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Driven by the great potential of solar energy conversion this study comprises the
evaluation and comparison of two different design approaches for the improvement
of copper based photosensitizers. In particular, the distinction between the effects of a
covalently linked and a directly fused naphthalimide unit was assessed. For this purpose,
the two heteroleptic Cu(I) complexes CuNIphen (NIphen = 5-(1,8-naphthalimide)-1,10-
phenanthroline) and Cubiipo (biipo = 16H-benzo-[4′,5′]-isoquinolino-[2′,1′,:1,2]-
imidazo-[4,5-f]-[1,10]-phenanthroline-16-one) were prepared and compared with the
novel unsubstituted reference compound Cuphen (phen = 1,10-phenanthroline).
Beside a comprehensive structural characterization, including two-dimensional
nuclear magnetic resonance spectroscopy and X-ray analysis, a combination of
electrochemistry, steady-state and time-resolved spectroscopy was used to
determine the electrochemical and photophysical properties in detail. The nature of
the excited states was further examined by (time-dependent) density functional theory
(TD-DFT) calculations. It was found that CuNIphen exhibits a greatly enhanced
absorption in the visible and a strong dependency of the excited state lifetimes on
the chosen solvent. For example, the lifetime of CuNIphen extends from 0.37 µs in
CH2Cl2 to 19.24 µs in MeCN, while it decreases from 128.39 to 2.6 µs in Cubiipo.
Furthermore, CuNIphen has an exceptional photostability, allowing for an efficient and
repetitive production of singlet oxygen with quantum yields of about 32%.

Keywords: copper photosensitizer, X-ray structures, time-resolved spectroscopy, excited-state properties, DFT
calculations, singlet oxygen

INTRODUCTION

The motivation to resolve the conflict between the world’s increasing energy demand and the
depletion of fossil fuels drives the search for more environmentally friendly and renewable energy
sources (Detz et al., 2018; Gür, 2018; Stephen Nalley, 2021). One of the most attractive alternatives is
the enhanced use of solar energy, which can be realized by its conversion and storage in electric
energy and different chemical forms (Armaroli and Balzani, 2016; Hammarström, 2016; Lewis,
2016).
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In this context, photosensitizers play an essential role, as they
are able to harvest the sunlight to subsequently drive various
photocatalytic reactions (Schultz and Yoon, 2014; Lewis, 2016;
Capaldo and Ravelli, 2020). One the one hand, the high
photostability and non-toxicity of semiconductors and, on the
other hand, the wide absorption range and low costs of organic
dyes attracted great research interests for decades (Lang et al.,
2014; Nalzala Thomas et al., 2021). However, the rapid
recombination of photogenerated electron-hole pairs and the
resulting low photoefficiency of semiconductors as well as the
low photostability of organic dyes limit their applicability (Cao
et al., 2015; Penu et al., 2015; Chen et al., 2018; Nalzala Thomas
et al., 2021; Dong et al., 2022). Therefore, due to the tunable redox
and excited state properties of transition-metal complexes, there
is an intensive search for efficient and robust transition-metal
based photosensitizers (Eckenhoff and Eisenberg, 2012;
Frischmann et al., 2013; Berardi et al., 2014; Yuan et al.,
2017). Owing to their long-lived excited states, high
absorption coefficients in the visible region and intense
luminescence, mainly systems containing noble and expensive
4d/5d metals like Pt (Schultz and Yoon, 2014; Teegardin et al.,
2016), Ru (Prier et al., 2013; Hagfeldt et al., 2010), Ir (Chi and
Chou, 2010; Yuan et al., 2017) or Re (Yarnell et al., 2011; Wells
et al., 2021) have been extensively studied.

In recent years, more cost-efficient and noble-metal-free 3d
systems, based on for example Cr (Büldt and Wenger, 2017;
Treiling et al., 2019; Reichenauer et al., 2021), Fe (Wenger,
2019; Obermeier et al., 2021; Leis et al., 2022) or Cu (Gernert
et al., 2020; Schulz et al., 2020; Forero Cortés et al., 2021; Wegeberg
and Wenger, 2021), have attracted increasing attention as suitable
alternatives to rare metal complexes (Zhang et al., 2018a; Forero

Cortés et al., 2021). In particular, heteroleptic copper (I) complexes
with the general formula [(P∧P)Cu(N∧N)]+ bearing a diphosphine
and a diimine ligand have been explored well due to their
advantageous properties, such as very long-lived excited states
(Armaroli, 2001; Kuang et al., 2002; Hagfeldt et al., 2010;
Lazorski and Castellano, 2014; Paria and Reiser, 2014;
Tsubomura et al., 2015; Heberle et al., 2017; Leoni et al., 2018;
Zhang et al., 2018b). As a result, these complexes succeeded in a
wide range of applications, including the photocatalytic production
of hydrogen (Luo et al., 2013; Kim et al., 2017; McCullough et al.,
2018), the activation of CO2 (Takeda et al., 2016; Call et al., 2019;
Steinlechner et al., 2019; Giereth et al., 2021) or as dyes in organic
light-emitting diodes (OLEDs) (Volz et al., 2013; Paria and Reiser,
2018; Au, 2021) and dye-sensitized solar cells (DSSCs) (Dragonetti
et al., 2018; Dragonetti et al., 2019; Colombo et al., 2021).

As a consequence of their limited absorptivity in the visible
region, numerous efforts have been made to modify and to adjust
the diimine ligand. For example, several phenanthroline
derivatives bearing phenyl and alkynyl substituents (Mejía
et al., 2013; Chen et al., 2017; Kim et al., 2017; Zhang et al.,
2018a; Doettinger et al., 2021; Forero Cortés et al., 2021) or
(diaza)anthracene (Heberle et al., 2017; Soulis et al., 2018; Giereth
et al., 2019) moieties were explored, but with limited success.
Therefore, in some other studies naphthalene imides were applied
as a promising alternative (Tyson et al., 2001; Yarnell et al., 2011;
Castellano, 2015; Argüello Cordero et al., 2022). Further, the
beneficial features of naphthalimide and diimide derivatives, such
as great thermal and oxidative stability, high electron affinity and
electron storage capability, are reasons for their widespread use as
ligands or building blocks in bichromophoric systems
(Castellano, 2015; Georgiev et al., 2016) and in different
photocatalytic applications (Suraru and Würthner, 2014;
Würthner et al., 2016; Reiß and Wagenknecht, 2019).

Attaching a naphthalimide moiety as an electron acceptor via
covalent linkage (i.e., by means of a single bond) to the backbone
of an electron donor ligand like phenanthroline can impressively
increase the extinction coefficients and excited state lifetimes of
the corresponding complexes.(Tyson et al., 2001; Yarnell et al.,
2011; Yarnell et al., 2019). As an alternative, recent studies
revealed that a direct fusion (e.g., via condensation reactions)
of the naphthalene imide moiety to the phenanthroline backbone
leads to a fully conjugated system. This resulted in more efficient
light absorption far into the visible region and extended lifetimes
of up to hundreds of microseconds in the solid state (Yang et al.,
2020; Wells et al., 2021; Argüello Cordero et al., 2022).

It is therefore of great interest to test and to compare these two
approaches (i.e. covalent linkage vs. directly fusing) using the same
type of metal complexes (Scheme 1) and to study the effects on the
redox and photophysical behavior as well as on the photoactivity.
To this end, we prepared two novel heteroleptic Cu(I) complexes,
namely CuNIphen and Cuphen, which are based on the NIphen
ligand bearing a covalently linked naphthalimide unit (NIphen =
5-(1,8-naphthalimide)-1,10-phenanthroline) and the mere phen
ligand (= 1,10-phenanthroline), respectively (Scheme 1). By
comparing these two complexes with the already known
Cubiipo, (biipo = 16H-benzo-[4′,5′]-isoquinolino-[2′,1′,:1,2]-
imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one) we seek to
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explore how these three modifications affect the orbital energies of
the diimine ligand, and thus, the 3LC and 3MLCT states, as well as
the resulting change in redox behavior and charge transfer
efficiency. To this end, two novel solid state structures
(CuNIphen and Cuphen) are presented and various steady
state and time-resolved spectroscopic techniques,
electrochemical measurements as well as time-dependent
density functional theory (TD-DFT) are applied. Moreover, the
new complex was successfully tested over several cycles in the
light-driven generation of singlet oxygen (1O2). The efficiency of
the 1O2 generation was examined also considering its continuity
and photostability.

EXPERIMENTAL DETAILS

The substituted phenanthroline ligand 5-(1,8-naphthalimide)-
1,10-phenanthroline (NIphen) was synthesized following a
literature known procedure.Yarnell et al. (2019) 1,10-
Phenanthroline (phen) was purchased commercially. The
biipo ligand and the corresponding [(xant)Cu(biipo)]PF6
complex (Cubiipo), where xant corresponds to the
xantphos ligand, were required for comparison and taken
from previous studies (Yang et al., 2020; Argüello Cordero
et al., 2022).

The new heteroleptic copper (I) complexes CuNIphen and
Cuphen were prepared via an one-pot, two-step approach, which
is already known in the literature (Heberle et al., 2017; Rentschler
et al., 2020). For that purpose, the xantphos ligand was first
coordinated to the [Cu(MeCN)4]

+ (MeCN = acetonitrile)
precursor to form the [(xant)Cu(MeCN)2]

+ intermediate in
dichloromethane (CH2Cl2) solution at 40°C under inert
conditions (Luo et al., 2013; Mejía et al., 2013). In a second

step the respective diimine ligand (NIphen or phen) was
coordinated by slow addition of 1 equivalent of the diimine in
CH2Cl2 solution at 0°C under exclusion of oxygen. In order to
increase the yield and purity while facilitating the synthetic efforts
at the same time, the literature known procedure was slightly
modified for Cuphen as follows: Instead of adding a CH2Cl2
solution of phen dropwise by hand via syringe, an automatic
syringe pump was used to precisely control the volume flow rate
(i.e., 13 ml/h, for further information see Supplementary
Material S2). This guarantees the exclusive formation of the
heteroleptic target complex in the absence of the respective
thermodynamically favored homoleptic bis-diimine complex
(e.g., [Cu(phen)2]

+) (Kaeser et al., 2013; Fischer et al., 2014;
Lennox et al., 2016) and eases the synthesis. After precipitation
from the CH2Cl2 solution by carefully adding n-hexane, the final
yields of the pure bright yellow target compounds were 38% for
CuNIphen (after two additional recrystallization steps) and 80%
for Cuphen.

RESULTS AND DISCUSSION

Structural Characterization
Both complexes were fully characterized by nuclear magnetic
resonance (NMR) spectroscopy (1H, 13C, 31P), high resolution
mass spectrometry (HRMS) and elemental analysis (EA).
CuNIphen was further investigated by 2D-NMR spectroscopy,
namely H-H nuclear overhauser effect spectroscopy (H-H-
NOESY) and heteronuclear multiple bond correlation
(HMBC), which allowed accurate assignment of all proton
signals (Supplementary Material S2 and S3). In addition, the
solid-state structures ofCuNIphen andCuphenwere determined
by single crystal X-ray crystallography and are compared with

SCHEME1 |Overview of the chemical structures of the three Cu(I) photosensitizers and the two different design strategies (i.e. covalent linkage vs. directly fusing of
a naphthalimide unit) compared in this study. CuNIphen and Cuphen are presented for the first time, whereas Cubiipo was taken from previous studies. (Yang et al.,
2020; Argüello Cordero et al., 2022)

Frontiers in Chemistry | www.frontiersin.org June 2022 | Volume 10 | Article 9368633

Yang et al. Cu(I) Photosensitizers With Naphthalimide Units

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


molecular structures that resulted from density functional theory
(DFT) calculations.

Nuclear Magnetic Resonance
The asymmetric substitution at the 5-position of the
phenanthroline ligand causes two separated signals from the
two methyl groups in the xantphos backbone at 1.78 ppm (s,
3H, CH3) and 1.74 ppm (s, 3H, CH3) in the 1H NMR spectrum
of CuNIphen (Supplementary Figure S1). Similar observations
were made for Cubiipo (Argüello Cordero et al., 2022) and other
asymmetrically substituted [(xant)Cu(diimine)]+ complexes
(Schmid et al., 2018). This in strong contrast to the commonly
observed single signal at around 1.7–1.8 ppm for the two methyl
groups (s, 6H, CH3) in related symmetrically substituted Cu(I)
complexes (Luo et al., 2013; Mejía et al., 2013; Kim et al., 2017;
Doettinger et al., 2021) and is also in contrast to the unsubstituted
Cuphen complex (1.76 ppm, s, 6H, CH3) (Supplementary Figure
S7). The same splitting phenomenon can also be seen in the 13C
NMR spectra of CuNIphen and Cubiipo. There, the chemical
shifts of both methyl groups are clearly separated (28.60 and
28.20 ppm for CuNIphen, 27.3 and 27.1 ppm for Cubiipo
(Argüello Cordero et al., 2022)), whereas in Cuphen only one
signal appears (28.55 ppm) (Supplementary Figures S4, S5, S8).
By measuring their mutual interactions through space viaNOESY,
it has now been confirmed that these signals each correspond to
one methyl group within the same xantphos ligand framework and
are not caused by two different molecular species (Supplementary
Figure S2). This is further supported by the HMBC spectrum,
where both sets of protons are coupling to the carbon connecting
the two methyl groups (Supplementary Figure S3).

The previously discussed findings are, however, no evidence
that the two regioisomers do not occur in solution. The
asymmetric substitution causes the signals of the o-protons of
the phenyl groups on the phosphorus in Cuphen at 6.92 ppm to
split into two different sets at 7.01 ppm (4H) and 6.90 ppm (4H)
in CuNIphen— two closer (green) and two distal (blue) from the
diimine ligand (cf. Figure 1). Both sets exhibit through-space
interactions with the protons at the 2- and the 9-position of the
phenanthroline (adjacent to N1 and N2 in Figure 1), which is

only reasonable if two regioisomers are present (Supplementary
Figure S26 for graphical explanation).

This strongly suggests that indeed both possible
regioisomers are formed during complexation and occur in
solution. Furthermore, it should be noted that during synthesis
(where the diimine ligand is coordinated to the preformed
intermediate complex) a differentiation between both possible
orientations is unlikely. This conclusion is also supported by
DFT calculations, as they predict only a small thermodynamic
energy difference of 1.39 kJ/mol between both isomers
(Supplementary Figure S26).

X-ray Characterization
To further analyze the structure of the new compounds, single
crystals of CuNIphen and Cuphen suitable for X-ray
crystallography were obtained by slow diffusion of n-heptane
into a concentrated CH2Cl2 solution of the respective complex
(Supplementary Material S3.3 for further details). CuNIphen
(Figure 1) exhibits an intramolecular π-stacking interaction
between one phenyl group (green) of the xantphos ligand and
the phenanthroline ligand (grey). More precisely, the phenyl ring
directly overlays the pyridine moiety opposite to the substituted
5-position due to steric effects (cf. Figure 1, right). Interestingly, a
comparable π-stacking interaction is not present in Cuphen,
although the unsubstituted 1,10-phenanthroline does not carry
a sterically demanding substituent (Supplementary Figure S12).
This is most probably due to competing intermolecular
interactions in the solid state.

It should be mentioned, that for CuNIphen only one
regioisomer was detected in the X-ray crystallographic
measurements. In contrast, two regioisomers were found for
Cubiipo, which also has an asymmetric structure (Argüello
Cordero et al., 2022). However, the structural difference
between the two possible regioisomers of CuNIphen is larger
than for Cubiipo. This means that Cubiipo possesses a high
overall planarity due to the biipo ligand, (Argüello Cordero et al.,
2022) whereas inCuNIphen the torsion angle of the substituent is
almost 90° as a result of the covalently linked naphthalimide
(Table 1), inducing a greater steric bulk. It is therefore likely that

FIGURE 1 | Solid-state structure (two different ORTEP representations) ofCuNIphenwith thermal ellipsoids at a probability level of 50%. Hydrogen atoms, counter
anions, and solvent molecules are omitted for clarity. For comparison with Cuphen, Supplementary Figure S11.
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one isomer is preferred during the crystallization process. DFT
calculations (B3LYP-D3(BJ)/def2-TZVP) were used to predict
the structures of CuNIphen and Cuphen (Supplementary
Figures S26, S27) simulated in acetonitrile solution. For
CuNIphen both possible regioisomers were evaluated and only
a small thermodynamic energy difference of 1.39 kJ/mol was
predicted, with the structure also observed in the solid state
(Figure 1) being energetically favored. The structural
parameters obtained from DFT were compared to those from
X-ray studies and are in good agreement (Table 1).

Concerning the geometry proximal to the copper center, it can
be deduced from Table 1 and Figure 1 that Cuphen and
CuNIphen both exhibit a distorted tetrahedral geometry

(described as interplanar angles) which is common for this
class of copper complexes (Leoni et al., 2018; Keller et al.,
2020; Doettinger et al., 2021) including Cubiipo (Argüello
Cordero et al., 2022). The bond angles (e.g., P1-Cu-P2 and
N1-Cu-N2) and bond lengths (Cu-P1 and Cu-N1) are very
similar to each other and are in the same dimension as
described earlier. Further, also the bond length between the
carbon and the nitrogen atoms linking the naphthalimide
substituent (C*-N3 = 144.8 p.m., Table 1) is in good
agreement with a comparable structure in the literature (144.4
p.m. (Zhang and Ma, 2019). This renders both complexes
CuNIphen and Cuphen as structurally closely related
compared to similar Cu(I) compounds.

TABLE 1 | Selected bond lengths, bond angles and interplanar angles (N-Cu-N vs. P-Cu-P) ofCuphen (top) andCuNIphen (bottom) including the substituent torsion angle
(phen vs. naphthalimide). The interplanar angle corresponds to the angle between the two N-Cu-N and P-Cu-P planes, respectively. The bond length C*-N3 describes
C-N bond from the phenanthroline to the naphthalimide. The table also compares the experimentally determined parameters (exp.) with those calculated by DFT (denoted
italicized as calc.). Further information can be found in the Supplementary Material S3.3).

Cuphen

Selected bond lengths Selected bond angles

Atom 1 Atom 2 Length (pm): exp. vs. calc. Atom 1 Atom 2 Atom 3 Angle (°): exp. vs. calc.

Cu P1 228.49 (5) 229.5 P1 Cu P2 114.72 (2) 118.0
Cu P2 224.36 (6) 223.5 N1 Cu N2 80.26 (5) 80.2

Cu N1 205.1 (1) 210.7 Interplanar angle (°): exp. vs. calc.
Cu N2 213.0 (1) 210.8 77.36 87.63

CuNIphen

Selected bond lengths Selected bond angles

Atom 1 Atom 2 Length (pm): exp. vs. calc. Atom 1 Atom 2 Atom 3 Angle (°): exp. vs. calc.

Cu P1 224.7 (2) 223.8 P1 Cu P2 117.90 (6) 118.1
Cu P2 230.2 (2) 229.3 N1 Cu N2 80.4 (2) 79.9

Cu N1 209.8 (5) 212.1 Interplanar angle (°): exp. vs. calc.

Cu N2 206.4 (5) 209.9 82.15 86.70
C* N3 144.8 (7) 143.9 Substituent torsion angle (°): exp. vs. calc.

88.97 88.24

FIGURE 2 | Cyclic voltammograms (top) and differential pulse voltammograms (bottom) of CuNIphen (dark red, solid, 1 mM), NIphen (red, dashed, 1 mM) and
Cuphen (grey, dotted, 1 mM) in acetonitrile solution referenced vs. the ferrocene/ferricenium (Fc/Fc+) couple. Conditions: scan rate of 100 mVs−1, [Bu4N][PF6] (0.1 M) as
supporting electrolyte.
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Electrochemical Properties
The electrochemical properties of Cuphen, CuNIphen and the
corresponding NIphen ligand were determined by cyclic and
differential pulse voltammetry (Figure 2) in acetonitrile solution
containing 0.1 M [Bu4N][PF6] as electrolyte. The electrochemical
data of Cubiipo and biipo are also given for comparison and are
summarized in Table 2.

CuNIphen features two reversible reduction waves at −1.62 V
and −2.01 V and an irreversible oxidation wave at 0.82 V (dark red,
solid). In contrast, Cuphen shows only one reversible reduction at
−2.00 V and one irreversible oxidationwave at 0.72 V (grey, dotted).
Both oxidation waves are assigned to the Cu(I)/Cu(II) oxidation
and the literature-known cleavage of the Cu-P bond (Zhang et al.,
2019; Forero Cortés et al., 2021). The NIphen ligand possesses one
reversible reduction event at -1.62 V (red, dashed). Hence, the
reversible reduction events of CuNIphen can be assigned to the
stepwise reduction of 1) the naphthalimide substituent at -1.62 V
and 2) the phenanthroline moiety at −2.01 V. This means that,
analogous to Cubiipo (Yang et al., 2020; Argüello Cordero et al.,
2022), CuNIphen can also be reduced twice and that the covalent
linkage of the naphthalimide moiety to the phenanthroline core
enables an additional second reduction. The fact that the first
reduction event occurs at the distal substituent could also be
confirmed by DFT calculations of the spin density of the singly
reduced species of CuNIphen ([(xant)Cu(NIphen)]±0). Identical
calculations for Cuphen predicted an increase in electron density at
the phenanthroline, which is also in accordance with the
experiment (Supplementary Figure S34 for spin density plots
and further details).

It should be noted that the differences in the first reduction
between the NIphen ligand and the respective Cu(I) complex are
very small. In strong contrast, much larger potential differences
(Δ = 100 mV) were observed between biipo and Cubiipo
(Table 2). This indicates a more pronounced electronic

TABLE 2 | | Summary of the photophysical and electrochemical properties of NIphen, CuNIphen, Cuphen and of selected reference compounds in acetonitrile and
dichloromethane solution at room temperature. The absorption measurements were carried out in MeCN solution. The electrochemical data were obtained from
deaerated acetonitrile solution at room temperature and are referenced vs. the ferrocene/ferricenium (Fc/Fc+) couple.

Compound λabs
[nm]

(ε [103 M−1 cm−1])

λem [nm] τexcited state [µs] τem [ns] ϕ1O2
E1

2 ox
[V] E1

2 red
[V]

MeCN CH2Cl2 MeCN CH2Cl2 MeCN CH2Cl2

NIphen 334 (9.9) 375b,c 377b,c 8.40a,c 11.04a,c n.d. n.d. - - 1.61l

CuNIphen 385 (4.8) - 654b,d 0.42b,c 0.37a,c,f <10g 0.32b,d,j +0.82k -1.62l, -2.01l

669a,e 19.24a,c,f

Cuphen 380 (3.0) - 654b,d - 0.50a,c,f <10 g 0.38b,d,j +0.72k -2.00l

661a,d,e

biipo 409 (6.2)h 557i n.d. n.d. n.d. 9.4i n.d. - - 1.59h,l

Cubiipo 406 (16.3)i 556i,m 494b,d,m 0.27b,i

2.6a,i
128.39a,c,f 9.7i 0.98b,d,j +0.72i,k -1.49i,l

-2.17i,l

aUnder argon atmosphere.
bUnder aerated conditions.
cExcitation wavelength of 355 nm.
dExcited at 387 nm.
eExcitation wavelength of 400 nm.
fAverage time constant determined from single wavelength kinetic analysis.
gThe lifetime was below the detection limit.
hValue taken from reference (Yang et al., 2020).
iValue taken from reference (Argüello Cordero et al., 2022).
jUsing phenalenone ( ϕ1O2 � 0.98) in CH2Cl2 as reference (Epelde-Elezcano et al., 2016), (Gallavardin et al., 2012).
kIrreversible.
lReversible.
mWeak emission originating from dissociated ligand. The absorption and electrochemical measurements were carried out in MeCN.
- = below detection limit/no signal.
n.d. = not determined.

FIGURE 3 | Experimental (top, solid lines) and calculated (bottom,
dashed lines, B3LYP-D3(BJ)/def2-tzvp) UV/vis absorption spectra ofNIphen
(light red), CuNIphen (dark red) and Cuphen (grey) in acetonitrile. The inset
shows an enlarged region of the absorption from 365 to 480 nm.
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communication between the phenanthroline moiety and the directly
fused naphthalimide unit within the biipo system. For the second
reduction a much stronger anodic shift was observed for Cubiipo
(−2.17 V) compared to CuNIphen (−2.01V). Hence, the twofold
reduction of theCuNIphen complex is much easier to perform than
of Cubiipo (Δ = 160mV). All in all, the covalent linkage of a
naphthalimide substituent leads to a weaker electronic interaction
between the phenanthroline and the naphthalimide moiety, but
facilitates access to the doubly reduced species.

Absorption and Steady State Emission
Spectroscopy
The UV/vis absorption spectra ofCuNIphen,NIphen, andCuphen
show strong features between 250 and 300 nm in acetonitrile
solution (Figure 3 and Table 2) originating from ligand centered
(LC) π-π* transitions within the phenanthroline ligand, which is also
in agreement with the literature (Accorsi et al., 2009; Zhang et al.,
2016). The low-energy absorption bands of NIphen between 311
and 365 nm are predominantly due to LC transitions inside the
naphthalimide unit (Xiao et al., 2010; Szakács et al., 2019; Yarnell
et al., 2019). Cuphen has a broad absorption band centered at
380 nm, which is assigned via TD-DFT calculations to dCu→πpphen
metal-to-ligand charge transfer (MLCT) transitions
(Supplementary Figure S29 and Supplementary Table S5).
Interestingly, the spectrum of CuNIphen agrees well with the
sum of the spectra of NIphen and Cuphen. This confirms the
conclusion from the electrochemical measurements, that the
electronic communication between both building blocks (i.e.,
naphthalimide and phenanthroline) is comparatively small.
Nevertheless, CuNIphen possesses remarkably increased
attenuation coefficients compared to the pure NIphen ligand and
the reference compound Cuphen (cf. grey and red spectrum in
Figure 3) in both the UV and especially the important visible range.

In addition, the UV/vis absorption spectra of NIphen and
CuNIphen exhibit quite different features when compared to
those of biipo and Cubiipo. In the biipo ligand, ligand centered
(LC) π-π* transitions from the phenanthroline/imidazole part to
the naphthaloylenebenzene moiety were observed in the
360–460 nm range (Yang et al., 2020). The MLCT transitions

of Cubiipo overlap with these, resulting in a broad absorption
band and high attenuation coefficients (Argüello Cordero et al.,
2022). In contrast, the decreased electronic interaction in the
covalently linked CuNIphen complex leads to two separated
absorption areas at about 310–370 nm (the LC region) and at
370–470 nm (the MLCT region), and thus, lower attenuation
coefficients. As a direct consequence of the missing overlap,
CuNIphen generally absorbs weaker in the visible range than
Cubiipo (Table 2).

In a next step, the steady state emission was studied, where
NIphen exhibits a similar behavior in MeCN and CH2Cl2
solution with emission quantum yields of 0.057 and 0.034,
respectively (Supplementary Figure S17). The moderate
emission intensity of NIphen in both solvents indicates
efficient intersystem crossing (ISC) from a bright 1LC to a
dark 3LC state (Yarnell et al., 2019). In contrast to NIphen,
the emission performance of CuNIphen is strongly solvent
dependent. No emission of CuNIphen was observed in MeCN
under inert conditions, whereas significant emission was found in
deaerated CH2Cl2 with a maximum at 669 nm. Similarly,Cuphen
displays no emission in MeCN, but a bright emission in CH2Cl2.
In contrast,Cubiipo is not emissive in both solvents as previously
studied. However, some emission is detected in solution due to
uncoordinated ligand (Argüello Cordero et al., 2022).

Excited State Properties
The excited states characteristics of NIphen, CuNIphen,
Cuphen, and Cubiipo were further studied by time-resolved
emission and transient absorption (TA) spectroscopy with an
excitation at 355 nm in MeCN and CH2Cl2 (Supplementary
Material S6).

The emission lifetimes of NIphen in MeCN and CH2Cl2 were
below the detection limit of our instruments (<10 ns), supporting
that the emission of NIphen occurs from a 1LC state. However,
TA spectroscopy revealed much longer lifetimes of the dark
excited states of NIphen in MeCN and CH2Cl2 (8.40 and
11.04 µs, respectively). The fact that both lifetimes are fairly
similar suggests the presence of a 3LC state of the ligand. This
is further supported by theoretical calculations via TD-DFT
which predicted that the lowest triplet state of NIphen is

FIGURE 4 | Left: Transient absorption spectra ofCuNIphen at 480 nm inMeCN (dark red) and in CH2Cl2 (purple) solution under inert conditions excited at 355 nm.
Right: Calculated spin density of the optimized lowest triplet state of CuNIphen simulated in CH2Cl2 (B3LYP-D3(BJ)/def2-tzvp, CPCM, isosurface value: 0.01). Please
note that the identical calculation simulating MeCN (CPCM) yielded similar results (Supplementary Figure S35).
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entirely located on the naphthalimide moiety and should
therefore have no charge transfer character (Supplementary
Figure S35). (Yarnell et al., 2019) Considering also the
moderate quantum yield of NIphen (see above), a population
of the lower lying 3LC state is evident.

Next, transient signals could be obtained for the CuNIphen
complex which is not emissive in deaerated MeCN. Kinetic analysis
of these signals at 462, 468, 474 and 480 nm (Supplementary Figure
S24) yielded an averaged exponential time constant of about
19.24 µs, consistent with the results obtained by Yarnell and co-
workers (Yarnell et al., 2019). Therefore, in agreement with the
results obtained for the NIphen ligand, the final occupied excited
state in CuNIphen can be assigned to a dark 3LC state. Remarkably,
the introduction of the Cu(I) center more than doubles the lifetime
of the 3LC state in CuNIphen (19.24 µs) compared to NIphen
(8.40 µs). Interestingly, the excited state lifetime decreases
significantly from 19.24 µs in MeCN to 0.37 µs in CH2Cl2
(Figure 4), while the latter time is in the same range as for the
structurally related Cuphen with 0.50 µs (Table 2). This process
occurring in CH2Cl2 can therefore most probably be assigned to the
depopulation of a 3MLCT state.

Similar to CuNIphen in MeCN, the long-lived non-emissive
component of Cubiipo is attributed to the 3LC state of the biipo
ligand with an excited state lifetime of 2.6 µs (Argüello Cordero
et al., 2022). However, in CH2Cl2 solution Cubiipo still shows
no emission and conversely reveals an increase of the time
constant to 128.39 µs, which is in strong contrast to the here
obtained results for CuNIphen.

Singlet Oxygen Measurements
As known from our previous work, Cubiipo causes a weak 1O2

emission in aerated MeCN solution (Argüello Cordero et al., 2022).
As evidenced by the TA measurements above, the lifetime of the
long-lived component ofCubiipo increases dramatically from 2.6 µs

in MeCN to 128.39 µs in CH2Cl2. Therefore, it is of great interest to
evaluate the singlet oxygen (1O2) productivity of Cubiipo and
CuNIphen in MeCN and also in CH2Cl2. To test the 1O2

productivity, the emission quantum yield of 1O2 can be observed
at about 1276 nm (Schmid et al., 2022; Chettri et al., 2021). For this
purpose, phenalenone (PN) is a universal reference compound
which can be used in various solvents (Flors and Nonell, 2006;
Silva et al., 2013; Trivella et al., 2014; Godard et al., 2020; Kaye et al.,
2021; Payne et al., 2022). As expected, the much longer triplet state
lifetime ofCubiipo in CH2Cl2 greatly enhances the generation of

1O2

with singlet oxygen quantum yields of 0.98 with respect to PN
(QYPN(CH2Cl2) = 0.98).(Schmidt et al., 1994; Gallavardin et al.,
2012; Epelde-Elezcano et al., 2016; Godard et al., 2020). For both
CuNIphen and Cuphen, 1O2 emission quantum yields of 0.32 and
0.38 were obtained in aerated CH2Cl2, which are intriguingly similar
(Supplementary Figure S22). These 1O2 quantum yields of
CuNIphen and Cuphen are in very good agreement with the
corresponding 3MLCT lifetimes of 0.37 and 0.50 µs in CH2Cl2
(Table 2). This strongly suggests that in the case of CuNIphen
and Cuphen the 1O2 generation originates from the respective
3MLCT excited state. In addition, CuNIphen was also tested in
MeCN, but no singlet oxygen emission was observed under these
conditions. One possible reason for this could be that the energy of
the excited state does not match with the energy required to convert
3O2 to

1O2 (DeRosa and Crutchley, 2002).
Apart from a high activity, a high photostability is another

crucial feature of a photosensitizer, not only for efficient 1O2

production, but also for continuous reuse without significant
loss of activity (DeRosa and Crutchley, 2002). In this regard,
CuNIphen exhibits an outstanding photostability over a
period of 8.5 h in inert MeCN and of at least 1 h in aerated
CH2Cl2 (Supplementary Figures S19, S20). These excellent
properties motivated us to investigate the feasibility of
continuous 1O2 production using CuNIphen in more detail.

FIGURE 5 | Left Top: Near-infrared emission spectra of CuNIphen in aerated deuterated dichloromethane solution (CD2Cl2) after excitation at 387 nm, showing
the characteristic 1O2 emission at 1276 nm. The covered cuvette was shaken vigorously three times between each measurement. Left Bottom: Relative integral
differences of the recorded 1O2 emission. Right Top: UV/vis absorption spectra of the same sample after every second emission measurement. Right Bottom: Relative
differences in the absorbance of CuNIphen monitored at 270 (red), 336 (blue) and 400 nm (green), respectively.
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It is well known, that the use of deuterated solvents leads to
much longer 1O2 lifetimes and more intense emissions
compared to non-deuterated solvents (Bregnhøj et al.,
2016), which we have also confirmed for our system
(Supplementary Figure S22). Therefore, aerated CD2Cl2
was used to study the continuous 1O2 generation of
CuNIphen. As indicated in Figure 5, CuNIphen produces
1O2 with almost constant activity over the course of 12
measurements. Moreover, only an insignificant decrease of
the MLCT band (Δ = 1.4%, Figure 5) is observed, possibly due
to photo bleaching by in-situ generated singlet oxygen or
literature-known photo-induced ligand exchange processes
(Kaeser et al., 2013; Fischer et al., 2014; Lennox et al.,
2016). As described above, the high photostability of
CuNIphen enables an efficient and continuous generation
of 1O2. These properties of CuNIphen might open the door
towards many different applications, such as in
photoredoxcatalysis and photodynamic therapy (PDT).

CONCLUSION

In this study, a systematic comparison between two different design
strategies, namely between covalently linking and direct fusing of a
naphthalimide unit, was performed. To this end, the heteroleptic
Cu(I) photosensitizer CuNIphen, bearing a covalently linked
naphthalimide substituent, and the unsubstituted reference
complex Cuphen were prepared and fully characterized for the
first time. The electrochemical, photophysical and catalytic
properties were then evaluated in contrast to Cubiipo, which
contains a directly fused naphthalimide unit. Analogous to
Cubiipo, CuNIphen can be reversibly reduced twice, which
means that the naphthalimide unit can accept a second electron.
Nevertheless, the electronic communication between the
phenanthroline moiety and the covalently attached naphtalimide
unit is less pronounced inCuNIphen compared to fused π-system in
Cubiipo. With respect to the mereNIphen ligand and the reference
complex Cuphen, CuNIphen exhibits a much stronger absorption
and increased attenuation coefficients over the whole spectrum.

The excited state features and associated kinetics were
systematically investigated by a combination of emission and
transient absorption spectroscopy in different solvents. In MeCN
solution, CuNIphen exhibits a long-lived excited 3LC state with
an excited state lifetime of 19.24 µs. In CH2Cl2, however, the
lifetime drastically shortens to 0.37 µs, with the corresponding
exited state most likely being 3MLCT in nature. In strong contrast
toCuNIphen, the corresponding excited state lifetime ofCubiipo
increases from 2.6 µs in MeCN to 128.39 µs in CH2Cl2, which
causes significant changes in the catalytic behavior.

All three Cu(I) complexes were successfully applied in the light-
driven formation of singlet oxygen (1O2) and the efficiency of 1O2

generation was directly evaluated by NIR emission spectroscopy. The
resulting 1O2 quantum yields are consistent with the different excited
state lifetimes from the TA measurements. More importantly, the
exceptionally high photostability of CuNIphen enables a continuous
1O2 production. Over the course of 12 measurements, only a

negligible decrease of the MLCT band (1.4%) of CuNIphen was
detected. This renders CuNIphen as a promising candidate for
further applications in the conversion of solar energy.
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