPHAST, the amount of visited nodes is divided into the nodes visited by the A* part of the
algorithm and the PHAST part of the algorithm.
In the next section, the results of the test are shown. After that, in the comparison section the values
are discussed and set side by side in a graphical representation.

4.3 Results

Feed
all queries

avg. comp. time avg. visited nodes
A* PHAST total

DE_FERN 0.0704 ms 154.797 210.054 364.851
DE_REG 11.3714 ms 2 117 2 403.64 4 520.64
DE_NAH 221.591 ms 22 834 26 401.5 49 235.5
DE_GES 350.413 ms 46 167 52 366.4 98 533.4

Feed
successful queries

avg. comp. time avg. visited nodes
A* PHAST total

DE_FERN 0.0776627 ms 189.409 255.269 444.678
DE_REG 13.0432 ms 2 232.24 2 572.06 4 804.3
DE_NAH 106.033 ms 18 985.5 22 436.4 41 421.9
DE_GES 242.035 ms 38 329.8 46506.1 84 836

Table 4.1: PUBPHAST Results
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In total, processing 10,000 random queries, the DE_FERN graph had 4 056, the DE_REG graph
had 4 911, the DE_NAH graph 883 and the DE_GES graph had 2 914 successful queries.
In Table 4.1, it can be observed that the PHAST heuristic visits more nodes than the underlying A*
algorithm. Even though the up-edges and down-edges graphs are a lot smaller than the original one,
the pot function is called so many times that it visits a lot of nodes. On top of that, the backward
CH-search done in the initialization phase is essentially a one-to-all Dĳkstra with no stopping
criterion which also leads to a lot of additional visited nodes.

Feed all queries successful queries
avg. comp. time avg. visited nodes avg. comp. time avg. visited nodes

DE_FERN 0.098 ms 262.821 0.116617 ms 359.142
DE_REG 20.7034 ms 4 003.55 27.5219 ms 5 059.08
DE_NAH 233.207 ms 32 800.8 198.143 ms 52 935.8
DE_GES 527.317 ms 87 055 618.073 ms 13 0753

Table 4.2: Dĳkstra Results

For Dĳkstra’s algorithm, the average computation time of successful queries is substantially larger
than the computation time of unsuccessful ones. The amount of visited nodes is also higher when
the query turns out successful.
The CSA has fast computation times for the smaller graphs, but compared to PUBPHAST, it seems
to get slower the bigger the graph is.

Feed all queries successful queries
avg. comp. time avg. comp. time

DE_FERN 0.0639 ms 0.0633629 ms
DE_REG 20.5353 ms 23.9485 ms
DE_NAH 269.824 ms 393.718 ms
DE_GES 522.136 ms 600.903 ms

Table 4.3: CSA Results

4.4 Comparison

PUBPHAST is the fastest of the three algorithms, only needing about two thirds of the time of
CSA and Dĳkstra in the biggest network. As can be seen in Figure 4.1, PUBPHAST really gets an
advantage in the DE_GES graph. This might be because DE_GES is the most hierarchical graph of
the four, as it contains every level of public transportation including regional trains but also close
transport like trams and buses.
It can be observed that Dĳkstra and CSA stay close to each other, growing steadily the bigger the
input graph gets.
The average computation time for PUBPHAST on the other hand grows only until the DE_NAH
graph. After that, the curve gets more flat. This confirms that PUBPHAST is especially well fitted
for the DE_GES graph.
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Figure 4.1: Average Computation times of all Queries

As mentioned above, PUPHAST probably produces the best results on the DE_GES graph because of
its hierarchical nature. Compared to DE_GES, the other three graphs are much more plain. DE_NAH
only covers the close and DE_FERN and DE_REG only cover the larger scale transportation. While
routing, these three graphs might not have as many reoccurring shortest paths.
DE_GES is probably the most common public transportation graph type used in this test, as it
entails all forms of public transportation. PUBPHAST doing well on this graph suggests that there
is promise in using it for public transportation routing.

Figure 4.2: Average Amount of Visited Nodes

In Figure 4.2, the amount of visited nodes needed for PUBPHAST and Dĳkstra are depicted. The
dashed lines show the visited node count of successful queries. While, looking at all queries,
PUBPHAST visits more unique nodes of the graph, the results for the successful queries are reversed.
Here, PUBPHAST needs a significant amount of node visits less than the Dĳkstra algorithm to
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compute the shortest distance.
The discrepancy between successful and failed queries might stem from PUBPHAST being an
unoptimized algorithm. It could be possible to find better stopping or skipping criterions which
would results in lesser visited nodes.
Another possible reason for the comparatively large amount of node visits in failed queries could
be a too relaxed choice of lower estimates. If the lower estimates are too low, PUBPHAST might
inquire unnecessary paths.

Concluding this chapter, it became clear in the tests that PUBPHAST was the fastest of the three
tested algorithms. This could imply that the usage of a PHAST heuristic has advantages in public
networks as well. While PUBPHAST did use a larger amount of unique nodes in its computations
when compared to Dĳkstra, the fact the results were reversed when only looking at successful queries
is promising. With a better choice of lower estimates one might be able to abandon unnecessary
paths earlier, resulting in less visited nodes on failed queries.
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5 Conclusion and Outlook

In this thesis, the hierarchical routing algorithm PHAST, originally intended for road networks, was
implemented in a public transportation context. This was done by employing PHAST as a heuristic
for an A* Search Algorithm and using a modified form of time-dependent graphs as input.
This implementation of A* with PHAST as a heuristic using public transportation networks as
underlying data sets was called PUBPHAST. It was tested using GTFS public transportation data of
Germany.
To this end, the GTFS source data that was used in this implementation was first transformed to two
different graph structures, one whole network graph consisting of the entire schedule and departure
times of the public transportation routes, and one lower bounds graph, including only lower bound
edge costs. The lower bounds graph was then used to calculate the heuristic estimates with PHAST.
The tests were conducted using different types of public transportation networks, for example close
vicinity public transportation or larger scale railway public transportation.
The results indicated that PUBPHAST shows promise and can create performance advantages in
public transportation network routing. Even though it is not heavily optimized, it still outperformed
Dĳkstra’s Algorithm and the CSA, delivering lower computation times and needing less unique
node visits on successful queries.
This suggests that the hypothesis that was put forward in the introduction of this work was correct:
Public transportation networks are similar to road networks, as it seems like their structure can also
be taken advantage off by hierarchical routing. This claim was supported by PUBPHAST doing
especially well on the most hierarchical graph used during testing.

Looking forward, it would be interesting to see more hierarchical routing algorithms get implemented
for public transportation networks, as the concept shows potential. Intuitively, public transportation
networks are similarly structured as road networks, being dense in urban areas and relying on few
routes for transport in between them.
It is also intriguing to see an implementation of PHAST combined with A* tested more thoroughly.
One could conduct expanded tests in a more realistic routing algorithm setting in which not only
public transportation but also road networks and footpaths are taken into consideration.
Lastly, focusing on PUBPHAST, the algorithm could also be optimized further. For example, the
space that is used for having two graph data structures for both A* and PHAST could be saved by
combining them to one singular data container.
It would also be interesting to see more carefully calculated lower bounds, for instance by only
using the minimum of costs of the edges that are still traversable at a given time of the algorithm.

In conclusion, the results produced by the experimental implementation of PUBPHAST imply that
there are advantages, similar to road networks, of using hierarchical routing in public transportation
networks and that this concept is worth putting more research into.
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