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Abstract

One of the main challenges in robotic manipulation is to grasp previously unseen objects without
prior knowledge. State-of-the-art methods rely on dedicated machine learning models which are
trained on RGB-Depth (RGB-D) images and annotated labels to predict grasp poses in unstructured
environments and for a wide range of previously unseen objects. Collecting a diverse and labeled
dataset, however, can be time-consuming and costly. To overcome these challenges, we propose
to use Neural Radiance Fields (NeRF) to generate RGB-D images and to combine these with a
cutting-edge automatic-labeling approach to create data for training grasp prediction networks.

The main contribution of this thesis is a novel method for obtaining individual NeRFs for objects of
interest and backgrounds. The method requires two input scenes: a complete scene containing an
object of interest and the same scene but without the object. The steps of the method include training
a NeRF on the background scene, aligning it with the object scene, combining it with another NeRF
to be trained on the object scene, and joint optimization of both NeRFs with depth regularization
loss added to NeRF loss. By applying this approach to various datasets, it is possible to create a
library of trained object and background NeRFs. Arbitrary combinations of these NeRFs can then
be used to generate novel scenes and render synthetic images for training detection networks.

In a comprehensive ablation study, we employ our approach to create four distinct datasets, apply an
automatic labeling pipeline to them and use them to train corresponding grasp prediction networks.
The results validate the viability of NeRF-generated data for training detection models, showcasing
a performance nearly on par with real data. Furthermore, our approach unveils exciting potential for
scalability by facilitating the generation of novel data.

Overall, this research advances the field of robotic manipulation by proving the potential of
using NeRF-generated synthetic data and novel scenes to train robust grasp prediction models for
real-world applications.
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1 Introduction

1.1 Motivation

The precise manipulation and placement of objects play a crucial role in various domains, including
factories, warehouses, industrial settings, and logistics operations. In factory or assembly settings,
it is often the same objects that are grasped repeatedly, and this can be achieved by directly teaching
the specific objects and their grasp points. However, when dealing with a wide variety of object
types, model-free grasping becomes essential, especially in the logistics domain.

Robotic manipulation involves various tasks, and one of its core components is grasping objects
accurately. Developing a reliable grasp model requires several challenges, mainly due to the diverse
scenes, objects, and camera types encountered. These challenges introduce biases within the grasp
model, restricting its effectiveness to specific environments and the objects it was trained on. These
challenges become even more critical when the model is trained using synthetic data, such as
simulations or image rendering engines, as this data inherently differs from real-world images.

To address this limitation, recent research has explored the utilization of machine learning techniques
to enable model-free grasping prediction for unseen objects and environments. An AI-based grasp
model refers to an approach that utilizes artificial intelligence, particularly neural networks, to
predict grasp points for objects without relying on explicit models. This innovative approach shows
promise in enhancing the versatility and adaptability of robotic grasping in real-world scenarios.

To train an AI-based grasp model capable of handling any object in any environment, a large dataset
comprising RGB-D images and labels of pixel-wise grasp success probability is required. This
dataset needs to include diverse objects with different configurations and various environmental
factors, such as backgrounds and camera types. However, collecting such a large dataset is a
time-consuming and labor-intensive process, and labeling such a dataset requires significant effort.

Neural rendering approaches currently have the potential of generating implicit representations
of scenes by learning from RGB images of a static scene and corresponding camera positions,
resulting in extremely realistic novel views images. However, we believe that by integrating virtual
scene editing capabilities via NeRF, the true potential of NeRF approaches may be achieved. We
can generate an infinite number of realistically created novel scenes by allowing the addition or
modification of objects, adjusting their positions, and changing the surroundings. This ability for
virtual scene editing utilizing NeRF offers up new avenues for dramatically upgrading various kinds
of detection networks such as segmentation detection models and grasp models, thereby promising
future advances. Through the generation of diverse and synthetic scenes, the detection model can
be exposed to a wide range of object configurations, environmental variations, and camera types.
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1 Introduction

1.2 Objective and Contribution

A large dataset containing RGB-D images and pixel-wise grasp success probability labels is essential
to train an AI-based grasp model capable of handling unseen objects in any environment. Collecting
such a dataset and labeling it requires a huge effort and is time-consuming. Regarding the labeling
effort, some recent methods are capable to generate the labels automatically, such as [SGK+23].
However, to obtain correctly labeled data, paired RGB-D images where each sample contains two
RGB-D images: one of a scene, including objects of interest, to be labeled and the other of the
same scene but without the objects, are required. These paired images must be sufficiently aligned
for accurate labeling.

To collect such a large dataset, two approaches can be used. The first involves a stationary camera
setup, providing the advantage of using one background image for labeling the dataset, but it is
time-consuming as collecting each sample requires a new scene with changes in object orientations
and configurations, i.e. one view per scene. The second approach is using a moving camera setup,
i.e. wrest mounted camera, which allows for collecting multiple views of one scene, leading to a
larger dataset, but it requires special setups for obtaining aligned background images, incurring
significant costs. Additionally, variations in scenes can still impose time-consuming efforts.

To tackle these challenges, generating novel scenes using implicit representations, such as NeRF,
has been proposed as a solution for the large dataset collection problem which is our main focus.
NeRF allows the generation of realistic novel views, which can be leveraged in the training dataset
and alleviate the limitations imposed by data collection challenges. By utilizing NeRF-generated
synthetic data, we aim to improve the grasp model’s performance and enable it to generalize to a
broader range of objects and environments.

The primary objective of this thesis is to enhance the performance of the model-free grasp model.
To achieve this, we will focus on four key objectives.

Firstly, we demonstrate that training a grasp prediction model using NeRF-generated data is possible
and yields promising results. By leveraging the capabilities of NeRF to generate realistic scenes,
we can train the grasp model on this data and evaluate its performance.

Secondly, we show that training the grasp model on newly rendered camera intrinsics and novel
views using NeRF significantly improves its generalization to different camera types. This approach
allows us to expand the robustness of the grasp prediction model to diverse image perspectives.

Thirdly, we develop a method for separating objects and backgrounds within a scene into two
implicit representations using distinct NeRFs. This is the main contribution of this thesis. By
creating separate implicit representations for objects and backgrounds, we can effectively isolate
and manipulate these components individually. Other approaches for creating such representations
require object masks or other prior knowledge. Utilizing rendering techniques with different NeRFs,
we can generate novel synthetic scenes that feature various object configurations and backgrounds.

Extending the automatic labeling method [SGK+23] to work with datasets collected by a moving
camera setup is another objective. By obtaining sufficiently aligned synthesized images of empty
scenes as references, we ensure accurate labeling for the recorded dataset used for training the grasp
prediction model.
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1.2 Objective and Contribution

Finally, we demonstrate that training the grasp model on this synthetic data, encompassing different
camera types and a range of object configurations with varying backgrounds leads to significant
improvements in its performance. By exposing the model to diverse and realistic synthetic scenes,
we can enhance its ability to generalize and effectively grasp objects in a wide range of real-world
scenarios.

The thesis is structured as follows. Chapter 2 will provide an overview of NeRF, showing a
comprehensive understanding of its principles and capabilities. Additionally, the chapter will
delve into the model-free grasping approach, providing a detailed explanation of its functioning
and relevance in the context of robotic manipulation. Furthermore, the chapter will introduce the
labeling algorithm employed for labeling the grasp model training dataset. Moving on to chapter 3,
our proposed method for effectively separating objects and backgrounds within a scene using
distinct NeRFs will be presented. This chapter will outline the technique developed to achieve this
separation, highlighting the advantages and applications of this novel approach. In chapter 4, we
will delve into the experimental setup and methodology used to evaluate our proposed method. The
chapter will provide an in-depth explanation of the conducted experiments, including the dataset
used, the evaluation metrics employed, and any necessary implementation details. Furthermore,
the chapter will present the results obtained from these experiments and offer insights into the
effectiveness and performance of our proposed method. In the last chapter, a brief conclusion
of our work and the results will be provided, and future work will be presented. In general, this
thesis aims to provide a comprehensive understanding of NeRF, model-free grasping, the proposed
object-background separation method, and the experimental evaluation of our proposed method.

9





2 Background

This chapter provides a comprehensive understanding of NeRF and model-free grasping. It is split
into three sections.

In the first section, we will present an in-depth overview of NeRF, covering its fundamental principles
and discussing its capabilities. We will explain the underlying concepts of NeRF, including its
representation of 3D scenes, coordinate sampling, and the process of volume rendering. Additionally,
we will delve into the training process of NeRF. This section aims to provide readers with a solid
foundation in understanding NeRF and its applications in computer vision and graphics.

The second section discusses approaches for model-free grasping, corresponding dataset labeling,
and its relevance in the context of robotic manipulation. We will explain the functioning of model-
free grasping, which enables grasping objects without relying on explicit models. Furthermore,
we will provide a detailed explanation of the labeling algorithm employed for generating the grasp
model training dataset. By addressing these aspects, we aim to provide readers with insights into
the training process of the grasp model and the considerations necessary to create a labeled training
dataset.

In the third section, we provide an overview of recent studies that concentrate on using NeRFs to
create synthetic scenes. Furthermore, we delve into recent research on model-free grasping that
revolves around predicting grasp poses without depending on explicit object models.

By dividing the chapter into these three sections, we aim to provide a comprehensive understanding
of both NeRF and the model-free grasping approach and give an overview of the recent studies in
these fields. This will enable readers to get the fundamental concepts and methods necessary for
subsequent chapters and the overall understanding of the thesis.

2.1 Neural Radiance Fields (NeRF)

NeRF was initially introduced by Mildenhall et al. [MST+21] in 2020 as an innovative method for
generating novel views of a scene. It has emerged as a major development in the field of computer
vision. It uses neural networks to provide a powerful and novel technique for scene representation
and the synthesis of novel points of view. NeRF models have been widely utilized in a variety
of disciplines, including robotics, virtual reality, and augmented reality. The ability of NeRFs to
learn implicit representations of scenes using neural networks provides its major feature. NeRF is
capable of capturing fine details and changes in the appearance and geometry of a static scene from
a collection of images. This enables the synthesis of realistic novel views from arbitrary camera
positions, even for parts of the scene that have not been directly observed during training. NeRF
offers the potential to generate accurate and detailed 3D reconstructions of complex environments.
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2 Background

Figure 2.1: An overview of the NeRF training pipeline [MST+21]. (a) The process of selecting
sampling points for individual pixels in an image that is to be synthesized. An MLP
produces densities and colors at the selected sampling points (b). (c) Using the
differentiable rendering function, pixel colors are calculated by integrating the colors
and densities obtained from the sampling points along the associated camera rays. (d)
The loss between the synthesized pixel colors and the ground truth pixel colors is
minimized to train the MLP.

Using a set of RGB images, the target is synthesizing novel views from previously unseen camera
poses. Additionally, it models the view-dependent color of occupied regions in the scene, capturing
the appearance and visual characteristics. Figure 2.1 presents an overview of the NeRF pipeline.
NeRF takes a set of 𝑁 RGB images, denotes as I, along with their corresponding camera intrinsics
and extrinsics, denotes as T , as an input. This set of images should contain only images of a static
scene, denoted as 𝑆 = {I,T }. In case camera intrinsics and extrinsics are not available, they can
be estimated using structure-from-motion approaches such as COLMAP [SF16] or DSO [EKC17].
NeRF represents the scene as a radiance field, which is a volumetric density function capturing
the shape and structure of the scene. Based on these camera intrinsics and extrinsics, rays are cast
to generate the corresponding images. These rays are then sampled and transformed into points,
each possessing position and direction attributes. Subsequently, these points are encoded to get
embedded coordinates. The encoded position and direction information of the points are fed into
a Multilayer Perceptron (MLP), which predicts their respective color and volume density. This
information is then employed in volume rendering to reconstruct the estimated pixel color for each
ray. Since the entire rendering is differentiable, the MLP can be trained by minimizing the difference
between the estimated pixel color and the ground truth color. The subsequent subsections present
the NeRF pipeline in more detail.

2.1.1 Radiance Field

A field is defined as a mathematical function that assigns each point in 3D space to a scalar or vector
quantity. A radiance field 𝐹:

𝐹 : (x, d) → (c, 𝜎) (2.1)

12



2.1 Neural Radiance Fields (NeRF)

is a special type of field which maps the position of a point, denoted by the vector x = (𝑥, 𝑦, 𝑧), and its
viewing directions, represented by the azimuth and elevation, and denoted by the vector d = (𝜃, 𝜙),
to a color c = (𝑟, 𝑔, 𝑏) and a volume density 𝜎. A Neural Radiance Field approximates the radiance
field using an MLP. In practical applications, the viewing direction is typically expressed using a
three-dimensional unit vector, d = (𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧).

The MLP is designed to approximate the radiance field of a scene. To ensure multi-view consistency,
the calculation of the volume density is made independent of the input direction by the MLP.
However, the color is calculated based on both the input position and direction. The reason for that
is 𝜎 represents the density or opacity of the scene at a certain point, high sigma values mean solid
region and low values mean empty or transparent region, indicating how much light is absorbed or
scattered at that point, on the other hand, c represents the appearance of the scene at that point from
the given viewing direction, which helps in handling transparent and occlusion of the scene making
the final rendered image more realistic.

This approach is implemented in a pair of steps. In the first step, the input location x is fed to
fully-connected layers with ReLU activations, each of which has 256 neurons. This phase generates
the volume density 𝜎 as well as a high-dimensional 256-dimensional feature vector. In the second
step, the feature vector is concatenated with the viewing direction d and then fed to an extra
fully-connected layer. This layer consists of 128 neurons with ReLU activation that output the color
c. Figure 2.2 illustrates the MLP architecture for a NeRF.

RGB
(x)

(x)

(d)

+

+

60
256 256 256 256 256 256 256 256

60

24

256 128

Figure 2.2: The NeRF MLP architecture [MST+21] is a fully-connected design with ReLU
activations. The input position 𝛾(𝑥) is encoded and passed through a series of eight
fully-connected ReLU layers, each consisting of 256 neurons. To introduce a skip
connection, the encoded input position 𝛾(𝑥) is concatenated with the activation from
the fifth layer. Following the eight layers, an additional layer outputs the volume density
𝜎, which is rectified using a ReLU activation to ensure only positive values. This
layer generates a 256-dimensional feature vector. The positional encoding of the input
viewing direction is then concatenated with this feature vector, and the concatenated
data is passed through another fully-connected ReLU layer, featuring 128 neurons. The
final layer contains sigmoid activation that outputs the emitted RGB radiance at the
specified position x, as viewed by the ray with direction d.
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2 Background

2.1.2 Volume Rendering

A classical volume rendering [KV84] is used to render the color of a ray from the outputs of the
radiance field. The color of a ray r(𝑡) = o + 𝑡d, where o is the camera position and d is the camera
viewing direction, can be calculated by

𝐶 (r) =
∫ 𝑡1

𝑡0

𝑇 (𝑡) · 𝜎(r(𝑡)) · c(r(𝑡), d) · 𝑑𝑡, (2.2)

where 𝑡0 and 𝑡1 are the near and far bounds of the ray, 𝑑𝑡 represents the infinitesimal distance
covered by the ray during each integration step, 𝜎 is the volume density, and c is the RGB color.
The accumulated transmittance 𝑇 (𝑡) represents the probability of the ray traveling from 𝑡0 to 𝑡
without hitting any object and is given by

𝑇 (𝑡) = exp(−
∫ 𝑡

𝑡0

𝜎(r(𝑣)) · 𝑑𝑣). (2.3)

The cumulative transmittance is used for calculating the ray’s predicted depth. This involves
accumulating the transmittance values along the path of the ray. We can calculate the predicted
depth or distance traveled by the ray within the scene as calculated in Vanilla NeRF [YFB+21] by
adding up the transmittance values encountered along the ray’s path. The estimated depth is

𝐷 (r) =
∫ 𝑡1

𝑡0

𝑇 (𝑡) · 𝜎(r(𝑡)) · 𝑡 · 𝑑𝑡. (2.4)

To then render images for novel views, the rays of the corresponding pixels are traced in a similar
way. The interval [𝑡0, 𝑡1] is divided into N evenly-spaced bins. Subsequently, one sample uniformly
is selected from within each bin. This approach ensures that the samples are distributed evenly
across the interval and reduces potential bias in the sampling process. These samples are used to
estimate 𝐶 (r), so the approximated color 𝐶̂ (r) will be

𝐶̂ (r) =
𝑁∑︁
𝑖=1
𝑇𝑖𝛼𝑖c𝑖 , where 𝑇𝑖 = exp(−

𝑖−1∑︁
𝑗=1
𝜎𝑗𝛿 𝑗), (2.5)

where the variable 𝛼𝑖 represents the transparency obtained through traditional alpha composition
and is calculated by 𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖). 𝛿𝑖 corresponds to the distance between two samples 𝑖
and 𝑖 + 1. By using this formulation, the transparency of each sample is determined based on the
volume density and the distance traveled between consecutive samples.

Similar to equation 2.5, the expected depth can be approximated as follows

𝐷̂ (r) =
𝑁∑︁
𝑖=1
𝑇𝑖𝛼𝑖𝑡𝑖 . (2.6)
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2.1 Neural Radiance Fields (NeRF)

An alternative approach for depth calculation is introduced in [IAKG21]. It is a transparency-aware
method and it sets the depth to the distance until the first sample, which has 𝜎 above a threshold ℎ,
along a ray. We will use this approach for depth calculation with ℎ = 20. As Vanilla NeRF depth
estimation might yield inaccurate depth values for transparent or semitransparent objects.

To enhance the modeling of high-resolution and complex scenes, two key improvements are
implemented: positional encoding of the input coordinates and hierarchical sampling. These two
improvements will be explained in more detail in the following sections.

2.1.3 Positional Encoding

Empirical observations indicate that directly applying the NeRF MLP to the input position vector x,
and the direction vector d, results in suboptimal renderings. The MLP, by default, tends to learn
low-frequency representations and struggles to effectively capture high-frequency variations in
color and geometry. This phenomenon has been substantiated by [RBA+19], which demonstrates
that deep networks tend to learn lower-frequency functions. Furthermore, the study highlights that
encoding the inputs into a higher-dimensional space using high-frequency functions prior to feeding
them into the network improves the model’s ability to fit data with high-frequency variations.

Positional encoding of the input coordinates is implemented to assist the MLP in capturing high-
frequency functions and representing fine-grained details in the scene. This encoding maps the
input coordinates to a higher-dimensional space, enabling the network to better capture and model
high-frequency variations in the scene’s geometry and color. By incorporating positional encoding,
NeRF becomes more effective in representing complex scenes with intricate structures and fine
details.

To leverage that in the context of NeRF, the input x and d are encoded by applying a positional
encoding function 𝛾 to each component of x and d. 𝛾(·) maps the input from the real numbers
R to a higher-dimensional space, specifically R2𝑃, where 𝑃 represents the dimensionality of the
encoding. 𝛾(·) is given by

𝛾(𝑥) =
(
sin

(
20𝜋𝑥

)
, cos

(
20𝜋𝑥

)
, · · · , sin

(
2𝑃−1𝜋𝑥

)
, cos

(
2𝑃−1𝜋𝑥

))
. (2.7)

Based on the experiments conducted by [MST+21]. It was observed that using 𝑃 = 10 for the
position vector x and 𝑃 = 4 for the direction vector d yields the best results and helps to improve
the model’s ability to capture and represent high-frequency variations.

2.1.4 Hierarchical volume sampling

To enhance the efficiency of rendering and capturing high-frequency details in the scene, a
hierarchical sampling procedure is introduced. This method addresses the inefficiencies of
traditional uniform sampling along rays, which may sample unnecessary regions with minimal
contribution to the final rendered image. Hierarchical sampling optimizes the allocation of samples
by focusing on regions that contain relevant visual content, resulting in improved rendering efficiency
while preserving important details.
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2 Background

Uniform sampling points along rays can be inefficient, particularly in regions like free space that
have little impact on the final color rendering. Conversely, sampling too few points in occluded
regions can lead to lower-quality renderings. To overcome these challenges, researchers have
proposed hierarchical representations, drawing inspiration from previous work like Levoy et al.
[Lev90].

In the hierarchical sampling approach in the context of NeRF, two MLPs are utilized: one fine
MLP, 𝐹Θ 𝑓

, and one coarse MLP, 𝐹Θ𝑐
, where Θ 𝑓 and Θ𝑐 are the trainable parameters of the fine

and coarse MLP, respectively. Initially, 𝑁𝑐 points are sampled using stratified sampling and passed
through the coarse MLP. This provides a coarse understanding of the scene, which is then used to
generate additional samples near the surface of the scene as described in the following.

To implement this approach, the alpha-composited color from the coarse MLP, denoted as 𝐶̂𝑐 (𝑟) in
Equation 2.5, can be expressed as a weighted sum of all sampled colors c𝑖 along the ray:

𝐶̂𝑐 (r) =
𝑁𝑐∑︁
𝑖=1

𝑤𝑖c𝑖 , (2.8)

where the weights 𝑤𝑖 are the depth distribution and calculated as 𝑤𝑖 = 𝑇𝑖𝛼𝑖 = 𝑇𝑖 (1−𝑒𝑥𝑝(−𝜎𝑖𝛿𝑖)).

Since the weights along a ray represent the depth distribution i.e. represent the occluded regions
along the ray, so normalizing these weights as 𝑤̂𝑖 = 𝑤𝑖/

∑𝑁𝑐

𝑗=1(𝑤 𝑗), a piecewise-constant probability
density function (PDF) is obtained along the ray which indicates occluded regions along the ray.
This PDF guides the hierarchical sampling process, determining the distribution of additional
samples to be taken along the ray. Regions with higher weights (indicating greater importance) will
have more samples allocated to them, allowing for a more accurate representation of the scene and
improving the rendering quality.

To refine the sampling strategy, we proceed with a second set of samples from the computed PDF
along the ray. These additional samples, denoted as 𝑁 𝑓 , are obtained using the inversion sampling
method. This method involves calculating the cumulative distribution function (CDF) from the PDF
then generating uniform random variables between 0 and 1 and applying these values to the inverse
of the CDF. By evaluating the fine MLP at the combined set of samples from both the coarse and
fine networks, we obtain a more comprehensive understanding of the scene.

Using Equation 2.5, we compute the final rendered color of the ray, denoted as 𝐶̂ 𝑓 (𝑟), by
incorporating all 𝑁𝑐 + 𝑁 𝑓 samples. This approach ensures that more samples are allocated to
regions expected to contain visible content. The allocation of additional samples to these regions
helps improve the accuracy and quality of the final rendered image.

There are alternative approaches that do not rely on hierarchical sampling. In the case of depth-
supervised NeRF [DLZR22], depth information is utilized to guide the sampling strategy, particularly
by placing more samples in regions closer to the scene. This approach aims to capture the geometry
of the scene accurately by focusing sampling points on areas of higher importance.

Unlike the hierarchical sampling approach, depth-supervised NeRF employs a single MLP instead
of using separate coarse and fine networks. By incorporating depth information into the sampling
process, the model can prioritize regions based on their distance from the camera, allowing for a
more effective allocation of samples.
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2.2 Robotic grasping

This depth-guided sampling technique offers an alternative to hierarchical sampling and can provide
high-quality renderings by emphasizing samples in areas that contribute significantly to the scene’s
geometry. Each approach has its advantages and considerations, and the choice between them
depends on the specific requirements and characteristics of the rendering task at hand.

2.1.5 Rendering Loss

After rendering the color of each ray using the samples from both the coarse and fine sets, see
Equation 2.5, a squared error between the rendered pixel colors and the true pixel colors is applied:

L𝑐 (I,R,Θ) =
∑︁
r∈R

[����𝐶̂𝑐 (r,Θ𝑐) − 𝐶𝑔.𝑡 (r)
����2

2 +
����𝐶̂ 𝑓 (r,Θ 𝑓 ) − 𝐶𝑔.𝑡 (r)

����2
2

]
, (2.9)

where R is a batch of rays calculated from camera poses of scene 𝑆, 𝐶𝑔.𝑡 (r) is the corresponding
ground truth pixel color sampled from I, 𝐶̂𝑐 (r) is the color rendered using coarse MLP, 𝐶̂ 𝑓 (r) is
the color rendered using fine MLP.

By comparing the rendered colors to the ground truth, the loss function provides a measure of how
well the neural network approximates the true scene. The goal is to minimize this squared error loss,
which encourages the network to produce more accurate and visually appealing renderings. So we
minimize the color loss by optimizing the NeRF MLP parameters Θ into corresponding images I
and the corresponding view rays R:

Θ∗ = arg min
Θ

L𝑐 (I,R,Θ).

In regression problems, including image rendering it is common to use the squared error loss as it
effectively penalizes larger deviations and allows for differentiable optimization. By minimizing this
loss the network can learn to produce renderings that closely resemble the desired colors resulting
in enhanced rendering quality.

2.2 Robotic grasping

Fully automating picking applications in logistical applications is a challenge, especially when
handling a variety of unseen items, in different environments. For example, in warehouses, a typical
pick-and-place system involves a robot equipped with a suction gripper, bins containing various
goods provided by a conveyor belt, and an RGB-D camera positioned above the scene. Recently
machine learning techniques have been developed to predict objects grasping without the need for
teaching the objects and their grasp points via a CAD file. These techniques, such as [[SGK+23]
[KBKH20] [NGC+23]], have shown results in effectively managing different types of unseen items
in various environments.
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2 Background

2.2.1 Model-Free Graspablility Prediction

To accomplish the objective of predicting grasping positions for objects in the scene a two-step
approach is applied.

In the first step, we estimate a grasping quality, denoted as 𝑄̂, at each pixel location in the scene.
We take an input image 𝐶 that has both RGB and depth information and has dimensions Rℎ×𝑤×4,
where ℎ and 𝑤 represent the height and width of the image respectively. The target is to estimate
how good a grasp would be at each location. The output 𝑄̂ is a map with dimensions Rℎ×𝑤 . Each
pixel in this map represents a quality value that indicates the probability of successfully grasping an
object at that location.

In the second step, we apply post-processing techniques to obtain a collection of possible grasps
represented as 𝑔 = (®𝑥, ®𝑣). Each possible grasp consists of a 3D position denoted by ®𝑥 and an
orientation represented by ®𝑣. By examining the grasp quality map 𝑄 and considering certain
criteria like setting a threshold for grasp quality, we can identify regions or points in the scene
where successful grasps are likely. These regions or points correspond to grasps. By extracting
information about their position and orientation, we obtain a set of feasible grasps 𝑔.

By following this two-step process and obtaining the feasible grasps (𝑔), we can effectively predict
and identify grasp poses that are likely to succeed in manipulating objects.

2.2.2 Grasp-Quality Prediction

To obtain 𝑄̂, a U-Net [RFB15] architecture with a ResNet-34 [HZRS16] is used. The input to the
network is a 3-channel image 𝐼. The first channel, denoted as 𝐼𝐺𝑟𝑒𝑦 , represents the grayscale image
of the RGB channels in 𝐶. The second channel, denoted as 𝐼𝐷𝑒𝑝𝑡ℎ, contains the depth information.
Lastly, the third channel, denoted as 𝐼𝑆𝑇𝐷 , represents the standard deviation of the surface normals.
There are some preprocessing applied to the raw data which is 𝐶 and 𝐼𝐷𝑒𝑝𝑡ℎ in order to obtain the
channels of the network input.

The decision to use a single grayscale channel image 𝐼𝐺𝑟𝑒𝑦 instead of a three-channel RGB image in
the input image is motivated by several factors. First, it allows the network to retain important texture
information while reducing the number of input channels. This can be beneficial in scenarios where
texture plays a significant role in determining grasp quality. Additionally, using a grayscale channel
helps prevent the network from overfitting to specific color patterns or backgrounds, ensuring more
robust and generalizable grasp predictions. The inclusion of the standard deviation of surface
normals 𝐼𝑆𝑇𝐷 as a third channel in the input image is motivated by the specific requirements of the
application. Suction grippers, in particular, rely heavily on the local surface structure for successful
grasping. On irregular surfaces with a high variation of surface normals, it is challenging to create a
sealed vacuum with a suction cup. By including 𝐼𝑆𝑇𝐷 as an input channel, the network can take the
local surface structure into account and enhance its grasp prediction for suction grippers. Including
𝐼𝐷𝑒𝑝𝑡ℎ as an input channel to the network offers multiple benefits. One of the main advantages is its
ability to provide structural information about the scene, while 𝐼𝐺𝑟𝑒𝑦 mainly captures appearance
and texture details. Additionally, it allows the network to distinguish between background and
objects based on their spatial arrangement. Hence, the network becomes capable of handling
occlusions in complex environments. The network can use the depth map to identify object shapes
and positions, which ultimately leads to more accurate and robust predictions.
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2.2 Robotic grasping

To obtain the input channels, specially 𝐼𝑆𝑇𝐷 and 𝐼𝐺𝑟𝑒𝑦 , required for the network, the RGB-D images
undergo preprocessing steps. To calculate 𝐼𝐺𝑟𝑒𝑦 , we use the luminance method. To calculate 𝐼𝑆𝑇𝐷 ,
the following steps are followed. Initially, 𝐼𝐷𝑒𝑝𝑡ℎ and the camera intrinsic matrix (𝐾) are used to
convert 𝐼𝐷𝑒𝑝𝑡ℎ into a point cloud using

𝐼Pcd(𝑢, 𝑣) = 𝐾−1(𝐼Depth(𝑢, 𝑣) [𝑢, 𝑣, 1]T),∀(𝑢, 𝑣) ∈ ℎ × 𝑤. (2.10)

Subsequently, the surface normal is obtained for each pixel individually. Afterward, for a small
neighborhood, the standard deviation of the surface normals is calculated. Finally, the calculated
standard deviation is normalized to a range between 0 and 1.

To tackle inaccuracies and undetectable depth regions frequently encountered in RGB-D images
from 3D cameras, a pair of pre-processing steps is utilized. Firstly, missing or unreliable depth
information areas are addressed by approximating depth values. Secondly, outlier pixels are filtered
out to diminish noise and enhance the depth image’s overall quality. These pre-processing steps
enhance the accuracy and reliability of the depth information, leading to an improvement in 𝐼𝑆𝑇𝐷 .

Moving on to the U-Net, it takes the three-channel input image and performs convolutional
operations to extract relevant features. The network’s architecture allows for effective learning
and representation of the grasp quality information at each pixel. The output of the network is a
prediction of the grasp quality map 𝑄̂.

Camera Info

Analysing
Point Cloud

Depth

RGB

Normals Normals STD

Greyscale Grasp Quality

Input outputU-Net architcture

Figure 2.3: Overview of the grasp-quality prediction pipeline, showing examples of the three-
channel U-Net input, their corresponding grasp quality, and the pre-processing steps.

Figure 2.3 illustrates the grasp-quality prediction pipeline, showing the pre-processing steps, the
three-channel U-Net input, and the corresponding expected grasp-quality prediction.

2.2.3 Label Approximation and Supervised Training

To train a grasp-quality prediction network, a large dataset consisting of RGB-D images and their
corresponding pixel-wise grasp quality ground truth, 𝑄, is necessary. However, manually labeling
such a vast dataset, which should contain a wide range of objects with various configurations
and cluttered scenes, is a time-consuming and labor-intensive task. To address this challenge,
the authors of [SGK+23] propose a method for approximating the labels and generating them
automatically. By leveraging this label approximation method, we can generate approximate labels,
𝐿, for the grasp-quality prediction network training dataset, such that 𝐿 ≈ 𝑄. Although these
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approximations may not perfectly match 𝑄, they provide a reasonable estimation that can still be
useful for training the network. This label approximation method primarily focuses on simple
geometries. The underlying concept is that a flatter surface tends to result in a higher grasp success
rate. Therefore, the label approximation is based on the negative normalized standard deviation of
the surface normals.

To incorporate this idea into the network, the label is calculated as 𝐿𝑆𝑇𝐷 = 1− 𝐼𝑆𝑇𝐷 . This approach
is consistent with utilizing of 𝐼𝑆𝑇𝐷 as one of the input channels for the network. Additionally, it is
desirable for a grasp to be close to the center of mass of the object, as this promotes grasp stability.
To incorporate this property into the label, the pixels on the graspable surface, as indicated by 𝐿𝑆𝑇𝐷 ,
are clustered. Another component called 𝐿𝑑𝑖𝑠𝑡 is introduced, representing the distance of each pixel
to its respective cluster center.

One challenge of this method is that it may also detect the background, e.g. the bin, and non-object
geometries since it only depends on surfaces. To overcome this, a background image, i.e. an
image of the bin without any graspable objects, is recorded. By subtracting the depth image of the
background from the depth of the original image, we can mask the non-object pixels of 𝐼𝑆𝑇𝐷 and
use only the object pixels 𝑀𝑜𝑏.

Figure 2.4: Two labeled examples are shown, where the RGB input images are displayed in the top
row, and the corresponding approximated labels 𝐿 are shown in the bottom row. The
imperfections in the labels are due to inaccuracies in the depth information.

Figure 2.4 displays two examples of images labeled using our automatic labeling approach. It is
essential to note that the labels may not be perfect in some cases due to invalid depth information.

The labels 𝐿𝑆𝑇𝐷 and 𝐿𝑑𝑖𝑠𝑡 are weighted by respective weights, 𝑤𝑆𝑇𝐷 and 𝑤𝑑𝑖𝑠𝑡 , to balance their
influence on the training process.

𝐿 =

{
𝑤STD𝐿STD + 𝑤dist𝐿dist where𝑀𝑜𝑏 > 0
0 otherwise

(2.11)
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In our experiments, these weights are chosen to be equal to 0.5. Overall, this label approximation
method provides a way to generate labels that capture the flatness of the surface and the proximity
to the object’s center of mass. It takes into account the object pixels while eliminating non-object
pixels using a background subtraction technique. However, a critical requirement for this method’s
success is the availability of aligned background images within the dataset. These background
images are essential for accurately defining the background pixels and object pixels, which can be a
challenging aspect of the dataset collection process.

The final loss used for training the grasp-quality prediction network is

L𝑔𝑟𝑎𝑠𝑝 = 𝑤𝑏𝑔

����(1 − 𝑀𝑜𝑏) (𝐿 − 𝑄̂)
����2

2 + 𝑤𝑜𝑏

����𝑀𝑜𝑏 (𝐿 − 𝑄̂)
����2

2 , (2.12)

where 𝑤𝑏𝑔 and 𝑤𝑜𝑏 are weights calculated individually for each image. These weights are
determined by considering the background and foreground pixels within that particular image. In
our experiments, we set 𝑤𝑏𝑔 to 0.5 and 𝑤𝑜𝑏 to 0.5.

2.3 Related Work

We divide this section into two subsections, the first subsection gives an overview of the related
works to NeRFs for generating synthetic scenes and the second subsection provides some recent
research on model-free grasping.

2.3.1 NeRFs for Generating Synthetic Scenes

In the field of synthetic scene rendering, various methods have been developed to support the
creation and synthesis of virtual scenes and novel views. Some approaches, such as Broadhurst et
al. [BDC01], Bleyer et al. [BRR11], and Seitz et al. [SCD+06], adapt traditional modeling and
rendering pipelines to accommodate synthetic scenes and enable novel view synthesis. However,
recent works have explored the use of NeRF for flexible scene manipulation, presenting promising
advancements in this area.

Lazova et al. [LGO+23] suggest an approach that separates rendering from scene representation,
enabling rapid multi-scene training, high-fidelity image synthesis, and manipulation. They show
object duplication, removal, rigid and non-rigid transformations, and inter-scene object transfers,
among other scene alterations. However, instead of implicit functions, they use voxel-based
representations.

Yang et al. [YZX+21] provide a neural scene rendering framework that enables the creation of new
synthetic scenes by combining the several NeRFs of different objects. For training, however, they
require object masks, and they do not take into account lighting circumstances in generated scenes,
such as shadows, and it employs a hybrid space embedding that combines voxelized representation
with coordinate-based positional encoding. Another similar approach is [WTB+23]. They manage
to train a NeRF representing only the object without the surrounding scene but also require a
segmentation mask of the object in one of the images.
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Additionally, Guo et al. [GFWF20] demonstrate an approach for combining objects into realistic
images of dynamic scenes. Their method decomposes a scene into implicit object functions that
are based on view and lighting circumstances, allowing object usage across scenes involving
various objects, cameras, and lighting. Inter-object light transport effects are demonstrated through
integration with volumetric ray tracing. Nonetheless, their approach is based on synthetic objects
rather than real-world ones.

Stelzner et al. [SKK21] proposed an unsupervised object segmentation utilizing the relation between
3D scene geometry and 2D observations. Their usage of NeRFs allows them to parameterize
arbitrary geometry and appearances, allowing them to learn without prior knowledge of object
structures in the dataset. However, the method is limited to synthetic objects and scenes, lacking
real-world scene applicability.

Lastly, Kosiorek et al. [KSZ+21] introduce NeRF-VAE, a geometry-aware scene generative model
employing NeRF as a decoder within a Variational Autoencoder (VAE) framework. However, it
allocates its capacity to a single scene, limiting per-scene expressivity.

In contrast to these existing methods, our approach avoids voxel-based representations and relies
only on coordinate positional encoding and implicit functions. Additionally, it can decompose
objects and backgrounds from scenes using two recordings, one recording of a scene with objects
and another without objects, without requiring explicit object masks. Our method enables novel
view synthesis with multi-object manipulation in generated scenes, offering a distinct advantage
over the aforementioned works.

2.3.2 Model-Free Grasping

In recent studies on model-free grasping researchers have been focusing on using deep learning
techniques, specifically Convolutional Neural Networks (CNNs) to predict the success of different
grasping attempts. These methods aim to train CNN models on datasets so they can quickly and
accurately determine the likelihood of a successful grasp based on depth images.

One example is Dex-Net [MLN+17], where the researchers have created a model called Grasp-
Quality Convolutional Neural Network (GQ-CNN). This model takes depth images as input. Uses
them to predict how likely a grasp will be successful based on the position, angle, and depth of a
gripper relative to an RGB-D sensor. By training on datasets, the GQ-CNN can efficiently evaluate
various grasping configurations enabling more effective robotic grasping in real-world settings.

In [ZSY+22], An object-agnostic grasping framework is used instead of depending on particular
training data for each object encountered. It converts observations into actions by generating
probability maps that show how possible various grasping actions are for each pixel. The algorithm
then chooses the action that has the best chance of executing the grasp. Furthermore, it leverages
a cross-domain image classification framework to identify the specified objects by comparing
observed images with product images.

In [KFH+22], NeRFs are utilized to render new RGB-D images, which are then used as inputs to a
grasping network. The NeRF training process occurs in real-time, but the rendered image quality is
comparatively lower than other NeRF approaches. To address this limitation, the corresponding
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grasping network is trained specifically and exclusively on this type of data. However, this
specialization constrains its potential applications, making it less adaptable to diverse scenarios and
objects.
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Our method aims to learn individual implicit representations of an object and its surrounding back-
ground using two NeRFs, and Object-NeRF, 𝐹𝑜𝑏, Background-NeRF, 𝐹𝑏𝑔, and their corresponding
parameters are Θ𝑜𝑏 and Θ𝑏𝑔, respectively. Applying our method to different datasets, allows us to
combine multiple trained NeRFs during rendering to generate novel realistic synthetic scenes. Two
recordings are required to achieve this goal: one recording of the scene without objects, denoted as
𝑆𝑏𝑔, and another recording of the scene including objects of interest, denoted as 𝑆𝑠𝑐𝑛. The scene
𝑆𝑠𝑐𝑛 comprises two sets, denoted as I𝑠𝑐𝑛,T𝑠𝑐𝑛, where I𝑠𝑐𝑛 is a collection of scene images, and T𝑠𝑐𝑛
represents the corresponding camera extrinsics and intrinsics. By utilizing the information from
T𝑠𝑐𝑛, we cast rays that correspond to the scene images, resulting in a set of rays, denoted as R𝑠𝑐𝑛.
Similarly, the same process is applied to the background scene 𝑆𝑏𝑔, yielding sets I𝑏𝑔,T𝑏𝑔, and the
associated rays, denoted as R𝑏𝑔.

In this chapter, we will first discuss how NeRFs are combined, and then give a detailed explanation
of the training pipeline and its individual steps.

3.1 Combining NeRFs

Our approach revolves around the utilization of multiple NeRFs for rendering and generating
realistic novel scenes. A synthetic scene is generated using a set of 𝑀 NeRFs, denoted as
F = {𝐹1, ..., 𝐹𝑚, ..., 𝐹𝑀 }, and the output densities and colors of each NeRF are 𝜎𝑚 and c𝑚,
respectively. Each NeRF contributes independently its own densities and colors along the ray which
travels through the scene and they are combined, similar to the superposition principle [SKK21].
The accumulated transmittance 𝑇 (𝑡) along the ray is computed by multiplying the transmittances
𝑇𝑚(𝑡) of each NeRF encountered which is determined by the probability of the ray not intersecting
any object given by

𝑇 (𝑡) =
𝑀∏
𝑚=1

𝑇𝑚(𝑡) = exp

(
−

∫ 𝑡

𝑡0

𝑀∑︁
𝑚=1

𝜎𝑚(r(𝑣))𝑑𝑣
)
. (3.1)

Equation 3.1 represents the probability of the ray not intersecting any object. The final volumetric
density, denoted as 𝜎(𝑥), is obtained by summing the densities of each NeRF. 𝜎(𝑥) is calculated as
follows:

𝜎(𝑥) =
𝑀∑︁
𝑚=1

𝜎𝑚(𝑥).

Furthermore, the probability that a specific NeRF 𝑚 is responsible for the light reaching the camera
from a given depth 𝑡 is computed as

𝑤(𝑡, 𝑚) = 𝜎𝑚(r(𝑡))𝑇 (𝑡),
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similar to equation 2.2.

The expected color from a set of NeRFs 𝐶̂F (r) is obtained by marginalizing over 𝑚 and 𝑡. This
is calculated by integrating the product of the weights 𝑤(𝑡, 𝑚) and the colors c𝑚(r(𝑡), d) over the
depth range. It is calculated as follows:

𝐶̂F (r) =
∫ ∞

0

𝑀∑︁
𝑚=1

𝑤(𝑡, 𝑚)c𝑚(r(𝑡), d)𝑑𝑡. (3.2)

Similar to equation 2.5, the final approximated color of combining multiple NeRFs is

𝐶̂F (r) =
𝑁∑︁
𝑖=0

𝑀∑︁
𝑚=1

𝑤𝑖𝑚c𝑖𝑚 =

𝑁∑︁
𝑖=0

𝑀∑︁
𝑚=1

𝑇𝑖𝛼𝑖𝑚c𝑖𝑚, where 𝑇𝑖 = exp(−
𝑖−1∑︁
𝑗=1

𝑀∑︁
𝑚=1

𝜎𝑚𝑗𝛿 𝑗). (3.3)

To calculate the weights 𝑤 for rendering using hierarchical sampling, we marginalize over the
components 𝑚 only, resulting in the depth distribution 𝑤(𝑡) given by the sum of the weights 𝑤(𝑡, 𝑚)
over all NeRFs

𝑤(𝑡) =
𝑀∑︁
𝑚=1

𝑤(𝑡, 𝑚).

To train a combined NeRF on a scene, the used loss is similar to the loss in 2.12, but the expected
color, in this case, is 𝐶̂F instead of 𝐶̂. The loss is

L𝑐F (I,R,ΘF) =
∑︁
r∈R

�������𝐶̂F𝑐
(r,ΘF𝑐

) − 𝐶𝑔.𝑡 (r)
����2

2 +
����𝐶̂F𝑓

(r,ΘF𝑓
) − 𝐶𝑔.𝑡 (r)

����2
2

��� , (3.4)

where 𝐶̂F𝑐
(r) is the rendered color by combining the coarse MLPs of F . denoted as F𝑐, using

Equation 3.3, and 𝐶̂F𝑓
(r) is the rendered color by combining the fine MLPs of F , denoted as F𝑓 ,

using Equation 3.3.
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Figure 3.1: Overview of our object-background separation pipeline. Two scenes, a scene includes
an object of interest 𝑆𝑜𝑏 and another scene includes the background only without the
object 𝑆𝑏𝑔, are given as inputs. The pipeline comprises the following steps: 1) A NeRF,
referred to as Background-NeRF 𝐹𝑏𝑔, is trained on the 𝑆𝑏𝑔 scene. 2) The trained 𝐹𝑏𝑔
is aligned with the scene 𝑆𝑠𝑐𝑛. 3) The 𝐹𝑏𝑔 is combined with another NeRF, referred
to as Object-NeRF 𝐹𝑜𝑏, and optimization only for 𝐹𝑜𝑏 is conducted on 𝑆𝑠𝑐𝑛. 4) Both
NeRFs, 𝐹𝑏𝑔 and 𝐹𝑜𝑏, are jointly optimized on 𝑆𝑠𝑐𝑛. 5) The depth regularization loss is
added to the color loss while optimizing both NeRFs.

The key idea behind our method is to train 𝐹𝑏𝑔 on 𝑆𝑏𝑔, and then combine 𝐹𝑏𝑔 with 𝐹𝑜𝑏, and train
on 𝑆𝑠𝑐𝑛. By the end of execution of the pipeline, 𝐹𝑜𝑏 and 𝐹𝑏𝑔 should represent the object only
and the background only of 𝑆𝑠𝑐𝑛, respectively. Figure 3.1 shows an overview of our pipeline. Our
pipeline is divided into five steps:

• The first step involves training 𝐹𝑏𝑔 on 𝑆𝑏𝑔, allowing it to capture the scene’s background
information.

• In the second step, we align the trained 𝐹𝑏𝑔 with 𝑆𝑠𝑐𝑛.

• In the third step, we combine 𝐹𝑏𝑔 with 𝐹𝑜𝑏, fixing the weights of 𝐹𝑏𝑔, and training the
weights of 𝐹𝑜𝑏 on 𝑆𝑠𝑐𝑛. This enables 𝐹𝑜𝑏 to focus on modeling the object’s appearance and
shape within the scene.

• In the fourth step, we unfreeze the weights of both NeRFs, Θ𝑜𝑏 and Θ𝑏𝑔, and train them
jointly on 𝑆𝑠𝑐𝑛.

• In the last step, we add a depth regularization loss to the final loss to learn 𝐹𝑜𝑏 on the object
only.

In our pipeline, we utilize the same NeRF architecture, that was originally introduced in the Vanilla
NeRF, in both NeRFs 𝐹𝑏𝑔 and 𝐹𝑜𝑏.
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3 Methodology

(a) An image of 𝑆𝑏𝑔. (b) An image of 𝑆𝑠𝑐𝑛.

Figure 3.2: Sample images of the test dataset.

As our pipeline involves multiple sequential steps and to demonstrate well each step, we will apply
our pipeline on a test dataset showing the resulting scene mesh of the trained NeRF of each step.
The mesh is generated by the Marching Cubes algorithm [LC98] using 𝜎 > 20. An example of the
test dataset is depicted in Figure 3.2, including examples of both input scenes, 𝑆𝑏𝑔 and 𝑆𝑠𝑐𝑛.

3.2.1 Background-NeRF Training

The initial step in our pipeline focuses on training 𝐹𝑏𝑔 on 𝑆𝑏𝑔 for a specified number of training
steps 𝑠1, where 𝑠1 is a hyperparameter. This training aims to obtain an implicit representation of
the scene without the object. We minimize the NeRF color loss by optimizing Θ𝑏𝑔 on 𝑆𝑏𝑔. The
optimization problem for the first step can be expressed as:

min
Θ𝑏𝑔

L𝑐 (Θ𝑏𝑔 | I𝑏𝑔,R𝑏𝑔).

The objective is to obtain an implicit representation of the background only in order to be able to
define the background from other scenes that share the same background.

(a) A rendered image by 𝐹𝑏𝑔. (b) The scene mesh of 𝐹𝑏𝑔.

Figure 3.3: Results of the first step of our pipeline.

Figure 3.3 shows an example of an image rendered by 𝐹𝑏𝑔 and the corresponding scene mesh.
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3.2 Object-Background Separation using Distinct NeRFs

3.2.2 Offset Correction

The camera extrinsics of both scenes, 𝑆𝑏𝑔 and 𝑆𝑠𝑐𝑛, are calculated based on two different reference
frames, therefore, both scenes are not aligned. Hence, in the second step of our pipeline, we aim to
align the trained 𝐹𝑏𝑔 with the dataset of the scene 𝑆𝑠𝑐𝑛. Similar to iNeRF [YFB+21], we introduce
a global transformation matrix, 𝑇𝑏𝑔, that will be used only with 𝐹𝑏𝑔 to align its implicit scene with
𝑆𝑠𝑐𝑛.

Unlike traditional NeRF approaches that optimize the MLP on the camera rays and the input pixels,
in this step, we focus on optimizing the values of 𝑇𝑏𝑔. After sampling the rays in R𝑠𝑐𝑛, we obtain
samples that each is represented by its position and direction. These samples are transformed using
𝑇𝑏𝑔 before feeding to the positional encoder of 𝐹𝑏𝑔. To achieve alignment, we use the same color
loss function L𝑐 that is used in NeRF. However, only 𝑇𝑏𝑔 is updated while keeping the parameters
Θ𝑏𝑔 fixed unlike in standard NeRF training. We optimize 𝑇𝑏𝑔 to minimize L𝑐. The optimization
problem can be expressed as:

𝑇𝑏𝑔 = arg min
𝑇𝑏𝑔∈𝑆𝐸 (3)

L𝑐 (𝑇𝑏𝑔 | I𝑠𝑐𝑛,R𝑠𝑐𝑛,Θ𝑏𝑔).

To ensure that the estimated offset correction matrix 𝑇𝑏𝑔 remains within the SE(3) manifold
during optimization, the parameterization of 𝑇𝑏𝑔 is done using exponential coordinates [LP17].
This ensures that the estimated transformation matrix 𝑇𝑏𝑔 maintains its validity as a rigid body
transformation. The initialization of the estimated global offset correction matrix 𝑇0

𝑏𝑔
is done by

setting it to an initial matrix that lies within the SE(3) manifold, such as the identity matrix. During
the optimization process, the offset correction matrix is represented as:

𝑇𝑏𝑔 = 𝑒𝑥𝑝( [𝑆]𝜃)𝑇0
𝑏𝑔,

where 𝑒𝑥𝑝( [𝑆]𝜃) =
[
𝑒𝑥𝑝( [𝜔]𝜃) 𝐾 (𝑆, 𝜃)

0 1

]
and 𝑆 = [𝜔, 𝑣]𝑇 ,

where S represents the screw axis with the magnitude 𝜃 and the 3 × 3 skew-symmetric matrix [𝜔],
𝐾 (𝑆, 𝜃) = (𝐼𝜃 + (1− 𝑐𝑜𝑠𝜃) [𝜔] + (𝜃 − 𝑠𝑖𝑛𝜃) [𝜔]2)𝑣 and 𝑒𝑥𝑝( [𝜔]𝜃) = 𝐼 + sin 𝜃 [𝜔] + (1− cos 𝜃) [𝜔]2

[LP17].

With the parameterization described, the objective is to solve for the optimal offset correction matrix
from 𝑇0

𝑏𝑔
,

𝑆𝜃 = arg min
𝑆𝜃∈R6

L𝑐 (𝑒𝑥𝑝( [𝑆]𝜃)𝑇0
𝑏𝑔 | R𝑠𝑐𝑛,I𝑠𝑐𝑛,Θ𝑏𝑔).

We optimize the 𝑇𝑏𝑔 for a specific number of training steps 𝑠2, where 𝑠2 is a hyperparameter, so the
alignment process iterates over multiple steps to refine the estimated offset correction matrix.
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3 Methodology

3.2.3 Object-NeRF Training

Up to this step, we have the two scenes, 𝑆𝑏𝑔 and 𝑆𝑠𝑐𝑛, the trained 𝐹𝑏𝑔, and the trained correction
matrix 𝑇𝑏𝑔. The purpose of 𝑇𝑏𝑔 is to align the implicit scene in 𝐹𝑏𝑔 with the scene 𝑆𝑠𝑐𝑛. To
simplify our notation, we treat the combination of 𝐹𝑏𝑔 and 𝑇𝑏𝑔 as a single entity, denoted as
𝐹𝑏𝑔𝑇 = 𝐹𝑏𝑔 (𝑇𝑏𝑔 (𝑥)) and its corresponding parameter weights Θ𝑏𝑔𝑇 = {Θ𝑏𝑔, 𝑆𝜃}. In essence, this
signifies that the coordinates of 𝐹𝑏𝑔 are transformed using 𝑇𝑏𝑔. It is important to note that the
difference between 𝐹𝑏𝑔𝑇 and 𝑆𝑠𝑐𝑛 is ideally the object.

The goal of the subsequent step is to initialize the second NeRF, 𝐹𝑜𝑏, and to train it to exclusively
represent the object. To achieve this goal, we combine both NeRFs, 𝐹𝑏𝑔𝑇 and 𝐹𝑜𝑏, into a combined
NeRF, denoted as F = {𝐹𝑏𝑔𝑇 , 𝐹𝑜𝑏}, and its corresponding parameter weights, ΘF = {Θ𝑏𝑔𝑇 ,Θ𝑜𝑏}.
Subsequently, we render pixel colors using the combined NeRF F and compare it to the target pixel
obtained from 𝑆𝑠𝑐𝑛. During this step, we solely update the weight parameters Θ𝑜𝑏 associated with
𝐹𝑜𝑏 and keep the parameters of 𝐹𝑏𝑔 and 𝑇𝑏𝑔 fixed.

Mathematically, the optimization process can be expressed as:

min
Θ𝑜𝑏

L𝑐F (Θ𝑜𝑏 | I𝑠𝑐𝑛,R𝑠𝑐𝑛,Θ𝑏𝑔𝑇 ).

By optimizing 𝐹𝑜𝑏 for a specified number of steps 𝑠3, where 𝑠3 is a hyperparameter, we allow 𝐹𝑜𝑏
to learn the differences between 𝐹𝑏𝑔𝑇 and 𝑆𝑠𝑐𝑛.

Figure 3.4: The scene mesh of 𝐹𝑜𝑏 at step 3.

At this point, 𝐹𝑜𝑏 has learned the differences between 𝐹𝑏𝑔𝑇 and 𝑆𝑠𝑐𝑛, ideally representing only
the object. However, the training of 𝑇𝑏𝑔 may not completely align 𝐹𝑏𝑔 and 𝑆𝑏𝑔 due to potential
imperfections in 𝐹𝑏𝑔 and the objects that are in 𝑆𝑠𝑐𝑛 and not in 𝐹𝑏𝑔. Consequently, this misalignment
can introduce inaccuracies in 𝑇𝑏𝑔. As a result, 𝐹𝑜𝑏 may inadvertently learn not only the object
but also undesired portions, such as certain parts of the background. Figure 3.4 illustrate that 𝐹𝑜𝑏
learned all the differences between 𝐹𝑏𝑔𝑇 and 𝑆𝑠𝑐𝑛 including undesired parts of the background.

3.2.4 Joint Optimization

In this step, we aim to optimize both NeRFs, 𝐹𝑏𝑔𝑇 and 𝐹𝑜𝑏. Since 𝐹𝑏𝑔𝑇 has already learned the
background and 𝐹𝑜𝑏 has learned the object along with some background parts, our objective is to
enable 𝐹𝑏𝑔𝑇 to fully adapt to the background of 𝑆𝑠𝑐𝑛 by incorporating the background parts learned
by 𝐹𝑜𝑏. On the other hand, 𝐹𝑜𝑏 should continue learning the object’s features while forgetting
background elements. Hence, our goal at this stage is to solve the following optimization problem:
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3.2 Object-Background Separation using Distinct NeRFs

min
ΘF

L𝑐F (ΘF | I𝑠𝑐𝑛,R𝑠𝑐𝑛).

During this process, we optimize both 𝐹𝑜𝑏 and 𝐹𝑏𝑔𝑇 simultaneously for a specific number of steps
𝑠4, which is an additional hyperparameter.

Figure 3.5: The scene mesh of 𝐹𝑜𝑏 at step 4.

At the end of this step, we achieved sufficient alignment between 𝐹𝑏𝑔𝑇 and 𝑆𝑠𝑐𝑛, capturing all color
changes between 𝑆𝑠𝑐𝑛 and 𝑆𝑏𝑔 in 𝐹𝑜𝑏. However, it is possible that these color changes include
non-object parts due to various factors such as variations in lighting conditions or minor shifts in
non-object regions between the two input scenes recordings, resulting in a very small thickness
layer in the implicit scene of 𝐹𝑜𝑏 directly over the surface of background. Figure 3.5 illustrate that
𝐹𝑜𝑏 learned all the differences between 𝐹𝑏𝑔𝑇 and 𝑆𝑠𝑐𝑛 including small parts of the background due
to the mentioned factors.

3.2.5 Regularization Loss

To eliminate these non-object parts from 𝐹𝑜𝑏, we introduce an additional regularization term to the
loss, L𝑟𝑒𝑔, based on the depth, which is reconstructed by 𝐹𝑜𝑏 and 𝐹𝑏𝑔𝑇 :

L𝑟𝑒𝑔 (Θ𝑜𝑏,Θ𝑏𝑔𝑇 ,R𝑠𝑐𝑛) =
1
𝑁𝑅𝑑

∑︁
𝑏∈𝑅𝑑

𝜎𝑏𝑜𝑏 ,

where 𝑅𝑑 = {𝑟 :
��𝐷𝑜𝑏,𝑏𝑔 (𝑟) − 𝐷𝑏𝑔 (𝑟)

�� < 𝜖, 𝑟 ∈ R𝑠𝑐𝑛}, 𝜎𝑏𝑜𝑏 is the average 𝜎 value obtained by
𝐹𝑜𝑏 along the ray 𝑏, 𝑁𝑅𝑑

is the total number of rays in 𝑅𝑑 , 𝐷𝑜𝑏,𝑏𝑔 and 𝐷𝑏𝑔 correspond to the
reconstructed depth obtained using approach in [IAKG21] by NeRFs, combined NeRF {𝐹𝑏𝑔𝑇 , 𝐹𝑜𝑏}
and 𝐹𝑏𝑔𝑇 , respectively. 𝜖 is a hyperparameter that is usually set to 𝜖 = 0.001𝑚 in order to remove
the small thickness layer, from the previous step, that contains non-object parts from 𝐹𝑜𝑏.

In this step, we again optimize both NeRFs, 𝐹𝑜𝑏 and 𝐹𝑏𝑔𝑇 simultaneously for a fixed number of
steps, 𝑠5, which is an additional hyperparameter. The objective function to be minimized is given
by:

min
ΘF

L𝑐F (ΘF | I𝑠𝑐𝑛,R𝑠𝑐𝑛) + 𝜆L𝑟𝑒𝑔 (Θ𝑜𝑏,Θ𝑏𝑔𝑇 ,R𝑠𝑐𝑛),

where 𝜆 is a hyperparameter that represents the contribution of the depth regularization loss in the
total loss.
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3 Methodology

Figure 3.6: The scene mesh of 𝐹𝑜𝑏 after the final step.
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Figure 3.7: Examples of rendered images by Object-NeRF and Background-NeRF and 𝜎 distribu-
tion of both NeRFs along the ray that goes through the marked pixel.

After the final step of our method, we obtain a NeRF that represents the object only as shown in
Figure 3.6. Figure 3.7 showcases examples of rendered images by 𝐹𝑜𝑏 and 𝐹𝑏𝑔𝑇 , and 𝜎 distribution
of both NeRFs along the ray that goes through the marked pixel at the rendered images, illustrating
that 𝜎𝑜𝑏 has high values only on surface of the object and zero values on the background region.
These NeRFs can be combined with various other NeRFs representing different objects to construct
synthetic scenes with diverse object configurations. This process will be described in the subsequent
section.

Moreover, as part of our method, we also obtain a trained 𝐹𝑏𝑔𝑇 . This NeRF exclusively represents
the background of the scene and is aligned with 𝑆𝑠𝑐𝑛. Utilizing this trained 𝐹𝑏𝑔𝑇 , we can generate
aligned backgrounds for the recorded images in 𝑆𝑠𝑐𝑛, which are useful for generating labels using
the approach in 2.2.3 for the dataset of 𝑆𝑠𝑐𝑛 for the training of the grasp prediction network. This
enables us to leverage synthetic data for labeling real data for training, further enhancing the grasp
prediction network’s performance and generalization capabilities.
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3.3 Rendering of Composable Scenes

3.3 Rendering of Composable Scenes

To generate scenes by combining NeRFs for objects and backgrounds, we follow a pipeline described
in the work of Stelzner et al. (2021) [SKK21]. The process involves loading the desired trained
NeRFs and combining them seamlessly.

In this approach, we first load the NeRF representation of the background, which captures the
environment or scene without any objects. 𝐹𝑏𝑔 provides the foundational structure of the scene.

Next, we load the NeRFs corresponding to each object present in the scene. These Object-NeRFs,
denoted as 𝐹𝑜𝑏1 , 𝐹𝑜𝑏2 , ..., 𝐹𝑜𝑏𝑛 , capture the appearance and geometry of individual objects. They
contain information about the objects’ shape and texture properties.

To place each object in the desired location within the scene, we use user-defined transformation
matrices, 𝑇𝑜𝑏1 , 𝑇𝑜𝑏2 , ..., 𝑇𝑜𝑏𝑛 . These transformation matrices specify the position and orientation
of each object. By applying the corresponding transformation matrix to the Object-NeRFs, we
position the objects correctly within the scene.

Combining the NeRFs requires the 𝐹𝑏𝑔 to be combined with all transformed Object-NeRFs
𝐹𝑜𝑏𝑖 (𝑇𝑜𝑏𝑖 (𝑥)). This results in a combined set of NeRFs denoted as

F = {𝐹𝑏𝑔, 𝐹𝑜𝑏1 (𝑇𝑜𝑏1 (𝑥)), 𝐹𝑜𝑏2 (𝑇𝑜𝑏2 (𝑥)), ..., 𝐹𝑜𝑏𝑛 (𝑇𝑜𝑏𝑛 (𝑥))}.

Each element in this set represents a component of the scene, including the background and the
transformed objects.

Finally, we render images of the final scene using Equation 3.3. This process is typically explained
in Section 3.1.

This pipeline allows for the creation of scenes consisting of a single background and multiple
objects. Additionally, it provides flexibility in arranging objects within the scene, enabling the
generation of scenes using the combined NeRF representations. It is also possible to generate
larger-scale scenes by combining multiple backgrounds.
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4 Experiments and Results

To assess the effectiveness of our proposed method, we perform two types of experiments:

1. Realism Evaluation: Here, the focus is on evaluating how realistic the generated scenes are
compared to real scenes. The process involves generating new scenes using our method
and comparing them with real scenes. Several metrics are used for the comparison. These
metrics measure the similarity between the generated and the real images, and they quantify
the realism of the generated scenes. Additionally, qualitative visual comparisons are also
provided to assess the overall quality and realism of the generated scenes.

2. Grasp-Quality Prediction Network Evaluation: We aim to evaluate if NeRF-generated data
can be used to train a grasp-quality prediction network. We conduct an ablation study
to investigate how the performance of grasp-quality prediction networks is influenced by
training on four NeRF-generated datasets. The performance of the grasp-quality prediction
networks is then measured on a dedicated evaluation dataset which consists of real-world
scenes. Comparing the performance of the networks on this dataset allows us to quantify the
quality of the grasp prediction when trained on NeRF-generated data.

By conducting evaluations of both approaches, we can gain a comprehensive understanding of the
strengths and limitations of the proposed method.

4.1 Realism Evaluation

For a comprehensive evaluation of the effectiveness of the proposed pipeline in generating realistic
scenes, we propose an evaluation methodology for assessing the realism of the generated scenes. It
consists of the following steps:

• Three datasets are collected for evaluation. The first dataset includes recordings of the scene
without objects. The second dataset includes recordings of the scene with an object of interest
placed at a specific position. The third dataset comprises recordings of the scene with the
same object, however, the object is located at a different position.

• Our pipeline is applied to one of the datasets containing the object with the dataset that doesn’t
contain the object in order to obtain separate NeRFs for the background and the object.

• Using the obtained Background-NeRF and Object-NeRF, a new scene is generated where the
object is relocated to the position of the object in the other dataset and the background is
adjusted.

• The generated scene is then compared with the ground truth real scene from the third dataset.
Additionally, a qualitative comparison will also be performed to assess the overall realism
and similarity between the generated and real scenes.

35



4 Experiments and Results

4.1.1 Datasets

(a) Sample image of Position A dataset. (b) Sample image of Position B dataset.

(c) Sample image of Background Scene
dataset.

Figure 4.1: Sample images of the datasets used in realism evaluation. Views of the scenes of
Position A, Position B, and Background datasets are shown in a,b, and c, respectively.

Three datasets are used for the realism evaluation. These datasets are:

1. Background: This dataset consists of multiple RGB images of a static scene without any
objects. Each image is accompanied by camera intrinsics and extrinsics that are estimated
using DSO [EKC17] approach, which is one of the structure-from-motion techniques. An
example of this dataset is shown in Figure 4.1c.

2. Position A: This dataset has the same structure as the Background dataset. It shows the same
scene but with an object of interest placed at an arbitrary position, denoted by A, within the
scene. Figure 4.1a shows an example of this dataset.

3. Position B: This dataset has the same structure as the Background dataset as well. It shows
the same scene as the previous two datasets, but with the same object placed at a different
position within the scene, denoted by B. An example of this dataset is provided in Figure 4.1b.
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4.1 Realism Evaluation

To collect these datasets, a RealSense D415 camera [23], with a resolution of 640×480, is mounted
on a robot arm that follows a fixed trajectory around the scene. The camera records around 6000
images of different views. However, only 150 images are used for training, 10 images for validation,
and 40 images for testing.

4.1.2 Experimental Setup

To assess the performance of our method, the evaluation is split into two sub-experiments:

• Exp1: As described in Section 3.2, we train on the Background and the Position A to
obtain separate NeRFs of the background and the object. We then transform the obtained
Object-NeRF to the pose of the object in Position B dataset, which is the target dataset in this
experiment, and render new synthetic images with it. We compare the synthetic images to
images rendered from a Vanilla NeRF trained on the Position B dataset.

• Exp2: To assess the robustness of our method against different object positions, we im-
plemented this experiment. We do the same procedure as Exp1, however, we interchange
between Position A and Position B datasets. Hence, our method is trained on the Background
and Position B datasets. Then, the obtained Object-NeRF is transformed to the pose of the
object in Position A dataset, which is the target dataset of this experiment, and the rendered
images are compared with the images rendered from Vanilla NeRF trained on Position A
dataset.

4.1.2.1 Scene Generation and Transformation

After applying our method, the obtained Object-NeRF should be transformed in such a way that the
object is positioned at the same location as in the target dataset. To transform the Object-NeRF, we
define a transformation matrix associated with the trained Object-NeRF. Additionally, the camera
extrinsics in the three datasets are inconsistent due to differences in the reference frames of the three
datasets. Consequently, the obtained Background-NeRF is not aligned with the background of the
target dataset. To address this issue, we define another transformation matrix associated with the
Background-NeRF to rectify this misalignment.

We divide the target dataset into two subsets: a training subset and an evaluation subset. Similar to
Section 3.2.2, we obtain these transformation matrices by additionally training on the corresponding
subset while keeping the parameters of the trained NeRFs fixed. This approach ensures accurate
transformation of the object and alignment of the backgrounds in both experiments. The Vanilla
NeRF is trained on the training subset as well. Subsequently, evaluation is performed on the
evaluation subset.

37



4 Experiments and Results

4.1.2.2 Hyperparameters

In our method, each NeRF is structured with a coarse MLP employing 6 layers, each containing
256 neurons, while the fine MLP incorporates 8 layers, each comprising 256 neurons. The
hyperparameters are configured as follows: the number of coarse samples 𝑁𝑐 is set to 64, the
number of fine samples 𝑁 𝑓 is set to 128, the near bound 𝑡0 is set to 0.05m, and the far bound 𝑡1 is
defined as 0.8m.

Regarding the hardware and training aspect, our model is implemented on Pytorch framework, and
it runs on an Nvidia V100 GPU with a batch size of 4096 and a learning rate of 0.0005. The number
of training steps for each stage of our pipeline is as follows: 𝑠1 is set to 80,000 training steps, 𝑠2 is
set to 8,000 training steps, 𝑠3 is set to 12,000 training steps, 𝑠4 is set to 15,000 training steps, and 𝑠5
is set to 20,000 training steps.

For the training of the additional transformation matrices for aligning the background and accurately
positioning the object, the additional training is implemented for 4,000 training steps with a batch
size of 4096.

4.1.2.3 Evaluation Metrics

In NeRF literature, standard evaluation methods primarily rely on visual quality assessment metrics
to benchmark the rendered images. Each viewpoint is expected to produce an image that shows
the scene and its detail with sufficient accuracy. Content invariant metrics play a crucial role in
determining whether an image contains noise that hinders it from resembling the ground truth
image. These metrics aim to evaluate image quality either through pixel-wise similarity metrics like
Peak Signal-to-Noise Ratio (PSNR) or structural similarity metrics such as Structural Similarity
Index Measure (SSIM) or Learned Perceptual Image Patch Similarity (LPIPS).

PSNR is a measure commonly used in science and engineering to compare the level of the desired
signal to the background noise level. It is defined as the ratio of signal power to noise power and is
often expressed in decibels. The PSNR is calculated using the mean squared error (MSE) between
the generated image and the ground truth image:

𝑃𝑆𝑁𝑅(𝑥, 𝑦) = 10 · log10(MAX(𝑥)2) − 10 · log10(MSE(𝑥, 𝑦)),

where MAX(𝑥) is the maximum possible value of a pixel in an input image, e.g., 255 for 8-bit
integer, and MSE(𝑥, 𝑦) is the average of the squared differences between all color channels of the
generated image 𝑥 and target image 𝑦. However, PSNR doesn’t always correlate well with human
perception and may not capture perceptual differences.

As described in [WBSS04], SSIM provides a more comprehensive assessment of image quality
beyond just pixel-wise differences, taking into account structural information and aims to mimic
the human visual perception system’s ability to identify structural information from a scene. The
SSIM evaluates three metrics from an image: Luminance, Contrast, and Structure. Luminance is a
measure of brightness. Contrast is the difference in color and brightness between pixels, and is
calculated by computing the standard deviation of the luminance values. Structure captures the
texture and patterns in the images, and is calculated based on the covariance in the luminance values.
For a single image patch, the SSIM is given by:

38



4.1 Realism Evaluation

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1) (𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2)
,

where x and y are the generated and the target images, 𝜇𝑥 and 𝜇𝑦 are the mean luminance values,
𝜎𝑥 and 𝜎𝑦 are the standard deviations of x and y, 𝜎𝑥𝑦 are the covariance between x and y, and
𝐶𝑖 = (𝐾𝑖𝐿)2, 𝐿 is the dynamic range of the pixels (e.g., 255 for 8-bit integer), and 𝐾1 = 0.01 and
𝐾2 = 0.03 are constants chosen by the original authors. In an 11×11 circular symmetric Gaussian
weighted window with weights 𝑤𝑖 with a standard deviation of 1.5 and normalized to 1, the local
statistics 𝜇0 and 𝜎0 are calculated. They are given by

𝜇𝑥 =
∑︁
𝑖

𝑤𝑖𝑥𝑖 ,

𝜎𝑥 = (
∑︁
𝑖

𝑤𝑖 (𝑥𝑖 − 𝜇𝑥)2)1/2,

𝜎𝑥𝑦 =
∑︁
𝑖

𝑤𝑖 (𝑥𝑖 − 𝜇𝑥) (𝑦𝑖 − 𝜇𝑦),

where 𝑥𝑖 and 𝑦𝑖 are pixels sampled from the generated and target images, respectively, to be
compared. The patch-wise SSIM scores are averaged over the entire image in practice. SSIM can
better account for perceptual differences and is often preferred over PSNR in evaluating visual
quality.

As introduced in [ZIE+18], LPIPS is another objective metric that assesses the structural similarity
of high-dimensional images with contextually dependent pixel values. Unlike previous metrics,
LPIPS measures perceptual similarity rather than quality assessment. LPIPS is based on deep
neural networks and operates by computing the feature similarities between image patches extracted
from the generated and the target images. These features are typically obtained from pre-trained
VGGNet. The LPIPS score is obtained by calculating a weighted pixel-wise MSE of feature maps
over multiple layers. LPIPS is defined as

𝐿𝑃𝐼𝑃𝑆(𝑥, 𝑦) =
𝐿∑︁
𝑙

1
𝐻𝑙𝑊𝑙

𝐻𝑙 ,𝑊𝑙∑︁
ℎ,𝑤

| |𝑤𝑙 (𝑥𝑙ℎ𝑤 − 𝑦𝑙ℎ𝑤) | |
2
2,

where 𝑥𝑙
ℎ,𝑤

and 𝑦𝑙
ℎ,𝑤

are the features of the generated and target images at pixel height ℎ, pixel
width 𝑤, and layer 𝑙 of the pretrained network. 𝐻𝑙 and 𝑊𝑙 represent the height and width of the
feature map at the corresponding layer. The original LPIPS paper utilized SqueezeNet[IHM+16],
VGG[SZ14], and AlexNet[IHM+16] as feature extraction backbones with five layers in total. LPIPS
takes into account high-level features learned by the neural network, making it a good choice for
evaluating perceptual quality.

Employing these content invariant metrics enables us to make quantitative comparisons with ground
truth images and, thus, to assess the quality and realism of the scenes generated by our approach.
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4.1.3 Results

Our methodExperiment NeRF-trained Ground truth

Exp1

Exp2

Figure 4.2: Qualitative comparison of rendered images by different methods. In Exp1, the scene of
Position A, e.g., the ground truth scene from Exp2, along with the scene of Background
is used to train our method. Subsequently, the object is repositioned to match its
location in the ground truth scene of Exp1, e.g. the scene of Position B, resulting
in the generation of a synthetic scene resembling the ground truth. Two rendered
views of the synthetic scene are displayed under Our Method and Exp1. In Exp1 and
NeRF-trained, the same views are used to render images from a Vanilla NeRF trained
on the ground truth scene. The final column shows the corresponding ground truth
images. The same process is replicated in Exp2, with the training scenes, however,
Position A and Position B are switched, showing two rendered views from the final
scene of Our Method, NeRF-trained, and the ground truth.

Our evaluation of the results will involve both qualitative and quantitative comparisons. In Figure
4.2, we provide a visual comparison between the generated scenes and the NeRF-trained scene, as
well as the corresponding ground truth images for two different views for each experiment. Images
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denoted by NeRF-trained in the figure are rendered by training a Vanilla NeRF on the training
subset of the evaluation dataset. These comparisons are shown for two different views and for both
experiments, Exp1 and Exp2. This qualitative analysis allows us to assess the visual realism and
accuracy of the generated scenes compared to the ground truth.

Experiment Method PSNR↑ (dB) SSIM↑ LPIPS↓
Exp1 Our method 27.04 0.9391 0.0945

NeRF-trained 31.89 0.9611 0.0927
Exp2 Our method 25.34 0.9232 0.0972

NeRF-trained 31.27 0.9571 0.0891

Table 4.1: Quantitative comparison between images rendered from the scene generated using our
method and images rendered from a Vanilla NeRF trained on the corresponding ground
truth scene.

Additionally, Table 4.1 presents quantitative comparisons between rendered images from the
generated scene using our method, NeRF-trained, and the corresponding ground truth images. The
quantitative metrics are averaged over 40 views, providing a comprehensive assessment of the
effectiveness of our method.

4.1.4 Discussion

The provided comparison between our method and NeRF-generated results is primarily illustrative,
aiming to show the means by which convergence toward NeRF-generated values can be achieved,
although, from the qualitative comparison, it is clear that the object is accurately transformed to
the target position in both experiments. It is noteworthy that both methods are trained on distinct
datasets. Consequently, this section is dedicated to a discussion of the pivotal factors that could
influence the results of our method. Addressing these factors holds the promise of more convergence
of our results toward those obtained through NeRF-trained.

Firstly, regarding the results of our method in Exp1, in the second view, the side of the box that is
under magnification from Our method appears to be less defined compared to the corresponding in
the NeRF-trained. This issue could be due to that this side of the box is not covered well in the
training subset of Position A dataset. In contrast, the training subset of the Position B dataset may
provide more comprehensive coverage of this side. We can also realize that in Exp2 this side of the
box is reconstructed better by our method than NeRF-trained.

Secondly, our method omits the integration of lighting and shadows during the scene generation
process. However, due to the utilization of a black background in the experiments, this distinction is
not clear.

A third factor focuses on the contact region between the background and the object, as shown in the
qualitative comparison, which occasionally shows both elements, the object, and the background, as
they are semi-transparent. This issue occurred due to the use of the combining NeRFs approach,
which is based on the alpha blending method. Notably, this particular contact region encounters that
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the background has a higher volume density compared to the object. Therefore, the object lacks
the requisite volume density to effectively occlude the background, thus leading to the observed
semi-transparent coexistence.

In summary, the combination of qualitative and quantitative comparisons allows us to demonstrate
the effectiveness of our method in generating realistic scenes and its potential to enhance the training
of grasp-quality prediction networks.
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4.2 Grasp-Quality Prediction Network Evaluation

In this section, our primary objective is to demonstrate the feasibility of training a grasp-quality
prediction network on data generated by NeRF in general, as well as on synthetic data generated
using our method. Through a series of experiments, we will evaluate the performance of the
grasp-quality prediction network using different training datasets. Our focus is on comparing the
network’s performance when training on real datasets versus different NeRF-generated synthetic
datasets with novel views rendered using various camera intrinsics. Additionally, we will investigate
the advantages of the synthetic data with views from novel scenes generated by our method.

As described in Section 2.2.3, the method applied for automatically annotating the images with
grasp quality labels relies on subtracting a depth image of the background scene to identify objects.
For this, the background image must be accurately aligned with the object image, which is, in
practice, hard to achieve for setup with wrist-mounted cameras, e.g., moving camera setups. Our
method outputs yields a sufficiently aligned background scene represented by 𝐹𝑏𝑔, alongside the
real scene 𝑆𝑠𝑐𝑛 and the synthetic scene obtained by combining 𝐹𝑏𝑔 and 𝐹𝑜𝑏. This alignment enables
the automatic labeling of the data and ensures a high quality dataset for training the grasp-quality
prediction network.

To assess the generalization ability of the grasp-quality prediction network, we will consider two
cases. Firstly, we will examine whether the network can effectively grasp unseen objects placed in a
familiar environment, captured by a known camera, and positioned at a known location, referred to
as similar scenes. Secondly, we will investigate whether the network can generalize to grasp both
seen and unseen objects positioned in unseen environments, which are recorded using new camera
types, representing entirely new scenes.

This evaluation will be structured as follows. We will first delve into the dataset used for training
our proposed pipeline and present the outputs of our method, including the generation of novel
views and novel synthetic scenes. These outputs will serve as the training data for the grasp-quality
prediction network. Moving on, we will focus on the grasp-quality prediction network training
datasets, which comprise the results obtained from our method. We will explain the different
grasp-quality prediction networks that are trained on these datasets. Additionally, we will outline
the evaluation dataset used to assess the performance of the grasp-quality prediction networks. To
quantify the effectiveness of the models, we will employ various evaluation metrics which will be
explained. Then we will showcase the final results, comparing the performance of the different
grasp-quality prediction networks and highlighting the impact of our method on the grasp-quality
prediction network’s capabilities.

4.2.1 Methodology for Dataset Generation

For achieving robust and effective training of the grasp prediction model, it is essential to include
a diverse set of objects in the dataset. This diversity ensures that the model becomes capable
of detecting and generalizing to previously unseen objects. By exposing the model to various
shapes, sizes, and appearances of objects during training, it can learn to extract meaningful features
and patterns that are applicable to a wider range of objects. Thus, when presented with new,
unseen objects during inference, the grasp prediction model will have a higher probability of
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making accurate and successful grasp predictions. This ability to handle novel objects enhances the
model’s versatility and applicability in real-world scenarios, where encountering diverse objects is
common.

4.2.1.1 Input Data

(a) Sample image of the scene
with a yellow box.

(b) Sample image of the scene
with a cyan tube.

(c) Sample image of the scene
with a blue box.

(d) Sample image of the back-
ground Scene.

Figure 4.3: Samples of the training datasets, showing a sample of the background scene and three
samples of different scenes.

The main objective of training our model in this evaluation is to generate synthetic data that will be
used for training the grasp prediction model. To achieve this, we recorded various scenes, each
containing a single object, for different objects. Additionally, we recorded an empty scene, i.g.,
a background scene. The structure of these datasets is similar to datasets in section 4.1.1 and
the dataset collection setup as well. Specifically, we collected using a moving camera around the
scene setup a total of 11 datasets, consisting of 10 scenes for 10 different objects, such as boxes,
tubes, and other shapes. All of these scenes share a common background. We also recorded the
background scene separately. Each recording comprises approximately 6000 images, along with
their corresponding camera intrinsics and extrinsics, which are estimated using DSO [EKC17].
Figure 4.3 shows examples of a selection of datasets containing scenes with various objects, along
with their corresponding background scene. For data preparation, we utilized from each collected
dataset only 150 images for training, 10 images for validation, and 40 images for testing. These 40
test images were also employed for training the grasp model in the subsequent stages. The presence
of a chessboard in the scenes is to obtain more precise camera extrinsics from DSO.

The implementation details and used hyperparameters are identical to those described in 4.1.2.2.
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4.2 Grasp-Quality Prediction Network Evaluation

4.2.1.2 Methodology

We independently apply our method 3.2 to each of the object datasets, while using the same
background scene for all of them. For each of them, we obtain two NeRFs: Object-NeRF and
Background-NeRF. The Background-NeRF is accurately aligned with the corresponding dataset
scene and utilized to generate aligned background images for the scene. This allows us to apply the
automatic labeling approach explained in section 2.2.3 to obtain accurate labels for the data.

(a) Object-NeRF of a yellow box. (b) Object-NeRF of a cyan tube. (c) Object-NeRF of a blue box.

Figure 4.4: Rendered images generated by the trained object-NeRFs.

(a) Composing Object-NeRF
and Background-NeRF of a
yellow box.

(b) Composing Object-NeRF
and Background-NeRF of a
cyan tube.

(c) Composing Object-NeRF
and Background-NeRF of a
blue box.

Figure 4.5: Rendered images generated by composition of the trained Object-NeRFs and their
corresponding Background-NeRFs.

The Object-NeRF, on the other hand, is combined with other Object-NeRFs and Background-
NeRFs to generate synthetic scenes. Figure 4.4 presents a rendering of the trained Object-NeRF
alone, where the images are rendered from the same pose as in Figure 4.3. By combining the
Background-NeRF with the Object-NeRF of one experiment, we can generate novel views which
are similar to views rendered by a trained Vanilla NeRF directly on the corresponding dataset.
Figure 4.5 shows examples for composing the trained Object-NeRFs and correspondingly aligned
Background-NeRFs.
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Figure 4.6: The pipeline for obtaining a library of trained Object-/Background-NeRFs. The process
begins with collecting the training dataset (a), which includes a background scene
and scenes with objects. Our proposed pipeline for Object-Background separation is
applied to obtain separate NeRFs for backgrounds and objects (b), resulting in a library
of trained Object-/Background-NeRFs (c).

Figure 4.6 showcases the complete pipeline for obtaining a library of trained Object-/Background-
NeRFs. The process starts with collecting the training dataset, which includes both a background
scene dataset and a scene with an object dataset. Then our proposed method is applied to obtain
separate NeRFs, one for the background and one for the object only. By applying our method to
different datasets, we can create a library of trained Object-/Background-NeRFs, where each NeRF
represents a specific object or a background. This library allows us to efficiently synthesize novel
scenes with different combinations of objects and backgrounds.

Figure 4.7: Novel view rendered using novel camera intrinsics

In addition, it is also possible to synthesize novel views by training a Vanilla NeRF directly on a
scene. These synthesized views can then be utilized in training the grasp model. Figure 4.7 shows
an illustrative example of rendering a novel view by combining the Background-NeRF and the
Object-NeRF using novel camera intrinsics, specifically the intrinsics of RealSense D435 camera
[22] with a resolution of 1280x720. This demonstrates the ability of our method, similar to Vanilla
NeRF, to synthesize realistic images from different camera intrinsics.
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a) Object/Background 
   NeRF Library

b) Compose Scene

c) Move objects d) Move Camera

Figure 4.8: Dynamic scene generation: The diagram showcases the process of creating a novel
scene using the library of trained NeRFs. In (a), the library contains a collection of
Background-/Object-NeRFs. By combining one Background-NeRF with 5 distinct
Object-NeRFs, a composed scene with 9 NeRFs is generated (b). The position of each
object can be adjusted individually through their respective transformation matrices,
allowing for easy manipulation of object positions (c). Additionally, the camera position
can be altered to synthesize different views of the scene (d). This dynamic approach
enables us to create diverse scenes with varying object arrangements and camera
perspectives.

Using a combination of the trained object-NeRFs along with one background-NeRF, and potentially
repeating the usage of some of them, we can generate novel scenes. For each used NeRF, we define
a desired transformation to place the objects at specific locations within the generated scene. By
manipulating these transformation matrices, we can create dynamic scenes where the objects move
within the scene. Figure 4 demonstrates how the library of trained NeRFs allows us to construct
scenes with desired object configurations. We can manipulate the objects’ positions within the
scene and also adjust the camera extrinsic and intrinsic. This flexibility enables us to create various
scenes with different arrangements and camera perspectives and dynamic scenes as well.
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4.2.2 Training Dataset for Grasp Prediction Model

To evaluate the performance of the grasp-quality prediction network and its ability to be trained
on NeRF-generated synthetic data, as well as the impact of augmenting data and generating novel
scenes using our method, we create four dedicated datasets:

1. NeRF-Synth Dataset: This dataset is generated using a combination of Object-NeRFs and
the corresponding Background-NeRF. It consists of novel views of the input scene. It is
labeled by automatic labeling 2.2.3 using the images of this dataset and the corresponding
background images rendered by Background-NeRF. Figure 4.5 illustrates examples of this
dataset.

2. Real-Only Dataset: This dataset comprises real RGB-D images recorded by RealSense camera
[23], that are corresponding to the generated images in NeRF-Synth Dataset, and it is not
used in training our model. However, this data is labeled using the recorded images and the
corresponding background images rendered by Background-NeRF as we lack aligned real
background images. Examples of this dataset are shown in figures 4.3c, 4.3b and 4.3a

3. Camera-Augmented Dataset: This dataset includes the NeRF-Synth Dataset along with
additional novel views rendered using different camera intrinsics. It is labeled similarly to the
labeling of the NeRF-Synth Dataset. Figure 4.7 illustrate an example of the additional novel
view.

4. Novel-Scene Dataset: This dataset comprises the Camera-Augmented Dataset and additional
novel views of novel synthetic scenes generated using our method. It is labeled similarly to
the labeling of the NeRF-Synth Dataset. Figure c shows an example of the additional novel
views of novel synthetic scenes.

4.2.3 Experimental Setup

To train the grasp-quality prediction network and assess its performance, we first apply the automatic
labeling approach 2.2.3 on the training dataset to generate labels. Then we train different instances
of the network using randomly selected 400 samples from each of the aforementioned datasets:

1. NeRF-Synth GraspNet: Trained on the NeRF-Synth Dataset.

2. Camera-Augmented GraspNet: Trained on the Camera-Augmented Dataset.

3. Novel-Scene GraspNet: Trained on the Novel-Scene Dataset.

4. Real-Only GraspNet: Trained on the Real-Only Dataset.

The instances are trained for 30 epochs using an NVIDIA A1000 GPU, with a learning rate of
0.0001. Since the training dataset contains images with different resolutions, we resize the input to
a fixed resolution of 1024×640 before feeding it to the network.

By comparing the performance of these trained GraspNets, we aim to evaluate the effectiveness of
training on NeRF-generated synthetic data and the benefits of augmenting data with novel scenes
generated using our method.
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4.2.4 Evaluation Dataset

To finally evaluate the performance of the trained grasp-quality prediction networks and to assess
their generalization capabilities, we collect two dedicated evaluation datasets:

• RealSense: This dataset comprises images collected using the same camera and setup as used
for collecting the training dataset. It is specifically designed to evaluate the capabilities of the
network to generalize to previously unseen objects within a similar environment to that used
for collecting the training dataset. The scenes in this dataset include only separated objects,
and the main objective is to assess the network’s ability to grasp and recognize objects it has
not encountered during training.

• Zivid: This dataset is collected using a different camera, specifically the Zivid 2 camera
[Ziv], which provides a high resolution of 1920×1200. The scene in this dataset contains a
completely different background and includes a larger number of objects. The scenes in this
dataset are designed to resemble a typical bin-picking application, where objects are placed
in a bin to be picked. The dataset encompasses both, seen and unseen objects with different
configurations, such as separated, stacked, and overlapped objects. With this dataset we
evaluate how well the networks generalize to new environments, as well as different cameras
and backgrounds.

Figure 4.9: Example of evaluation datasets. The top-left image shows an example from the
RealSense dataset, while the top-right image displays a simple evaluation sample from
the Zivid dataset. The bottom-left image illustrates a typical bin containing overlapped
random objects from the Zivid dataset, and the bottom-right image presents a special
case where objects are stacked side by side from the Zivid dataset.
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Figure 4.9 provides examples of the evaluation datasets. The top-left image showcases an example
from the RealSense dataset. The top-right image presents a straightforward evaluation sample from
the Zivid dataset. In the bottom-left image, we observe a typical bin filled with overlapped random
objects from the Zivid dataset, simulating a real-world scenario in a logistics center. Lastly, the
bottom-right image displays a special case from the Zivid dataset where objects are stacked side by
side, reflecting a different object arrangement for evaluation purposes. These diverse evaluation
datasets allow us to thoroughly assess the performance and generalization capabilities of our trained
GraspNets.

Instead of the automatic labeling approach introduced in Section 2.2.3, we manually annotate the
data of the evaluation sets with instance masks and grasp quality labels to avoid any inaccuracies in
the data and the labels.
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4.2.5 Evaluation Metrics

we evaluate the performance of the grasp prediction network based on the following metrics:

• Grasp Success, Success: The percentage of feasible grasps among the predicted grasps, where
feasible grasps require non-zero grasp quality values. A successful grasp means that the
predicted grasp is considered valid and likely to succeed.

• Grasp-Quality, Quality: The average ground-truth grasp quality of feasible grasps, which
ranges between 0 and 1. This metric gives an indication of how well the predicted grasps
align with the actual quality of the grasping action.

• Object clearing rate, Object: The percentage of objects for which grasps are detected. This
metric counts the proportion of objects in the scene for which the grasp prediction network
successfully detects valid grasps.

To achieve a high level of performance, it is essential for all three metrics to yield elevated values,
with particular emphasis on grasp success rate and object clearing rate. Notably, these two metrics
exhibit a relationship akin to a multiplication process; for instance, having a high grasp success rate
coupled with a very low object clearing rate results in overall bad performance. To truly achieve
exceptional performance, both grasp success rate and object clearing rate should concurrently
demonstrate high values.

By considering these metrics, we can assess the overall performance and generalization of the grasp
prediction network across different datasets and scenes.

4.2.6 Results

Evaluation Dataset Model Success↑ Quality↑ Objects↑
RealSense NeRF-Synth GraspNet 74.28% 0.7330 59.04%

Camera-Augmented GraspNet 80.00% 0.7667 60.24%
Novel-Scene GraspNet 80.66% 0.8211 73.49%
Real-Only GraspNet 85.19% 0.8188 74.69%

Zivid NeRF-Synth GraspNet 92.40% 0.5258 38.12%
Camera-Augmented GraspNet 73.15% 0.5908 71.87%

Novel-Scene GraspNet 86.96% 0.6028 88.83%
Real-Only GraspNet 91.15% 0.7506 92.5%

Table 4.2: Evaluation Results of Grasp Prediction Networks on the Evaluation Datasets

Table 4.2 summarizes the evaluation results for all four versions of the grasp prediction network.
The Real-Only GraspNet demonstrates superior performance, achieving the best results among all
the models. The second-best result is observed in the Novel-Scene GraspNet, which is based on
our method. Additionally, the NeRF-Synth GraspNet performs well in seen environments, such as
the RealSense dataset. However, its performance in unseen environments, like the Zivid dataset,
exhibits a high grasp success rate but a low object clearing rate, leading to a bad performance
overall. The augmentation of synthetic data with novel views and camera intrinsic rendering leads
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to significant improvements, as seen in the Camera-Augmented GraspNet results. Furthermore, our
approach of generating novel scenes and augmenting training data yields substantial performance
enhancements, as demonstrated by the results of the Novel-Scene GraspNet when compared to
the Camera-Augmented GraspNet outcomes. A notable performance gap is evident between the
Real-Only GraspNet and the NeRF-Synth GraspNet in unseen environments.

Overall, the evaluation results confirm the effectiveness of our method in training the grasp prediction
network using synthetic data and its ability to generalize to real-world scenarios when combined with
novel views and camera intrinsic rendering. The results also highlight the significant improvement
achieved by generating novel scenes and augmenting the data, demonstrating the potential of our
approach in improving grasp prediction performance.

4.2.7 Discussion

As anticipated, the Real-Only GraspNet yields the best outcomes. This aligns with the expectation
that training on genuine data surpasses the efficacy of synthetic data, which might not precisely
replicate all intricacies of an authentic scene, particularly surface reconstruction. It’s important
to note that while this dataset incorporates real data, the labeling process involves synthesized
background images to ensure alignment.

However, there is still a gap in performance between the NeRF-Synth GraspNet and the Real-Only
GraspNet on the Zivid dataset. This discrepancy can be attributed to several factors. One of
the primary factors is that our proposed pipeline relies on the Vanilla NeRF architecture, which
exhibits some imperfections in surface reconstruction. This factor affects the accuracy of the
NeRF depth-generated map, leading to challenges in the automatic labeling approach for grasp
prediction. This problem is relatively mitigated when using depth maps from the camera compared
to depth maps generated by NeRF. To address this challenge, one potential solution is to utilize
a variant NeRF architecture, such as the depth-supervised NeRF proposed in [DLZR22]. This
architecture incorporates camera depth information within the NeRF framework, enabling better
surface reconstruction and potentially improving the accuracy of depth maps used for automatic
labeling. Another approach could involve representing the surface as a signed distance function,
as demonstrated in works like [WLL+21] and [WTB+23]. These techniques aim to enhance the
reconstruction of surfaces, which could further enhance the performance of the grasp-quality
prediction network.

Novel-Scene GraspNet shows the second-best result, as it exposes the network to multi-object scenes
with a wider range of object configurations. However, this model can achieve better results as the
generated synthetic scene used in the Novel-Scene Dataset only involves one dynamic scene where
objects move along certain defined trajectories, but all objects are separated. This dataset does not
encompass more complex scenarios, such as stacked objects or overlapped objects. Introducing such
complex scenarios in the generated synthetic scenes and augmenting them with the grasp network
training data could further improve the performance of the grasp prediction quality network.

The results demonstrate the potential of training the grasp prediction network on NeRF-generated
synthetic data and the importance of augmenting novel scenes, views, and different camera intrinsics
rendering to enhance generalization to new environments. However, further improvements can be
achieved by employing more accurate NeRF architectures and generating synthetic scenes with a
broader range of complex scenarios.

52



4.3 Real-world Grasping Experiment

4.3 Real-world Grasping Experiment

Figure 4.10: Bin picking system consisting of a robot arm equipped with a single cup suction
gripper and bins containing random objects. The task is to pick objects from the right
bit and place them in the left bin.

Finally, we apply the two most promising candidates of our trained grasping network, Real-Only
GraspNet, and Novel-Scene GraspNet, in a real-world bin-picking application that simulates the
commissioning processes in a logistic center, as shown in Figure 4.10. The setup comprises a Zivid
one+ RGB-D camera [Ziv] positioned approximately 1.2 meters above the bins, along with a Franka
Emika robot arm [Fra] which is equipped with a single cup suction gripper at the end effector for
grasping objects. The objective is to pick objects from the right bin and drop them in the left bin.

To demonstrate the capabilities of the trained grasp networks, we utilize objects similar to those
found in the grasp quality evaluation datasets. The experiment follows predefined sequences in
which the system records a new image, and uses the trained grasping networks to determine the
grasp candidates. It then performs the candidate with the highest probability of a successful grasp.

A video of the experiments is provided in the supplementary material of this thesis.
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The results of the experiments show that all objects in the bin are successfully picked from the left
bin and dropped in the right bin using both GraspNet. Additionally, after successfully emptying the
right bin, both models give zero possible grasps. The results showcase the potential of using the
trained model for robust and efficient grasp prediction in bin-picking applications.
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In this thesis, we introduced a novel approach for obtaining distinct NeRFs of objects and backgrounds
using a dataset containing two scenes: one representing the background and the other representing
both an object of interest and the background. The core idea is to start by training a NeRF on the
background scene to implicitly represent the background in 3D space. We then align this implicit
scene with the scene containing the object. Next, we fix the weight of the NeRF, introduce another
NeRF, and combine both NeRFs and train on the scene containing the object then unfix the fixed
weights and jointly train them on the scene containing the object. This process allows us to obtain a
NeRF representing only the object and another one representing only the background but aligned
with the object scene. We applied our proposed approach to different datasets, in order to create a
library of trained NeRFs. These NeRFs can be combined to compose novel synthetic scenes.

Additionally, we extend the automatic labeling approach, described in Section 2.2.3, to work with
datasets collected with a moving camera by utilizing the RGB-D images rendered by the NeRF
representing the background for labeling the data.

Furthermore, we assessed our approach using two distinct methodologies. The first approach was
designed to assess the realism of the generated scenes using our proposed method. Under this
approach, we conducted two separate experiments on different datasets. The idea of this approach
is to apply our proposed method to two datasets, a background scene dataset, and a complete
scene, including an object of interest, dataset, to obtain separate NeRFs, one representing only the
background and another one representing only the object. Then, another dataset of the same scene,
but the object is positioned in a different position, is collected. Using our method, we generated
a scene that is similar to the last collected scene, and images of both, the real and the generated
scenes, are compared in order to evaluate the realism of our proposed method. By analyzing both
qualitative and quantitative results, we showed that the generated scenes are realistic. In the second
evaluation approach, we demonstrated that our proposed method has the potential to enhance the
effectiveness of detection models, such as the grasp prediction model. From the outcomes of this
approach, we showed that the grasp prediction model can be trained on NeRF-generated synthetic
data and give reasonable results on real data. Additionally, we proved that including the generated
synthetic scenes and novel views into the training process of the grasp prediction model significantly
improves the performance of the grasp-quality prediction network by generalizing to new and
diverse environments, making it more applicable in real-world scenarios.

Additionally, we demonstrated the practical applicability of the trained grasp-quality prediction
network in a research setup of a bin-picking application. The experiment is conducted using a
robotic cell equipped with RGB-D cameras and is a real-world test for the proposed approach.

The experiment’s outcomes are remarkably encouraging, as the robot effectively performs the
grasping task for all objects in the bin by utilizing the predicted feasible grasps provided by the
trained grasp-quality prediction network. This successful execution exemplifies the approach’s
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5 Conclusion and Outlook

potential in real-world scenarios, especially in cluttered environments where robotic systems must
precisely and dependably grasp objects. This application has significant implications for automation
and manufacturing processes.

In summary, this thesis proposes a novel NeRF-based synthetic scene generation approach and
proves the effectiveness of using NeRF-generated synthetic data for training grasp-quality prediction
networks. The work underscores the potential of using NeRF-generated data to improve the
performance and generalization capabilities of detection models.

5.1 Future Work and Outlook

Due to the time constraints of this thesis and our primary focus on proving the concept of our
proposed pipeline to obtain separate NeRFs for objects and demonstrate the feasibility of training
detection networks on NeRF-generated data, several modifications and experiments are left for
future endeavors. Examples of these modifications and experiments are

• Enhancing Depth Maps: An essential extension would involve integrating a NeRF architecture,
that offers better surface reconstruction capabilities, into our pipeline. This improves the
quality of depth maps used for generating grasp-quality labels, and would further improve the
performance of the grasp prediction network.

• Realism Boost with Inverse Rendering Techniques: A potential extension is incorporating
inverse rendering techniques, similar to [WSG+23]. This could introduce varying shadows
and lighting effects to the synthetic scenes, improving the realism of the generated scenes,
and further improving the grasp-quality prediction network’s performance.

• Exploring Synthetically Complex Scenes: Experiments that could be explored involve
generating more complex scenes, which, for example, contain overlapping or stacked objects.
Adding images and labels from such scenes to the training dataset of the grasp network could
improve its performance in cluttered and stacked scenarios with many objects.

• Including Object Collisions: Drop objects into the scene by considering gravity instead of
placing them is another interesting work. This would require including collision checking for
the objects and could make the scenes more realistic.

• Creating a Combined Representation of a Number of Objects of Interest: Our approach isn’t
restricted to extracting a single object; it’s adaptable to scenes with multiple objects. In
such cases, the trained object-NeRF would encompass all the objects present, excluding the
background. To separate individual objects from the NeRF and determine which specific
objects to display, a simple clustering approach like DBSCAN could be employed.

• Extending to Other Detection Models: It’s worth assessing the performance improvement
when our proposed method is used to generate novel scenes and NeRF-generated data for
other detection models, such as segmentation models. This exploration could provide insights
into the versatility and applicability of our approach across various detection tasks.

In conclusion, while we provide a strong foundation and promising results for NeRF-based synthetic
scene generation and grasp-quality prediction, there are numerous avenues for further research and
development that could advance the capabilities and applications of the proposed approach.
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