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Abstract

In recent years, a growing number of floating offshore wind turbine (FOWT) proto-
types have been demonstrated, increasing both the technology readiness level and
market confidence. The future of the floating wind sector is looking increasingly
promising. However, compared to bottom fixed wind turbines, FOWTs face ad-
ditional challenges due to the complex environmental conditions including higher
motions and structural loads induced by wind and waves. Omne of the research
focuses is to reduce these motions and loads to enable FOWTs to compete with
bottom-fixed wind turbines. The main objective of this thesis is to achieve this by
implementing stabilization systems.

Due to limited space and different geometric and dynamic characteristics com-
pared to ships, a Tuned Liquid Multi-Column Damper (TLMCD) is chosen. The
first step is to develop a numerical tool capable of modeling the coupled TLMCD
and FOWT system. For the TLMCD, an existing method based on Lagrangian me-
chanics is adapted to derive the equations of motion and to be integrated into the
Simplified Low Order Wind Turbine (SLOW) model. Both implicit and explicit cou-
pling methods are implemented, and their simulation results are compared. For ease
of implementation and to increase the computational efficiency, a simplified formula-
tion is derived for TLMCDs with uniform cross-sectional areas, which eliminates the
need for numerical integration in the original method. The simplified equations can
be easily incorporated into different numerical models for FOWTs, and the coupled
model is linearized for controller design. In addition, the developed coupled model
is verified by comparison with the engineering tool OpenFAST. A good agreement
is found, particularly with regard to platform dynamics, although differences arise
due to the simplified quasi-static rotor model and the mooring system.

Two model test campaigns are carried out to assess the performance of the devel-

oped numerical tool. The first campaign considers only the stand-alone TLMCD,
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with free decay tests and forced harmonic oscillations performed to determine the
natural frequencies and damping coefficients. The comparison between simulation
and experiment shows the promising functionality of the TLMCD modeling, al-
though the fluid mass needs to be calibrated. This observation is consistent with
findings in other publications, where the calibration of the fluid mass varies with
the geometrical properties of the TLMCD. In the second campaign, the TLMCD
is integrated into a scaled 10 MW FOWT and tested in a wave tank. Various load
cases are tested, simulated and compared. The model is shown to be capable of
reproducing the dynamic behavior of the coupled system.

During the development process, it is found that the system performance depends
on whether or not the blade pitch controller works in synergy with the TLMCD.
The presence of the TLMCD changes the characteristics of the FOWT dynamic
plant, in particular the negative aerodynamic damping is partially compensated by
the TLMCD. Therefore, an automated control design method is developed to adapt
the controller to the TLMCD stabilized system. This design procedure can easily
adapt the controller for different TLMCD designs. The method is evaluated on two
FOWTTs, and the results demonstrate that a TLMCD, together with a suitable blade
controller, can significantly dampen platform motion at above rated wind speeds,
with up to 40 % reduction in standard deviation. In addition, there is a remarkable
reduction in the tower base bending moment. The stabilized system also contributes
to the rotor speed, resulting in improved power quality as the generator torque
remains constant.

Due to the strong coupling between the aerodynamics, hydrodynamics and the
servo dynamics, the investigated subsystems, namely the TLMCD and the blade
pitch controller, are closely linked to the platform design. To investigate whether in-
stalling a TLMCD could potentially reduce the size of the platform, a multi-objective
control co-design optimization framework is employed. This allows the TLMCD, the
controller, and the platform to be optimized simultaneously. By searching for the op-
timal design space, in which these subsystems achieve good synergy, a well-balanced
trade-off between production cost and response performance can be achieved. The
final result demonstrates a reduction of up to 20 % in the displaced tonnage of the

FOWT without adversely affecting the motion and load-related costs.



Kurzfassung

In den letzten Jahren wurden immer mehr Prototypen von schwimmenden Offshore
Windenrgieanlagen (SOWEA) vorgestellt, was nicht nur den Technologie-Reifegrad
sondern auch die Marktakzeptanz erhoht. Aufgrund der komplexen Umweltbedin-
gungen, sind sie im Vergleich zu am Boden verankerten Windenergieanlagen mit
zusitzlichen Herausforderungen konfrontiert. Insbesondere verursachen Wind und
Wellen héhere Bewegungen und strukturelle Belastungen. Damit schwimmende Win-
denergieanlagen mit am Boden verankerten Anlagen konkurrieren kénnen, miissen
die Bewegungen und Lasten reduziert werden. Das Ziel der Dissertation ist die Re-
duzierung der Bewegungen und Lasten durch die Anwendung eines U-Tank Stabili-
sierungssystems aus der Schiffstechnik.

Ein herkdmmlicher Fliissigkeitsddmpfer kann in den meisten Fillen nur einen Frei-
heitsgrad ddmpfen, was fiir die SOWEA nicht geeignet ist. Dariiber hinaus ist der
Einbau solcher Dadmpfer in eine SOWEA aus Platzgriinden schwierig. Aus diesen
Griinden wird ein Tuned Liquid Multi-Column Damper (TLMCD) ausgewéhlt. Zu-
néchst wird ein numerisches Tool entwickelt, welches das gekoppelte System aus
TLMCD und SOWEA modellieren kann. Fiir den TLMCD wird eine bestehende
Methode zur Ableitung der Bewegungsgleichungen, basierend auf der Lagrange-
Mechanik, angepasst und implementiert. Die Bewegungsgleichungen werden mit
dem bestehenden numerischen Tool Simplied Low Order Wind Turbine (SLOW)
gekoppelt. Um die Implementierung zu vereinfachen und die Recheneffizienz zu er-
héhen, wird eine wesentlich einfachere Formulierung fiir TLMCDs mit gleichméfigen
Querschnitten abgeleitet, die leicht in verschiedene Simulationstools fiir SOWEAs
integriert werden kann. Zusétzlich wird das gekoppelte Modell linearisiert, was fiir
den Reglerentwurf essentiell ist. Das entwickelte gekoppelte Modell wird durch einen
Code-zu-Code Vergleich mit dem Engineering Tool OpenFAST verifiziert. Es zeigt

sich eine gute Ubereinstimmung, insbesondere in Bezug auf die Plattformdynamik.
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Die Hauptunterschiede ergeben sich aus dem vereinfachten quasistatischen Rotor-
modell und dem Verankerungssystem.

Um die Leistungsfahigkeit des entwickelten numerischen Tool zu evaluieren, wer-
den zwei Testkampagnen durchgefiihrt. In der ersten Kampagne wird der TLMCD
als Stand-Alone System betrachtet. Zur Bestimmung der Eigenfrequenzen und der
Dampfungskoeffizienten des TLMCD, werden sogenannte Ausschwingversuche und
Versuche mit harmonischen Schwingungen durchgefiihrt. In der zweiten Kampagne
wird der TLMCD zusammen mit einer skalierten 10MW SOWEA im Wellentank
getestet. Tests in verschiedenen Lastféllen werden durchgefiihrt. Der Vergleich zwi-
schen Simulation und Experiment zeigt, dass das numerische Tool in der Lage ist,
das dynamische Verhalten des gekoppelten Systems abzubilden.

Die Simulationen zeigen, dass das Systemverhalten davon abhingt ist, ob der
Pitchwinkel-Regler der Rotorbldtter mit dem TLMCD zusammenwirkt. Die Exis-
tenz des TLMCD verédndert die dynamischen Eigenschaften der SOWEA, insbeson-
dere wird die sogenannte negative aerodynamische Dampfung durch den TLMCD
teilweise kompensiert. Daher wird ein automatisierter Regelungsentwurf entwickelt,
der in der Lage ist, den Pitchwinkel-Regler an das TLMCD-stabilisierte System an-
zupassen. Das Entwurfsverfahren wird an zwei SOWEAs getestet. Die Ergebnisse
zeigen, dass ein TLMCD, zusammen mit einem geeigneten Pitchwinkel-Regler in der
Lage ist, die Bewegung der Plattform bei hoheren Windgeschwindigkeiten deutlich
zu ddmpfen, bis zu 40 % der Standardabweichung. Auch das Biegemoment des Turm-
fufses wird deutlich reduziert. Dariiber hinaus tragt der TLMCD zur Stabilisierung
der Rotordrehzahl und damit zu einer besseren Stromproduktion bei.

Aufgrund der starken Kopplung zwischen der Aerodynamik und Hydrodyna-
mik, sind die betroffenen SOWEA-Subsysteme, namlich der TLMCD und der
Pitchwinkel-Regler, eng mit dem Plattformdesign verbunden. Daher wird im letz-
ten Schritt ein Multi-Objective Control Co-Design Optimierungsprozess entwickelt.
Dieser ermdglicht die simultane Optimierung des TLMCD, des Reglers und der
Plattform . Durch die Suche nach dem optimalen Design Space, in dem die oben
genannten Subsysteme gute Synergieeffekte erzielen, kann ein ausgewogenes Ver-
héltnis zwischen Produktionskosten und Leistungsverhalten erreicht werden kann.
Die Fallstudie zeigt eine Reduktion der Wasserverdringung der SOWEA um bis zu
20 % ohne Verschlechterung des dynamischen Verhaltens.



1 Introduction

This chapter provides an overview of the background, main motivation, and ob-
jectives of this thesis. It also summarizes briefly the relevant state-of-the-art tech-
nologies. To improve readability, the overall structure of the thesis is introduced
in Section 1.3, while the notation rules used throughout the thesis are described in
Section 1.4.

1.1 Motivation

The energy sector is facing increasing environmental challenges and geopolitical
risks, making renewable energy resources, such as wind energy, more attractive.
Over the past few decades, wind energy has experienced remarkable development,
and the future of the wind industry looks increasingly rosy. However, limitations
such as the lack of wind resources, the need for large installation areas, public ac-
ceptance, and logistical problems have hindered the future growth of the onshore
wind. This has encouraged the market to move towards offshore wind solutions.
Among these solutions, Floating Offshore Wind Turbines (FOWTs) offer the advan-
tage of access to deeper water where wind is typically stronger and more stable.
The commissioning of the world’s first full-scale FOWT, the 2.3 MW Hywind, has
increased both the technical readiness level and market confidence. Since then, var-
ious prototype projects have been deployed, making FOW'T technology even more
promising.

Despite their advantages, FOW'Ts face additional challenges compared to bottom
fixed wind turbines due to the complex environmental conditions. On the one hand,
the wave load, one of the dominant load sources, leads to additional responses, in-
cluding at the tower base [1]. On the other hand, the flexible support structure can

lead to instability due to coupling with the wind turbine controller and aerodynam-
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ics. These factors lead designers to choose more conservative substructure designs,
which are relatively large and heavy. As a result, the higher LCOE compared to on-
shore and bottom fixed offshore wind turbines slows down the industrialization and
market acceptance of FOW'Ts. Therefore, minimizing the LCOE to enable FOW'Ts

to compete with onshore and bottom fixed offshore wind turbines is a key challenge.

1.2 Objective

As discussed previously, the primary goal of most research related to FOWT is to
reduce the Levelized Cost Of Electricity (LCOE), which involves a variety of fac-
tors, both economic and technical. From a system design perspective, reducing the
motions and loads of FOWTs is one of the key aspects. There are many techniques
to achieve this, such as developing innovative floating substructure concepts, imple-
menting structural dampers, employing advanced control systems and so on. The
main focus of this thesis is to learn from the existing stabilizer system of naval
architectures and adapt them to FOWTs. The scope is limited to barge or semi-
submersible floating platforms. To achieve this goal, the conventional Tuned Lig-
uid Column Damper (TLCD) should be modified into Tuned Liquid Multi-Column
Damper (TLMCD) by increasing the number of vertical columns. The developed
TLMCD should be able to fit into the specific configurations of FOW'Ts. Further-
more, the overall system dynamic performance should be improved.

The main work of this thesis can be divided into two parts. The first part is
to develop a numerical tool suitable for modeling such a TLMCD stabilized FOWT
system. The developed tool should not only be able to capture the coupled dynamics
between the TLMCD and the FOWT system, but also include the state-of-the-art
aero-hydro-servo-elastic modeling capabilities. In addition, the model should be
validated against experiments in order to achieve a certain level of accuracy.

The second part focuses on the application of TLMCDs to FOWTs. The specific
requirements and constraints of FOW'Ts need to be considered, which differ sig-
nificantly from those of marine applications. Since FOWTs are actively controlled
systems, adding an additional damping device implies a modification of the plant
dynamics. Therefore, the impact of this modification on the overall system perfor-

mance should be investigated.
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1.3 Structure of the Thesis

The thesis is structured as follows: Chapter 1 provides an overview of the challenges
and motivation derived from the state-of-the-art research, and outlines the objectives
based on the challenges. Chapter 2 reviews the related current research work. In
Chapter 3, a numerical tool for the entire work is established, and its validation
against experimental tests is presented in Chapter 4. Two different applications of
TLMCDs to FOWTs are demonstrated in Chapters 5 and 6, which are focused on
control and optimization, respectively. Finally, summary and outlook are presented

in the last chapter.

1.4 Notation

The notations used in the numerical model for the FOW'T, denoted by Simplified
Low Order Wind turbine (SLOW), are mostly adopted from [2]. In addition, the
notations used for the TLMCD modeling are inherited from [3]. However, minor
adjustments have been made to resolve any conflicts. All variables are written in
italic typeface, with vectors denoted by lower case letters, e.g. v, and matrices

written in italic upper case letters, e.g. M.






2 Background and
State-of-the-Art

This chapter introduces the research methodology used in the present work. A
thorough review of the relevant publications is made, summarizing the relevant

state-of-the-art technologies.

2.1 Mathematical Formalisms of Mechanics

Isaac Newton formulated Newton’s laws of motion in 1687. About sixty years later,
Leonhard Euler extended upon these laws for rigid bodies with two additional laws,
known as Euler’s First and Second Axioms. Another forty years later, Joseph Louis
Lagrange reformulated these laws by considering the whole system with scalar prop-
erties, i.e. kinetic energy and potential energy, rather than using vectorial quantities
for the system. Thanks to these fundamental developments, which took over a cen-
tury, the numerical tool in this work could be developed for practical application.
This chapter provides a brief summary of these laws in a mathematical representa-

tion, which is helpful in understanding the derivation of the equations of motion.

2.1.1 General description

Mathematical models of dynamic systems describe why and how bodies move when
forces are applied to the system or generated within the system. One of the most
popular application areas is in the robotics, for the purpose of modeling and control
of these systems. Different methods can be used to derive the relationships between
forces and motions, but their end results are always equivalent to each other, i.e. a

description of the equations of motion formulated as
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M(q)q+c(q,q) +714(q) =7+ J(q)" Fe, (2.1)

where the components are detailed as follows:

qe R/ Generalized position vector with f Degrees of Freedom (DOFs)
g e R/ Generalized velocity vectors, time derivative of g
G e R7*! Generalized acceleration vectors, time derivative of ¢

M(q) € RF*/ Generalized inertia matrix

c(q,q) € RF*/ Coriolis and centrifugal forces

T,(q) € R/*! Gravitational forces
T e R External generalized forces
F,c R%*! External forces described in Cartesian coordinates
J.(q) € RS>/ Geometric Jacobian matrix for the external forces

These are the so-called equations of motion, which can be found in many robotics
textbooks, such as [4]. For offshore structures, |5| has adapted the conventional
differential equations and formulated the hydrostatic and hydrodynamic forces in
such a way that they can be integrated into this vectorial representation. The most
widely used methods for deriving these equations include the Newton-Euler method,

the Lagrange method, or a hybrid form of both.

2.1.2 Newton-Euler equations

The Newton-Fuler method describes the motions and forces explicitly in Cartesian
coordinates. Essentially, it formulates the principles of conservation of linear and
angular momentum mathematically through Euler’s First and Second Axioms. For
a moving rigid body, the change in linear and angular momentum depends on the
applied net forces and moments, respectively. When neglecting the Earth’s rotation,
a fixed point on the Earth can be considered as an inertial frame. As a result, these

conservation laws can be expressed as
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id

—(m'ug) - fg

fcllt (2.2)
E(Igwb) =1,

where f, and [, are the total resulting forces and moments acting on the center
of gravity of the body. wy is the body angular velocity with respect to the initial
frame, and v, is the linear velocity of the center of gravity with respect to the initial
frame. The inertia I, is also described about the center of gravity.
id

The time derivative in the initial frame 5 represents the change in linear or

angular momentum. For a rigid body, they are defined as

— (mwy) = m(vy + wyxvy)

ff (2.3)
&(Igwb) = Igwb + Wy X (Igwb),

2.1.3 Lagrangian mechanics

Lagrangian mechanics, as a branch of analytical mechanics, is an alternative to
the Newton-Euler equations for deriving the equations of motion of mechanical sys-
tems. There are several essential concepts that differ from the Newton-Euler method.
First, instead of using a position and velocity vector for each body, vector q describ-
ing the generalized coordinates is defined for all possible DOFs. A scalar quantity
called Lagrangian £ is used, which mainly has the mathematical functionality. For
a mechanical system, the Lagrangian L is the difference between the total kinetic

energy T and the total potential energy V of that system:
L=T-YV, (2.4)
then the system kinetics are given by

— - — =T, (2.5)

where 7T is the generalized non-conservative forces, representing the energy in and

out of the system.
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As can be seen, unlike the Newton-Euler method, where forces (both internal
and external) acting on each body are explicitly taken into account, the Lagrange
method eliminates all the internal action and reaction forces of the system from the
resulting equations of motion. This can be advantageous for a complex system with

multiple bodies and joints.

2.2 Modeling Techniques of Floating Offshore
Wind Turbines

The dynamics of a FOWT are complex due to the multidisciplinary nature of the
system and the various external excitations it is subject to, such as structural dynam-
ics, aerodynamics, hydrodynamics, and servo dynamics. Depending on the modeling
purpose, as well as the required level of accuracy and computational efficiency, dif-
ferent numerical techniques and software tools are available. Generally, the level of
model fidelity can be classified into three categories: low, mid, and high fidelity, with
each having its own specific modeling techniques and applications. However, there

is no standard for the choice of numerical modeling tools used for all applications.

2.2.1 Structural dynamics

The modeling focuses of the structural components of a FOWT are diverse in many
aspects, therefore, the physical details captured by the models are different from
component to component. Most numerical tools adopt a Multibody System (MBS)
approach to simulate the structural dynamics of the FOWT, covering the floating
platform (floater), tower, and turbine components. The turbine is typically decom-
posed into blades, nacelle, generator, and drivetrain. The level of complexity of the
MBS and the modeling approaches employed for each body depend on the required
model fidelity for a certain application.

Most numerical tools assume that the floater of a FOWT is a rigid body. For low
fidelity models used for overall geometric sizing, optimization, or controller design,
modeling the floater as a rigid body with partially constrained DOFs is sufficient.

For example, a low fidelity model for controller design might consider only the
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surge, heave, and pitch DOFs of the floater. The reduced number of DOFs simpli-
fies modal analysis, stability analysis, as well as control loop shaping. Mid fidelity
models capture similar structural dynamics, but with an increased number of DOFs.
When writing the equations of motion, some numerical tools, such as OpenFAST
and SIMPACK, use the small-angle approach to transfer the time derivatives of the
position and orientation of a rigid body into linear and angular velocities described
in the body frame. This simplifies the final system equations of motion and in-
creases computational efficiency. However, inaccuracies arise when large rotational
motions, such as the yaw motion of the floater, are present. As the size of wind
turbines increases, floaters become larger and more flexible, increasing the need for
structural load analysis, particularly for some lightweight FOW'Ts that use highly
flexible components. Modeling the floater as a rigid body becomes insufficient as
the structural stresses and deformations are missing. A simple solution is to add
the corresponding stresses during post-processing after the time domain simulation,

allowing for the analysis of the stress of the structural components.

In contrast to the floater, which is usually modeled as a rigid body, the tower
is typically modeled as a flexible body. The main approaches for tower structural
modeling are the Finite Element Method (FEM) and modal decomposition meth-
ods. The modal decomposition method, such as the Craig-Bampton approach [6],
simplifies the structural model by order reduction, decomposing the complex motion
of the tower into a set of simpler, predefined deformation modes. The basic idea is
to use FEM to compute the natural frequencies and mode shapes of the tower, and
then to use these mode shapes to construct a reduced-order model that captures the
essential dynamic behavior of the tower. In practice, the tower need to be discretized
into small sections with sectional structural properties such as mass, stiffness etc.
Based on that, the overall modal stiffness and damping can be calculated. Then
the reduced order equations of motion of the tower can be written. The resulting
model can be treated as a flexible MBS with certain constraints. On the other hand,
FEM is a more detailed method that can provide local stresses and strains. Due
to the special geometry of the tower, beam models are normally sufficient for stress
analysis. To increase computational efficiency, linear frame FEM models can be
used by neglecting nonlinearities such as large displacements, axial shortening due

to bending, and cross-sectional transverse shear effects. The nonlinear effect of off-
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shore substructures has been studied in [7]. The results show that the nonlinearities
are approximately 4 % at the tower top and 3% at the tower base, quantified in
terms of the maximum differences in displacements and stresses with respect to a
linear calculation.

As for the wind turbine, there are many options for the turbine structural model-
ing, depending on the intended use cases. For state space representation or frequency
domain simulation, a simple approach is to model the rotor (including the nacelle)
as a mass point or as a rigid body described by an inertia matrix. This approach
is useful for control design, optimization, or large number of simulations. A more
detailed model separates the rotor and the nacelle and represents the blades as flex-
ible structures. To account for the elasticity of the blades, beam models or flexible
MBSs are commonly used, the principles of which are similar to the tower modeling.
These more detailed models are typically used for load analysis, as well as for blade

design and optimization.

2.2.2 Aerodynamics

The Blade Element Momentum Theory (BEMT) is a widely used numerical ap-
proach for modeling the aerodynamics of FOWTs. This method divides the turbine
blades into smaller elements and calculates the aerodynamic lift and drag forces on
each blade element by combining the actuator disk theory with the blade element
theory. The forces on each blade element are calculated iteratively for a given inflow
condition, and the loading of the entire rotor is the sum of the forces over the blades.
The fundamental principle of BEMT can be found in many textbooks, such as [8]
or [9].

However, modeling the aerodynamics of FOW'Ts using BEMT poses special chal-
lenges. One of the important characteristics of the aerodynamics of FOWTs is the
dynamic inflow effect, which arises due to the pitch and surge motions of the plat-
form, causing additional relative wind velocity and leading to unsteady aerodynam-
ics. This effect can result in overshoot and additional thrust loading on the rotor,
which cannot be effectively captured by BEMT alone [10]. Moreover, the unsteady
wake effect, which is also not considered by BEMT, is more pronounced in FOW'Ts

than in onshore wind turbines. To address these challenges, more advanced aerody-



2.2 Modeling Techniques of Floating Offshore Wind Turbines 11

namic models, such as the free wake method, can be used to reproduce the periodic
deformation of wake vortices, as well as the large differences in thrust loading and
power production caused by the platform motion.

Therefore, in recent years, there has been increasing interest in using higher fi-
delity aerodynamic models for FOW'TSs, especially as rotor size and blade elastic
deformation increase significantly, making it more important to accurately capture
these aerodynamic effects. To model the highly turbulent flow around the blades and
the resulting wake behind the rotor, a high fidelity Computational Fluid Dynamics
(CFD) method is the most appropriate approach. Recent advances in computational
resources have made it possible to perform such high fidelity simulations, providing
valuable insights into the complex fluid flow and fluid-structure interactions that oc-
cur in the real world and aiding in the design of more reliable systems. However, the
high computational cost required for CFD simulations has limited their use during
the conceptual development of FOWTs, where a large number of simulations need
to be conducted.

Given these challenges, one popular compromise between the high computational
cost required CFD methods and the more simplified BEMT model with a lot of
assumptions is the mid fidelity Free Vortex Wake (FVW) method, which models
the unsteady aerodynamics of FOW'Ts using a finite volume method. This method
takes into account the dynamic inflow effect and the unsteady wake effects, and
can provide more accurate results compared to BEMT. The computational cost
of FVW is higher than BEMT, but lower than CFD methods, making it a more
practical option during the design phase. In addition to mid fidelity models, simpler
engineering models, such as the Generalized Dynamic Wake (GDW) method [11],
can be used. It takes into account the dynamic inflow effect and wake-induced
unsteadiness by correcting the BEMT model, which is supposed to represent the
physics of aerodynamics more realistically, i.e., the aerodynamic loading on a blade
element and its impact on the wake.

Despite the need for more accurate numerical models, computationally efficient
aerodynamic models are also necessary, mainly for control design and concept opti-
mization. One simple approach is to consider the rotor as a rigid disk and charac-
terize the aerodynamics using thrust and power coefficients as functions of the blade

pitch angle and the Tip Speed Ratio (TSR), which can be implemented using lookup



12 2 Background and State-of-the-Art

tables. As a result, aerodynamic forces that depend only on the wind speed, blade
pitch angle, and TSR can be linearized, which is suitable for modal analysis and
control design. Such simplified models provide a quick and efficient way to evaluate

different control strategies and assess their impact on FOWT performance.

2.2.3 Hydrodynamics

Modeling practices related to hydrodynamics have been developed and advanced
within the oil and gas industry, and these methodologies have been widely adopted
for modeling the hydrodynamics of FOW'Ts.

To model the wave induced excitation forces, the Potential Flow (PF) theory is a
standard engineering approach. The submerged geometry of the floater is predefined
according to the design draft in still water, which is assumed to be constant. The
wet surface of the floater can then be meshed into surface panels. Depending on
the wave kinematics, the local dynamic pressure exerted on each panel can be cal-
culated and integrated over the entire surface, resulting in hydrodynamic forces and
moments for the six DOFs. These forces vary with the angular frequencies of the in-
cident waves, and thus are expressed by hydrodynamic coefficients in the frequency
domain, which can be solved using panel codes such as Ansys AQWA or WAMIT. In
addition to the wave excitation forces, the motion of the floater itself induces addi-
tional hydrodynamic loads, referred to as added mass and radiation damping. The
diffraction effect appears when the size of the floater increases, which influences the
propagation of the incident waves. These effects can all be solved by panel codes in
the frequency domain. For time domain simulations, the hydrodynamic coefficients
are pre-processed and transformed into the time domain.

In the early stages of FOW'T research, wave excitation forces are mostly described
as linear, i.e. only the first-order forces within the range of wave frequencies are
considered [12]| [13]. However, as more wave tank testing and prototype testing are
conducted, it becomes clear that second-order wave forces should also be included in
the analysis. These forces are outside of the frequency range of wave energy and are
due to the sum and difference of the regular components of waves. For most FOWTs
(except tension leg type), forces resulting from the difference-frequency of the wave

components are most relevant, which are known as low-frequency wave drift forces
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(consist of mean wave drift forces and slowly varying forces on top) [14] [15] [16].
The frequency of these forces is typically much lower than the wave frequencies,
and they can excite the platform’s surge or pitch natural frequencies, resulting in
large pitch motion or additional loads on the mooring system. Depending on the
floater concept and the required simulation accuracy, models that take into account
the second-order wave forces are becoming the standard for load simulation. The
simplest approach to include the slow drift forces is Newman’s approximation [17],
which considers only the difference-frequency terms. Alternatively, the full second-
order wave forces can be captured by using the Quadratic Transfer Function (QTF)
matrix [18].

In addition to the wave excitation forces, hydrodynamic damping plays an im-
portant role in modeling FOW'Ts. PF theory neglects the viscosity of the fluid, so
the hydrodynamic drag forces are not included. Especially for floaters with sharp
corners or large heave plates, quantifying the viscous damping correctly becomes
essential for the coupled simulation and load analysis. The Morison equation is a
widely used semi-empirical approach that consists of two terms, accounting for both
the inertial forces and the drag forces. Physically speaking, the inertial forces in
the Morison equation are the Froude-Krylov forces in the PF theory. For floaters
with slender geometries, the Morison equation can fully represent the hydrodynamic
loading. However, as the member size increases, diffraction effects become signifi-
cant, and the Morison equation may not be applicable. In such cases, a combination
of PF theory and the Morison equation is commonly used. In this work, the inertial
and diffraction forces are described by the PF theory, while the viscous damping is

captured by the drag term of the Morison equation.

2.2.4 Engineering tools

There are a number of engineering models for FOWT simulation. The features of
the tools that are used in this work are summarized in the section.

OpenFAST [19] is an open-source tool for research purpose developed by National
Renewable Energy Laboratory (NREL)T. It consists of several submodules model-

ing the aerodynamics, hydrodynamics, structural dynamics, and more. The model

thttps://github.com /OpenFAST /openfast. Accessed on 30.0ct.2022
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solves the coupled nonlinear aero-hydro-servo-elastic dynamics of wind turbines (in-
cluding FOWTs) in the time domain. The ElastoDyn, BeamDyn, or SubDyn sub-
modules can be used to model the structural dynamics as either rigid or flexible
bodies. In this work, the platform is modeled as a rigid body, while the modal
method is used for the tower and blades. The AeroDyn submodule models the aero-
dynamics of the the turbine using BEMT, the effect of the wake can be corrected by
including GDW, but only BEMT is considered here. Hydrodynamics are modeled
using a combination of PF theory and the Morison equation that captures the vis-
cous damping. The HydroDyn module models both regular and irregular waves, as
well as currents. OpenFAST includes three submodules for modeling the mooring
system: the MAP++ module (a quasi-static representation), the FEAMooring mod-
ule (an FEM-based dynamic model), and the MoorDyn module, which describes the
mooring system as a mass spring damper system and includes the hydrodynamic
inertial and drag forces. In this work, either MAP-++ or MoorDyn is used to capture

the static and dynamic mooring loads.

The SLOW model, used in this work to simulate the dynamics of a FOW'T, was
originally developed by [2]. With the aim of achieving a good trade-off between
model accuracy and computational efficiency, the model focuses on representing the
system dynamics of a FOW'T with only the necessary DOFs and the most relevant
physical effects. A validation of the model against wave tank tests can be found in
[20], and its applications for controller design, load case simulation, and integrated
optimization has been demonstrated in several works [21, 22, 23, 20, 24|. The
SLOW model is comprised of a structural model and some submodels for external
aerodynamics, hydrodynamics, and mooring loads. The structural model adopts a
flexible multi-body system (MBS) formulation, with a rigid platform and a flexible
tower. The system state vector includes the surge, heave and pitch motion of the
platform, the fore-aft movement of the tower top, the blade pitch angle, and the
azimuth angle. The aerodynamic forces are calculated assuming the rotor as a rigid
actuator disk. In practice, a look-up table is generated based on the aerodynamic
torque and thrust coefficients for each tip speed ratio and blade pitch angle to
represent the quasi-static aerodynamic forces and their derivatives at each operating
point. The catenary mooring lines are modeled quasi-statically, with static mooring

loads determined by a look-up table that contains the relationship between the
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fairlead tension and the position of a single mooring line. Wave excitation loads that
vary with frequency are calculated using hydrodynamic panel code, such as Ansys-
AQWA. For a given wave spectrum, the first order wave loads can be calculated
by transforming the resulting frequency-domain representation of the forces and
moments to the time domain and added to SLOW as predefined time vectors. While
hydrodynamic radiation damping is not considered, additional viscous drag damping

is captured by the Morison equation.

2.3 Research on Structural Damper

Generally, reducing motions and loads is one of the ways to reduce the overall LCOE
of FOWTs. As one of the promising vibration control systems, TLCD, also known
as anti-roll U-tank, has been widely used for ships. Research on U-tank for reducing
ship roll motion dates back to the early 20th century, when Frahm modified the
free surface tank design [25]. Since then, numerous studies on numerical modeling,
design methodologies, experimental validation, and active control have been carried
out. A comprehensive review of the development and modeling of TLCDs in the
field of naval architecture is presented in [26]. A brief summary that is relevant for
understanding the work presented in this thesis is provided here.

The Euler’s equation was first introduced by [27]| to develop the mathematical
representation for passive TLCDs. The formulation was simplified in 28], which
became one of the classical analytical models. This model is intuitive, easy to im-
plement, and can be used for geometry design. The Lagrange method was used by
[29], and further developed and extended by [30]. The extended version not only
takes into account more dynamics due to the additional coupling terms in the in-
ertia matrix, but also allows a free choice of cross section other than a rectangular
prism. In terms of design methodology, |31| provides a detailed analysis of the effect
of damping coefficient, fluid mass, as well as the installation location on the perfor-
mance of the TLCD, providing important insights into these design considerations.

The conventional TLCD, despite its decades-long development and widespread
application in civil and naval engineering, faces new challenges when applied to
FOWTs. With only two columns, it is often difficult to fit them into the specific
geometry of a FOWT. Additionally, the unidirectional damping effect limits the
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damping performance, especially when the turbine yaws and both roll and pitch
motions become critical. One solution proposed in [32] is to install two conventional
TLCDs orthogonally to dampen the tower’s fore-aft and side-to-side motion of a
tension leg platform type FOWT. However, such multi-TLCD systems have been
found to be less robust, particularly in the presence of wind and wave misalignment,
as discussed in [3]. Moreover, this solution is not suitable for many semi-submersible
substructures with three vertical columns. To address these challenges, the idea of
TLMCDs has been proposed by [3], which is a TLCD-like damping system with more
than two interconnected vertical columns. This allows for a more flexible design and
increases the FOWT’s robustness in combined wind and wave loading conditions.
It has been found that the TLMCDs can provide a more stable behavior and thus
a better damping effect, as well as installation flexibility, compared to installing
multiple conventional TLCDs in different directions. However, the analytical model
for the TLMCD proposed in [3] has not been verified by numerical simulations or
experiments. Thus, it is unclear whether the conventional mathematical derivation
for two-column TLCDs applies to the more complex damping system consisting of
multiple columns.

Another important research focus related to TLCD modeling is the accurate de-
termination of the damping coefficient. To understand better the fluid motion,
many researchers have performed numerical simulations of complex fluid behavior
in TLCDs. For example, [33] uses CFD techniques to study the stabilizing effect
of anti-roll tanks, while [34] analyzed sloshing in a road container using numerical
simulations to track the movement on the free surface. The volume of fluid method
is used by [35] to capture the nonlinear liquid sloshing inside a tank. The impact of
cross section shape and geometric scaling on the damping coefficient of the TLMCD
is investigated using CFD simulations by [36]. In the case of TLCDs for FOWTs,
the damping characteristics also affect the blade pitch controller, making it crucial
to have a reliable estimation and careful design of the damping coefficient.

Apart from the modeling aspects, many performance studies of TLCDs are also
available, and it has been found that their effectiveness is highly dependent on the
wave conditions. For example, Frahm’s passive U-tank has been found to be efficient
in regular waves, achieving a roll reduction of approximately 50%. However, in

choppy seas, where waves spread in multiple directions and have different patterns,
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it has been observed that the motion is poorly damped, often with no visible roll
reduction [37]. Similar findings have been reported in the application of TLCDs to
FOWTs, where a reduction in mean roll amplitude of only 2% has been observed
[38]. The limitations of passive TLCD performance have been confirmed in the
evaluation of both passive and semi-active TLCD by [39]. However, recent research
has shown that the TLCD combined with the turbine blade pitch controller can
efficiently damp platform resonances [40]. This concept extends the potential of

passive TLCDs for offshore structures.

2.4 Different Control Approaches

Another aspect, which significantly influences the motions and loads of a FOWT,
is the blade pitch controller. This is due to the strong coupling between the hydro-
dynamics, aerodynamics and servo dynamics. This section explains the underlying
physical causes of this problem and summarizes the state-of-the-art solutions related

to the control design.

2.4.1 The non-minimum phase behavior

Modern multi-megawatt wind turbines are typically blade-pitch controlled. For
onshore blade-pitch controllers, the approach often used in the literature is to aim
for a constant closed loop frequency and damping across the above rated wind speeds
[41], [42], [9]- So that the overshoot, rise time, as well as the settling time of the
step response remain similar at different operating points (i.e. wind speeds). This
means that the control design is performance oriented. When adapting a state-of-
the-art onshore blade pitch controller to a FOW', the instability problem of the
platform pitch mode due to the soft substructure, is a well-known challenge. This
phenomenon, called negative aerodynamic damping, was first discussed in [43]. From
the viewpoint of control theory, the non-minimum phase behavior or the Right-Half-
Plane Zero (RHPZ) problem arise when feeding back the generator speed to the blade
pitch at above-rated wind speed limits the control robustness and performance. This
leads to a larger generator speed fluctuation and higher tower base bending moment.

Thus, stability becomes a driving factor for control of FOWTs.
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2.4.2 Control approaches

To solve the non-minimum phase issue mentioned previously, a variety of methods
addressing the RHPZ have been studied in recent years. A straightforward method
is to detune the blade-pitch controller. Most recent research moves to more complex
control approaches by adding additional sensors, actuators, or using model based
control algorithms. All methods can be categorized into four categories and are

summarized here:

¢ Reduce bandwidth (single-input-single-output control)
A pioneering solution to address the limitations of Single-Input Single-Output
(SISO) controllers for FOWTs is proposed by [43]. The method retains the
SISO control structure, but detunes the gains of the collective pitch controller
such that the maximum closed-loop control frequency is below the pitch nat-
ural frequency of the floater. Compared to onshore turbines, this results in a
significant reduction in control bandwidth, at which the controller is effective.
Nevertheless, the method has been widely adopted by many other researchers
to date due to its simplicity and ease of implementation. However, as the size
of wind turbines increases and the natural frequency of the correspondingly
larger supporting substructure decreases, further reduction of the bandwidth
of the blade pitch controller can lead to insufficient performance in generator
speed tracking [21]. As a result, recent research has focused on more complex
control approaches that involve additional sensors, actuators, or model-based

control algorithms.

e Extra sensors (multi-input-single-output control)
In [1], improved control performance is achieved by adding extra loops that
feed back the platform pitch velocity and tower top velocity to the blade pitch.
Another promising control sensor is LiDAR, which provides inflow information
ahead of time. By applying feedforward control strategy, the effect of changing
wind speeds on rotor speed can be compensated for before they can impact
the turbine. For instance, the Lidar assisted feedforward control proposed by
|44] uses wind preview data to adjust blade pitch and counteract the effects of
wind speed changes. However, additional sensors can introduce measurement

uncertainty and malfunctions, which can affect the reliability of the controllers.
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As such, it is crucial to design robust and fault-tolerant control strategies that

can handle sensor failures and other uncertainties.

e Extra actuators (multi-input-multi-output control)
The benefit of controlling the generator speed by regulating the generator
torque is that the aerodynamic thrust will not be directly affected. It has
been shown that feedback of the nacelle velocity to the generator torque can
compensate for the non-minimum phase zeros [45|, which is the origin of the in-
stability problem. Similar result has been demonstrated for a different FOWT
concept in [21]. However, the generator torque can only be regulated within
a limited margin, leading to only a marginal improvement in system perfor-
mance. Other actuators, such as active structural dampers and active ballast
systems, have also been suggested in various studies to improve the overall
system response. However, adding more actuators will inevitably increase

maintenance costs.

e Advanced control algorithm
Model-based control strategies, such as the Linear Quadratic controller |23, 46|
and the H-infinity approach [47], provide a systematic way to handle multi-
input, multi-output systems. Model predictive control has also been adapted
to FOWTs and has demonstrated good performance in damping platform mo-
tions and reducing loads [48]. Disturbance accommodating controllers can
minimize the impact of wind speed perturbations [46], and individual blade
pitch control has proven to be effective in reducing platform pitch motions
[49]. However, the implementation of these model-based control approaches
can be complex and strongly dependent on the quality of the model, as well
as computationally expensive, which can pose challenges for their practical

application.

To summarize, advanced controllers have shown promising control performance
compared to traditional Proportional-Integral (PI) controllers. However, their suc-
cess is highly dependent on the quality of sensors, actuators, and numerical models.
As a result, advanced controllers remain primarily the focus of academic research
and it is challenging to implement them in early demonstrators. The barrier stems

from both limited access to the controller provided by the turbine manufacturers
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and the reliability of additional sensors. In addition, controllers using advanced
algorithms often require an online numerical model of the FOWT. However, un-
certainties associated with these complex models, along with the representation of
stochastic environmental conditions, can limit significantly the control performance
in the real world. Given these facts, it is clear that the SISO PI blade-pitch controller
remains a popular choice in the wind industry due to its simplicity and robustness,
while still providing satisfactory control performance. However, as the wind indus-
try moves towards floating platforms, where environmental conditions become more
complex and induce additional motions and loads, SISO controllers may not meet
the necessary control requirements. Therefore, the question of whether a detuning
procedure for the simple controller can ensure full functionality and effectiveness in

these challenging environments needs to be further investigated.

2.5 Control Co-Design

Sections 2.3 and Sections 2.4 explore potential solutions for reducing the motions
and loads of a FOWT. However, given the highly coupled nature of the system, it
is difficult to make progress by focusing solely on individual subsystems without
considering their impact on other subsystems and the overall system. This is par-
ticularly true for actively controlled systems, where dynamic characteristics play a
central role in determining the design of the control system. This is where Control
Co-Design (CCD) approaches become important.

Figure 2.1 illustrates four general approaches to designing and optimizing an ac-
tive system. The sequential design approach, whether one-way or iterative, optimizes
different subsystems in isolation. In the case of FOWTSs, the industry typically uses a
sequential or iterative sequential design process. For instance, the substructure and
the blade pitch controller are highly coupled subsystems due to the interaction of the
controller with the hydrodynamics and aerodynamics. However, the control system
is typically optimized as an independent step after the substructure design is final-
ized, when the hydrodynamic characteristics of the system are fixed. This approach
may lead to more conservative designs that may not fully leverage on the potential
cost reductions achievable by incorporating advanced sensing and control technolo-

gies into the substructure design process. As a consequence, control engineers may
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encounter a situation where they think, ’If only I could modify the dynamic plant
G (such as the substructure or tower design), the overall active system performance

would significantly improve.

Optimize G(x)

Optimize G(x) —> Optimize C(y)

(a) sequential design Optimize C(y)

A

(b) iterative sequential design

Optimize G(x)
[ \ Optimize
Optimize C(y) G(x) & C(y)

(d) simultaneous design

(c) nested design

Figure 2.1: Multidisciplinary design optimization method.

Given the challenges of designing and optimizing FOW'Ts, there has been grow-
ing interest in optimizing simultaneously the subsystems, particularly the dynamic
plant and the controller, which is known as the CCD. The ARPA-E ATLANTIS
Program ' has already announced several projects focusing on this topic [50]. The
key challenge here is to determine how the subsystems of a FOWT can be designed
to interact synergistically for optimal performance. Such a CCD optimization ap-
proach can play an important role in Multidisciplinary Design Optimizatio (MDAO)
methodologies, exploring potential physical and control system design solutions that

enable new levels of performance and functionality.

2.6 Reference Models

Three FOW'Ts are used as reference models in this work. The DTU 10 MW refer-
ence wind turbine [51] is the only wind turbine used to demonstrate the developed
methods. The key properties of this turbine are provided in Table 2.1. In addition,
three substructure designs developed for the DTU 10 MW reference wind turbine

thttps:/ /arpa-e.energy.gov/technologies /programs /atlantis. Accessed on 20.0ct.2022
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are used, as illustrated in Figure 2.2. These designs include the 10 MW Reduced
Draft Spar (RDS) concept from the Concrete Reduced-draft Offshore Wind turbine
for iNdustry (CROWN) project, as well as the OO-Star and Nautilus-10 concepts,
which are developed within the LIFES50+ project [52].

Table 2.1: System properties of the DTU 10 MW reference wind turbine.

Properties Unit Value
rated power MW 10

hub height m 118.39
rotor diameter m 178.2
rotor mass kg 230717
nacelle mass kg 446006

l

Figure 2.2: Three FOWT concepts used in this thesiss CROWN 10MW RDS FOWT
(left); LIFES50+ OO-Star Wind Floater Semi 10MW (center); LIFES50+ NAUTILUS-
DTU10 MW FOWT (right).

The CROWN 10 MW RDS concept is utilized to validate the coupled TLMCD and
FOWT numerical model in Chapter 4. The OO-Star and NAUTILUS-10 concepts
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Table 2.2: System properties of the FOWTs used for evaluation.

Properties CROWN OO-Star NAUTILUS-10
wind turbine DTU 10MW DTU 10MW DTU 10MW
platform material concrete concrete steel

pitch natural period [s|] 28 33 30

are used to assess the design methodology, which adapts the blade pitch controller
for TLMCD damped FOW'Ts in Chapter 5. In addition, a quasi-NAUTILUS con-
cept is employed as an initial starting point for the CCD optimization. The original
NAUTILUS-10 concept is equipped with an active ballast system with varying bal-
last mass and center of gravity over operating wind speeds. This feature is however
not implemented in the quasi-NAUTILUS concept. Table 2.2 provides a summary
of the main system characteristics of the three FOWTs.






3 Numerical Tool: Modelling,
Coupling and Verification

Good tools are essential for the successful execution of a task. Therefore, this chapter
establishes the numerical tools used throughout the thesis. The physical basis for the
numerical model is based on both the Newton-Euler equations (Newtonian mechan-
ics) and the Lagrangian mechanics. When the coordinates are defined consistently,
Newton’s and Euler’s axioms result in an equivalent mathematical expression for
the dynamics as the principles of Lagrangian mechanics. This provides flexibility in
deriving the equations of motion for complex systems, such as the coupled TLMCD
and FOWT system studied in this work. The main result of this chapter is published
in [53], but the methodology is described in more detail in the following sections.
The chapter begins with fundamental but essential definitions, including the coor-
dinates and the FOWT system. Next, the equations of motion of a TLMCD are
set up. A simplified formulation for TLMCDs with uniform cross sections is derived
and linearized for specific applications, such as control design. The TLMCD is then
coupled to two existing numerical models for FOW'Ts, i.e. openFAST and SLOW.
Different coupling methods are implemented in the SLOW model, and their simula-
tion results are compared. Finally, a code-to-code comparison between openFAST

and SLOW is carried out to verify the developed numerical model.

3.1 Reference Coordinates and Transformation

The substructure of a FOWT is usually considered as a rigid body, whose dy-
namics can be described by the Newton-Euler equations or Lagrangian mechanics.
It is convenient to describe the motion of a rigid floating substructure using two

frames(coordinates), i.e. an earth-fixed inertial frame and a body-fixed frame.
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To describe the location of an arbitrary rigid body, the position of the origin of the
body-fixed frame expressed in the inertial frame is used, denoted by = = [x,v,2]".

The orientation of the body can be described by the Euler angle ©® = [p, 3,¢] .1

The corresponding rotation matrices about each axis are:

—sin(8) 0 cos(p)

cos(vp) —sin(yh) 0
R.(Y) = |sin(y)) cos(¢)) 0
0 0 1

To rotate a rigid body from its initial orientation to any given orientation in space,
different rotation sequences are possible. For ships or aircrafts, the sequence of ZYX

is usually used, which is called Cardan angles, the rotation matrix in this case is

R(©) = R.(¢V)Ry(8) R (). (3.2)

An important feature, independent of the rotation sequences, is the transpose of
the transformation matrix:

RT(©) = R(©). (3.3)

Velocities of a rigid body are defined in a body-fixed frame. With the rotation
matrix, one can connect the linear velocities in the body-fixed frame v and the direct

time derivative of the coordinates described in the inertial frame by

fConventionally either ¢, 6,1, or «, 3,7 are used, since for wind turbines, 6 is often used to
describe the blade pitch angle which is also the case in this work, a mixed notation is used. There
are different names for the orientation angles, depending on the rotation sequence, proper Euler
angles and Tait-Bryan angles are the two big categories, but both of them are called "Euler angles"
in a general sense. This work uses Tait-Bryan angles, but will be referred to as Euler angles.
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v =RTx. (3.4)

Regarding the angular velocities w”, it’s important to note that they cannot be
directly integrated to determine the actual orientation coordinates. To address this
issue, a transformation matrix G is defined according to relation between the direct
time derivative of the Euler angles and the angular velocities in the body fixed frame.

With ZYX rotation sequence, this relation is expressed as:

@ 0 0
WwEGO= 0| +R, || +R.R, |0]. (3.5)
0 0 ¥

Therefore, G can be determined as a function of Euler angles and is written as

1 0 —sinf
G(®)= |0 cosp cosfsing (3.6)
0 —sing cosfcosp

In summary, if the location and orientation of a rigid body are defined as a vector
written as [£7, @] = [x,y, 2, ¢, 3,7, then the corresponding velocities described
in the body fixed frame are computed by the transformation matrices R and G,

which is expressed as

b R(O®)T 054 y
vt _ RO Oa @) (3.7)
(.db 03><3 G(@) ®

3.2 Simplified Low Order FOWT Model

The SLOW model, introduced in Chapter 2, is used to simulate the dynamics of
the FOWT in the coupled model. To evaluate the dynamic performance of the
TLMCD model, the two-dimensional (2D) FOWT motions are extended to a three-
dimensional (3D) by enabling additional DOFs of the platform. The model consists

of a structural module and several sub-modules that account for external applied
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loads, including aerodynamic, hydrodynamic, and mooring loads. The physical
theories and mathematical expressions of this model are briefly summarized below,
which is helpful in understanding the coupling between the TLMCD and the FOWT
to be introduced later.

The equations of motion for the SLOW model are derived using a flexible MBS
formulation with a tree structure. The platform is modeled as a rigid body with
five DOFs (surge, sway, heave, roll, and pitch), while the elastic tower has only
one DOF for the tower top fore-aft motion. The open loop tree structure is advan-
tageous for incorporating additional dynamic components, such as the structural
damper studied in this work. The MBS formulation is based on the fundamen-
tal physical principles of the Newton-Euler equations, which describe the linear and
angular kinematics of a body and their relationship with the external forces and mo-
ments acting on the body. When considering an arbitrary body ¢, the Newton-Fuler

equations can be written as

m;a; = fi + f;

i (3.8)
I,-a,— + S (wz) I,-wi = l;l + l:,

where a;, a; and w; are the linear acceleration, angular acceleration and angular
velocity of the rigid body defined in the initial frame. Note the cross-product S (-)

in the equation represent:

All the loads are written on the right hand side, including the external applied
forces f and moments I, as well as the reaction loads f; and I, coming from the
connected neighboring bodies.

The velocities can be obtained by direct time differentiation of the body velocities.
Assuming a system with generalized coordinates (or minimal coordinates) g, the
body velocities, equivalent to the velocities v, and w; in Equation 2.3, can be

calculated by

= R(©)"J.:(q)q

(3.10)
G(©)J..(q)q,

£ s
)
R R
S~— S~—
I



3.2 Simplified Low Order FOWT Model 29

where J;; and J,; are Jacobian matrices for each body, giving the kinematics
in the initial coordinates of that body based on q. As discussed in Section 3.1,
the transformation matrices R and G can transform the vector described in the
inertial coordinates to the body fixed coordinates. Regarding the accelerations in
Equation 3.8, they can be calculated by the time differentiation of the body velocity,

which are

(3.11)

The complete expression of a; and «; is rather complex. For a floating platform
which has a small roll motion and the yaw motion is fixed, R and G can be neglected.

Therefore the Equation 3.8 becomes

m;J,;q + mijt,iq =fi+fi

. _ (3.12)
LJ,.q+1iJ, g+ S (w;) Liw; =1l +1]

It is important to emphasize here that this simplification applies only to the

platform, but not to the tower and the nacelle.

Assuming that there is a MBS with p bodies and f DOFs, multiplying the Equa-
tion 3.8 by the transpose of the global Jacobian matrix

J' = [Jz,—l? U 7J;|,—p> J2:17~ o 7sz] S R/x6p (313)

from the left, the internal reaction forces f; and moments I; can be eliminated
according to the principle of d’Alembert [2]. Equation 3.12 can be further simplified

M (q)q+c(q.q) =7(q,q), (3.14)

where M(q) € R/*/ denotes the system inertia and ¢(q,q) € R/*! represents
the total Coriolis, centrifugal and gyroscopic forces. Note that the hydrodynamic
added mass is also included in M, how to handle this additional mass term can
be found in [2], which will not be explained here. The external applied loads are

included in the vector 7 € R/*!, which will be described in the following section.

External forces T exerted on the FOW'T are mainly from the aerodynamics, hydro-

dynamics, as well as the mooring system. How these forces are handled is described
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already in Section 2.2.4. More details can be found in [2].

It is advantageous to linearize the numerical model for control design purposes.
For a FOWT, this mainly concerns the aerodynamic forces and the mooring forces,
sometimes also the hydrodynamics if Morison equations are used to represent the
viscous drag forces. As a final result, the SLOW can be transformed into the linear

format:
M(q)q + C(q)q + K(q)q = To. (3.15)

Here C(q) is a velocity-dependent matrix, resulting from both the external applied
forces (mainly the aerodynamic and hydrodynamic forces) and the Coriolis and
centrifugal forces. The matrix K(q) includes the position dependent terms from
the hydrostatics, mooring lines, the centrifugal forces and the gravitational forces.
The applied forces 7y consist of the loads from the environment that are independent
of the kinematics of the FOW'T.

3.3 Two-column Tuned Liquid Damper Model

Before analyzing the dynamics of TLMCD, it is helpful to derive the equations of
motion for a simple TLCD with two columns. Figure 3.1 shows a basic TLCD. As
can be seen, it consists of two vertical square columns connected by a horizontal
duct. Such TLCDs are widely used in naval and civil engineering. The analytical
formulation of the equations of motion, which dates back to the 19th century, is still
in use today.
To allow a concise mathematical description of the fluid motion inside the TLCD,
several assumptions are necessary:
e The cross sections of the vertical and horizontal columns are constant respec-
tively
e The fluid inside the TLCD is incompressible
e Fluid velocity is uniform and flows along the central line of the column, which
is called the streamline
e Free surface is perpendicular to the streamline
e [ree surface is open to air, i.e. above the free surface is the atmospheric

pressure
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streamline

W,

b

© origin of the . v
body frame

h, Ta

Figure 3.1: Schematic of a passive two-column TLCD with notation [40].

e The position of the free surface is always within the vertical column, i.e. the
horizontal column is always full of fluid
Based on these assumptions, only one degree of freedom is necessary to describe
the flow condition inside the TLCD. This is denoted by z in Figure 3.1, representing
the change in the position of the fluid free surface with respect to that in steady
state, which is expressed in the TLCD-fixed body frame. When z is relatively small,
it can be replaced by z = ™/2, the case in [28] which leads to an equivalent result.
There are different methods to derive the equations of motion of the fluid flow
inside the TLCD. One of the classical approaches is based on Euler’s equation. Since

the fluid is incompressible, the Euler’s equation for the fluid flow is expressed as

3
(%i 3vi 10P
+ — i+ —— =k (i=1,23), 3.16

where v;, p and P are the fluid velocity, density and local pressure of the 7;, com-
ponent, respectively, and x; represents an arbitrary unit length along the coordinate
axis. The external force per unit mass k can be friction force, inertial forces due to

gravity, or platform motions. Since it is assumed that the fluid flows always along

i — (). To simplify the formu-

the streamline and the cross section is constant, i.e. 5
J
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lation, curvilinear coordinates can be used to describe the streamline, the direction
of which is indicated by an arrow at the end of the streamline. As a result, there

are only two variables left, and Equation 3.16 can be reduced to

dv 1dP

—+-——=k 3.17
dt * p ds ’ (3.17)

where s represents an arbitrary unit length on the curvilinear coordinate following
the streamline. If z is used to describe the height difference of the fluid level in the

two vertical columns, the local fluid speed can be written as

zZ, in the vertical column

z %, in the connecting duct ( )
d

The difference of the hydrostatic pressure P inside the TLCD due to the moving
free surfaces is
AP = 2pgz. (3.19)

As for the external force per streamline length k, when neglecting the motion
of the platform, only the damping forces due to the friction or vortex shedding at
the corners of the structure are considered. Defining the damping ratio by rule
of thumb is difficult. Both [54] and [55] have discussed the determination of the
damping ratio, using CFD simulation and experimental tests. One main conclusion
from the studies is that both linear and quadratic damping should be considered.
To simplify the explanation and expression, the linear damping term will be used as
an example in the following derivation. The quadratic damping term will be further
elaborated in the following sections. Since the linear damping force is proportional
to the fluid velocity with respect to the structure, a coefficient d; can be defined,

with the unit of [k9/s] or [V/(m/)]. Then the damping force k can be written as

—d
Z - —ld’ in the vertical column
L — pWyrLdS (3.20)
; Wr —4 in the connecting duct
Z— - -—— in
hg phgxids’ &

By inserting all the components, i.e. Equation 3.18-3.20, into Equation 3.17, and
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integrating along the streamline fTLCD 0s, the Euler equation yields

w,w, 1 Wy
oh, + —— 200 2 = —2d
p(2h, + o )2+ 2pg 2 1(wr$t + P2

)2, (3.21)

After multiplying the equation with the fluid mass of each cross section w,x;, the

equation can be rewritten as

2 2
d d

p(2h,w,zy +

For conventional TLCDs, w, is much larger than h,4, therefore, the damping term
w2

due to the friction in the vertical column can be neglected, i.e. 1+ ;’;—22 Nt
d d

To simplify the representation of Equation 3.22, the following notation is used:

A,
Ay = pAy(2h, + 2
Ay
AQ
By = 2d; — (3.23)
tt A%L
Ci = 2gpA,

where A, = w,z; and A; = hgx; are the cross section areas of the vertical and
horizontal columns, respectively. Considering also the forces coming from the float-
ing platform, the equation of motion of a TLCD with rectangular prism shape is

then given by
A2 + Bz + Cipz = Tptm (3.24)

where Ay, Bi, Ci are all geometry-dependent coefficients, which characterize
the fluid dynamics inside the TLCD. Equation (3.24) represents a classical second
order system driven by the platform motions. More specifically, the resulting force
Totim depends on the platform pitch angle 3,, the acceleration Bp and the surge
acceleration @,. This part is formulated on the right hand side of the equation.
Because of the action and reaction forces, the TLCD contributes with the stabilizing
moment 7r,cp to reduce the platform pitch motion.

If the motion of the free surface level z is relatively small compared to the distance
between the two vertical columns w, it is also possible to use the angle 7 to describe

the fluid motion, which means z = /2. Since the motion variable in this case is
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an angle, the moment of area of the vertical column cross section wwrot /o will be
multiplied to the original Euler’s equation. This preserves the form of the basic
equation of rotational motion, which gives a better physical interpretation and leads

to the following expression:

hyw,zw?  wiwix, w?  wiw? PW, T w?
r T+ di(— "N+ e 7 = 0. 3.25
2 g TG T (3:25)

p(

Equation 3.25 is in line with the classical model presented in [28, p. 265]. Note
that the damping coefficient d; is defined differently in this work.

The analytical model presented by [28] neglects several coupling terms between
the TLCD and the platform. For example, loading and unloading the TLCD will
change the total mass of the FOWT system, as well as the center of gravity and
the moment of inertia, this effect is however not considered. According to [28], the
neglected terms do not significantly affect the behavior of the model if the fluid mass
of the TLCD is less than 5% of the total system mass.

3.4 Tuned Liquid Multi-Column Damper Model

The TLCD model introduced in the previous section has been widely used in naval
and civil engineering for over a century. It is simple, easy to understand and im-
plement, and nevertheless still generates satisfactory engineering results. However,
there are several obstacles to applying this model to FOWTs. The first is due to
the specific configuration of FOWTs. For state-of-the-art FOWT designs, which
typically do not have large space, a conventional TLCD concept could be difficult
to be integrated. Furthermore, unlike ships, which only need to be damped in roll
motion (unidirectional damping), FOW'Ts tend to be symmetrical and thus require
damping in both roll and pitch motion (bidirectional damping). This is how the
concept of TLMCD was inspired in [3]. Due to the increasing complexity of the sys-
tem, the authors derived the mathematical equations of the analytical model using
a Lagrangian mechanics based method, which originates from [55]. Tt is the basis
of the analytical model used in this work. Since the coordinates of the TLMCD
and the coupling methodology are different in this work, the essential equations are

derived again in the following sections. The basic modeling assumptions are the
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same as for the TLCD modeling defined in Section 3.3.

3.4.1 Coordinates and notation

Before deriving the equations of motion, it is important to define the essential param-
eters that characterize a TLMCD. As discussed in Section 3.3, using the geometrical
parameters shown in Figure 3.1 can result in very long and complex equations of
motion, especially as the number of vertical columns increases. However, by using
the cross sectional area and column length as defined in Equations 3.23 - 3.24, the
equations can be simplified without altering the physical meaning of the TLMCD.
Therefore, in this work, the TLMCD is defined based on its cross sectional area and

column length.

Figure 3.2: Sketch of a TLMCD showing the notation of geometrical parameters and the
body fixed reference coordinate.

Figure 3.2 shows the notation used for the geometrical parameters of the TLMCD.
The cross-sectional areas of the vertical and horizontal columns are denoted by A,

and A, respectively. L, represents the vertical fluid height with respect to the

center line of the horizontal arm at steady state, while % represents the length of

the horizontal column. The use of % rather than L;, is consistent with the notation

convention used for two-column TLCDs, which allows for easier comparison. In
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addition, the body-fixed coordinate system, attached to the floating platform, is
also shown, and e represents the vertical distance between this coordinate system
and the horizontal arms of the TLMCD.

As for the configuration, the demonstrated TLMCD system in the figure consists
of three elements, each of which can be considered as half of a conventional two-
column TLCD, comprising half of the horizontal column and an attached vertical

column. For convenience, these elements are numbered from No.1 to 3.

The general modeling approach, in particular the kinematic description, used for
the two-column TLCD still applies in the case of multi-column TLCDs. However,
since the fluid flow must be modeled across multiple columns, local curvilinear co-
ordinates are used to describe the streamline in each column. The positive direction
is defined as pointing outwards from the vertical column, as indicated by the arrow
at the end of the dashed line. In the case of three columns, three curvilinear co-
ordinates are needed, with each coordinate originating at the junction point of the
three horizontal columns and pointing outwards from the respective vertical column.
Here, o; (where i = 1,2, 3) can be used as generalized coordinates to describe each

streamline.

Given this definition, it is convenient to map arbitrary points along a streamline
to a body-fixed Cartesian coordinate system. For convenience, the TLMCD uses the
same body-fixed (platform-fixes) coordinate system as that used for the platform.
This coordinate system coincides with the Earth-fixed inertial coordinate system
at steady state when the wind turbine is not attached. For element No.l, which
is located in the xz-plane with positive flow pointing in the positive x-axis and z-
axis directions, the mapping of the streamline to the Cartesian coordinate system is

expressed as follows:

xb(g-) 2 g;, \V/O'i c [0, Lh/2)

Lh/27 vai € [Lh/27 _'_00)7
y(0:) £ 0, (3.26)
Zb(gl) 2 e, VO’Z‘ € [O,Lh/Q)

e+ o; — Lh/2, Vo, € [Lh/2, +OO>
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Then the corresponding derivatives can be calculated:

dab(oy) A | 1, Vo, € [0,L/2)
do; 0, Vo, € [Lh/Z,—f—OO),

() 5 (3.27)

dzb(gi) N 0, Vo, € [O,Lh/Z)
, Vo, € [Lh/2,+00)

Therefore, the position vector and its derivative of an arbitrary point along a

streamline in element No.7 can be written as

r(o;) 2 [2%(07), 0, 2%(07)] "
dr’(o;) A dzb(o;) 0 dz*(o;) T (3.28)
dO'i - dO_Z ) 9 dO’Z .

To place the vertical column at flexible directions, an element can be rotated
a; degrees about the z-axis of the body frame, the Cartesian coordinates are then
rotated and become

R.(a;)r’(0;), i=1...N, (3.29)

where R, («;) is the rotation matrix about z-axis. According to the principle of

Equation 3.1, R,(«;) is a function of «; and can be written as

cos(ey;) —sin(ay) 0
R.(a;) = | sin(ay)  cos(ey) 0 | - (3.30)
0 01

Regarding the cross sectional area, A(c;) is defined as a function of o; for the
whole TLMCD:

Ay, Voi € [Ly/2, +00)
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3.4.2 Kinematics

To describe the time dependent fluid motion (or to say the fluid distribution within
the columns), variables that measure the free surface position are needed. For
conventional two-column TLCD, only one variable is needed to describe the flow
condition within the columns, which is z in Section 3.3. As the number of vertical
columns increases, more variables are required. Since the fluid is assumed to be
incompressible, for a TLMCD with N elements, at least N —1 variables are necessary
to describe the fluid dynamics inside the TLMCD, here nc = N — 1 is used for
simplicity.

Assuming that the fluid in the i, streamline accumulates to a length of o; = (,
then the total length of the streamline is from o; = 0 to the free surface. In this
case, the relative position of the free surface in the 4y, vertical column with respect
to that in steady state is z; = ¢; — Ln/2 — L,. To avoid confusion between the free
surface motion and the platform heave motion, w; is defined to replace the z; used
in Section 3.3. In terms of the direction, if the free surface level is higher than the
one in steady state, w; > 0, or vice versa. Finally, the generalized position vector

required to describe the flow state is defined as
w 2 [wy, wy, -, W (3.32)

The direct time derivative of Equation 3.32 results the speed of the fluid flow,

which equals w; in the 7y, vertical column. In the horizontal column, due to the

Ay
Ap

speed, the fluid velocity at any cross section (or to say point along the streamline)
inside the TLMCD in the platform-fixed body frame can be derived as

mass conservation, the flow speed equals w;. By adding the directions to the

Ayth; dr?
b N — v Wy AST
’Ut,i(o-l) A<0_1)Rz(al) dO',L (0-7,)7 (333)
where %(Ji) is the unit vector of %(m) which is defined as
drb I (5
dr (0;) & j"b—() (3.34)
of ‘ d%i(gi)
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When the TLMCD moves together with the floating wind turbine, which has the
linear velocity v, and angular velocity w,, the velocity in the moving body frame
of an arbitrary point at o; on the streamline becomes

A, drb
A(Ji)Rz(a,»)d—Ui(ai), (3.35)

'uf’i = v, +wp X Rz(ai)rb(ai) +

where ¢ = 1...N represents the i;, column of the TLMCD.

The generalized coordinates of the free surface position are defined as
q=[z), @g, w']’. (3.36)

To link the body fixed velocities and the time differentiation of the coordinates,

Equation 3.7 can be extended, which results in P as the transformation matrix:

R(O)" 03x3 03xnc
P(@) é O3><3 G(@) 03><nc € R6+nc‘ (337)

Onc x3 Onc X3 ]Inc

Thus, the velocity of the TLMCD free surface in the initial coordinates can be
expressed by using the translational and rotational velocities of the rigid body as

vy, wp, w']" =Pgq (3.38)

p?

3.4.3 Potential and kinetic energy

The equations of motion describing the fluid flow are derived by using Lagrangian
mechanics, which has been introduced in Chapter 1. This approach results in a set
of Lagrange’s equations described in initial coordinates, which are compatible with
SLOW/| if the generalized coordinates are defined in the same way. The basis of
using Lagrangian mechanics is to establish the formula representing the potential
and kinetic energy of the TLMCD.

When considering a very small volume of fluid d ) along the streamline, the
volume of which can be calculated as dV = A(o;)do;, the corresponding kinetic

energy d7' is determined by the fluid velocities, which can be expressed in the body
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frame:

1
AT = (3.39)

where dV represents an infinitesimally small volume of fluid inside the TLMCD,

equal to A(o;)do;. The vector norm ) ’ is defined as
2

b
Vi

b
Vi

, = (i: vé’w2> 5 . (3.40)

Jj=1

By integrating the kinetic energy of small fluid volumes along the streamlines, the
total kinetic energy of the TLMCD can be obtained. As a result, the kinetic energy
accumulates, yielding the total amount of kinetic energy 7" in the TLMCD system,

which can be expressed as

(O'i)dO'i

T= Z/ —p’vm

pN Gi
:5;/0

2

) A(o;)do;  (3.41)

v+ wy X R (ai)rt(0:) + $25 R (a )4 ()

2

R.(0)r(0,)) wy + 225 R (0) 2 (o) |

A(ai)dal-

where do; is a differential length along the iy, streamline described by curvilinear
coordinates. The geometry related parameter A(c;) describes the change in cross
sectional area over the streamline. In the case of a TLMCD with uniform cross
section, as shown in Figure 3.2, then A(o; > L,/2) = A,, otherwise, A(o; <=
L,/2)=A

To better understand the underlying components of the kinetic energy , 7" can be

expanded into
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N .
1 -+ Gi ~2 b
+§wp (—p;/o A(0))S” (R.(c)r’(0y)) daz-) wp,
M.,

N Gi B
+w, (—pZ/O A(0:)S (R.(a;)7"(07)) dai) v,

=1

M,
N o (3.42)
T r -
+v (pAv;/o Rz(az)daZ dai) w;
M,,
NG dr?

+w pAUZ/O S (Rz(ai)rb(ai)) Rz(%)d do; | w;

=1 v

M.,
N .
LSS Y
=1
M,
For convenience, T' can also be written in matrix format as
1 . :
T=—| g, wg, w' ] Mys [vg,wg,wT]T, (3.43)

2

where Mg is the full inertia matrix with different components in inertial coordi-

nates, defined as

myls M,,(w) M,,(w)
Mys(w) £ | M (w) My(w) M,g(w) | €R™ (3.44)
M (w) M (w) M,(w)

M , defines the time dependent fluid mass distribution inside the TLMCD. The mass
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and moment of inertia of the TLMCD as a rigid body are calculated by m; and M|,.
The products of inertia, representing the cross-coupling between translational and
rotational accelerations, are represented by M,,. The most important terms are
M., and M,,,, which describe the coupling between the TLMCD and the platform.
These terms are consistent with the conventional TLCD introduced in Section 3.3.
Some of the analytical models neglect several terms that do not have a major impact
on the overall dynamics, but significantly increase the computational effort. A
comprehensive comparison and discussion on these terms is given in [30]. Based on
this study, M, and M, are neglected for the rest of the study.

As for the potential energy, assuming that the potential energy at the equilibrium

position is zero, then the potential energy of an arbitrary volume of fluid dV is
dV = gph(r®, x,)dV (3.45)

where the function h(r? ;) is the relative height with respect to the equilibrium
position in the initial coordinates. It consists of two parts. On the one hand, the
TLMCD moves as a rigid body in six DOFs which is described by [z,",©7]", so
that the potential energy changes depending on the current position of the platform
Z,. On the other hand, the motion of the free surface changes the fluid distribution
inside the TLMCD and thus changes the potential energy of the TLMCD, making
it a function of r® and ©. Since the potential energy only concerns the vertical
position in the inertial coordinate, the unit vector in the direction of the z-axis z is

used to obtain the corresponding component of the position vector, which results in
h(r’, z,) = z" (R(®)R.(a;)r"(0;) + x;) . (3.46)

Similar to kinetic energy, the potential energy can be summed up as follows:

N Gi
V =gz (ROR.(a)r (o) +2,) Y [ Al
i=1 70 (3.47)

NG
0= RO)'Y [ A Reladr" (7)) + gpzm,



3.4 Tuned Liquid Multi-Column Damper Model 43

3.4.4 Non-conservative forces

The Lagrangian principle shows the law of conservation of energy, so the action and
reaction forces between the components of the system do not need to be considered
in the equations of motion. The only forces that enter the equation are the non-
conservative forces, which represent the energy going into and out of the system.
For a FOWT, there are two main types of energy transformations. On the one hand,
energy enters the system from excitations such as wind, waves, and currents. On
the other hand, energy is dissipated due to the fluid viscosity, energy radiation, or

vortex shedding.

The external disturbance forces, as well as the viscous drag forces due to the wave,
are exerted only on the FOW'T. These forces are already taken into account by the
SLOW model. The presence of the TLMCD does not affect this part. The additional
forces introduced by the TLMCD are due to the energy dissipation, described by
the damping terms in the equations of motion. As mentioned in Section 3.3, there
are both linear and quadratic damping terms. How to model the linear damping
has been given in Equation 3.20. Therefore, only the quadratic term is described
here, denoted by Q.

As the fluid flows, friction exists between the moving fluid and the column wall,
which converts part of the kinetic or potential energy into thermal energy. This
conversion and loss of energy is known as the major head loss and is proportional
to the square of fluid velocity. There is also some minor head loss caused by sudden
pressure drops, e.g. at the junction point of the columns. In addition, energy
dissipation occurs due to the local vortex shedding at sharp corners, turbulence at
the free surface, etc. For the major head loss, the damping is proportional to the
square of fluid speed (norm of the local velocity vector). Assume that the fluid speed

in the horizontal arms is
A T
Un = [UhJ Unh,2 ce Uh,N] s (348)

then the resulting damping forces in the body frame can be written as

. 1
F(w) = §PAh77 [on| © vy, (3.49)
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where 7 is a non-dimensional head loss coefficient. The symbol "o" in the equation
denotes the Hadamard product, which is the element-wise multiplication of two

matrices f.

Similar to Equation 3.18, because of the continuity of mass inside the TLMCD, the
fluid speed in the horizontal arm vy, can be determined by the free surface position

w;, which is written as

S T Ay

Uy = [w1 Wo Ce ’U}N]T A_ (350)
h

To simplify the expression, a transformation matrix Py, is defined as a function of

the cross sectional area ratio 4e:

Ap,
_ A
P, =P, 3.51
V=P (3:51)
with _ -
1
P, = ' e RVxne, (3.52)
1
-1 ... -1

Then the fluid speed vector vy, can be directly linked to the generalized coordinates
of the TLMCD w, which is written as

_ A, .
Uy — Phw = PhA—w (353)
h

The matrix Py, has no direct physical meaning, but can be understood as a Jaco-
bian matrix which relates the generalized TLMCD coordinates to the fluid speed in

the vertical columns, which means

Pow = [y 1y ... 1y (3.54)

tFor any matrices A and B, the Hadamard product A o B produces another matrix whose
elements are obtained by multiplying the corresponding elements of A and B. For example, the
(i, j)-th element of Ao B is given by (Ao B);; = A;j - Bjj.
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Given the corresponding forces and velocities, the virtual power can be calculated
by v, Fj,. If we define the generalized forces as Q, the virtual power can also be

calculated by w' @, which means
vy F,=w'Q. (3.55)
After knowing vy, F';, and w, the generalized forces @ can be derived as
Q=(w")" (Pyw) Fy
=P F,
1 T
= ipAhn P, (|vh] o ’Uh)

1
— 5pAn Py (|Phwy oPhw> e R™x1L,

(3.56)

As can be seen, Q) is dependent on the cross sectional ereas of the TLMCD, as well

as the time varying free surface motion of the TLMCD w.

3.4.5 Equation of motion

After obtaining all the components of Equation 2.5, the equations of motion for the

TLMCD can be derived. Since the potential energy in classical mechanical systems

v

oq
dor or ov_
dtog 0gq O0q

As a first step, the partial derivatives of T" and V' with respect to the generalized

is independent of velocities, meaning equals zero, Equation 2.5 can be simplified

(3.57)

coordinate g, defined in Equation 3.36, can be established. The results of the partial

differentiation are detailed as follows:

myg z
| €T (RTATL [ AR i) o) d(en)
g~ | 94z  RO)(R(a))r(Q) = Ralaw)r’(Cn)) |- (3.58)

9pAz " R(O)(R.(00ne) 7 (Cne) — Ra(an)r*(Cn))
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03x1
Pa™
9( (:)1) MysP

oT 0 ,
—= | Py Mxp | ¢, (3.59)

%(PQ)TMP |

OWne

where —G'' S (RTz) is resulted from 8§T@R |3, p. 287].

Based on this, the time differentiation of the partial derivative of T" with respect

to g can then be determined, which is expressed as

OM
awi

d o

S - T .
— Pg+P MysPq. (3.60

) = P MxsPi+P T MysPqg+P" )

i=1

As already mentioned previously, since the excitation forces from the wind, wave,
and current are captured by SLOW, the energy dissipation inside the TLMCD,
introduced in Section 3.4.4, is the only non-conservative force. Finally, the equations

of motion can be assembled and formulated as

M, (w)
T Mns . . KnS 0
P M, (w)| Pg+ Cxsq + = | (361
- . K, Q(w)
qu(w) qu(w) Mq(w) SN——
~ ~~ d Kys
M s

with
myll M,.(w
M, = o ()| (3.62)
Mva(w) Mw(w)

This equation has a form consistent with Equation 2.1, with Myg, Cns and
M s being the generalized inertia matrix, Coriolis and centrifugal matrix and grav-

itational forces respectively. While the external generalized forces are written on
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the right hand side. These terms can determined by

03><1
—8(P(g)TMNSP
0 ne
. oM . T
Cis = %(Pq)wl{\fﬁp +P " MxsP+P" ) "y aw?fSPJrP MysP (3.63)
. i=1 ¢
] %(Pq)TaJ\u{]I:ISP
oV

Kyg = . 3.64
NS = 5 (3.64)

As can be seen, Mg is the mass matrix which is introduced in Equation 3.44.

K s represents the restoring forces due to the stiffness which is determined by ‘?—g.
T
oq
and % (g—g). Since the total mass of the TLMCD only takes a small proportion

of the total mass of the coupled TLMCD and FOWT system, Cyg will not have

a significant influence. Thus, this term is omitted in this work, which is also not

Coriolis and centrifugal forces are represented by Cng which is determined by

considered in some classical analytical TLCD models, e.g. [28].

Equation 3.61 is derived under the assumption that the TLMCD moves as a
rigid body with a predefined velocity [v],w/[]" in space, which is the same as the
FOWT. This is only true if the TLMCD and the FOW'T are considered as a whole
whole system. Therefore, the inertia properties, the non-conservative forces due to
the environmental excitations, as well as the damping effect must be added to the
equation. These terms are already solved by SLOW in Section 3.2. So Equation 3.61

can be extended by combining the terms in Equation 3.15, which is written as

M ,,(w) 0
. M, + M, |, .| K, K.
P M., (w)| Pg+ 0|4+ q+ B
0
M (w) M (w) M,(w) 000 t
_ Tp(vp, wp)
Q)

(3.65)
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where M, C,,, K, and T, are purely platform related parameters.

Compared to the equations of motion for the platform-only system, the matrices
M, and K, can be considered as additional mass, inertia, and stiffness, which
contribute to the system dynamics of the FOW'T. This is similar to the case when

the platform has changed its mass or mass distribution.

For the TLMCD, there should be forces coming from the platform that cause the
TLMCD to move along with the platform. According to Newton’s Third Law, there
should be an equal amount of reaction forces exerted on the platform to hold the
TLMCD. When the platform and the TLMCD are considered as one single system,
represented by generalized coordinates, these internal forces are mathematically can-
celled out when deriving the equations of motion. Physically, this implies that the
internal forces do not increase or decrease the energy of the whole system. This is in
line with Equation 3.15, where all the internal forces are mathematically eliminated

by multiplying the Jacobian matrices.

Nevertheless, the internal forces, which keep the TLMCD moving along with the
platform, do exist. These forces lead to the coupling between the platform states
and the TLMCD states, described by M,,,, M, and K,:

AN dr® .
M, [, j]l(w) = pAUZ/O Rz(&i)adai Py[i,j] € R**Y (3.66)

B b

Gi r _
M, [, jl(w) = AUZ/O S(Rz(ai)rb)Rz(ai)j—o_idaiPh[z’,j}eRgXl, (3.67)

A my z 6x1
K.=g S [ , eR . (3.68)
—pG S (R Z) Zi:l fO A(UZ‘)RZ(OKZ')T (0_i)dai

Here j = 1...nc means that M,, and M, have the size of 3 X nc respectively.
The mass term M and the stiffness term K are purely TLMCD related. They are

the essential key parameters for the equation of motion for the TLMCD, which are
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expressed as

G
___ L _
M ,(w) £ pA, PIPhEh(V ~1)+P/} P, | e R™ (3.69)

v

pA,z" R(O©)(R.(a1)r*(¢1) — Ra(an)r®(Cn))
K, =g : e Rl (3.70)

pszTR(®> (Rz(anc)rb(CnC) - R, (aN)rb<CN))

To better understand the physical implications of these terms, their correlation
to the classical model in [28, p. 265] is helpful. Specifically, M,,[2, 1] denotes an
equivalent physical coupling to a,2, while M ,[1, 1] and Mwq[3,1] correspond re-
spectively to a,4 and a,¢. Similarly, the connection between M, and a,, is notable,
whereas K; contains c¢,4 and ¢,.,. When these terms are further simplified and lin-
earized, they will yield an expression equivalent to that in |28, p.265|, as detailed in

the following Section 3.5.

Besides the mass and stiffness terms, there is additional damping due to the energy
dissipation within the TLMCD. The damping term for the TLMCD is described by

Q(w) and given in detail as
f 1 3PT[IP, 2 D . nex 1
Q(w) = 5 pAwy” Py (|Phw| o (Phw)) €R (3.71)

Again, the above derivation is originally developed in [3] T, the differences with
this study are the coordinates and the modeling of the FOWT. More specifically, a
right-handed Cartesian coordinate system with the z-axis pointing upwards is used
to describe the floating platform, and the dynamics of the platform are solved using
Newton-Euler equations. This difference may lead to some different signs in the

equations.

tNote that the expression of Equation 3.69 in the appendix of [3] contains typing errors.
Therefore, the expression may look different here.
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3.5 Equations of Motion of a TLMCD with

Uniform Cross Sections

Although Section 3.4.5 provides the thorough formulation of the TLMCD dynamics,
the equations are complicated to implement and to linearize. Since the kinemat-
ics are defined for a small volume of fluid of the TLMCD, integration along the
streamline is required to obtain the parameters for the TLMCD, which also signif-
icantly reduces the computational efficiency. Considering that the cross section of
most conventional TLCDs has regular shapes and is uniform along the columns, the

integration can be calculated analytically, thus simplifying the Equation 3.66-3.71.

3.5.1 Simplified expression

Assuming that both the vertical columns and horizontal columns of the TLMCD
have uniform cross sections, the integration term in Equation 3.66-3.70 can be sim-
plified as a multiplication, which can be carried out analytically. The essential

coefficients to form the equations of the motion for a TLMCD can be written more

compactly:
M _ Ly
q(w) _pAv(LU + —+ wn)Jnc+
pAv dlag(Lv + %7 +wy, -, Lv + %fy + wnc) € Rnc’
% (cos(a;) — cos(ay))
M yg[:i](w) = pAy | & (sin(qy) — sin(ay)) | € R (3.73)

w; — WN

sin(a;)(Ly +w; — €) — sin(an ) (L, + wy — €)
L
M o3 i) (w) = PAvgh — cos()(Ly 4+ w; — €) + cos(ay)(Ly + wy —e) | € R**!

0
(3.74)
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— sin(5)
K ,s[4:6,1](q) = —gp | cos(B)sin(p) | X

cos(/3) cos(¢)

N N 1 eR>! 3.75
(An(%2)%/2 4 Ay (B2)Ly) 3 cos(ay) + AyZE 3 w; cos(ay) (3.75)
i=1 =1

(Ap(5)?/2 + A, (&) L,) ésm(ai) + A,k f} w; sin(ay)

=1

(Apkre + AyLye + A %) N + A (w2 + w2 + - - + w)

—sin(p) (cos(ay) — cos(an)) Ly

K[i,1](q) = gpAy | cos(B) sin(p) | © | (sin(a;) —sin(ay)) 2o | € RV (3.76)

cos(3) cos(y) w; + Wi+ Wee

where ¢ = 1...nc in the above equations and J . is a ncxnc matrix of ones. In
scenarios involving two vertical columns, i.e., when nc = 1, these equations result
in a formulation equivalent to that commonly used for conventional TLCDs. The

difference lies in the defined coordinate system.

3.5.2 Linearization

Given the simplified formulation of the equations of motion, it is possible to linearize
the model assuming a fixed free surface position. When w; = 0, the mass and

stiffness terms become:

2 1 1
L 1 2 :
M ,(0) = pA, (Lv + %7) _ e R™ (3.77)
S
1 12
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sin(a;) — sin(ay)
‘ L .
M q[:,4)(0) = PAUTh(Lv —e) | —cos(ay) +cos(ay)|, i=1...nc (3.79)
0
Based on the restoring forces, the stiffness matrix can be obtained when it is
differentiated by the generalized coordinates of the TLMCD, i.e. ¢ = [&], 0], w '] :

Ko g] = Kol 1
ns,l 7] - aq] (3 80)
o 0K,[i, 1] '
K li,j] = g
J

Then the linearized total restoring forces due to the TLMCD can be written as

Ku(@)| _ KO (3.81)
K(q) K. ;(0)

For simplicity, the stiffness matrix in Equation 3.81 is split into several elements:

O3x3  0O3x3  Osxne

Kns,l(o)
é 03><3 Kns,l22 Kns,l23 S R(G-Hw)X (6+ne) (382)
KtJ(O)
0nc><3 Kt,l32 Kt,l33
100
Ly LZ 3
Kosi2(0) = —gp(An—re + ALve + Ay2) - N 10 1 0] €R (3.83)
000
1 2 : e
Kt7133(0) = g,OA'U . . . 1 € R (384)
1 1 2
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sin(ag) —sin(ay)  —cos(ay) + cos(ay) 0
L, | sin(ag) —sin(ay) —cos(ag) + cos(ay) 0
Kt,l32(0) — gpAv7h ' c Rncxi’)
sin(ap.) — sin(ay)  — cos(@pe) + cos(ay) 0
) (3.85)
Ly,
Kns,l23(0) - Q/JAU7
sin(ay) — sin(ay) sin(ag) —sin(ay) -+ sin(ape) — sin(ay)
—cos(av) + cos(ay) —cos(ag) +cos(ay) - —cos(ane) + cos(ay)| € R¥*"™
0 0 . 0
(3.86)

It is worth mentioning that K j32(0) = Kps23(0) "
As for the generalized force due to the damping forces Q(w), we assume a linear

damping coefficient d;[*9/s], which is the same as in Equation 3.20. The generalized

Q,(w) is given by

Q,(w) =P} - dyvy

:dl’}/2 ng’hw
2 1 1
(3.87)
, |1 2 o L
=d;~y w € R~
. . . 1
1 1 2

3.6 Coupling with FOWT Numerical Model

Both explicit and implicit methods are used for the coupling. With the explicit
method, the required states of the platform should be provided for the TLMCD
module. Based on this, the corresponding stabilizing forces and moments can be
calculated and fed back to the FOWT numerical model. The implicit method in-
cludes the TLMCD states in the equations of motion of the FOW'T and then solves
the coupled system of FOWT and TLMCD differential equations. This section first
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explains the two coupling methods and then compares the simulation results.

3.6.1 Explicit coupling

In this work, the explicit coupling is implemented in Simulink. Figure 3.3 shows
the block diagram of the coupling, where z, and O, represent the position and
orientation of the platform, &, and ép are the corresponding accelerations in the

inertial coordinate.

Xsi {31,, ¥p, Gp

Frimep, Mrimep

Figure 3.3: Block diagram showing the signal exchange between the FOWT and the
TLMCD of the explicit coupling.

The additional forces and moments added to the platform due to the presence of

the TLMCD are Frpyvep and M pyvep, which are calculated using

F RM , w0
TIMED T | - Ky (3.88)
M i vep G M, W

This approach aligns with the methodology presented in [28, p. 266]. For instance,
concerning the roll direction, K s[4, 1] denotes c4,7, while M, encompasses a7
In the case of small-angle motions, the transformation matrices R and G are ne-
glected, reflecting the conditions in [28].

With the explicit coupling method, the differential equations of the FOWT and
the TLMCD are set up separately in their own block. The action and reaction
forces between the platform and the TLMCD are treated as external forces for both
of the systems. Therefore, these forces should be written on the right hand side
of the platform equation of motion. At each time step, the platform motion and
acceleration in 6 DOFs are forwarded to the TLMCD block. These motions induce
forces on the TLMCD that keep the TLMCD moving along with the platform. After
solving the differential equations of the TLMCD, the change of states is known
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and the stabilizing forces can be calculated and sent back to the FOW'T model.
The stabilizing forces are then added as additional excitation forces acting on the
platform, next to the wave excitation forces. The coupling principles in both SLOW
and OpenFAST are similar, but the point at which the TLMCD forces are added
differs for practical reasons. In SLOW, the forces are added at the center of gravity
of the platform, whereas in OpenFAST the reference point is at the origin of the

platform fixed frame of reference.

Because of this difference, the resulting TLMCD forces are processed differently
in the two numerical models during the implementation:
e SLOW
The resulting stabilizing forces given by Equation 3.88 have a reference point at
the origin of the body frame of the TLMCD, as illustrated in Figure 3.2. Since
SLOW formulates the equations of motion for each body around its center of
gravity, the moments need to be transformed from the center of flotation at
sea water level to the center of gravity of the platform. The transfer matrix
H(r,) |5] can be used for this purpose:
- T

H(r,) = lxa 5 (ry) : (3.89)

O3.3 D343

where 7, is the position vector of the platform’s center of gravity, expressed
in the body fixed reference frame. Note that H (r) has the following charac-
teristic:

]I3><3 03><3

H(r,) " = : (3.90)

S(ry) Isxs
The forces added to SLOW are expressed as

r
—H(r,) " | TP (3.91)

MTLMCD,g MTLMCD,O

F TLMCD

e OpenFAST
Within OpenFAST, the TLMCD force vector is added to the force output of

HydroDyn, since all the forces excered on the platform are summed up there
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and later forwarded to the ElastoDyn input subroutine. The joint is defined
at the WAMIT reference point, i.e. the center of flotation in this work.

There are several ways to introduce additional forces into OpenFAST. Con-
sidering the potential that the TLMCD can be active and thus becomes an
actuator, the implementation in Simulink is control oriented. The additional
TLMCD realted forces are added next to the control inputs. The standardized
control inputs of OpenFAST include generator torque, blad pitch, turbine yaw

position, etc.

Explicit coupling is easier to implement and it also preserves the equations of
motion of the FOWT system, but it has several disadvantages. The state variable,
as well as the corresponding stabilizing forces of the TLMCD, are always found one
time step later. If the system is very stiff and has very high frequency responses,
numerical instability may occur. This is not the case for semi-submersible platforms,
which have relatively low frequency motions, but could be a problem for tension
leg platforms. Another disadvantage is related to the system linearization. Since
the differential equations of the platform and the TLMCD are set up separately,
linearization of the entire coupled system is not possible. Therefore, when it comes

to control design where a linear model is needed, implicit coupling is necessary.

3.6.2 Implicit coupling

For a TLMCD with arbitrarily varying cross section, the equations of motion are
complex. It is not suitable for linearizing the coupled system because it requires the
integral along the streamline at each time step. Therefore, the implicit coupling is
implemented only for TLMCDs with uniform cross sections. The FOWT numerical
model used is SLOW. Unlike the explicit coupling, where the FOWT model remains
almost unchanged (except for the additional external loads from the TLMCD), the
implicit coupling requires a modification of the system states, as well as an update
of the equations of motion.

Figure 3.4, illustrates how various bodies of the FOW'T are interconnected, with
the ellipses representing the rigid or flexible bodies and the yellow dots representing
the joints that connect the bodies. Without a TLMCD, the MBS topology of a

FOWT corresponds to serial chains which has open loop mechanisms. Each body
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platform

PV i A e

Figure 3.4: Structural topology of the coupled MBS system [40], illustrating the connec-
tions between each body.

is connected to a preceding body and it becomes basis of the next one. Note that
the preceding body of the platform is the ground and the Rotor Nacelle Assembly
(RNA) has a free end. By coupling to a TLMCD, the MBS is turned into a tree
structure, with the floating platform acting as the base. Since the presence of the
TLMCD does not affect the branch connecting the tower and the RNA, the coupling
method described in this section only shows the interaction between the platform
and the TLMCD. To reduce the size of the equations, the example shown here has
three vertical columns.

According to Section 3.1, if the platform yaw motion is omitted, the generalized

coordinates in g, for a platform in reduced order form are

qs = [Iphyp?z[hgppuﬁp]—ra (392)

with the motion states being platform surge x,, sway y,, heave z,, roll ¢, and pitch

Bp, respectively. The global Newton-Euler equation can be written as

M3<qs)qL9 + CS(QS? qs)Qs = TS? (393)

with the generalized mass matrix M, € R”*®, the Coriolis and centrifugal forces
C.(q,,q,)q, € R**! and the applied forces 7, € R5*.
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For the coupled FOWT and TLMCD system, additional DOFs of the TLMCD w

need to be introduced, the generalized coordinates become

q, = [xpvypazp790p75p7w17w2]Ta (394)

and the corresponding global Newton-Euler equation of the coupled system can be

written as

RM,,

MS . CS(qs7 qs)qs
(qs> J;IFGTMUJQ g, + =
T T T 0nc><1

M, R M,GJ, M
I (3.95)
- —K,5(1:3)

Ts T 051

+ —Jq K. (4:6)| + ‘

0nc><1 Q(’LU)
L _Kt

where M, M, M, K,s and K, are given in Section 3.4.5, and are linearized
in Section 3.5.2. Since the platform yaw DOL is omitted, the Jacobian matrix J

is necessary, which has the following form:

Jo=10 1]. (3.96)

3.6.3 Comparison between different models

A total of four coupled models are evaluated and compared. Two of these models are
explicitly coupled and are implemented as an additional block next to the FOWT
system in Simulink. The main difference between these two models lies in the formu-
lation of the TLMCD. Specifically, the nonlinear model is based on Section 3.4, while
the linear model results from the linearization process discussed in Section 3.5. The
remaining two implicitly coupled models have an extended generalized system coor-
dinate and use a linear TLMCD. In the case of coupling with the nonlinear FOWT
model, Equation 3.95 is used to modify the S-function of the FOWT model. The
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fully linearized coupled model uses a state-space representation, which is convenient
for modal analysis and control design. To assess the performance of these models,
the response to an Extreme Operating Gust (EOG) without waves is simulated and
the results are presented in Figure 3.5.

Overall, the four models behave similarly, especially in terms of the transient
response resulting from the sudden change in aerodynamic loads during the short
period of the gust. However, the model with linear FOWT model yields slightly
lower maximum rotor speed and blade pitch, due to the linearization of the aerody-
namics. Notably, there are differences in the platform motions and the TLMCD free
surface after the gust period. The nonlinear TLMCD model shows larger oscilla-
tions, indicated by higher response amplitudes, while the remaining linear TLMCD
models have similar response amplitudes. In addition, there is a phase shift over
time between the explicitly coupled models and the implicitly coupled model due
to from the coupled dynamics. Although this shift cannot be eliminated, it is not
apparent when the dynamic responses are dominated by large external excitations
such as wind and waves.

In summary, it is more accurate to use a nonlinear model, but in applications
where a linear model is preferred, such as control design, a linerized model can still

give reasonable predictions.

3.6.4 Code-to-code verification

This section shows the performance of the developed numerical tool. The simulation
is carried out under turbulent wind condition with a mean speed of 16m/s and
irregular waves with an incident angle of 30 deg. The comparison between SLOW
and OpenFAST is shown both in uncoupled mode and in explicitly coupled mode
with the TLMCD.

Stand-alone 3D SLOW

Figure 3.6 shows the comparison in the wave-only condition. The motions in all five
DOFs agree very well between OpenFAST and SLOW. A very small offset in the
platform pitch comes from the mass distribution of the turbine, whose blades are
defined as flexible bodies in OpenFAST.
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Figure 3.5: Time responses to EOG simulated by the coupled TLMCD and SLOW model
using different coupling methods.
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Figure 3.6: Comparison of time responses to waves between OpenFAST (blue line) and
SLOW (orange line).

Comparisons of the system responses to wind and waves are presented in both the
time domain (Figure 3.7) and the frequency domain (Figure 3.8). Both blue lines
and yellow lines are simulated by OpenFAST. The only difference between them is
in the wind field, where the blue lines use a 3D turbulent wind field and the yellow
lines use uniform wind. Simulation results using SLOW are shown by the orange

lines.
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The largest difference can be found between the turbulent 3D wind field and the
uniform wind, i.e. between the blue and yellow lines. In the time domain, the roll
motion in 3D turbulent wind field is much larger due to the aerodynamic torsion
caused by the spatial turbulence. In the frequency domain, the responses due to the
spatial turbulence experienced by the blades are not captured by the uniform wind,
which is visible near the three-per-revolution (3P) frequency range. In the lower
frequency range, roll and sway are less excited by the uniform wind. Since SLOW
uses only a rotor disk for the aerodynamics, these differences due to the wind field
cannot be corrected. In spite of that, OpenFAST using uniform wind and SLOW
have a better agreement in both time and frequency domain. The only difference is
the static offset in the blade pitch sensor. Since the rotor disk of SLOW reads the
lookup table of aerodynamic coefficients calculated with a bottom-fixed turbine, the
steady position of the platform at different wind speeds is not taken into account,
resulting in a steady offset in the blade pitch.

Another deviation comes from the mooring lines, which is evident in the fairlead
sensor. Since SLOW only uses a lookup table to account for the static mooring
forces, the high frequency responses due to the mooring dynamic effects can not be
captured. For the pitch motion, there is a small discrepancy in the wave frequency
range (around 0.09 Hz), where SLOW has larger responses than that of OpenFAST

in the frequency domain. This is however not significant in the time domain.

3D SLOW coupled with TLMCD

Having accessed the differences between the FOWT simulation models, it is con-
venient to analyze the modeling capabilities when coupling a TLMCD to a FOWT
and identify the impact of a TLMCD.

As previously discussed, the discrepancies between OpenFAST and SLOW are
mainly due to the wind field and the aerodynamic model. Therefore, the verification
of the model starts with load cases excluding aerodynamics. In Figure 3.9 (a), which
illustrates the pitch decay test, both models show strong agreement. Moving to
the second load case (Figure 3.9 (b)), the coupled system here is subjected to a
regular wave with an amplitude of 4m and a period of 15s, with all DOFs initialized

at zero positions. As can be seen, the simplified model also captures the same
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Figure 3.7: Comparison of time responses to wind and waves between OpenFAST with
3D wind field (blue line), OpenFAST with uniform wind (yellow line) and SLOW (orange
line).

dynamics observed in both the transient and harmonic oscillation periods. Notably,
there is a minor deviation in the free surface sensor during the harmonic oscillation
period - more specifically, the free surface in the OpenFAST coupled model appears
smaller than that in the SLOW coupled model. Overall, the simplified coupled

model reproduces the most relevant system dynamics of the OpenFAST model in
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Figure 3.9: Comparison between OpenFAST (yellow line) and SLOW (orange line) for

the FOWT and TLMCD coupled system in load cases without aerodynamics.

SLOW shows differences due to the simplified aerodynamics. In order to specifically

assess the impact of the coupling of the TLMCD, a uniform wind field is employed

in the simulations, isolating and focusing only on the effects of the TLMCD.

Figure 3.10 illustrates the dynamic responses in the time domain, while Figure 3.11
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compares the differences in the frequency domain. The response patterns are similar
to those of the stand-alone SLOW model, but with noticeable differences due to the
modeling simplifications mentioned above. In particular, the fairlead tension is
underestimated in the higher frequency range due to the absence of dynamic effects
from the mooring system. In addition, discrepancies in roll and sway motions at
lower frequencies can be linked to the simplified aerodynamic model, where the
aerodynamic torque is not included in the SLOW model.

Regarding the coupling of the TLMCD, both models exhibit a remarkable simi-
larity in behavior. However, the SLOW coupled model demonstrates slightly larger
amplitudes in both pitch motion and free surface dynamics. This divergence is ev-
ident within the wave frequency range in the frequency domain. These variations
are directly due to the over-predicted pitch motion of the FOWT, as observed in the
uncoupled scenario (Figure 3.8). Given the significant influence of the pitch motion
on the free surface and its consequential impact, generating a stabilizing moment in

the pitch direction, these discrepancies are further amplified in the coupled system.



4 Experimental Validation

To validate the developed numerical tool, two test campaigns are carried out. The
first campaign tests a stand-alone TLMCD model in the laboratory of Stuttgart
Wind Energy (SWE). And the second campaign involves testing a coupled system
in the wave tank of the Environmental Hydraulics Institute of Cantabria (IHC).
The majority of the results from these tests are published in [56, 53|. This chapter
provides comprehensive insights into the setup of both test campaigns and presents

the validation results, all of which are presented at the prototype scale.

4.1 Calibration of the TLMCD Stand-alone Model

In order to validate the numerical model established in Section 3.4, a scaled stand-
alone TLMCD with three columns is built. With the prescribed platform motion in
six DOFs, decay tests and harmonic oscillation tests are carried out. This section
presents the test setup in Section 4.1.1, the data obtained, as well as the comparison

between test and simulation in Section 4.1.2 and 4.1.3.

4.1.1 Laboratory setup

The stand-alone TLMCD experiments are carried out in the SWE laboratory. The
hardware setup consists of a 6 DOF motion platform, a motion control software
and a data acquisition system. The scaled TLMCD model is mounted above the
motion platform. Free surface sensors are placed on top of each vertical column of
the TLMCD. Figure 4.1 shows a sketch of the experimental setup. A photograph
taken during the experiments is shown in Figure 4.2, which demonstrates the final
implementation. A detailed description of the physical model construction, the

sensors and the execution of the experiments can be found in [57]. The focus here
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is on the validation and calibration of the numerical model.

Infrared laser distance sensors, installed at the top of each vertical column of the
TLMCD, are used to measure the free surface motion. Short pulses of laser light are
emitted to track the free surface inside each column. When the laser pulse reaches
the free surface of the fluid, it is reflected towards the receiver. Based on the time
difference between the laser emission and reception, the distance between the sensor

and the free surface is calculated. The accuracy of the sensors is up to 3 mm.

The dimensions of the tested TLMCD are listed in Table 4.1. All the values are

given without the wall thickness, i.e. the inner dimensions.

Table 4.1: Parameters of the scaled TLMCD.

Parameter Value |mm]|
Vertical column height L, 405
Vertical column diameter D, 174
Horizontal arm width by, 155
Horizontal arm height hy, 16
Horizontal arm length Lj,/2 597.3

Vertical location of the streamline origin e 70

Data acquisition

Motion control

Data logging

Figure 4.1: Illustration of the experimental setup with the data acquisition system in-
cluded [57].
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Figure 4.2: Hardware setup of the TLMCD laboratory test.

4.1.2 Free decay test

The most important properties to be determined through decay tests are the natural
frequency and damping coefficients. According to Equation 3.72, the mass matrix
depends on the system state w. The natural frequency, without considering the

dynamic term, is determined by [36], which is

g 1
hA_h + Lv

2
This is also in line with the natural frequency of the two-column TLCD given by
[28]. Besides the analytical method, the natural frequency can also be determined
experimentally by fitting the measured free surface position to an exponentially
decaying sinusoidal curve. The corresponding fit function is expressed as

w; = w;ge " (cos(wat) + sin(wgt)) (4.2)

¢
Vi

fNote that the Ly, in [36] should be Z-.
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where wq is the undamped natural frequency and wy = wpy/1 — (2 is the damped

natural frequency.

Figure 4.3 compares the free surface position in the vertical column of element
No.1 between experiment and simulation. It is observed that the experiment has a
higher natural frequency than the simulation without calibration. This phenomenon
has been reported in previous studies, including [55] through experiments and |54]
through high-fidelity CFD simulations. However, these studies are limited to con-
ventional two-column TLCDs. This is due to the poorly defined fluid velocity inside
the TLCD, particularly at the transition part or sharp corners, because a certain
amount of water remains stationary instead of flowing along the ideal streamline.
This requires a different amount of fluid to achieve the desired natural frequency
for a TLMCD, which is described as the effective volume of tank fluid in [55]. The
theoretical fluid volume to match the desired natural frequency has a discrepancy
of about 12 % compared to the actual fluid volume. While the mass term in [54] is
corrected based on CFD simulations, the correction factor varies between 10 % and
30 % depending on the TLCD configurations. In contrast, the correction factor for
the mass term in [36] is found to be only 5%. In this work, a correction factor of
32 % is applied to the mass matrix of the TLMCD, denoted by (1—u)M . This may
seem large compared to the 5% correction in [36], but it can be explained by the
narrow horizontal arms of the Seaplace FOW'T design, which contribute significantly
to the correction factor p. Nevertheless, this correction is considered acceptable as

it is close to the range found in [54].

As for the calculation of damping, Appendix A has formulated the detailed data
processing of the experimental results. Based on this, both linear and quadratic

damping are determined:

by = 0.0145
(4.3)
by = 0.3514
The head loss coefficient n = 0.7 is calculated using
1— b
n= w (4.4)
0.5pA,y

A study on the damping coefficients is made in [36]. It is concluded that the linear
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damping coefficient is more influenced by the cross-sectional shape and the quadratic
damping coefficient is influenced by the scaling factor, which is the actual length of
the columns. The reason for this is that the linear damping is dominated by the
sudden pressure change at the junction area or sharp corner, which is called minor
head loss. However, the major head loss that influences the quadratic damping is
dominated by the fluid viscosity. The linear damping coefficient in [36] lies between
0.0328 (for square cross section) and 0.0087 (for circular cross section). The TLMCD
tested here consists of both square and circular cross section and the linear damping
ratio by is estimated to be 0.0145, which is a plausible value. As for the quadratic
damping ratio by, a higher value is found for TLMCDs with smaller geometrical size
in [36]. Since the TLMCD tested here is much smaller than that in [36], by is larger

here as well.
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Figure 4.3: Comparison of the stand-alone decay test between experiments and different
calibrated models.

The final calibrated model based on the lab test is plotted with the red solid line
in Figure 4.3, along with the original model and the partially calibrated model. It is
clear that both linear and quadratic damping are important for the accuracy of the

model. The calibrated numerical result agrees well with the experimental results.
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4.1.3 Forced harmonic oscillation

To evaluate the dynamic responses, a motion platform is used to artificially re-
produce the motion of a FOWT under regular wave excitation. The TLMCD is
mounted on the motion platform and thus subjected to sinusoidal forcing. Tests are
performed under both roll and pitch motions, i.e. rotation around the x-axis (roll)
and y-axis (pitch) in Figure 4.2. Since the results show similar conclusions, only
one set of the tests is shown and discussed here. The prescribed input roll signal,

imposed on the motion platform, is

oo (£) = g sin (;—Z + emp) | (4.5)

The maximum angle of the motion platform ¢, is set to 10deg. Responses
in various wave periods Ty,, are tested, by prescribed motion ranging from 11s to
55s. The response of the free surface, which represents the fluid motion inside the
TLMCD, is compared with the numerical results to validate developed stand-alone
TLMCD model.

—— experiment —— simulation

= 051
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Figure 4.4: Comparison between the experiment and simulation of the time response of
the free surface wo under a prescribed sinusoidal motion with a period of Ty, = 11s.

Figure 4.4 shows the time response of the free surface ws, the location of which
is indicated in Figure 4.2. It is clear that the free surface experiences sinusoidal

oscillation at the same frequency as the frequency of prescribed motion without
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phase lag. The small difference is observed in the positive peak value (a positive
value here means that the free surface is rising). For an ideal flow, the mean value
of the free surface should be zero, which is the case in the simulation. The higher
value measured in the experiment cannot be explained by physical reasons, but may
be due to the sensors. On the one hand, the amplitude of the free surface motion
becomes smaller when excited at higher frequencies, so that the sensor accuracy of
3mm leads to a larger relative measurement error. On the other hand, the ability
to reproduce the prescribed motion of the motion platform decreases as the motion
frequency increases. However, this cannot be proven within the scope of this test
campaign.

If the amplitude of the sinusoidal response in Figure 4.4 is divided by the am-
plitude of the input signal, i.e. ¢y, and the phase is subtracted by 6,,,, a quasi
transfer function from the motion platform roll motion to the TLMCD free surface
motion can be derived. The term "quasi" is used here because a transfer func-
tion is normally a characterization for linear time-invariant systems, whereas the
TLMCD system is nonlinear. Nevertheless, such a transfer function approximation
can characterize and summarize the behavior of the TLMCD system quite well.

The Bode plot of the resulting "quasi" transfer function is given by Figure 4.5.
The frequency range shown corresponds to that of the experiments. Each marker
on the blue line represents a test under a specific regular wave excitation. The red
line represents the results of the simulation model, calibrated according to the decay
tests. The comparison shows a good agreement between the numerical model and
the experimental model, especially in the region close to the natural frequency of
the TLMCD, which also proves the effectiveness of the tuning process carried out
in Section 4.1.2. Since the measured natural frequency is higher than the originally
designed theoretical one, both of the frequencies are marked with different types
of dashed lines. The time response shown in Figure 4.4 represents the frequency
0.57rad/s, which has the largest error among the frequencies tested. Considering
the relatively small difference of the time domain response in Figure 4.4, it can be
concluded that the simulation model of the TLMCD has a very good performance

and reproduces the free surface motion quite well.
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Figure 4.5: Quasi transfer function from roll motion ¢ [deg] to TLMCD free surface
position ws |m|, showing the response amplitude and phase lag of the free surface of the
stand-alone TLMCD subjected to a sinusoidal roll motion in frequency domain.

4.2 Full System Wave Tank Test

To validate the established coupling between the TLMCD and the FOW'T, a scaled
model was tested together with the Seaplace 10MW FOW'T. The test campaign of
the scaled physical model is carried out at IHC by using a hybrid testing approach.
The testing is funded by the Eurostars project CROWN. This section first describes
the setup of the hybrid model, including the utilized sensors and load cases used.

After that, the validation results using the coupled SLOW model are discussed.
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4.2.1 The physical model, sensors and test matrix

The tested FOWT, the so-called CROWN Spar, is an evolution of the original RDS
developed in the CHEF Turbine project, as part of the European DemoWind co-
funding research program. The dynamic response of the original RDS in survival
conditions is presented in [58]. The updated 10MW version CROWN is scaled down
by a factor of 1:36 here. As can be seen in Figure 4.6, the scaled physical model

consists of the following components:

e Platform: The scaled model is made mainly of painted aluminum (partially
steel), with the mass characteristics adjusted by using a combination of solid
ballast and liquid ballast (water). The internal subdivision of the model fully
reproduces the dynamic effects of liquid ballast in the tanks, including a spe-
cific design of the TLMCD, fitted within the ballast tanks. A calibrated 3-line
spread mooring system (truncated) is attached to the 3 fairleads, located at
the top of the caisson.

e Tower: The tower is designed to provide the stiffness and strength necessary to
withstand the forces produced by the turbine rotor. The platform is considered
as a rigid body. The Qualysis markers and several of the devices serving the
sensors layout are placed along the tower.

e Multifan: It is a component of the Hardware-in-the-Loop (HIL) system that
is capable of reproducing the aerodynamic forces, which replaces the physical
wind turbine. With an array of fans placed at the tower top of the FOWT
model, the equivalent aerodynamic thrust forces can be calculated and repro-
duced in real-time based on the inflow conditions and the measured platform
dynamics.

e TLMCD: The TLMCD is made of aluminum and consists of three vertical
cylinders, which are connected to each other by a y-shaped duct that links
their lowest part, see Figure 4.7. The connecting duct is fitted into the heave
plate of the platform. During the different test campaign configurations, the
TLMCD is enabled or disabled by activating or deactivating the vent placed on
the cylinders cover, so that the fluid flow is controlled as required. Note that
the geometry of the tested TLMCD at IHC differs slightly from the one tested
in the lab of SWE, due to the limited choice of materials. The parameters of
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the TLMCD are summarized in Table 4.2.

e AHBS: The Anti-Heeling Ballast System (AHBS) is composed by a set of
electro-valves, a pump and tubes, which is used to compensate the mean tilting
angle induced by the aerodynamic thrust forces. This system will not be
discussed in detail as none of the tests associated with the AHBS are discussed

in this work. However, it is important to note that the mean platform pitch

angle is zero due to its presence.

Figure 4.6: Sketch (left) and photo (right) of the scale model at IHC.

With the aim of collecting the required physical phenomena occurring during the
tests, the following set of instrumentation and sensors have been used:

e Free surface transducers to measure water level oscillations in the basin (wave
gauges), run-up around central column and water level oscillations inside the
platform cylinders and TLMCD.

e Track motion system (Qualisys) to measure the FOWT motions.

e Axial load cells to measure forces on mooring lines.

e Accelerometer to record accelerations at the nacelle.
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Table 4.2: Parameters of the scaled TLMCD at IHC.

Parameter Value [mm]|
Vertical column height L, 388.9
Vertical column diameter D, 178
Horizontal arm width by, 150
Horizontal arm height hj, 20
Horizontal arm length L /2 582

Vertical location of the streamline origin e -1166.7

Figure 4.7: Photo of the scaled TLMCD tested at IHC.

Multiple load cases are carried out, which can be categorized into two groups.
One group is used to calibrate and validate the FOW'T simulation tool. In this
case, the TLMCD is deactivated by placing the waterproof rubber stopper directly
on top of the free surface. The other group of load cases are defined to evaluate
the performance of the coupled TLMCD and FOWT system. This means that the
rubber stopper is removed and the fluid inside the TLMCD can flow freely. In

general, the load cases can be divided into the following subsets:

e Static structural characterization
e Decay tests for dynamic system characterization
e Wind or wave only cases for system tuning

e Wind & wave combined cases for the validation of the system
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e Special cases proving the functionality of the TLMCD, the state observer and
the AHBS
Considering the objective of the present work, only a limited scope of load cases
are selected here. These include the translational and rotational decay tests for the
characterization of the dynamic system, regular wave-only cases to check the RAOs,
and wind and wave combined cases evaluating the overall system dynamics. Finally,
special cases are selected to demonstrate the functionality of the TLMCD. All of
the load cases are performed in both situations: with the TLMCD deactivated and
activated. The detailed wind and wave information for the load cases are listed in
the Tables 4.3 and 4.4.

Table 4.3: Parameters of the irregular waves described by JONSWAP spectrum.
sea state | 1 2 3 4 5)
Hg |m] 7 9 10.5 8 4
T, |s] 8.6 11.1 14.2 16 18.2
v |+ 5 4.5 2 1 1

Table 4.4: Wind and wave combined Load Case (LC).
LC HS [m] Tp [S] Uhub [m/s]

4 18.2 50
8 16 16
8 16 25

4.2.2 System identification

The entire FOW'T dynamic system is identified through a series of decay tests, which
consists of two steps. The first step is to calibrate the FOW'T numerical model based
on the decay tests with the TLMCD deactivated. More specifically, the natural
frequencies of the FOW'T are calibrated and the hydrodynamic damping coefficients
are determined. This provides a solid basis for evaluating the performance of the
TLMCD, as well as validating the coupled TLMCD and FOW'T system.



4.2 Full System Wave Tank Test 81

To match the natural frequencies in roll and pitch, the platform center of mass
is reduced by 0.2% of the original value. Considering the uncertainty due to the
construction and the final ballast tuning to obtain the designed draft, this calibra-
tion can be considered as reasonable. The hydrodynamic damping coefficients are
calibrated according to the experimental results. Nevertheless, these damping co-
efficients are often not valid in different sea states. This is due to the fact that
the dimensionless numbers Re and KC', which significantly affect the hydrodynamic
damping, vary when the fluid velocity and FOWT velocities change in different sea
states. Therefore, the hydrodynamic damping coefficients are recalibrated for the
load cases with wind and waves. A large heave plate is attached to the bottom
of the platform, contributing mainly to the heave damping, which is assumed to
be quadratic and can be captured by the drag term in the Morison equation [59].
The drag coefficient of the heave plate Cp 1, = 2.8 is determined by comparing the
simulation with the experimental results, which agree quite well. Therefore, no ad-
ditional linear damping is applied to the heave DOF. On the contrary, for the surge
DOF, both linear and quadratic damping are essential. The quadratic damping is
not fully represented by the Morison elements defined along the platform, with a
Morison drag coefficient Cp = 0.6. In addition, a linear damping coefficient is added
to the surge DOF. This can have a contribution from the radiation damping (omitted
in SLOW), the mooring system (the dynamic effect is neglected by the quasi-static
model). For the pitch DOF, the motion is partially damped by the Morison drag
forces defined on the heave plate. Only one additional linear damping coefficient is

added which gives good agreement with the experiments.

The final comparison of the decay tests is presented in Figure 4.8. The re-
sults demonstrate that good agreement between simulation and experiment can be
achieved by manually tuning of the hydrodynamic damping, providing a solid basis
for comparison with the TLMCD. Figure 4.9 shows the decay performance with
the TLMCD activated, where sensor w; indicates the TLMCD free surface position.
The first noticeable phenomenon is that both roll and pitch motions are significantly
damped due to the additional damping introduced by the TLMCD, as can be seen
by comparing Figure 4.8c and Figure 4.8d. It is important to mention that the mass
correction coefficient p is not required in this case, despite the calibration results

from Section 4.1 indicating its necessity. The reason for this could be attributed
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Figure 4.8: Comparison between simulation and experimental results of decay tests with
TLMCD deactivated.
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Figure 4.9: Comparison between simulation and experimental results of decay tests with
TLMCD activated.

to the fact that the fluid flow inside the TLMCD follows the ideal streamline more
closely when platform motions dominate. Therefore, u is set to zero for all the cases
in the wave tank test. Additionally, the head loss coefficient derived from the lab
test is not applicable, and thus 7 is adjusted to 2.8 to better match the experimen-
tal results, a value much larger than that in Section 4.1. The only parameter that
remains the same is the linear term d1. However, it is important to note that the
geometries of the two scale models tested are different, especially the cross-sectional
area of the horizontal arm, which is a highly sensitive parameter for the damping
ratio. Unfortunately, due to time and budget limitations, a thorough investigation
of the effect of the horizontal arm geometries on damping could not be conducted

in this work.
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4.2.3 Wave-only load cases

Tests are carried out with regular, irregular and white noise waves. Based on the
performance in white noise waves, tuning the drag coefficient C'p does not change
the response much. Therefore, the irregular wave cases are used as the basis for

determining the hydrodynamic damping coefficients.

Regular wave
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Figure 4.10: RAO based on regular wave tests with TLMCD deactivated.

Tests are carried out in regular waves with different wave periods from 10s to
25s. Two different wave heights were tested, i.e. 2m and 4m. Since the results are
quite similar, only the cases with 4m are shown here, and the platform response
amplitudes are shown in Figure 4.10. In general, a good agreement between ex-
periment and simulation can be obtained, except for the cases with wave period
20s and 25s, where large errors can be seen. This could be due to the parametric
instability [60, 61], which is a common phenomenon existing in offshore structures,
such as ships and spar platforms. The reason for this hypothesis is that the pitch
stiffness is quite sensitive to the heave motion due to the very small water-plane

area. Further discussion of this issue can be found in [56]. As the stability diagram
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Figure 4.11: RAO based on regular wave tests with TLMCD activated.

is largely influenced by the damping and wave parameters [62], a detailed analysis
on this is not carried out in this thesis.

The tests with TLMCD are performed under a reduced set of regular waves, i.e.
T = [10 15 20]s. The response amplitude per meter wave height can be found in
Figure 4.11. Similar to the results without TLMCD, apart from the good agreement
at T = [10 15]s, a large error in the Standard Deviation (STD) at 20s is evident.
Again, this should be due to the parametric instability, which is already discussed
in the cases where the TLMCD is not deactivated. Further details can be seen by
looking at the time response. As an example, the time series for the wave period of
15s is plotted in Figure 4.12. Although the amplitude of the TLMCD free surface

position is well reproduced, a small offset of the mean value can be seen.

Irregular wave

As mentioned in Section 4.2.2, the hydrodynamic damping coefficients obtained from
the decay tests are not valid in the presence of waves. Therefore, the coefficients
are again manually tuned to match the system responses for different sea states
described by the JONSWAP spectrum as shown in Table 4.3. Since the objective

here is to obtain a reliable numerical model that can be used to validate of the
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Figure 4.12: Time response in regular wave T' = 15s with TLMCD activated.

coupled TLMCD and FOWT system, load cases with the TLMCD deactivated are
used. It has been found that the Morison elements and hydrodynamic slow drift
forces are necessary to capture the nonlinear damping, as well as the wave loads
in the lower frequency range. The conclusion in [20] is also valid for the heave
plate, i.e. the axial damping coefficient Cpy,, varies over sea states. However, this
sea state dependent tuning does not hold for the hydrodynamic coefficient defined
along the vertical columns of the platform, described as discretized members. This
phenomenon could be caused by two reasons: One is due to the geometry of the
platform, most of which is submerged in water where the velocity of the fluid particle
is relatively low. The second is because of the special mooring system, with which the
velocity of the platform surge motion is also relatively small. Considering the drag
term of Morison’s Equation, which is largely determined by the fluid and platform
velocity, changing the drag coefficient doesn’t significantly alter the Morison drag
force in the surge direction. As a result, the drag coefficient is kept constant Cp = 0.6
across all sea states. While the drag coefficient for the heave plate Cp p,, varies over

sea states.

As a final result, Figure 4.13 shows the STD of the dynamic responses in irregular
waves. Overall, the simulated results are in good agreement with the measured

data. A noticeable deviation is found in sea state 1, where the heave motion is
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Figure 4.13: STD of responses in irregular waves with TLMCD deactivated.

visibly underestimated by the simulation model. This also leads to the difference
in fairlead tension. However, this deviation cannot be eliminated by tuning the
hydrodynamic damping coefficient. As sea state 1 is not used for the wind and wave

combined cases, the current tuning is adopted for the following discussion.

4.2.4 lIrregular Wave and turbulent wind dynamic response

The previously calibrated model is used directly in this section, without further
tuning. Simulations are carried out under various turbulent wind and irregular
wave combined conditions. The selected LCs are listed in Table 4.4.

The dynamic responses of LC1 in both time and frequency domains are compared
in Figure 4.14-4.15. The plots on the left side show the case when the TLMCD
is inactive, while the plots on the right side present the case when the TLMCD is
active.

Looking at the case where the TLMCD is inactive, overall, the simulation model
is able to capture the dynamics of the FOWT. The amplitudes of the time responses
are not well captured sometimes, especially in the heave and pitch DOFs. One
reason for this is the time-varying water plane area due to the truncated cone-
shaped transition piece. This results in a varying heave stiffness that is not captured
in the simulation model. As a result, the Power Spectral Density (PSD) of the
heave motion at the heave natural frequency (about 0.02Hz) differs from the test

measurements. Due to the strong coupling between heave and pitch, the pitch
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motion is also affected. Another reason can be the viscous drag. Although Morison
elements are attached to the platform and the heave plate. However, the reduced
draft spar has a relatively large cross section compared to those slender cylindrical
spars. How well the Morison equation with large diameters (over 50 m) can capture
the viscous draf is uncertain. Since the focus here is to have a well tuned model to
evaluate the TLMCD performance, rather than developing a perfect hydrodynamic
model for this particular spar design, the differences between the simulation and
measurement are also adopted.

When the TLMCD is active, the additional sensor free surface position w; of
the TLMCD is added to the plots, showing the fluid flow within the TLMCD.
Figure 4.14b and 4.15b present the performance of the TLMCD and FOWT coupled
numerical model. Similar to the pitch motion, some amplitudes of the time series are
not captured. As the TLMCD free surface is mainly driven by the pitch dynamics
in this load case, this error is largely inherited from the hydrodynamic model for
the platform. Nevertheless, the overall performance is satisfactory, especially when
comparing the pitch sensor in Figure 4.15a and Figure 4.15b. Because of the presence
of the TLMCD, the PSD peak at the pitch natural frequency (about 0.04 Hz) is
significantly damped, which is exactly the designed natural frequency of the passive
TLMCD.

A similar comparison for LC2 is shown in Figure 4.16, where the turbine is in
normal operation. A visible discrepancy can be detected at the frequency around
0.05Hz(205s), which has been detected in Section 4.2.3 as well. As previously dis-
cussed, the most probable cause of this behavior is the parametric pitch instability,
which is amplified by the wave peak period in LC2 being closer to 20s. Comparing
the pitch sensor in Figure 4.16a and Figure 4.16b, the PSD peak at pitch natural
frequency is again damped by the TLMCD, demonstrating the functionality of the
TLMCD at the desired frequency. However, the motions at 20s are excited, which
is due to the additional dynamics at 20s not being foreseen and considered during
the TLMCD design phase. Otherwise, a different damping ratio could improve the
performance at 20s.

Due to this unmodeled dynamic at 20s, it is more challenging to evaluate the
effectiveness of the coupled FOWT and TLMCD model. To address this issue, the

time series of the pitch motion and free surface position are plotted in Figure 4.17,
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Figure 4.16: Comparison of frequency responses between experiment (blue line) and
simulation (yellow line) in LC2.
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Figure 4.17: Comparison of time responses between experiment and simulation in LC2.

as the free surface is mainly influenced by the pitch motion when the wind and wave
are coming from 0 deg. The figure shows that if the pitch motion is well reproduced
by the simulation model, a better agreement of the free surface can be achieved.
Table 4.5 presents the RMSE between the simulation and experiment for both LC1
and LC2, with the same simulation model parameters used regardless of whether the
TLMCD is active or inactive. The results indicate that the coupling of the TLMCD

does not deteriorate the predictive capability of the simulation model.

Table 4.5: RMSE between the simulated and the experimental results.

surge heave pitch rot-spd fair-ten, free-surf;
m]  [m] [rad] [rad/s|]  [kN] [m]
inactive | 1.95 1.15 0.03 0.11 269.20 -
active 1.24 1.20 0.03 0.11 248.52 0.56
inactive | 1.20  0.66  0.02 0.06 235.42 -
active 1.00 0.72  0.02 0.06 250.54 0.51

LC | TLMCD

Another notable difference is the rotor speed, which is visibly reduced at lower
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Table 4.6: Parameter tuning for the TLMCD model based on physical tests.

decay(lab) | driven-oscillation | decay(IHC) | wave-only | wind&wave
u| 032 0.32 0 0 0
by 0.0145 0.0145 0.0145 0.0145 0.0145
n 0.6985 0.6985 2.8 3 3

frequencies when the TLMCD is activated. The reason for this is that the TLMCD

provides additional damping, which can partially compensate for the negative aero-

dynamic effect and increase the bandwidth of the blade pitch controller. By adapting

the blade pitch controller, which is the case discussed here, a better control perfor-

mance can be achieved. This improvement in control performance aided by TLMCD

has been demonstrated in [40] and will be further elaborated in Chapter 5.
As a summary, Table 4.6 has listed the final tuning results of the TLMCD related

parameters based on experimental tests. Since no further experiments have been

carried out, it remains unknown what are the sources of the differences regarding

the damping coefficient. For the application studies in the following chapters, the

values obtained from the wave tank tests are adopted.






5 Synergism between the TLMCD
and the Blade Pitch Controller

Unlike a ship, which is mainly excited by waves, the motions and loads of a FOWT
are more complex due to the large aerodynamic loads. It has been found that it is
important for the blade pitch controller to work in synergy with the TLMCD, so
that a better system performance can be achieved. In this chapter, a control design
procedure is developed for the widely used SISO controller for floating wind turbines.
Since the TLMCD introduces additional damping into the system, the performance
of the blade pitch controller, which is limited by the negative aerodynamic damping,
is improved. Therefore, a better control performance can be achieved. The described
methodology provides clear, easy implementable and automated design criteria for
the blade pitch controller. More importantly, it takes into account both stability and
performance of the FOWTs and does not add new sensors. This allows for similar
dynamic step response behavior, i.e., overshoot, rise time and settling time across
the operating points. At the same time, the stability of the control system is ensured.
This control design method originates from the paper [63] and is further optimized in
this chapter. The developed design criteria are important for system engineering or
control co-design, where the controller is adapted during the FOWT design, which
will be discussed in Chapter 6. The chapter begins with the current challenges of
using the state-of-the-art blade pitch controller for FOWTs. This is followed by the
considerations for the control design in this thesis, including the benefit of adding a
TLMCD. After that, the design procedure of the controller is detailed, utilizing the
established linearized coupled SLOW model and specifically adapted for a TLMCD-
stabilized FOW'T. Finally, the performance assessment is conducted on two different
10