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1 Introduction

Digitization of historical documents (such as magazines, academic papers, and news-
papers) is crucial to today’s humanities research. On the one hand, digitized versions
of documents would not be limited by their physical conditions and can be easily
accessed by more researchers worldwide. On the other hand, as more quantization
and analysis methods in mathematics and computer science are being adopted in
humanity fields, digitized archives that are directly readable by computers have
become the foundation of this process (Constantopoulos et al., 2002).

One of the most essential steps in digitization is Optical Character Recognition
(OCR). This step transfers documents in image form into text form. The quality of
OCR is of vital importance. Although the technology of OCR has improved a lot
through the last decades, most off-the-shelf OCR systems are designed for general
purposes (such as handwritten scripts and scene text). They are still not robust
enough to handle the varieties of layouts, fonts, paper colors, and scan quality in
historical document scans, as well as the different, ancient wordings and phrases in
the contents (Mittal and Garg, 2020). Besides, the orthography of many languages,
including German, has usually evolved across multiple centuries and has different
features in every period. Therefore, an OCR system trained on corpora from one
era could perform worse on datasets from other eras (Gloning and Young, 2004).
Because of these reasons, researchers who need to digitize historical documents now
sometimes need to manually transcribe them into text, which is very expensive and
time-consuming.

One obvious solution is to train and improve an OCR system using those his-
torical documents. It would take images of these documents as input and predict
the text on the pages. This step would require a massive amount of data and com-
putation resources. For reference, the SOTA OCR system TrOCR (Li et al., 2021)
was trained on nearly 700M textlines and used 32 GPUs with a memory of 32 GBs
for pre-training and 8 GPUs for fine-tuning. Such resources are far beyond reach in
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many research projects.

Therefore, an OCR post-correction system became the natural choice of many.
It was introduced as the next step in the digitizing pipeline to denoise the OCR-ed
text, increase transcription accuracy, and reduce manual effort for post-correction.
A typical OCR post-correction system would take in noisy OCR-ed text and output
the corrected ones. Most prior works treat OCR post-correction as a translation
problem, and the use of visual aids remains unexplored here (See section 3.2 for
details). These years, large-scale pretrained models have achieved astonishing results
on various downstream tasks (Kalyan et al., 2021; Han et al., 2022), and brought new
options and possibilities to this topic. In this work, I will present a multimodal OCR
post-correcting system that 1) Works on German historical documents; 2) Utilises
pretrained model ByT5’s encoder and decoder (Xue et al., 2022); 3) Combines a
CNN backbone from CLIP (Radford et al., 2021) for visual feature extraction; 4)
Uses adapter(Houlsby et al., 2019) blocks to achieve efficient transfer learning and
adapt the text-to-text model to multimodality. The goals of this work are:

1. To explore the described system;

2. To answer the question: How much can the OCR post-correction system
benefit from visual information as input?

In the second chapter, I will review related works and give the readers a compre-
hensive research background. Various related technologies will be mentioned there,
including OCR, OCR post-correction, transformers, multimodal learning, adapters,
and an overview of German historical documents. Following that, the details of the
dataset and the way of collecting and processing it will be explained in chapter
three. In chapter four, the model structure will be presented. Then, the following
chapter will elaborate on the experiments, including the main experiment with the
new system presented in this work and two baseline models. The results will be
shown in chapter 6, and finally, chapter 7 will summarize the conclusions.
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2 Research Background

As mentioned before, to solve the problem of erroneous OCR-ed text, there are two
obvious options: 1. Upgrading OCR systems, and 2. Utilizing OCR post-correction.
Other than the fact that OCR systems are quite data-hungry and heavy on com-
putation resources, the existing OCR systems are usually designed for more general
purposes, meaning they are trained on datasets like modern newspapers, receipts,
handwriting pictures, or scene text from real life. In contrast, OCR post-correction
systems can use a lot more linguistic knowledge for the text we have. Customiz-
ing strategies is usually necessary for text in a specific domain or genre, and OCR
post-correction allows us to do that. In the following paragraphs, I will briefly in-
troduce the background of OCR and summarise previous approaches for OCR post-
correction. Then, I will revisit the related technology, including CNN, transformers,
and adapters. Lastly, I will describe the related background of German language
history.

2.1 Optical Character Recognition

OCR is a vast field with several varied applications such as scene text recognition
(Singh et al., 2021), handwriting recognition (Memon et al., 2020), documentation
transcription (Neudecker et al., 2019). However, prior works rarely handle historical
documents, which usually contain many fossil words, dialects, and terminologies.
Besides, historical documents are often printed in unique fonts such as Fraktur or
complicated layout (Riedl et al., 2019), making it more challenging for OCR systems.
Until now, the state-of-the-art systems that can handle Gothic fonts in German are
Tesseract (Kay, 2007) and commercial OCR system ABBYY FineReader, but their
accuracy is still limited (Heliński et al., 2012).

Through the years, the quality of OCR systems has been improved drasti-
cally. Some pretrained OCR models that made use of encoder-decoder transformer
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structure (Vaswani et al., 2017), such as TrOCR (Li et al., 2021) and MaskOCR
(Lyu et al., 2022) achieved state-of-the-art results on modern receipt images e.g.
SROIE(Huang et al., 2019), handwriting datasets like IAM (Marti and Bunke, 2002),
and scene text datasets. Both models were trained only on modern English and Chi-
nese datasets using vision transformer (Dosovitskiy et al., 2020). Besides, the data-
hungry nature of vision transformers means that one must train them on hundreds
of millions of related German textlines to perform well on this specific task. This
would require a long time and extensive computational resources – neither of which
is possible in the case of this project, unfortunately.

2.2 OCR Post-Correction

In regards to text correction, there are mainly two approaches that are widely used
for OCR post-correction: statistical and lexical.

Statistical approaches often estimate the distribution of errors inferred from
training data. There are multiple ways for the estimation. In the Competition
on Post-OCR Text Correction hosted by ICDAR 2019, a Spanish team applied
weighted finite-state transducers to a noisy channel model. The system consists
of an error model estimated from the training corpus, an n-gram language model
derived from a dictionary, and a post-processing module to determine the best
token sequence.(Rigaud et al., 2019). In Perez-Cortes et al. (2000), the authors
combined stochastic finite-state automaton with the Viterbi Algorithm to perform
Error-Correcting Parsing(ECP). Similar estimation methods are often used to solve
machine translation problems. In Schulz and Kuhn (2017), the authors combined
two statistical machine translation models with other lexical-level correction models
to form a multi-modular OCR post-correction system. After neural networks be-
came more popular, more projects were explored using neural machine translation
models for OCR post-correction (Mokhtar et al., 2018; Hämäläinen and Hengchen,
2019; Schaefer and Neudecker, 2020). In Rigaud et al. (2019), Clova AI from South
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Korea presented a BERT-based OCR post-correction system. It uses BERT as an
error detector to find the character- and token-based errors. For correction, they
applied a character-level sequence-to-sequence model with attention mechanism. In
another research Lyu et al. (2021), the authors propose a neural approach based on
a combination of recurrent (RNN) and deep convolutional networks (ConvNet) to
correct OCR transcription errors. This method achieved state-of-the-art accuracy.

Lexical approaches usually involve a dictionary of correct words and a sys-
tem that measures the distance between the erroneous words and their potential
correct candidates. One solution is profiling. Reffle and Ringlstetter (2013) built a
two-channel profile from OCR-ed historical text. The profile includes global infor-
mation on typical recognition errors in the text and local information on particular
tokens. As an extension to this work, Fink et al. (2017) added an adaptive feedback
mechanism to support the system with adaptive human insights and new historical
patterns. Some other works focus on the source of dictionaries. In Bassil and Alwani
(2012), the authors used Google’s online spelling check toolkit to give correct sug-
gestions. Besides, Clematide et al. (2016) applied crowdsourcing to aggregate more
comprehensive lexical resources.

Statistical approaches will be adopted in the case of this project for two reasons:
1. Neural networks have become the dominating approach in NLP; 2. The fact that
there is a large proportion of irregular spellings in German historical documents
rules out the option of using a lexical approach.

2.3 Transformers and Multimodal Learning

Transformer is a model structure that was proposed in Vaswani et al. (2017).
It uses self-attention mechanism to model relationships in sequential data. This
mechanism is very good at aligning and selectively focusing on relevant parts of the
data, and it has already become one of the cornerstones of modern NLP technology.
Almost all large-scale pretrained models nowadays are based on Transformer: BERT
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(Devlin et al., 2018) takes the encoder part of the Transformer and is pretrained
with Masked Language Model (MLM) and Next Sentence Prediction tasks. GPT
(Radford et al. (2018), Radford et al. (2019)), on the other hand, takes only the
decoder part of the Transformer and can produce sequence auto-regressively. Other
than these, there are models like XLM (Lample and Conneau, 2019) that focus on
cross-lingual ability, and RoBERTa(Liu et al., 2019) that aims to improve training
techniques based on BERT.

To deal with the extensive vocabulary, these models use Byte-Pair-Encoding
(BPE) (Sennrich et al., 2015) or its variations as the encoding method, which splits
words into subword units. These subword-based models achieved outstanding per-
formance on various tasks. However, word representation is very fragile: even minor
typos or irregular spellings could drastically change the BPE tokens, leading to
inaccurate representations. This problem would be particularly severe in the con-
text of German historical documents, which contain many irregular spellings (See
section 3.5). Targeting this problem, Boukkouri et al. (2020) proposed a character-
based pre-trained model CharacterBERT. It dropped the BPE system altogether
and used a Character-CNN module to represent the words. Similarly, ByT5(Xue
et al., 2022) feeds UTF-8 bytes directly into the model without text preprocess-
ing. Compared to CharacterBERT, which only supports English, ByT5 covers 100+
languages, including German.

Multimodal learning refers to the process of learning representations from dif-
ferent modalities with the same composed model. Vision language models are a
type of multimodal model that deals with pictures and text at the same time. In
recent years, pretrained vision language models have advanced at a breakneck pace
and dominated the mainstream techniques in many vision-language (VL) tasks, e.g.,
visual question answering (VQA), visual captioning (VC), visual commonsense rea-
soning (VR). ViLBERT (Lu et al., 2019) is one of the first appeared visual language
pre-trained models. It learns joint representation of images and text using a BERT-
like structure with separate Transformers for vision and language that attend to each
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other. Following that work, VisualBERT (Li et al., 2019)used a single Transformer
for both image and text input. These vision language models are pretrained with
tasks such as masked region classification (MRC), cross-modal masked language
modeling (MLM), and image-text matching (ITM). These tasks help the models to
learn the alignment between descriptive text and image and focus on aligning the
objects in scene images to the related text.

In the context of OCR post-correction, such pretraining could be of very limited
use because most of those models were pretrained with scene pictures and content
captions inferred from the scenes. Whereas OCR images contain text content, and
the text is the literal content from the picture without any inference. Therefore,
one can argue that the model is pretrained to have a different ability than what
is required in OCR post-correction. In Radford et al. (2021), the authors proposed
a contrastive training strategy and a multimodal model CLIP. Its visual encoder
part is ResNet (He et al., 2016) or Visual Transformer (ViT) (Dosovitskiy et al.,
2020). The model showed relatively good OCR ability in English. Therefore, I will
use the pretrained visual encoder from CLIP in this project. CLIP encoder would
only accept square image inputs, and the default cropping method for images that
are not square is cutting it in the middle. It also comes with different input sizes
ranging from 224px to 448px for the ResNet versions and 224px to 336px for the
ViT versions. ResNet50x16 version will be chosen here for two reasons: 1. In Shen
et al. (2021), the authors show that ViT struggles with localization; 2. To preserve as
much information in the images as possible, I would like to choose a version of CLIP
where the acceptable input size is big enough but would still fit into the limited
available computation resources. ResNet 50x16 version accepts images of 384px x
384px, which became the best choice for this project.
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2.4 Adapters

Adapter tuning (Houlsby et al., 2019) is a method for efficient transfer learning.
This method inserts small neural modules called adapters into the inner layers of
the pretrained model. Only the adapters will be trained during training time, and
the other parameters in the model remain frozen. In contrast to fine-tuning, the
most common way for transfer learning in NLP that involves adaptation on all
parameters, adapter tuning is very efficient in regards to computation, storage, and
memory resources while yielding competing results (Houlsby et al., 2019; He et al.,
2021; Mahabadi et al., 2021). It is worth noticing that the total training time of
a model using adapter tuning is typically 100%-150% of the training time using
fine-tuning (He et al., 2021). Although the system trains faster for every epoch,
because of having fewer trainable parameters, adapter tuning usually needs more
epochs to converge. In recent years, adapters tuning was adopted and evaluated
by multiple projects: in Pfeiffer et al. (2020b), adapters showed great ability in
multilingual model adaptation and series of downstream tasks including Named
Entity Recognition (NER), question answering (QA), and commonsense reasoning
(CSR). In He et al. (2021), the authors experimented with different kinds of adapters
and ways of using them, but this research only focused on text input. In Eichenberg
et al. (2021), the author explored inserting adapters on top of the attention and
feed-forward layers of a GPT-based decoder to adapt the text-based model and a
pretrained ResNet module from CLIP into a multimodal system. They achieved
relatively competitive results on a range of VL benchmarks. Sung et al. (2022)
further explored combining pretrained text-to-text models and an image encoder
with adapters and adapter variants for tasks like VQA, VC, VR, and so forth. The
system achieved comparable results to fine-tuning.

There are some popular variants of adapters: The original bottleneck adapter
(Houlsby et al., 2019); Hyperperformer (Mahabadi et al., 2021) that improves the
efficiency of adapters by generating their weights via a hyper-network; Compacter
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(Karimi Mahabadi et al., 2021) that reduces the parameters by using Kronecker
products and low-rank parameterization; Besides, in He et al. (2021), the authors
showed four different adapter structures depending on the way they modify head
attention: parallel adapter, multi-head parallel adapter, scaled parallel adapter, and
mix-and-match adapter. The mix-and-match adapter, which combines the favorable
designs behind the three others, achieved the highest performance on summarization
and machine translation tasks. All of them are available on AdapterHub.ml (Pfeiffer
et al., 2020a).

2.5 German Text in Historical Documents

A popular periodization on the evolution of the German language divides its history
into the following stages: Old High German (c. 750-c. 1050), Middle High German (c.
1050-c.1350), Early New High German (c.1350-c.1650), New High German (c.1650-
c.1945) and Contemporary German (c. 1945-now) (Gloning and Young, 2004). This
work will focus on the New High German era. During this time, the standardization
of written German started to develop (Schottel, 1977), and there were no signifi-
cant changes in phonology and morphology in this period (Besch and Wolf, 2009).
Nevertheless, as it was not until the eighteenth century that the standardization
of German was completed, in the early phase of the New High German era, one
can observe more variants regarding grammar, spelling, and typesetting in histor-
ical documents (Langer, 2014). An example is shown in Fig.1: the first word was
written as ”Jn” instead of the modern form ”In” while ”In” also exists in this book
at the same time. This is because since Old High German time, /i/ and /j/ are
inconsistently interchangeable in written language (Must, 1965). Besides, although
the written form for umlaut with two dots on top (ä, ö, ü) was already introduced
in Early New High German times, it was still not uncommon to see umlaut with a
small e on top in prints (e.g., erkleart, today as erklärt. It means explain).
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Figure 1: ”Jn begehrter und gehaltener LeichenPredigt erkleart und abgehandelt:
The front page scan of Adolph, Christian: Himmlischer Hochzeit-Schatz und
geistlicher Braut-Schmuck der gläubigen und seligen Kinder Gottes. Zittau, 1664.
This picture and transcription are from Deutsches Textarchive (DTA) dataset
(Geyken et al., 2012).

3 Data

3.1 Data Collection

The datasets of this project all come from a publicly available project, namely
Deutsches Textarchive (DTA) (Geyken et al., 2012). It is a massive corpus with
high-quality scans and page-by-page transcriptions of historical documents dating
from the 17th century to the early 20th century. Containing more than 1,500 col-
lections in its core corpus and more than 4,000 collections in its extended corpus,
it is one of the grounding infrastructures for the research of the New High German
language 2. The documents were manually annotated by German native speakers.
For most pages, format-related features like line breaks and footnotes are preserved
in the transcription, but some are not (Because some transcriptions come from dif-
ferent sub-project contexts). In Fig. 2, one can see an example of such transcription:
The transcription preserved the paragraph breaks in the original print but left out
line breaks, some paragraphs at the very top, as well as more complicated layout
information, like columns.

The layout problems are disregarded to limit the research focus to the topics
2https://www.deutschestextarchiv.de/
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Figure 2: An example of the DTA dataset. The document scan is on the left side,
and the transcription is on the right side.

mentioned in the first chapter. Therefore, it was decided to focus solely on the
correction of textlines. Ultimately, a data point in our target dataset for this project
should contain the following information:

1. An OCR-ed sentence, which is the noisy input to the model and awaits to be
corrected;

2. The correct transcription provided by DTA, which is the golden label to the
model;

3. The picture of this particular textline cropped from the document scan.

Building such a dataset requires accurate alignment between document scan and
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transcription to textline level. This alignment is particularly tricky: No coordinate
information is locating a transcribed textline to the scan. Besides, many transcrip-
tions have complicated layouts, making it even harder to crop. Therefore, a subset
of the DTA corpus with a simple layout should be selected.

DTA tried to annotate the corpus by hand on pixel level for OCR research in
2007 and eventually gave up because of the massive workload. Nevertheless, they
published a subset of the corpus in 2010 3. This subset contains 199 books whose
publication year span from 1783 to 1903. It is also claimed to contain accurate
coordinate information for every character on each page, which was found to be
untrue after further inspection. However, all documents in this subset have an ideal
layout: One column per page and enough space between textlines. These conditions
make it very easy to crop out textline images. Aside from the advantages of image
cropping condition, the publication year span of this subset falls into the most
representative eras in DTA 4. Therefore, I chose this subset as the data source. The
scan images are not included in this dataset for download in batches, so I had to
trace the link in the annotation and download them with wget. The original quality
of the scans is 800px.

3.2 Data Preprocessing

After further inspection of the 199 documents, it was brought to my attention that
the character coordinates are primarily incorrect and thus impossible to align with
literal textlines. Because of this, alignment was included in the preprocessing phase
as well. Eventually, this phase contains three major steps: 1. textline extraction; 2.
textline image alignment; 3. performing OCR on all textlines.

3https://www.deutschestextarchiv.de/download
479.8% of documents in DTA core corpus are from the 18th to the 20th century.
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3.2.1 Textline Extraction

The original annotations with transcriptions and line break marks are in XML for-
mat. They also include page layout information, for example, if the page is a cover
page, if a page contains a picture, or if a textline does not lay straight across a page.
This information can help exclude pages with layouts that are too complicated to
crop. After this step, 1.34 million textlines were extracted, of which 1.24 million
textlines were used as the training set, and the remaining 100k textlines were used
in the test set. All books’ front and back covers were filtered out, and only their
content pages were kept because the complicated layout and decorative pictures of
the cover pages could cause alignment difficulties in the next step.

3.2.2 Textline - Image Alignment

This is the most challenging and time-consuming step. The tricky part is to locate
a certain textline on the image. To do this, an off-the-shelf document element ex-
tractor, docExtractor (Monnier and Aubry, 2020), was employed to mark out every
textline on an image. As shown in Fig. 3: a) is the original scan of a page. Based on
this scan, docExtractor can produce a mask over every detected textline (see b)). I
developed a heuristic algorithm to align every line using the mask images: For a page
that contains n pixel rows, first sum up all the luminance ln of every pixel in every
row. This step would end up with an array of luminance sums L = {l1, l2, l3..., ln}.
Then, the brightest row i with total luminance li can be found among L, and a
threshold k should be set manually. Finally, the algorithm loops through all pixel
rows, marking the rows at least k times as bright as row i. These marked rows are
the rows that are blank on the page (therefore, they are the brightest), and the rest
would be the ones with textlines. A threshold of 0.99 was set in this case. Through
this algorithm, a list T of pixel row chunks that are marked to contain textlines was
found. If the length of T is the same as the number of extracted textlines from the
page, one can then identify the textline masks to be able to be fully aligned with
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Figure 3: An example of textline alignment pipeline. Page scan in a) is from DTA
corpus, book title: Alexis, Willibald: Ruhe ist die erste Bürgerpflicht oder Vor fünfzig
Jahren. Bd. 1. Berlin, 1852. b) is the textline mask image of the scan. c) is a
screenshot if its transcription in .txt format

the text. One can match the extracted textline m to the corresponding pixel row
Tm.

However, this algorithm is only accurate when 1) docExtractor detects textlines
perfectly, 2) The image is perfectly straight and not tilted, and 3) There is no error
in the transcriptions. Nevertheless, as we all know, life in academia is never that
perfect. This algorithm solved alignment issues for 62.6% of the pages; the rest
were corrected manually. Finally, I double-checked all alignments manually as well
in order to ensure all data points were golden. Finally, I cut the scans into textline
images, and every one of them links to their corresponding text.
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Figure 4: An example entry of the final dataset

1750-1800 1800-1850 1850-1900 1900-1950

25 85 87 2

Table 1: The distribution of books by publication years

3.2.3 OCR on Textlines

The last step is to prepare OCR-ed text as input for the model. Tesseract (Kay,
2007), one of the most popular open-source OCR engines that supports Fraktur
font, was chosen. The datasets are in json format. In Fig. 4, one can find an example
of an entry in the dataset. golden_text is the original transcription; predicted_text
is the text predicted by OCR engine, and picture_path records the directory where
the textline image was stored. The datasets provide original printed text, OCR-ed
text, and corresponding textline images for every data point.

3.3 Dataset Statistics

There are about 1.34 million textlines, among which 100k were separated into the
test set, and about 1.24 million were kept for the training set. The dataset is con-
structed from 199 books and 103 authors, with 178 printed in Fraktur font and 21
in Antiqua. The distribution of books by their publication year is shown in Tabel.
1. The average character length of all textlines is 46.17, with a standard deviation
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Figure 5: The length distribution of the sentences in the training set and test set

of 7.95. The average character error rate (CER) of the whole dataset is 11.48%, and
the average word error rate (WER) is 28.15%. Fig. 5 illustrates the sentence length
distribution in the training and test sets. The difference between the golden text
and OCR-ed text is bigger when the sentence length is relatively small (word length
< 5). More specifically, among the OCR-ed text, there are more sentences with a
length of 0 than in the golden text. This is caused by Tesseract when it cannot
produce a result with enough confidence. Besides, the peak values for the OCR-ed
text are always smaller than the golden text. These observations indicate that the
Tesseract OCR engine has the tendency of under-predicting.
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4 Methodology

The model structure (See Fig. 6) contains three main modules: An encoder-decoder
based language model, a visual encoder, and a set of adapter modules. The
parameters of the sentence encoder and the decoder were initialized with a pre-
trained ByT5 model from HuggingFace 5, and the visual encoder was initialized
with pretrained ResNet from CLIP 6. Within the sentence encoder and the decoder,
there are bottleneck adapters inserted on top of self-attention layers, feed-forward
layers, and cross-attention layers.

Figure 6: The model structure

5https://huggingface.co/docs/transformers/v4.31.0/en/model_doc/byt5
6https://github.com/openai/CLIP
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4.1 Visual Encoder

A visual encoder V e extracts the literal semantic information from the textline
images. In this work, V e is first initialized with a pretrained ResNet network from
the multimodal model CLIP. A linear transform layer L and a dropout layer D

are added on top of it to transform the outputs from ResNet to vectors that are
compatible with the language model. For an input image mi, it is first stretched to
a square image through a linear transformation S, then passed through the ResNet
encoder E. The feature grids of E before the pooling layer are taken. Therefore, the
shape of this feature grid is N ∗ N . In this case, I used CLIP-ResNet-Large, thus
N=12. After this, these feature grids are flattened into a sequence of N2 vectors and
then transformed by a linear layer L. In the end, dropout regularization is applied
to the vectors. The final vectors V d are of dimension d, the same as the hidden
dimension of the language model.

4.2 Language Model

The ByT5-based language model has a vanilla encoder-decoder structure using trans-
former blocks. It was pretrained with a span-mask denoising task on 100+ languages,
including German. The encoder part of the language model takes only UTF-8 bytes
inputs and, therefore, has an extremely small amount of vocabulary with a size of
only 256. Compared to pretrained models of equal size, ByT5 (small) has only 0.3%
of vocabulary-related parameters, while these could take up to 85% of all parameter
sizes of a same-size T5 model (Raffel et al., 2020; Xue et al., 2022).

A text input y is firstly converted into a sequence of tokens t1, t2, ..., tn. Each
token is a character in the sequence y. The word embedding layer W will map
every token ti to its corresponding character embedding wi. The encoder of the
language model will then process the embeddings to a sequence of hidden states
H = h1, h2, ..., hn. The image feature vectors will be concatenated with the hidden
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states and fed into the decoder.

4.3 Adapters

Adapters are sets of small modules that can be inserted in between or in parallel to
the layers of a transformer model. The adapter used in this work is bottleneck MLP
from He et al. (2021). It can be represented mathematically as follows:

A(h) = h+ λW upf(W downh)

In the equation above, W down ∈ Rds×dh and W up ∈ Rdh×ds , where dh is the di-
mension of the input h, ds is the size of the downscale bottleneck, f is a activation
function, and λ is a scaling parameter. The ratio dh/ds is called the reduction ratio
and is one of the key hyper-parameters in adapter transfer learning. There are typi-
cally two kinds of adapters: parallel and sequential. A parallel adapter is set aside of
a transformer layer, and the input will be passed through both the adapters and the
transformer layers simultaneously. The outputs will be summed up. A sequential
adapter is set behind a transformer layer, and the input will be passed through the
transformer layer first and then the adapter layer. In He et al. (2021), the parallel
adapters showed better performances across all downstream tasks and, therefore,
were chosen in this work.
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5 Experiment

This work conducted two sets of experiments: 1. The comparison between the mul-
timodal system (CLIP-ResNet + ByT5) in this work and a SOTA baseline; 2. The
comparison between the multimodal system and a single modal system with a text-
only ByT5 model.

5.1 Setups

The multimodal system took CLIP-ResNet-RN50×16 for the visual encoder. It is
a ResNet-50 network using 16 times scaling following EfficientNet scaling rules
(Koonce and Koonce, 2021). CLIP was trained only to take square image inputs,
and the smaller variants like RN50 and RN50×4 versions would require the textline
images to be cropped too small. At the same time, bigger versions like RN50×64 are
too large for the computation resources available. For the language model, ByT5-
small was chosen because of the limited computation resources. Parallel or sequential
adapters were added to self-attention layers, feed-forward layers, and cross-attention
layers. The reduction ratio was set to 12 for self-attention adapters and 6 for feed-
forward and cross-attention layers following the settings in the MAGMA project
(Eichenberg et al., 2021). During the training for the multimodal model, the batch
size was set to 128. It was trained for 10k steps with a dropout ratio of 0.1. The
learning rate for the visual encoder and language model was set to 1 × 10−6 and
2 × 10−4 each. To fit such a big model into the training device in hand, I utilized
DeepSpeed 7 ZeRO stage 2 (Rajbhandari et al., 2020) to parallelize gradients, models,
and optimizer states across multiple GPUs (maximal 3). With the help of DeepSpeed,
it took around 3.5 days to finish training for each model.

7DeepSpeed is a deep learning optimization library: https://github.com/microsoft/DeepSpeed
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5.2 Baselines

The first baseline model is from Lyu et al. (2021). This model consists of an en-
coder combining a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) and
a convolutional network. The information from these two networks is joined with
multi-layer attention modules. Its decoder is a single LSTM layer. The intuition is
that BiLSTM layers will capture the global context of how OCR errors are situated
in the text. In contrast, deep convolutional networks capture and enforce local sub-
word/phrase context, which is essential for a compound language like German. The
following sections will address this model as baseline.

The second baseline model is simply a ByT5 model trained on this corpus with
adapter tuning. This model only takes textual inputs, and the comparison between
this model and the multimodal system will be used to test the helpfulness of visual
information. Apart from the visual encoder, all parameters and hyper-parameters
remain the same as the multimodal system described in section 5.1.

5.3 Evaluation Metrics

Two standard evaluation metrics were adopted to assess the performance of different
systems: 1) Word Error Rate (WER) and 2) Character Error Rate (CER). These two
metrics are both derived from the Levenshtein distance (Miller et al., 2009). They
measure the number of erroneous units (word or character) caused by substitutions,
insertions, and deletions on different levels. WER and CER are also the evaluation
metrics in the SOTA baseline work. Therefore, direct comparison is possible.

In previous works, such as Lyu et al. (2021); Rigaud et al. (2019), the average
WER and CER were used. It means that the WER and CER for every sentence si

were calculated independently, and their non-weighted average was taken across all
sentences from s1 to sn. Specifically:

M =

∑i=n
i=1

SM
i +IMi +DM

i

L(si)

n
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M denotes the evaluation metric that is either WER or CER. SM
i , IMi , and DM

i

refer to substitution, insertion, and deletion on either word error level or charac-
ter error level for sentence i. L denotes the length of a sentence. This could be
problematic when the length of the sentences varies: A good prediction of a short
sentence can boost the overall performance more than it should, and a bad predic-
tion could also make a negative impact stronger than it deserves. One can tell from
the sentence length distribution in Fig. 5 that a significant number of sentences
with lengths derive from the mode. Therefore, I argue that average WER and CER
are not accurate enough to describe the performance. The alternative proposed in
this work is to calculate WER and CER on the corpus level. It can be described
mathematically:

M =

∑i=n
i=1 S

M
i + IMi +DM

i∑i=n
i=1 L(si)

.
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6 Results

6.1 Main Results

The main results are summarized in Table 2. Under the new evaluation metrics that
were mentioned in section 5.2, the multimodal system that is proposed in this work
achieved the best results by reducing corpus-level WER by 56.2% and corpus-level
CER by 56.8% on the basis of the test set, compared to the previous SOTA baseline’s
53.5% with WER and 39.5% with CER. Interestingly, under the old average WER
and CER metrics, the multimodal model from this work is ”outperformed” by the
SOTA baseline.

To understand these results, I conducted further inspections. It was then found
out that in the dataset, there are a lot of data entries with empty OCR-ed text
(4.69% in training and 5.02% in the test set). As mentioned in section 3.3, this
happens when the Tesseract OCR engine cannot produce results with enough con-
fidence. The models with or without image inputs behave very differently in this
case: For the SOTA baseline model as well as the text-only ByT5 model, the input
is just empty, and the models would then have to make a guess based on the same
empty samples in the training set, and the guess would always be the same because
of the information that is provided to them does not change. In practice, the SOTA
baseline model always produced ”4” for all the data points with empty OCR-ed
text input, and the text-only ByT5 model always output ”— 1 —”. Therefore, the
WER and CER differences between these two baselines do not accurately describe
the systems’ performance. However, the multimodal model can give better guesses
because of their exposure to image features and limited OCR ability from the train-
ing with empty inputs. One can see from Table 2 that while the CER and WER of
single modal models remain around 1, the CER of the results from the multimodal
model is 0.594, decreased by 40.3% on the basis of the test set. At the same time,
the WER remains around 1, indicating that although at times the system can not
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Settings avg.
WER

avg.
CER

stddev.
WER

stddev.
CER

cpl.
WER

cpl.
CER

before 0.281 0.115 0.339 0.339 0.245 0.081
baseline 0.152 0.081 0.462 0.353 0.114 0.049
t-ByT5 0.171 0.092 0.509 0.443 0.107 0.045
m-ByT5 0.157 0.087 0.740 0.850 0.100 0.035

before
empty

1 1 0 0 1 1

baseline
empty

0.997 0.968 0.048 0.106 0.997 0.995

t-ByT5
empty

1.628 1.253 1.011 0.923 1.124 0.964

m-ByT5
empty

1.451 1.179 2.830 3.518 1.054 0.594

before
non-emp.

0.246 0.072 0.306 0.284 0.225 0.059

baseline
non-emp.

0.111 0.038 0.433 0.300 0.092 0.027

t-ByT5
non-emp.

0.100 0.035 0.337 0.309 0.081 0.024

m-ByT5
non-emp.

0.093 0.033 0.304 0.292 0.075 0.022

Table 2: The results on the test set. before refers to the raw OCR-ed text in the
test set before they are corrected. t-ByT5 is the text-only model with ByT5 model;
m-ByT5 is the multimodal model. empty means the performances of models on the
part of the test set where the OCR-ed text is simply an empty string. Similarly, non-
emp. denotes the models’ performances on normal non-empty inputs. avg. WER or
CER shows the performances evaluated on the old average WER or CER metrics;
stddev. is the standard deviation; cpl. WER or CER is the WER/CER on the corpus
level. 24



Figure 7: The average CER across sentences of different lengths

get the words correct, it can recognize parts of the characters in the words. For
example, for the golden sentence ”Aber, armes Heimathland,” with empty input,
the multimodal system predicted ”Adel, armes heim tplasto,”, with 1 for WER but
0.292 for CER.

The empty inputs are also why the baseline model ”outperformed” the multi-
modal system on the average WER and CER metrics: the baseline produces ”4”
as a consistent prediction on all empty inputs. When the WER or CER for each
independent sentence is calculated, the number of deletion error types is very low
(see Chapter 5.2 for reference), making the average WER and CER lower than the
multimodal system. The latter almost always outputs much longer results, leading to
higher WER/CER averages. On the other hand, the performance of the multimodal
system is the best on every metric when the inputs are not empty. This analysis
again supports the argument in section 5.2 that the corpus level WER and CER are
better evaluation metrics to describe the performance of these systems rather than
the average WER and CER.
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Fig. 7 shows the average CER among different length groups of golden sentences.
Two observations could be drawn here: First, the multimodal system has a better
average CER in every length group except for the 0-10 one. This could be caused by
the fact that in the test set, 45.15% of short golden sentences have empty OCR-ed
text because of Tesseract’s shortcomings. As analyzed previously, the short, consis-
tent output from the baseline model makes the CER look lower. If those sentences
with empty inputs were set aside, the average CER for this group would be 0.401
for the baseline and 0.347 for the multimodal system. Thus, it is safe to conclude
that the multimodal system outperforms the baseline stably across different length-
of-sentence groups. Second, it is also apparent that the models can do a better job
working on longer sentences than the short ones. This is also not surprising, consid-
ering that the longer the sentence is, the more context and information is provided
to the model to predict an accurate result.

6.2 Error Analysis

To analyze the errors, I manually inspected 1,000 erroneous model outputs randomly
selected from the results and summarized six types of errors:

1. Over-Segmentation: When the model wrongly splits a word into multiple
tokens in the prediction. Segmentation-related errors are often caused when
the spaces in scans are not distinguishable enough. For example, if a model
predicts Heimat land when the golden transcription is Heimatland.

2. Under-Segmentation: The opposite of over-segmentation. It refers to when
the model wrongly merges multiple words into one. Like over-segmentation,
under-segmentation is also a type of local error, as its effect is usually limited
to 1-3 adjacent words in a sentence.

3. Character Error: Usually caused by misrecognized characters. It could hap-
pen because of the visual similarities between characters or the contextual
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inference of the language model.

4. Over-Prediction: When the model predicts extra characters that do not
align with any of the words in the golden transcription. For example, when
the golden transcription is ”und jene Oppoſition erhoben”, while the model
outputs ”und jene ”Oppoſition erhoben ]” (with an extra symbol ”]” at the
end and an extra ” before the word Oppoſition). This would count as 2 over-
predictions.

5. Under-Prediction: The model’s output lacks some characters it is supposed
to predict. For example, the model output ”habe ich beſäftigt”, while the golden
transcription is ”habe ich beſäftigt ge¬”. Because 3 characters are missing, this
sentence will contribute 3 under-prediction cases to the statistics.

6. Over-Prediction on Lines: This happens when the textline images include
some noise from the line above or under. Fig. 8 shows an example textline
image with such noise. Its golden transcription is ”latan ſucht ſich das weiche
Wachs der Jugend, um”, but Tesseract predicted it to have two lines:

Jatan ſucht ſ| ich das weiche Wachs der Jugend / um
PE ZISP ED & SN 2.5 7,4

The content of the latter line looks very random and comes from the tip of
the words from the line below.

Figure 8: An example textline image with noise from the line below

Because of so many different types of errors, it is necessary to align the model
predictions with the golden transcription to count the frequency of different error
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types. I used the Needleman-Wunsch Algorithm (Needleman and Wunsch, 1970) im-
plemented by string2string (Suzgun et al., 2023) to perform global pairwise sequence
alignment on the golden transcription and the noisy text. The algorithm essentially
divides a full sequence into a series of sub-sequences and uses the solutions to the
sub-sequences to reconstruct a solution back to the full sequence. An example re-
sult of the Needleman-Wunsch Algorithm is in Fig. 9. The first line is the golden
transcription, and the textline below is its corresponding predicted text. The green
parts are correctly predicted, and the red parts are examples of character errors. The
symbol ”@” is a necessary placeholder for the alignment when gaps or characters do
not exist in the text. The grey underline shows a case of under-segmentation, and
the blue underline indicates a case of over-prediction.

Figure 9: An example of the Needleman-Wunsch Algorithm

As shown in Table 3, over-segmentation is the second common error type in the
test set before corrections, but it also seems to be the easiest to correct. After the
correction, the amount of over-segmentation errors dropped by 93.0% for the base-
line model and 95.2% for the multimodal system. In contrast, under-segmentation
is the rarest error type, and it is also the only error type where the baseline model
outperforms the multimodal system. The frequency of such errors dropped by 2.2%
after the correction of the baseline model but only 1.2% for the multimodal sys-
tem. An observation in the baseline paper (Lyu et al., 2021) can potentially help
understand these results: Word segmentation errors often have local behaviors and
local context, such as merging or splitting words. The convolutional neural networks
used in this baseline model seem very good at capturing this type of behavior. That
could be why the baseline performs very well in segmentation errors in general, and
it is even better at correcting under-segmentations than the multimodal system.

28



Character errors are the most frequent error type. The baseline model can decrease
55.3% of such errors, and the multimodal system can do so by 61.1%.

The performance differences between the baseline model and the multimodal
system become larger regarding over-prediction and under-prediction. Especially
under-prediction. Over-predictions can happen when the images are noisy or when
the language model is over-predicting for contextual reasons. While under-prediction
usually happens when a part of the textline images is compromised or not clearly
printed. These lead the Tesseract to over- or under-predict and affect the results in
OCR post-correction. According to the manual inspection, I found that the begin-
ning and ending parts of the sentences are most prone to these types of errors. This
could be caused by two reasons: First, The tokens at the two ends of the sentences
are often incomplete words that span multiple rows. This may lead the model to
complete the tokens or ignore them. Second, the scans are sometimes noisy. This
problem is especially tricky in under-prediction when often the OCR-ed texts are
incomplete to begin with. This means that the model has to make up the part that
does not exist in its input. With only textual input, the baseline model had diffi-
culty solving this type of error. In contrast, with the help of visual information, the
multimodal system can predict much better.

Settings Over-
seg.

Under-
seg.

Char
Err.

Over-
pred

Under-
pred

Lines1

before 12,919 852 123,892 56,656 44,297 2,228
baseline 899

-93.0%

833
-2.2%

55,402
-55.3%

26,164
-53.9%

31,475
-28.9%

0
-100%

m-ByT5 622
-95.2%

845
-1.2%

48,244
-61.1%

17,789
-69.6%

18,092
-59.2%

0
-100%

Table 3: The frequency of error types before the correction, in the baseline, and after
multimodal system correction. 1: Over-Prediction on Lines. Data points with empty
OCR-ed text are excluded in this statistics
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Lastly, character errors were and are still the most frequent and challenging error
type. This type of error can be caused by visual similarities between characters
(See Appendix A for German alphabets in Fraktur font). Fig. 10 compares the
multimodal system and the text-only baseline. Some observations can be drawn
here: 1. Similar to the finding in Lyu et al. (2021), there are no simple mappings
between misrecognized characters. Meaning that these character errors are not only
caused by their visual similarities but also contextual reasons, as they are often
misrecognized to completely different characters; I will inherit the naming in Lyu
et al. (2021) and call them contextual misrecognitions; 2. the multimodal system
can reduce the majority of the most common character errors with some exceptions;
Interestingly, the multimodal system does not decrease the misrecognition between
visually similar characters as much as one might think. For example, the multimodal
system tends to confuse the character d and v even more than the text-only model
(These two characters are highly similar in Fraktur font). This means the multimodal
system is also confused with visually similar characters and cannot accurately tell
the subtle differences. This could be potentially improved if the system can use
image inputs with better resolutions. However, the multimodal system seems good
at correcting contextual misrecognition of the characters with more significant visual
differences. From Fig. 10, the multimodal system can decrease the mistaken s from
ſ by nearly 60%. These two characters are sometimes interchangeably used in the
corpus (for example, sie and ſie). While they are sometimes used in a similar context,
they look very different. Therefore, the multimodal system seems to incorporate the
information in the image features very well.
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Figure 10: This heatmap shows how using image features as part of the input changes
the distribution of the most frequently misrecognized characters. On the x-axis lies
the golden characters from the transcripts, and on the y-axis lies the misrecognized
characters. I took the most frequent character errors from the text-only ByT5 model
and compared the frequency of the same errors among the outputs of the multimodal
system. The warmer the color is, the more percentages of mistakes are decreased by
the multimodal system.
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7 Conclusion

In this thesis, I constructed a dataset based on Deutsches Textachiv (Geyken et al.,
2012). It contains 1.34 million transcription textlines, its OCR-ed text from the
Tesseract OCR engine, and the aligned textline images correspond to the textlines.
I also explored a multimodal OCR Post-Correction system that uses adapter-tuned
ByT5 (Xue et al., 2022) and CLIP-ResNet-Larg (Radford et al., 2021). The exper-
iments show that this system outperforms the SOTA system in corpus-level Word
Error Rate (WER) and Character Error Rate (CER). In another comparison, it
beats a single-modal baseline consisting of only a ByT5 model. Besides, I proposed
to use corpus-level WER and CER instead of average WER and CER for more
accurate evaluation in OCR post-correction tasks.

The analysis shows that the multimodal system significantly reduced all types of
errors. It is better at correcting almost all types of errors than the SOTA baseline.
The SOTA baseline is, however, better at correcting under-segmentation errors.
One possible reason is that the SOTA model used convolutional networks in their
language model and is thus good at correcting local errors like segmentation.

Another comparison between this multimodal system and single-modal baseline
shows that with the help of a visual encoder, the multimodal system can correct char-
acter errors better in general, and it is especially good at identifying different-looking
characters that are interchangeable contextually. Nevertheless, it is not especially
good at identifying the nuances between characters that are very similar visually.
This is possibly caused by the limit of the CLIP visual encoder: CLIP-ResNet-Large
can only accept pictures in the shape of 384px × 384px. This limitation means that
the textline images are less clear and informative than the original scans. For future
work, one can try to experiment with a visual encoder that accepts bigger textline
images.

Good performance aside, the training of the multimodal system took twice as
long as the baseline model. This is because adapter tuning would typically decrease
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the use of memory and computation complexity of the model with the cost of increas-
ing the time to convergence. Besides, as mentioned in Xue et al. (2022), character-
based models like ByT5 would also have higher Floating Point Operations (FLOPs)
because of longer sequences than word-based models. Consisting of two pretrained
models with a large number of parameters, this multimodal system is also more
memory-demanding compared to the baseline model. I tried to compare the perfor-
mance between this multimodal with fine-tuning and adapter-tuning but failed due
to Out of Memory error.

Moreover, notice that in this thesis, the visual information and text input were
fused together after the text inputs were already passed through the encoder of the
language model. Some works from computer science and neuroscience show that
models can typically benefit from an early fusion (Barnum et al., 2020; Schroeder
and Foxe, 2005; Budinger et al., 2006). This means combining visual and textual
information at an earlier stage. For example, concatenate the image features and
text input before passing them through the language model encoder. It would also
be interesting to see how OCR post-correction task benefits from such early fusion.
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Appendix A

Figure 11: German Alphabets in Fraktur font. This picture was taken from Yale
University Library: https://web.library.yale.edu/cataloging/music/fraktur
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