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Little attention has been paid to the development of human language

technology for truly low-resource languages—i.e., languages with limited

amounts of digitally available text data, such as Indigenous languages.

However, it has been shown that pretrained multilingual models are able to

perform crosslingual transfer in a zero-shot setting even for low-resource

languages which are unseen during pretraining. Yet, prior work evaluating

performance on unseen languages has largely been limited to shallow token-

level tasks. It remains unclear if zero-shot learning of deeper semantic

tasks is possible for unseen languages. To explore this question, we present

AmericasNLI, a natural language inference dataset covering 10 Indigenous

languages of the Americas. We conduct experiments with pretrained

models, exploring zero-shot learning in combination with model adaptation.

Furthermore, as AmericasNLI is a multiway parallel dataset, we use it to

benchmark the performance of di�erent machine translation models for those

languages. Finally, using a standard transformermodel, we explore translation-

based approaches for natural language inference. We find that the zero-

shot performance of pretrained models without adaptation is poor for all
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languages in AmericasNLI, but model adaptation via continued pretraining

results in improvements. All machine translation models are rather weak,

but, surprisingly, translation-based approaches to natural language inference

outperform all other models on that task.

KEYWORDS

natural language processing, multilingual NLP, low-resource languages, natural

language inference, machine translation, pretrained models, model adaptation

1. Introduction

Languages with limited amounts of digitally available data,

so-called low-resource languages, have recently started to receive

increased attention from the natural language processing (NLP)

community. Approaches targeted toward such languages include
transfer learning techniques, such as pretraining (Devlin et al.,

2019; Conneau et al., 2020) or zero-shot learning (Johnson

et al., 2017), as well as machine translation-based solutions

(Conneau et al., 2018; Fang et al., 2021; Ruder et al., 2021)

or strategies based on alignment and projection (Yarowsky

et al., 2001; Eskander et al., 2020). Which techniques are the

most suitable typically depends on the use case and available
resources. In order to, for instance, build a sentiment analysis

system for Wixarika, an Indigenous language spoken in Mexico

with no annotated data for a sentiment analysis task, one

could pretrain a model on unlabeled text in English and

Wixarika and then finetune it using English sentiment analysis

data (a zero-shot approach) or, assuming one has a suitable

machine translation (MT) system, translate the Wixarika data

into English and, in a straightforward fashion, apply an English

sentiment analysis system.

However, for many state-of-the-art techniques, it is not

obvious if they are actually applicable to extremely low-resource

languages, which are sometimes also called truly low-resource

languages in the literature (Agić et al., 2016). In particular,

many techniques targeted at circumventing a lack of data for

a given task–language combination still require resources that

are frequently not available for the large majority of the world’s

roughly 7,000 languages, namely sufficient amounts of unlabeled

(digitally available) data or MT systems with a sufficiently good

performance. Prior work explored which model adaptation

techniques—i.e., algorithms that adapt large pretrained models

to a language which has not been part of its pretraining data—

result in the best zero-shot performance when only limited

amounts of raw text are available (Ebrahimi and Kann, 2021).

Surprisingly, they found that themost straightforward approach,

a continuation of the original masked language pretraining

on target-language data, performs best, even when compared

to more complicated techniques. Yet, this prior analysis was

limited by the fact that the only available multilingual test data

for truly low-resource languages consisted exclusively of token-

level tasks: named entity recognition (NER) and part-of-speech

(POS) tagging.

Here, we describe the creation of a multilingual dataset

aimed at enabling the evaluation of existing techniques for

a higher-level semantic task in truly low-resource languages:

AmericasNLI, a multiway parallel natural language inference

(NLI) dataset in 10 Indigenous languages of the Americas:

Asháninka, Aymara, Bribri, Guarani, Nahuatl, Otomí, Quechua,

Rarámuri, Shipibo-Konibo, and Wixarika. The amount of

digitally available raw text in the languages in AmericasNLI

is limited—as is data to train MT systems. Furthermore, as

we describe in Section 2.1.3, the typological properties of

those languages are quite different from many high-resource

languages, such as, importantly for this work, English and

Spanish. AmericasNLI is multiway parallel: in addition to

enabling the evaluation of NLI models, it thus also makes

benchmarking of MT systems possible. Leveraging this newly

created dataset, we give initial answers to the following research

questions (RQs): (1) Do zero-shot approaches for NLI, a high-

level reasoning task, based on model adaptation perform well

for truly low-resource languages? (2) How do translation-based

approaches work for NLI if all we have are poor MT systems,

and how do we build initial MT systems for the AmericasNLI

languages? (3) Finally, how do the two different strategies (zero-

shot vs. translation-based) compare?

Regarding RQ1, we explore the performance of XLM-R

(Conneau et al., 2020) with and without continued pretraining.

For RQ2, we survey multiple systems resulting from the

recent AmericasNLP 2021 Shared Task on Open Machine

Translation (Mager et al., 2021), before employing a transformer

(Vaswani et al., 2017)model within a translation-based approach

to NLI. Finally, considering RQ3, we compare the two

different strategies.

Overall, we find that XLM-R’s non-adapted zero-shot

performance is close to random guessing, which differs from

comparable results for NER and POS tagging (Ebrahimi and

Kann, 2021). However, in line with previous findings for token-

level tasks, model adaptation via continued pretraining does

result in consistent improvements. However, surprisingly, the

best results are obtained by translation-based approaches, even
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with MT systems as weak as those available for the Indigenous

languages in AmericasNLI.

Related Work on Pretrained Multilingual Models: Before

the advent of transformers (Vaswani et al., 2017) and,

subsequently, pretrained transformer models, crosslingual

transfer was often achieved through word embeddings (Mikolov

et al., 2013; Pennington et al., 2014; Bojanowski et al., 2017),

either by aligning monolingual embeddings into the same

embedding space (Grave et al., 2018; Lample et al., 2018a,b)

or by training multilingual embeddings (Ammar et al., 2016;

Artetxe and Schwenk, 2019). Pretrained multilingual models

can be considered a contextualized version (Peters et al.,

2018) of multilingual embeddings: the vector representation

of each word (or subword) depends on the sentence context.

Unlike traditional word embeddings, these models follow the

standard pretraining–finetuning paradigm: they are first trained

on unlabeled monolingual corpora from various languages

and later finetuned on target-task data in a—usually high-

resource—source language, before being applied to target-

language data. The first large multilingual model was mBERT

(Devlin et al., 2019), which is pretrained onWikipedia data from

104 languages using masked language modeling (MLM) and

next sentence prediction (NSP) as its training objectives. XLM-R

(Conneau et al., 2020) is an improved version of mBERT, which

is trained on data from 100 different languages using only the

MLM objective.

Out-of-the-box pretrained models show poor zero-shot

performance on languages that are not part of their pretraining

data (and not similar to any of the pretraining languages).

Multiple methods have been proposed to adapt models

to unseen languages, including extending the vocabulary,

transliterating the target text, and continuing pretraining before

finetuning (Chau et al., 2020; Lauscher et al., 2020; Muller et al.,

2020; Pfeiffer et al., 2020a,b; Wang et al., 2020). However, with

very few exceptions (e.g., Ebrahimi and Kann, 2021), prior work

assumes large amounts of data for adaptation; those are not

available for many truly low-resource languages, such as the

Indigenous languages we consider in this work. In addition,

adaptation methods are generally evaluated on shallow token-

level tasks such as POS tagging or NER. AmericasNLI makes

it possible to evaluate such adaptation methods on tasks that

require a better understanding of sentence semantics.

Related Work on Natural Language Inference: The largest

and most widely used datasets for NLI in English are SNLI

(Bowman et al., 2015) and MNLI (Williams et al., 2018). XNLI

Conneau et al. (2018) is the multilingual expansion of MNLI to

15 languages: it consists of manually translated evaluation sets

and machine-translated training sets. While datasets for NLI

or the similar task of recognizing textual entailment exist for

other languages (Bos et al., 2009; Alabbas, 2013; Eichler et al.,

2014; Amirkhani et al., 2020), their lack of similarity prevents

a generalized study of crosslingual zero-shot performance. In

contrast, all examples in XNLI are 15-way parallel. To extend this

property of XNLI to Indigenous languages we choose to translate

the Spanish subcorpus of XNLI when building AmericasNLI as

opposed to creating examples directly in the target language.

2. Materials and methods

2.1. The Americasnli dataset

2.1.1. Motivation

Recently, prior work by Ebrahimi and Kann (2021) explored

the question of how a pretrained language model—namely

XLM-R (Conneau et al., 2020)—can be adapted to so-called

unseen languages, i.e., languages that do not form part of the

model’s pretraining data. A comparison of different techniques

showed that continued pretraining (Chau et al., 2020) with either

a masked language modeling objective or a translation language

modeling objective results in the best models for a large set

of languages.

However, Ebrahimi and Kann (2021) was limited to

two tasks, part-of-speech (POS) tagging and named entity

recognition (NER). The former consists of assigning syntactic

categories—such as noun, verb, or adjective—to words within

a sentence context. The latter consists of identifying named

entities—e.g., persons or locations—within a sentence and, in

its most common version, assigning a tag to each word which

indicates if this word is part of a named entity or not. Those two

tasks are not representative of the diverse variety of NLP tasks

we eventually want to develop systems for. Importantly, POS

tagging and NER are different from many other NLP tasks in

the following ways:

• They are token-level or sequence tagging tasks, as shown in

Table 1.

• They can be solved at a high accuracy from character-level

clues alone: e.g., the suffix -ing is a strong indication of a

verb in English.

• They require, importantly, limited to no understanding of

semantics or reasoning abilities.

Thus, prior work leaves the question open if—and

which—state-of-the-art approaches are applicable to higher-

level semantic tasks, which cannot be solved by looking at

individual words and which require at least some understanding

of the meaning of longer chunks of text. According to Bowman

et al. (2015), "Understanding entailment and contradiction is

fundamental to understanding natural language, and inference

about entailment and contradiction is a valuable testing ground

for the development of semantic representations." Thus, the task

of NLI is a suitable test bed for the higher-level semantic abilities

of NLP models. In its typical formulation, NLI consists of, given

a sentence pair—the premise and the hypothesis—, predicting

the relationship between the two sentences as either entailment,
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TABLE 1 An English example sentence with corresponding POS tags (line 2) and NER tags (line 3).

Jen Must Draw Attention To The Distribution Of This Form In Those Dialects .

POS Tags NP AUX VERB NOUN ADP DET NOUN ADP DET NOUN ADP DET NOUN PCT

NER Tags B-PERS O O O O O O O O O O O O O

TABLE 2 A parallel example in AmericasNLI; label: entailment.

Language Premise Hypothesis

en And he said, Mama, I’m home. He told his mom he had gotten home.

es Y él dijo: Mamá, estoy en casa. Le dijo a su madre que había llegado a casa.

aym Jupax sanwa: Mamita, utankastwa. Utar purinxtwa sasaw mamaparux sanxa

bzd Ena ie’ iche: ãmì, ye’ tso’ ù a. I ãmì a iché irir tö ye’ démine ù a.

cni Iriori ikantiro: Ina, nosaiki pankotsiki. Ikantiro iriniro yaretaja pankotsiki.

gn Ha ha’e he’i: Mama, aime ógape. He’íkuri isýpe oİuahêhague hógape.

hch metá mik+ petay+: ne mama kitá nepa yéka. yu mama m+pa+ p+ra h+awe kai kename yu kitá he nuakai.

nah huan yehhua quiihtoh: Nonantzin, niyetoc nochan quiilih inantzin niehcoquia

oto xi nydi biênâ: maMe dimi an ngû bimâbi o ini maMe guê o ngû

quy Hinaptinmi pay nirqa: Mamay wasipim kachkani. Wasinman chayasqanmanta mamanta willarqa.

shp Jara neskata iki: tita, xobonkoriki ea. Jawen tita yoiaia iki moa xobon nokota.

tar Alí je aníli échiko: ku bitichí ne atíki Nana Iyéla ku ruyéli, mapu bitichí ku nawáli.

neutral, or contradiction. An English example for the entailment

label is shown in line 2 of Table 2.

However, no NLI dataset exists for languages which are

not part of XLM-R’s pretraining data. Thus, in order to make

such an evaluation possible, we build AmericasNLI, an NLI

dataset in truly low-resource languages, which are unseen

to state-of-the-art pretrained models: Asháninka, Aymara,

Bribri, Guarani, Nahuatl, Otomí, Quechua, Rarámuri, Shipibo-

Konibo, and Wixarika (cf. Section 2.1.3). Additionally, we build

the dataset in such a way that all sentences are multiway

parallel—this enables us to leverage it for a second purpose:

evaluating the performance of MT systems for these 10 truly

low-resource languages.

In the following, we will describe the data collection process

(Section 2.1.2) and provide more details on the languages

(Section 2.1.3).

2.1.2. Data collection

In order to make it possible to evaluate systems for both

NLI and MT with our data, we translate an existing dataset into

Indigenous languages as opposed to creating a new dataset from

scratch. The dataset we translate is a subset of XNLI (Conneau

et al., 2018), which, in turn, is a multilingual version of theMNLI

(Williams et al., 2018) development and test sets.

It is easier to find translators between the languages we are

interested in and Spanish than English. Hence, we translate from

the Spanish version of XNLI. Furthermore, code-switching is

often used to describe certain topics, and, while many words

without an exact equivalence in the target language are worked

in through translation or interpretation, others are kept in

Spanish. To minimize the amount of Spanish vocabulary in the

translated examples, we choose sentences from genres which we

expect to be relatively easy to translate into the target languages.

Our final dataset consists of translations of the “face-to-face,”

“letters,” and “telephone” genres in XNLI. We choose up to 750

examples from each of the development and test set; the exact

counts for each language appear in Table 3.

Following the process used during the creation of XNLI,

we translate sentences individually, i.e., translators do not have

access to the entire pair that makes up an NLI example. While

we expect this to make the translations slightly more natural,

this also has the potential to, for a small number of examples,

invalidate the original label.We acknowledge that this is a source

of noise in our experiments, but, due to difficulties finding native

speakers of our 10 languages who are available to work on this

task, we leave a manual verification of the AmericasNLI labels to

future work.

2.1.3. Languages

Aymara (aym) is an Indigenous language, which is spoken

in Bolivia, Chile, and Peru by more than two million people

(Homola, 2012). Multiple dialectal variants exist, including

Northern Aymara, which is spoken on the southern Peruvian

shore of Lake Titicaca as well as around La Paz and Southern

Aymara, which is spoken in the eastern half of the Iquique

province in northern Chile, the Bolivian department of Oruro,

in northern Potosi, and southwest Cochabamba. However,

Southern Aymara is slowly being replaced by Quechua in
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TABLE 3 Distribution of labels in the test and development sets, per language.

Language Split Entailment Contradiction Neutral Majority Baseline

aym
Test 250 250 250 0.333

Dev 248 248 247 0.334

bzd
Test 250 250 250 0.333

Dev 248 248 247 0.334

cni
Test 250 250 250 0.333

Dev 220 220 218 0.334

gn
Test 250 250 250 0.333

Dev 248 248 247 0.334

hch
Test 250 250 250 0.333

Dev 248 248 247 0.334

nah
Test 246 245 247 0.335

Dev 193 195 197 0.337

oto
Test 249 249 250 0.334

Dev 78 75 69 0.351

quy
Test 250 250 250 0.333

Dev 248 248 247 0.334

shp
Test 250 250 250 0.333

Dev 248 248 247 0.334

tar
Test 250 250 250 0.333

Dev 248 248 247 0.334

the last two regions. AmericasNLI examples are translated

into the Central Aymara variant, specifically Aymara La Paz.

Aymara is a polysynthetic language and follows an SOV word

order. A rare linguistic phenomenon found in this language is

vowel elision.

Asháninka (cni) is an Indigenous language from the

Amazonian region, which belongs to the Arawak family

and has around 74,000 speakers1 in Central and Eastern

Peru, in a geographical region located between the eastern

foothills of the Andes and the western fringe of the Amazon

basin (Mihas, 2017). While Asháninka in a strict sense

refers to the linguistic varieties spoken in Ene, Tambo and

Bajo Perené rivers, the name is also used to talk about

the following nearby and closely-related Asháninka varieties:

Alto Perené, Pichis, Pajonal, Ucayali-Yurua, and Apurucayali.

Although it is the most widely spoken Amazonian language

in Peru, certain varieties, such as Alto Perené, are highly

endangered. Asháninka is agglutinative and polysynthetic

and follows a VSO word order. The verb is the most

morphologically complex word class, with a rich repertoire

of aspectual and modal categories. The language lacks case,

except for one locative suffix, and the grammatical relations

of subject and object are indexed as affixes on the verb

itself. Other notable linguistic features of the language include

obligatory marking of a realis/irrealis distinction on the verb,

1 https://bdpi.cultura.gob.pe/pueblos/ashaninka

a rich system of applicative suffixes, serial verb constructions,

and a pragmatically conditioned split intransitivity. Code-

switching with Spanish or Portuguese is a regular practice in

everyday dialogue.

Bribri (bzd) is a Chibchan language, which is spoken by

only around 7,000 people in Southern Costa Rica2 (INEC,

2011). There are three known dialectal variants. Bribri has

only been a written language for about 40 years, which is

why existing materials have a large degree of idiosyncratic

variation. These variations are standardized in AmericasNLI,

which is written in the Amubri variant.While Bribri is still

spoken by children, it is currently a vulnerable language

(Moseley, 2010; Sánchez Avendaño, 2013). It does not have

official status and it is not the main medium of instruction

of Bribri children, but it is offered as a class in primary and

secondary schools. Bribri is a tonal and fusional language with

an SOV word order. Its grammar also includes phenomena like

head-internal relative clauses, directional verbs and numerical

classifiers (Murillo and Victoria, 2018a). There are several

orthographies which use different diacritics for the same

phenomena. Furthermore, the dialects of Bribri differ in their

exact vocabularies, and there are phonological processes, like

the deletion of unstressed vowels, which also change the tokens

found in texts.

2 https://www.inec.cr/social/grupos-etnicos-raciales
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Guarani (gn) is an Indigenous language spoken by 6–10

million people in South America. Around 3 million people

use Guarani as their main language, including members of

more than 10 native nations in Paraguay, Brazil, Argentina,

and Bolivia, along with Paraguayan, Argentinian, and Brazilian

peoples. According to the Paraguayan Census, there were

around 1.35 million monolingual speakers in 2002, and this

number has since increased to around 1.5 million people (Melià,

1992; Dos Santos, 2017)3. Although the use of Guarani as a

spoken language is much older, the first written record dates

to 1591 (Catechism) followed by the first dictionary in 1639

and linguistic descriptions in 1640. Guarani usage in text

continued until the Paraguay-Triple Alliance War (1864–1870)

and declined thereafter. However, from the 1920s on, Guarani

has slowly reemerged and received renewed focus. In 1992,

Guarani was the first American language declared an official

language of a country, followed by a surge of recognition in

the early 21st century4. The official grammar of Guarani was

approved in 2018. Guarani is an agglutinative language with an

SVO word order. Code-switching with Spanish or Portuguese is

common among speakers.

Nahuatl (nah)Nahuatl is an Indigenous language belonging

to the Nahuan subdivision of the Uto-Aztecan language family.

There are 30 recognized variants of Nahuatl spoken by over

1.5 million speakers across 17 different states of Mexico, where

Nahuatl is recognized as an official language (SEGOB, 2020b).

Nahuatl is polysynthetic and agglutinative. Most sentences

follow an SVO word order, but a VSO order can be used for

contrast and focus, and an SOV order can express emphasis

(MacSwan, 1998). The examples in AmericasNLI belong to the

Central Nahuatl (Náhuatl de la Huasteca) dialect. As there is

a lack of consensus regarding the orthographic standard, for

AmericasNLI the orthography has been normalized to a version

similar to Classical Nahuatl.

Otomí (oto) is part of the Oto-Pamean language family.

Nine linguistic variants exist, which have different regional self-

denominations, such as ñähñu or ñähño, hñähñu, ñuju, ñoju,

yühu, hnähño, ñühú, ñanhú, ñöthó, ñható and hñothó5. Otomí

has around 308,000 speakers, who are living across 7 Mexican

states. In the state of Tlaxcala, the yuhmu or ñuhmu variant

is spoken by fewer than 100 speakers, and we use this variant

for the Otomí examples in AmericasNLI. Otomí is a tonal

language following an SVO word order, and many words are

homophonous to Spanish (Cajero, 1998, 2009).

Quechua (quy), which is also called Runasimi, is an

Indigenous language family spoken by the Quechua peoples who

live primarily in the Peruvian Andes. With around 8–10 million

speakers it is one of the most widely spoken pre-Columbian

3 https://www.ine.gov.py/news/25-de-agosto-dia-del-Idioma-

Guarani.php

4 https://es.wikipedia.org/wiki/Idioma_guarani

5 https://site.inali.gob.mx/Micrositios/normas/pdf/Norma_Otomi.pdf

language families of the Americas, and approximately 25% (7.7

million) of Peruvians speak a Quechuan language. Historically,

Quechua was themain language family during the Incan Empire,

and it was spoken until the Peruvian struggle for independence

from Spain in the 1780s. Currently, many variants of Quechua

are widely spoken and it is the co-official language of many

regions in Peru. The subdivisions of Quechua include Southern,

Northern, and Central Quechua. The examples in AmericasNLI

are translated into the standard version of Southern Quechua,

which is known as Quechua Chanka or Quechua Ayacucho. This

variant is spoken in different regions of Peru, but can also be

understood by people in different areas of other countries, such

as Bolivia or Argentina.

Rarámuri (tar) is an Indigenous language that is also

known under the name Tarahumara, which means light foot6.

Rarámuri is part of the Taracahitan subgroup of the Uto-Aztecan

language family (Goddard, 1996). It is an official language

of Mexico, spoken mainly in the Sierra Madre Occidental

region in the state of Chihuahua by a total of around 90,000

speakers (SEGOB, 2020c). There are five variants of Rarámuri.

AmericasNLI examples are translated into the Highlands

variant7, and translation orthography and word boundaries

are similar to Caballero (2008). Rarámuri is an agglutinative

and polysynthetic language, which is characterized by a

head-marking structure (Nichols, 1986), and follows an SOV

word order.

Shipibo-Konibo (shp) is a Panoan language spoken by

around 35,000 native speakers in the Amazonian region of

Peru. It is a language with agglutinative processes, the majority

of which are suffixes. However, clitics are also used and are

a widespread element in Panoan literature (Valenzuela, 2003).

Shipibo-Konibo follows an SOV word order (Faust, 1973)

and uses postpositions (Vasquez et al., 2018). The translations

in AmericasNLI employ the official alphabet and follow the

standard writing supported by the Ministry of Education

in Peru.

Wixarika (hch) is an Indigenous language and is also called

Huichol by its speakers, which translates to the language of the

doctors and healers (Lumholtz, 2011). Is is part of the Corachol

subgroup of the Uto-Aztecan language family (Campbell, 2000).

Wixarika is a national language of Mexico with four variants:

Northern, Southern, Eastern, and Western8. It is spoken mainly

in the three Mexican states of Jalisco, Nayari, and Durango by a

total of around 48,000 speakers (SEGOB, 2020a). Translations in

AmericasNLI are in Northern Wixarika and use an orthography

common among native speakers (Mager-Hois, 2017). Wixarika

6 https://www.gob.mx/inpi/articulos/etnografia-del-pueblo-

tarahumara-raramuri

7 https://www.inali.gob.mx/pdf/CLIN_completo.pdf

8 https://www.gob.mx/cms/uploads/attachment/file/59310/

catalogo_lenguas_indigenas_mexico_2008.pdf
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is a polysynthetic language with head-marking (Nichols, 1986), a

head-final structure (Greenberg, 1963), nominal incorporation,

argumentative marks, inflected adpositions, possession marks,

as well as instrumental and directional affixes (Iturrioz and

Gómez-López, 2008). It follows an SOV word order, and

lexical borrowing from as well as code-switching with Spanish

are common.

2.2. Machine translation for Indigenous
languages of the Americas

One of the use cases of AmericasNLI is to benchmark

the performance of MT systems between Indigenous languages

of the Americas and a high-resource language9. To this aim,

AmericasNLI was featured in the AmericasNLP 2021 Shared

Task on Open Machine Translation (Mager et al., 2021). We

now survey different modeling and training techniques for MT

between the AmericasNLI languages and Spanish that have

been explored in the context of this competition. The exact

hyperparameters for all systems we are discussing here can be

found in the respective system description papers (references

are listed in Table 5). Then, as AmericasNLI only encompasses

a development and test set, we describe publicly available out-

of-domain training sets for the languages in AmericasNLI. We

focus on translation from Spanish into an Indigenous language

and leave the opposite direction to future work.

2.2.1. Models

[M1] Word-based Statistical Machine Translation (SMT):

As the sizes of available training sets for MT between Spanish

and the AmericasNLI languages are limited, an SMT model

might be a suitable choice. Here, we report the performance of

an IBMModel 2 (Brown et al., 1993).

[M2] Transformer Sequence-to-Sequence Model: Another

approach, which is common among AmericasNLP 2021 Shared

Task submissions, is a state-of-the-art neural MT approach,

a transformer sequence-to-sequence (seq2seq) model (Vaswani

et al., 2017). This model consists of a transformer encoder,

which takes an input sentence and represents it as a sequence of

continuous vectors, in combination with a transformer decoder,

which is a language model conditioned on the encoder output.

[M3] Ensembles: A common strategy to improve system

performance is to create an ensemble (Bojar et al., 2014) of

multiple individual models, i.e., to combine them into a single

prediction. Here, in order to ensemble, output probabilities at

each time step are averaged across models.

9 While Spanish is the featured high-resource language in our

experiments, AmericasNLI is designed in such a way that is can be used

to evaluate MT between the 10 Indigenous languages and any of the 15

high-/medium-resource languages in XNLI.

2.2.2. Training techniques

[TT1] Pretraining: Denoising (T5-style): Pretraining a

seq2seq model with a denoising objective, as proposed for T5

(Raffel et al., 2020), consists of, given a sentence with one or

more masked inputs, generating the original sentence. 15% of

the original tokens are selected randomly and masked out, and

consecutive selected tokens are substituted by a single mask.

[TT2] Pretraining: Denoising (mBART-style): We further

report results of denoising instances with both masking and

permuted sentences as proposed by Liu et al. (2020). Thirty-five

percent of the original tokens are selected randomly and masked

out, and, again, consecutive selected tokens are substituted by a

singlemask. As the dataset consists of multiple languages, special

language ID tokens are used.

[TT3] Backtranslation: Backtranslation (Sennrich et al.,

2016) consists of using a preliminary MT model to translate

monolingual text in the target language, i.e., the Indigenous

language in our case, into the source language to create pseudo-

parallel data. This data is then used—typically in combination

with the original training data—to further train the preliminary

MT system or to train a new MT system from scratch. To

improve performance, the pseudo-parallel data is filtered to

remove low-quality examples; for details we refer the reader to

Vázquez et al. (2021).

[TT4] Multilingual Translation Training: We further

compare training on multiple language pairs simultaneously

in a multitask fashion, either during pretraining or finetuning.

We explore different combinations of AmericasNLI languages,

Spanish, English, and other languages. During multilingual

training, the target language is indicated with a special token,

following Johnson et al. (2017).

[TT5] Single-Language Pair Translation Finetuning: The

standard approach to obtain final MT systems for individual

language pairs is to (optionally after pretraining) finetune on a

single language pair per model.

2.2.3. Parallel training data

All systems are trained on the parallel training data provided

for the AmericasNLP 2021 Shared Task on Open Machine

Translation. It consists of parallel text between Spanish and the

Indigenous languages frommultiple sources; all sources are out-

of-domain with respect to the AmericasNLI development and

test sets. We describe the data for all languages in the following;

statistics are shown in Table 4.

Spanish–Aymara: The Spanish–Aymara training set is

obtained from Global Voices (Prokopidis et al., 2016) and

published in OPUS (Tiedemann, 2012). This text is from

a similar variant of Aymara as AmericasNLI, but shows

differences in writing styles.

Spanish–Asháninka: The parallel training data for Spanish–

Asháninka is obtained by collecting texts from different domains

such as traditional stories, educational texts, and environmental
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TABLE 4 Overview of the sizes of the training sets provided for the AmericasNLP 2021 Shared Task on Open Machine Translation (Mager et al., 2021).

Asháninka Aymara Bribri Guarani Nahuatl Otomí Quechua Rarámuri Shipibo-Konibo Wixarika

3,883 6,531 7,508 26,032 16,145 4,889 125,008 14,721 14,592 8,966

The datasets are coming from different distributions than the AmericasNLI development and test set, making AmericasNLI an out-of-domain MT task.

laws for the Amazonian region (Romano et al., 2008; Mihas,

2011; Ortega et al., 2020). One peculiarity of Asháninka is that

there are many neologisms that are not spread to the speakers of

all communities. During the translation of the development and

test sets, only words and concepts that are generally well known

are translated, while other terms are preserved in Spanish.

Spanish–Bribri: The training set for Spanish–Bribri is

obtained from six sources (Constenla et al., 2004; Enrique,

2005; Jara Murillo and García Segura, 2013; Flores Solórzano,

2017; Murillo and Victoria, 2018a,b; Feldman and Coto-Solano,

2020), including a dictionary, a grammar, two language learning

textbooks, one storybook and the transcribed sentences from

one spoken corpus. Those texts are written in Amubri, Coroma

and Salitre, three of the main Bribri dialects. All training

sentences come from similar domains: either from traditional

stories or language learning examples. The development and test

sentences are translated by a speaker of the Amubri dialect.

Spanish–Guarani: The training corpus for Spanish–

Guarani (Chiruzzo et al., 2020) is collected from web sources

(blogs and news articles) that contain a mix of dialects, from

pure Guarani to a Guarani that makes strong use of Spanish

neologisms. The development and test corpora, on the other

hand, are in standard Paraguayan Guarani.

Spanish–Nahuatl: The Spanish–Nahuatl training corpus

comes fromGutierrez-Vasques et al. (2016) and has considerable

dialectal, domain, orthographic and diachronic variation.

However, the majority of sentences are closer to a Classical

Nahuatl orthographic “standard.” The development and test sets

were translated to modern Nahuatl, and, in order to be more

similar to the training corpus, an orthographic normalization

was applied. A simple rule based approach was used, which was

based on the most predictable orthographic changes between

modern varieties and Classical Nahuatl.

Spanish–Otomí: The training set for Spanish–Otomí10

comes from a set of different sources and, thus, represents more

than one dialectal variant and orthographic standard. However,

most of the texts belong to the Valle del Mezquital dialect, while

the development and test sets are from the Ñûhmû de Ixtenco,

Tlaxcala, variant, which also has its own orthographic system.

Spanish–Quechua: The texts in the training set for Spanish–

Quechua are written in the Quechua Cuzco and Quechua

Ayacucho variants and are taken from JW300 (Agić and Vulić,

2019). JW300 consists of Jehovah’s Witness texts, sentences

10 Otomí online corpus: https://tsunkua.elotl.mx/about/.

extracted from the official dictionary of the Minister of

Education (MINEDU), and miscellaneous dictionary entries

and samples which have been collected and reviewed by

Huarcaya Taquiri (2020). The development and test sets are

translated into Quechua Ayacucho.

Spanish–Rarámuri: The parallel Spanish–Rarámuri

training data consists of a set of extracted phrases from the

Rarámuri dictionary (Brambila, 1976). However, we could not

find any description of the dialectal variant to which these

examples belong. The development and test set are translations

from Spanish into the highlands Rarámuri variant and may

differ from the training set.

Spanish–Shipibo-Konibo: The training sets for Spanish–

Shipibo-Konibo are taken from different sources and translators,

including translations of a sample from the Tatoeba dataset

(Gómez Montoya et al., 2019), translated sentences from books

for bilingual education (Galarreta et al., 2017), and dictionary

entries and examples (Loriot et al., 1993). The development and

test sets are created following the official convention, as are the

training sets.

Spanish–Wixarika: The training data for Spanish–Wixarika

is taken fromMager et al. (2018a) and is a translation of the fairy

tales of Hans Christian Andersen. The training, development

and test sets are all written in the same dialectal variation,

Wixarika of Zoquipan, and use the same orthography. However,

word boundaries are not always marked according to the same

criteria in the training set and AmericasNLI.

Additional Data: Some systems are trained on additional

parallel data that has been collected by the shared task

participants. These datasets include translations in the JHU

Bible Corpus (McCarthy et al., 2020), JW300 (Agić and Vulić,

2019), and resources available in HTML or PDF format, such as

constitutions, poems, lyrics, and educational materials.

2.2.4. Monolingual training data

Monolingual data in the AmericasNLI languages from a

variety of sources are used by AmericasNLP 2021 Shared Task

(Mager et al., 2021) participants to improve MT performance

via pretraining and backtranslation. Specifically, we report

results from systems using the following monolingual resources:

Wikipedia (for Aymara, Guarani, Nahuatl, and Quechua),

text from the OPUS corpus collection (for Aymara, Guarani,

Hñähñu, Nahuatl and Quechua), monolingual Bible editions,

and fiction and non-fiction books in the languages.
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2.3. Natural language understanding for
Indigenous languages of the Americas

2.3.1. Pretraining

As with other areas of NLP, the pretraining–finetuning

framework, along with the use of large transformer models has

become the de facto standard approach for crosslingual transfer.

This overtakes prior approaches, which relied mainly on either

the alignment of monolingual embeddings or the creation

of non-contextual multilingual representations. Multilingual

transformers are a natural extension of their monolingual

counterpart: rather than simply training on an unlabeled

monolingual corpus, data from multiple languages is used. This

extension also applies to the creation of the vocabulary, which

consists of subword units created while considering all languages

simultaneously. The most commonly used multilingual models

are multilingual BERT (mBERT) (Devlin et al., 2019) and XLM-

Roberta (XLM-R) (Conneau et al., 2020). mBERT is an identical

model, in architecture, to the original BERT model, and has

been pretrained using a masked language modeling (MLM) and

next sentence prediction (NSP) objective. mBERT utilizes data

from the 104 largest Wikipedia corpora. Analogously, XLM-R

is a multilingual model based on the RoBERTa architecture. It

uses SentencePiece (Kudo and Richardson, 2018) tokenization,

with a vocabulary of 250k subwords. While XLM-R is only

trained with an MLM objective, its predecessor, XLM, was

additionally trainedwith a translation languagemodeling (TLM)

(Conneau and Lample, 2019) objective, which relies on the usage

of sentence aligned data. Along with minor modifications, the

TLMobjective extends theMLMobjective by allowing themodel

to predict masked tokens using not only the context within the

sentence, but also the tokens found in the parallel sentence. In

our work, we focus onXLM-R as the underlying language model

for our experiments.

One benefit of these pretrained models is the ease of use,

particularly for zero-shot transfer. For this approach, it is

assumed that, for a given supervised task, no labeled data is

available in the language of interest. However, we can leverage

knowledge from labeled data in a different language; after

finetuning the model on this data, we can directly apply it to the

target language, without any explicit alignment or projection.

2.3.2. Model adaptation

While multilingual pretrained models provide an

elegant approach to zero-shot transfer, the best downstream

performance is generally reserved for the languages with the

largest representation within the original pretraining corpus. As

pretraining time and vocabulary size is finite, more parameter

updates and subwords will be dedicated to these languages; as

such, the expected performance for a language decreases as its

representation (or the representation of a language sufficiently
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similar to it11) decreases. As the languages most likely to have

low representation in the model are generally low-resource, a

situation arises where performance is lacking precisely for the

languages which require it most.

Fortunately, the performance for a target language can be

improved through model adaptation, which leverages unlabeled

data in an intermediate step between the original pretraining

and final finetuning. This is analogous to domain adaptation,

which aims to prepare a model for finetuning in a previously

unseen domain (e.g., finetuning a general English model on

medical data). As unlabeled data is much easier to acquire,

this approach becomes viable even for low-resource languages.

Various adaptation methods have been proposed, each focusing

on different parts of the model. Continued pretraining is

the simplest approach, which just continues training with

the original unsupervised learning objective on data in the

target language (or on parallel data when available). Other

approaches include vocabulary adaptation (Wang et al., 2020),

which can modify or add the subword vocabulary in order

to handle unseen scripts and improve the fragmentation ratio

for a specific language, which has been shown to correlate

with better performance. Adapters (Pfeiffer et al., 2020b) are

additional layers which can be introduced to the model and

trained independently, while the original parameters are frozen.

Training adapters on both task-specific and language-specific

data allow for a lightweight approach toward adaptation, which

can rival full finetuning in some cases.

Prior work has shown that continued pretraining is

likely the most reliable adaptation approach for low-resource

languages, as it does not introduce any new, randomly initialized

parameters into the model (Ebrahimi and Kann, 2021). As such,

we focus on this approach for our experiments.

2.3.3. Translation-based approaches

Outside of a pure zero-shot approach to crosslingual

transfer, one can also leverage parallel data to use a translation

based approach. Here, the parallel data is used to train a

translation model, and for finetuning one either translates the

training examples to match the evaluation language (translate-

train), or conversely, translates the test examples to match the

training examples (translate-test).

3. Results

3.1. Machine translation results

The results for most systems submitted to the AmericasNLP

Shared Task on Open Machine Translation, together with the

11 We note that language similarity is not a well-defined concept,

and many factors may contribute to a model’s performance for a given

language.

most relevant system properties, are shown in Table 5: we omit

the “random babbling” baseline by Bollmann et al. (2021) as

well as all systems trained on parts or all of the development

set from this analysis. Due to the nature of the shared task

we summarize here, systems are trained on different datasets

and not directly comparable; we focus on general trends and

leave a principled comparison of the effects and interactions

of model architectures, training techniques, and datasets to

future work.

Absolute Performances: As this is an out-of-domain

translation task—i.e., the training set on the one hand and

development and test sets on the other come from different

distributions—it is very challenging. The best systems only

obtain a ChrF score between 34.6 (for quy) and 14.7 (for

oto). Results reported by Mager et al. (2021) further show that

including the development set during training has a huge effect

on performance. This is a strong indication that the out-of-

domain setting contributes to this MT task’s difficulty.

Model Architectures: Transformer seq2seq models (M2)

are used for most systems with small variations in their

hyperparameter settings. While this indicates that transformer

models are reasonable choices for MT of the AmericasNLI

languages, this leaves open the question of how other neural

models, such as LSTM seq2seq models (Bahdanau et al., 2015)

would perform. Moreover, the performance of the word-based

SMT model (M1) is surprising: for 7/10 languages it is the best

submission by Parida et al. (2021), and it performs competitively

with the best overall system for cni (25.8 vs. 25.3) This further

indicates that the exploration of non-transformer models might

yield interesting results. As indicated by the fact that ensembles

(M3) are only used for one language (hch) by Knowles et al.

(2021), ensembling does not seem to consistently result in better

performance—but the question of how this depends on the

potentially participating individual models remains open.

Training Techniques: Four different types of pretraining

strategies prove effective: denoising (T5 style; TT1), denoising

(mBART style; TT2), pretraining on backtranslated data (TT3),

and pretraining a multilingual translation model (TT4)—either

on a set of languages that includes the target language pair or

on one that does not. However, they differ in their effectiveness:

backtranslation seems to be particularly beneficial, given that it

is part of the best system’s training for 9/10 languages. While

denoising helps as well, according to the references of the

systems that use it, the effect is consistent, but rather small.

Most systems employ finetuning on the target language pair as

the last (or only) training step, to focus the model on the two

languages of interest. Surprisingly, however, the winning system

does not: it is a multilingual system with no specific emphasis

on a specific language pair. This shows that finetuning is not

indispensable. However, this leaves open the question of whether

a final finetuning phase could have improved performance

even further—or if it would instead hurt performance due

to overfitting.
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3.2. Natural language inference results

Results for this experiment are shown in Table 6. As

expected, the zero-shot performance of XLM-R is extremely low

for all 10 languages. The average accuracy when using English

as the finetuning language is 38.48%, and 37.99% when using

Spanish. Although one would expect finetuning on Spanish to

achieve better performance, it only outperforms the English

setting for 3 languages. Interestingly, performance is still above

the random baseline for many languages, which may be due to

English or Spanish entities found in the evaluation data. The

best zero-shot performance is achieved for Nahuatl, with 42.59%

accuracy using English, and for Quechua, with an accuracy of

39.51% when using Spanish. The lowest performance is 36.13%

for Aymara and 35.73% for Rarámuri, when using English and

Spanish, respectively.

Model adaptation using unlabeled data is helpful for this

task. Finetuning on Spanish, along with adaptation, leads to

an average performance gain of 5.86%, while finetuning on

English leads to a gain of 5.22%. We see the largest performance

gain for Quechua, with 24.53% better accuracy after continued

pretraining. This is likely related to the amount of adaptation

data: Quechua has the largest amount available, far surpassing

the other languages.

Considering the translation-based approaches, we find

that translating the training set greatly outperforms all other

methods. Again, we see the largest performance gain between

translate-train and the best non-adapted zero-shot model for

Quechua, with a gain of 20.4%. At the other extreme, we see

a performance decrease for Otomí, as compared to the zero-

shot baseline. This performance gain is striking— translation

quality as measured by ChrF and BLEU scores is quite low:

the highest ChrF score is 0.33 and the highest BLEU score

is 3.26. Although all the scores are low, we see a correlation

between translation metrics and NLI performance: the Pearson

correlation coefficient between ChrF score and translate-train

performance is 0.82. On average, translate-train outperforms

adapted models finetuned on English by 5.27%, and non-

adapted models 10.64%.

The performance of translate-test is less impressive, only

improving 1.74% over the best zero-shot baseline. It does not

outperform model adaptation, which achieves a minimum of

3.48% improvement on average. We hypothesize that the reason

translate-test does so poorly is that this method is highly

sensitive to poor translation—if information in a test example

is not captured during the translation, it becomes impossible for

the model to make a prediction.

3.3. Analysis of translation-based
approaches

For this analysis, we focus on translate-test and present

confusion matrices comparing this approach to the baseline
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FIGURE 1

NLI confusion matrices for each language, comparing performance of the zero-shot baseline with translate-test. e, entailment; n, neutral; c,

contradiction.

in Figure 1. We can see that the baseline approach effectively

always predicts an example as contradiction, except for some

languages where it correctly detects a portion of the entailment

examples (e.g., Bribri, Guarani, and Quechua). Effectively, the

baseline approach never correctly predicts a neutral example.

Now comparing the translate-test approach to the baseline,

we can see a much more even distribution of predictions

between neutral and contradiction, for all languages but Otomí,

where predictions are mainly split between contradiction and

entailment. Considering entailment examples, translate-train

correctly classifies fewer examples with this label as compared

to the baseline. These results are from the same trained model,

and only the evaluation set is changed—since the translate-

test model does not predict many examples as entailment,

it may be possible that Spanish indicators of entailment

are specifically being lost in translation, while indicators for

examples such as contradiction are not. A further analysis

to detect these indicators in the target languages may be
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helpful in identifying reasons for the poor performance of

this method.

A qualitative analysis of the translate-test data shows that a

common problem experienced for all languages is the extreme

repetition of certain subwords. In an attempt to quantify this,

we calculate the average number of characters and tokens per

example, as a heuristic for poor quality. We calculate this for

both the test set and its translations and present values in

Table 7. We can see that for some languages, namely Bribri,

Asháninka, and Otomí, the average number of characters in

the premise is considerably larger than the standard test set.

Interestingly, the number of tokens does not cleanly correlate

with characters. Considering the hypothesis, we do not see the

same drastic change after translation. This may indicate that the

poor performance of translate-train is caused in part by failing

to correctly translate the premise.

4. Discussion

4.1. Pretrained models vs.
translation-based approaches for
semantic tasks

In this work, we present AmericasNLI, a multiway parallel

NLI dataset covering 10 Indigenous languages of the Americas,

which can be used to benchmark MT and NLI systems. Our aim

is to answer the following RQs: (1) Do zero-shot approaches

for NLI based on model adaptation perform well for truly low-

resource languages, which are unseen to the underlying model?

(2) How do translation-based approaches work for NLI if all we

have are poor MT systems, and how do we build initial MT

systems for the AmericasNLI languages? (3) Finally, how do

translation-based and zero-shot approaches compare?

Conducting experiments with XLM-R, we find that the

model’s zero-shot performance is poor: it only slightly

outperforms a majority baseline. This is in contrast to zero-

shot results on the lower-level tasks of POS tagging and NER

(Ebrahimi and Kann, 2021). While model performance can

be improved by model adaptation via continued pretraining,

we find that a translation-based approach—namely translate-

train—outperforms all zero-shot approaches. Surprisingly, this

is true even though the translation quality is quite low.

It highlights that translation-based approaches might be

promising ways to create human language technology for truly

low-resource languages.

4.2. Shortcomings of natural language
inference

From a usability standpoint, the task of NLI is useful in

many ways. In terms of model implementation, the inputs are

restricted to two sentences, and as a three-way classification

task, model outputs are relatively easy to compute and handle

(as compared to, e.g., a token-level classification or translation

task). This relative simplicity allows for quick development of

models and easier transfer between languages. The format of

the inputs, as two separate, relatively short sentences, allows for

quicker and more straightforward translation. Furthermore, it is

easier for the meaning of each sentence to be preserved across

translation when we are only considering sentences—in the case

of, e.g., multiple choice question answering, a large paragraph

containing background information, the question, and possible

answers would need to be translated.

These benefits of NLI allow for a relatively rapid

development of new, parallel evaluation sets through translation.

However, they are also the main sources of drawbacks for the

task. Considering the task specifically, having an input of two

sentences can restrict how challenging the dataset can become.

Additionally, with only three labels, it may not be clear, even to

a human, how to classify the relation between the two sentences.

Further, while MT makes translation quick and easy, translating

also means that sentences in target languages are likely not

to be representative of natural utterances spoken in those

languages. As the original sources of the dataset were often

conversational in nature, they may be fragments, may not always

be grammatical, or may cover topics which are not commonly

spoken about in the target language. Finally, regarding XNLI,

which was created using crowdsourcing, prior work has found

that artifacts created from the annotation process can allow

models to cheat, inflating performance (Gururangan et al.,

2018).

With these drawbacks in mind, however, the task of NLI still

has value for measuring a model’s ability to process a certain

language, particularly when these languages do not have other

evaluation datasets available. NLI can be used as a first step

toward creating a suite of datasets for a language, although it

should not be the end-all measure of a model’s capabilities.

4.3. What is next for NLP for Indigenous
languages?

Researchers who identify as Native American or LatinX

are underrepresented in the machine learning and NLP

communities. Relatedly, many truly low-resource languages,

including Indigenous languages of the Americas, such as

those in AmericasNLI, still receive worryingly little attention

from researchers. This is unfortunate, since, according to

Glottolog12, 86 language families and 95 language isolates

can be found in the Americas, and many of them are

labeled as endangered. The development of ML and NLP

12 https://glottolog.org
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TABLE 7 Average length of an example, in both characters and tokens, for the collected test set as well as the translated test set used for

translate-test.

Lang. Split
Premise Hypothesis

Chars Tokens Chars Tokens

aym
Test 86.09 33.30 48.87 19.08

Translate-test 89.74 23.58 60.74 15.37

bzd
Test 83.29 49.24 45.39 26.99

Translate-test 145.83 39.06 57.99 15.38

cni
Test 87.06 29.59 51.45 17.28

Translate-test 115.91 31.64 57.08 15.58

gn
Test 72.55 32.18 39.07 17.40

Translate-test 71.57 18.50 42.27 10.69

hch
Test 91.31 38.55 52.54 22.09

Translate-test 91.10 25.22 66.44 17.14

nah
Test 78.24 28.67 44.98 16.13

Translate-test 77.79 20.76 43.58 11.65

oto
Test 85.94 36.99 45.62 19.65

Translate-test 237.70 71.73 88.40 26.48

quy
Test 84.67 30.89 48.64 17.58

Translate-test 74.11 19.30 46.32 11.72

shp
Test 92.47 30.72 49.56 16.11

Translate-test 81.31 20.85 42.15 10.71

tar
Test 81.12 33.26 48.43 19.82

Translate-test 79.68 22.48 64.93 17.74

technologies has the potential to help keep them alive or

support their revitalization (Mager et al., 2018b). In order

to achieve real impact for Indigenous languages—including

progress on problems that are of actual importance to the

communities (https://doi.org/10.48550/arxiv.2206.00437), there

is a need to unite more stakeholders, including native speakers,

NLP researchers, linguists, ethicists, and industry professionals.

NLP researchers specifically should investigate user needs and

ensure that their research happens in close collaboration with

the communities they expect to eventually use products that are

based on their research findings.

From a technical perspective, considering the rather weak

MT results in Section 3.1, it is obvious that MT systems for

the AmericasNLI languages still have room for improvement.

Possible ways to achieve such an improvement include data

collection and data cleaning, the development of new and more

suitable models, or the invention of better training and transfer

learning algorithms. Besides the general benefits of strong MT

systems for communities, the strong performance of translate-

train in this work highlights that MT systems might also be the

key to building systems for other NLP tasks of interest.

Given the typological differences between many Indigenous

and high-resource languages, another RQ worth exploring

is how to integrate more linguistic knowledge into machine

learning systems for NLP. For instance, many Indigenous

languages are morphologically rich (Kann et al., 2018; Mager

et al., 2020). Explicit handling of morphology might result in

better downstream-task systems.

4.4. Limitations of and ethical
considerations regarding this work

In this work, we present AmericasNLI, an NLI dataset for

10 Indigenous languages of the Americas, which we create by

translating an existing NLI dataset, XNLI Conneau et al. (2018).

While this allows for results that are directly comparable to prior

work on the original data as well as for the use of AmericasNLI

for the evaluation of MT systems, it also means that this dataset

inherits any biases and flaws which are contained in the previous

dataset. Furthermore, research involving languages spoken by

Indigenous communities raises ethical concerns regarding the

exploitation of these languages and communities: It is crucial

that the process does not exploit any member of the community

or commodify the language (Schwartz, 2022). In addition,

members of the community should directly benefit from the

research. Translation for AmericasNLI was done by either paper

authors or translators who were compensated at a rate based on

the average rate for translation and the minimum wage in their

country of residence. Additionally, many authors are members

of and/or have a record of close work with communities who

speak a language contained in AmericasNLI.
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