
Elten

Polukhov

Multiscale Modeling and

Stability Analysis of Soft Active

Materials – from Electro- and Magneto-

Active Elastomers to Polymeric Hydrogels

15
Publication series of the

Institute of Applied Mechanics (IAM)









Multiscale modeling and stability analysis of soft

active materials – from electro- and magneto-active

elastomers to polymeric hydrogels

Von der Fakultät Bau- und Umweltingenieurwissenschaften der Universität Stuttgart
zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Abhandlung

Vorgelegt von

Elten Polukhov

aus Marneuli, Georgien

Hauptberichter: Prof. Dr.-Ing. Marc-André Keip
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Abstract

This work is dedicated to modeling and stability analysis of stimuli-responsive, soft active
materials within a multiscale variational framework. In particular, composite electro-
and magneto-active polymers and polymeric hydrogels are under consideration. When
electro- and magneto-active polymers (EAP and MAP) are fabricated in the form of
composites, they comprise at least two phases: a polymeric matrix and embedded electric
or magnetic particles. As a result, the obtained composite is soft, highly stretchable,
and fracture resistant like polymer and undergoes stimuli-induced deformation due to the
interaction of particles. By designing the microstructure of EAP or MAP composites,
a compressive or a tensile deformation can be induced under electric or magnetic fields,
and also coupling response of the composite can be enhanced. Hence, these materials
have found applications as sensors, actuators, energy harvesters, absorbers, and soft,
programmable, smart devices in various areas of engineering.

Similarly, polymeric hydrogels are also stimuli-responsive materials. They undergo
large volumetric deformations due to the diffusion of a solvent into the polymer network
of hydrogels. In this case, the obtained material shows the characteristic behavior of
polymer and solvent. Therefore, these materials can also be considered in the form of
composites to enhance the response further. Since hydrogels are biocompatible materials,
they have found applications as contact lenses, wound dressings, drug encapsulators and
carriers in bio-medicine, among other similar applications of electro- and magneto-active
polymers.

All above mentioned favorable features of these materials, as well as their application
possibilities, make it necessary to develop mathematical models and numerical tools to
simulate the response of them in order to design pertinent microstructures for particu-
lar applications as well as understand the observed complex patterns such as wrinkling,
creasing, snapping, localization or pattern transformations, among others. These insta-
bilities are often considered as failure points of materials. However, many recent works
take advantage of instabilities for smart applications.

Investigation of these instabilities and prediction of their onset and mode are some of
the main goals of this work. In this sense, the thesis is organized into three main parts.

The first part is devoted to the state of the art in the development, fabrication, and
modeling of soft active materials as well as the continuum mechanical description of the
magneto-electro-elasticity.

The second part is dedicated to multiscale instabilities in electro- and magneto-active
polymer composites within a minimization-type variational homogenization setting. This
means that the highly heterogeneous problem is not resolved on one scale due to compu-
tational inefficiency but is replaced by an equivalent homogeneous problem. The effective
response of the macroscopic homogeneous problem is determined by solving a micro-

vii



viii Abstract

scopic representative volume element which includes all the geometrical and material
non-linearities. To bridge these two scales, the Hill-Mandel macro-homogeneity condition
is utilized. Within this framework, we investigate both macroscopic and microscopic in-
stabilities. The former are important not only from a physical point of view but also from
a computational point of view since the macroscopic stability (strong ellipticity) is neces-
sary for the existence of minimizers at the macroscopic scale. Similarly, the investigation
of the latter instabilities are also important to determine the pattern transformations at
the microscale due to external action. Thereby the critical domain of homogenization
is also determined for computation of accurate effective results. Both investigations are
carried out for various composite microstructures and it is found that they play a crucial
role in the response of the materials. Therefore, they must be considered for designing
EAP and MAP composites as well as for providing reliable computations.

The third part of the thesis is dedicated to polymeric hydrogels. Here, we develop
a minimization-based homogenization framework to determine the response of transient
periodic hydrogel systems. We demonstrate the prevailing size effect as a result of a
transient microscopic problem, which has been investigated for various microstructures.
Exploiting the elements of the proposed framework, we explore the material and struc-
tural instabilities in single and two-phase hydrogel systems. Here, we have observed
complex experimentally observed and novel 2D pattern transformations such as diamond-
plate patterns coupled with and without wrinkling of internal surfaces for perforated
microstructures and 3D pattern transformations in thin reinforced hydrogel composites.
The results indicate that the obtained patterns can be controlled by tuning the material
and geometrical parameters of the composite.



Zusammenfassung*

Diese Arbeit widmet sich der Modellierung und Stabilitätsanalyse von stimuli-responsiven,
weichen, aktiven Materialien innerhalb eines multiskaligen Variationsrahmens. Dabei wer-
den insbesondere Kompositmaterialien aus elektro- und magnetoaktiven Polymeren und
polymeren Hydrogelen betrachtet. Wenn elektro- und magnetoaktive Polymere (EAP und
MAP) in Form von Kompositmaterialien hergestellt werden, bestehen sie aus mindestens
zwei Phasen: einer polymeren Matrix und eingebetteten elektrischen oder magnetischen
Partikeln. Das Resultat ist ein weiches, hoch dehnbares und bruchfestes Kompositmaterial
entsprechend seiner polymeren Eigenschaften, das darüber hinaus durch die Wechselwir-
kung der Partikel eine stimulationsinduzierte Verformung erfährt. Durch die Gestaltung
der Mikrostruktur von EAP- oder MAP-Kompositmaterialien kann eine Druck- oder Zug-
verformung unter elektrischen oder magnetischen Feldern induziert und das Kopplungs-
verhalten des Kompositmaterials verbessert werden. Daher werden diese Materialien als
Sensoren, Aktuatoren, Energieabsorber, Dämpfungselemente, oder als weiche, program-
mierbare und intelligente Systeme in verschiedenen Bereichen der Technik eingesetzt.

In ähnlicher Weise sind auch polymere Hydrogele stimulierungsfähige Materialien. Sie
erfahren große volumetrische Verformungen aufgrund der Diffusion eines Lösungsmittels
in das Polymernetzwerk von Hydrogelen. In diesem Fall zeigt das Material ein charakteris-
tisches Verhalten von Polymer und Lösungsmittel. In diesem Sinne können Hydrogele auch
als Kompositmaterialien angesehen werden, deren Eigenschaften durch Anpassung ihrer
Zusammensetzung verbessert werden können. Ferner handelt es sich bei Hydrogelen um
biokompatible Materialien, werden sie unter anderem als Kontaktlinsen, Wundauflagen,
Medikamentenkapseln und -träger in der Biomedizin eingesetzt, aber auch für ähnliche
Anwendungen elektro- und magnetoaktiver Polymere.

Die oben genannten vorteilhaften Eigenschaften dieser Materialien sowie ihre Anwen-
dungsmöglichkeiten machen es notwendig, mathematische Modelle und numerische Werk-
zeuge zu entwickeln, um die Antwort dieser Materialien zu simulieren, um geeignete Mi-
krostrukturen für bestimmte Anwendungen zu entwerfen und die beobachteten komplexen
Muster wie Faltenbildung, Einreißen, Lokalisierung oder Mustertransformationen u.a. zu
verstehen. Diese Instabilitäten werden oft als Versagenspunkte von Werkstoffen angese-
hen. Viele neuere Arbeiten nutzen jedoch die Vorteile von Instabilitäten für intelligente
Anwendungen.

Die Untersuchung dieser Instabilitäten, die Vorhersage ihres Auftretens und ihrer
Funktionsweise sind einige der Hauptziele dieser Arbeit. In diesem Sinne ist diese Ar-
beit in drei Hauptteile gegliedert.

*The help of DeepL Translator for the initial translation of the abstract into German is greatly
acknowledged. The abstract was afterward read and corrected by my colleagues, for whom I am very
grateful.
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x Zusammenfassung

Der erste Teil ist dem Stand der Forschung bei der Entwicklung, Herstellung und
Modellierung von weichen aktiven Materialien sowie der kontinuumsmechanischen Be-
schreibung der Magneto-Elektro-Elastizität gewidmet.

Der zweite Teil widmet sich Multiskaleninstabilitäten in elektro- und magnetoaktiven
Kompositmaterialien im Rahmen einer variationellen Homogenisierung basierend auf Mi-
nimierungsprinzipien. Das bedeutet, dass das hochgradig heterogene Problem aufgrund
von Recheneffizienz nicht auf einer Skala gelöst wird, sondern durch ein äquivalentes ho-
mogenes Problem ersetzt wird. Die effektive Antwort des makroskopischen homogenen
Problems wird durch die Lösung eines mikroskopischen repräsentativen Volumenelements
bestimmt, das alle geometrischen und materiellen Nichtlinearitäten enthält. Um die bei-
den Skalen zu überbrücken, wird die Hill-Mandel-Bedingung der Makrohomogenität ver-
wendet. In diesem Rahmen untersuchen wir sowohl makroskopische als auch mikroskopi-
sche Instabilitäten. Erstere sind nicht nur aus physikalischer Sicht wichtig, sondern auch
aus mathematischer Sicht, da die makroskopische Stabilität (starke Elliptizität) für die
Existenz von Minimierern auf der makroskopischen Skala notwendig ist. Ebenso ist die
Untersuchung der letztgenannten Instabilitäten wichtig, um Transformationen von Mi-
krostrukturen aufgrund externer Einwirkungen zu bestimmen. Dadurch wird auch der
kritische Bereich der Homogenisierung für die Berechnung der genauen effektiven Ergeb-
nisse bestimmt. Beide Untersuchungen werden für verschiedenartige Mikrostrukturen von
Kompositmaterialien durchgeführt und es wird festgestellt, dass sie eine entscheidende
Rolle für die Antwort der Materialien spielen. Daher müssen sie bei der Entwicklung von
EAP- und MAP-Kompositmaterialien sowie bei der Erstellung zuverlässiger Berechnun-
gen berücksichtigt werden.

Der dritte Teil der Arbeit ist den polymeren Hydrogelen gewidmet. Hier entwickeln
wir einen auf einem Minimierungsprinzip basierenden Homogenisierungsrahmen, um die
Reaktion von transienten periodischen Hydrogelsystemen zu bestimmen. Wir zeigen den
vorherrschenden Größeneffekt als Ergebnis des transienten mikroskopischen Problems,
welches für verschiedene Mikrostrukturen untersucht wurde. Unter Ausnutzung der Ele-
mente des vorgeschlagenen Rahmens erforschen wir die materiellen und strukturellen In-
stabilitäten in ein- und zweiphasigen Hydrogelsystemen. Hier haben wir komplexe, ex-
perimentell beobachtete und neuartige 2D-Mustertransformationen betrachtet, wie z.B.
Diamantplattenmuster, die mit und ohne Faltenbildung der inneren Oberflächen für per-
forierte Mikrostrukturen gekoppelt sind, sowie 3D-Mustertransformationen in dünnen,
verstärkten Hydrogelen. Die Ergebnisse zeigen, dass die erhaltenen Muster durch die Ab-
stimmung des Materials und der geometrischen Parameter von Kompositmaterialien ge-
steuert werden können.



Chapter 1

Soft-Active Materials: State of the Art

Over the last several decades, so-called smart or multifunctional materials have attracted a
lot of attention because of their favorable and tailor-made properties. These materials are
suitable for various applications in fields ranging from engineering, computer technology,
and robotics to biomimetics, biomedicine, and agriculture. Some examples include shape-
memory alloys, electro- and magneto-active materials (e.g., ferroelectric and ferromagnetic
ceramics, liquid-crystal and dielectric elastomers), and polymeric hydrogels.

The characteristic behavior of all these materials is their coupling response. The cou-
pling can manifest itself in the form of stimuli-induced behavior, such as a change in
stiffness, electric and magnetic permittivity, or diffusivity of a material under an exter-
nally applied field. Causes for a coupling response are usually rooted in the microstructure
of these materials. Many of them possess naturally heterogeneous microstructures. Such
as, shape-memory alloys develop intricate patterns at length scales measured by micro-
or nanometers, ferroelectric and ferromagnetic ceramics have a polycrystalline structure
with unit-cell dimensions measured by angstroms, and polymeric hydrogels can be inho-
mogeneous as a result of clustered regions of crosslinks and swellings as well as due to
defects in their polymer networks.

By virtue of complex fabrication techniques and 3D printing technology, many of the
materials are also manufactured in the form of composites. The microstructures of these
composites can range from millimeter to nanometer length scales. Careful design of the
microstructures allows the development of materials with superior macroscopic behavior
from favorable characteristics of underlying ingredients. For these materials, multiscale
homogenization techniques have been applied successfully to predict the response due to
structural and material nonlinearities, to aid with the design of microstructures for specific
applications, or to develop micro-mechanically motivated phenomenological models to
describe the macroscopic response.

Homogenization techniques are also extensively exploited to understand material and
structural instabilities of heterogeneous materials, which have fascinating implications
not only from the mathematical but also from the physical viewpoint. On the one hand,
material and structural stability guarantees the existence and uniqueness of a converged
solution, and it can have implications for the validity of the domain of a considered
representative volume element within a homogenization setting. On the other hand, in-
stabilities can be exploited for further advanced applications such as energy harvesting or
dissipation, developing sensors and actuators, building morphing and deployable struc-
tures, and obtaining controlled and tunable responses.

1



2 1.1. Electro-active polymers

In light of the above-mentioned facts, in the following, we give an introduction and
motivation to soft-active materials and characterization of their response, modeling, and
stability analysis in more detail. In particular, we concentrate on electro-active and
magneto-active polymers as well as polymeric hydrogels. Furthermore, the goal and the
outline of the thesis are discussed. Finally, the short summaries of the associated publi-
cations are also provided.

1.1 Electro-active polymers

An essential class of electro-active materials is given by dielectrics, which are exploited
for developing sensors, actuators, and capacitors, among many other applications. Piezo-
electric ceramics and electro-active polymers are dielectric materials that show electro-
mechanical coupling. Prominent examples of piezoelectric ceramics are barium titanate
(BaTiO3) and lead zirconate titanate (PZT), which have been known since the 1940s
[82, 67] and found a wide range of applications [159, 5]. Their favorable properties in-
clude lightweight, low power requirements, and fast response time. However, since these
materials are mechanically stiff and brittle, they show low actuation strains.

Conversely, soft dielectrics, such as electro-active polymers (EAPs) are capable of un-
dergoing large actuation strains under an external electric field. Depending on the actua-
tion mechanism of EAPs, two main types are distinguished, i.e., ionic EAPs and electronic
EAPs, as discussed in [7] and summarized in [195]; see also Fig. 1.1. Actuation in the
ionic EAPs is driven by the diffusion of electrolyte ions in a polymer skeleton. Although
these materials operate under low voltage (up to 5 V in ionic polymer-metal composites
[195]) and can show fast actuation response, they undergo relatively low actuation strains
(up to max. ∼ 40% in conducting polymers [142] and in ionic polymer-metal composites
[125]). Furthermore, the encapsulation of electrolytes generates complications.

In contrast to ionic EAPs, the actutation mechanism of electronic EAPs is based on
Coulomb forces generated through an applied electric field. Depending on constituents
and their properties, electronic EAPs can be classified further as ferroelectric EAPs,
electrostrictive graft elastomers, liquid-crystal elastomers, and dielectric elastomers, see
[7, 195] and Fig. 1.1. For example, ferroelectric polymers are made of semicrystalline
polymers such as poly(vinylidene fluoride) (PVDF), and hence these types of EAPs can
show permanent polarization and piezoelectric behavior, see [97]. Their responses depend
on a critical applied temperature threshold – the Curie temperature. Applying a temper-
ature above the Curie temperature can remove the permanent polarization and induce a
transition to paraelectric behavior. Similarly, liquid-crystal elastomers merge the direc-
tional characteristics of liquid crystals and elasticity of elastomers, see, e.g., [42, 207, 116]
for characterization, and related applications, as well as [19, 99, 254] for modeling.

Among the electronic EAPs, the dielectric elastomers (DEs) are capable of manifesting
the highest actuation strains, which can be as high as several hundred percents [7]. DEs are
made of a thin dielectric and soft electrodes attached on the top and bottom surfaces [175].
The actuation mechanism of DEs is based on the Coulomb forces. Under electric loading,
opposite charges in electrodes attract each other and induce the thinning of the dielectric
medium in the thickness direction and extension in the lateral directions. As a dielectric
medium natural rubber (NR), poly(dimethylsiloxane) (PDMS), acrylic elastomers (e.g.,
3M VHB 4905) can be considered, see [110, 175, 111, 174, 241, 195, 144, 145] and references
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Figure 1.1: Classification of Electroactive Polymers (EAPs). Based on their actuation
mechanism EAPs are classified as ionic and electronic according to [7], see also [195]. In
ionic EAPs, the actuation is a result of the diffusion of electrolyte ions in a polymer network.
On the other hand, in electronic EAPs, the main actuation mechanism is a result of Coulomb
forces.

therein. DEs are lightweight, fracture-resistant, inexpensive and show strong electro-
mechanical coupling. Therefore, they are considered suitable for developing actuators,
transducers, grippers, and energy harvesters, which can be utilized as artificial muscles
and mimicking biological structures [7, 8, 87, 213].

The main parameters of DEs that affect their electro-mechanical coupling and energy
conversion are (voltage and deformation) boundary conditions as well as geometrical and
material parameters such as thickness, dielectric constant, stiffness and dielectric strength
of the dielectric medium [195]. The properties of DEs change depending on the consid-
ered dielectric medium. As given in [28], Table 1.2, Young’s modulus of various dielectric
media can be in the range of E ≈ {0.007−3.0} MPa and dielectric constant in a range of
ǫr ≈ {1.8−12.7} at 1 kHz for various elastomers. In this category, the commercially avail-
able 3M VHB 4910 films have nearly two times higher dielectric constant (ǫr ≈ 4.8) than
the silicone-based (PDMS) films (ǫr ≈ 2.8). Hence they exhibit larger actuation under the
same electric field than PDMS. Nevertheless, the former elastomers are also prone to vis-
cous energy loss, while PDMS show unpronounced viscoelastic behavior. Another limiting
factor to the actuation of DEs is their electric breakdown due to pull-in instabilities, which
can result in the destruction of actuators. In order to increase the actuation performance
of DEs, geometrical and material parameters can be modified; see Fig. 1.2. According
to [195], the actuation strain can be improved via (i) reducing the thickness of the DE
film, (ii) reducing the elastomer’s stiffness and (iii) increasing the dielectric permittivity.
It has been shown that equi-biaxial pre-stretching improves the electric breakdown field
in acrylic elastomers and suppresses pull-in instabilities [174, 109, 179, 232, 232] due to
the reduced mobility of electric dipoles. Nevertheless, the pre-stretching can also reduce
dielectric permittivity in the acrylic elastomers in contrast to natural rubber (NR), which
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Figure 1.2: Methods to increase actuation performance of dielectric elastomers (DEs) from
Romasanta et al. [195].

is found to be not responsive to the stretching; see [232]. It is important to note that the
pre-stretching can harm the fatigue strength [195].

Another approach to enhance the actuation strain is the consideration of compos-
ites, i.e., embedding conductive or ceramic fillers into a polymer matrix. As it has been
discussed in [195] in detail that special care must also be taken in this case to achieve
improved electro-mechanical coupling without having the stiffness increased, and the di-
electric permittivity of DEs reduced; see also [228, 133, 128]. In [193], it has been shown
that conductive graphene layers in the PDMS matrix improve DE’s permittivity ten times
at low frequencies. Similar trends have been recorded for the composites made of ceramic
fillers such as titanium dioxide (TiO2), barium titanate (BaTiO3), lead zirconate titanate
(PZT). In [194], it is observed that ceramic calcium copper titanate (CaCu3Ti4O12) in the
PDMS matrix yields improvement of actuation strain by 100% and induces larger strains
at the same electric field compared to single-phase PDMS DEs.

Considering all the above facts, we can conclude that the nonlinear response of electro-
active polymers depends on many factors. In addition to their loading state, their intrigue
and heterogenous microstructures play a critical role in determining their responses. To
predict the response of composite DEs, phenomenological and multiscale continuum me-
chanical theories have been established and successfully applied, which we discuss in detail
in Section 1.5 and 2.2.
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1.2 Magnetorheological elastomers

In the present section, we consider another emerging class of smart materials, namely
magneto-active polymers. Like electro-mechanical coupling in EAPs, magneto-active
polymers exhibit magneto-mechanical coupling response; they can manifest changes in
their stiffness, damping, viscosity, storage, and loss moduli in a magnetic field [86, 237,
238, 41, 240]. Hence, these materials have found various applications, such as artifi-
cial muscles, actuators, vibration absorbers, dampers, and stiffness-tunable devices; see
[62, 52, 223, 2] for more examples.

A possible classification for magneto-active polymers is given in Fig. 1.3; see also [54, 3].
In the present thesis, we focus on magnetorheological elastomers (MREs), which belong to
the class of soft magneto-active composites. The magneto-mechanical response of an MRE
is highly dependent on its microstructure, which is made of a highly compliant elastomeric
matrix, stiff magnetic particles, and additives; see [176, 3, 11, 12] as well as Fig 1.4. The
elastomeric matrix is non-magnetic in nature, and it characterizes the MRE’s viscoelastic
behavior and off-field stiffness. Examples of the matrix materials can be natural rubber
(NR), silicone-based elastomers (PDMS), polyurethane, and polybutadiene, among others
[212, 3, 11]. The silicone-based elastomers are common among these materials because of
their negligible viscosity and reversible response [212, 3].

Furthermore, magnetic particles are responsible for the magneto-mechanical coupling
effects in MREs. The magnetorheological (MR) effects and actuation strain are signifi-
cantly influenced by particle-particle interactions in MREs. Such interactions are charac-
terized by geometrical and material parameters of particles as well as their distribution
in MREs [41, 240, 21]. Important material parameters of magnetic particles are their
saturation magnetization ms, magnetic coercivity hc, and remanent magnetization mr;
see Fig. 1.5 and also [64, 113, 219]. As we see in the figure, some magnetic materials
show pronounced hysteresis, which is reflected in the high values of remanent magneti-
zation and coercivity [219]. The magnetic coercivity characterizes the required magnetic
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Figure 1.4: Constituents of magnetorheological elastomers (MREs). MREs are made of
elastomer matrix, magnetic particles, and additives. As a matrix material, natural rubber,
silicone rubber, polybutadiene, and polyurethane are usually considered. Examples of mag-
netic particles include carbonyl iron powders, cobalt, nickel, and iron oxides; see the review
papers [3, 11] and references therein.

field to bring the magnetization to zero. Depending on the hysteresis, we distinguish
magnetically soft and hard materials. Soft magnetic materials yield a lower hystere-
sis and a lower remanent magnetization. Carbonyl iron particles (CIP) are one of the
most considered soft magnetic particles in MREs [223, 176]. Furthermore, CIPs also pos-
sess high saturation magnetization µ0ms ≈ 2T [212]. Other materials such as magnetit
(Fe3O4), nickel, cobalt and Nd-Fe-B alloys have also been deployed as the particles in
MREs [114, 208, 218, 90, 212, 3]. The latter belongs to the category of hard magnetic
particles [219]. These particles are capable of showing rotation in MREs and have been
investigated in, e.g., [114, 158].

Not only the material parameters but also the geometrical parameters of particles play
a critical role in the response of MREs. In particular, the volume fraction of particles,
particle shape and size, and their topology can significantly influence the MR effects and
the actuation strain. The volume fraction of magnetic particles in MREs can be up to 40%;
see [240, 11] and the references therein. As the volume fraction increases, the magneto-
mechanical interaction of particles increases, improving the MR effects. Nevertheless,
MREs are also becoming stiffer, which above a critical value of the volume fractions, can
result in reduced mobility of particles, and hence a lower actuation strain [40]. On the
contrary, low particle concentrations can reduce particle-particle interactions.

The size and shape of the magnetic particles in MREs are other important geometrical
parameters. The particle size can range from ∼ 2µm up to ∼ 200µm [203, 124, 11].
Magnetically soft iron and magnetite particles are, in general, spherical [212], however
considering elliptic-shaped particles can further enhance the MR effects since the rotation
of elliptic particles in a compliant matrix can induce larger actuation strains than the
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Figure 1.5: Qualitative response of magnetically (a) soft and (b) hard materials.

Figure 1.6: SEM image of magnethorheological elastomer (MREs) from [124] (reproduced
with permission from Springer Nature). (a) MRE microstructure with carbonyl iron particles
and (b) MRE microstructure with carbonyl iron particles and rod-shaped γ-Fe2O3 magnetic
additives.

spherical ones. Such MRE microstructures have been investigated, for example, in [57]. By
designing the microstructure of MREs and the shape of the magnetic particles, MREs can
show not only tensile but also compressive and shear actuation strains; see, for example,
[57, 41, 100, 40] and [183], Fig. 4.

In order to further enhance the magneto-mechanical coupling and improve the particle-
particle and particle-matrix interactions, MREs can also contain magnetic and non-
magnetic additives. In particular, we distinguish three types of additives: plasticizers,
carbon black, and magnetic nanoadditives. While plasticizers are utilized to reduce the
stiffness of the elastomeric matrix, carbon-based additives help to improve the mechanical
properties of the matrix. Similarly, magnetic nanoadditives can enhance the actuation
strain. Examples of these materials can be rod-like γ-Fe2O3 (see Fig. 1.6) and chromium
dioxide (CrO2) particles; see [124, 172, 120]. For a detailed description of the influence of
additives on MREs, we refer to the review articles [3, 212].

With the advancement of fabrication techniques and 3D printing technology, MREs
with complex microstructures and tailored macroscopic responses become more accessible;
see [147, 9, 10, 188, 30]. Thus, mathematical models and homogenization techniques are
useful for predicting the response of additively manufactured MREs and can also be
deployed to guide the fabrication process.
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1.3 Polymeric hydrogels

In addition to electro- and magneto-active polymers, the present thesis also deals with
the modeling and stability analysis of polymeric hydrogels, which belong to the class of
smart materials, too. Similar to electro- and magneto-active materials, hydrogels have
favorable properties; they can be prepared as soft, biocompatible, biodegradable materials
[178, 177, 73, 74, 236, 138]. Therefore, they have found applications in bio-medicine,
agriculture, tissue engineering, and robotics [198, 93, 18, 17, 32]. When hydrogels are
immersed in water or a biological fluid, they undergo swelling, resulting in large volumetric
deformation. Activation deformation of hydrogels and release of biological fluid from
the polymer network can be controlled by means of light, temperature, pH as well as
electric and magnetic fields. These types of hydrogels belong to the class of multi-stimuli
responsive hydrogels [119, 31]. However, in the present work, we focus on conventional
hydrogels, where deformation is induced by the diffusion of a solvent into the polymer
network [74, 4]. The capillary, osmotic, and hydration forces generated by the polymer-
polymer and polymer-solvent interactions are considered responsible for the diffusion of
the solvent, which is acting against the retractive forces of crosslinked polymer chains
[196, 31].

The swelling behavior and diffusion phenomenon in hydrogels and their response to
external stimuli are highly dependent on their polymer networks and the type of solvent.
The polymer network is characterized by polymer volume fraction as well as molecular
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weight and distance of chains between two neighboring crosslinks [196, 177, 24]. While the
polymer volume fraction of the swollen hydrogel determines the amount of solvent in the
hydrogel, the molecular weight of chains between two neighboring crosslinks characterizes
the degree of crosslinking. The latter parameter, also known as the network mesh size,
is the measure of available space between molecular chains. The polymerization method
is one of the main factors that influences the mesh size. It is known that the polymer-
ization in an aqueous solution yields a small mesh size that is measured by nanometers
in poly(2-hydroxyethyl methacrylate) (pHEMA) gels [196]. By considering a freeze-thaw
polymerization technique for these polymers, the mesh size can be increased [68, 31] and
thus allow also delivery of macromolecular solvents [31]; also refer to [137] for detailed
discussions on the fabrication techniques. The polymer network is also responsible for
elastic response and initial stiffness of hydrogels. Moreover, the viscosity can also be
influenced by the solvent’s viscosity.

Hydrogels can be classified depending on constituting polymer, crosslinking, and syn-
thesis type; refer to Fig. 1.7. The chemical composition, polymer network, and crosslinking
can significantly influence the response of hydrogel. The polymer network of hydrogels can
be crosslinked chemically, physically, or by the combination of both [31]. Early hydrogels,
which were based on poly(2-hydroxyethyl methacrylate) (pHEMA) gels, were synthetic
and had chemically crosslinked polymer networks [245]. These homopolymer hydrogels
have found applications as contact lenses and drug delivery systems, among others. Other
synthetic polymers often used in hydrogels are poly(vinyl alcohol) (PVA), poly(ethylene
glycol) (PEG), and poly(acrylamide) (PAM) [177, 31]. In order to improve the prop-
erties of these polymers, their polymer network can also be co- or multi-polymerized.
In contrast to chemically crosslinked hydrogels, physically crosslinked hydrogels utilize
non-covalent interactions such as entanglements of polymer chains and hydrophobic or
ionic interactions. This type of crosslinking is encountered in responsive hydrogels such
as temperature- and pH-sensitive hydrogels [31]. Further detailed classifications and dis-
cussions can be found in the review articles [177, 119, 31, 4, 236, 138].

Furthermore, hydrogels are also manufactured with composite or cellular microstruc-
tures to tune their responses further and obtain controllable buckling patterns and de-
formation states [137, 131, 136, 243]. Similar to the electro- and magneto-active polymer
composites, the behavior of such hydrogel composites and induced composite patterns
can be determined by consideration of ideas from multiscale homogenization techniques;
see Section 1.5.

1.4 Instabilities in soft-active materials and their applications

Soft-active materials undergo various types of instabilities, such as buckling, localization,
snapping, wrinkling, creasing, pull-in, and cavitation, among others. The type of insta-
bility in a system depends on its material characteristics, geometrical forms, and loading
conditions. Since the overall response of a system at an instability point can change unex-
pectedly, it could render the system expendable. Therefore, the prediction of instability
points and the behavior of a considered system after this point are among the important
tasks.

An instability point was usually considered a failure point and avoided in the course
of the designing process or by deploying systems below the critical loading points. In
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recent decades, instabilities are not only seen as unfavorable anymore, but they are rather
exploited for the development of soft devices (such as sensors, actuators, absorbers) [192,
76, 108]. These devices can function near, and beyond an instability point [105, 108].

Instabilities can be of structural and material types. Buckling, snapping, and wrinkling
are structural instabilities that can depend on the geometrical form of the structure.
Slender structures, such as beams, plates, and shells, are known to be prone to buckling-
or snapping-type instabilities. Along those lines, shear and kink bands, creasing, pull-in,
cavitation, and phase transformation are usually associated with material instabilities.
The material and structural instabilities can be related; for example, the buckling at
a microscale of a composite has been shown to be related to localization-type material
instabilities at the macroscale [1].

Both structural and material instabilities have found a wide range of applications
[156, 135, 252, 192, 76, 108]. According to the review paper [76], instabilities are mainly
applied in energy-based (such as energy production and dissipation) and motion-based
application areas. Examples of energy-based applications can be energy harvesters, sen-
sors, absorbers, and dampers, among others [135, 249, 115, 105, 132, 34, 51]. Examples of
the motion-based applications can be actuators [118, 76]. Both applications usually take
advantage of buckling or snapping in structures not only under mechanical loading but
also under coupled electro-, magneto- and chemo-mechanical interactions. Other struc-
tural instabilities such as wrinkling have also found application in the control of stem cell
morphology [65]; see also the review paper [36] for further examples.

In addition to the wide range of applications associated with structural instabilities,
material instabilities associated with pull-in instabilities, or materials with negative stiff-
ness components have also been exploited in micro-electro-mechanical systems as well as
for seismic protection [173, 252]; see also [56, 107, 26]. Furthermore, instabilities are ex-
ploited in composites and metamaterials to obtain negative Poisson’s ratio [6] and to tune
acoustic and optical properties [242, 13, 59, 84, 255]. We refer to [108] for an extensive
review of microscopic instabilities.

As discussed above, instabilities play an essential role in various engineering appli-
cations. They can be exploited for the development of soft devices. Nevertheless, in
specific applications, they can render a system unusable. Furthermore, instabilities in
periodic systems can also have mathematical implications. It is known that a microscopic
instability influences the size of representative volume elements (RVEs) in periodic sys-
tems [163, 61]. Moreover, the development of localization-type macroscopic instabilities
can yield mesh sensitivities [164]. Therefore, the prediction of instability points and the
behavior of systems beyond this point are of utmost importance. In the present work, in-
stabilities in composites under electro-, magneto- and chemo-mechanical interactions are
of interest. In particular, we investigate microscopic structural and macroscopic material
instabilities.

1.5 Multiscale modeling and instability analysis

In the above sections, we have discussed three types of coupling phenomena in electro-
and magneto-active polymers as well as polymeric hydrogels. These are, namely, electro-
mechanical, magneto-mechanical, and chemo-mechanical coupling responses. Above, we
have discussed how a material’s composition and microstructure can significantly affect



Chapter 1: Soft-Active Materials: State of the Art 11

h

h

B
B

dv

x ∈ B
occluded
porosities

macroscale micro/RVE-scale porescale

primary fields:

u(x, t), h(x, t)

primary fields:
u(x, t), h(x, t), d(x, t)

primary fields:

us(xs, t), uf (xf , t)

Figure 1.8: Multi-scale homogenization of heterogeneous porous media. Response of the
material at a macroscale is determined through a highly heterogeneous representative volume
element (RVE), which consists of various types of inclusions and micro-cracks. On the other
hand, the response of the RVE at each material point may also be determined by means
of homogenization over a smaller scale, which could contain, for example, a porous matrix
and fluid filling the pores, as in the figure. Since a specific physical phenomenon could be
associated with a specific length-scale, the response at a length-scale could be determined
by a different set of primary variables than the parameters. Therefore, we need appropriate
scale-bridging techniques to exchange kinematic and constitutive fields through the scales.

the coupling behavior. We now focus on the computational prediction of this coupling
behavior. An essential approach studying the response of the materials based on their
microstructure exploits homogenization techniques [69, 246, 163, 217, 53, 60]. By means
of these methods, a heterogenous problem is replaced by an equivalent homogeneous
problem, where the heterogeneities due to various effects can be solved at a different
length scale assuming scale separation; see Fig. 1.8. An important step is then to bridge
different scales, i.e., to downscale driving fields and to upscale the constitutive response.
In the computational homogenization framework, these length scales are bridged via the
Hill-Mandel macro-homogeneity condition [69, 70, 72].

In the present work, we focus on two scales, which we refer to as macro- and micro-
scales, no matter what units of measure for length scales are. We exploit here the com-
putational homogenization approach. In this approach, the macroscopic response is de-
termined by averaging the microscopic response over a selected RVE under consideration
of the Hill-Mandel condition [112]. This condition is fulfilled for a set of boundary con-
ditions for the RVE problem, namely (i) linear Dirichlet, (ii) constant Neumann, and
(iii) periodic fluctuations boundary conditions [152, 149]. For the pure mechanical case,
the results obtained by the periodic boundary conditions are bounded from above by the
linear displacement and from below by the constant traction boundary conditions [149].
In [122], a weak format of the periodic boundary conditions has been presented, which
relaxes the requirement for a periodic discretization of an RVE. For a detailed discussion
of various aspects of computational homogenization as well as boundary conditions, we
refer to the review paper [202]. The computational homogenization framework has been
successfully applied to determine the behavior of electro-, magneto-, thermo- and chemo-
mechanically coupled problems in [205, 154, 100, 101, 40, 170, 227, 123, 165, 88, 180],
among others.

Analytical and computational homogenization of electro-active materials with elastic
and inelastic properties have been considered in [204, 205, 228, 251, 128, 220] at small



12 1.5. Multiscale modeling and instability analysis

strains and in [187, 117, 103, 133, 155, 129, 130] at finite strains. Furthermore, an in-
vestigation of the influence of the microstructure on the effective response in laminated
composites has been conducted in [228, 33, 201, 43, 239]. Similarly, homogenization
techniques have been successfully applied for magneto-active composites. In [186], an an-
alytical homogenization method has been proposed for magneto-elastic composites. This
method has been exploited in [57] to estimate the effective response of composites with
spherical and elliptic particles and in [58] for the development of a finite-strain consti-
tutive model for magneto-elastic composites. Homogenization methods have also been
used to develop constitutive functions that approximate the effective response. Such an
approach has been considered in [126, 127], where constitutive functions for magneto-
active composites with non-Gaussian polymer matrix and embedded iron and ferrofluid
particles have been constructed; see also [160, 162] in a similar context. Next to analytical
methods, computational homogenization methods have been deployed to determine the
effective response of magneto-active composites [146, 92, 85, 100, 101, 40].

In the context of thermo-mechanics, computational homogenization techniques have
been considered in [170, 227, 226, 35], among others. In these references, Similar to
the purely mechanical and the coupled electro- and magneto-mechanical problems, a
steady-state heat conduction problem at the microscale is solved. When considering
the stationary microscopic problem, the effective response does not depend on the size of
a selected RVE. The extension that considers the transient nature is developed in [123].
As a result of a transient microscopic problem, the size-effect is naturally introduced into
the equations. The authors in [123] have also discussed that the size-effect becomes less
pronounced when the RVE size becomes small. The framework of [123] has been further
extended in [165, 89, 88] to model the diffusion-deformation processes. While these works
exploit a saddle-point formulation, a minimization-type homogenization framework has
also been proposed in [182] following [151, 23]. In [182] (Paper C), the impact of the
material parameters and the RVE morphology on the effective response are discussed.

Homogenization techniques have also been used to predict material and structural
instabilities in composites. Localization-type instabilities in porous elastic materials were
first shown in [1]. There it was found that the effective energy function of a composite
can lose strong ellipticity (rank-one convexity) while the microscopic energy function is
polyconvex, which can manifest itself as a result of microscopic buckling [230, 61]. Material
and structural instabilities have been investigated in many references for various types
of composites [231, 134, 14, 148, 199, 216, 131]. The microscopic pattern transforming
instabilities have found applications to manipulate wave propagation, optical properties
and to obtain controllable enhanced performances [15, 84, 242, 108]. In the context of
the coupled problems, microscopic instabilities can result in further possibilities as the
deformation state of a composite can be controlled utilizing electric and magnetic fields
as well as the diffusion of a solvent into the material. Investigations of localization-type
macroscopic and buckling-type microscopic instabilities in electro- and magneto-active
composites have been conducted in [47, 16, 44, 200, 58, 154, 63], among others. Here,
microscopic instabilities have been investigated in laminated composites. Microscopic
instabilities in particulate composites have been conducted in [185, 182, 83, 183]. In these
references, the Bloch-Floquet analysis has been implemented to investigate the pattern-
transforming instabilities in periodic composites; see also discussions in Paper A and
Paper B.
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In polymeric hydrogels, wrinkling- and creasing-type surface instabilities have been
documented in [224, 234, 66, 65], among others. Associated analytical and numerical
studies have been considered in [95, 94, 248, 49, 77, 221, 78]. Furthermore, in-plane
pattern-transforming instabilities in periodic systems have been studied in [253, 255] and
similar out-of-plane instabilities have been studied in [247, 244, 136]. All these studies
have revealed a rich set of controllable patterns. Numerical investigations of such pattern
transformations have been conducted in [169, 168] in two dimensions and in [157, 106] in
three dimensions, among others. Although the studies in these references revealed vital
insights into the underlying complex pattern formations, they did not account for the
transient effect of the diffusion process; see [184] or Paper D for a detailed discussion.

1.6 Scope of the work and outline of the thesis

Considering the above discussion, the present work deals with computational homog-
enization and stability analysis of soft active composites. In particular, electro- and
magneto-active polymers as well as polymeric hydrogels are under consideration. The
present thesis is based on four scientific publications [185, 183, 182, 184], which are
included in the thesis and denoted as A, B, C, D. The effective response of the respective
composites is determined by exploiting computational homogenization. The computa-
tional homogenization for electro- and magneto-active polymers is based on the mini-
mization formulation presented in [154]. For polymeric hydrogels, we have proposed a
minimization-based variational homogenization following the ideas of [123], where a ho-
mogenization framework with a saddle-point structure has been presented. The reason for
the consideration of minimization principles is due to their convenience in investigating
instabilities. Nevertheless, instabilities can also be investigated via formulations with a
saddle-point principle [154, 206, 49].

Macroscopic localization-type material instabilities and microscopic buckling-type struc-
tural instabilities are investigated for non-dissipative electro- and magneto-active com-
posites (A and B) and dissipative hydrogel composites (C and D). The macroscopic
instabilities are disclosed by checking the loss of strong ellipticity of coupled incremental
moduli tensors. Microscopic instabilities are investigated considering the Bloch-Floquet
analysis. For the polymeric hydrogels, the effective response is usually significantly in-
fluenced by the size of a considered RVE whenever a transient microscopic problem for
hydrogel microstructures is considered. Here, we construct the boundary conditions for
periodic microstructures with care based on experimental setups such that the results can
be reduced to computations based on a unit-cell RVE.

The thesis is organized as follows. In Chapter 2, we review the basics of the finite-
strain continuum mechanics. The chapter comprises four main sections. In Chapter 2.1,
we give a geometrical description of a deforming body in a concise manner and introduce
equations for the description of thermodynamic processes. Then, in Chapter 2.2 and 2.3,
we discuss fundamentals of electro- and magneto-elasticity under quasi-static conditions.
Finally, the governing equations of nonlinear magneto-electro-elasticity are given in Chap-
ter 2.4. Coupling of electric and magnetic fields is possible through the deformation field
in these equations, see [191, 190]; electrodynamic coupling is however not considered. The
modeling of fluid transport is not discussed in this chapter, but carefully introduced in
the papers C and D. We also refer to [39, 141, 22] for a detailed derivation of equations.
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The second part of the thesis contains the papers that constitute the core of the thesis
and present the obtained results. In the following section of this chapter, we list the
associated papers and briefly summarize them.

1.7 List and short summaries of associated publications

1.7.1 Paper A: Computational stability analysis of periodic electroactive

polymer composites across scales

Computer Methods in Applied Mechanics and Engineering, volume 337, pages 165–197,
accepted: January 16, 2018

DOI: doi.org/10.1016/j.cma.2018.01.020

This publication investigates macroscopic and microscopic instabilities in elastic electro-
active particulate composites within a computational homogenization framework. Here
we employ a four-field variational formulation to avoid volumetric locking for quasi-
incompressible RVEs. In this formulation, we consider linear interpolations for the dis-
placement and vector potential fields and element-wise constant interpolations for the di-
latation and pressure fields. The formulation is solved using a finite-element formulation.
Discontinuous interpolation of the dilatation and pressure fields allows their condensation
from the equations. Hence, we obtain a minimization-type setting. Within the presented
formulation, we investigate instabilities. First, we analyze the onset of localization-type
material instabilities by checking the loss of strong ellipticity of the effective energy. Then,
we detect microscopic instabilities using the Bloch-Floquet analysis. Our numerical exam-
ples examine instabilities for a rich set of RVE microstructures with spherical and elliptic
inclusions. The influence of the inclusions’ volume fraction and aspect ratio have been
investigated. Observations show that the larger volume fractions of inclusions reduce the
values of critical loadings due to the increased particle-particle interactions. Furthermore,
we observe that macroscopic or microscopic instabilities can be primary depending on the
loading condition and the geometry. In addition, the alignment of elliptic particles from
the applied electric displacement significantly affects the onset and type of instabilities.
Moreover, we illustrate various patterns under different values of the macroscopic defor-
mation gradient and electric displacement vector. We have also considered a post-buckling
analysis of a microstructure, which shows the evolution of the local deformation and elec-
tric field after a microscopic instability point. To conclude, the results of the publication
can be considered to determine the RVE size and hence the effective response after a
microscopic instability point. Furthermore, the results could help design microstructures
to tune the response of a composite and to obtain controllable patterns.

It is noted that this publication builds up on [181] and extends the framework to a
Hu-Washizu-type variational formulation. In the developed framework, the macroscopic
and microscopic instability analysis are considered. Accordingly, the numerical examples
are extended.

https://doi.org/10.1016/j.cma.2018.01.020
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1.7.2 Paper B: Multiscale stability analysis of periodic magnetorheological

elastomers

Mechanics of Materials, volume 159, pages 103699:1–19, accepted: November 28, 2020

DOI: doi.org/10.1016/j.mechmat.2020.103699

The present publication deals with the material and structural instabilities of magneto-
active particulate composites. In particular, we consider microstructures with elastic poly-
mer matrix and embedded magnetically soft and mechanically stiff particles. Hence, the
effective response of composite can be determined within a non-dissipative homogeniza-
tion framework. To solve the microscopic problem, we utilize Q2P1-type finite-element
formulation utilizing a four-field (displacement, vector potential, dilatation, and pressure)
variational principle. The linear, discontinuous dilatation and pressure fields can be con-
densed out of the equations, yielding a minimization principle. Hence, we obtain a favor-
able setting for the stability analysis. We further exploit a Langevin-type energy function
for the particles to describe the saturation of magnetization. In this setting, we deter-
mine localization-type material instabilities by checking the positive definiteness of the
generalized acoustic tensor, which we derive in the two-point continuum setting. Follow-
ing, we analyze the microscopic pattern-transforming instabilities of an equilibrium state
by superimposing Bloch-Floquet-type boundary conditions. Finally, we consider a set of
numerical examples containing microstructures with spherical and elliptic particles. The
parameters of particles are chosen to correspond to carbonyl-iron. The macroscopic de-
formation gradient and the magnetic induction vector derive the microstructure. Because
of the saturation of magnetization, the stability curves for magneto-active composites are
substantially different from their electo-active analogous. Above all, we observe that the
stability curves saturate in the case of magneto-active composites. The studies include not
only the influence of the morphology of particles on the instabilities but also the influence
of the saturation magnetization and the magnetic susceptibility parameters. In addition
to two-phase microstructures, we have also considered a three-phase microstructure. The
obtained results for these composites are in agreement with experimental observations.
As a concluding remark, the results help to determine the microscopic patterns in periodic
magneto-active composites and their responses after an instability point. Furthermore,
determining the loss of strong ellipticity of the effective response is also important concern-
ing the convergence of the macroscopic problem since it implies the loss of quasiconvexity.
As a result, the macroscopic problem can suffer from not having regular minimizers when
a first-gradient theory is considered. In addition, we note that the patterns could be ex-
ploited to design microstructures showing negative Poisson’s ratio or to tune the acoustic
response of the composites, among others, as exploited in references.

1.7.3 Paper C: Computational homogenization of transient chemo-mechanical

processes based on a variational minimization principle

Advanced Modeling and Simulation in Engineering Sciences, volume 7:35, pages 1–26,
accepted: May 6, 2020

DOI: doi.org/10.1016/j.jmps.2023.105250

The publication deals with the first-order computational homogenization of diffusion-

https://doi.org/10.1016/j.mechmat.2020.103699
https://doi.org/10.1016/j.jmps.2023.105250
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deformation processes. In contrast to the common first-order homogenization theories,
we consider the RVE problem to be transient in the present work. A transient micro-
scopic problem introduces microscopic size-effect into the equations, which does not ap-
pear in the steady-state RVE problems. Such theories have been successfully applied
to various problems in the literature within a saddle-point formulation. However, such
formulations are known to be limited by inf-sup stability conditions. Here, we propose a
minimization-based homogenization theory for chemo-mechanics. This formulation and
its implementation into a conforming Raviart-Thomas-type finite-element formulation
have been discussed in detail. Finally, we present a wide range of numerical examples
to showcase the size-effect due to changes in the RVE size and RVE morphologies. We
show how the effective response can go beyond the classical bounds for large enough RVE
sizes. Nevertheless, when an RVE size becomes sufficiently small, the results can coincide
with the steady-state solutions. We have also included studies that illustrate how the
results converge to the stationary solution over time depending on the material parame-
ters of RVE constituents. The formulation can be used to predict the response of highly
heterogeneous problems by taking the transient effects into account.

1.7.4 Paper D: Swelling-induced pattern transformations of periodic

hydrogels – from the wrinkling of internal surfaces to the buckling of

thin films

Journal of the Mechanics and Physics of Solids, volume 175, pages 105250:1–25, accepted
February 18, 2023

DOI: doi.org/10.1016/j.jmps.2023.105250

The publication deals with pattern transformations in periodic hydrogel microstruc-
tures within a transient framework. Here we employ a minimization-based formulation
to model the swelling of hydrogels due to the diffusion of a solvent. Next, we employ the
Bloch-Floquet analysis for short- and long-wavelength pattern transformations. Since the
long-wavelength instabilities are associated with the loss of strong ellipticity of effective
response, we also check these instabilities. To determine the effective mechanical response
of the composite, we employ ideas from the computational homogenization of transient
microstructures. To avoid any size-effect in the system and reduce computations to a
unit-cell RVE, we establish boundary conditions on the microstructures based on experi-
mental setups. Our numerical examples consider two-dimensional periodic structures and
three-dimensional in-plane periodic films. Investigations of pattern transformations in 2D
single-phase perforated structures yield experimentally observed diamond-plate patterns.
However, in perforated structures with coatings, we also observe novel patterns comb-
ing the pattern transformation with wrinkling at the internal surfaces. The 3D studies
also reveal compelling patterns that highly depend on the morphology of the microstruc-
ture. Here not only wrinkling of reinforced films are observed, but also saddle-like shapes
are encountered. The observed patterns could be exploited for the development of soft
devices.

https://doi.org/10.1016/j.jmps.2023.105250


Chapter 2

Continuum Mechanics of Magneto-Electro-Elasticity

The chapter introduces the continuum thermodynamics of magneto-electro-elasticity. It is
organized into three main sections, where the first section introduces thermodynamics in
a convected curvilinear and a rectilinear coordinate system. Following, essential concepts,
transformation rules and physical quantities that describe the deforming continuum body
are discussed; mass, momentum, energy, and entropy balance laws are derived. The
second and third sections are dedicated to magneto-electro-elasticity. Here, the coupling
of electric and magnetic fields is only possible through the deformation of a continuum
body; the electrodynamic coupling of the fields is not considered. After introducing the
governing equations of electrostatics and magnetostatics, the balance laws of elasticity
are extended to magneto-electro-elasticity under isothermal conditions.

2.1 Fundamentals of Continuum Mechanics

In this section, a geometrical description of the continuum mechanics of a deformable body
is reviewed. The fundamental kinematic quantities and equations, as well as the governing
partial differential equations are derived. In order to provide descriptive insight into
specific concepts of continuum mechanics, such as push-forward and pull-back operations
and Lie derivatives, among many others, we consider the description of the body in
curvilinear coordinate systems. Nevertheless, all the concepts are related to the Cartesian
coordinates, too. A detailed description of the concepts introduced in this section can be
found, for example, in [37, 139, 167, 75, 233, 222, 153, 104, 225].

2.1.1 Placement of physical body in Euclidean space

A continuum body being a physical object B is characterized by certain physical proper-
ties and texture. It can be considered as a set of physical points P (e.g., set of molecules)
which are embedded into the Euclidean space R3 via one-to-one point transformations
χt(P) [222, 153, 104]. At a particular time instance t, χt(B) defines the placement of
the deforming physical body in the Euclidean space, which is referred to as a configura-
tion. The set of configurations at various times determines the motion of the continuum
body. Here, we distinguish two configurations: the reference or Lagrangian configura-
tion B0 = χ0(B) and the current or Eulerian configuration Bt = χt(B). The reference
configuration, also referred to as the material configuration, is usually associated with
an assumed stress-free, undeformed state of the deforming physical body. Therefore, the
relative deformation and stresses are defined from this configuration. Consequently, we

17
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P ∈ B

B

B0

Bt

ϕ(X, t) := χt(P) ◦ χ−1
0 (X)

χ0(P) χt(P)

X ∈ B0

x ∈ Bt

R3

E1

E2

E3

e1
e2

e3

Figure 2.1: Embedding a physical body into Euclidean space R3. A deforming physical
body is embedded into the Euclidean spaceR3 via a placement mapping χt(P). A particular
placement of the physical body in the Euclidean space is referred to as a configuration. The
reference or Lagrangian configuration B0 = χ0(B) corresponds to the stress-free undeformed
state of the body. The current or Eulerian configuration Bt = χt(B) corresponds to the
current deformed state of the body. Both configurations are connected via a one-to-one
point transformation x = ϕ(X, t).

introduce the so-called deformation map as the composition of the current and reference
placement maps, i.e., ϕ(X, t) := χt(P) ◦ χ−1

0 (X), which links the reference and cur-
rent configurations, to describe the motion of the body rather than describing it via the
placement mapping χt(P) directly; see also Fig. 2.1 and [37, 139, 153],

ϕ(X, t) = χt(P) ◦ χ−1
0 (X) :

{
B0 × T → Bt ∈ R3

(X, t) 7→ x = ϕ(X, t)
, (2.1)

where x denotes the position of a physical point P in the current (or spatial) configuration
Bt. The velocity and acceleration of a material point in the current configuration can thus
be defined, respectively, as

v(x, t) =
{ ∂
∂t

ϕ(X, t)
}
◦ϕ−1(x, t) = V (X, t) ◦ϕ−1(x, t) and

a(x, t) =
{ ∂2
∂t2

ϕ(X , t)
}
◦ϕ−1(x, t) = A(X, t) ◦ϕ−1(x, t) ,

(2.2)

where V (X, t) and A(X, t) are the material velocity and acceleration vectors parameter-
ized with the material position vectors; however belong to the current configuration. The
acceleration a(x, t) in the current configuration can also be computed from the spatial
velocity v(x, t)

a(x, t) =
d

dt
v(x, t) =

∂

∂t
v(x, t) + gradv(x, t) · v(x, t) , (2.3)

where gradv := l is the spatial velocity gradient.
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B0 Bt

xa = ϕa(XA)

θi = ϕi(ΘI) = δiIΘ
I

{XA} ∈ R3 {xa} ∈ R3

E1

E2

E3

e1
e2

e3

XA = X̂A(ΘI) ΘI = Θ̂I(XA) xa = x̂a(θi) θi = θ̂i(xa)

{ΘI} ∈ R3
{θi} ∈ R3

Figure 2.2: Parameterization of the continuum body using Cartesian and curvilinear co-
ordinates. The physical body embedded into the Euclidean space can be parameterized via
Cartesian coordinates as well as curvilinear coordinates. In this work we consider convected
curvilinear coordinates. This means that the coordinates of the points in the reference and
current configurations are the same when curvilinear coordinates are useed, i.e., θi = δiIΘ

I .

2.1.2 Parameterization of continuum body: rectilinear and curvilinear coor-
dinates

The physical body embedded into the Euclidean space can be parameterized with ei-
ther rectilinear coordinates (e.g., Cartesian coordinates) or curvilinear coordinates, see
Fig. 2.2. In this section, we describe the parameterization with respect to both coor-
dinates and, therefore, we will also represent the same quantities with respect to both
coordinates [222, 104]. For the rectilinear coordinates, we assume that each physical point
P is described by the material XA ∈ R3 and spatial xa ∈ R3 rectilinear coordinates in
the Euclidean space. As in [222], the indices A,B,C,D and a, b, c, d are reserved for
rectilinear coordinates in the reference and current configurations, respectively. Similarly,
we consider ΘI ∈ R3 and θi ∈ R3 for the curvilinear coordinates of the physical body in
the material and spatial configurations, respectively. In this case, the indices I, J,K, L
and i, j, k, l are reserved for curvilinear coordinates correspondingly in the reference and
current configurations. The rectilinear and curvilinear coordinates can be related via
one-to-one coordinate transformations as described in Fig. 2.2 (see also [222])

XA = X̂A(ΘI) or ΘI = Θ̂I(XA) and xa = x̂a(θi) or θi = θ̂i(xa) . (2.4)

In addition, we focus on convected curvilinear coordinates, which means that the position
of a material point in the reference and current configurations can be described by the
same set of parameters. In other words, the relation θi = δiIΘ

I = Θi ∈ R3 between the
curvilinear coordinates of the reference and current configurations holds. Here, δiI = 1 for
i = I and δiI = 0 for i 6= I is the Kronecker delta.
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The position vectors X and x in the current and reference configurations, respectively,
are given as follows

X = XAEA = X̂A(ΘI)EA = X̂(ΘI) and x = xaea = x̂a(θi)ea = x̂(θi) , (2.5)

where EA ∈ R3 and ea ∈ R3 denote the orthonormal bases of the Cartesian coordi-
nate system correspondingly in the reference and current configurations1.These bases are
constant and do not change with the material point. Therefore, the corresponding in-
finitesimal line elements can be determined as

dX = dXAEA =
∂X̂A

∂ΘI
dΘIEA = dΘIX̂A

,IEA = dΘIGI and

dx = dxaea =
∂x̂a

∂θi
dθiea = dθix̂a,iea = dθigi ,

(2.6)

where GI = ∂X̂/∂ΘI = X̂A
,IEA is the material tangent vector to the material curvilinear

coordinate line ΘI (where ΘJ = const. and ΘK = const. with I 6= J 6= K) and gi =
∂x̂/∂θi = x̂a,iea is the spatial tangent vector to the spatial curvilinear coordinate line θi

(where θj = const. and θk = const. with i 6= j 6= k); see, e.g., [222, 153, 104]. We refer
to these vectors as covariant base vectors. They form the material and spatial tangent
spaces denoted as TXB0 and TxBt, respectively. The dual contravariant bases of GI and
gi are defined from the following relation

GI ·GJ = δJI and gi · gj = δji , (2.7)

where δJI and δji are Kronecker deltas. The above relations hold for the following definitions
of GI and gi from the corresponding curvilinear coordinates as

GI = Grad Θ̂I =
∂Θ̂I

∂X
=

∂Θ̂I

∂XA
EA = Θ̂I

,AE
A and

gi = grad θ̂i =
∂θ̂i

∂x
=
∂θ̂i

∂xa
ea = θ̂i,ae

a,

(2.8)

which are normal to the material (ΘI = const.) and spatial (θi = const.) hypersurfaces,
respectively. These normals form the bases for the material and spatial normal or cotan-
gent spaces denoted by T ⋆

XB0 and T ⋆
xBt, respectively.

2.1.3 Metric tensors: covariant and contravariant identity tensors

In order to be able to measure the distances between points, the lengths of vectors,
and the angles between vectors, we introduce the covariant material and spatial metrics,
respectively, ([222, 153, 104])

GIJ = GI ·GJ = X̂A
,IX̂

B
,JEA ·EB = X̂A

,IX̂
B
,JδAB and

gij = gi · gj = x̂a,ix̂
b
,jea · eb = x̂a,ix̂

b
,jδab

(2.9)

1Einstein’s summation convention over the repeated indices of the same type are considered if one of
them is upper and the other is a lower index.
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as well as the contravariant material and spatial metrics, respectively,

GIJ = GI ·GJ =
∂Θ̂I

∂X
· ∂Θ̂

J

∂X
= Θ̂I

,AE
A · Θ̂J

,BE
B = Θ̂I

,AΘ̂
J
,Bδ

AB and

gij = gi · gj =
∂θ̂i

∂x
· ∂θ̂

j

∂x
= θ̂i,ae

a · θ̂j,beb = θ̂i,aθ̂
j
,bδ

ab .

(2.10)

With these metrics at hand, we can derive the subsequent relations

GIJGJK = δIK and gijgjk = δik (2.11)

and the metrics have the properties to lower or raise the indices

GI = GIJG
J , GI = GIJGJ and gi = gijg

j, gi = gijgj . (2.12)

Based on the above introduced covariant and contravariant metrics, we present the ma-
terial and spatial covariant identity tensors G and g (without indices), respectively. We
start from their representation in the rectilinear coordinates and give the alternative rep-
resentation in the curvilinear coordinates

G :=δABE
A ⊗EB = X̂C

,AX̂
D
,BδCDE

A ⊗EB =
∂X̂C

∂ΘI

∂Θ̂I

∂XA

∂X̂D

∂ΘJ

∂Θ̂J

∂XB
δCDE

A ⊗EB

=
∂X̂C

∂ΘI

∂X̂D

∂ΘJ
δCD

( ∂Θ̂I

∂XA
EA

)
⊗
( ∂Θ̂J

∂XB
EB

)
= GIJG

I ⊗GJ and

g :=δabe
a ⊗ eb = gijg

i ⊗ gj .

(2.13)

Analogously, the covariant identity tensors in the material and spatial configurations
denoted by G−1 and g−1, respectively, read

G−1 := δABEA ⊗EB = GIJGI ⊗GJ and g−1 := δabea ⊗ eb = gijgi ⊗ gj . (2.14)

Please note that although G ≡ G−1 and g ≡ g−1, we use different tensorial notations in
order to distinguish the contravariant and covariant representations of the same object
in the index notation2. In addition, the following tensorial notations are sometimes used
to differentiate the covariant and contravariant representation of the same vector in the
index notation, i.e., we have in the material configuration

M ♯ :=MAEA = M
IGI and M ♭ :=MAE

A = MIG
I , (2.15)

and in the spatial configuration

m♯ := maea = m
igi and m♭ := mae

a = mig
i, (2.16)

where M ♯ ≡ M ♭ and m♯ ≡ m♭ denote the same vectors but in different representations3.
Thus, regardless of whether the covariant or contravariant representation is used, the
vectors stay invariant.

2Here a covariant (contravariant) representation of a vector means that the vector’s coefficients are
given in the covariant form (contravariant form) and its bases in the contravariant form (covariant form).

3Note that here M ♯ and m♯ or M ♭ and m♭ are not related to each other via any mapping.
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For the tensor operations in the index notation, it is convenient not to consider the
bases explicitly. Therefore, we accept the following relations

M ♭ = GM ♯ or M ♯ = G−1M ♭ and m♭ = gm♯ or m♯ = g−1m♭ , (2.17)

which can be given in the index notations w.r.t. the curvilinear coordinates as follows

MI = GIJM
J or M

I = GIJ
MJ and mi = GijM

j or M
i = Gij

Mj . (2.18)

In the following, we will drop the superscripts and consider them explicitly only when
necessary. Furthermore, we accept M := M ♯ and m := m♯.

Having introduced the metrics as well as the metric tensors, the inner product takes
the following form in the reference configuration

M ·M = M ·M ♭ = M ·GM =MAMBδAB =MAMA︸ ︷︷ ︸
Cartesian
coordinates

= M
I
M

JGIJ = M
I
MI︸ ︷︷ ︸

curvilinear
coordinates

, (2.19)

and in the current configuration

m ·m = m ·m♭ = m · gm = mambδab = mama︸ ︷︷ ︸
Cartesian
coordinates

= m
i
m

jgij = m
i
mi︸ ︷︷ ︸

curvilinear
coordinates

. (2.20)

2.1.4 Fundamental mappings of continuum mechanics

Deformation gradient: tangent and normal maps. Considering the convected
coordinates, i.e., θi = δiIΘ

I and the definition of the spatial tangent vector, we can write

gi = x̂a,iea =
∂ϕa

∂XA

∂X̂A

∂ΘI
δIi ea =

∂ϕa

∂XA

∂X̂B

∂ΘI
δABδ

I
i ea

=
∂ϕa

∂XA

∂X̂B

∂ΘI
EA ·EBδ

I
i ea =

[
∂ϕa

∂XA
(ea ⊗EA)

]

︸ ︷︷ ︸
F

[
∂X̂B

∂ΘI
δIiEB

]

︸ ︷︷ ︸
GIδ

I
i = Gi

= FGi ,
(2.21)

where gi ≡ gI or Gi ≡ GI can be considered, since θi ≡ Θi or θI ≡ ΘI holds in the case
of convected coordinates. In the above equation, we identify F as the tangent map which
is defined as Fréchet derivative of deformation map ϕ(X, t)

F (X, t) = Dϕ(X, t) = F a
A ea ⊗EA

︸ ︷︷ ︸
Cartesian
coordinates

= δiIgi ⊗GI

︸ ︷︷ ︸
curvilinear
coordinates

, (2.22)

where F a
A = ∂ϕa/∂XA = ϕa

,A are the coefficients of the deformation gradient in the
Cartesian coordinates. Analogously, if we start from the definition of the material tangent
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vector, we obtain

GI = X̂A
,IEA =

∂XA

∂xa
∂x̂a

∂θi
δiIEA =

∂XA

∂xa
∂x̂b

∂θi
δab δ

i
IEA

=
∂XA

∂xa
∂x̂b

∂θi
ea · ebδ

i
IEA =

[
∂XA

∂xa
(EA ⊗ ea)

]

︸ ︷︷ ︸
F−1

[
∂x̂b

∂θi
δiIeb

]

︸ ︷︷ ︸
giδ

i
I = gI

= F−1gI ,
(2.23)

where the inverse of the deformation gradient F−1 reads

F−1 = (F−1)AaEA ⊗ ea

︸ ︷︷ ︸
Cartesian
coordinates

= δIiGI ⊗ gi

︸ ︷︷ ︸
curvilinear
coordinates

. (2.24)

Consequently, the deformation gradient F : TXB0 → TxBt maps a tangent vector in the
reference configuration to a tangent vector in the current configuration. Likewise, the
inverse deformation gradient F−1 : TxBt → TXB0 is a tangent map from the current to
the reference configuration. Thus, the following results hold

dx = F dX = F a
A dX

Aea = δiIdX
Igi = dxigi , (2.25)

and

dX = F−1dx = (F−1)Aadx
aEA = δIi dx

iGI . (2.26)

Analogously, we can derive the following relation for the material and spatial normals

gi = F−TGi and GI = F TgI , (2.27)

where F−T is identified as the normal map. F −T : T ⋆
XB0 → T ⋆

xBt maps a normal vector
in the reference configuration to a normal vector in the current configuration. Likewise,
F T : T ⋆

xBt → T ⋆
XB0 is a normal map from the current configuration to the reference

configuration.

Area map. In order to arrive at a mapping between the area elements of the reference
and current configurations, we first introduce an infinitesimal referential and a current
area element using the definition of the cross-product from two infinitesimal line elements
in the reference and current configurations, respectively, i.e., dA = dX1 × dX2 ∈ T ⋆

XB0

and da = dx1 × dx2 = FdX1 × FdX2 = cof F [dX1 × dX2] ∈ T ⋆
XBt. This reveals that

the cofactor of the deformation gradient cof F : T ⋆
XB0 → T ⋆

xBt is the area map between
the reference and current configurations

da = JF−TdA = J(F−1)AadAAe
a = JδIi dAIg

i . (2.28)

If we compare the last equation with the normal map given in (2.27), we can notice a
similarity. This is also due to the association of the area elements with the normal vectors.

Volume map. Similar to the area map, we also establish a mapping relationship
between the current infinitesimal volume element dv and the referential infinitesimal vol-
ume element dV exploiting the triple-product among three infinitesimal line elements,
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i.e., dv = FdX1 · (F dX2×F dX3) = detF [dX1 · (dX2×dX3)] = JdV . As a result, the
deformation gradient’s determinant (also referred to as Jacobian) J = detF : R3×3 → R+

is obtained to be the volume map

dv = detF dV = det[F a
A ]dV =

√
det[gij]√
det[GIJ ]

dV , (2.29)

where it is clear that J = detF > 0 should hold since vanishing or negative volume is not
physical. The last term in the above equations can be derived considering the relations
F a

A = ϕa
,A = x̂a,iδ

i
IΘ̂

I
,A, det[x̂

a
,i] =

√
det[gij] and det[X̂A

,I ] =
√

det[GIJ ].

2.1.5 Push-forward and pull-back operations

Based on the tangent and normal maps given above, we introduce two kinds of push-
forward operations of a referential vector to the current configuration

m = ϕ⋆
t (M) = FM = F (MIGI) = M

IgI and

m♭ = ϕ⋆
t (M

♭) = F−TM ♭ = F−T (MIG
I) = MIg

I .
(2.30)

The particular push-forward operation is established in relation to the transformation
property of the vector, e.g., the tangent and normal vectors undergo different transfor-
mations under a deformation, as discussed above.

From (2.30), we observe that the coefficients of the vectors in the reference and current
configurations do not change after the push-forward operations in the convected curvilin-
ear coordinates. Although we can choose the vector in the reference configuration in a
way that MI = GIJ

MJ holds, MI 6= gIJMJ since m 6= m♭ are not the same objects after
the push-forward operations.

After the push-forward operation using the tangent map, the tangential components of
the vector in the reference configuration stay tangential to the convected coordinate lines
in the current configuration. Likewise, after the push-forward operation using the normal
map, the normal components of the vector in the reference configuration stay normal to
the convected coordinate lines in the current configuration; see Fig. 2.3 for a geometrical
interpretation in a simplified two-dimensional body.

Similarly, we also introduce two kinds of pull-back operations of spatial vectors to the
reference configuration

M = ϕt⋆(m) = F−1m = F−1(migi) = m
iGi and

M ♭ = ϕt⋆(m
♭) = F Tm♭ = F T (mig

i) = miG
i.

(2.31)

Likewise, the coefficients of the vectors do not change after the pull-back operation in the
convected curvilinear coordinates. Again, although m

i = gijmj holds, but m
i 6= Gij

mj ,

since M 6= M ♭ after pull-back operation.

2.1.6 Measures of deformation: strain tensors

Having introduced the fundamental mappings with respect to the reference and current
configurations, we can also determine the length of a vector in the current configuration
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G1 ≡ G1

G2 ≡ G2

g1

g2

M ≡ M ♭

M1

M2

m = FM

m♭ = F−TM ♭

m1

m2

m♭
1

m♭
2

F = F a
A ea ⊗EA

F a
A =

[
1 γ
0 1

]B0

Bt

Figure 2.3: Push-forward of a vector M using the tangent and normal maps in two di-
mensions. In the figure, the push-forward operation is described for a two-dimensional body
which undergoes a pure shear deformation. When the vectorM is pushed forward to the cur-
rent configuration using the tangent map F , the components m1 = FM1 and m2 = FM2

of the vector stay tangent to the convected coordinate lines. Likewise, when the vector M
is pushed forward to the current configuration using the normal map F−T , the components
which are also normal to the coordinate lines in the references configurations stay normal
in the current configuration. In the latter case, m♭

1 = F−TM1 and m♭
2 = F−TM 2 are

considered. Here, m = cm♭, with c being the Finger tensor, holds, see (2.34)2.

from its referential counterpart as ([37, 139, 222, 153, 104])

‖dx‖2g = dx · dx = dx · gdx = dX · (F TgF )dX = dX ·CdX = ‖dX‖2C , (2.32)

and the length of a vector in the reference configuration from its spatial counterpart as

‖dX‖2G = dX · dX = dX ·GdX = dx · (F−TGF−1)dx = dx · cdx = ‖dx‖2c , (2.33)

where we have employed the right Cauchy-Green deformation tensors C and the Finger
tensor c as the pull-back of the spatial metric tensor g and push-forward of the material
metric tensor G, respectively, i.e.,

C : = ϕ⋆
t (g) = F TgF = F TF

= F a
AF

b
B δabE

A ⊗EB = CABE
A ⊗EB = gIJG

I ⊗GJ and

c : = ϕt⋆(G) = F−TGF−1 = F −TF−1

= (F−1)Aa(F
−1)BbδABe

a ⊗ eb = cabe
a ⊗ eb = Gijg

i ⊗ gj .

(2.34)

where gij ≡ gIJ and Gij ≡ GIJ hold due to the considered convected coordinates. Here we
also observe that when considering the convected curvilinear coordinates, the coefficients
of the tensors C and g and G and c in the reference and current configurations are the
same. This directly allows interpreting C as the spatial metric tensor in the reference
configuration and c as the material metric tensor in the current configuration. C and
c, being metric tensors in the Euclidean space, are also symmetric and positive-definite.
Thus, the Finger tensor c acts on an Eulerian vector and allows measuring the length
of this vector in the reference configuration, and the right Cauchy-Green deformation
tensor C acts on a Lagrangian vector and allows measuring the length of this vector in
the current configuration; see (2.32) and (2.33). For the geometrical description of the
mapping of these tensors between the tangent and cotangent spaces, see Fig. 2.4.



26 2.1. Fundamentals of Continuum Mechanics

TXB0TXB0

T ⋆
XB0T ⋆

XB0

TxBtTxBt

T ⋆
xBtT ⋆

xBt

F

F TF−T

F−1

G gCc

MM

M ♭

mm

m♭

M ♭

m♭

(a) (b)

Figure 2.4: Mapping properties of metric tensors. (a) The metric tensors G and c allow to
determine the length of a vector in the reference configuration from the reference and current
representations of a vector, respectively, i.e., ‖M‖2G = ‖m‖2c; (b) The metric tensors C and
g allow to determine the length of a vector in the current configuration from the reference
and current representations of a vector, respectively, i.e., ‖M‖2C = ‖m‖2g .

Based on the metric tensors and their material and spatial representations, the local
strain tensors are introduced. Two of the most commonly used strain tensors are the
Green-Lagrange and the Euler-Almansi tensor [153]. These tensors are defined below as
the difference between the spatial and material metric tensors

E =
1

2
(C −G) and e =

1

2
(g − c) . (2.35)

They are given in the Cartesian coordinates as

EAB =
1

2
(CAB −GAB) and eab =

1

2
(gab − cab) . (2.36)

For the more generalized forms of these strain tensors, i.e., the so-called Seth-Hill
family of strain tensors, see [211, 71, 150].

2.1.7 Rate of spatial variables and Lie derivative

We start with the time derivative of the covariant bases in the spatial configuration, i.e.,

gi = FGi ⇒ ġi =
˙FGi = Ḟ F−1FGi = lgi , (2.37)

where l := Ḟ F−1 = gradv is the spatial velocity gradient. It is a second-order mixed-
variant tensor, i.e., l = labea ⊗ eb in the Cartesian coordinates. Thus, the time derivative
of Eulerian tangent vectors can be determined using a mapping with the spatial velocity
gradient. Likewise, the time derivative of an infinitesimal line element in the spatial

configuration is determined as ˙dx = ldx.

Analogously, the time derivative of the contravariant bases in the spatial configuration
can also be defined using the spatial velocity gradient l as

Gi = F Tgi ⇒ 0 =
˙

F Tgi + F T ˙
gi ⇒ ˙

gi = −lTgi . (2.38)

Having the above results at hand, we take the rate of the squared length of an infinitesimal
line element in the spatial configuration as

˙‖dx‖2g = ˙dx · gdx = ˙dx · gdx+ gdx · ˙dx = 2dx · 1
2
[(gl)T + gl]dx = 2dx · ddx , (2.39)
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where we have used ġ = 0 . The latter immediately follows from the representation of the
covariant identity tensor g in the Cartesian coordinates; see (2.13)2. In the above equation,
d := sym(gl) is called the covariant rate of deformation tensor, which characterizes the
rate of change in the length of a vector. Although we do not show here, d can also be used
to characterize the rate of change of an angle between two infinitesimal line elements due
to shear deformation, see [167]. Thus, it follows from (2.39) that in the following relation

˙dx = ldx = g−1(d+w)dx (2.40)

the skew-symmetric spin tensor w = skew(gl) characterizes the rate of change in a vector
due to a rigid rotation. This interpretation becomes clear, if we consider the rate of an
Eulerian unit vector m̃

˙̃m =
˙( dx

‖dx‖
)
= lm̃− (m̃ · dm̃)m̃ . (2.41)

Contracting the last equation with m̃
♭
= gm̃ and considering m̃ · m̃♭

= 1, we can write
the following expression

˙̃m · gm̃ = m̃ · glm̃− m̃ · dm̃ = m̃ ·wm̃ = 0 ⇒ ˙̃m = g−1wm̃ , (2.42)

where we have exploited the skew-symmetry of the spin tensor w. Thus, we can interpret
the spin tensor as the rate of change of an Eulerian unit tangent vector due to a rigid
rotation.

The rate of deformation tensor can also be defined as the Lie derivative of the covariant
metric tensor g as

d =
1

2
£vg with £vg = gl+ (gl)T = ϕ⋆

t (Ċ) . (2.43)

The Lie derivative of a spatial object is invariant under a rigid rotation of a continuum
body and is, therefore, often considered to describe the incremental or rate-type consti-
tutive equations of the material in the Eulerian configuration. It is defined as follows
([222, 153, 104])

£v(·) := ϕ⋆
t

( d
dt
{ϕt⋆(·)}

)
or £v(·) := push-forward

( d
dt

{pull-back(·)}
)
. (2.44)

In order to have some insight into this derivative, we consider an Eulerian tangent vector
m and take the Lie derivative as given below

£vm = ϕ⋆
t

( d
dt

{ϕt⋆(m)}
)
= F

˙
F−1m = ṁ− lm =

˙
migi , (2.45)

where we have used the relation (2.37). This equation allows interpreting the Lie derivative
as the temporal change of an object relative to a deforming observer with the continuum
body.

For completeness, we also give the Lie derivative of an Eulerian normal vector n

£vn = ϕ⋆
t

( d
dt
{ϕt⋆(n)}

)
= F−T ˙

F Tn = ṅ+ lTn = ṅig
i , (2.46)
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where we have used the relation (2.38). Likewise, we observe that the Lie derivative is
only associated with the rate of change of the curvilinear coefficient with fixed bases.

Furthermore, we introduce the contravariant rate of deformation tensor d♯ as

d♯ = −1

2
£vg

−1 with £vg
−1 = −lg−1 − (lg−1)T = ϕ⋆

t (
˙

C−1) , (2.47)

where ˙
g−1 = 0 has been considered. d♯ can analogously be exploited to measure the rate

of change in the squared length of spatial normal vectors.

Finally, we give the material rate of the infinitesimal spatial area and volume elements,
which can be obtained from (2.28) and (2.29) as

d

dt
(da) = ḋa = −lTda+ da div v and

d

dt
(dv) = ḋv = dv div v . (2.48)

2.1.8 Integral theorems and rate of volume integrals

As a basis for the derivations of the following sections, we introduce integral identities and
rate of volume integrals in this section. In particular, we focus on two integral theorems,
namely Gauss’ theorem and Stokes’ theorem. The theorems are used to transfer, for
example, a volume integral to a surface integral or vice versa. Such transformations are
essential to derive local balance equations from their global forms. In addition to the
integral theorems, we also discuss in detail the rate of volume integrals in the Lagrangian
and Eulerian configurations.

Gauss’ theorem. This theorem is also referred to as the divergence theorem. The
theorem can be applied to transfer a surface integral of a continuous variable to a volume
integral. Let us consider a subdomain P0 ⊆ B0 in the Lagrangian configuration, which
deforms to an Eulerian subdomain Pt ⊆ Bt. Surfaces of the subdomains are denoted
as ∂P0 and ∂Pt, respectively. The divergence theorem then reads in the reference and
current configurations as

∫

∂P0

Q(X, t) · dA =

∫

∂P0

Q(X, t) ·N dA =

∫

P0

Div[Q(X, t)]dV and

∫

∂Pt

q(x, t) · da =

∫

∂Pt

q(x, t) · n da =

∫

Pt

div[q(x, t)]dv ,

(2.49)

respectively. Here N and n are the Lagrangian and Eulerian outward normals of the
surfaces ∂P0 and ∂Pt, respectively. The notations Div and div denote the divergence
operations with respect to X and x, correspondingly. Q and q are arbitrary Lagrangian
and Eulerian quantities. In case the following relation between these quantities holds

∫

∂Pt

q(x, t) · da =

∫

∂P0

Q(X, t) · dA , (2.50)

we deduce push-forward and pull-back relations between Q and q as well as their diver-
gences

JF−1q = Q or q = J−1FQ and div q = J−1DivQ , (2.51)
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where J = det[F ] is the Jacobian.

Now, let us consider the material time derivative of the integral expression in (2.50)
as

d

dt

∫

∂Pt

q(x, t) · da =
d

dt

∫

∂P0

Q(X, t) · dA . (2.52)

After carrying out the material time differentiation in the latter expression

∫

∂Pt

£vq · da =

∫

∂Pt

(q̇− lq+ q div v) · da =

∫

∂P0

Q̇ · dA (2.53)

and applying Gauss’ theorem and localizing the integral, we obtain

div[£vq] = div[q̇− lq+ q div v] = J−1Div Q̇ . (2.54)

Conversely, if we first apply Gauss’ theorem in (2.52) and then carry out the material
time derivative, we arrive at

£v[div q] =
˙div q+ div q div v = J−1Div Q̇ , (2.55)

where we have considered the commutativity of the material divergence and the material
time derivative. Furthermore, we observe that the spatial divergence and the Lie derivative
commute, i.e.,

£v[div q] = div[£vq] . (2.56)

However, the spatial divergence and the material time derivative do not commute. Con-
sidering (2.54) and (2.55), we can derive the following expression for the material time
derivative of divq

˙div q = div q̇− lT : gradq . (2.57)

It is worth emphasizing that the above derivations are results of the requirement (2.50).

Stokes’ theorem. Like Gauss’s theorem, Stokes’ theorem can be applied to transfer
a closed line integral of a continuous variable to a surface integral. Let us denote a
Lagrangian surface by S0 and its boundary by ∂S0, which deforms to an Eulerian surface
St with the boundary ∂St . The theorem then can be utilized in the reference and current
configurations as

∮

∂S0

S(X , t) · dX =

∫

S0

Curl[S(X , t)] · dA and

∮

∂St

s(x, t) · dx =

∫

St

curl[s(x, t)] · da ,
(2.58)

respectively. Here, Curl and curl are operations with reference to the positions X and x

correspondingly. In this case, if the following relation holds

∮

∂St

s(x, t) · dx =

∮

∂S0

S(X, t) · dX , (2.59)
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we now arrive at different push-forward and pull-back relations between the quantities S
and s as well as their curls

F Ts = S or s = F−TS and curl s = J−1F CurlS . (2.60)

Now let us consider again the material time derivative of the integral expression in
(2.59) as

d

dt

∮

∂St

s(x, t) · dx =
d

dt

∮

∂S0

S(X , t) · dX . (2.61)

After carrying out the material time differentiation in the latter expression
∮

∂St

£vs · dx =

∮

∂St

(ṡ+ lTs) · dx =

∮

∂S0

Ṡ(X, t) · dX (2.62)

and applying Stokes’ theorem and localizing the integral, we obtain

curl£vs = curl[ṡ+ lTs] = J−1F Curl Ṡ . (2.63)

Conversely, if we first apply Stokes’ theorem in (2.61) and then carry out the material
time derivative, we arrive at

£v[curl s] =
˙curl s− l curl s+ curl s div v = J−1F Curl Ṡ , (2.64)

where we have considered the commutativity of the material Curl operator and the ma-
terial time derivative. Furthermore, we observe that the spatial curl operator and the Lie
derivative commute, i.e.,

£v[curl s] = curl[£vs] . (2.65)

However, the spatial curl operator and the material time derivative do not commute.
Considering (2.63) and (2.64), we can derive the following expression for the material
time derivative of curl s

˙curl s = curl ṡ+ curl[lTs] + l curl s− curl s div v = curl ṡ− ǫ : (lT grad Ts) . (2.66)

where grad Ts = (grad s)T and ǫ is the third-order permutation tensor.4 It is worth
emphasizing that the above derivations are results of the requirement (2.59).

Rate of volume integrals. Let F denote a global quantity defined over an arbitrary
subdomain, either Lagrangian P0 ⊆ B0 or Eulerian Pt ⊆ Bt as follows

F =

∫

P0

F (X, t) dV =

∫

Pt

f(x, t) dv , (2.67)

4Here, we have used the following identity to simplify this equation

(div v1 − l) curl s = ǫ : (lT grad Ts)− ǫ : (lT grads) and curl(lTs) = −ǫ : (lT grads) ,

where the first equation can also be obtained from the following expression (see also [50], Section 2.8)

(div v1 − l)m× n = (lTm)× n− (lTn)×m = ǫ : (lTm⊗ n)− ǫ : (lTn⊗m) .

with m and n being arbitrary vectors.
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B0

Bt

P0

Ptϕ(X , t)

dV
dv

dA
da

q

Q
n

N

b
X

x

t̃

t

E1

E2

E3

e1
e2

e3

Figure 2.5: Thermomechanical forces acting on a subdomain Pt ⊆ Bt. An arbitary sub-
domain Pt cut out of the body Bt via Euler’s cut principle is described. The subdomain
undergoes action of body forces b in the volume and a thermomechanical interactions on the
surface. The thermomechanical interactions are induced by the remaining domain Pt\Bt

and described by a Cauchy surface traction t or t̃ and surface heat flux q in the current
configurations.

where F (X, t) and f(x, t) = J−1F (X, t) are continous Lagrangian and Eulerian volume
densities of F defined per unit volume of P0 and Pt, respectively. Then, the rate of the
global quantity F can be determined by

Ḟ =
d

dt
F =

d

dt

∫

P0

F (X, t) dV =

∫

P0

∂F

∂t
dV (2.68)

in the Lagrangian configuration and

Ḟ =
d

dt

∫

Pt

f(x, t) dv =

∫

Pt

d

dt

(
f dv

)
=

∫

Pt

(df
dt

+ f div[v]
)
dv (2.69)

in the Eulerian configuration. If we consider the total (or material) time derivative of the
Eulerian density f(x, t) in the above equation, we obtain the Reynolds transport theorem

Ḟ =

∫

Pt

(∂f
∂t

+ div[fv]
)
dv =

∫

Pt

∂f

∂t
dv +

∫

∂Pt

fv · da , (2.70)

where we have used Gauss’ theorem. Consequently, the change of a global quantity defined
over Pt is due to the temporal change of the quantity in the volume of the subdomain
Pt and its flux on the boundary ∂Pt. Nevertheless, when we consider the Lagrangian
configuration to describe the rate of a global quantity, we do not have a flux term.

2.1.9 Cauchy’s theorem: stress tensor and heat flux vector

Mechanical stress tensor. Let Pt ⊆ Bt denote an arbitrary cut-out subdomain of Bt

in the current configuration. Likewise, let P0 ⊆ B0 denote the Lagrangian counterpart
of Pt, see Fig. 2.5. If we denote the resultant force as FS

Pt
due to mechanical interaction

between the subdomain Pt and the rest of the body Bt\Pt on the contact surface ∂Pt, we
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can write

F
S
Pt

=

∫

∂Pt

t(x, t;n) da =

∫

∂P0

t̃(x, t;N) dA , (2.71)

where t and t̃ denote traction vectors, which describe the surface density of the resultant
contact force per unit area of ∂Pt and ∂P0, respectively. The unit of surface tractions is
newtons per meter squared (N/m2). n and N denote the outward surface normals of the
current and reference areas correspondingly.

Cauchy’s theorem postulates that the current traction vector can be expressed em-
ploying the Cauchy stress tensor σ and outward normal n of the current area as follows
[139, 167, 153]

t(x, t;n) := σ(x, t)n or ta := σabnb . (2.72)

Furthermore, considering a similar relation for t̃(x, t;N) utilizing the first Piola-Kirchhoff
stress tensor and outward normal N of the referential area [139, 167, 153], we can write

t̃(x, t;N) := P̃ (X, t)N or t̃a := P̃ aBNB , (2.73)

where P̃ is a second-order two-point tensor; one of its bases is defined in the current
configuration and the another in the reference configuration. In addition to the given
representation, we further introduce another representation of the first Piola-Kirchhoff
stress tensor, i.e., P = gP̃ = P A

a ea ⊗EA.

Considering Cauchy’s and the divergence theorem in (2.71), we obtain the following
relations between the Cauchy and the first Piola-Kirchhoff stress tensor as well as their
divergence

JσF−T = P̃ and J divσ = Div P̃ . (2.74)

Finally, we introduce the symmetric Kirchhoff and the second Piola-Kirchhoff stress ten-
sor as τ := Jσ and S := F−1P̃ = F−1τF−T correspondingly. Although τ and S are
defined in different configurations, both stress tensors with their dual strains yield a stress
power per unit volume of the reference configuration. The last two stress tensors can be
obtained from the equivalence of the stress power in different configurations.

Heat flux vector. Similar to the mechanical interactions, the thermal interactions on
the contact surface between the subdomain Pt and the rest of the body Bt\Pt can be
characterized by the amount of heat exchange QS

Pt
through the boundary of Pt

QS
Pt

=

∫

∂Pt

q(x, t;n) da =

∫

∂P0

Q(x, t;N) dA , (2.75)

where q and Q are outward scalar heat fluxes defined per unit areas of Pt and P0, respec-
tively. The unit of the heat fluxes is joules per second per meter squared (J/(sec · m2)).
In this case, Cauchy’s theorem postulates that the heat fluxes can be given in terms of
a heat flux vector and the outward normal of the area. In the current configuration, the
theorem can be written as

q(x, t;n) := q(x, t) · n or q := qana , (2.76)
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where q is referred to as the Cauchy heat flux vector. A similar relation can also be
constructed for the referential heat flux Q as [139, 153]

Q(X, t;N) := Q(X, t) ·N or Q := QANA , (2.77)

where Q is referred to as the Piola-Kirchoff heat flux vector. The following relationships
between the heat flux vectors and their divergences can be derived from (2.75) as [139, 153]

JqF−T = Q and J div q = DivQ . (2.78)

2.1.10 Conjugate stress and strain tensors in stress power

The stress power is associated with the power of external mechanical volume and surface
forces acting on a subdomain Pt ⊆ Bt. It is expressed by the contraction of a stress tensor
with its conjugate (or dual) deformation tensor. Based on the above definition of the
stress tensors, we can define the stress power as follows

PPt
=

∫

Pt

σ : d dv =

∫

P0

τ : d dV =

∫

P0

P : Ḟ dV =

∫

P0

S :
1

2
Ċ dV , (2.79)

where the Kirchhoff stress with its dual strain rate yields a stress power density per unit
volume of the reference configuration. Recall that the following relation holds between
the rate of the deformation tensor and the rate of the right Cauchy-Green tensor

d =
1

2
ϕt⋆(Ċ) =

1

2
£vg =

1

2
F−T ĊF−1. (2.80)

2.1.11 Governing equations of thermomechanics

This subsection introduces some fundamental physical properties of a deformable body –
mass, linear momentum, angular momentum, energy, and entropy – associated with an
arbitrary subdomain Pt ⊆ Bt of a body Bt in the current configuration. The subdomain
is usually assumed to be cut out of the body via Euler’s cut principle. These physical
quantities change due to thermomechanical interactions between the part Pt and the rest
of the body Bt\Pt as well as due to the supply and production of a quantity in the
volume of Pt. The interaction can be due to mechanical tractions and heat flux on the
surface ∂Pt of the part in the case of thermomechanical loading. In the case of electro-
or magneto-mechanics, we need to account for further interactions, which we deal with in
the following sections.

The objective of this section is to derive governing differential equations (also referred
to as balance equations) of the fundamental physical quantities associated with a contin-
uum body undergoing thermomechanical loading. At first, we formulate these equations
for an arbitrary part Pt, which are defined in integral form and referred to as global
forms. Next, considering that the equations must hold for an arbitrary cut-out part, we
deduce the so-called local forms, which hold at each continuum point. These equations
are formulated independent of the material response. Instead, the response of a specific
material is accounted for by an additional set of material equations building relations
between dual quantities in the governing equations. The material equations are also nec-
essary for the closure of the balance equations. For more detailed treatements, we refer
to [139, 167, 75, 233, 39, 153, 141, 22, 225], among others.
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Balance of mass. Assuming that there is no source or sink of mass in the volume
as well as no mass flux on the surface of an arbitrary subdomain Pt, this balance law
requires the mass of a part Pt to stay unchanged in the course of a deformation

d

dt
MPt

:=
d

dt

∫

Pt

ρ(x, t) dv =
d

dt

∫

P0

ρ0(X) dV = 0 . (2.81)

Taking the rate of integrals above and considering Pt is an arbitrary subdomain, we arrive
at the local mass balance laws in the current and reference configurations

ρ̇+ ρ div v = 0 and ρ0(X) = Jρ(x, t) , (2.82)

respectively. ρ(x, t) and ρ0(X) are the current and reference mass densities of the body.

Balance of linear momentum. The balance law governs the change in the linear
momentum IPt

of a subdomain Pt, resulting from the mechanical surface and body forces.
It can be stated as follows

d

dt
IPt

= FPt
or

d

dt

∫

Pt

ρv dv =

∫

Pt

ρb dv +

∫

∂Pt

t da , (2.83)

where b denotes a mass-specific body force; it is measured by newtons per kilogram
(N/kg). Again, taking the rate of the integral in the above equation and using Cauchy’s
and Gauss’ theorems, we obtain the local form of the balance of linear momentum in the
current configuration as

ρv̇ = divσ + ρb or ρv̇a = σab
,b + ρba . (2.84)

Analogously, we can also express (2.83)1 in the reference configuration

d

dt

∫

P0

ρ0V dV =

∫

P0

ρ0b dV +

∫

∂P0

t̃ dA , (2.85)

and then apply Cauchy’s and Gauss’ theorems to obtain the local form as

ρ0V̇ = div P̃ + ρ0b or ρ0V̇
a = P̃ aB

,B + ρ0b
a . (2.86)

Balance of angular momentum. This balance law links the change in the angu-
lar momentum DPt

of a subdomain Pt to the momentum MPt
of forces acting on this

subdomain. Thus, the angular momentum’s change with reference to a point O can be
expressed as

d

dt
D

O
Pt

= M
O
Pt

or
d

dt

∫

Pt

x× ρv dv =

∫

Pt

x× ρb dv +

∫

∂Pt

x× t da . (2.87)

Similarly, taking the rate of the integral on the left-hand side and applying Cauchy’s and
Gauss’ theorems, we obtain the local balance equations in the current configuration and
in the two-point setting, respectively, as

σ = σT and F P̃ T = P̃ F T . (2.88)

Balance of energy. The balance of energy is also known as the first law of thermody-
namics. It governs the change of the total energy of the subdomain Pt depending on the
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applied mechanical PPt
and thermal QPt

powers. The total energy is defined as the sum
of the kinetic energy KPt

and the internal energy EPt
of Pt with the following definitions

KPt
=

1

2

∫

Pt

ρv · v dv =
1

2

∫

P0

ρ0V · V dV and EPt
=

∫

Pt

ρe dv =

∫

P0

ρ0e dV , (2.89)

where e is a mass-specific internal energy density; it is measured by joules per kilogram
(J/kg = (N ·m)/kg). The first law of thermodynamics in the global form can be expressed
as

d

dt

(
KPt

+ EPt

)
= PPt

+ QPt
, (2.90)

which states that the total energy of the subdomain Pt is conserved if the subdomain does
not undergo any external action. Here, PPt

is the power of a mass-specific body force b

in Pt and a surface traction t(x, t;n) on Pt (see also (2.79))

PPt
=

∫

Pt

ρb · v dv +

∫

∂Pt

t · v da
(2.84)
=

∫

Pt

σ : d dv
(2.79)
=

∫

P0

P : Ḟ dV , (2.91)

and QPt
is the thermal power associated with a mass-specific heat source r(x, t) in Pt and

an outward surface heat flux q(x, t;n) on ∂Pt

QPt
=

∫

Pt

ρrdv −
∫

∂Pt

q da , (2.92)

where q = q·n is considered positive if the heat flows out of the subdomain Pt. Considering
the local forms of the balance of linear momentum, the balance of mass, and Cauchy’s
and Gauss’ theorems, the local form of the balance of energy in the current and reference
configurations are obtained as follows

ρė = σ : d+ ρr − div q and ρ0ė = P : Ḟ + ρ0r − DivQ . (2.93)

Balance of entropy. The entropy of a subdomain Pt in continuum mechanics, in
particular, a change in entropy of Pt characterizes that an external power put on this
subdomain Pt is not completely stored in the material to do useful work. However, some
part of this energy is dissipated as heat due to either inelastic material response or heat
transfer.

The balance of entropy governs the evolution of entropy HPt
depending on the entropy

power SPt
and entropy production GPt

d

dt
HPt

= SPt
+ GPt

, (2.94)

where the global variables associated with the subdomain Pt can be expressed in terms
of the density fields as follows

HPt
=

∫

Pt

ρη dv , SPt
=

∫

Pt

ργ dv and GPt
=

∫

Pt

ρr

ϑ
dv −

∫

∂Pt

q

ϑ
da , (2.95)

where η and γ are mass-specific entropy and entropy production densities correspond-
ingly; they are measured by joules per kilogram per kelvin (J/(kg · K)) and joules per
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kilogram per second per kelvin (J/(kg · sec ·K)) correspondingly. Furthermore, we observe
that the entropy power or supply expression is similar to the thermal power expression
(2.92), namely the heat source ρr as well as the heat flux q is divided by the absolute tem-
perature ϑ(x, t) (unit of measure for the absolute temperature is kelvin (K). This form is
because, at high temperatures, the same amount of thermal power can be transferred to
mechanical energy more efficiently than at lower temperatures; see, for example, Coussy
[39]. Therefore, at higher temperatures, the same amount of heat source and heat flux
induces a lower increase in entropy than at lower temperatures.

The Eulerian and Lagrangian forms of the balance of entropy can be obtained as

ρη̇ = ργ +
1

ϑ
(ρr − div q) +

1

ϑ2
q · gradϑ and

ρ0η̇ = ρ0γ +
1

ϑ
(ρ0r − DivQ) +

1

ϑ2
Q ·Gradϑ ,

(2.96)

respectively. Here ρ0γ is the Lagrangian entropy production density. Considering the
balance of energy (2.93)2 in (2.96)2, we can obtain the final form of the Lagrangian
balance law for entropy

ρ0η̇ = ρ0γ +
1

ϑ
(ρ0ė− P : Ḟ ) +

1

ϑ2
Q ·Gradϑ , (2.97)

where we identify the dissipation density as the product of the entropy production and ab-
solute temperature ρD := ρϑγ, which is the power density dissipated from the considered
system in the form of heat.

The second law of thermodynamics. This law describes the irreversibility of
thermodynamic processes. It requires the non-negativity of the entropy production, such
that the entropy of a thermally closed system cannot reduce. Hence, we can write this
law in terms of the dissipation in the Lagrangian configuration as

ρ0D = ρ0ϑγ = P : Ḟ + ρ0ϑη̇ − ρ0ė−
1

ϑ
Q ·Gradϑ ≥ 0 . (2.98)

The above inequality is also referred to as the Clausius-Duhem Inequality (CDI). From
the CDI, we observe that the rate of the internal energy density is associated with the
rates of the deformation gradient and entropy, thus e0 = ê0(F , η,α) with α characterizing
the inelastic response. Although this form can be considered, it is rather convenient to
have an energy function in terms of temperature since it can be easily prescribed and
measured during an experiment. By doing so, we introduce the Helmholtz energy density
via a partial Legendre-Fenchel transformation as

ψ̂(F , ϑ,α) := inf
η

(
ê(F , η,α)− ϑη

)
. (2.99)

Thus, the CDI can be given in relation to the Helmholtz energy density as follows

ρ0D = ρ0ϑγ = P : Ḟ − ρ0ϑ̇η − ρ0ψ̇− 1

ϑ
Q ·Gradϑ ≥ 0 . (2.100)

The CDI is usually split into a local and a heat conduction part, which are required to
be fulfilled separately according to Coleman’s exploitation method, [38]. Thus, we obtain
the Clausius-Planck Inequality (CPI) in the Lagrangian configuration as the local part

ρ0Dloc := P : Ḟ − ρ0ϑ̇η − ρ0ψ̇ ≥ 0 (2.101)
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and Fourier’s Inequality in the referential configuration as the heat conduction part

ρ0Dcon := −1

ϑ
Q ·Gradϑ ≥ 0 . (2.102)

The local part of the dissipation is associated with inelastic material response. In the case
of elasticity, we do not have any local dissipation. Hence, (2.101) turns into an equality
that needs to be satisfied for arbitrary deformation gradient and temperature rates. As a
result, we obtain the following constitutive functions that define the first Piola-Kirchhoff
stresses and the entropy in terms of the deformation gradient and the temperature

P = ρ0∂F ψ̂(F , ϑ) and η = −∂ϑψ̂(F , ϑ) . (2.103)

These are the constitutive equations in the so-called two-point setting. We can also derive
the constitutive equations for the second Piola-Kirchhoff stress tensor S, Kirchoff stress
tensor τ or Cauchy stress tensor σ based on the relation provided in Section 2.1.10. The
latter will be demonstrated in Section 2.4.

In order to fulfill Fourier’s inequality, we introduce a heat-flux potential function
φ̂(Gradϑ;F ), which governs the heat flux vector in terms of the gradient of the tem-
perature field at a given deformation state, i.e.,

Q = −∂Grad ϑφ̂(Gradϑ;F ) . (2.104)

The potential function φ is chosen as a convex function of the temperature gradient and
satisfies

φ̂(Gradϑ = 0 ;F ) = 0 and ∂Grad ϑφ̂(Gradϑ = 0 ;F ) = 0 , (2.105)

such that it fulfills Fourier’s inequality a priori.

Principle of Objectivity. This principle requires that the constitutive functions are
objective under rigid body transformations superimposed onto the deformed configura-
tion. The rigid body transformation ϕ+ can be expressed as

ϕ+ = c(t) +Q(t)x (2.106)

in terms of a rigid translation c(t) and a rigid rotation Q(t). Thus, the principle of
objectivity can be stated as

ψ̂(F , θ) = ψ̂(QF , θ) and φ̂(Gradϑ;F ) = φ̂(Gradϑ;QF ) ∀Q ∈ SO(3) , (2.107)

where SO(3) denotes the proper orthogonal group, and it is defined as

SO(3) := {Q |QTQ = g and detQ = 1} . (2.108)

The principle of objectivity is a priori fulfilled when the free-energy function and the
heat-flux potential are formulated employing the right Cauchy-Green deformation tensor
or its invariants, i.e.,

ψ̂(F , ϑ) = ψ̃(C, ϑ) = ψ(I1, I2, I3) and φ̂(Gradϑ;F ) = φ̃(Gradϑ;C) , (2.109)

where I1 := trC = tr(F TF ), I2 := tr(cofC) = tr(cof[F T ] cof[F ]) and I3 := detC =
(detF )2 are the principle invariants of C. The energy function of isotropic elastic mate-
rials can be characterized by these three invariants.
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2.2 Fundamentals of Electrostatics

In the present section, we deal with the basic notions of electrostatics. Hence, electro-
dynamic coupling of the electric field to magnetism is not considered. This means that
we do not take into account any currents or a changing magnetic field. Starting with
the interactions of discrete electric charges in a vacuum and using the principle of lin-
ear superposition, we define the electric field and derive Faraday’s law and Gauss’ flux
theorem in a continuous setting. Next, electrostatic fields and equations are extended to
deformable dielectric bodies under isothermal conditions. The brief discussion is based
on the works of [229, 121, 171, 79, 81, 64, 48, 98], among many others.

2.2.1 Coulomb force and definition of electric field

The most fundamental quantity in electrostatics is the electric charge of a particle. Sim-
ilar to masses of objects characterizing their gravitational interactions, electric charges
characterize electromagnetic interactions of particles; see [79, 64]. Electric charges have
negative and positive forms. Two particles with the same type of charges repel each other
while the different charges attract. The charge of a particle is quantized. It is integer
multiples of a quantity e ≈ 1.602 · 10−19C with units measured in coulombs (C). The
magnitude of e corresponds to the charge of an electron (−e) or a proton (+e).

The interaction between discrete charges has been quantified experimentally by Coulomb.
Assuming two stationary point charges in a vacuum, the interaction force between them,
according to Coulomb, is defined as

f e
12(x1) = −f e

21(x2) = kq1q2
x1 − x2

‖x1 − x2‖3
, (2.110)

where k is a constant of proportionality. In the SI unit system k = 1/(4πǫ0) with ǫ0 ≈
8.854 · 10−12C2/(Nm2) the permittivity of free space. f e

ij is the force acting from the
particle j on the particle i; see Fig. 2.6.

In the case of N point charges at rest distributed in free space, the force acting on a
test particle placed at a position x is determined using the principle of linear superposition

f e(x) =
q

4πǫ0

N∑

i=1

qi
x− xi

‖x− xi‖3
. (2.111)

Since at every point in free space, we can assume a test charge and define the force acting
on this charge due to the distributed point charges, we obtain a force field as a result
of the electrostatic interaction. Hence, we introduce the electric field to characterize the
intensity of this force field as follows

e(x) = lim
q→0

f e(x)

q
. (2.112)

The electric field is measured by newtons per coulomb (N/C) or volts per meter (V/m).
Based on the latter equation and the Coulomb force (2.111), we determine the electric
field of the stationary N point charges as given below

e(x) =
1

4πǫ0

N∑

i=1

qi
x− xi

‖x− xi‖3
. (2.113)
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q1

q2

f e
12(x1)

f e
21(x2)

x1 x2

O

Figure 2.6: Coulomb force between two stationary charges. The induced force on the
charged particles is aligned along the line connecting the particles.

Assuming the charges distributed continuously over a volume Vt with a charge density ρe,
i.e.,

∑N
i qi =

∫
Vt
ρe(x′)dv(x′), we obtain an integral expression for the electric field5

e(x) =
1

4πǫ0

∫

Vt

ρe(x′)
x− x′

‖x− x′‖3 dv(x′) = − grad

[
1

4πǫ0

∫

Vt

ρe(x′)

‖x− x′‖ dv(x′)

]
, (2.114)

where x′ is a radius vector pointing to the charged volume elements dv and x is a radius
vector where we calculate the electric field. In the above equations, the gradient operator
is with respect to x coordinates, and the integral is with respect to x′ coordinates. The
gradient operator has therefore been taken out of the integral. The term within the
gradient operator is referred to as the electric potential, which allows having a compact
representation of the electric field

e(x) = − grad[φ(x)] with φ(x) :=
1

4πǫ0

∫

Vt

ρe(x)

‖x− x′‖ dv(x′) . (2.115)

The electric potential is measured by volts (V).

2.2.2 Faraday’s law and Gauss’ flux theorem

Based on the definition of the electric field in (2.115), we deduce that the gradient of the
electric field is symmetric grad[e] = (grad[e])T . This implies that the curl of the electric
field vanishes. As a result, we obtain Faraday’s law of electrostatics in a compact form

curl e = 0 . (2.116)

An important outcome of the above equation is that the electric field is a conservative
field, and its integral over any closed path in space does not depend on the path itself.
This can be shown as follows using Stokes’ theorem

∮

Ct
e · dx =

∫

St

curl e · da = 0 , (2.117)

5In the following, the subscript t in a volume Vt, a surface St and a curve Ct domain of integration is
introduced to show that corresponding entities refer to the current (observed) configuration. Note that
these domains are not associated with any material volume; hence, the domains can differ in different
expressions.
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where Ct is any closed curve and St is the area bounded by this curve. The left-hand side
of this equation corresponds to the electric-potential difference. This can be seen from
(2.115)1. Thus, the electric potential is path independent, and it can alternatively be
determined at a position x for the known electric field by the following expression

φ(x) = −
∫ x

x0

e · dx , (2.118)

where x0 is a chosen reference point; at this point, the electric potential is assumed to
be known in order to determine the integration constant. The reference point is often
assumed to be at an infinite distance from the origin of the electric field; hence φ(x0) = 0
can be considered. Since the electric field can be interpreted as force per a test charge
(2.112), the electric potential (or qφ(x)) can be physically interpreted as the work required
to bring a charge (e.g., q) from a reference position x0 to its actual position x against the
electric field.

Gauss’s theorem of electricity relates the flux of electric field e · da across a closed
surface St to the total electric charge Qenc =

∫
V ′
t
ρe(x′) dv(x′) that is enclosed by this

surface. Thus, if Vt is the volume bounded by the surface St, then V ′
t ⊆ Vt is the part of

the charged volume that lies within Vt. We assume a spherical closed surface St concentric
with the enclosed charge for simplicity. Then, the theorem can be stated as follows

∮

St

e(x) · da(x) = Qenc

4πǫ0

∮

St

x− x′

‖x− x′‖3 · da(x) = Qenc

ǫ0
=

1

ǫ0

∫

Vt

ρe(x′) dv(x′) , (2.119)

where it has been considered that the integral in (2.119)2 yields the solid angle 4π and
ρe(x′) = 0 for x′ ∈ Vt\V ′

t in (2.119)3 . Considering the divergence theorem in (2.119)1,
we obtain the differential form of Gauss’ law

div e =
1

ǫ0
ρe or divd = ρe , (2.120)

where we have introduced the electric displacement vector d = ǫ0e in free space. Its
unit of measure is coulomb per meter squared (C/m2). Considering the definition of the
electric field (2.115), we obtain the following second-order partial differential equation to
determine the electric potential in free space for given ρe

− div[gradφ] =
1

ǫ0
ρe , (2.121)

where the div[grad{·}] is referred to as the Laplacian operator. Hence, the continuous
formulation of the electric field based on the definition (2.115)1 allows determining the
electric potential as well as the electric field at any point in space without having to deal
with singularities contrary to (2.113).

2.2.3 Polarization of a body in an electric field

Up to this section, we have considered the electric field of discrete or continuously dis-
tributed charges in free space. However, the electric field inside a body can be substantially
different from that in free space. Since bodies contain atoms, ions, or molecules, they usu-
ally respond in different ways when brought to an external electric field. In particular,
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we distinguish two kinds of bodies: conductors and insulators. The former are capable of
conducting electric currents due to the existence of free charges (electrons) in its volume.
Under external electric fields, the free electrons travel through the conductor, inducing
current. On the contrary, the latter do not generally conduct an electric current. Such
types of materials are also referred to as dielectrics. However, dielectrics can undergo po-
larization and alter the electric field within the body when exposed to an external electric
field. A simple example of a setup can be envisioned as a dielectric sandwiched between
two electrodes.

The dielectrics themselves can be polar and non-polar. Polar dielectrics contain
randomly oriented permanent dipole moments, for example, water molecules. In such
molecules, the centers of the positive and negative charges mismatch, inducing a dipole
moment. Since they are usually randomly oriented at the initial state, the overall dipole
moment (polarization) vanishes without an external field or deformation. Under an ex-
ternal electric field or mechanical deformation, the molecules can re-orient themselves
(polarize) and induce an additional electric field. In non-polar dielectrics, there are no
permanent dipole moments. However, due to an external electric field or mechanical de-
formation again, the molecules or atoms of this type of material can deform. As a result,
the centers of positive and negative charges will not coincide anymore. This process is
referred to as polarization.

In order to describe the polarization phenomenon, we take a look at a simplified dipole,
which contains a positive qb(x

′) and a negative qb(x
′ + δ) = −qb(x′) charge. The electric

potential due to such a dipole moment can be determined as

φ̃(x) =
1

4πǫ0

qb(x
′)

‖x− x′‖ +
1

4πǫ0

qb(x
′ + δ)

‖x− x′ − δ‖ ≈ 1

4πǫ0

p̃ · (x− x′)

‖x− x′‖3 , (2.122)

where we have considered qb(x
′) = −qb(x′+δ) and introduced the so-called dipole moment

p̃(x′) = qb(x
′)δ with ‖δ‖ ≪ 1. Considering that a volume element dv(x′) contains N

dipoles, we can introduce the dipole moment density as p(x′) = limdv→0

∑N
i p̃

i(x′)/dv(x′)
in a continuous setting. Based on the above equation (2.122), the total electric potential
at a point x due to the polarization of a material sub-body Pt can thus be determined as
follows

φ(x) =
1

4πǫ0

∫

Pt

p(x′) · (x− x′)

‖x− x′‖3 dv(x′) . (2.123)

This expression can further be simplified using the divergence theorem and grad[ 1
‖x−x′‖ ] =

− grad′[ 1
‖x−x′‖ ]

φ(x) =
1

4πǫ0

∫

Pt

ρeb(x
′)

‖x− x′‖ dv(x′) +
1

4πǫ0

∫

∂Pt

σe
b(x

′)

‖x− x′‖ da(x′) , (2.124)

where ρeb = − divp is the volume bound charge density and σe
b = p ·n is the surface bound

charge density. Thus, the total charge within the volume of a body is contained from free
charges and bound charges, i.e., ρe = ρef + ρeb. If we define the electric displacement to be
d := ǫ0e + p, then Gauss’ law of electricity in a matter yields

divd = ǫ0 div e + divp = ρef . (2.125)
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Linear dielectrics. The observed polarization of a linear isotropic dielectric under an
external electric field is determined by p = ǫ0χ

e
e. Here χe denotes the electric suscepti-

bility of the material. It is a dimensionless quantity and relates the electric displacement
to the electric field as

d = ǫ0e + p = ǫ0(1 + χe)e = ǫ0ǫre = ǫe , (2.126)

where ǫr = (1+χe) ≥ 1 is referred to as the relative permittivity (a dimensionless quantity)
and ǫ is the dielectric constant of the material.

2.2.4 Geometrical transformations of fields in electrostatics

Heretofore, we have considered fundamental equations of electrostatics in terms of spatial
(Eulerian) fields. However, to describe the deformation of a solid material in an elec-
tric field within a continuum setting, it is convenient to have the fundamental equations
of electrostatics also in the reference (Lagrangian) configuration. Therefore, in this sec-
tion, we will introduce the referential (Lagrangian) forms of fundamental quantities of
electrostatics and show the relationship to the spatial configurations.

We introduce the Lagrangian electric field based on the invariance of the scalar electric
potential φ based on (2.118) as

φ(x) = −
∫ x

x0

e · dx = −
∫ X

X0

E · dX , (2.127)

where E is the Lagrangian electric field. It is related to the spatial electric field via the
following push-forward and pull-back relations

e = F−T
E or E = F T

e . (2.128)

Considering (2.127) over a closed curve and applying Stokes’ theorem, we also obtain
push-forward and pull-back relations for curls of the referential and spatial electric fields

curl e = JF−1CurlE = 0 . (2.129)

If we consider the material time derivative of the integrals in (2.127) for a closed curve,
we further obtain the following relations

£ve = F−T
Ė and curl[£ve] = JF−1Curl Ė = 0 , (2.130)

where £ve = ė + lTe, see Section 2.1.8. Equation (2.130)2 is the incremental form of
Faraday’s law with respect to the deformed configuration.

Analogously, we define the Lagrangian electric displacement from the following invari-
ance relation

∫

Pt

ρef dv =

∫

∂Pt

d · da =

∫

∂P0

D · dA , (2.131)

where D is the Lagrangian electric displacement and related to the spatial electric dis-
placement via the following relations

d = J−1FD or D = JF−1
d . (2.132)
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Applying Gauss’ theorem in (2.131), we obtain Gauss’ law of electricity in terms of the
referential and spatial electric displacements

ρef = divd = J−1DivD . (2.133)

Furthermore, if we consider the material time derivative of the integrals in (2.127), we
further arrive at

£vd = J−1F Ḋ and
1

J

d

dt
(Jρef ) = div[£vd] = J−1Div Ḋ , (2.134)

where, £vd = ḋ − ld + d div v, see Section 2.1.8. (2.134)2 is the incremental form of
Gauss’ law of electricity.

Finally, in order to determine the referential polarization vector, we start from the
definition of the electric displacement d depending on the electric field and the polarization
vector

d = ǫ0e + p ⇒ J−1FD = ǫ0F
−T
E + p . (2.135)

Simplifying the latter equation, we obtain

D = ǫ0JF
−1F−T

E + JF−1
p = ǫ0JC

−1
E +P , (2.136)

where P = JF−1
p is the Lagrangian polarization vector and C is the right Cauchy-

Green deformation tensor. We note that the mapping relation between the Lagrangian
and Eulerian polarization fields can also be deduced from the relationships σb = p ·n and
ρb = − divp considering the invariance of the bound charges, similar to (2.131).

From (2.135) and (2.136), we observe that the vector ǫ0e does not transform as the
electric field e itself, but as the electric displacement, i.e., the Lagrangian form of this
vector reads JF−1(ǫ0e). This is because the scalar electric permittivity is associated with
the Hodge operator as discussed in [189]; see also [25, 55]. Nevertheless, special care must
be given when dealing with tensorial objects multiplied or divided with the permittivity
tensor.

2.2.5 Electric force, momentum, and energy supply in matter

In this section, we determine electric forces, momentum, and energy supply in a de-
formable medium due to an applied electric field and polarization phenomenon. We focus
on the behavior of dielectrics and therefore do not consider free volume charges. The
derived equations are in line with the literature; see [171] and dissertations [197, 250, 235]
as well as [64, 48].

The electric force due to the bound charges can be computed based on Coulomb’s law,
which yields the so-called electric body force γe

b as given below

F
e
b =

∫

Pt

ρebe dv +

∫

∂Pt

σe
be da =

∫

Pt

(grade)p dv =:

∫

Pt

γe dv , (2.137)

where we have considered ρeb = − divp and σe
b = p · n together with the divergence

theorem.
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The momentum due to the bound charges is determined in a similar way

M
e
b =

∫

Pt

x× ρebe dv +

∫

∂Pt

x× σe
be da

=

∫

Pt

(p × e + x× [(grade)p]) dv =

∫

Pt

(ωe
b + x× γe

b) dv ,

(2.138)

where ωe
b := p × e is the so-called electric couple vector characterizing the infinitesimal

rotation of the dipoles with an infinitesimal volume element dv at a position x. The
second-order skew-symmetric couple tensor is defined as ω̂e

b = −1
2
ǫ · ωe

b = skew [e ⊗ p].
Hence, the electric couple vector ωe

b = −ǫ : ω̂e
b of the bound charges is the axial vector of

ω̂e
b.

The electric energy supply due to the bound charges are assumed to have two contri-
butions in electrostatics. The first contribution is associated with the power of Coulomb’s
force of the charges due to the deformation at a position x. The second contribution is
associated with a change in the bound charges due to a change in dipoles. This can be
expressed as follows

Pe
b =

∫

Pt

ρeb(x)e · v dv +

∫

∂Pt

σe
be · v da +

∫

Pt

φ
d

dt
(ρbdv) +

∫

∂Pt

φ
d

dt
(σbda)

=

∫

Pt

(γe
b · v + (e ⊗ p) : gl + e ·£vp) dv ,

(2.139)

where we have considered the material time derivative of bound charges 1
J

d
dt
(Jρb) =

− div[£vp] and
d
dt
(σb da) = −£vp · n da6.The objective Lie derivative of polarization

£vp = ṗ − lp + p div v is considered above. Note that the obtained energy supply term
is in line with the derivations of [171] for further details, we confer to [143, 197, 250].

6The identities are obtained from the following definition of the volume and surface bound charges

d

dt

∫

Pt

ρb dv = − d

dt

∫

Pt

divp dv and
d

dt

∫

∂Pt

σb da = − d

dt

∫

∂Pt

p · n da . (2.140)

We can recast (2.140)1 into the following form

d

dt

∫

Pt

ρb dv =

∫

Pt

1

J

d

dt
(Jρb) dv = −

∫

Pt

( ˙divp + divp div v) dv = −
∫

Pt

div[£vp] . (2.141)

Similarly, we carry out the material time derivatives in (2.140)2 as

d

dt

∫

∂Pt

σb da =
d

dt

∫

∂Pt

p · n da = −
∫

∂Pt

(
d

dt
p + p div v − lp) · n da , (2.142)

where the term under the integral sign on the right-hand side can be identified as the Lie derivative of
the polarization. By localizing the integral equations, we obtained the sought-after expressions. (2.141)2
is also referred to as the spatial nominal time derivative; see Pelteret and Steinmann [176], eq. (5.19a)
and (5.19b)
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2.3 Fundamentals of Magnetostatics

In the previous section, we have considered the electric field of stationary charges. This
assumption was made to exclude any other effects since experiments show that a moving
charge generates a magnetic field. Here we relax this assumption. However, we consider
only steady currents. The magnetic field induced by steady currents does not change in
time; thus, we can neglect the electrodynamic coupling with an electric field. Nevertheless,
magnetostatics has proven useful for applications considered in this thesis; see also [64],
Chapter 5.2.1.

Similar to the interactions between two charges in electrostatics, observations show
that two parallel wires attract each other when an electric current flows through the wires
in the same direction and repels otherwise ([64], Chapter 5.1). The electric current of
amount I in a straight wire generates an azimuthal magnetic field of strength µ0I/(2πr)
at a distance r from the wire with the magnetic permeability of vacuum µ0 = 4π·10−7N/A
(e.g., [48], Chapter 2.2.1). The direction of the magnetic field can be identified by the
right-hand rule; given that the thumb of the right hand is directed along the current
flow, the curling of fingers will be along the magnetic field. Then, the induced force is
perpendicular to the direction of the electric current and the magnetic field at any point
in space. This has been described in Fig. 2.7.

The primary source of the magnetic field – the magnetic dipole – is considered to be
a small current-carrying circuit similar to electric charges in electrostatics. This is known
as the Ampère model, and it is sometimes considered to correspond to electron spin at the
atomic scale. It is worth noting that there is also the Gilbert model, which assumes that
a dipole is contained of two poles (similar to the north and south poles of a bar magnet)
separated by a small distance similar to the dipole in electrostatics ([64], Chapter 6.1.2).
A similar model to the latter has been exploited in [171] to derive the governing equations
of electrodynamics in deformable solids. Despite the usefulness of the Gilbert model,
it is not considered physically well-motivated because of the non-existence of magnetic
monopoles or magnetic charges. It is worth mentioning that the former type of the dipole
model forms the bases for the Ampère formulation of electromagnetism and the latter for
the Chu formulation [171].

In this section, we concentrate on quasi-static processes and consider the magnetic
field of steady electric currents based on the Ampère model. We start with the conserva-
tion of charge and concisely introduce the fundamental equations of magnetostatics in a
continuous setting. The brief introduction is based on [113, 96, 64, 48], among others.

2.3.1 Conservation of electric charge

This conservation law governs the temporal change of electric charge ρe(x, t) in an arbi-
trary volume Vt depending on the flux j(x, t) of the electric charge through the surface of
this volume ∂Vt. In a continuous setting, where the charges and fluxes are smeared out
over a considered volume, the conservation law can be stated as follows

d

dt

∫

Vt

ρe dv = −
∫

∂Vt

j · da , (2.143)
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Figure 2.7: Magnetic field of electric current in a wire. (a) An electric current of magnitude
I in a straight wire induces a radial magnetic induction ‖b‖ = µ0I/(2πr) at a radial distance
r from the wire. (b) The induced force due to the magnetic induction is perpendicular to
the direction of the electric current and the magnetic induction.

where j is referred to as electric current density. It defines the charge per unit time per
unit area and measured by ampère per meter squared (A/m2 = C/(m2 · sec).

Applying Gauss’ integral theorem to transform the surface integral in (2.143) to a vol-
ume integral and considering that Vt can be arbitrary, we obtain the following differential
form for the balance of electric charge

ρ̇e = − div j . (2.144)

Since we are concentrating on magnetostatics, we furthermore consider steady currents
and do not consider any time dependence. This means that if steady current flows in a
wire, then at any time instance, the amount of the charge within any infinitesimal volume
of this wire is conserved. This can be expressed as follows

ρ̇e = 0 and div j = 0 . (2.145)

The steady electric current is a divergence-free vector; hence, it can be expressed as
j = curlh to fulfill (2.145)2 apriori. Here, h is referred to as the magnetic field, which
will be discussed in the following sections.

2.3.2 The Biot-Savart law

As we have briefly discussed above, a steady current flowing in a wire induces a magnetic
field. Let us assume that a wire with an infinitesimal cross section da′ is given and
a steady current of magnitude I ≈ j · da′ flows in this wire. Then, according to the
experimental observations of Biot and Savart as well as Ampère, the magnetic induction
at a point x in space induced by an infinitesimal length dx of this wire is determined by

db(x) =
µ0I

4π

dx′ × (x− x′)

‖x− x′‖3 , (2.146)

where µ0 = 4π · 10−7N/A2 denotes the permeability of free space. The total magnetic
field of the whole length Ct of the wire is then determined by the following integral

b(x) =
µ0I

4π

∫

Ct

dx′ × (x− x′)

‖x− x′‖3 =
µ0

4π

∫

Vt

j(x′)× (x− x′)

‖x− x′‖3 dv′ , (2.147)
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where Idx′ = j(x′)dv′ is considered and Vt denotes the volume of the wire. This equation
is the Biot-Savart law. In the subsequent sections, we refer to b as the magnetic induction.
The unit of magnetic induction is given in teslas (T), which is determined as newtons per
ampère per meter T = N/(A · m). We can further simplify this equation as follows
(compare with (2.114) and (2.115))

b(x) =
µ0

4π
curl

[ ∫

Vt

j(x′)

‖x− x′‖dv
′
]
, (2.148)

where the curl operator is w.r.t. the radius vector x. Hence, we can introduce a vector
potential am(x) as

am(x) =
µ0

4π

∫

Vt

j(x′)

‖x− x′‖dv
′ . (2.149)

Then, the Biot-Savart law takes the following compact form

b = curlam . (2.150)

Since the divergence of the curl is zero, we arrive at one of the fundamental equations of
magnetostatics

divb = 0 . (2.151)

This equation is similar to Gauss’ law of electricity, which is also referred to as Gauss’
law of magnetism. It implies that the flux of magnetic induction through a closed surface
is always zero. The equation is also valid for the most general case of electrodynamics
and implies the non-existence of magnetic monopoles or charges.

It is essential to notice in (2.150), the magnetic vector potential does not define the
magnetic induction uniquely since any gradient term added to magnetic vector potential
will vanish, i.e., curlam = curl(am + gradω) for any sufficiently smooth ω ∈ R. In
order to have a unique vector potential, a Coulomb gauge transformation is considered in
magnetostatics which reads as

divam = 0 . (2.152)

2.3.3 Ampère’s circuital law

In analogy to Faraday’s law of electrostatics, we now take a look at the curl of the magnetic
induction

curlb = curl curlam = grad divam − div gradam = − div gradam , (2.153)

where (2.152) is considered. Furthermore, taking the definition of the vector potential
(2.149) in (2.153) into account and after some manipulations, we obtain

curlb = − div gradam = µ0j , (2.154)

where the following relations are considered

div

[
x− x′

‖x− x′‖3
]
= 4πδ(x− x′) and

∫

Vt

j(x′)4πδ(x− x′) dv′ = 4πj(x) , (2.155)
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where δ(x−x′) is the Dirac delta function; see Griffiths [64], Chapters 1.5.1–1.5.3 and 5.3.2
for a detailed derivation. (2.154) is a local statement of Ampère’s law of magnetostatics. It
defines Laplace’s equation for the magnetic vector potential (compare with (2.121)) and,
together with suitable boundary conditions, determines am uniquely for a given electric
current density j.

Ampère’s law of magnetostatics can also be given in terms of the magnetic field h

curlh = j , (2.156)

where b = µ0h is considered in free space. This equation was also derived in Section 2.3.1
from the conservation of electric charge. The magnetic field in magnetostatics resembles
the electric field e in electrostatics in terms of the mapping properties and boundary
conditions. Likewise, the magnetic induction b resembles the electric displacement d.
This will be clear when we derive the geometric transformations for the magnetostatic
fields below.

2.3.4 Magnetization of a body in a magnetic field

As we have already briefly discussed, the magnetic field is generated by charges in motion.
In the atomic scale of magnetic materials, electrons revolve around nuclei and spin about
their axis, which can be considered to generate infinitesimal current loops or magnetic
dipoles; see Fig. 2.8. Without external action, these magnetic dipoles are usually ran-
domly oriented and, therefore, do not induce a magnetic field. However, in an external
magnetic field the dipoles can align themselves. Hence, the material becomes magnetized.
Depending on the alignment of the magnetization, we can distinguish paramagnetic, dia-
magnetic, ferromagnetic, and even ferrimagnetic materials. Depending on the type of
magnetic material, the induced magnetic field in the material can be in the opposite di-
rection (e.g., in diamagnetic materials) or in the same direction (e.g., in paramagnetic
or ferromagnetic materials) as the applied magnetic field. As a result, the materials can
show different effects. Such as, diamagnets are repelled away by a non-uniform magnetic
field and paramagnets are attracted; see [64], Chapter 6.

In order to describe the magnetization, we take a look at the magnetic vector potential
at position x due to a simplified infinitesimal current loop centered at position x′

ãm(x) =
µ0

4π

∫

Vt

j(δ)

‖x− x′ − δ‖dv(δ) =
µ0I

4π

∫

Ct

dδ

‖x− x′ − δ‖

≈ µ0I

4π

∫

Ct

[
1

‖x− x′‖ − δ · grad
( 1

‖x− x′‖
)]
dδ

=
µ0I

4π

∫

Ct
(dδ ⊗ δ)

(x− x′)

‖x− x′‖3 =
µ0

4π

M̃(x− x′)

‖x− x′‖3 =
µ0

4π

m̃× (x− x′)

‖x− x′‖3 ,

(2.157)

where ‖δ‖ ≪ 1 is the radius vector pointing from x′ to an infinitesimal part of the current

loop dδ. M̃ is the second-order skew-symmetric magnetization tensor of a single dipole,
and m̃ is its axial (magnetization) vector, which are defined as

M̃ = I

∫

Ct
dδ ⊗ δ and m̃ = −1

2
ǫ : skew M̃ = I

∫

St

da(δ) , (2.158)
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m
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Figure 2.8: Bound electric currents of magnetic dipoles. The magnetic dipole moment in-
duced in sub-body Pt as a result of an external magnetic field is described via infinitesimal
current loops, which are distributed throughout the volume of the body. In a uniform mag-
netic field, the volume bound current cancels since the currents flow in opposite directions
in the neighboring dipoles. However, we still have the bound currents on the surface. In a
non-uniform magnetic field, the volume bound current does not cancel. In this case, we have
both volume and surface bound currents. The volume bound current is determined by the
curl of the magnetization vector, jb = curlm, and the bound surface current is determined
at the surface by kb =m× n.

where da(δ) denotes the area enclosed by the current loop.

Considering that a volume element dv(x′) contains N infinitesimal dipoles (current
loops), we can introduce the dipole moment density asm(x′) = limdv→0

∑N
i m̃

i(x′)/dv(x′)
in a continuous setting. Based on the above (2.157), the magnetic vector potential at a
point x due to the magnetization of a material sub-body Pt can thus be determined by
integrating (2.157) over the volume of the sub-body as follows (Griffiths [64], Chapter
6.2.1)

am(x) =
µ0

4π

∫

Pt

jb(x
′)

‖x− x′‖ dv′ +
µ0

4π

∫

∂Pt

kb(x
′)

‖x− x′‖ da′ , (2.159)

where jb = curlm denotes the volume bound current density and kb =m×n denotes the
surface bound current density. Thus, the total electric current density can be considered
to be contained from free current density jf and bound current density jb, i.e., j = jf+jb.

Because of the magnetization, the magnetic field in the material is altered, which is
considered to take the following form

b = µ0(h+m) . (2.160)

Therefore, Ampère’s law of magnetostatics needs to be changed in the material body to

curlh = jf . (2.161)

Linear and nonlinear media. For linear isotropic magnetic materials, the induced
magnetization in terms of the external magnetic field can be given as m = χm

h h with χm
h

being the magnetic susceptibility. The latter is a dimensionless quantity and relates the
magnetic induction to the magnetic field as

b = µ0(h+m) = µ0(1 + χm
h )h = µh , (2.162)

where µ is called the permeability of the material. Examples of linear materials can be
paramagnetic (χm

h > 0) and diamagnetic (χm
h < 0) materials.



50 2.3. Fundamentals of Magnetostatics

From the above equation, we can also express the magnetization in terms of the mag-
netic induction as

µ0m =
χm
h

1 + χm
h

b = χm
b → χm =

χm
h

1 + χm
h

or χm
h =

χm

1− χm
, (2.163)

where χm is also referred to as the magnetic susceptibility; see [113], Chapter 11.43.

In general, paramagnetism and diamagnetism are much weaker than ferromagnetism,
and induced magnetization vanishes once the external field is removed. In contrast to
paramagnetic and diamagnetic materials, ferromagnetic materials show a nonlinear, hys-
teretic behavior. Induced magnetization in a magnetic field shows characteristic satura-
tion and irreversible behavior. Examples of these materials can be iron, nickel, cobalt,
and Nd-Fe-B alloys. These materials can be embbeded into elastomers. As a result, the
obtained composites – magnetorheological elastomers (MREs) – show characteristics of
both phases. Depending on the hysteresis observed in the b − h (or m − h) diagram
upon loading and unloading of magnetic materials, soft and hard magnetic materials are
distinguished. The soft magnetic materials magnetize and demagnetize relatively fast; as
a result, the hysteresis is not pronounced and can often be neglected. In that case, a
Langevin or a hyperbolic function is considered to describe the saturation of the magne-
tization; see, e.g., [186, 40, 91] and Paper B. For the Langevin model of soft MREs, the
magnetization reads

m =
ms

‖b‖

[
coth

(
3χm‖b‖
µ0ms

)
− µ0ms

3χm‖b‖

]
, (2.164)

where ms is a parameter characterizing the saturation magnetization and ‖b‖ =
√
b · b

denotes magnitude of the magnetic induction.

Hard magnetic materials show pronounced hysteresis, and therefore, their response
depends on the history; see recent works [102, 161] in the context of MREs and refer-
ences therein for more information. In this thesis, soft magnetic materials will be under
consideration.

2.3.5 Geometrical transformations of fields in magnetostatics

In analogy to Section 2.2.4, we introduce here Lagrangian analogues of spatial magneto-
static fields and their geometrical transformations.

The Lagrangian magnetic induction B is introduced based on Gauss’ law of magnetism
as follows

∫

∂Pt

b · da =

∫

∂P0

B · dA = 0 , (2.165)

which yields the push-forward and pull-back relations for the magnetic induction as well
as the Lagrangian form of Gauss’ law of magnetism

b = J−1FB and divb = J−1DivB = 0 . (2.166)

Taking the material time derivative of (2.165) and simplifying the results, we obtain the
incremental relations

£vb = J−1F Ḃ and div[£vb] = J−1Div Ḃ = 0 , (2.167)
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where £vb = ḃ− lb + b div v.

In a similar manner, the Lagrangian magnetic field H and electric free current Jf are
obtained from Ampère’s law (2.161) as follows

∫

Ct
h · dx =

∫

St

jf · da =

∫

C0
H · dX =

∫

S0

Jf · dA ,

(2.168)

which yields the push-forward and pull-back relations for the magnetic field and the
electric current as follows

h = F−T
H and jf = J−1FJf . (2.169)

As a result, we obtain Ampère’s law in the Lagrangian configuration as follows

CurlH = Jf . (2.170)

The incremental forms of the geometrical relations can be easily derived as

£vh = F−T
Ḣ and £vjf = J−1F J̇f , (2.171)

where £vh = ḣ+ lTh and £vjf = j̇f − ljf + jf div v .

The incremental versions of Ampère’s law in the Eulerian and the Lagrangian config-
urations take the form

curl[£vh] = £vjf and Curl Ḣ = J̇f . (2.172)

Similar to the polarization vector, we can also introduce a Lagrangian magnetization
vector. We start with the following relation

b = µ0(h+m) ⇒ B = µ0JF
−1F−T (H +M) = µ0JC

−1(H +M) , (2.173)

where m = F −T
M is obtained. In contrast to the polarization vector, we observe that

the magnetization vector transforms differently. Nevertheless, the transformation rule
is consistent with the definition of magnetization in terms of the bound currents, i.e.,
jb = curlm and kb =m× n.

The geometrical transformations of the magnetic vector potential am can be derived
from (2.166) as

b = J−1FB ⇒ curlam = J−1F CurlAm ⇒ am = F−TAm . (2.174)

The Lie derivative of the magnetic vector potential can easily be shown to be £va
m =

F−T Ȧm = ȧ+ lTam. Furthermore, the Coulomb gauge condition in the reference config-
uration consistent with (2.152) can be derived as

divam = J−1 Div[JF−1am] = J−1Div[JC−1Am] = 0 , (2.175)

where J = detF is the Jacobian of the deformation gradient. We note that the standard
version of the gauge condition, i.e., DivAm = 0, is mainly considered in references such
as [20, 209, 210] and [176], Chapter 5.3.5, since the underlying idea is to obtain a unique
magnetic vector potential field.
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2.3.6 Magnetic force, momentum, and energy supply in matter

In this section, we determine magnetic forces, momentum, and energy supply in a de-
formable medium due to an applied magnetic field and magnetization phenomenon. Magneto-
elastic response is assumed, and no free electric currents are considered. For further
information, we refer to [29, 113, 64, 140, 166, 48].

The force acting on a magnetic dipole due to the bound electric currents can be
computed based on Lorentz’s force, which yields a so-called magnetic body force γm

b

similar to the electric body force

F
m
b =

∫

Pt

jb × b dv +

∫

∂Pt

kb × b da =

∫

Pt

(gradb)Tm dv =

∫

Pt

γm
b dv , (2.176)

where we have considered jb = curlm and kb = m × n together with the divergence
theorem.

The momentum due to the bound currents is determined as

M
m
b =

∫

Pt

x× (jb × b) dv +
∫

∂Pt

x× (kb × b) da

=

∫

Pt

(m× b + x× [(gradb)Tm]) dv =

∫

Pt

(ωm
b + x× γm

b ) dv ,

(2.177)

where ωm
b := m× b is the so-called magnetic couple vector. We can also introduce the

second-order skew-symmetric couple tensor as ω̂m
b = −1

2
ǫ · ωm

b = skew[b ⊗m]. For the
given couple tensor, the magnetic couple vector is determined as ωm

b = −ǫ : ω̂m
b .

The magnetic energy supply due to the bound currents is assumed to have two con-
tributions in magnetostatics. The first contribution is associated with the power of the
Lorentz force of the bound currents due to the deformation at a position x. The second
contribution is associated with an objective change in the bound currents due to a change
in dipoles. This can be expressed as follows

Pe
b =

∫

Pt

(jb × b) · v dv +

∫

∂Pt

(kb × b) · v da +

∫

Pt

am ·£vjb dv +

∫

∂Pt

am · (£vm× n) da

=

∫

Pt

(γm
b · v − (m⊗ b) : gl +m · b div v + b ·£vm) dv .

(2.178)
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2.4 Governing Equations of Nonlinear Magneto-Electro-Elasticity

This section provides the equations of the coupled magneto-electro-elasticity in the Eu-
lerian configuration. Considering the electric and magnetic forces and momenta in the
balance equations results in a non-symmetric mechanical stress tensor. In order to derive
a convenient setting in terms of a symmetric stress tensor, we introduce the so-called
electric and magnetic “Maxwell” stress tensors. Following this, the balance laws are re-
formulated, and the constitutive relations are derived. The equations are supplemented
with boundary conditions required to solve the partial differential equations. For further
details, see, for example, [171, 113, 96, 64, 48].

2.4.1 Balance laws and constitutive relations

Having introduced the electric and magnetic forces, momenta, and energies as a result
of polarization and magnetization in a deformable medium, we can now introduce the
balance laws of coupled magneto-electro-elasticity. For simplicity, we do not consider a
direct coupling between magnetic and electric fields and concentrate on an isothermal
case. Then, the local balance laws can be derived as follows

1. mass ρ̇+ ρ div v = 0 ,

2. linear momentum ρv̇ = div[σmec] + ρb+ γe
b + γm

b ,

3. angular momentum skew[σmec] = ω̂e
b + ω̂m

b ,

4. internal energy ρė = (σmec + e

♯ ⊗ p −m

♯ ⊗ b) : (gl) + (m · b) div v

ρė + e ·£vp + b ·£vm ,

(2.179)

where e = ê(F ,p,m) characterizes the internal energy in terms of deformation, polariza-
tion and magnetization. The energy can also be written in terms of the electric field and
the magnetic induction considering a Legendre-Fenchel transformation

ρψ̃(F , e,b) := sup
e

inf
b

{
ρê(F ,p,m)− e · p − b ·m

}
, (2.180)

which yields an alternative representation of the balance of energy

ρ
˙̃
ψ = (σmec + e

♯ ⊗ p −m

♯ ⊗ b) : (gl) + (m · b) div v − p ·£ve −m ·£vb . (2.181)

Electric and magnetic stress tensor. As we observe from the balance of angular
momentum, the mechanical stress tensor is not symmetric. In order to arrive at a more
convenient setting based on a symmetric stress tensor, we introduce the so-called electric
and magnetic Maxwell stress tensors ([171, 197] and [96], Table 1)

σe = e

♯ ⊗ d − 1

2
ǫ0(e · e)g−1 and

σm = h

♯ ⊗ b− 1

2µ0

(b · b)g−1 + (b ·m)g−1 ,

(2.182)

such that the electric and magnetic body forces and momenta can be determined as

div[σe + σm] = γe
b + γm

b and skew[σe + σm] = ωe
b + ωm

b . (2.183)
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Furthermore, the power of the electric and magnetic stress tensors in a deformable medium
can be derived as follows

σe : (gl) = −ρu̇e + ǫ0e ·£ve + (e♯ ⊗ p) : (gl) and

σm : (gl) = ρu̇m − 1

µ0
b ·£vb − (m♯ ⊗ b) : (gl) + (b ·m) divv ,

(2.184)

where we have introduced the energy of the electric and magnetic fields
∫

Pt

ρue dv =

∫

Pt

ǫ0
2
e · e dv and

∫

Pt

ρum dv =

∫

Pt

1

2µ0
b · b dv . (2.185)

Considering the above equations, associated with the electric and magnetic stress tensors,
in the balance laws with further manipulations (see [171, 197]), we obtain the final form
of the balance laws in the current configuration

1. mass ρ̇+ ρ div v = 0 ,

2. linear momentum ρv̇ = divσ + ρb ,

3. angular momentum skew[σ] = 0 ,

4. internal energy ρψ̇ = σ : d+ e ·£vd + h ·£vb ,

(2.186)

where we have introduced the total stress σ = σmec+σe+σm and considered the following
partial Legendre-Fenchel transformation

ρψ(F ,d,h) := sup
e

{
ρψ̃(F , e,b) + ρûe(F , e) + ρûm(F ,b) + e · d

}
. (2.187)

Finally, the mathematical statement of the second law of thermodynamics expressed by
the Clausius-Planck inequality can also be derived as

ρD = σ : d+ e ·£vd + h ·£vb − ρψ̇ ≥ 0 , (2.188)

which together with d = 1/2£vg and under the assumption of elastic response, yields the
following constitutive relations

σ = 2ρ∂gψ , e = ρ∂
d

ψ and h = ρ∂
b

ψ . (2.189)

(2.189)1 is also referred to as the Doyle-Ericksen formula; see [139], Chapter 3.2.

The above equations are coupled with the Maxwell equations for a quasi-static case in
the current configuration

1. Gauss law div e = 0 ,

2. Faraday law curl e = 0 ,

3. Gauss-Ampère law divb = 0 ,

4. Ampère law curlh = 0 ,

(2.190)
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where we have neglected any free electric charges and free electric currents.

We note that all the above equations can also be given in the Lagrangian configuration.
The required transformations have already been introduced in the previous sections and
will not be repeated again. For the formulations in the Lagrangian configuration, we
further refer to the variational formulations provided in Papers A and B.

2.4.2 Boundary conditions at interfaces

Boundary conditions for the electrostatic and magnetostatic fields are derived by apply-
ing the Maxwell equations at the interface of two materials (e.g., deformable body and
embedding air); see [64, 48, 176], among others. From the Gauss law of electro- and mag-
netostatics, we determine the following boundary conditions for the electric displacement
and the magnetic induction field

[[d]] · n = −σf and [[b]] · n = 0 , (2.191)

where σf denotes the free surface electric charges.

Similarly, we identify the boundary conditions for the electric and magnetic fields from
the Faraday and the Ampère law as follows

[[e]]× n = 0 and [[h]]× n = 0 . (2.192)

On the mechanical side, from the balance of linear momentum and compatibilty of de-
formation (i.e., CurlF = 0 or curl g = 0 )7, we obtain the following jump boundary
conditions

[[σ]] · n = tmec and [[g]]× n = 0 , (2.195)

where tmec is the mechanical traction vector. Furthermore, for the deformation map (or
displacement field), fixed boundary conditions without a jump on the Dirichlet boundary
can be prescribed depending on boundary value problems.

7The compatbility conditions CurlF = 0 and curlg = 0 can be derived, integrating an infinitesimal
line element dx over a closed curve

∫

Ct

dx =

∫

Ct

gdx =

∫

C0

F dX = 0 . (2.193)

We obtain teh sought-after expressions by appling Stokes’ theorems in the current and reference configu-
rations and assuming that there is no discontinuity in the associated continuum. Moreover, we can derive
another set of compatbility conditions, starting the same procedure from the reference configuration

∫

C0

dX =

∫

C0

GdX =

∫

Ct

F−1dx = 0 , (2.194)

which yields CurlG = 0 or curl[F−1] = 0 ; see [222], Chapter 7.2.1.
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2.4.3 Summary of equations in the Lagrangian configuration

We finally summarize the governing and constitutive equations in the reference configu-
ration. The balance equations take the following form

1. mass ρ detF = ρ0 ,

2. linear momentum ρV̇ = Div P̃ + ρ0b ,

3. angular momentum P̃ F T = FP̃ T ,

4. internal energy ρψ̇ = P : Ḟ +E · Ḋ +H · Ḃ .

(2.196)

The Maxwell equations in the Lagrangian configuration can be written as

1. Gauss law DivE = 0 ,

2. Faraday law CurlE = 0 ,

3. Gauss-Ampère law DivB = 0 ,

4. Ampère law CurlH = 0 .

(2.197)

Finally, we give the constitutive equations in the Lagrangian configuration as

P = ρ0∂Fψ , E = ρ0∂Dψ and H = ρ0∂Bψ . (2.198)

In order to fulfill the principle of material objectivity, the energy-storage function needs to
depend on the deformation gradient through the right Cauchy-Green deformation tensor,
i.e.,

ψ = ψ̂(C,D,B) . (2.199)

Furthermore, the energy-storage function is chosen as a polyconvex function at finite
strains. We refer to [45, 27, 46, 96] for the construction of objective energy functions and
to [80, 214, 215] for the polyconvexity requirement.
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Microscopic and macroscopic instabilities in finitely strained fiber-reinforced
elastomers. Journal of the Mechanics and Physics of Solids 58, 1776–1803.
(doi:doi:10.1016/j.jmps.2010.08.006)

[149] Miehe, C., Koch, A., [2002]. Computational micro-to-macro transitions of discretized
microstructures undergoing small strains. Archive of Applied Mechanics 72 (4), 300–
317.

[150] Miehe, C., Lambrecht, M., [2001]. Algorithms for computation of stresses and elas-
ticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Communi-
cations in numerical methods in engineering 17 (5), 337–353.

[151] Miehe, C., Mauthe, S., Teichtmeister, S., [2015]. Minimization principles for the
coupled problem of darcy–biot-type fluid transport in porous media linked to phase
field modeling of fracture. Journal of the Mechanics and Physics of Solids 82, 186–
217.
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[186] Ponte Castañeda, P., Galipeau, E., [2011]. Homogenization-based constitutive models
for magnetorheological elastomers at finite strain. Journal of the Mechanics and
Physics of Solids 59, 194–215.
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[215] Šilhavỳ, M., [2018]. A variational approach to nonlinear electro-magneto-elasticity:
convexity conditions and existence theorems. Mathematics and Mechanics of Solids
23 (6), 907–928.

[216] Slesarenko, V., Rudykh, S., [2017]. Microscopic and macroscopic instabilities in
hyperelastic fiber composites. Journal of the Mechanics and Physics of Solids 99,
471–482.

[217] Smit, R., Brekelmans, W., Meijer, H., [1998]. Prediction of the mechanical behavior
of nonlinear heterogeneous systems by multi-level finite element modeling. Computer
Methods in Applied Mechanics and Engineering 155, 181–192.

[218] Sorokin, V. V., Stepanov, G. V., Shamonin, M., Monkman, G. J., Kramarenko,
E. Y., [2017]. Magnetorheological behavior of magnetoactive elastomers filled with
bimodal iron and magnetite particles. Smart materials and structures 26 (3), 035019.

[219] Spaldin, N. A., [2010]. Magnetic materials: fundamentals and applications. Cam-
bridge university press.



Bibliography: Chapter 1 & 2 73
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[237] Varga, Z., Filipcsei, G., Zŕınyi, M., [2005]. Smart composites with con-
trolled anisotropy. Polymer 46 (18), 7779 – 7787, stimuli Responsive Polymers.
(doi:http://dx.doi.org/10.1016/j.polymer.2005.03.102)
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Remark:

The work presented in this publication has been initially developed in [181],
page 57 (see also the last paragraph in Section 1.7.1). Here, the framework
is further extended to a Hu-Washizu-type variational formulation. Hence,
the macroscopic and microscopic stability analysis considered within this
setting and numerical examples are extended accordingly.

Abstract

This paper is devoted to the multi-scale stability analysis of periodic electroactive polymer
composites at finite deformations. A particular focus is on the investigation of macroscopic loss
of strong ellipticity and microscopic bifurcation-type instabilities. Macroscopic homogenized
quantities are determined by use of computational homogenization over selected representative
volume elements (RVE). The quasi-incompressible nature of the electroactive polymers is taken
into account by considering a four-field variational formulation at micro-level. This formula-
tion includes continuous interpolations of displacement fields and electric vector potentials as
well as discontinuous interpolations of pressure and dilatation terms, yielding a saddle-point
principle for coupled problems. Static condensation of the terms related to the element-wise
constant pressure and dilatation results in a positive definite global microscopic stiffness ma-
trix until a microscopic instability occurs. The microstructure is embedded into a macroscopic
driving procedure that imposes periodic mechanical and electrical boundary conditions on the
surface of the RVEs. It is known that at certain finite deformations the initial periodicity of
microstructures might be altered due to microscopic bifurcation-type instabilities. To incor-
porate microscopic instabilities and to determine the critical periodicity of microstructures,
Bloch-Floquet wave analysis in the context of a finite element discretization is implemented.
The macroscopic instabilities, which are related to the long-wavelength microscopic instabil-
ities, are determined by checking the loss of strong ellipticity at macro-scale. The proposed
setting is used to study the multi-scale stability analysis of electroactive polymer composites
with embedded fibers. The influence of fiber volume fraction and aspect ratio of fiber cross
sections on instabilities are investigated in detail. Critical periodicities and bifurcation modes
are demonstrated for selected boundary value problems.

Keywords: Homogenization; Electro-mechanics; Multi-scale stability; Rank-one convexity;
Buckling; Electroactive polymer composites

3.1 Introduction

Dielectric electro-active polymers (dielectric EAPs) exhibit electrostrictive response to
externally applied electrostatic loading, see for example Bar-Cohen and Zhang [6]. Such
phenomenon can be observed placing an elastomer between deformable electrodes. Upon
application of an electric stimulus, thinning of the EAP structure in field direction and
extension in transverse directions are observed. Associated materials have been experi-
mentally explored in e.g. Kornbluh et al. [33, 34] and Pelrine et al. [58, 57].
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Moreover, dielectric EAPs have advantageous properties such as light weight, fast
coupled response, tractable deformation state and easiness of fabrication, see Bar-Cohen
[5], Bar-Cohen and Zhang [6], Carpi [13] and references therein. These properties allow
EAPs to be applied in biologically inspired engineering designs (e.g., to mimic the move-
ment of animals and insects), as artificial muscles, and in robotics as sensors or actuators.
However, due to low dielectric constants high activation fields are needed to induce large
mechanical deformation. Investigations show that electro-mechanical coupling can be en-
hanced by tuning dielectric elastomers with fibers or inclusions of various geometrical
and physical properties, see Zhang et al. [98], Huang et al. [28], Tian et al. [84], Ponte
Castañeda and Siboni [61], Siboni and Ponte Castañeda [75], Lopez-Pamies [41], Lefèvre
and Lopez-Pamies [38]. In any case, tailoring dielectric EAPs through the design of com-
posites requires to study the influence of the geometrical properties of microstructures on
the response of these materials and to determine stable mechanical and electrical loading
ranges. The subsequent sub-sections review aspects of associated modeling approaches
and related stability issues at finite strains.

3.1.1 Multiscale modeling of dielectric EAP composites

Fundamentals of continuum modeling of electro-mechanical response of EAPs were devel-
oped byToupin [86], Tiersten [85], Maugin [44], Dorfmann and Ogden [16], McMeeking
and Landis [45], Vu et al. [93], Suo et al. [82], Bustamante et al. [12], Dorfmann and Og-
den [18], Vogel et al. [91], Vu and Steinmann [92], among others. Recently, computational
homogenization is getting widely used to investigate the response of EAP composites
in terms of inhomogeneous representative volume elements (RVEs). Fundamental ideas
of homogenization can be found in the works of Hill [26, 27] and Willis [94]. For the
development of computational methods of homogenization, see Smit et al. [79], Miehe
et al. [49], Feyel and Chaboche [19], Terada and Kikuchi [83] and Kouznetsova et al.
[35]. The computational homogenization of electro-active materials for non-dissipative
and dissipative responses are treated in Schröder [67], Schröder and Keip [68], Zäh and
Miehe [97] at small strains, and in Ponte Castañeda and Galipeau [60], Ponte Castañeda
and Siboni [61], Keip et al. [31] at large strains. Furthermore, Lefèvre and Lopez-Pamies
[38, 39] have derived the analytical closed-form solutions to determine the effective re-
sponse of ideal as well as non-Gaussian elastic dielectrics, having microstructures with
monodispersed and polydispersed spherical particles under large deformation scenarios,
see also Lefèvre and Lopez-Pamies [37], Spinelli et al. [80] for solutions at small strains. In
Miehe et al. [51] minimization- and saddle-point-based homogenization framework have
been discussed in detail. There it could be shown that saddle-point-based homogeniza-
tion under Neumann boundary conditions becomes equivalent to the minimization-based
formulation under Dirichlet boundary conditions. For microscopic stability analysis, the
minimization-based formulation under Dirichlet boundary condition is the natural choice,
as the minimization principle yields a positive definite stiffness matrix in finite element
discretization until the instability occurs. Recall that Dirichlet boundary conditions also
allow to follow the whole equilibrium response without getting limited by pull-in instabil-
ities which might be the case under electric field loading, as discusse, e.g., in Miehe et al.
[51].
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3.1.2 Multiscale stability analysis in coupled electro-mechanics

In this work, we investigate stability analysis of electroactive polymers. We are interested
in macroscopic and microscopic instabilities in the context of computational multiscale
stability analysis. Such stability analysis has been investigated in periodic structures
under finite mechanical loading conditions in-depth in, for example, Geymonat et al.
[21], Miehe et al. [50], Triantafyllidis et al. [89], Michel et al. [46], Bertoldi et al. [7], Bertoldi
and Boyce [8] and Michel et al. [47].

Macroscopic instabilities associated with the loss of rank-one convexity of homoge-
nized incremental moduli at finite deformation have been observed in Abeyaratne and
Triantafyllidis [1]. They have shown that a polyconvex microscopic energy in the sense
of Ball [4] does not always produce a rank-one convex homogenized macroscopic energy.
This criterion has been used to detect the onset of localization-type material instabilities
at macroscale. On the other hand at certain macroscopic deformation thresholds, the
solution of periodic microstructures might not be unique yielding bifurcation-type insta-
bilities which can alter the size of periodicity of the microstructure. For incompressible
layered composites Triantafyllidis and Maker [88] have shown the relation between the loss
of rank-one convexity of homogenized moduli at macroscale and the periodic bifurcation
at microscale. When the microscopic instability occurs unit cell representative volume
elements are no longer suitable due to the changed periodicity of the microstructure.
Consequently, homogenization principles should not be applied over a single unit cell for
large deformations, see Triantafyllidis and Maker [88] and Geymonat et al. [21].

Marcellini [43] has shown that homogenization over a unit cell yields always a unique
solution provided that the microscopic energy is convex. However, for large elastic defor-
mations convexity is a strong condition which restricts materials from describing physical
phenomena such as buckling and furthermore violate the objectivity and the growth con-
dition, see Hill [24], Coleman and Noll [14] and Ball [4]. More suitable formulations are
based on polyconvex constitutive equations in the sense of Ball [4]. Furthermore, for the
construction of polyconvex materials in case of the transversely isotropic and anisotropic
materials at large strains refer to, e.g., Schröder and Neff [69], Schröder et al. [70].

As discussed above, homogenization over an RVE containing a single unit cell might
not be reasonable for certain deformations, because the macroscopic energy of an RVE
containing several unit cells might be lower due to possible existence of buckling modes,
see Geymonat et al. [21]. They have shown that microscopic stability analysis still can be
performed on a unit cell considering Bloch (or Bloch-Floquet) wave analysis, which can be
understood as checking the stability of a unit cell under small amplitude perturbations of
various wavelengths. The critical wavelength at microscopic instability points determines
the size of RVE, see Bertoldi and Boyce [8], Bertoldi et al. [7], Michel et al. [47], Tri-
antafyllidis et al. [89]. Based on these observations Michel et al. [46, 47], Nestorović
and Triantafyllidis [55], Triantafyllidis and Bardenhagen [87], Triantafyllidis and Schraad
[90], Triantafyllidis et al. [89], among others, studied the failure mechanism of periodic
structures in various applications and under different loading conditions. Furthermore,
Bertoldi et al. [7] and Bertoldi and Boyce [8] investigated deformation-triggered pattern
transformations and wave propagations in periodic structures under the influence of mi-
croscopic and macroscopic instabilities.

On the electromechanical side, Dorfmann and Ogden [17] considered the electro-elastic
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wave propagation in finitely deformed electroactive materials and gave the criterion for
the loss of strong ellipticity for compressible as well as incompressible materials. Futher-
more, Bertoldi and Gei [9] have analytically investigated the microscopic and macroscopic
instabilities in incompressible soft layered dielectrics. Rudykh and Bertoldi [63], Rudykh
and deBotton [65, 64] and Rudykh et al. [66] have also studied the instability phenomenon
in coupled loading scenarios for composites with different lamination angles and volume
fractions of layers. See also the recent works Slesarenko and Rudykh [78] and Goshkoderia
and Rudykh [22] for the investigation of the multiscale instabilities of fiber composites and
soft dielectric elastomeric composites at finite strains, respectively. Moreover, Siboni et al.
[74], Siboni and Ponte Castañeda [75] investigated electro-mechanical instabilities of cir-
cular and elliptical shaped fiber-reinforced composites. They explored especially the loss
of strong ellipticity and positive definiteness of analytically estimated homogenized cou-
pled moduli of composites with randomly distributed fibers in transversal direction. For
analytical investigations of the loss of strong ellipticity of compressible and incompressible
dielectric elastomer composites involving a generalized approach for the determination of
macroscopic instabilities of composites under generalized loading conditions please refer
to Spinelli and Lopez-Pamies [81]. In Miehe et al. [52, 51] the stability analysis of electro-
elastic, magneto-elastic and magneto-electro-elastic composites has been considered in
saddle-point- and minimization-based variational formulations.

Our aim in this work is to study the multiscale instabilities of quasi-incompressible
periodic EAP composites at finite strains in the context of computational homogenization.
Of particular interest are the microscopic and the macroscopic stability analysis as well
as the determination of stable loading ranges. To the best knowledge of the authors,
the analysis of bifurcation-type microscopic instabilities under electro-mechanical loading
has been mostly limited to analytical investigations of layered composites so far. We
therefore discuss basic theoretical aspects as well as associated ingredients of numerical
implementations for the computational detection of (i) the loss of strong ellipticity of
homogenized moduli, (ii) microscopic bifurcation-type instabilities and (iii) microscopic
buckling modes, each for various microstructures and loading conditions. The multiscale
method is embedded into a variational approach to computational homogenization and
motivated by the works of Bertoldi and Boyce [8], Bertoldi et al. [7], Geymonat et al. [21]
and Triantafyllidis et al. [89]. Based on the present computational approach, we are able
to investigate the stability of multi-phase EAP composites with various microstructures
without any restriction on the geometry of the microstructure. Particularly, in the present
work, microstructures with circular and elliptical fibers of different volume fractions and
aspect ratios will be analyzed.

The quasi-incompressible nature of electroactive polymers can be described by impos-
ing the incompressibility constraint on the RVE. Following this, we implement a four-field
mixed formulation for the microstructures based on the Hu-Washizu variational formu-
lation of Simo et al. [76], see also Nagtegaal et al. [54], Miehe [48] and Yamamoto and
Hisada [95] as well as Auricchio et al. [3] and Schröder et al. [71] for instability anlysis
using mixed finite element formulation.

The outline of the paper is as follows. In Section 3.2, we introduce the variational
formulation of quasi-incompressible homogenization. In Section 3.3, the macroscopic sta-
bility analysis based on the loss of strong ellipticity and microscopic stability analysis
based on the Bloch-Floquet wave analysis are considered. The numerical implementation
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of Bloch-Floquet wave analysis in the context of a finite element discretization is ac-
counted for in detail. Representative numerical examples in two-dimensional plane-strain
condition are given in Section 3.4. The boundary value problems cover microstructures
with fibers of different volume fraction and shape. The work is summarized in Section
3.5.

Notation. In order to ease readability of the following sections, we introduce already
at this point some basic symbolic notations of frequently used operators and variables.
The divergence of a field (·) is denoted as Div(·) := (·)A,A, its gradient as Grad(·) := (·)A,B

and its rotation as Curl(·) := εABC(·)C,B, where ε is the Levi-Civita symbol (uppercase
letters refer to the reference configuration). Likewise, div(·) := (·)a,a, grad(·) := (·)a,b
and curl(·) := εabc(·)c,b denote analogous operations with respect to the deformed config-

uration. Moreover, the notation (·) for macroscopic analogues of microscopic fields (·) is
considered in the following.

3.2 Variational homogenization of quasi-incompressible electro-
elasticity at finite strains

In the context of computational homogenization, we assume that the material response of
a macrostructure B̄ ⊂ R3 is not explicitly based on known constitutive functions, but to be
defined at each material pointX ∈ B by averaging microscopic counterparts over attached
representative volume elements (RVE) B ⊂ R3. We assume separation of the length scales
of macro- and micro-scales, such that the macroscopic fields are uniform over the RVE.
The microscopic boundary value problem (BVP) is nested within a macroscopic BVP and
the total response of the macrostructure is determined, see Fig. 3.1. However, please note
that we limit the framework of this paper to analyze the behavior of microstructures at
a single material point of macrostructures (i.e., no BVP at macroscale is solved). The

intrinsic notation (·) for macroscopic analogues of microscopic variables (·) is considered
in the following. In what follows, we restrict ourselves to electro-elasto-static processes.
That means that thermal, magnetic, dynamic and relativistic effects are not considered.

3.2.1 Description of microscopic kinematic fields

Let B denote an RVE of a periodic microstructure in the reference configuration. We
consider the microscopic boundary value problem to be governed by the primary variables

ϕ :

{
B × T → R3

(X, t) 7→ ϕ(X, t)
and a :

{
B × T → R3

(X, t) 7→ a(X, t) ,
(3.1)

where ϕ is a bijective deformation map that maps the material point X ∈ B onto x =
ϕt(X) ∈ S in the current configuration S = ϕt(B). The consideration of the electric
vector potential a(X, t) as primary variable is associated with a thermodynamic potential
in terms of the electric displacement as independent field. Such thermodynamic potential
is associated with a minimization structure of coupled electroelasticity, which is favorable
for stability analysis8 [51]. Note that in three dimensions, non-unique solutions of electric

8We note that due to the vectorial nature of a, such formulation is in three spatial dimensions com-
putationally more demanding than classical formulations based on the (scalar-valued) electric potential
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lmacro

lmicro

ψ

R3 ψ

B

B S

X ∈ B

X x

F ,D

F , D

ϕ,a

P ,E,C

Figure 3.1: Description of computational homogenization. The figure describes the com-
putational homogenization at an integration point X of the macrostructure. The macro-
to-micro transition is carried out by imposing boundary conditions associated with the
macroscopic deformation gradient F and electric displacement D on the RVE under the
assumption lmicro << lmacro. After obtaining the solution of the microscopic boundary
value problem, micro-to-macro transition is considered, i.e., the averaged macroscopic dual
fields P ,E and coupled moduli C are obtained.

vector potentials can be circumvented, e.g., by imposing Coulomb-gauge conditions. Such
condition requires Diva = 0 to hold in B to eliminate the ill-conditioning of the problem.
However in two dimensions, this condition is satisfied automatically due to the vanishing
plane components of the electric vector potential, see Semenov et al. [73].

The associated deformation gradient and electric displacement vector are given by

F = Gradϕ(X, t) and D = Curla(X, t) , (3.2)

where the deformation gradient must satisfy det[F ] > 0 and the Gauss law DivD = 0
holds a priori 9. It is assumed that the microstructure is driven by the macroscopic
deformation gradient and electric displacement vector. The microscopic kinematic fields

as primary field (in two spatial dimensions the number of degrees of freedom for both formulations is
identical). This drawback could slightly be compensated by generally better convergence rates due to the
positive definiteness of the system matrices in stable loading paths [73]. Furthermore, formulations based
on the electric vector potential (as advocated in the present contribution) allow to track the response of
(micro-)structures throughout the full range of loading paths, see also [40, 51].

9Note that in three spatial dimensions the electric vector-potential formulation becomes non-unique.
This is because the Curl operation in (3.2)2 is invariant w.r.t. an addition of any gradient field to
a(X , t), i.e., Curl(a+Gradω) = Curl(a) ∀ ω ∈ R. The issue of non-uniqueness is usually treated by the
imposition of Coulomb gauges. Such additional condition requires Diva = 0 to be fulfilled thoughout
the whole body B and can be implemented, for example, by using Lagrange or penalty formulations, see
Biro and Preis [10], Kovetz [36], Semenov et al. [72, 73] amongst others. Please note that in two spatial
dimensions, the vector potential is unique since it has only one out-of-plane component and a3,3 = 0 is
fulfilled automatically.
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B

B

S

S

∂B

∂B

∂S

∂S

X ∈ B

X ∈ B x ∈ S

x ∈ S
F = F + F̃

D = D + D̃

ϕ = FX + ϕ̃

a = 1
2
D ×X + ã

N+

N+

N−

N−

n+

n+n−

n−

Figure 3.2: RVE boundary conditions. The RVE is driven by the macroscopic deforma-
tion gradient F and electric displacement D under the assumption of periodic boundary
conditions for fluctuations. In the figure, ’+’ and ’−’ denote the boundaries ∂B+ and ∂B−,
respectively.

can be expressed as

ϕ(X, t) = F (t)X + ϕ̃(X, t) and a(X, t) =
1

2
D(t)×X + ã(X, t) , (3.3)

where ϕ̃
+(X+, t) = ϕ̃

−(X−, t) and ã
+(X+, t) = ã

−(X−, t) are periodic fluctuations on
the boundary ∂B = ∂B+ ∪ ∂B− of the RVE such that X+ ∈ ∂B+ and X− ∈ ∂B−, see
Fig. 3.2. Therefore, we seek the solution of the microscopic boundary value problem under
periodic boundary conditions which satisfy the Hill-Mandel homogeneity assumption, see
[25, 42, 68, 51, 29, 30] and references cited therein for more details.

Considering above definitions of the deformation map and electric vector potential,
the microscopic deformation gradient and displacement vector read

F = F +Grad ϕ̃ and D = D + Curl ã , (3.4)

where F and D are the prescribed homogeneous macroscopic deformation gradient and
electric displacement vector. The following expressions for macroscopic kinematic fields
are assumed, c.f. Hill [27], Miehe et al. [51]

F :=
1

|B|

∫

∂B
ϕ⊗N dA =

1

|B|

∫

B
F dV and

D :=
1

|B|

∫

∂B
N × adA =

1

|B|

∫

B
D dV .

(3.5)
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3.2.2 Stored energy density function of microstructure

The constitutive response of the microstructure is assumed to be governed by an additive
free-energy function, see [51]

ψ(F ,D) = ψm(F ) + ψe(F ,D) , (3.6)

where, F and D are defined by (3.4). The first term describes a polyconvex energy
of the material in terms of the mechanical deformation. The second term describes a
dielectric energy of the material, which is modeled as a convex function in D. Moreover,
the objectivity of ψ with respect to rigid-body motions ϕ+ = Qϕ + c superimposed
onto the current configuration is a priori satisfied for all translations c(t) and rotations
Q(t) ∈ SO(3) considering the reduced form

ψ(F ,D) = ψred(C,D) , (3.7)

where, C = F TgF is the right Cauchy-Green deformation tensor and g ∈ Sym+(3) is
the spatial metric tensor defined in the current configuration.

For incompressible materials, we consider a split of the mechanical energy into volu-
metric and isochoric parts, see also [59]

ψ(F , J,D) = Um(J) + ψm,iso(F iso) + ψe(F ,D) . (3.8)

Here, Um(J) describes the volumetric part of the mechanical free-energy function depend-
ing on J = det[F ] and ψm,iso is the isochoric part of the mechanical free-energy function
which depends on the isochoric deformation gradient F iso = J−1/3F .

3.2.3 Variational formulation of quasi-incompressible homogenization

To describe the quasi-incompressible nature of electroactive polymers in the context
of homogenization we implement a four-field formulation for microstructures based on
[54, 76, 77, 48]. At the same time such approach overcomes the weak performance of
the displacement formulation, specifically with regard to volumetric locking. A similar
homogenization method for quasi-incompressible materials in the purely mechanical case
has been considered in [95].

In the present approach, the incompressibility condition J = det[F ] = 1 is satisfied
in approximate sense by penalizing the Jacobian J element-wise. Therefore, an element-
wise scalar dilatation θ is introduced in the microscopic energy functional and constant
microscopic pressure p forces the constraint J = θ in each finite element. Thus, the
homogenized macroscopic energy function at a macroscopic material point X can be
expressed by

ψ(F ,D;X) = inf
ϕ̃∈W

ϕ̃

inf
ã∈W

ã

inf
θ∈Wθ

sup
p∈Wp

{
Π̂(F +Grad ϕ̃,D + Curl ã, θ, p)

}
, (3.9)

where the macroscopic potential density Π̂ is obtained through homogenization over a
microscopic RVE

Π̂ =
1

|B|

∫

B
π̂micro dV . (3.10)
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Here π̂micro is the microscopic potential density per unit volume of the reference configu-
ration B given by

π̂micro = Um(θ) + p(J − θ) + ψm,iso(J−1/3(F +Grad ϕ̃))

+ ψe(F +Grad ϕ̃,D + Curl ã) .
(3.11)

Thus, the macroscopic energy is defined as the stationary point of the volume averaged
microscopic free-energy in the admissible spaces

ϕ̃ ∈ Wϕ̃ :=
{
ϕ̃ ∈ H1(B) | ϕ̃+ = ϕ̃

− on ∂B = ∂B+ ∪ ∂B−}

ã ∈ Wã :=
{
ã ∈ H(Curl,B) | ã+ = ã

− on ∂B = ∂B+ ∪ ∂B−}

θ ∈ Wθ :=
{
θ ∈ L2(B) in B

}

p ∈ Wp :=
{
p ∈ L2(B) in B

}
.

(3.12)

Note that ψ, in general, describes the macroscopic energy at a microscopic solution state
which might still not represent the minimum macroscopic energy for a given macroscopic
deformation state. We define the minimum macroscopic homogenized energy state under
macroscopic stress-free state assumptions within a macroscopic driving procedure for the
microstructure which will be described later (see also Miehe et al. [51]).

The macroscopic stresses and coupled moduli can be obtained from the homogenized
energy (3.9) by the following equations

P := ∂
F
ψ(F ,D;X) and C := ∂2

F F
ψ(F ,D;X) , (3.13)

where F := [F ,D]T and P := [P ,E]T are the generalized arrays of the gradient fields

and the constitutive fields of electro-elasticity at macroscale, respectively, while C is the
coupled macroscopic moduli tensor.

3.2.4 Euler-Lagrange equations and linearization of variational formulation

Taking the necessary condition for the optimization problem (3.9) into account yields

δΠ̂ =
1

|B|

∫

B




Grad δϕ̃
Curl δã
δθ
δp


 ·




∂F (ψ
m,iso + ψe) + pJF −T

∂
D

ψe

∂θU
m(θ)− p
J − θ


 dV = 0 , (3.14)

where δϕ̃ ∈ Wϕ̃, δã ∈ Wã, δθ ∈ Wθ and δp ∈ Wp are the admissible variations. Applying
integral theorems the Euler-Lagrange equations can be obtained as follows

Div[∂F (ψ
m,iso + ψe) + pJF−T ] = 0 in B

Curl[∂
D

ψe] = 0 in B[[
∂F (ψ

m,iso + ψe) + pJF−T
]]
·N = 0 on ∂B

[[∂
D

ψe]]×N = 0 on ∂B
∂θU

m(θ)− p = 0 in B
J − θ = 0 in B

(3.15)
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where [[(·)]] = (·)+ − (·)− denotes the jump of (·) across the surfaces ∂B+ and ∂B− of
the RVE. The normals N+ at X+ ∈ ∂B+ and N− at X− ∈ ∂B− are defined such that
N+ = −N−, see Fig. 3.2 for a schematic visualization. The first and the second Euler-
Lagrange equations represent the balance of linear momentum and Faraday’s law with
the first Piola-Kirchhoff stress tensor P = ∂F (ψ

m,iso +ψe) + pJF−T and the electric field
E = ∂

D

ψe.10 The linearization of (3.14) yields the following expression in compact form

∆δΠ̂ =
1

|B|

∫

B




δF̃

δD̃
δθ
δp


 ·




A H 0 JF−T

HT K 0 0

0 0 ∂2θθU
m(θ) −1

JF−T 0 −1 0


 ·




∆F̃

∆D̃
∆θ
∆p


 dV , (3.17)

where ∆F̃ = Grad∆ϕ̃ and ∆D̃ = Curl∆ã are considered. A = ∂2FF (ψ
m,iso + ψe) +

pJF−T ⊗ F−T + pJ ∂F−T

∂F
is the mechanical moduli tensor, H = ∂2FDψ

e is the coupling
term and K = ∂2

DD

ψe is the electric moduli tensor of the microstructure.

Due to the discontinuous element-wise constant interpolations of the dilatation θ and
pressure p, we can solve these terms on element level and condense them out of the global
algebraic system of equations

∫

Be

δp(J − θe) dV = 0 and

∫

Be

δθ
(
∂θU

m(θe)− pe
)
dV = 0 (3.18)

yields expressions for dilatation and pressure in a finite element Be

θe =
1

|Be|

∫

Be

J dV =
|Se|
|Be| and pe = ∂θU

m(θe) , (3.19)

where |Be| =
∫
Be dV is the volume of a finite element Be in the reference configuration and

|Se| =
∫
Be J dV is the volume of a deformed finite element Se in the current configuration.

Similarly, the increments ∆θ and ∆p can be expressed as

∆θe =
1

|Be|

∫

Be

JF−T : ∆F̃ dV and ∆pe =
∂2θθU

m(θe)

|Be|

∫

Be

JF−T : ∆F̃ dV . (3.20)

Inserting equations (3.19) and (3.20) into (3.14) and (3.17) yields the reduced variation
of the microscopic potential and its linearization depending on only the displacement and
electric vector potential as primary variables

δΠ̃red =
1

|B|

∫

Be

{
δF̃ : P + δD̃ ·E

}
dV (3.21)

10Note that that the present approach is based on a referential description of the Maxwell equations,
see, e.g., Dorfmann and Ogden [16] for more details. In the current configuration the corresponding
Maxwell equations read

divd = 0 and curl e = 0 (3.16)

where d = ϕt∗(D) = J−1FD and e = ϕt∗(E) = F−T
E are the push-forwards of the referential electric

displacement D and electric field E, respectively.
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and

∆δΠ̃red =
1

|B|

∫

Be

{
δF̃ : A : ∆F̃ + δF̃ : H ·∆D̃ + δD̃ ·HT : ∆F̃ + δD̃ ·K ·∆D̃

}
dV

+
1

|B|

[ ∫

Be

δF̃ : JF−T dV

]
∂2θθU

m(θe)

|Be|

[ ∫

Be

JF−T : ∆F̃ dV

]
.

(3.22)

3.2.5 Finite element implementation of the homogenization procedure

The solution of the microscopic boundary value problem (3.21) is carried out by the
isoparametric finite element method. The nodal degrees of freedom are the fluctuations
of the deformation map and electric vector potential. We consider the same ansatz space
for the primary fields d

e := [de
ϕ̃,d

e
ã]

T , their increments ∆d
e := [∆de

ϕ̃,∆de
ã]

T and their
variations δde := [δde

ϕ̃, δd
e
ã]

T . Then, the fluctuations of the deformation map and electric
vector potential are discretized as

ϕ̃ ≈ ϕ̃
h =

nnode∑

I=1

N IdI
ϕ̃ =: N ϕ̃de

ϕ̃ and ã ≈ ã
h =

nnode∑

I=1

N IdI
ã =: N ãde

ã , (3.23)

where N I is the shape function of the node I of a corresponding finite element Be.

The gradient and the curl of the fluctuation fields are approximated as

F̃ ≈ F̃
h
= Grad ϕ̃h =

nnode∑

I=1

dI
ϕ̃ ⊗GradXN

I := N
ϕ̃
,Xde

ϕ̃

D̃ ≈ D̃h = Curl ãh =

nnode∑

I=1

GradXN
I × dI

ã := N ã
,Xde

ã ,

(3.24)

where, N ϕ̃
,X and N ã

,X are interpolation matrices comprising the gradients of the shape
functions with respect to the reference configuration.11 The tensorial gradient of mechan-

ical fluctuations is implemented in a vectorial form, i.e., F̃
h
= [F̃11, F̃22, F̃12, F̃21]

T in
two dimensions, which is considered in the last term of (3.24)1.

For later use, we consider the following expression

∫

Be

JF−T : ∆F̃
h
dV =

∫

Be

JF−T :
( nnode∑

I=1

∆dI
ϕ̃ ⊗GradXN

I
)
dV

=

∫

Be

nnode∑

I=1

J∆dI
ϕ̃ ·

(
GradXN

IF−1
)
dV =

∫

Be

nnode∑

I=1

J∆dI
ϕ̃ · gradxN

I dV

:=
{∫

Se

N ϕ̃
,x dv

}
∆de

ϕ̃ = N
ϕ̃

,x∆de
ϕ̃ .

(3.26)

11For two-dimensional problems, N ϕ̃
,X and N ã

,X at node I are assembled as

[
N

ϕ̃
,X

]
I
=

[
N I

,X1
N I

,X2

N I
,X2

N I
,X1

]T
and

[
N ã

,X

]
I
=

[
N I

,X2
−N I

,X1

]T
. (3.25)
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Similarly, we can write
∫

Be

δF̃
h
: JF−T dV := N

ϕ̃

,xδd
e
ϕ̃ . (3.27)

Above the row vectors N ϕ̃
,x and N

ϕ̃

,x contain the spatial derivative of the shape functions
with respect to the current configuration and their integration over the deformed finite
element Se, respectively. 12

The total degrees of freedom become

d :=
nelem

A
e=1

[
de
ϕ̃

de
ã

]
∈ Rm , (3.29)

whereA
nelem

e=1 denotes the assembly operator over all finite elements Be ⊂ Bh. Considering
the above discretization in (3.9) together with (3.19), (3.20) and (3.21) yields

ψ
h
(F, d;X) =

1

|B|
nelem

A
e=1

Π̃h
red

(
F +N

ϕ̃
,Xde

ϕ̃,D +N
ϕ̃
,Xde

ã, θ
e(de

ϕ̃), p
e(de

ϕ̃)
)
dV (3.30)

with

ψ(F;X) = inf
d∈Rm

ψ
h
(F, d;X) . (3.31)

The necessary condition (3.21)1 of the minimization problem defines the nonlinear
algebraic system of equations

R := ψ
h

,d =
1

|B|
nelem

A
e=1

∫

Be

[
N

ϕ̃T
,X

N ãT
,X

]
·
[
P

E

]
dV = 0 , (3.32)

where the first Piola-Kirchhoff stress tensor P is implemented as a vectorial object, i.e.,
P = [P11, P22, P12, P21]

T in two dimensions.

The microscopic converged energy state is obtained by applying the Newton-Raphson
iteration scheme

d ⇐ d−K
−1
R until ||R|| ≤ tolmicro , (3.33)

where K is the stiffness matrix of the microstructure. It is defined from (3.22) and given
by

K := ψ
h

,dd =
1

|B|
nelem

A
e=1

{∫

Be

[
N

ϕ̃T
,X

N ãT
,X

]
·
[
A H

HT K

]
·
[
N

ϕ̃
,X

N ã
,X

]
dV

+

[
N

ϕ̃T

,x
∂2
θθ
Um(θe)

|Be| N
ϕ̃

,x 0

0 0

]}
,

(3.34)

12For two-dimensional problems, N ϕ̃
,x at node I reads

[
N ϕ̃

,x

]
I
=

[
N I

,x1
N I

,x2

]
(3.28)
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where θe is constant on each finite element and defined by (3.19)1. For compactness, we
define with

C :=

[
A H

HT K

]
(3.35)

the coupled electro-mechanical moduli of the microstructure. Here, C is not the direct
derivative of the reduced microscopic potential Π̃red with respect to the array of gradient
fields F := [F ,D]T . This is due to the fact that the pressure p is not an independent
variable but depends on the microscopic deformation gradient F . Furthermore, as the
dilatation θ and pressure p are condensed out of the stiffness matrix, K is positive definite
until a microscopic structural instability occurs. This effect has advantages for stability
analysis.

3.2.6 Homogenized stresses and elasticity moduli

In the finite element context, the first Piola-Kirchhoff stress and the electric field in the
compact form P := [P ,E]T are defined by expressions given in (3.13)1 based on the
discrete minimization problem (3.31)

P = ∂
F
ψ = ψ

h

,F + [ψ
h

,d][d,F
] (3.36)

which simplifies further at the converged state due to the necessary condition (3.32). In
detail we have

P = ψ
h

,F and E = ψ
h

,D , (3.37)

where

ψ
h

,F =
1

|B|
nelem

A
e=1

∫

Be

P dV and ψ
h

,D =
1

|B|
nelem

A
e=1

∫

Be

E dV . (3.38)

Likewise, the macroscopic coupled moduli tensor is determined by expression (3.13)2

C = ∂2
F F
ψ = ψ

h

,F F
+ ψ

h

,Fdd,F
, (3.39)

where F = [F ,D]T is considered for the concise representation. The first term on the
right-hand side in (3.39) is defined as

ψ
h

,F F
:=


ψ

h

,F F ψ
h

,F D

ψ
h

,DF ψ
h

,DD


 (3.40)

along with the following definitions

ψ
h

,F F =
1

|B|
nelem

A
e=1

{∫

Be

[
A+ JF−T ⊗ ∂2θθU

m(θe)

|Be|

∫

Be

JF−T dV

]
dV

}

ψ
h

,F D =
1

|B|
nelem

A
e=1

{∫

Be

∂2FDψ
e dV

}

ψ
h

,DF =
1

|B|
nelem

A
e=1

{∫

Be

∂2
DFψ

e dV

}

ψ
h

,DD =
1

|B|
nelem

A
e=1

{∫

Be

∂2
DD

ψe dV

}
.

(3.41)
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The second term in (3.39) is given as

L := ψ
h

,dF =
1

|B|
nelem

A
e=1

{∫

Be

[
N

ϕ̃T
,X

N ãT
,X

]
·
[
A H

HT K

]
dV

+

[
N

ϕ̃T

,x
∂2
θθ

Um(θe)

|Be|
∫
Be JF

−T dV 0

0 0

]}
.

(3.42)

The sensitivity of fluctuations with respect to the macroscopic deformation gradient
and electric displacement F = [F ,D]T can be determined from (3.32)

d
,F

= −[ψ
h

,dd]
−1[ψ

h

,dF ] = −K
−1
L . (3.43)

Inserting the latter equation in (3.39) yields the for coupled macroscopic electro-mechanical
moduli

C = ψ
h

,F F
− L

T
K

−1
L . (3.44)

In general, computational homogenization requires to solve the microscopic variational
problem on inhomogeneous RVEs at each Gauss-point of the macrostructure. Therefore,
the solution at the macro-level is carried out in consideration of nested microscopic bound-
ary value problems at each macroscopic load increment. However, for our framework we
constrain our attention to a single macroscopic Gauss-point and study the microscopic
and macroscopic stability behavior at this point. In this way, the RVE at the macro-
scopic Gauss-point is considered to be driven by the macroscopic deformation gradient F
and electric displacement D. We assume that the minimum macroscopic energy state is
reached if the macroscopic homogenized stress and electric field components satisfy the
macroscopic conservation laws. The converged macroscopic stress and electric field com-
ponents are then associated with the prescribed deformation gradient and displacement
vector components, see Miehe et al. [51], Zäh [96, p.137] for more details. The macro-
scopic stress and electric field tensors at converged microscopic state are determined by
(3.37).

3.3 Stability analysis of periodic electroactive polymers

3.3.1 Localization-type macroscopic stability analysis

At a certain deformation threshold the homogenized incremental moduli might not hold
the strong ellipticity condition leading to localization on the macro-level, see Abeyaratne
and Triantafyllidis [1]. Therefore, it is of particular interest to determine the macroscopic
deformations that lead to the loss of strong ellipticity. We determine these instability
points Based on the criterion that has been given by Dorfmann and Ogden [17]. This
criterion is described below.

Consider a time-dependent infinitesimal elastic perturbation v(X, t) superimposed
onto the current configuration. The linearized Euler-Lagrange equations in two-point
setting can be written as

Div[A :
˙
F +H · ˙

D] = ρ0g v̈(X, t)

Curl[HT :
˙
F +K · ˙

D] = 0 ,
(3.45)
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where,
˙
F = Gradv(X, t) and

˙
D are the increments of the macroscopic deformation

gradient and electric displacement, respectively, g ∈ Sym+(3) is the symmetric spatial

metric in the current macroscopic configuration and A = ∂2
F F

ψ, H = ∂2
F D

ψ as well as

K = ∂2
DD

ψ assemble the coupled macroscopic moduli C, which are defined by (3.44).

The incremental Gauss law in terms of the referential electric displacement is given by

Div[
˙
D] = 0 . (3.46)

For incompressible materials, it is convenient for the subsequent stability analysis to
consider incremental Euler-Lagrange equations in the current configuration:

div[a : d+ h ·£v̄d] = ρ g v̈(X, t)

curl[hT : d+ k ·£v̄d] = 0 ,
(3.47)

where a b d
a c = J−1F b

AF
d
BA

A B
a c , h b

a c = F b
A(F

−1)BcH
A

a B and kab = J(F−1)Aa(F
−1)BbKAB

are the current analogues of the mechanical, electro-mechanical and electric terms of cou-
pled moduli C. d = sym[gradv] is the symmetric part of the spatial gradient of the

perturbation v, and £v̄d = ϕt∗(
˙
D) is the objective Lie derivative of the electric displace-

ment, which is defined as the push-forward of
˙
D.

The incremental Gauss-law in the current configuration becomes

div[£v̄d] = 0 . (3.48)

We consider that the homogeneous perturbations have the following form

v = pf(x · n− c t) and £v̄d = sg(x · n− c t) , (3.49)

where p and s are the propagation directions and n is the amplitude direction of the
perturbations with real wave speed c. We assume that f is a twice continuously differen-
tiable function and g is a continuously differentiable function (see Dorfmann and Ogden
[17]).

Plugging (3.49)2 in (3.48) results in s · n = 0. Considering this and (3.49) in (3.47)
yields the following condition for the strong ellipticity of the macroscopic moduli

Λ = inf
|p|=|s |=|n|=1

{
p · q(n) · p− [p · r(n) · s][p · r(n) · s]

s · k · s

}
= inf

|p|=|s |=|n|=1
{ρ c2} > 0 ,

(3.50)

where qac = a

b d
a c nbnd and rac = h

b
a cnb (please refer to [50] for the treatment of purely

mechanical problems). We call Λ the macroscopic coercivity constant. A vanishing Λ
corresponds to the propagation of perturbations with zero wave speed c, such that local-
izations can be developed at macroscale. Therefore, these points are of special importance.

For incompressible materials div v = 0 yields

p · n = 0 , (3.51)

which can be considered in (3.50).
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For two-dimensional incompressible problems the loss of strong ellipticity can be deter-
mined by solving the sixth-order polynomial equation as given by Rudykh and deBotton
[65]

a0ξ
6 + a1ξ

5 + a2ξ
4 + a3ξ

3 + a4ξ
2 + a5ξ + a6 = 0 , (3.52)

where ξ = n2/n1 with n2 and n1 are the components of n in two dimension. The coeffi-
cients are defined as

a0 =(h 2
1 1)

2 − a

2 2
1 1 k11

a1 =2((a 2 2
1 2 − a

1 2
1 1 )k11 + a

2 2
1 1 k12 + h

2
1 1(h

1
1 1 − h

2
1 2 − h

2
2 1))

a2 =− (a 1 1
1 1 − 2a 1 2

1 2 − 2a 2 1
1 2 + a

2 2
2 2 )k11 + 4(a 1 2

1 1 − a

2 2
1 2 )k12 − a

2 2
1 1 k22

+ (h 2
1 2 + h

2
2 1 − h

1
1 1)

2 − 2h 2
1 1(h

1
1 2 + h

2
1 1 − h

2
2 2)

a3 =2((a 1 1
1 2 − a

1 2
2 2 )k11 + (a 1 1

1 1 − 2a 1 2
1 2 − 2a 2 1

1 2 + a

2 2
2 2 )k12

+ (a 2 2
1 2 − a

1 2
1 1 )k22 + (h 2

1 1h
2

1 2 − (h 1
1 1 − h

2
1 2 − h

2
2 1)

× (h 1
1 2 + h

2
1 1 − h

2
2 2)))

a4 =− a

1 1
2 2 k11 − 4(a 1 1

1 2 − a

1 2
2 2 )k12 − (a 1 1

1 1 − 2a 1 2
1 2

− 2a 2 1
1 2 + a

2 2
2 2 )k22 + 2h 2

1 2(h
1

1 1 − h

2
1 2 − h

2
2 1)

+ (h 1
1 2 + h

2
1 1 − h

2
2 2)

2

a5 =2(a 1 1
2 2 k12 + (a 1 1

1 2 − a

1 2
2 2 )k22 − h

2
1 2(h

1
1 2 + h

2
1 1 − h

2
2 2))

a6 =(h 2
1 2)

2 − a

1 1
2 2 k22 .

(3.53)

The instability point is considered to be detected at a deformation state if there exist a
real solution of (3.52).

3.3.2 Bifurcation-type microscopic stability analysis

We treat the microscopic bifurcation-type instabilities of periodic electro-active polymers
by considering Bloch-Floquet wave analysis in electro-elasticity motivated from the works
of Bertoldi et al. [7] and Triantafyllidis et al. [89] in elasticity. Consider an EAP which
is periodic at the microscale, i.e., it can be described by a generic unit cell and possesses
the following translational symmetry

C(X +mL) = C(X) , (3.54)

where, m = [m1, m2, m3]
T are arbitrary integers. L = [L1, L2, L3]

T ∈ R3 are the dimen-
sions of the unit cell, X are the coordinates of the unit cell and C is the coupled moduli
tensor of the microstructure given by (3.35).

The consideration of a polyconvex microscopic energy allows the description of buck-
ling phenomena at microscale. However, when such microscopic instabilities occur the
periodicity of the microstructure might change. Consequently, the RVE should contain
the critical number n = [n1, n2, n3]

T ∈ N3 of unit cells (see Fig. 3.3) corresponding to the
wavelength of the buckling to describe effective material response at macroscale and the
buckling mode. The effective macroscopic energy should be defined by, see Müller [53]

ψ(F ,D;X) = inf
n∈N3

ψ̂n(F ,D;X) (3.55)
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Figure 3.3: Critical size of RVE in two dimensions. The microscopic bifurcation-type
periodic instabilities can alter the periodicity of the microstructure corresponding to the
wavelength of the buckling requiring the enlargement of the RVE to n1L1 × n2L2 from
initial unit-cell size L1 × L2. Here, n1 and n2 in 2D are the critical number of unit cells
in L1 and L2 directions. These instabilities can be detected on the unit cell by taking
advantage of Bloch-Floquet wave analysis rather than searching the first critical instability
point on all possible enlargments of the RVE.

with

ψ̂n(F ,D;X) = inf
ϕ̃∈W

ϕ̃#

inf
ã∈W

ã#

1

|nD|

∫

nD
ψ(F +Grad ϕ̃,D + Curl ã;X) dV (3.56)

where nD describes the enlarged RVE and D denotes the generic unit cell corresponding
to the periodicity of the microstructure at the reference configuration. Admissible spaces
for nD periodic fine scale fluctuations are given by

ϕ̃ ∈ Wϕ̃# :=
{
ϕ̃ ∈ H1(B) | ϕ̃+ = ϕ̃

− on ∂nD
}
,

ã ∈ Wã# :=
{
ã ∈ H(Curl,B) | ã+ = ã

− on ∂nD
}
.

(3.57)

The microscopic instability is described by the following expression

Λ̂nD = inf
n∈N3

{
inf

ϕ̃∈W
ϕ̃#

inf
ã∈W

ã#

{∫

nD

[
Grad ϕ̃
Curl ã

]
·
[
∂2FFψ ∂2FDψ
∂2
DFψ ∂2

DD

ψ

]
·
[
Grad ϕ̃
Curl ã

]
dV

/∫

nD

[
Grad ϕ̃
Curl ã

]
·
[
Grad ϕ̃
Curl ã

]
dV

}} (3.58)

which constitutes the microscopic coercivity constant.

The relationship ψ̂n(F ,D;X) ≤ ψ̂1 (F ,D;X) between the homogenized macroscopic
energy function over an enlarged RVE nD and over a unit cell RVE D holds. The equality
of them ψ̂n(F ,D;X) = ψ̂1 (F ,D;X) is only satisfied if the coercivity constant is positive
Λ̂nD > 0 (see [21, 53] for the purely mechanical case).

The definitions of the above mentioned effective macroscopic energy (3.55) and mi-
croscopic coercivity constant (3.58) require the consideration of all possible enlargements
of an RVE to find the minimum energy state due to microscopic instabilities and the cor-
responding critical periodicity. In the numerical setting, the microscopic instability based
on (3.58) can be detected as the loss of positive definiteness of the corresponding stiffness
matrix which arises the first time along the loading path among the various enlarged
RVEs. From a numerical point of view such computations are not feasible. However,
Geymonat et al. [21] have shown rigorously for mechanical problems that the microscopic
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coercivity constant and thus the critical periodicity still can be determined on a unit cell
exploiting the Bloch wave analysis, see also Bertoldi et al. [7], Bertoldi and Gei [9] and
Triantafyllidis et al. [89].

The Bloch-Floquet analysis describes testing stability of a unit cell RVE under super-
imposed periodic perturbations at current incremental deformation state, however with
various wavelengths. This could be expressed as

Div[∂2FFψ : Gradv + ∂2FDψ · Curla] = 0

Curl[∂2
DFψ : Gradv+ ∂2

DD

ψ · Curla] = 0
(3.59)

with jump conditions on the boundary ∂D of the unit cell
[[
∂2FFψ : Gradv+ ∂2FDψ · Curla

]]
·N = 0[[

∂2
DFψ : Gradv + ∂2

DD

ψ · Curla
]]
×N = 0 ,

(3.60)

where N is the outward normal on the surface of the RVE. v and a denote the periodic
incremental perturbations which can be described in the following forms according to the
Bloch-Floquet periodicity condition

v(X) = ϕ̃ exp[ik ·X] and a(X) = ã exp[ik ·X] , (3.61)

where ϕ̃ ∈ Wϕ̃ and ã ∈ Wã are D-periodic fluctuations and k ≡ (k1, k2) is referred to as
Bloch vector which is defined in Fourier domain (see Section 3.3.3). Considering (3.61)
results in the following expression for the microscopic coercivity constant

Λ̂nD = inf
k

{
inf

ϕ̃∈W
ϕ̃

inf
ã∈W

ã

{∫

D

[
Gradv∗

Curla∗

]
·
[
∂2FFψ ∂2FDψ
∂2
DFψ ∂2

DD

ψ

]
·
[
Gradv
Curla

]
dV

/∫

D

[
Gradv∗

Curla∗

]
·
[
Gradv
Curla

]
dV

}}
,

(3.62)

where (·)∗ denotes the complex conjugate of (·).
Based on this formulation a global instability mode at macroscale, which implies that

the wavelength of buckling is much larger than the size of the unit cell, can be detected as
the limit case of (3.62). The long-wavelength instability modes based on Bloch-Floquet
wave analysis can be given as

Λ̂0 = lim inf
k→0

{
inf

ϕ̃∈W
ϕ̃

inf
ã∈W

ã

{∫

D
∇v

∗ · ∂2
FF
ψ · ∇v dV

/∫

D
∇v

∗ · ∇v dV

}}
, (3.63)

where ∇v := [Gradv, Curla]T is considered for compactness. Please note that insta-
bilities k → 0 can also be analyzed with much less effort by checking the loss of strong
ellipticity of homogenized tangent moduli [88, 21, 9]. Additionally, such instabilities
should be differentiated from the ones with k = 0 at the origin of the Bloch vector space.
The latter correspond to the unit cell periodic microscopic instabilities, see [21, 9].

3.3.3 Description of reciprocal space of a unit cell

The Bloch vector k for two-dimensional problems is defined in reciprocal space spanned
by B1 and B2 (see, e.g., Kittel [32] )

k = k1B1 + k2B2 (3.64)
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with the following definitions of basis vectors

B1 = 2πL2 ×LN and B2 = 2πLN × L1 , (3.65)

where LN := L1 × L2/||L1 × L2||2. The basis vectors B1 and B2 of the reciprocal unit
cell satisfy Li ·Bj = 2πδij with Kronecker delta δij . L1 and L2 are the bases of the unit
cell, see Fig. 3.3. The above definition of the basis vectors yield normalized Bloch vector
components with respect to 2π. Consequently, the Bloch vector components are defined
in the domain 0 ≤ ki < 1, i = 1, 2.

The perturbations v and a are considered to be periodic with periodicity of the mi-
crostructure. This can be expressed as follows

v(X +R) = v(X) and a(X +R) = a(X) , (3.66)

where, R = n1L1 + n2L2 is the lattice vector, and X ∈ D are the coordinates of the unit
cell.

Considering (3.61), the following expressions are obtained for v(X+R) and a(X+R)

v(X +R) = v(X) exp[ik ·R] and a(X +R) = a(X) exp[ik ·R] . (3.67)

Thus, taking (3.66) into account yields the following condition

exp[ik ·R] = 1 . (3.68)

At an instability point the periodicity of a microstructure may change and a new period-
icity can be defined from the above condition as n1 = 1/k1 and n2 = 1/k2 in L1 and L2

directions, respectively, as discussed in [8, 7].

3.3.4 Numerical implementation of Bloch-Floquet wave analysis

The numerical implementation is carried out by considering a finite element discretization
of the unit cell. The coercivity constant describing the microscopic instability point, as
defined in (3.62), can be expressed in two dimensions as

Λ̂nD = inf
k

{
inf

ϕ̃∈W
ϕ̃

inf
ã∈W

ã

[
a(γ, v)

/
||v||2D

]}
(3.69)

with the following definitions, cf. (3.62)

a(γ, v) =

∫

D
∇v

∗ · ∂2
FF
ψ(F +∇ϕ̃,D + Curl ã;X) · ∇v dV

||v||2D =

∫

D
∇v

∗ · ∇v dV ,

(3.70)

where ∇v := [Gradv, Curla]T and F := [F , D]T are considered. The bilinear form
a(γ, v) depends on the perturbations v of the unit cell and the macroscopic load param-
eter γ, which characterizes electro-mechanical loading. An infimum over k requires to
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investigate instabilities over the chosen grid of Bloch vector components. Thus, an insta-
bility may occur at the critical values of γc when Λ̂nD = 0 is satisfied. Moreover, Λ̂nD > 0
for the loading cases γ < γc.

The instability point Λ̂nD = 0 in the context of the finite element method is reached
when the minimum eigenvalue of the bilinear form a(γ, v) vanishes. In (3.70)1, the com-
plex eigenmodes are considered. For convenient numerical implementation, the com-
plex degrees of freedom can be split into real and imaginary parts. Considering ∇v =
∇v

re + i∇v
im and ∇v

∗ = ∇v
re − i∇v

im leading to the real and imaginary split of bilinear
form as follows

are(γ, vre) :=

∫

D
∇v

re · ∂2
FF
ψ(F +Grad ϕ̃,D + Curl ã;X) · ∇v

re dV

aim(γ, vim) :=

∫

D
∇v

im · ∂2
FF
ψ(F +Grad ϕ̃,D + Curl ã;X) · ∇v

im dV .

(3.71)

The latter expressions in the context of the finite element implementation can be written
in the following compact form

ah(γ, d) =

[
d
re

d
im

]T [
K 0

0 K

] [
d
re

d
im

]
, (3.72)

where d
(·) := [d

(·)
AB, d

(·)
AD, d

(·)
A , d

(·)
DC , d

(·)
BC , d

(·)
B , d

(·)
C , d

(·)
D , d

(·)
i ]T are the nodal degrees of

freedom (DOFs) and K is the stiffness matrix of the unit cell, which is given by (3.34). For
two-dimensional problems three degrees of freedom per node, i.e., two displacements and
one component of electric vector potential are considered. d

(·)
AB are DOFs on the boundary

AB without containing DOFs at nodes A and B. Likewise d
(·)
AD, d

(·)
DC , d

(·)
BC are defined

on the unit cell boundaries. d
(·)
A , d

(·)
B , d

(·)
C , d

(·)
D , are the DOFs at the corner nodes of the

unit cell, see Fig. 3.3. di denotes the internal DOFs. The real and imaginary parts of
the bilinear forms are coupled considering the so-called Bloch-Floquet periodic boundary
conditions (3.67). However, before describing the Bloch-Floquet analysis, (3.72) can be
further simplified by statically condensing the internal DOFs from algebraic system of
equations, see [89]. This allow to improve computational efficiency of the subsequent
eigenvalue analysis. Prior to condensation, the stiffness matrix can be expressed as

K(γ) =

[
Kaa Kai

Kia Kii

]
, (3.73)

where the subscript ’i’ is related to internal DOFs di and the subscript ’a’ contains all
DOFs other than the internal ones. Applying static condensation yields

K
H(γ) = Kaa −KaiK

−1
ii Kia . (3.74)

Taking (3.74) in (3.72) into account, we obtain

ah(γ, dH) =

[
d
Hre

d
Him

]T [
K

H
0

0 K
H

] [
d
Hre

d
Him

]
, (3.75)

where d
H(·) := [d

(·)
AB, d

(·)
AD, d

(·)
A , d

(·)
DC , d

(·)
BC , d

(·)
B , d

(·)
C , d

(·)
D ]T are DOFs without internal

DOFs di.
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Exploiting the Bloch-Floquet wave analysis (3.67), the following relationship between
the opposite boundaries can be written

dBC = dAD exp[i2πk1]

dDC = dAB exp[i2πk2]

dB = dA exp[i2πk1]

dC = dA exp[i2πk1] exp[i2πk2]

dD = dA exp[i2πk2] .

(3.76)

The Bloch-Floquet periodicity condition for the bilinear form, which is split into real
and imaginary parts in the context of the finite element discretization, can be reformulated
considering the following relationship between the opposite boundaries. It is considered
that d = d

re + idim together with exp[ik · [[X]]] = cos[k · [[X]]] + i sin[k · [[X]]] yields (see
also [62, 8])

d
re(X + [[X]]) = d

re(X) cos[k · [[X ]]]− d
im(X) sin[k · [[X]]]

d
im(X + [[X]]) = d

re(X) sin[k · [[X]]] + d
im(X) cos[k · [[X]]] .

(3.77)

Considering (3.77) and (3.76) in (3.75) gives

ah(γ, d) = d
T
redKdred , (3.78)

where

K(γ, k1, k2) = QT (k1, k2)

[
K

H(γ) 0

0 K
H(γ)

]
Q(k1, k2) (3.79)

is a Hermitian matrix which has real eigenvalues and depends on the macroscopic load-
ing parameter and components of the Bloch vector. It is obtained after condensing the
periodic DOFs with Q. Q(k1, k2) can be described by

d
H =




d
re
AB

d
re
AD

d
re
A

d
re
DC

d
re
BC

d
re
B

d
re
C

d
re
D

d
im
AB

d
im
AD

d
im
A

d
im
DC

d
im
BC

d
im
B

d
im
C

d
im
D




=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

c2 0 0 −s2 0 0

0 c1 0 0 −s1 0

0 0 c1 0 0 −s1

0 0 c12 0 0 −s12

0 0 c2 0 0 −s2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

s2 0 0 c2 0 0

0 s1 0 0 c1 0

0 0 s1 0 0 c1

0 0 s12 0 0 c12

0 0 s2 0 0 c2







d
re
AB

d
re
AD

d
re
A

d
im
AB

d
im
AD

d
im
A



= Qdred , (3.80)
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where ci and si are the notations for the diagonal matrices having entries cos[i2πki]
and sin[i2πki], respectively. Likewise c12 and s12 are diagonal matrices with entries
cos[i2π(k1 + k2)] and sin[i2π(k1 + k2)], respectively. 1 is the identity matrix. The sizes of
these matrices are defined according to the respective DOFs to which they are related.

Consequently, the loss of positive definiteness of K determines the critical loading
points and critical Bloch vector components. The latter could be further exploited to
define the new periodicity of the microstructure. To investigate instability points when
k1 = 0 and k2 = 0, all three DOFs of dA are constrained against rigid-body motions.

Microscopic bifurcation modes are obtained by considering the instability analysis in
enlarged RVEs. The mesh of the RVE is perturbed by eigenvectors d⋆ of a critical point

X ⇐ X + τ
d
⋆

‖d⋆‖ , (3.81)

where X denotes the undeformed coordinates of the RVE, d⋆ is the total eigenvector of
the critical mode and τ is a scaling factor.

3.3.5 Relations between microscopic and macroscopic instability phenomena

Above, three coercivity constants describing macroscopic and microscopic instability phe-
nomena are introduced. The following relationship between these coercivity constants is
assumed to hold [88, 21, 47]

Λ̂nD ≤ Λ̂0 ≤ Λ . (3.82)

As discussed above Λ̂0 and Λ are vanishing at the same time, meaning that a long-
wavelength microscopic instability leads to the loss of strong ellipticity of the homogenized
moduli [21]. In other cases, microscopic instabilities are assumed to be constrained by
macroscopic instabilities.

3.4 Representative Numerical Examples

The numerical examples consider periodic elastomeric composites with embedded circular
as well as elliptical fibers under macroscopic electro-mechanical loading conditions in two
dimensions. Plane-strain deformation of microstructures are in focus. Depending on the
volume fractions f0 = {0.1, π/16, 0.3} and aspect ratios ω = {1/3, 1/2, 1, 2/1, 3/1} of
the fibers, the first occurrence of microscopic and macroscopic instabilities are determined.
The influence of orientations of the elliptical fibers is considered placing their major axis
parallel and perpendicular to the electric loading direction. At a microscopic instability
point a change of critical periodicity might be expected. In the given examples, new
critical periodicities and bifurcation modes at selected deformations are shown. The
macroscopic stability analysis is based on the loss of strong ellipticity of the homogenized
moduli at a certain deformation. The Bloch-Floquet wave analysis is used to define the
microscopic instabilities. Interactions of the microscopic and macroscopic instabilities are
demonstrated.
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Figure 3.4: Influence of volume fractions of fibers on the electro-mechanical response of
microstructures. The microstructures are loaded with a vertical electric displacement D′

2.
The resulting macroscopic mechanical deformations are determined from macroscopic equi-
librium. The circular fibers have volume fractions f0 = {0, 0.1, π/16, 0.3}. The plots

demonstrate: (a) induced macroscopic deformation F 11 depending on D′
2; (b) induced

macroscopic electric field E′
2 as a function of D′

2; and (c) the macroscopic electric field E′
2

as a function of F 11.

3.4.1 Microscopic constitutive law

We consider the isochoric mechanical energy to be governed by a polyconvex Gent material
model [20], while the electric contribution is taken into account in the free-energy function
by adding a convex term in the electric displacement D. The volumetric energy U(θ) has
a simple quadratic structure, and the energies for two-dimensional problems are chosen
as

Um(θ) =
κ

2
(θ − 1)2,

ψm,iso(F iso) = −µξ
2

ln

[
1− ||F ||2/J − 2

ξ

]
,

ψe(F ,D) =
1

2ǫ0(J + χ)
C : (D ⊗D) =

J

2ǫ̂
||d||2 ,

(3.83)

where θ is the dilatation and κ is the bulk modulus. The isochoric deformation gradient is
defined as F iso = J− 1

2F in two dimensions. The material parameter ξ is associated with
the strain saturation of the microstructure. The second-order tensor C = F TgF denotes
the right Cauchy-Green deformation tensor, d = J−1FD in (3.83)3 denotes the current
electric displacement, ǫ0 = 8.854 N/MV2 is the electric permittivity of vacuum and χ is
the electric susceptibility in the undeformed configuration. The electric permittivity of
the material is defined by ǫ̂ = ǫ0ǫ̂r with the relative electric permittivity ǫ̂r = ǫ0(1 + χ̂).
Based on (3.83)3, we assume a deformation-dependent electric susceptibility χ̂ = χ/J of
the material, see, e.g., McMeeking and Landis [45].

In the following numerical examples, a finite-element formulation with linear interpo-
lations of displacement and electric vector potential fields as well as piecewise constant
approximations of pressure and dilatation fields are considered. Due to apparent simi-
larities to the B-bar method, the resulting finite element is denoted as BQ1P0. For a
brief discussion of the numerical stability of the chosen element formulation please refer
to Appendix A.
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Table 3.1: Material and loading parameters

No. Parameter Name Value

1. ∆γ Macroscopic load increment 2 · 10−3

2. ∆φ Path angle increment 1◦

3. κ/µ Bulk modulus relative to shear modulus 100

4. µf/µm Relative shear modulus of fibers 100

5. χf/χm Relative electric susceptibility of fibers 100

6. ξ Strain saturation parameter 100

3.4.2 Electro-mechanical response of microstructures

Before considering instability analysis, the responses of microstructures are demonstrated.
Thereby, unit-square RVEs with embedded circular fibers are examined. The macroscopic
loading condition

D

′
2 =

[
0

D′
2

]
(3.84)

is given in terms of the normalized electric displacement D ′ = D/
√
ǫ0µm. Here, µm is the

shear modulus of the elastomeric matrix. The RVE comprises two constituents given by
a soft elastomeric matrix and a stiff fiber that points out of plane. Since the longer axis
of the fibers is considered to be along the thickness direction, the RVEs are assumed to
satisfy the plane-strain deformation.

The response of the microstructures are plotted in Fig. 3.4 for different volume fractions
f0 = {0, 0.1, π/16, 0.3} of the circular fibers. The shear modulus, the bulk modulus,
the strain saturation parameter and the electric susceptibility are taken from Table 3.1.
The microstructures are discretized with unstructured meshes (however, the symmetries
are considered during meshing) of {6748, 6500, 6748, 6940} finite elements according to
the volume fractions of fibers f0 = {0, 0.1, π/16, 0.3}, respectively (see Fig. 3.5 for a
representative visualization of a mesh).

The plots in Fig. 3.4a and b describe the resulting macroscopic mechanical deforma-
tion F 11 and normalized electric field E ′

2 = E2/
√
µm/ǫ0 due to the prescribed electric

displacement D′
2. The Fig. 3.4c demonstrates the relationship between macroscopic elec-

tric field E ′
2 and mechanical stretch F 11. Notice that for the low volume fractions of the

fibers the electric field increases monotonically, and stiffening of elastomers is more pro-
nounced. As the volume fraction of the fibers increases, the electric interactions between
fibers becomes higher. Consequently, electric actuation is enhanced for composites with
higher volume fractions of fibers.

3.4.3 Multiscale stability analysis of microstructures

In the following examples, we consider the influence of geometrical properties of the BVPs
on macroscopic and microscopic instabilities under macroscopic loading conditions. The
material parameters used in the following examples are motivated from earlier works on
multiscale stability analysis [47, 22, 23, 15]. Their normalized values are listed in Table 3.1.
In the table, (·)f and (·)m denote the fiber and matrix material parameters, respectively.
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Figure 3.5: Macroscopic loading of microstructure. The RVE at the integration point X of
the macrostructure is under macroscopic isochoric mechanical deformation (i.e., det[F ] = 1)

and electric displacement in vertical direction. Linear loading for the macro-stretch λ and
non-zero component D′

2 of the electric displacement depending on the loading parameter γ
is considered.

The bulk modulus of the constituents has been chosen 100 times higher than the
shear modulus which corresponds to a Poisson ratio ν = 0.495 (for simulations involving
a contrast in elastic properties of 1000 please refer to the Appendix A). A microscopic
instability corresponds to the loss of positive definiteness of (3.79) at a critical macroscopic
deformation state. This can be detected by checking the minimum eigenvalue of K over
a discrete Bloch vector grid. In the following examples the Bloch vector grid of 72 × 72
is considered for 0 ≤ ki < 1. As a result of the symmetries of the condensed stiffness
matrix K in Bloch vector, the range of Bloch vector components can further be reduced
to 0 ≤ ki ≤ 0.5, see Triantafyllidis and Schraad [90].

3.4.3.1 Macroscopic loading of microstructures

The microstructure is loaded by the macroscopic isochoric deformation gradient F and
electric displacement D

F =

[
λ 0

0 λ
−1

]
and D

′ =

[
0

D′
2

]
(3.85)

where λ = 1+γ sin φ andD′
2 = cγ cosφ have been selected. D′

2 = D2/
√
ǫ0µm is considered

to be normalized with respect to the shear modulus µm of the elastomeric matrix of the
RVE and the electric permittivity ǫ0 of vacuum. γ can be understood as pseudo-time
to load the microstructure incrementally, see Fig. 3.5. We consider that γ characterizes
both the mechanical and electric loading. In what follows c = 10 and ∆γ = 2 · 10−3 are
considered. φ is a path angle which allows to determine the instability points at different
combinations of the macroscopic stretch λ and electric displacement D′

2. In the following,
we have considered instability analyses for φ = [−90◦, 90◦] with an increment of ∆φ = 1◦.
Please note that a change in sign of the electric displacement vector has no influence on
the results due to the chosen free-energy function. Therefore, instabilities for other values
of φ = [90◦, 180◦] will coincide with instabilities in the chosen range. Please also note that

the chosen macroscopic deformation state (3.85) implies that det[F ] = 1 (or, equivalently,
div v = 0). Thus, macroscopic incompressibility is fulfilled a priori and, consequently, the
macroscopic loss of strong ellipticity can be determined with (3.52).



106 3.4. Representative Numerical Examples

−0.6

−0.4

−0.2

 0.2

 0.4

 0.6

 0.8

 0  2  4  6  8  10  12
−0.4

−0.2

 0.2

 0.4

 0.6

 0  2  4  6  8
−0.3

−0.2

−0.1

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5  6  7

 1.0

 0.0
 0.0

 0.0

(a) (b) (c)

ln
[λ
]

ln
[λ
]

ln
[ λ
]

D′
2 = D2/

√
ε0µmD′

2 = D2/
√
ε0µmD′

2 = D2/
√
ε0µm

10% 20% 30%

MBMBMB

LELELE

Figure 3.6: Onset of instability surfaces for periodic microstructures with circular fibers
with ω = 1. The volume fractions of the fibers in (a), (b) and (c) are f0 = {0.1, π/16, 0.3},
respectively. The discretized microstructures have {19, 983; 20, 727; 20, 820} DOFs in plots
(a), (b) and (c), respectively. LE denotes the onset of the macroscopic loss of strong
ellipticity, while MB denotes the microscopic buckling points of the RVE. The colored regions
in the plots correspond to the unstable loading ranges.

As discussed in Section 3.2.5 the microscopic DOFs are fluctuations of the deformation
map and the electric vector potential. Zero fluctuation boundary conditions for all DOFs
of the corner nodes of the RVE are applied to avoid rigid-body motions.

3.4.3.2 Stability analysis of microstructures with circular fibers

The first example considers multiscale stability analysis of unit-square RVEs with em-
bedded circular fibers, i.e., with an aspect ratio ω = 1. The plots in Fig. 3.6a, b and
c correspond to the fiber volume fractions of f0 = {0.1, π/16, 0.3}, respectively. The
plots illustrate the first occurrence points of microscopic (red solid lines) and macroscopic

1 2 1 2 1 2

5.00 e′2, [−]

γ is increased

Figure 3.7: Buckling mode of a microstructure with embedded circular fibers with ω = 1
and volume fraction f0 = π/16. The buckling mode corresponds to φ = −1◦. The scaling
factor τ = 1 in (3.70) is taken. At the bifurcation point the critical periodicity of the
microstrucutre alters and the enlarged RVE contains 2 × 3 unit-cells. The contour plots
correspond to the distribution of vertical components e′2 of the microscopic current electric
field e′ = F−T

E

′ in the RVE.
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Figure 3.8: Post-buckling response of the RVE containing 2 × 3 unit-cells. The plots
illustrate the post-buckling behaviors at points ’1’ and ’2’ of the enlarged RVE (see Fig. 3.7).
’B’ corresponds to the bifurcation point.

(blue solid lines) instabilities in the macroscopic electric displacement D′
2 and logarithmic

stretch ln[λ] depending on φ. As shown in the figure for all volume fractions in the absence

of the electric loading along ln[λ] axis (φ = −90◦ and φ = 90◦) no microscopic instabilities
are observed. Furthermore, the macroscopic instability points for φ = −90◦ and φ = 90◦

occur symmetrically with respect to ln[λ] = 0 axis. This is due to the symmetric loading
conditions and circular shape of the fiber cross sections. The same behavior has also been
shown for stiff fibers under mechanical deformations in Michel et al. [47].
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the microstructures with volume fractions f0 = {0.1, π/16, 0.3}, respectively.
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Figure 3.10: Onset of instability surfaces for periodic microstructures with elliptical fibers
with ω = 2/1 (major axis in horizontal direction). The volume fractions of the fibers in
(a), (b) and (c) are f0 = {0.1, π/16, 0.3}, respectively. The discretized microstructures
have {19, 260; 19, 536; 21, 063} DOFs in plots (a), (b) and (c), respectively. LE denotes
the onset of the macroscopic loss of strong ellipticity, while MB denotes the microscopic
buckling points of the RVE. The colored regions in the plots correspond to the unstable
loading ranges.

From the plots, it is clear that the macroscopic instabilities are the main instabili-
ties under dominating mechanical deformation. This is in line with the numerical re-
sults of Triantafyllidis et al. [89]. When the macroscopic electric displacement D′

2 is
significantly large, the short-wavelength microscopic instabilities occur earlier. The mi-
croscopic instabilities in Fig. 3.6a, b and c correspond to φ = [−11◦, 34◦] ∪ [37◦, 55◦],
φ = [−9◦, 24◦] ∪ [36◦, 50◦] and φ = [−7◦, 15◦] ∪ [30◦, 41◦], respectively. We observe that
as the mechanical deformation increases the microscopic instabilities changes from short-
wavelength to long-wavelength instabilities. However, at higher coupled loading (stretch-
ing in horizontal direction is considered), the short-wavelength microscopic instabilities
are detected once again. The two regions of short-wavelength instabilities in the plots
are differentiated. The first region corresponds to φ = [−11◦, 34◦], φ = [−9◦, 24◦] and
φ = [−7◦, 15◦] in Fig. 3.6a, b and c, respectively. In this region, the microscopic in-
stabilities are observed due to the high electric interactions of the fibers, which further
results in internal rearrangement in the electric field direction, see Fig. 3.7. The reason for
this is that the macroscopic electric displacement D′

2 triggers compression in the vertical
direction and extension in the horizontal direction. However, the macroscopic uniform
deformation λ of the RVE has been prescribed by (3.85), too. Therefore, at certain
electric loading, buckling of the horizontal ligaments connecting two neighboring fibers
occurs. This develops a new periodic pattern in which some fibers displace towards each
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Figure 3.11: Dimensionless Bloch vector components at microscopic instability points de-
pending on angle φ for elliptical fibers with ω = 2/1. The plots (a), (b) and (c) corresponds
to the microstructures with volume fractions f0 = {0.1, π/16, 0.3}, respectively.
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Figure 3.12: Buckling mode of a microstructure with embedded elliptical fibers ω = 2/1
with volume fraction f0 = π/16. The buckling mode corresponds to φ = 40◦. The scaling
factor τ = 1 in (3.70) is taken. At the bifurcation point the critical periodicity of the
microstrucutre alters and the enlarged RVE contains 1 × 2 unit-cells. The contour plots
correspond to the distribution of vertical components e′2 of the microscopic current electric
field e′ = F−T

E

′ in the RVE.

other while others displace apart. Consequently, the most favorable buckling mode is ob-
tained. On the other hand, in the second region, which corresponds to the φ = [37◦, 55◦],
φ = [36◦, 50◦] and φ = [30◦, 41◦] in Fig. 3.6a, b and c, respectively, as a result of the
high macroscopic electromechanical loading, the buckling occurs due to rotation of the
fibers. In these cases, the high compressive deformation and electric interaction of the
fibers trigger the buckling of the vertical ligaments connecting the neighboring fibers.
This buckling, in its turns, results in rotation of the fibers as well, see Fig. 3.9b for the
sketch of the rotational buckling mode of an enlarged RVE made of 1× 2 unit-cells.

In Fig. 3.7, a buckling mode for an enlarged RVE with circular fibers, presented. The
plots describe the evolution of the buckling during deformation. The volume fraction
of the fibers is f0 = π/16. Obviously, at the instability point the periodicity of the
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Figure 3.13: Onset of instability surfaces for periodic microstructures with elliptical fibers
with ω = 3/1 (major axis in horizontal direction). The volume fractions of the fibers
in (a) and (b) are f0 = {0.1, π/16}, respectively. The discretized microstructures have
{20, 052; 20, 220} DOFs in plots (a) and (b), respectively. LE denotes the onset of the
macroscopic loss of strong ellipticity, while MB denotes the microscopic buckling points of
the RVE. The colored regions in the plots correspond to the unstable loading ranges.
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Figure 3.14: Dimensionless Bloch vector components at microscopic instability points de-
pending on the angle φ for elliptical fibers with ω = 3/1. The plots (a) and (b) correspond
to the microstructures with volume fractions f0 = {0.1, π/16}, respectively.

microstructure has changed. The new RVE according to the critical periodicity contains
2× 3 unit-cells. The enlarged RVE has 122, 667 DOFs. The bifurcation point is detected
at the macroscopic electromechanical load λ ≈ 0.99 and D′

2 ≈ 5.96. The contour plot
in the figure displays the distribution of the microscopic current electric field. Notice
that, after buckling the electric field increases between attracting fibers, and the opposite
effect is observed between repelling fibers. In Fig. 3.8 the local post-buckling behavior
associated to two different points of the enlarged RVE in Fig. 3.7 is shown. The plots
a and b describes the dependence of the vertical component of the electric field on the
vertical component of the electric displacement in the reference and current configuration,
respectively. Furthermore, the plot c and d illustrate the vertical component of the
referential and current electric field versus the vertical microscopic stretch F22 at the
chosen points of the microstructure, respectively. The current counterparts of the electric
displacement d′ = 1/JFD′ and the electric field e′ = F−T

E

′ are defined as the push-
forwards of the referential onesD′ and E ′, respectively. Moreover, the primary equilibrium
path is also illustrated in the figure.

Please also notice that for higher volume fractions, the ranges of the microscopic insta-
bilities in φ decrease, while macroscopic instabilities occur earlier at the same macroscopic
deformations. The corresponding dimensionless Bloch vector components at microscopic
instabilities depending on φ are plotted in Fig. 3.9a, b and c, respectively. In the figures,
for some ranges of φ non-smooth values of the second component of the Bloch vectors are
observed as indicated with green crosses. The non-smooth values are due to the fact that
the Bloch vector components stay constant for some small changes of φ, which is in turn
due to the chosen grid of the Bloch vector. In order to guide the eyes, the Bloch vector
components are interpolated using smooth Bezier curves (shown with blue solid lines in
the plots).

3.4.3.3 Stability analysis of microstructures with elliptical fibers

In Fig. 3.10 and 3.13, instability surfaces for the microstructures with embedded elliptical
fibers are considered. The aspect ratios of ellipses are ω = 2/1 and ω = 3/1, respectively,
where the major axis points in horizontal direction, i.e., oriented perpendicular to the
electric loading. Fig. 3.10a, (b) and (c) present the microstructures with the volume
fractions f0 = {0.1, π/16, 0.3} of fibers, respectively. Similarly, Fig. 3.13a and b illustrate
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the microstructures with the volume fractions f0 = {0.1, π/16} of fibers, respectively.
From both figures, it is observed that macroscopic instabilities at φ = −90◦ and φ = 90◦

are not symmetric, which is due to the differences in the major and minor axes of the
ellipses. As expected the microstructure is more stable under macroscopic stretching
parallel to the major axis of the ellipses (φ = 90◦) than compressing in this direction
(φ = −90◦). In this example microscopic instabilities (red solid lines) occur only for larger
coupled loading scenarios. Additionally, in Fig. 3.10a the microscopic instabilities are
observed around φ = −90◦, which correspond to compression parallel to the major axes.
However, for compression perpendicular to the major axes no microscopic instabilities are
observed. The microscopic instabilities for ω = 2/1 occur at φ = [−90◦,−83◦]∪ [47◦, 48◦],
φ = [35◦, 38◦] ∪ [40◦, 45◦] and φ = [17◦, 29◦] ∪ [31◦, 38◦] while for ω = 3/1 they occur at
φ = [43◦, 46◦] and φ = [33◦, 42◦].

Comparing the microstructures with embedded fibers having volume fraction of f0 =
π/16 for aspect ratios ω = 1, ω = 2/1 and ω = 3/1, described in Fig. 3.6b, 3.10b and
3.13b, respectively, it is observed that as the aspect ratio increases the material becomes
macroscopically and microscopically more stable for dominating mechanical stretching
parallel to the major axes of the ellipses. However, the opposite behavior is observed
along the D′

2 axes. In the figures, as the volume fraction increases the stable loading
ranges decreases.

The corresponding approximate values of the dimensionless Bloch vector components
are given in Fig. 3.11 (ω = 2/1) and 3.14 (ω = 3/1). As discussed in the previous example,
similarly, the non-smooth values of Bloch vector components depending on φ are observed
here, too, because the chosen Bloch vector grid is slightly coarser for the considered BVPs.

Likewise the previous example, Fig. 3.12 depicts the buckling mode of the deforming
composite at φ = 40◦. The elliptic fibers have the aspect ratio of ω = 2/1 and volume
fraction f0 = π/16. The enlarged RVE has 39, 795 DOFs. In this example, buckling due
to the rotation of the elliptic fibers is noted. The buckling happens at the macroscopic
stretch λ ≈ 1.62 and electric displacement D′

2 ≈ 7.40. The critical size of periodicity is
determined to be 1× 2 unit-cells at the instability point.
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Figure 3.15: Onset of instability surfaces for periodic microstructures with elliptical fibers
with ω = 1/2 (major axis in vertical direction). The volume fractions of the fibers in
(a), (b) and (c) are f0 = {0.1, π/16, 0.3}, respectively. The discretized microstructures
have {19, 512; 19, 764; 20, 739} DOFs in plots (a), (b) and (c), respectively. LE denotes
the onset of the macroscopic loss of strong ellipticity, while MB denotes the microscopic
buckling points of the RVE. The colored regions in the plots correspond to the unstable
loading ranges.
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Figure 3.16: Dimensionless Bloch vector components at microscopic instability points de-
pending on the angle φ for elliptical fibers with ω = 1/2. The plots (a), (b) and (c) corre-
spond to the microstructures with volume fractions f0 = {0.1, π/16, 0.3}, respectively.

3.4.3.4 Influence of orientation of fibers on instability surfaces

In Fig. 3.15 and 3.17 similar BVPs as described in the previous examples are considered.
However, in these cases the major axes of the ellipses are oriented parallel to the electric
loading. The corresponding aspect ratios are ω = 1/2 (Fig. 3.15) and ω = 1/3 (Fig. 3.17).
In Fig. 3.15a, b and c the onset of macroscopic and microscopic instability surfaces for
volume fractions f0 = {0.1, π/16, 0.3} are depicted, respectively. Compared with the
previous microstructures, it is observed that the microstructures under electric loading
parallel to the major axes are more stable than under loading perpendicular to the major
axis (around φ = 0◦). Furthermore, Fig. 3.17a and b correspond to the volume fractions
f0 = {0.1, π/16}, respectively. Similar characteristic behaviors can be observed in these
examples, too.

As explained in the previous examples, in this case the microscopic instabilities also oc-
cur under higher macroscopic electrical as well as electro-mechanical deformations. When
the mechanical deformations starts to dominate, the microscopic instabilities coincide
with the macroscopic ones developing so-called long-wavelength instabilities. In these
examples the short-wavelength microscopic instabilities in Fig. 3.15a, b and c correspond
to φ = [−24◦, 40◦] ∪ [41◦, 90◦], φ = [−30◦, 27◦] ∪ [30◦, 52◦] and φ = [−33◦, 10◦] ∪ [13◦, 29◦],
respectively, while in Fig. 3.17a and b they are detected at φ = [−30◦, 33◦] ∪ [34◦, 68◦]
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Figure 3.17: Onset of instability surfaces for periodic microstructures with elliptical fibers
with ω = 1/3 (major axis in vertical direction). The volume fractions of the fibers in
(a) and (b) are f0 = {0.1, π/16}, respectively. The discretized microstructures have
{20, 172; 19, 908} DOFs in plots (a) and (b), respectively. LE denotes the onset of the
macroscopic loss of strong ellipticity, while MB denotes the microscopic buckling points of
the RVE. The colored regions in the plots correspond to the unstable loading ranges.
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Figure 3.18: Dimensionless Bloch vector components at microscopic instability points de-
pending on the angle φ for elliptical fibers with ω = 1/3. The plots (a) and (b) correspond
to the microstructures with volume fractions f0 = {0.1, π/16}, respectively.

and φ = [−38◦, 16◦] ∪ [17◦, 62◦], respectively. Similar to the circular fibers in these cases
two regions of the short-wavelength microscopic instabilities are also observed. This was
not the case for the elliptical fibers with aspect ratios ω = {2/1, 3/1} (see, Fig. 3.10 and
3.13). In those examples, the major axis of the fibers was placed perpendicular to the
macroscopic electric loading. It seems that when the major axis of the fibers is placed
parallel to the macroscopic electric loading the microscopic instabilities along D′

2 are crit-
ical due to the higher electric interactions of the fibers. In the first region the buckling
mode corresponds to the internal rearrangement of fibers, however in the second region,
where the higher electric loading is distinctly coupled with stretching perpendicular to
the major axis, rotational buckling modes are observed.

In Fig. 3.19, a rotational buckling mode is shown at φ = 55◦ for the RVE with elliptical
fibers having aspect ratio ω = 1/3 and volume fraction f0 = 0.1. The enlarged RVE
contains 1 × 2 unit-cells, which is discretized using 41, 067 DOFs. The bifurcation mode
corresponds to the macroscopic coupled deformation of λ ≈ 1.49 and D′

2 ≈ 3.44.

5.00 e′2, [−]

γ is increased

Figure 3.19: Buckling mode of a microstructure with embedded elliptical fibers with ω = 1/3
and volume fraction f0 = 0.1. The buckling mode corresponds to φ = 55◦. The scaling factor
τ = 1 in (3.70) is taken. At the bifurcation point the critical periodicity of the microstrucutre
alters and the enlarged RVE contains 1× 2 unit-cells. The contour plots correspond to the
distribution of vertical components e′2 of the microscopic current electric field e′ = F−T

E

′

in the RVE.
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3.5 Summary

In this work, we considered the microscopic and macroscopic stability analysis of electroac-
tive polymer composites in the context of computational homogenization. We discussed
the implementation of a four-field variational formulation of the microscopic boundary
value problem to avoid volumetric locking for nearly incompressible materials. Further-
more, we described in detail the theoretical aspects and numerical implementation to
detect the macroscopic loss of strong ellipticity of homogenized moduli and microscopic
bifurcation type instabilities. The Bloch-Floquet analysis is applied to primary kinematic
fields, i.e., deformation map and electric vector potential, in order to detect the criti-
cal periodicity of microstructures and symmetric buckling modes of RVEs. In numerical
examples, the multi-scale stability analysis of periodic electroactive polymer composites
has been investigated. The considered RVEs comprise a soft elastomeric matrix and stiff
fibers with high dielectric constant. The influence of geometric properties of fibers on in-
stability points were studied in detail. It was observed that under electric loading circular
fibers lead to higher microscopic and macroscopic stability as compared with elliptical
fibers. However, for higher coupled electro-mechanical loading the instability points are
first observed at much higher deformation states for the microstructures with embedded
elliptical fibers, particularly when the major axes of ellipses are placed perpendicular to
the electric field.

To summarize, the formulations and the numerical implementations presented in the
paper allow for the definition of critical ensembles of unit cells that constitute suitable
RVEs and the determination of associated instability failure loads. All in all, the presented
approach provides an access to the design of microstructures that show desired stability
properties and the most optimal material response.
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Appendix

A Computational analysis of the numerical stability of the four-field mean-
dilatation finite element formulation

In this appendix, we investigate the numerical stability of the finite element formulation
advocated in the present contribution. We analyze its behavior under coupled electro-
mechanical loading and compare it with other finite elements frequently used in nearly
incompressible elasticity. The considered elements are in detail:

� a quadrilateral finite element with linear interpolations of the fluctuations of the
mechanical displacement and electric vector potential as well as piecewise constant
interpolations of the pressure and dilatation, in the following denoted as BQ1P0
(this is the element employed in the present contribution).

� a quadrilateral finite element with quadratic interpolations of the fluctuations of the
mechanical displacement and electric vector potential as well as piecewise constant
interpolations of the pressure and dilatation, in the following denoted as BQ2P0.

� a triangular finite element with quadratic interpolations of the fluctuations of the
mechanical displacement and electric vector potential as well as piecewise constant
interpolations of the pressure and dilatation, in the following denoted as BT2P0.

Please note that the standard Q2P0 and T2P0 finite elements are known to be inf-
sup stable in linear incompressible elasticity [56, 11, 3]. In contrast, the standard Q1P0
element is not inf-sup stable in the incompressible limit [11]. Regardless of that, the latter
is still frequently used for the analysis of nearly incompressible materials, which is mainly
due to its robustness and its convenient numerical implementation. In fact, we employ a
similar finite element formulation denoted by BQ1P0 element in the present contribution.
This is why we want to study its numerical stability in more detail.

Before starting the study, we mention that even inf-sup stable elements could yield in-
correct results in the nonlinear elastic regime, see, e.g., Pantuso and Bathe [56], Auricchio
et al. [2, 3] amongst others. Thus, we investigate the response of the above mentioned
finite elements in consideration of different loading conditions and analyze the results in
the spirit of [56]. In order to obtain deeper insights into the behavior of the finite ele-
ments, we consider three different loading scenarios given by (i) purely mechanical, (ii)
coupled electro-mechanical and (iii) purely electric loading. To be specific, we consider a
typical RVE containing circular fibers with volume fraction of f0 = π/16 under macro-

scopic isochoric mechanical stretching λ in horizontal direction and macroscopic electric
displacement D′

2 in vertical direction, see Fig. 3.20. The underlying material parameters
are listed in Table 3.2. Please note that the elastic parameters are chosen in such a way
that the Poisson ratio is ν = 0.4995 corresponding to nearly incompressible behavior. To
obtain representative insight into the numerical stability of the considered finite elements,
we plot the pressure distribution across a cut through the RVE along the X2 axis in all
subsequent studies. Note that the pressure is projected to the nodes.

Purely mechanical loading. In Fig. 3.21 the pressure distribution at the nodes
of the various finite elements are depicted under pure macroscopic isochoric mechanical
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Figure 3.20: Description of boundary value problem and element types considered in the
numerical tests of element stability. (a) The unit-cell RVE is under macroscopic isochoric

stretch λ in horizontal direction (with det[F ] = 1) and electric displacement D′
2 in vertical

direction. In order to analyze the numerical stability of the element formulations, the pres-
sure distribution across the cut A-A through the RVE along the X2 axis is plotted under (i)

purely mechanical loading (D = 0 ), (ii) coupled electro-mechanical loading and (iii) purely

electric loading (F = 1 ); (b) Schematic representation of the finite elements considered in
the numerical analysis. All of them allow for continuous interpolation of the fluctuations of
mechanical displacement and electric vector potential as well as discontinuous interpolation
of pressure and dilatation.

Table 3.2: Material parameters

No. Parameter Name Value

1. κ/µ Bulk modulus relative to shear modulus 1000

2. µf/µm Relative shear modulus of fibers 100

3. χf/χm Relative electric susceptibility of fibers 100

4. ξ Strain saturation parameter 100

5. f0 Volume fraction of fibers π/16

loading. We observe that for low values of the macroscopic stretch λ the pressure distribu-
tion is nearly identical for all elements. However, at higher stretches the BT2P0 element
shows pressure oscillations, while both the BQ1P0 and the BQ2P0 element do not show
any oscillations. With increasing loading small discrepancies between the results obtained
with the BQ1P0 and the BQ2P0 element are observed.

Yet in [56] it has been discussed that in case of Q2P0 elements the ellipticity condition
(which is one of the required conditions for stability of mixed formulations) of the lin-
earized equations around a deformation state is violated “more easily”. For more details
please refer to [56], Section 3.2 as well as Section 4 for supporting numerical examples.
In the letter, Pantuso and Bathe [56] have observed that Q1P0 and Q2P1 elements do
not show any spurious modes and that these elements allow to reach higher strain levels.
Moreover, based on a numerical example simulation, they argued that by using a finer
discretization with Q1P0 elements, a better correspondence to the Q2P1 elements can
be achieved.

Coupled electro-mechanical loading. In Fig. 3.22 the pressure response under
macroscopic coupled electro-mechanical loading is shown. We observe similar behavior as
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Figure 3.21: Pressure distribution along X2 axis at the center of the RVE under isochoric
macroscopic loading det[F ] = 1. The snapshots correspond to the macroscopic loads: (a)

λ = 1.5 and D′
2 = 0; (b) λ = 1.6 and D′

2 = 0; (c) λ = 2.0 and D′
2 = 0; (d) λ = 2.8 and

D′
2 = 0.

in the purely mechanical case. Again, oscillations of the BT2P0 are present and increase
with stretch. Moreover, under a macroscopic stretch of λ = 1.5, the pressure at the phase
boundaries predicted by the BQ2P0 element is much higher than the pressure captured
by using the BQ1P0 and BT2P0 element, respectively. Furthermore, for higher values
of stretch, the discretization with BQ2P0 finite elements loses convergence, which could
be due to the reason mentioned above.
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Figure 3.22: Pressure distribution along X2 axis at the center of the RVE under isochoric
macroscopic loading det[F ] = 1. The snapshots correspond to the macroscopic loads: (a)

λ = 1.3 and D′
2 = 3.0; (b) λ = 1.5 and D′

2 = 5.0; (c) λ = 1.6 and D′
2 = 6.01; (d) λ = 1.75

and D′
2 = 7.52.

Purely electric loading. In the last example, we analyze the behavior of the RVEs
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under purely electric loading. That is, we load the RVE with an electric displacement D′
2

while keeping the macroscopic deformation fixed by setting F = 1 . As can be seen in
Fig. 3.23, the pressure oscillations of the BT2P0 element are not as pronounced as in the
previous examples. Furthermore, the snapshots shown in Fig. 3.23a, b and c indicate that
the BQ1P0 and the BT2P0 element are in good agreement. Only in c, under D = 8.0,
slight discrepancies are observed at the interface between fiber and matrix. Clearly, these
discrepancies become much higher with increasing electric loading, see Fig. 3.23d. Under
this loading, the RVE discretized with BT2P0 elements shows unphysical deformations
of elements in the region of the interface between matrix and fiber. Furthermore, in d,
no convergence in case of BQ2P0 elements could be achieved.
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Figure 3.23: Pressure distribution along X2 axis at the center of the RVE under isochoric
macroscopic loading det[F ] = 1. The snapshots correspond to the macroscopic loads: (a)

λ = 1.0 and D′
2 = 5.0; (b) λ = 1.0 and D′

2 = 6.0; (c) λ = 1.0 and D′
2 = 8.0; (d) λ = 1.0

and D′
2 = 10.0.

Conclusion. The numerical studies above indicate that the BQ1P0 element shows
reasonable behaviour under purely mechanical, purely electrical and also coupled electro-
mechanical loading. In all considered cases it even outperforms the competing BQ2P0
and BT2P0 elements, which are known to be inf-sup stable in the linear elastic regime.
We conclude that a dicretization with BQ1P0 elements as dicussed in Section 3.4 is
reasonable for the multi-scale stability analysis of EAP composites considered in this
work.
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Microscopic and macroscopic instabilities in finitely strained fiber-reinforced
elastomers. Journal of the Mechanics and Physics of Solids 58, 1776–1803.
(doi:doi:10.1016/j.jmps.2010.08.006)

[48] Miehe, C., [1994]. Aspects of the formulation and finite element implementation of
large strain isotropic elasticity. International journal of numerical methods in engi-
neering 37, 1981–2004.
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Abstract

We analyze instability phenomena of periodic magnetorheological elastomers in the framework
of computational homogenization. Our focus is on two kinds of instabilities given bymacroscopic
material and microscopic structural instabilities. While the first are related to the rank-one
convexity of an associated homogenized energy density, the latter are related to the coercivity
of an associated microscopic boundary value problem. At both scales we detect instabilities of
equilibrium states by superimposing wave-like perturbations. At macroscopic scale we consider
classical plane waves giving rise to the definition of a generalized acoustic tensor. At micro-
scopic scale we exploit Bloch–Floquet wave analysis, which allows to determine critical buckling
modes of microstructures based on computations at unit-cell level. The microscopic material
response is governed by a four-field variational principle of magneto-elasticity that is embedded
in a framework of first-order computational homogenization. A series of numerical simulations
reveals a spectrum of complex pattern transformations that could be triggered by appropriate
microstructure design and coupled magneto-mechanical loading.

Keywords: homogenization, magnetorheological elastomers, stability, pattern transformation,
Bloch–Floquet wave analysis

4.1 Introduction

Magnetorheological elastomers (MREs) are soft materials that are composed of an elas-
tomer matrix and dispersed magnetizable particles. Due to the presence of the magne-
tizable particles MREs show pronounced magneto-mechanical coupling. This coupling
expresses itself in terms of large magnetically induced deformations and elastic stiffness
alterations (Jolly et al. [40], Farshad and Benine [25], Varga et al. [81, 82], Danas et al.
[17]). These properties, together with high elastic stretchability, low weight and high dura-
bility, make MREs a prototype material for applications as soft actuators, tuned vibration
absorbers, stiffness-tunable mounts or suspensions (Ginder et al. [31, 30, 32], Carlson and
Jolly [15], Sutrisno et al. [73]).

The steeply advancing developments in experimental testing (Diguet et al. [21], Bode-
lot et al. [10]) and the recent progresses in manufacturing (Walter et al. [83], Bastola
et al. [5]) open the door for new applications of MREs in engineering designs. Associated
advancements call for the development of powerful and comprehensive material models.
In this context we mention the general continuum theories on the modeling of magneto-
mechanical interactions in soft bodies proposed by Dorfmann and Ogden [23], Brigadnov
and Dorfmann [11], Dorfmann and Ogden [24], Steigmann [72], Kankanala and Triantafyl-
lidis [42], Bustamante et al. [14]. The continuum-mechanical basis for these approaches
was laid down by Truesdell and Toupin [80], Tiersten [74], Brown [13], Maugin and Erin-
gen [48], Pao and Yeh [61], Pao [60] decades ago.

Next to the above phenomenological theories analytical homogenization schemes were
developed by Ponte Castañeda and Galipeau [63], Galipeau and Ponte Castañeda [26, 27],
providing estimates of the effective material response of MREs. The latter analytical tech-
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niques are complemented by computational approaches to homogenization documented in
Javili et al. [39], Keip and Rambausek [43, 44], Metsch et al. [49], Kalina et al. [41], Danas
[16], Lefèvre et al. [46], Rambausek et al. [64]. Associated homogenization schemes allow
for the computation of effective properties based on explicit consideration of physical and
topological characteristics of the underlying microstructure.

However, since the related homogenized energy densities are calculated via an aver-
aging process, it is impossible to impose classical stability requirements a priori. In fact,
effective energy densities may lose material stability (related to ellipticity/rank-one con-
vexity of effective moduli) even when all material models of the microscopic phases are
polyconvex [1]. We refer to Triantafyllidis and Maker [77], Geymonat et al. [29], Tri-
antafyllidis and Bardenhagen [76], Miehe et al. [55] for elaborations on microscopic and
macroscopic stabilities in the context of homogenization.

Next to material instabilities, a periodic microstructure may suffer structural insta-
bilities. These are associated with buckling-type bifurcations at micro-level and result
in altered periodicities of the microstructure (Geymonat et al. [29], Triantafyllidis et al.
[78], Bertoldi et al. [6], Michel et al. [50]). Depending on the application, it may be in-
tended to prohibit or to trigger related phenomena. In this context, we refer to the recent
review article by Kochmann and Bertoldi [45], in which structural instability phenomena
of different periodic materials are discussed.

The theoretical stability analysis of heterogeneous materials stands on firm ground.
We highlight the work of Geymonat et al. [29] treating a variety of multiscale instability
phenomena of composites via rigorous mathematical analysis (see Abeyaratne and Tri-
antafyllidis [1] for a basis). Following these seminal works, various implementations of
stability analysis were performed in the field of mechanics by, for example, Miehe et al.
[54], Triantafyllidis et al. [78], Bertoldi et al. [6], Michel et al. [50], Rudykh and deBot-
ton [66], Slesarenko and Rudykh [71], Li et al. [47]. Extensions towards coupled problems
cover, for example, the fields of electro- and magneto-elasticity, where the focus has mostly
been on the analysis of material instabilities. In the field of electro-elasticity we mention
the contributions of Bertoldi and Gei [8] on material and structural instabilities of layered
media, of Rudykh and deBotton [67] on a general criterion for the onset of material insta-
bilities of layered composites and of Goshkoderia and Rudykh [33] on material instabilities
of general periodic media. Furthermore, we mention the work of Polukhov et al. [62] and
Jandron and Henann [37] on a unified computational analysis of material and structural
instabilities of general periodic electroactive composites. In the field of magneto-elasticity
we highlight the contributions of Destrade and Ogden [19] on a general treatment of
material stability of magnetoactive solids, of Rudykh and Bertoldi [65] on the material
stability analysis of layered composites, and of Goshkoderia and Rudykh [34] on a mate-
rial stability analysis similar to [33]. We further refer to Miehe et al. [55] for the analysis
of material instabilities of fully coupled magneto-electro-mechanical composites.

We observe that in the field of magneto-elasticity a lot of attention has been paid to the
analysis of material instabilities. A comprehensive framework allowing for the structural
stability analysis of magnetoactive microstructures is however missing in the literature.
While associated treatments are available in the field of electro-elasticity ([62, 37], the
field of magneto-mechanical coupling yet remains to be touched. Due to the complex
and nonlinear material response of the (ferro)magnetic inclusions and the high practical
relevance of MREs, associated studies are expected to reveal important insights into
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MRE design and optimization. Next to the applications of MREs mentioned in the first
paragraph of the present section we highlight possible applications in devices with tunable
acoustic, auxetic, phononic and photonic properties. Associated applications could take
advantage of microscopic pattern transformations that can be induced by microscopic
structural instabilities. For related studies that exploit mechanically induced microscopic
pattern transformations we refer to [22, 7, 38, 9, 2, 84]. As it will be shown in the
present work, MREs can be triggered to develop complex pattern transformations that
would not be observable in purely mechanically driven scenarios. For example, in case
of composites with stiff magnetic inclusions, magnetic loading gives rise to microscopic
instabilities even under tension and compression. As was shown by Triantafyllidis et al.
[78], Bertoldi and Boyce [7], Michel et al. [50], such an effect is not present under purely
mechanical loading. We further show that in case of porous MREs, the range of possible
instabilities goes far beyond the well-known instabilities observed under purely mechanical
loading conditions. In the latter regard, we also mention the experimental study of [75] on
porous magnetoactive structures and the computational study of Danas [16] on auxetic
MRE microstructures.

Motivated by that, the present work will provide a unified analysis of macroscopic ma-
terial and microscopic structural instability phenomena of soft magneto-elastic compos-
ites. To be specific, we consider periodic MRE microstructures with soft matrix and em-
bedded inclusions. Point of departure is a microscopic variational formulation of magneto-
elasticity embedded in the framework of computational homogenization (Section 4.2). To
alleviate locking phenomena related to the quasi-incompressibility of the elastomer matrix,
we make use of a four-field variational formulation in terms of displacements, magnetic
vector potential, dilatation and pressure as primary variables, resulting in a mixed finite-
element formulation. A minimization principle suitable for stability analysis is obtained
by condensing out dilatation and pressure at element level. The coupled macroscopic
material response is computed by means of periodic first-order computational homog-
enization. The homogenization approach employed in the present contribution closely
follows our previous work [62] on the multiscale stability analysis of electroactive polymer
composites. We will thus keep associated discussions short and only comment on the most
relevant details that allow for a self-contained presentation. The treatment of macroscopic
material and microscopic structural stability analysis is discussed in detail in Section 4.3.
Once having established a corresponding numerical implementation, the framework is ap-
plied to the multiscale stability analysis of periodic MRE microstructures in Section 4.4.
There, we analyze the influence of microscopic topological and material properties on the
onset of instabilities under a variety of coupled loading conditions. Finally, the main
findings of the present contribution will be summarized in Section 4.5.

4.2 Variational homogenization of magneto-elasticity

In what follows, we present a variational formulation of nonlinear magneto-elasticity in
the context of computational homogenization. The homogenization framework allows
for the consideration of heterogeneous microstructures, whose constituents could be de-
scribed with specific constitutive laws. The term “micro” here refers to a length scale
that is much smaller than the one of the macroscopic structure so that length scales are
separated. Further assuming that the microstructure is periodic, we could identify a rep-
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resentative volume element (RVE) that could be used to extract the effective response
of the microstructure. In that respect, the macroscopic response is not governed by an
effective constitutive law, but is rather defined by homogenization across the RVE. We
give a graphical illustration of that procedure in Fig. 4.1.

lmacro

lmicro

ψ

R3 ψ

B

B S

X ∈ B

X x

F ,B

F , B

ϕ, a

P ,H ,C

Figure 4.1: Graphical illustration of computational homogenization in the context of large-
strain magneto-elasticity. At each integration point X of the macroscopic structure B with
length scale lmacro an RVE denoted as B with length scale lmicro ≪ lmacro is attached. The
scale transition from macro- to microscale is carried out by imposing boundary conditions
associated with the macroscopic deformation gradient F and the macroscopic magnetic
induction B on B. After obtaining the solution of the microscopic boundary value problem,
which is formulated in terms of the deformation map ϕ and the vector potential a as
independent fields, a scale transition from micro- to macroscale is carried out. The scale
transition is performed by averaging the microscopic dual fields given by the 1st Piola–
Kirchhoff stress P and the magnetic field H . These dual fields are obtained from an energy-
density function ψ that is driven by the deformation gradient F and the magnetic induction
B. The averaging process results in the effective stresses P and effective magnetic field
H . The effective moduli C are obtained by consistent linearization of the macroscopic field
equations. The effective energy ψ is defined through an optimization problem on the domain
B.

4.2.1 Constitutive state variables at the microscopic level

In the present contribution, we are interested in the stability of magneto-mechanical
problems. For this purpose, a variational formulation based on a minimization principle
is beneficial. Such a minimization principle could be constructed from a potential that
is formulated in terms of the deformation map ϕ and the vector potential a. The latter
independent fields are defined w.r.t. the reference (undeformed) configuration B as

ϕ :

{
B × T → R3

(X, t) 7→ ϕ(X, t)
and a :

{
B × T → R3

(X, t) 7→ a(X, t) .
(4.1)

The deformation map ϕ is a bijective map that maps the reference configuration B onto
the current configuration S. The time t will in the following be considered as a loading
parameter. Based on the above independent fields, we define the deformation gradient F
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and the magnetic induction B as13

F = Gradϕ(X, t) and B = Curla(X, t) (4.2)

and denote them as primary fields. By definition of the latter quantities, we automatically
fulfill deformation continuity CurlF = Curl(Gradϕ) ≡ 0 and Gauss’ law of magneto-
statics DivB = Div(Curla) ≡ 0.

In the context of periodic first-order homogenization, the independent fields can be
decomposed into macroscopic and microscopic contributions [55]

ϕ(X, t) = F (t)X + ϕ̃(X, t) and a(X, t) =
1

2
B(t)×X + ã(X, t) , (4.3)

where ϕ̃ and ã denote microscopic fluctuations of the deformation map and the vector
potential, respectively. The latter are constrained by periodic boundary conditions [35,
52, 68] of the form [[ϕ̃]] = 0 and [[ã]] = 0 , where [[(·)]] = (·)+ − (·)− corresponds to the
jump of the quantity (·) across opposite boundaries ∂B+ and ∂B− of the RVE, where
∂B+ ∪ ∂B− = ∂B. We refer to Fig. 4.2 for an illustration.

∂B
∂S

X ∈ B x ∈ S
F = F+ F̃

ϕ(X), a(X)

N+N− n+n−

X− X+
ϕ−

ϕ+

[[X]] [[ϕ]]

Figure 4.2: Periodic boundary conditions of a representative volume element. The RVE
is driven by the macroscopic deformation gradient F and magnetic induction B under the
assumption of periodic boundary conditions for the fluctuations of the deformation map ϕ̃

and magnetic vector potential ã. The symbols ’+’ and ’−’ are put in order to indicate pairs
of periodic boundaries in the reference configuration B and current configuration S. We have
assembled the deformation gradient and the magnetic induction in the field F := [F ,B]T to
arrive at a compact illustration.

In (4.3), F and B denote the macroscopic deformation gradient and magnetic in-
duction, respectively. By insertion of (4.3) into (4.2) we are able to decompose the
corresponding primary fields as

F = F + F̃ and B = B + B̃ . (4.4)

Further, by integrating both sides of the latter equations over the RVE with volume |B|,
we find that

F =
1

|B|

∫

B
F dV =

1

|B|

∫

∂B
ϕ⊗N dA and B =

1

|B|

∫

B
B dV =

1

|B|

∫

∂B
N × a dA ,

(4.5)

13The uppercase operators “Curl”, “Div” and “Grad” refer to differentiation with respect to the refer-
ence coordinates. Likewise, the lowercase operators “curl”, “div” and “grad” refer to differentiation with
respect to the current coordinates.
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where N(X−) =: N− = −N+ := −N (X− + [[X]]) are outward unit normals of the
periodic RVE. In order to arrive at (4.5), we have made use of the periodicity conditions

∫

B
F̃ dV =

∫

∂B
ϕ̃⊗N dA = 0 and

∫

B
B̃ dV =

∫

∂B
N × ã dA = 0 , (4.6)

where we have further assumed continuity of the independent fields at micro-level.

4.2.2 Constitutive functions at the microscopic level

In order to describe the material behavior at the microscopic level, we follow Dorfmann
and Ogden [23] and Steigmann [72] by assuming the existence of an additive energy-

density function ψ̂ that is defined per unit volume of the reference configuration and
given as

ψ̂(F ,B) = ψ̂mec(F ) + ψ̂mag(F ,B) . (4.7)

We further assume that the energy density ψ is polyconvex14 w.r.t. F and B. Moreover,
objectivity of ψ̂ will be automatically satisfied by implicitly defining ψ̂ as a function
of the right Cauchy–Green deformation tensor C = F TF . Since we are dealing with
elastomeric, that is nearly incompressible, materials we further consider a split of the
mechanical energy into volumetric and isochoric parts

ψ̂mec(F , J) = ψ̂mec,vol(J) + ψ̂mec,iso(F iso) , (4.8)

where ψ̂mec,vol is the volumetric part depending on J = detF and ψ̂mec,iso is the isochoric
part depending on the isochoric deformation gradient F iso = J−1/3F . The magnetic
energy function ψ̂mag is also assumed to have an additive structure, i.e.,

ψ̂mag(F ,B) = ψ̂mag,0(F ,B) + ψ̂mag,sat(F ,B) , (4.9)

where ψ̂mag,0 characterizes the Maxwell contribution for all constituents of an MRE irre-
spective of their magnetic properties and ψ̂mag,sat models saturation effects of magnetizable
constituents. We will give explicit forms of the above energy densities in Section 4.4.

From the energy-density function (4.7) we determine the 1st Piola-Kirchhoff stress
tensor P and the reference magnetic field H as

P = ∂F ψ̂(F ,B) and P = ∂
B

ψ̂(F ,B) . (4.10)

The current magnetic field and magnetic induction can be obtained via push-forward
operations, i.e., h = F−T

H and b = FB/J [23]. These fields are related by

b = µ0(h+m) , (4.11)

14A function ψ̂(F ,B) = ψ̂(F) is said to be polyconvex w.r.t. F and B if there exists a function ψ̂(F) :
R25 → R that is convex w.r.t. each argument of the extended set F =

{
F , cof F , detF , B, FB

}
∈ R25,

that is [3, 36, 69]

ψ̂(αF1 + (1− α)F2) ≤ αψ̂(F1) + (1 − α)ψ̂(F2) ∀α ∈ [0, 1] and F1 6= F2 .
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where m is the magnetization in the current configuration and µ0 = 4π · 10−7N/A2 is
the magnetic permeability of vacuum. The magnetization can also be derived from the
underlying energy-density function via

m = −F −T∂
B

ψ̂mag,sat(F ,B) . (4.12)

4.2.3 Variational formulation of computational homogenization

In order to alleviate locking phenomena that could arise in the numerical treatment of
the nearly incompressible behavior of the elastomeric matrix, we implement a four-field
Hu–Washizu-type variational formulation at micro-level. This approach is based on the
classical approach to nearly incompressibile elasticity proposed by Simo et al. [70]. The
four-field variational formulation takes into account continuous interpolation of the defor-
mation map ϕ and vector potential a as well as discontinuous interpolation of dilatation θ
and pressure p. This setting relates our approach closely to the one of Okada and Hisada
[59], who employed a Hellinger–Reissner-type mixed formulation to the homogenization
of purely mechanical problems.

To arrive at a compact representation of the variational formulation, we only document
the central ingredients that may prove helpful for a general understanding. For further
information on aspects of numerical implementation and related issues we refer to Miehe
[51], Brink and Stein [12], Polukhov et al. [62] and the associated references cited therein.

In the above described setting, the macroscopic energy-density function ψ can be
defined as the optimum of the homogenized microscopic potential via

ψ(F ,B;X) = inf
ϕ̃∈W

ϕ̃

inf
ã∈W

ã

inf
θ∈Wθ

sup
p∈Wp

{
1

|B|

∫

B
π̂(F +Grad ϕ̃,B + Curl ã, θ, p) dV

}
, (4.13)

where π̂ is the microscopic potential density per unit volume of B given by

π̂ = ψmec,vol(θ) + p(J − θ) + ψmec,iso(F ) + ψmag(F ,B) . (4.14)

Thus, the macroscopic energy corresponds to the stationary point of its volume averaged
microscopic counterpart in the admissible spaces

ϕ̃ ∈ Wϕ̃ :=
{
ϕ̃ ∈ H1(B) | ϕ̃+ = ϕ̃

−on ∂B = ∂B+ ∪ ∂B−},
ã ∈ Wã :=

{
ã ∈ H(Curl,B) | ã+ = ã

−on ∂B = ∂B+ ∪ ∂B−},
θ ∈ Wθ :=

{
θ ∈ L2(B)

}
,

p ∈ Wp :=
{
p ∈ L2(B)

}
.

(4.15)

The macroscopic dual fields P := [P ,H ]T and coupled moduli C can be obtained from
the homogenized energy density (4.13) by

P := ∂
F
ψ(F ,B;X) and C := ∂2

F F
ψ(F ,B;X) , (4.16)

where F := [F ,B]T is a generalized array of the primary fields at macroscale.
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4.2.4 Euler–Lagrange equations and linearization

The Euler–Lagrange equations at the microscale follow from the first variation of (4.13)

at a macro-state {F ,B} arising as

δψ(F ,B;F ,B) =
1

|B|

∫

B




δF̃

δB̃
δθ
δp


 ·




∂F (ψ
mec,iso + ψmag) + pJF−T

∂
B

ψmag

∂θψ
mec,vol(θ)− p
J − θ


 dV = 0 , (4.17)

where δϕ̃ ∈ Wϕ̃, δã ∈ Wã, δθ ∈ Wθ and δp ∈ Wp are admissible variations. Employing
standard integral theorems, the Euler–Lagrange equations appear as

1. Balance of linear momentum Div[∂F π̂] = 0 in B
2. Ampere’s law Curl[∂

B

ψmag] = 0 in B
3. Continuity of tractions [[∂F π̂]] ·N = 0 on ∂B
4. Continuity of tangential magnetic field [[∂

B

ψmag]]×N = 0 on ∂B
5. Pressure field ∂θψ

mec,vol(θ)− p = 0 in B
6. Dilatation field J − θ = 0 in B

(4.18)

4.3 Multiscale stability analysis of periodic MREs

In the following, we apply the above presented variational framework to the stability anal-
ysis of magneto-elastic microstructures. We focus on two kinds of instabilities given by
macroscopic material and microscopic structural instabilities. The macroscopic material
instabilities are related to the loss of strong ellipticity of macroscopic moduli and are inves-
tigated by checking the positive definiteness of a generalized acoustic tensor. Microscopic
structural instabilities are associated with buckling phenomena at the micro-level and are
investigated by Bloch–Floquet wave analysis. While macroscopic instabilities of MREs
have seen a lot of attention [19, 26, 65, 34], the investigation of microscopic instabilities
of MREs is still a largely unexplored field.

In what follows we give a compact outline of the theory without discussing details of
the associated numerical implementation. The latter closely follows the one documented
in our previous work [62]. We further refer to Geymonat et al. [29] for a general treatment
of the mentioned instabilities for elastic materials.

4.3.1 Macroscopic material stability analysis

As mentioned above, macroscopic material stability is associated with strongly elliptic
material moduli. Usually, strongly elliptic moduli can be enforced by consideration of
quasiconvex15 energy-density functions [3, 69]. In the realm of homogenization we how-

ever cannot guarantee quasiconvexity of the macroscopic energy density ψ. We refer to

15Strong ellipticity is related to rank-one convex energy densities and quasiconvexity implies rank-
one convexity. A quasiconvex energy density guarantees the existence of solutions of a corresponding
boundary value problem, see, for example, Morrey [56] as well as Ball and James [4].
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Abeyaratne and Triantafyllidis [1] who have shown that even polyconvex microscopic en-
ergies do not imply quasiconvexity at the macroscopic scale. In fact, we may even lose
macroscopic rank-one convexity, which is usually associated with the creation of second-
order discontinuities or shear bands at the (homogeneous) mesoscale of the equivalent
homogenized medium (see, for example, Truesdell and Noll [79, Sec. 68 and 71]).

We follow Destrade and Ogden [18] and analyze the strong ellipticity of the macroscopic

coupled moduli C by considering infinitesimal homogeneous plane waves of the form

δϕ = nf(X ·N − c t) and δB = Mg(X ·N − c t) , (4.19)

where N denotes the propagation direction and n as well as M the corresponding am-
plitude directions of the waves. Furthermore, c signifies the speed of the waves and the
functions f as well as g are assumed to have sufficient continuity. Superimposing δϕ and
δB on the current deformation state gives the linearized Euler–Lagrange equations

Div[A : δF +G · δB] = ρ0δϕ̈(X, t) and Curl[GT : δF +K · δB] = 0 , (4.20)

where δF and δB signify infinitesimal increments of the macroscopic deformation gradient
and the magnetic induction, respectively. The individual moduli tensors of the coupled
macroscopic modulus C are given by A = ∂2

F F
ψ, K = ∂2

BB

ψ, G = ∂2
F B

ψ andGT = ∂2
B F

ψ.

As we are considering infinitesimal perturbations of the magnetic induction around
an equilibrium state, Gauss’s law of magnetostatics can be expressed in terms of the
infinitesimal perturbations such that

Div δB = 0
(4.19)2⇒ M ·N = 0 . (4.21)

Considering (4.21)2 in (4.20) and after some manipulations, we obtain the following
condition for the strong ellipticity of macroscopic moduli (Destrade and Ogden [19])

Λ = inf
‖N‖=1

{
n · Γ(N) · n

}
= inf

‖N‖=1

{ρ0c2n · n} ≥ 0 , (4.22)

where Γ(N) is the (Green–)Christoffel tensor or generalized magneto-mechanical acoustic
tensor. It can explicitly be given as [19]

Γ(N) := Q(N)− [R(N) ·M ]⊗ [R(N) ·M ]

M ·K ·M
, (4.23)

where Qac = A A B
a c NANB and RaB = G A

a BNA (for a representation in two spatial
dimensions please refer to Appendix A). Positive definiteness of the Christoffel tensor
ensures strong ellipticity of the macroscopic magneto-elastic moduli. We note that in the
absence of magnetic loading the second term in (4.23) vanishes and the Christoffel tensor

Γ reduces to the acoustic tensor Q of the purely mechanical problem.

By taking a look at (4.22) we observe that a macroscopic instability is associated with

a non-positive determinant of the Christoffel tensor detΓ. Therefore, the condition for
the loss of strong ellipticity can alternatively be expressed by

inf
‖N‖=1

{
detΓ(C,N)

}{> 0 for strictly elliptic state
≤ 0 for not strictly elliptic state .

(4.24)
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X

B

B ≡ D B ≡ nD

bifurcation

state before instability
(D-periodic)

state after instability
(nD-periodic)

Figure 4.3: Change of periodicity of a microstructure due to microscopic structural insta-
bility. Before the instability the microstructure is D-periodic, so that its overall response
could be computed from a single unit cell. As a result of the instability, the microstructure
shifts into an nD-periodic configuration. In the given example, the representative volume
element is then composed of 2×2 unit cells.

In a numerical implementation, the above condition of strong ellipticity can be checked
either by using an iterative scheme (Miehe and Schröder [53]) or by searching for a non-

positive determinant for discrete directions N .

4.3.2 Microscopic structural stability analysis

Next to the above discussed material instabilities at the macro-level, additional insta-
bilities may occur at the microscopic level. These could be of material or of structural
kind. We are focusing on structural instabilities in the following16. Such instabilities are
associated with bifurcations occurring in RVEs that are composed of several unit cells.
At such bifurcation, the microstructure could find an energetically more favorable state
having a periodicity that could not be expressed with only a single unit cell (please refer
to Fig. 4.3 for a graphical illustration). We express this relationship by (Müller [57])

ψ(F ,B;X) = inf
n∈N3

ψn(F ,B;X) , (4.25)

where ψn is the effective energy density associated with a particular realization of the
RVE (n = [n1 n2 n3]

T ∈ N3 denotes the number of generic unit cells D in three spatial
directions). That energy density follows from a variational principle (Müller [57])

ψn(F ,B;X) = inf
ϕ̃#∈W

ϕ̃#

inf
ã#∈W

ã#

1

|nD|

∫

nD
ψ̂(F +Grad ϕ̃#,B + Curl ã#) dV , (4.26)

where fluctuations are now considered to be periodic w.r.t. the enlarged representative
volume element nD. This motivates the function spaces

ϕ̃# ∈ Wϕ̃#
:=

{
ϕ̃# ∈ H1(B) | ϕ̃+

# = ϕ̃
−
# on ∂nD

}
,

ã# ∈ Wã#
:=

{
ã# ∈ H(Curl,B) | ã+

# = ã
−
# on ∂nD

}
.

(4.27)

Based on this setting, a microscopic structural instability is characterized by a vanishing
or negative coercivity constant of the energy functional defined in (4.25) (Geymonat et al.

16For the analysis of microscopic material instabilities we refer to Miehe et al. [55].
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[29])

Λ = inf
n∈N3

inf
ϕ̃#∈W

ϕ̃#

inf
ã#∈W

ã#

{∫

nD

[
Grad δϕ̃#

Curl δã#

]
·
[
∂2FF ψ̂ ∂2FBψ̂

∂2
BF ψ̂ ∂2

BB

ψ̂

]
·
[
Grad δϕ̃#

Curl δã#

]
dV

/∫

nD

[
Grad δϕ̃#

Curl δã#

]
·
[
Grad δϕ̃#

Curl δã#

]
dV

}
,

(4.28)

where the expression in the curly brackets is associated with the second variation of (4.26)
and evaluated at an equilibrium point. We refer to Miehe et al. [54] for more detailed
information.

The stability criterion (4.28) requires the minimization w.r.t. n. This necessitates the
analysis of different representative volume elements that increase in size with the number
of unit cells considered in n. Since this is not feasible in most practical situations we follow
Triantafyllidis and Maker [77], Geymonat et al. [29], Triantafyllidis et al. [78], Bertoldi
et al. [6] and employ Bloch–Floquet wave analysis for the detection of a microscopic
structural instability. Based on Bloch–Floquet wave analysis we are able to express the
microscopic coercivity Λ in terms of periodic perturbations (δϕ̃#, δã#) ∈ W(ϕ̃#,ã#) that
are related to unit-cell-periodic perturbations (δϕ̃, δã) ∈ W(ϕ̃,ã). They are defined via

δϕ̃#(X,k) := δϕ̃ exp[ik ·X] and δã#(X,k) := δã exp[ik ·X] , (4.29)

where δϕ̃ and δã are D-periodic and k with [k] = [k1, k2, k3]
T is a wave vector17 char-

acterizing the wavelength of the nD-periodic perturbations. Considering (4.29) in the
second variation of (4.26) the microscopic coercivity constant reads

Λ = inf
ki∈[0,2π[

inf
ϕ̃#∈W

ϕ̃#

inf
ã#∈W

ã#

{∫

D

[
Grad δϕ̃⋆

#

Curl δã⋆
#

]
·
[
∂2FF ψ̂ ∂2FBψ̂

∂2
BF ψ̂ ∂2

BB

ψ̂

]
·
[
Grad δϕ̃#

Curl δã#

]
dV

/∫

D

[
Grad δϕ̃⋆

#

Curl δã⋆
#

]
·
[
Grad δϕ̃#

Curl δã#

]
dV

}
,

(4.30)

where (·)⋆ denotes the complex conjugate of (·) and the partial derivatives are computed at
an equilibrium state. In contrast to the definition given in (4.28), the coercivity constant
in (4.30) allows identifing a microscopic instability from a unit-cell computation.

From (4.29) we observe that for [k1, k2, k3]
T = [0, 0, 0]T the variations are unit-cell

periodic, i.e., δϕ̃#(X) = δϕ̃(X) and δã#(X) = δã(X). Such instability can be captured
by a representative volume element that is composed of only one unit cell. However, in the
limit case [k1, k2, k3]

T → [0, 0, 0]T we observe that the wavelength of the variations becomes
infinitely large. This kind of instability is referred to as a global or long-wavelength
microscopic instability and formally given by

Λ0 = lim inf
k→0

inf
ϕ̃#∈W

ϕ̃#

inf
ã#∈W

ã#

{∫

D

[
Grad δϕ̃⋆

#

Curl δã⋆
#

]
·
[
∂2FF ψ̂ ∂2FBψ̂

∂2
BF ψ̂ ∂2

BB

ψ̂

]
·
[
Grad δϕ̃#

Curl δã#

]
dV

/∫

D

[
Grad δϕ̃⋆

#

Curl δã⋆
#

]
·
[
Grad δϕ̃#

Curl δã#

]
dV

}
.

(4.31)

17In the numerical implementation we follow Michel et al. [50] and check coercivity for a uniform grid
representing the coefficients of the wave vector. We note that by using such uniform representation, we
may leave the function space defined in (4.27), i.e., the perturbations δϕ̃# and δã# will no longer be
nD-periodic.
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It has been shown rigorously by Geymonat et al. [29] that this instability corresponds to
the loss of strong ellipticity of homogenized moduli (see Section 4.3.1).

4.3.3 Relations between the individual coercivity contants

In the latter sections, we have identified three coercivity constants, one of them being re-
lated to a macroscopic material instability and two being related to microscopic structural
instabilities. According to Geymonat et al. [29] they are related by18

Λ ≤ Λ0 = Λ , (4.32)

see Triantafyllidis and Maker [77], Michel et al. [50], Bertoldi and Gei [8] for related
discussions.

4.4 Numerical analysis of macroscopic and microscopic instabil-
ities in MREs

The above presented framework has been implemented into the finite-element method.19

Having the numerical implementation at hand, we are able to investigate macroscopic
and microscopic instabilities for different geometric and material properties of MRE mi-
crostructures. In the following numerical studies, we pay particular attention to volume
fractions and shapes of inclusions. Moreover, we study the influence of material pa-
rameters on the onset of instabilities. The numerical simulations address two-phase and
three-phase MREs, where the two-phase composites are composed of soft elastomer ma-
trix and stiff inclusions with soft-magnetic properties. The three-phase MREs additionally
contain voids. The predictive capabilities of the presented framework will be underlined
by comparison with experimental data.

Note that in the following multiscale computations, we consider the macroscopic en-
ergy density (4.13) at a macroscopic material point to be driven by a given macroscopic

state {F , B}. This approach together with consideration of a wide range of loading sce-
narios provide important insight into the rank-one convexity of the homogenized energy
and the microscopic stability for various microscopic topologies of MREs. While such
a framework may prove useful for the design of MRE microstructures, it does not ad-
dress the experimental realization of the considered material states {F , B}. For detailed
information on associated challenges please refer to [43, 44, 46, 10].

Before we discuss the instability analysis in detail, we give a brief outline of the em-
ployed material models at microscopic scale. Furthermore, we present the homogenized
coupled magneto-mechanical response of typical MRE microstructures undergoing stable
magneto-mechanical response.

18We make use of this relation in the numerical implementation, where we first search for macroscopic
instabilities. The associated loading conditions then serve as bounds for the considered microscopic
stability analysis.

19For detailed comments on the numerical implementation see [62].
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4.4.1 Constitutive models of MRE phases

As outlined in (4.8), we model the elastic behavior by an energy-density function of the

form ψ̂mec = ψ̂mec,vol + ψ̂mec,iso, see also (4.14). In that context, the volumetric energy is
assumed to be a convex function of the dilatation θ

ψ̂mec,vol(θ) =
κ

2
(θ − 1)2 , (4.33)

where κ denotes the bulk modulus at reference configuration. The isochoric mechanical
energy is assumed to be governed by a Gent material model [28]

ψ̂mec,iso(F iso) = −µξ
2

ln

[
1− ||F ||2/J2/d − d

ξ

]
, (4.34)

where ξ is a strain-saturation parameter and µ is the initial shear modulus of the material.
Furthermore, F iso = J−1/dF denotes the isochoric part of the microscopic deformation
gradient in d = {2, 3} spatial dimensions.

The magnetic response is modeled by an additive energy density ψ̂mag = ψ̂mag,0 +
ψ̂mag,sat, where the energy density ψmag,0 is defined as

ψ̂mag,0(F ,B) =
1

2µ0J
‖B‖2C . (4.35)

In the latter equation, ‖B‖C :=
√
B ·C ·B is short hand for the norm of the referential

magnetic induction w.r.t. the right Cauchy–Green tensor C. The second part of the
energy density is in place to account for magnetic saturation effects. It is modeled by a
Langevin-type function

ψ̂mag,sat(F ,B) =
Jµ0m

2
s

3χ

{
ln

[
3χ

µ0msJ
‖B‖C

]
− ln

[
sinh

(
3χ

µ0msJ
‖B‖C

)]}
, (4.36)

where µ0 = 4π · 10−7N/A2 is the magnetic permeability of free space, χ is the magnetic
susceptibility and ms is the saturation magnetization.

4.4.2 Numerical studies on the effective magneto-mechanical response of se-
lected MRE microstructures

In order to provide further insight in the effective response of MREs, we compute the ho-
mogenized response of selected two-phase composites under prescribed macroscopic state.
This allows us to analyze the typical effective saturation behavior of the magnetic and me-
chanical response which distinguishes magnetoactive composites from their electroactive
counterparts [62].

We perform finite-element simulations on unit-square RVEs with 20% volume fraction
of elliptic magnetizable inclusions with aspect ratio w ∈ [1/3, 1/2, 1, 2, 3]. The aspect
ratio is determined as the ratio of the vertical axes of an inclusion over the horizontal
axes. As macroscopic boundary conditions we assume that

F = 1 and B =

[
B1

B2

]
, (4.37)
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where B1 = γ sinα and B2 = γ cosα with γ and α being the loading parameter and the
orientation angle w.r.t. the vertical direction, respectively. The material parameters used
in the present study are listed in Table 4.3, where the magnetic parameters correspond
to carbonyl iron [20, 21, 26, 16] .

Table 4.3: Material parameters of two-phase MRE composites considered in numerical
examples of Sec. 4.4.2.

No. Parameter Name Matrix Inclusion

1. ν Poisson’s ratio 0.495 0.495

2. µ Shear modulus / MPa 0.025 25

3. ξ Strain saturation 100 100

4. χ Magnetic susceptibility 0 0.995

5. µ0ms Magnetic saturation / T − 2.0

In Fig. 4.4, we present the norms of the macroscopic magnetization m and the projec-
tion tα,mec = σmec : (nα⊗nα) of the macroscopic mechanical Cauchy stress tensor versus
applied macroscopic magnetic induction. Here nα = [sinα, cosα]T refers to the direction
of the magnetic loading. σmec is the mechanical part of the Cauchy stress tensor under the

assumption that the macroscopic Maxwell energy has the form
ˆ
ψMaxw = 1/(2µ0J)‖B‖

C
.

In Fig. 4.4a, we observe that the saturation values of the effective magnetization grow
monotonically with the aspect ratio of the inclusions for the magnetic induction applied
vertically. However, as the orientation of the magnetic induction deviates from the vertical
direction, the evolution of magnetization becomes even more nonlinear, see Fig. 4.4b and
c. For the orientation angle of α = 45◦ the curves for w = 1/3 and w = 3 as well as for
w = 1/2 and w = 2 coincide due to the symmetry w.r.t. the magnetic loading.

In Fig. 4.4e–h, we present the macroscopic Cauchy stress tα,mec along the magnetic
loading induced by the applied macroscopic magnetic induction. Similar to the magne-
tization also the Cauchy stress experience saturation. Furthermore, the direction of the
magnetic loading has high influence on the stresses. In Fig. 4.4f, we observe negative
Cauchy stresses for the RVEs contained of elliptic inclusion with aspect ratios w = 1/3
and w = 1/2. The major axis of these inclusions are oriented in the horizontal direc-
tion. Therefore, for the lower values of the orientation angle α, the rotation of them is
higher than the elliptic inclusions pointing in the vertical direction. The negative sign of
the projected Cauchy stresses also indicates that such microstructures could yield macro-
scopic extension of the MREs when the deformations are not prescribed, see also [44]. In
Fig. 4.4h, we again observe identical responses for the aspect ratios w = 1/3 and w = 3
as well as w = 1/2 and w = 2 due to the symmetry reasons..

Next to the current study, we present a numerical study under mechanically stress-free
conditions for various MRE unit cells in Appendix B.

4.4.3 Stability analysis of two-phase MREs

In the following we investigate the influence of material parameters as well as shape and
volume fraction of particles on the buckling-type microscopic and localization-type macro-
scopic instabilities. The critical macroscopic state leading to microscopic instabilities is
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associated with the microscopic coercivity constant given in (4.30). We compute it for a
discrete set of Bloch vectors {k1, k2} ∈ [0, π] with 37× 37 points in the directions k1 and
k2, respectively. The loss of macroscopic stability is determined by checking the positive
definiteness of the Christoffel tensor Γ given in (4.24).

4.4.3.1 Stability analysis of stretched MRE microstructures under aligned
magnetic loading

As a first loading condition of the microstructure we consider the macroscopic deformation
gradient and macroscopic magnetic induction

F =

[
λ 0

0 λ−1

]
and B =

[
0

B2

]
, (4.38)

where λ = 1 + γ sinφ and B2 = cγ cosφ are parameterized using a path angle φ ∈
[−90◦, 90◦] and a loading parameter γ. In the present examples, we have set c = 10. Such
a parameterization allows determining critical loading states for different combinations of
macroscopic stretch λ and magnetic induction B2. Please refer to Fig. 4.5 for a graphical
illustration.

1

0

1

1

0

F 11F 11

F 22

F 22

B2

B2

B

λ

γγ

sinφ

c cosφ

Figure 4.5: Parameterization of the macroscopic magneto-mechanical boundary conditions.
The RVE is loaded with a macroscopic mechanical deformation F = λ e1⊗E1+λ

−1 e2⊗E2

and a macroscopic magnetic induction B = B2 E2. The loads in terms of the macro-stretch
λ and the magnetic induction B2 are linear functions of the loading parameter γ.

For the spatial discretization of the problem we employ Q2P1-type elements with
quadratic interpolations of the displacement and magnetic vector potential as well as
discontinuous linear interpolations for pressure and dilatation.

Influence of mechanical material parameters on instabilities. In what follows,
we investigate the influence of the mechanical properties of the matrix on the occurrence of
instabilities in two-phase MREs. The stability is checked for three different shear moduli
of the matrix given by µmatrix = {0.01, 0.02, 0.04} MPa. The magnetic inclusions have a
volume fraction of f0 = 0.2 and the remaining material parameters are listed in Table 4.3
(in the present example, we set µincl = 1000 µmatrix). The results of our computations are
depicted in Fig. 4.6.

In all cases we observe that under purely mechanical loading the composite loses
macroscopic material stability before microscopic instabilities could arise. This becomes
visible through the blue lines indicating the loss of macroscopic stability. The loss of
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Figure 4.6: Influence of mechanical stiffness on the stability of unit-square RVEs with
circular inclusions. The plots shown in (a), (b) and (c) refer to shear moduli of the matrix
of µmatrix = 0.01 MPa, µmatrix = 0.02 MPa and µmatrix = 0.04 MPa respectively. In
all cases, the magnetic inclusions have a volume fraction of f0 = 0.2. Depending on the
elastic parameters of the matrix we observe different stability properties. While magnetic
loading orthogonal to the applied tension stabilizes the macroscopic material response in
case of large stretches, stability is reduced when deformations are moderate. Furthermore,
magnetic loading oriented parallel to applied tension reduces macroscopic material stability
and may even lead to buckling type micro-instabilities when no macroscopic deformation is
applied.

microscopic stability is associated with the red lines. Such an observation is in line with
the results of Triantafyllidis et al. [78], Michel et al. [50], who analyzed the stability of
soft microstructures with stiff inclusions. It is instructive to note that the stability of the
composite under purely mechanical loading is not affected by the magnitude of the shear
moduli of matrix and inclusion as long as their ratio µincl = 1000 µmatrix is fixed. We
further observe that the application of magnetic loading orthogonal to tensional stretching
stabilizes the composites. On the contrary, when the magnetic induction is applied parallel
to tensional stretching it initially destabilizes the material. In both cases we observe a
typical saturation behavior associated with the saturation of the magnetization under
increasing magnetic loading.

Next to macroscopic material instabilities, we encounter microscopic buckling-type in-
stabilities under the application of magnetic loading, both under compression and tension
in the direction of the magnetic loading. Increasing the stiffness of the matrix material
effectively delays such instabilities. Again, the saturation of magnetization limits the
impact of magnetic loading on microscopic instabilities.

For further illustration, we show snapshots of a microscopic buckling mode at different
loading states in Fig. 4.7. The depicted mode corresponds to the microscopic instability
point at path angle φ = 50◦ of Fig. 4.6a. According to the Bloch–Floquet wave analysis
this instability is captured by an RVE composed of 2×3 unit cells. As becomes clear
from the figure, the instability results in a change of periodicity that is characterized by
pairwise vertical attraction of magnetic inclusions and buckling of vertical ligaments of
matrix material.

Influence of volume fractions of inclusions on instabilities. We now analyze the
stability of microstructures with different volume fractions of inclusions. Corresponding
results for volume fractions of f0 = {0.1, 0.2, 0.3} of circular inclusions are depicted in
Fig. 4.8.

In the present study, we have selected a shear modulus µmatrix = 0.04 MPa. Again
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|B|/µ0ms = 0.24, λ = 1.05 |B|/µ0ms = 0.4, λ = 1.1 |B|/µ0ms = 0.8, λ = 1.2

0 1.75h2, [A/µm]

γ is increased

Figure 4.7: Buckling mode of an MRE microstructure with circular inclusions of volume
fraction f0 = 0.2. The depicted buckling mode is associated with a bifurcation point that
is detected under a path angle φ = 50◦. At this point, the critical periodicity of the
microstructure can be reflected by an RVE composed of 2×3 unit cells.
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Figure 4.8: Influence of volume fractions on the stability of unit-square RVEs with circular
inclusions. The plots shown in (a), (b) and (c) refer to volume fractions of the inclusions of
f0 = 0.1, f0 = 0.2 and f0 = 0.3 respectively. In all cases, the shear modulus of the matrix
is µmatrix = 0.04 MPa. We observe that the range of stable loading paths is narrowed with
increasing volume fraction of inclusions. Again, the application of an orthogonal magnetic
field gives rise to a stabilizing effect for high values of strech and the oposite is observed for
moderate deformations and when magnetic loading is parallel to the applied tension. Like
in the previous study, it may however lead to microscopic instabilities when no macroscopic
deformation is present.

the shear stiffness of the inclusions is assumed to be 1000 times higher. In Fig. 4.8 we
observe that material instabilities are more likely to occur for higher volume fractions of
inclusions. Furthermore, it is evident that small volume fractions of inclusions do not
lead to buckling-type microscopic instabilities. This can be explained as follows. As
we observed in Fig. 4.7, the instability-induced change of periodicity comes along with
pairwise attraction of magnetic inclusions in vertical direction and buckling of the matrix
material. When the volume fraction of the inclusions reduces, not only the magnetic
attraction between the inclusions is lowered, but also the ligaments between the inclusions
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become thicker. Both effects hinder microscopic buckling.

We present snapshots of a selected buckling mode for the RVE with f0 = 0.2 in Fig. 4.9.
This buckling mode corresponds to the path angle φ = 0◦ given in Fig. 4.8b.

|B|/µ0ms = 0.5 |B|/µ0ms = 2.5 |B|/µ0ms = 3.0

0 5.3h2, [A/µm]

γ is increased

Figure 4.9: Buckling mode of an MRE microstructure with circular inclusions of volume
fraction f0 = 0.2 (purely magnetic loading). The depicted buckling mode is associated with
a bifurcation point that is detected under a path angle φ = 0◦, i.e., under purely magnetic
loading. At the given instability point, the periodicity of the microstructure is associated
with an RVE composed of 2×2 unit cells.

Influence of the shape of inclusions on instabilities. As a final study, we
investigate the stability of MREs in consideration of different shapes of inclusions. We
compare the behavior of RVEs with circular inclusions with the behavior of RVEs with
elliptic inclusions having an aspect ratio of 2 and 1/2, respectively. In all cases, we
consider the volume fraction f0 = 0.2. The results of the study are depicted in Fig. 4.10.
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Figure 4.10: Influence of the aspect ratio of inclusions on the stability of unit-square RVEs.
The plots shown in (a), (b) and (c) refer to aspect ratios of the inclusions of w = 1/2, w = 1
and w = 2 respectively. In all cases, the shear modulus of the matrix is µmatrix = 0.04 MPa.
Depending on the aspect ratio, we observe different behavior of the microstructures. In
particular, the influence of the magnetic loading on stability is evident.

We observe that the critical loading states are strongly affected by the inclusions’
shape and orientation. When the major axis of the inclusions is oriented perpendicular
to the macroscopic magnetic loading B2 we do not observe any microscopic instability.
The range of materially stable loadings is however narrow and firmly bonded by the
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saturation of magnetization. When the major axis is oriented parallel to the magnetic
loading, microscopic instabilities appear under moderate applied deformations.

In Fig. 4.11, we show a buckling mode of the MRE microstructure with elliptic inclu-
sions oriented parallel to the magnetic loading under purlely magnetic loading.

|B|/µ0ms = 0.5 |B|/µ0ms = 1.5 |B|/µ0ms = 1.875

0 3.8h2, [A/µm]

γ is increased

Figure 4.11: Buckling mode of an MRE microstructure with ellipsoidal inclusions of volume
fraction f0 = 0.2. The depicted mode is associated with a bifurcation point at a path
angle of φ = 0◦, i.e., purely magnetic loading. At this point, the critical periodicity of the
microstructure changes to 2×2 unit cells.

4.4.3.2 Stability analysis of MRE microstructures under purely magnetic
loading

In the previous examples we observed that material and structural instabilities may occur
even in the absence of mechanical loading. We have however only taken into account a
limited set of magnetic loading conditions. Our aim is now to widen the view to a larger
variety of loadings of the form

F = 1 and B =

[
B1

B2

]
, (4.39)

where we parameterize the magnetic loading by B1 = γ sinφ and B2 = γ cosφ with a
path angle of φ ∈ [0◦, 90◦]. Due to the given symmetry properties of the microstructures
under consideration this parameterization captures the full spectrum of magnetic loading.

In Fig. 4.12a,b the critical macroscopic loading states are illustrated for a microstruc-
ture with circular inclusions. Fig. 4.12c corresponds to microstructures with elliptic in-
clusions. In these examples, we have assumed a shear modulus of the inclusions of a
µmatrix = 0.01 MPa, b µmatrix = 0.02 MPa and c µmatrix = 0.02 MPa. We further
consider the volume fraction of the inclusions f0 = 0.2.

As becomes obvious from the plots, microstructures with circular inclusions lose their
microscopic stability when the magnetic loadings points close to the vertical or horizon-
tal direction. However, when the orientation of magnetic loading points surrounds the
diagonal of the RVE, macroscopic material instabilities kick in even before micro-bucking
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Figure 4.12: Instabilities of MRE microstructures under purely magnetic loading. The
plots in (a) and (b) correspond to microstructures with circular inclusions and a shear
modulus of the matrix of µmatrix = 0.01 MPa and µmatrix = 0.02 MPa respectively. The plot
shown in (c) corresponds to a microstructure with elliptic inclusions and a shear modulus of
the matrix of µmatrix = 0.02 MPa. The volume fraction of inclusions is f0 = 0.2 in all cases.
The graphs shown in (d), (e) and (f) illustrate the Bloch-vector components associated with
the microscopic instability points corresponding to the plots (a), (b) and (c) respectively.

could occur. Again, it is evident from the graphs shown in Fig. 4.12a,b that by increasing
the stiffness of the matrix we are able to stabilize the composite. It is further intriguing
to note that microstructures with elliptic inclusions do not show any instability in certain
loading regimes. For further reference, we depict the components of the Bloch vector
corresponding to the latter computations in Fig. 4.12d–f.

In order to obtain additional insights into the development of macroscopic material
instabilities, we plot the determinant of the Christoffel tensor detΓ for the path angle
φ = 90◦ for different magnitudes of macroscopic magnetic loading ‖B‖ in Fig. 4.13a. The

determinant first vanishes at θ = 90◦ due to a vanishing macroscopic modulus A 2 2
1 1 . In

Fig. 4.13b, the determinant detΓ is plotted for different path angles φ, each for a critical
loading ‖B‖. Macroscopic instabilities are detected for different orientations θ.

A typical buckling mode at the path angle φ = 63◦ is shown in Fig. 4.14. As a
result of the microscopic buckling the periodicity of microstructure corresponds to an
RVE composed of 4×3 unit cells.

Influence of magnetic properties on instabilities. In order to get an idea of
the influence of the magnetic properties on the occurrence of macroscopic instabilities we
perform a corresponding study on an RVE under vertical magnetic loading B = B2E2 and
fixed macroscopic deformation F = 1 . The considered inclusions have circular shape and
volume fractions of f0 = 0.2 and f0 = 0.3, respectively. In Fig. 4.15 we depict macroscopic
instability points for various combinations of magnetic saturation µ0ms ∈ [1.5, 3.0] T and
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Figure 4.13: Evolution of the determinant of the Christoffel tensor detΓ depending on the
orientation θ. The graphs shown in (a) depict the determinant of the Christoffel tensor at

different macroscopic loading states ‖B′‖ = ‖B‖/µ0ms at a path angle of φ = 0◦, i.e., under

purely magnetic loading. At loading ‖B′‖ ≈ 0.38 the determinant becomes zero, indicating
that the material is macroscopically unstable. In plot (b) we show the determinant of the
Christoffel tensor under critical loading states for various path angles φ. All plots correspond
to the scenario illustrated in Fig. 4.12a.

B

|B|/µ0ms = 0.54 |B|/µ0ms = 2.78

0 0.8h2, [A/µm]

γ is increased

Figure 4.14: Buckling mode of an MRE microstructure with circular inclusions under
purely magnetic loading. The volume fraction of the inclusions is f0 = 0.2. As becomes
obvious the complex bucking mode can only be captured by a microstructure consisting of
4×3 unit cells.

magnetic susceptibility χ ∈ [0.5, 0.995]. The mechanical material parameters of the matrix
and inclusions are given in Table 4.4. In Fig. 4.15 we observe that the critical magnetic
loading decreases with increasing magnetic saturation and magnetic susceptibility. All
instability points are detected at an orientation angle θ = 0◦.
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Table 4.4: Mechanical material parameters of two-phase MRE composites considered in
the numerical example of Sec. 4.4.3.2.

Phase Poisson’s ratio ν Shear modulus µ, MPa Strain Saturation ξ

Matrix 0.495 0.01 100

Inclusion 0.495 10.0 100
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Figure 4.15: Macroscopic-instability points depending on magnetic material parameters of
the inclusions under purely magnetic loading. The two graphs show the instability points for
circular inclusions of volume fraction f0 = 0.2 and f0 = 0.3. We observe that macroscopic
material instabilities occur earlier for higher values of material parameters. The influence of
the saturation magnetization is however not very pronounced, especially when high values
of magnetic susceptibility are present.

4.4.3.3 Stability analysis of stretchedMRE microstructures under non-aligned
magnetic loading

We now further extend the set of applied macroscopic boundary conditions and study the
influence of the direction of the macroscopic magnetic induction w.r.t. the macroscopically
applied stretch. For that, we apply the macroscopic loading conditions

F =

[
λ 0

0 λ−1

]
and B =

[
B1

B2

]
, (4.40)

where λ = 1+ γ sinφ, B1 = cγ cosφ sinα and B2 = cγ cosφ cosα are parameterized using
the path angle φ ∈ [−90◦, 90◦] and the alignment angle α = {0◦, 5◦, 20◦, 45◦}. The latter
angle measures the deviation from the vertical direction.

As material parameters for the magnetic inclusions we again assume the ones summa-
rized in Table 4.3. In addition, we select the shear moduli of matrix and inclusions as
µmatrix = 0.04MPa and µincl = 1000 µmatrix, respectively.

In a first study, we consider a square-shaped RVE with circular inclusion of volume
fraction f = 30% and depict corresponding results in Fig. 4.16. In the figure, red lines
correspond to the onset of microscopic instabilities and blue lines correspond to the onset
of macroscopic instabilities. By comparing Fig. 4.16a with Fig. 4.16b–d, we observe that
instabilities are triggered earlier when the RVE is loaded with a magnetic induction that
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Figure 4.16: Influence of the alignment of magnetic loading w.r.t. mechanical deformation
on the stability of unit-square RVEs with circular inclusions. The plots shown in (a), (b), (c)
and (d) refer to alignment angles of magnetic induction of α = 0◦, α = 5◦, α = 20◦ and α =
45◦, respectively. In all cases, the shear modulus of the matrix is µmatrix = 0.04 MPa. We
observe that as the orientation of the magnetic induction deviates from the vertical direction,
microscopic instabilities are suppressed and macroscopic instabilities become dominant.

deviates from the vertical direction whenever we account for tension in vertical direction.
However, when the RVE is compressed in the vertical direction, an inclined magnetic field
delays instabilities. Interestingly, when the alignment angles rises, material instabilities
occur even under comparably low magnetic loading (see Fig. 4.16c,d). In consideration
of small alignment angles, this effect is suppressed by the saturation of the magnetization
of the inclusions (see Fig. 4.16a,b).

In a second study, we consider a square-shaped RVE with elliptic inclusion of volume
fraction f = 20% and depict corresponding results in Fig. 4.17. Again, red lines corre-
spond to the onset of microscopic instabilities and blue lines correspond to the onset of
macroscopic instabilities. The consideration of elliptical inclusions gives rise to a quite
distinct behavior. In particular, we observe that the application of an inclined magnetic
loading suppresses the occurrence of microscopic instabilities. A similar phenomenon
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Figure 4.17: Influence of the alignment of magnetic loading w.r.t. mechanical deformation
on the stability of unit-square RVEs with elliptic inclusions. The plots shown in (a), (b), (c)
and (d) refer to alignment angles of the magnetic induction of α = 0◦, α = 5◦, α = 20◦ and
α = 45◦, respectively. In all cases, the shear modulus of the matrix is µmatrix = 0.04 MPa.
We observe that for elliptic inclusions a non-aligned magnetic field highly influences the
instability due to local shearing as a result of the rotation of inclusions.

was detected by [50], who showed that a superimposed shear deformation stabilizes a
macroscopically stretched elastic composite. In the present scenario, the stabilization
of the composite could be traced back to local shear deformations of the matrix, which
are the result of magnetically induced (stable) rotations of the inclusions. When further
increasing the alignment angle we observe a decrease of the stable loading ranges.

Some of the above discussed instabilities are related to multi-directional buckling
events of the microscopic ligaments, see Fig. 4.18. These again come along with rotations
of the elliptical inclusions and are typically observed under moderately applied stretch
and large magnetic loading. Please note that under these circumstances we usually detect
buckling into microstructures composed of 2×2 unit cells. However, when we apply large
stretches and only moderate magnetic loading, we detect a pattern transformation into
buckled microstructures composed of 1× 2 unit cells (see Fig. 4.19).
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Figure 4.18: Buckling mode of an MRE microstructure with elliptical inclusions of volume
fraction f0 = 20% (coupled magneto-mechanical loading). The depicted buckling mode is
associated with a bifurcation point that is detected under a path angle φ = −24◦ and an
alignment angle α = 20◦. At the given instability point, the periodicity of the microstructure
is associated with an RVE composed of 2×2 unit cells.
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Figure 4.19: Buckling mode of an MRE microstructure with elliptical inclusions of volume
fraction f0 = 20% (coupled magneto-mechanical loading). The depicted buckling mode
is associated with a bifurcation point that is detected under a path angle φ = 64◦ and an
alignment angle α = 20◦. At the given instability point, the periodicity of the microstructure
is associated with an RVE composed of 1×2 unit cells.

4.4.4 Stability analysis of three-phase MREs

As a final example, we consider a three-phase MRE composed of non-magnetic matrix,
magnetic inclusions and voids. The volume fraction of voids and inclusions is 40% and
10%, respectively. The material parameters are given in Table 4.5. We have discretized
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Table 4.5: Material parameters of the three-phase MRE composite considered in the
numerical example of Sec. 4.4.4

No. Parameter Name Matrix Inclusion Void

1. ν Poisson’s ratio 0.495 0.495 0.45

2. µ Shear modulus, MPa 0.04 40 10−5

3. ξ Strain saturation 100 100 100

4. χ Magnetic suscepctibility 0 0.995 0

5. µ0ms Magnetic saturation, T − 2.0 −

the domain with Q1P0-type finite elements20.

The results of the present study are depicted in Fig. 4.20a. Here we observe that
microscopic buckling does only occur under mechanical tension. An associated instability
mode matching the experimental observations documented by Tipton et al. [75] is shown
in Fig. 4.20b.
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Figure 4.20: Analysis of microscopic and macroscopic instabilities in a three-phase mate-
rial. The three-phase material is given by an elastomer with magnetic inclusions (fm

0 = 0.1)
and voids (fv

0 = 0.4). The picture in (a) illustrates the onset of microscopic and macroscopic
instabilities under magneto-mechanical loading. The graph in (b) shows the altered period-
icity of the RVE due to microscopic buckling at a path angle φ = 70◦. The given snapshot
corresponds to a coupled macroscopic loading state of λ ≈ 1.2 and B2/µ0ms ≈ 0.35 and is
in good qualitative agreement with the experimental findings of Tipton et al. [75].

20In case of Q2P1-type finite elements we observed zero-energy modes that lead to high distortions of
elements. Q1P0-type finite elements did not show this behavior.
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4.5 Conclusion and Discussion

We investigated the microscopic and macroscopic stability of magnetorheological elas-
tomers under macroscopic magneto-mechanical loading. Starting point was a microscopic
four-field variational formulation of magneto-elasticity that we have embedded into a
framework of computational homogenization. The variational formulation has a mini-
mization structure based on the mechanical deformation and magnetic vector potential
as independent fields. Microscopic buckling-type instabilities were detected by means of
Bloch–Floquet wave analysis. Macroscopic instabilities were determined by checking the
strong ellipticity of homogenized moduli.

A series of numerical simulations revealed a rich spectrum of instabilities of magne-
torheological elastomers. In particular, we have analyzed their overall response in consid-
eration of different material properties, volume fractions and topologies of the individual
phases as well as under a large set of coupled loading conditions. As could be shown,
instabilities can be prevented or triggered by proper construction of microstructures and
adjustment of coupled macroscopic loading. This opens the door to the material design
of magnetorheological elastomers with tailored multifunctional properties.

In particular, our studies demonstrate that MREs provide a much richer set of possible
pattern transformations than purely elastic materials. In fact, the MREs considered in
the present work show complex pattern transformations under tension, compression and
even in the absence of mechanical deformation. This goes far beyond the so far known
achievable instabilities in elastic composites [78, 7, 50, 58, 7, 38] and may allow the devel-
opment of MRE-based switches that significantly alter the behavior of composites under
magnetic stimuli. In this context we highlight possible applications as tunable periodic
(meta-)materials with tailored acoustic, auxetic, phononic and photonic properties.
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Appendix

A (Green-)Christoffel tensor in two-dimensions

Considering two spatial dimensions with N = [cos θ sin θ]T and using (4.21) the Christof-
fel tensor can be expressed as follows

Γ(N) := Q(N)− 1

D(N)
ω(N)⊗ ω(N) (4.41)

with

Q =



A 1 1

1 1 c
2 + 2A 1 2

1 1 cs+ A 2 2
1 1 s

2 A 1 1
1 2 c

2 + (A 1 2
1 2 + A 2 1

1 2 )cs+ A 2 2
1 2 s

2

sym. A 1 1
2 2 c

2 + 2A 1 2
2 2 cs+ A 2 2

2 2 s
2




ω(N) =

[
G 2

1 1s
2 −G 1

1 2c
2 + (G 1

1 1 −G 2
1 2)sc

G 2
2 1s

2 −G 1
2 2c

2 + (G 1
2 1 −G 2

2 2)sc

]

D(N) = K11s
2 − (K12 +K21)cs+K22c

2 ,

(4.42)

where c := cos θ and s := sin θ. In the above equation M is eliminated using (4.21).

B Numerical studies on the effective magneto-mechanical response of selected
MRE microstructures

In order to provide further insight in the macroscopic magnetostriction of MREs, we
further compute the homogenized response of selected two-phase composites based on the
setting recently proposed by Danas [16].

We perform finite-element simulations on unit-square RVEs with various volume frac-
tions of circular inclusions in the range [5%− 40%]. As macroscopic boundary conditions
we assume that the RVE is mechanically stress-free and loaded with an Eulerian magnetic
induction bb [16], i.e.,

Pmec
b = 0 and bb =

[
0

b2

]
. (4.43)

According to Danas [16] the above setting can be accounted for using the macroscopic
potential

Π(F ,B;Pmec
b ,bb) = ψ(F ,B)− 1

2µ0J
‖B‖2

C
+

J

2µ0ζ
‖J−1F ·B − bb‖2 − Pmec

b : (F − 1 ) ,

(4.44)

where ψ is defined by (4.13) and ζ is a penalty parameter enforcing the constraint asso-
ciated with the magnetic-induction fields. This parameter is set to 10−7 in the following
numerical simulations. The material parameters used in the present study are given in
Table 4.3.
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In Fig. 4.21 we show the macroscopic magnetization m2 and macroscopic deformation
gradient F 22 induced by an applied macroscopic magnetic induction bb = [0, b2]

T . We
observe that the saturation values of the effective magnetization grow with the volume
fraction of the magnetic inclusions. Such a behavior is not present for the saturation of
the macroscopic deformation F 22, which initially increases with volume fraction, but then
starts to decrease for volume fractions greater than 20%, see also Danas [16] for details.
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Figure 4.21: Magneto-mechanical response of periodic MRE unit cells with different vol-
ume fractions of circular magnetic inclusions. In (a) we observe that the saturation of the
homogenized magnetization m2 increases monotonically with the volume fraction of inclu-
sions. In (b) we observe that the saturation of deformation F 22 evolves non-monotonically
with increasing volume fraction of inclusions.

We note that the setting above is idealized in the sense that usual MRE specimens
show a complex macroscopic response which makes it difficult to prescribe the above
given fields experimentally. For further discussions, we refer the reader, for example, to
to [43, 44, 46, 10].
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[63] Ponte Castañeda, P., Galipeau, E., [2011]. Homogenization-based constitutive mod-
els for magnetorheological elastomers at finite strain. Journal of the Mechanics and
Physics of Solids 59 (2), 194–215.
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[81] Varga, Z., Filipcsei, G., Zŕınyi, M., [2005]. Smart composites with con-
trolled anisotropy. Polymer 46 (18), 7779 – 7787, stimuli Responsive Polymers.
(doi:http://dx.doi.org/10.1016/j.polymer.2005.03.102)
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Abstract

We present a variational framework for the computational homogenization of chemo-mechanical
processes of soft porous materials. The multiscale variational framework is based on a minimiza-
tion principle with deformation map and solvent flux acting as independent variables. At the
microscopic scale we assume the existence of periodic representative volume elements (RVEs)
that are linked to the macroscopic scale via first-order scale transition. In this context, the
macroscopic problem is considered to be homogeneous in nature and is thus solved at a single
macroscopic material point. The microscopic problem is however assumed to be heterogeneous
in nature and thus calls for spatial discretization of the underlying RVE. Here, we employ
Raviart–Thomas finite elements and thus arrive at a conforming finite-element formulation of
the problem. We present a sequence of numerical examples to demonstrate the capabilities of
the multiscale formulation and to discuss a number of fundamental effects.

Keywords: computational homogenization, chemo-mechanics, diffusion, hydrogels, porous ma-
terials

5.1 Introduction

The continuous advancement of technological innovations in the fields of digitalization
and automation leads to increased demands of smart and multifunctional materials. In
that context, the design of associated materials with tailor-made properties is paramount.
Classical examples cover solids with coupled electro- and magneto-mechanical response
such as ferroelectrics or magnetostrictives. More recently, several advanced materials
exhibiting chemo-mechanical coupling have entered the scene and experience increased
attention since then. Related materials show interactions between fluid flow and defor-
mations and play an important role in emerging applications such as lithium-ion batteries
(Wang et al. [40]), heterogeneous concretes (Wang and Ueda [41]), engineered biological
tissues (Truskey et al. [38]), or fiber-reinforced superabsorbent hydrogels (Chen and Park
[7]).

In order to allow for the theoretical development of related materials and structures,
reliable continuum-mechanical models are needed. Related formulations have to take into
account the mutual couplings between the fluidic diffusion of some solvent phase and the
mechanical deformation of some solid phase in a single multiphase material. In fact, the
development of continuum-mechanical models and associated numerical implementations
have seen a lot of advancements recently. We refer to the works of Hong et al. [20, 19],
Chester and Anand [8], Nilenius et al. [28], Miehe et al. [25], Ehlers and Wagner [11] and
Böger et al. [4] among many others.

In addition to that—when targeting the design of materials—the need for multiscale
continuum approaches becomes evident. Associated homogenization techniques involving
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continuum microstructures trace back to the early works of Voigt [39], Reuss [33], Hill
[18]. For the realization of multiscale numerical simulations we refer to Miehe et al.
[26], Feyel and Chaboche [12]. A common feature of the above approaches is the iden-
tification of a representative volume element (RVE) that reflects the heterogeneity of a
given microstructure. Here, one often assumes separation of length scales by postulating
that typical length scales of the RVE are much smaller than typical length scales of a
corresponding macroscopic problem. This then renders the notion of so-called first-order
homogenization schemes.21

Extensions of first-order homogenization towards the incorporation of heat conduction
have been proposed by Özdemir et al. [29], Temizer and Wriggers [37], Temizer [36] and
Chatzigeorgiou et al. [6]. Here, the transient behavior of the material is considered only
at the macroscopic level, while at the microscale the problem is assumed to be stationary.
In contrast to that, Larsson et al. [24] have proposed the variationally consistent homog-
enization of heat conduction that takes into account the transient behavior also at the
microscopic level.22 The latter approach leads to size-dependent macroscopic response.
As could be shown by the authors, the size dependence vanishes when the size of the RVE
approaches zero. While such effect seems in accordance with the idea of scale separation,
it does not occur in the first-order homogenization of stationary problems. Related effects
and consequences have been discussed by Kaessmair and Steinmann [21] who proposed a
transient homogenization framework for coupled chemo-mechanical problems.

Close to the formulations of Larsson et al. [24] and Kaessmair and Steinmann [21]
we propose a variationally consistent homogenization approach to the coupled chemo-
mechanics of transient diffusion-deformation processes in soft, porous solids. In doing so,
we critically revise the influence of the RVE size on the effective macroscopic response
of a transient microscopic problem. In contrast to the above-mentioned homogenization
schemes of thermo- and chemo-mechanics, we consider the computational homogenization
of diffusion-deformation processes within a minimization-based variational formulation.
The latter is adopted from the ideas of Miehe et al. [25] and Böger et al. [4].

In the minimization-based formulation, the deformation map and the solvent-volume
flux act as the independent fields. Associated formulations have several advantages com-
pared with direct formulations (that are based on balance equations) and standard saddle-
point formulations (that usually exploit the chemical potential as independent field next
to the displacement):

1. In contrast to direct approaches, variational structures lead to compact representa-
tions involving symmetric system matrices [25, 4].

2. For two-dimensional problems it could be shown that the minimization formula-
tion is computationally more efficient than both direct approaches and saddle-point
formulations [25, 35].

3. A minimization formulation is not restricted by the inf-sup condition, which is an
inherent problem of saddle-point formulations [35, 23].

21A higher-order approach has been proposed by Kouznetsova et al. [22].
22We refer to Pham et al. [30] for the homogenization of microscopically transient problems in the

framework of dynamic metamaterials.
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4. A minimization formulation is favorable for the investigation of structural instabili-
ties since the coupled stiffness matrix is positive definite unless an instability occurs
[14, 31].

5. In the context of homogenization methods, minimization structures can be embed-
ded into Hashin–Shtrikman variational principles and thus allow the computation
of bounds of effective material properties [17, 27].

Next to that, we should however note that the above advantages come at the cost
of a more involved spatial discretization of the solvent-volume flux based on H(Div)-
conforming finite elements. For the latter we refer to Miehe et al. [25], Böger et al.
[4], Teichtmeister et al. [35].

The structure of the present contribution is as follows. In Section 5.2, we start with the
definition of a rate-type variational principle of homogenization based on the deformation
map and the solvent-volume flux as independent field variables. The rate-type principle
is then translated into an incremental variational principle of homogenization. The lat-
ter comes along with discretization in space and time. For time integration, we employ
an implicit Euler scheme. The spatial discretization is realized by means of conforming
Raviart–Thomas-type finite elements. Based on the discrete setting, we are able to deter-
mine all relevant macroscopic quantities including the algorithmically consistent material
moduli. In Section 5.3, we briefly comment on the size dependence of the homogenization
problem involving the transient diffusion at microscale. This discussion serves as moti-
vation for the set of numerical examples to be covered in Section 5.4. There we present
a sequence of numerical studies of the effective response of two-phase porous composites.
A conclusion of the present work will finally be given in Section 5.5.

5.2 Variational homogenization of diffusion-deformation processes

In the present section, we discuss the computational homogenization of diffusion-deformation
processes based on a rate-type variational formulation. We consider a variationally con-
sistent approach close to the ideas of Larsson et al. [24]. However, in contrast to the
latter work, our goal is to develop a homogenization scheme that is based on a minimiza-
tion principle. The spatial discretization of the coupled problem will be realized within a
conforming finite-element formulation based on Raviart–Thomas-type finite elements. In
order not to overload the presentation, we will keep the motivation for the use of certain
functionals as concise as possible. For more information on related topics the interested
reader is referred to Hong et al. [20, 19] and Böger et al. [4].

5.2.1 Constitutive state variables at the microscopic level

In the context of a minimization formulation, a diffusion-deformation process can be
described by two independent fields given by the deformation map ϕ and the solvent-
volume flux H having the following properties (Gurtin et al. [16], Miehe et al. [25], Böger
et al. [4])

ϕ :

{
B0 × T → Bt ⊂ R3

(X, t) 7→ ϕ(X, t)
and H :

{
B0 × T → R3

(X, t) 7→ H(X, t) ,
(5.1)
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where X denotes a material point at the microscopic reference configuration B0, which is
mapped to the current configuration Bt by the deformation map ϕ. The solvent-volume
flux H describes the flow of the solvent volume relative to the solid skeleton. Such
interpretation follows Biot’s approach to the modeling of porous media [3]. For a detailed
derivation of the equations used in the present contribution we refer to Coussy et al. [9].

Furthermore, we introduce the concentration of solvent volume describing the amount
of solvent molecules in a referential infinitesimal volume element

s :

{
B0 × T → R+

(X, t) 7→ s(X, t)
(5.2)

with s = νc. Here ν denotes the volume of a single solvent molecule and c is the number
of these molecules. The solvent-volume concentration s can be related to the solvent flux
by considering the conservation of solvent-volume concentration (Gurtin et al. [16]). It
states that the change of solvent-volume concentration in a given arbitrary domain of a
body is equal to the flux of solvent volume across the surface of that domain. Locally,
this can be expressed as

ṡ = −DivH . (5.3)

Considering a first-order approach of homogenization, the independent fields can be
decomposed into microscopic and macroscopic contributions

ϕ(X, t) := ϕ̃(X, t) + ϕ̂(X,X, t) and H(X, t) := H̃(X, t) +
ˆ
H(X ,X, t) , (5.4)

where ϕ̃ and H̃ denote microscopic fluctuations of the deformation map and the solvent-
volume flux, respectively. We refer to Fig. 5.1 for a graphical illustration.

Further considering a Taylor expansion of the macroscopic contributions up to the
linear terms yields23

ϕ̂(X,X, t) = ϕ(X, t) + F (X, t) ·X
ˆ
H(X,X, t) = H(X, t) +

1

3
DivH(X, t)X ,

(5.5)

where F = Gradϕ is the macroscopic deformation gradient and ṡ = −DivH is the rate of
the macroscopic solvent-volume concentration. In what follows, we assume that the origin
of the coordinate system is located at the geometric center of the RVE, i.e.,

∫
B0

XdV = 0 .

From (5.4) we obtain the deformation gradient F and the divergence of the solvent
flux DivH as

F = F̃ + F and DivH = Div H̃ +DivH . (5.6)

The latter equation implies that the solvent-volume concentration can be decomposed
into fluctuative microscopic and constant macroscopic parts as s = s̃+ s. Integrating the

23We note that in (5.5)2, we have assumed macroscopic isotropic swelling. Consequently, the linear

expansion of the solvent-volume flux is associated with the divergence and not the gradient of H . From
the following equations, it will become clear that the considered form of the microscopic flux preserves
the well-known structure of the diffusion-deformation problem at the micro- and the macroscale.



Chapter 5: Paper C 173

lmacro

lmicro

π(F , H , s)

R3 Π(F , H , s)

B

B0 Bt

X ∈ B

X

ϕ(X , t)

F ,H , DivH
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Figure 5.1: Graphical illustration of the computational homogenization chemo-mechanical
processes. The macroscopic dual fields and moduli at a macroscopic material point X are
determined by solving a microscopic boundary value problem. The domain of the micro-
scopic problem is chosen such that it represents the heterogeneity of the microstructure in a
representative manner and is thus referred to as representative volume element (RVE). In a
minimization-based variational formulation the RVE is driven by the deformation gradient
F as well as the solvent-volume flux H and its divergence DivH .

equations in (5.6) over the domain of the RVE with |B0| = vol(B0) yields

F =
1

|B0|

∫

B0

F dV =
1

|B0|

∫

∂B0

ϕ⊗N dA and

DivH =
1

|B0|

∫

B0

DivH dV =
1

|B0|

∫

∂B0

H ·N dA ,

(5.7)

where we have considered the following relations
∫

B0

F̃ dV =

∫

∂B0

ϕ̃⊗N dA = 0 and

∫

B0

Div[H̃ ] dV =

∫

∂B0

H̃ ·N dA = 0 . (5.8)

The former equation is satisfied for continuous fluctuations of the deformation map along
the whole microstructure, where continuity also relates to the transition across the (arbi-
trary) boundary of a periodic RVE. The restriction w.r.t. the continuity across an RVE’s
boundary is usually expressed as [[ϕ̃]] = 0 on ∂B0, where [[(·)]] = (·)+ − (·)− denotes the
jump of a quantity (·) across the boundary of an RVE. Analogously equation (5.8)2 is
satisfied for continuous normal projections of the solvent-volume flux, i.e., anti-periodic
normal projections [[H̃ ]] ·N = 0 on ∂B0. We refer to Fig. 5.2 for a graphical illustration.

5.2.2 Constitutive functions at the microscopic level

As diffusion-deformation processes are dissipative in nature, they can be modeled by a
set of two constitutive functions given by an energy-storage function ψ̂ and a dissipation-
potential function φ̂. The function ψ̂(F , s) models the energy storage due to the defor-
mation of the material and the influx of the solvent molecules. It is assumed to have the
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∂B0

∂Bt

X ∈ B0 x ∈ Bt

F = F + F̃

DivH = Div H̃ +DivH

ϕ(X), H(X)

N+N− n+n−

X− X+

ϕ−

ϕ+

[[X]]
[[ϕ]]

Figure 5.2: Periodic boundary conditions associated with the minimization-based for-
mulation of chemo-mechanics. The boundary of the RVE B0 is split into B+

0 and B−
0

with unit outward normals N+ = −N− =: N . At the respective material points
X+ and X− on these boundaries, the deformation map is considered to be periodic
(ϕ(X+) = ϕ(X−)) and the normal solvent-volume flux H is considered to be anti-periodic
(H(X+) ·N+ = −H(X−) ·N−).

following additive form (Hong et al. [20, 19], Böger et al. [4])

ψ̂(F , s) = ψ̂mech(F ) + ψ̂chem(s) + ψ̂coup(J, s) , (5.9)

where ψ̂mech, ψ̂chem and ψ̂coup denote the mechanical, chemical and coupled chemo-mechanical
contributions. For the modeling of hydrogels, a neo-Hookean material model can be
considered for the mechanical energy ψ̂mech. The chemical energy ψ̂chem is usually gov-
erned by a Flory–Rehner-type constitutive function (Flory and Rehner [13]). The term
ψ̂coup(J, s) in the energy-storage function models the coupling between deformation and
solvent volume and by relating the volume change of the material to the solvent-volume
concentration s. In the variational minimization formulation to be developed below, the
dissipation potential φ̂(H ;F , s) is a convex function of the solvent flux H .24 The forms
of these functions and their relevance for the specific problems at hand will be discussed
in the following sections.

5.2.3 Rate-type minimization principle of computational homogenization

The macroscopic potential density π( ˙̃ϕ, H̃ ;
˙
F ,H) of the homogenization problem at a

given macroscopic constitutive state { ˙
F , ṡ = −Div[H ]} can be described by the mini-

mization principle25

π( ˙̃ϕ⋆, H̃⋆;
˙
F ,H) = inf

˙̃ϕ∈W ˙̃
ϕ

inf
H̃∈W

H̃

1

|B0|

∫

B0

π(ϕ̇,H) dV . (5.10)

This variational principle can be considered as a generalized Hill–Mandel condition and
involves the minimization of the volume-averaged microscopic potential density

π(ϕ̇,H) :=
d

dt
ψ̂(F , s) + φ̂(H ;F , s) (5.11)

24Convexity of the dissipation potential function together with vanishing first derivatives at the origin
guarantee a priori fulfillment of the second law of thermodynamics.

25The index (·)⋆ denotes a converged solution. To arrive at a compact notation, we will drop this index
in the following whenever there is no danger of confusion.
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in the admissible function spaces

˙̃ϕ ∈ W ˙̃ϕ := { ˙̃ϕ ∈ H1(B0) | ˙̃ϕ+ = ˙̃ϕ− on ∂B0 = ∂B+
0 ∪ ∂B−

0 },
H̃ ∈ W

H̃

:= {H̃ ∈ H(Div,B0) | H̃+ ·N+ = −H̃− ·N− on ∂B0 = ∂B+
0 ∪ ∂B−

0 } .
(5.12)

5.2.4 Incremental variational principle at the microscale

In the numerical setting, the above given rate-type variational principle (5.10) is solved
incrementally at discrete times 0 < tn+1 ≤ T , where T denotes the ending time of a
process. It is assumed that at the beginning of a time interval [tn, tn+1] all variables are
known. In the following, we consider the notation (·)n for discrete variables at time tn
and drop the subscript for the variables at time tn+1, i.e., (·) := (·)n+1. Considering an
implicit Euler time integration with a time step τ = tn+1 − tn, we replace (5.10) with an
alternative incremental macroscopic potential density

πτ (ϕ̃⋆, H̃⋆;F ,H) = inf
ϕ̃∈W

ϕ̃

inf
H̃∈W

H̃

1

|B0|

∫

B0

πτ (ϕ,H) dV (5.13)

in terms of the incremental microscopic potential density

πτ (ϕ,H) := ψ̂(F , s) + τφ̂(H ;F n, sn) . (5.14)

Here, the solvent-volume concentration is determined via implicit Euler integration such
that s = sn − τ DivH . Analogously, we determine s = sn − τDivH at the macroscale.
Note that in (5.14) the dissipation-potential function takes into account known state
variables {F n, sn} at time tn in order to preserve a variationally consistent structure of
the problem (Miehe et al. [25], Böger et al. [4]). The admissible spaces in the incremental
setting are defined as

ϕ̃ ∈ Wϕ̃ := {ϕ̃ ∈ H1(B0) | ϕ̃+ = ϕ̃− on ∂B0 = ∂B+
0 ∪ ∂B−

0 } ,
H̃ ∈ W

H̃

:= {H̃ ∈ H(Div,B0) | H̃+ ·N+ = −H̃− ·N− on ∂B0 = ∂B+
0 ∪ ∂B−

0 } .
(5.15)

5.2.5 Euler–Lagrange equations and linearization of the variational formula-
tion

The necessary condition of the incremental variational formulation (5.13) yields

δπτ (ϕ̃, H̃ ;F ,H) =
1

|B0|

∫

B0




δF̃

Div δH̃

δH̃


 ·



∂F ψ̂

−τ∂sψ̂
τ∂
H

φ̂


 dV = 0 , (5.16)

where δϕ̃ ∈ Wϕ̃ and δH̃ ∈ W
H̃

. Using integral theorems as well as employing the
periodicity conditions (5.15), we arrive at the incremental Euler–Lagrange equations

1. Balance of linear momentum Div[∂F ψ̂] = 0 in B0

2. Inverse Fickian law Grad[∂sψ̂] + ∂
H

φ̂ = 0 in B0

3. Continuity of tractions [[∂F ψ̂]] ·N = 0 on ∂B0

4. Continuity of chemical potential [[∂sψ̂]] = 0 on ∂B0

(5.17)
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Figure 5.3: Q1RT0 Raviart–Thomas finite element and its mapping from the parametric to
the physical space. a) The deformation map ϕ is continuously interpolated using node-based
Q1 shape functions. The solvent-volume fluxH is approximated using edge-based RT0 shape
functions. b) To obtain the RT0 shape functions and their derivatives in the physical space,
a Piola transformation from the parametric space according to (5.21) is considered.

In (5.17) we identify the constitutive equations for the microscopic dual fields, i.e.,
the first Piola–Kirchoff stress tensor P := ∂F ψ̂ and the chemical potential of the solvent-
volume concentration µ := ∂sψ̂. The equation (5.17)2 describes an inverse form of Fick’s
law. The driving force of the diffusion processM := −Gradµ is determined constitutively
from the dissipation potential function via M = ∂

H

φ̂.

Linearization of (5.16) leads to the following expression including the incremental
microscopic moduli tensor

∆δπτ (ϕ̃, H̃ ;F ,H) =
1

|B0|

∫

B0




δF̃

Div δH̃

δH̃


 ·



∂2FF ψ̂ −τ∂2F sψ̂ ·

−τ∂2sF ψ̂ τ 2∂2ssψ̂ ·
· · τ∂2

HH

φ̂


 ·




∆F̃

Div∆H̃

∆H̃


 dV .

(5.18)

In the following sections, we will take advantage of (5.16) and (5.18) when we consider
the finite-element implementation of the homogenization problem.

5.2.6 Finite-element implementation of the homogenization procedure

For the numerical solution of the microscopic diffusion-deformation problem, conforming
quadrilateral Q1RT0 Raviart–Thomas-type finite elements are implemented [32]. This
choice is due to the required function space H(Div,B0) of the solvent-volume flux H . An
alternative non-conforming discretization on the basis of standard Q1Q1 finite elements
usually yields non-physical behavior. For recent developments of equivalent minimization
principles incorporating a node-based finite-element discretization combined with reduced
integration we refer to [35].

In the framework of the Raviart–Thomas-type finite-element discretization, the fluctu-
ations of the deformation map ϕ̃ are approximated continuously using bilinear Q1 shape
functions, which are related to the nodal degrees of freedom d

e
ϕ̃ of a finite element. The

fluctuations of the solvent-volume flux H̃ are approximated considering linear RT0 shape
functions, which are related to the fluctuations of the flux degrees of freedom d

e
H̃

across
the edges of the quadrilateral element. We refer to Fig. 5.3a for a qualitative illustration.

Note that only the normal component of the solvent-volume flux hK =
∫
EK H

h ·N e dA



Chapter 5: Paper C 177

N̂
1

H̃

(ξ) N̂
2

H̃

(ξ) N̂
3

H̃

(ξ) N̂
4

H̃

(ξ)

Figure 5.4: Illustration of the RT0 shape functions in parametric space. The normal
projections of the RT0 shape functions are constant along the edge of a finite element in
the parametric space A. The projection of the shape function associated with edge K onto

the edge EK is given by N̂
K
H̃

(ξ) · N̂e
0 = 1/2 and onto all other edges ÊL with L 6= K is

N̂
K
H̃

(ξ) · N̂ e
0 = 0. The factor 1/2 is due to the length of the element edge in the parametric

space such that d̂K
H̃

=
∫
ÊK

Ĥ

h(ξ) · N̂
e

0 dA.

at an edge of the element EK is considered as degree of freedom. We refer to Raviart and
Thomas [32], Brezzi and Fortin [5] for theoretical aspects and to Schwarz et al. [34], Anjam
and Valdman [1], Böger et al. [4], Teichtmeister et al. [35] for discussions of the numerical
implementation. The interpolation of the independent fields arises as

ϕ̃
h =

nnode∑

I=1

N
I
ϕ̃(ξ)d

I
ϕ̃ =: Ne

ϕ̃d
e
ϕ̃ and H̃

h =

nedge∑

K=1

N
K
H̃

(X)dK
H̃

=: Ne
H̃

d
e
H̃

, (5.19)

where the scalar shape functions N
I
ϕ̃ are defined at the node I and the vectorial shape

functions NK
H̃

correspond to the edge K. While the former can be directly defined in a so-
called parametric space A = [−1, 1]× [−1, 1], the latter have to be computed via a Piola

transformation of the corresponding shape functions N̂
K
H̃

in that parametric space(from

here on the notation (̂·) indicates quantities (·) formulated in the parametric space).
Similarly, dI

ϕ̃ denotes the array of the displacement components at the node I and d
K
H̃

corresponds to the normal component of the solvent-volume flux at the edge K. An
illustration of the Raviart–Thomas shape functions in the parametric space A is given in
Fig. 5.4.

The RT0 shape functions considered in the present contribution are given in the para-
metric space as

N̂
1
H̃

=

[
1
4
(ξ1 + 1)

0

]
, N̂2

H̃

=

[
0

1
4
(ξ2 + 1)

]
, N̂3

H̃

=

[
1
4
(ξ1 − 1)

0

]
, N̂4

H̃

=

[
0

1
4
(ξ2 − 1)

]
. (5.20)

The degrees of freedom need to be invariant under the change of coordinates from the
parametric space to the physical space, i.e., d̂K

H̃

= d
K
H̃

. Thus, we apply a Piola transfor-
mation to map the vectorial shape functions and their derivatives from the parametric
space A to the reference element Be

0. We refer to Brezzi and Fortin [5] for more details
and to Fig. 5.3b for a graphical illustration. It follows

[·](X) := P{[·](ξ)} =
1

Ĵ
Ĵ(ξ)[·](ξ) with Ĵ :=

∂Xh

∂ξ
and Ĵ := det Ĵ , (5.21)

whereXh : A → Be
0 refers to a map from the parametric space to a reference finite element

and is determined by Xh(ξ) =
∑nnode

I=1 N
I
ϕ̃(ξ)X

I in terms of the nodal coordinates XI of
the considered finite element.
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Furthermore, it is important to point out that, in order to have a consistent finite-
element implementation for the flux degrees of freedom, we need to make sure that the
degrees of freedom on a common edge of two adjacent finite elements are identical. In
order to achieve this, we assume a positive orientation for an edge in a finite element
Be whenever the node numbers of the vertices of that edge increase in counterclockwise
direction. In contrast, when the node number decreases, we augment the RT0 shape
function of that edge with a negative sign. As a consequence, an outflux at an edge of a
particular finite element will always be associated with influx across the same edge of a
neighboring finite element. We refer to Schwarz et al. [34], Anjam and Valdman [1], Böger
et al. [4], Teichtmeister et al. [35] for more details on the numerical implementation.

Based on (5.19) we obtain the fluctuations of the deformation gradient and of the
divergence of the flux fields as

F̃ h =

nnode∑

I=1

d
I
ϕ̃ ⊗GradNI

ϕ̃ =: Be
ϕ̃d

e
ϕ̃ and Div H̃h =

nedge∑

K=1

dK
H̃

DivNK
H̃

=: Be
H̃

d
e
H̃

. (5.22)

Having the above discretization at hand, the necessary condition of the incremental
minimization principle (5.16) in the finite-element setting can be written in form of the
microscopic residuum vector

R :=
1

|B0|
nelem

A
e=1

πτ,e
,de =

1

|B0|
nelem

A
e=1

∫

Be
0

[
(Be

ϕ̃)
T∂F ψ̂

h

(Be
H̃

)T (−τ∂sψ̂h) + (Ne
H̃

)T τ∂
H

φ̂h

]
dV = 0

with d
e :=

[
d
e
ϕ̃

d
e
H̃

]
,

(5.23)

where the first Piola–Kirchhoff stress tensor P is implemented as a vector, i.e., P =
[P11, P22, P12, P21]

T in two dimensions. The corresponding mechanical and coupled
moduli tensors follow a similar structure. The tangent matrix of the linearized system of
equations reads

K : =
1

|B0|
nelem

A
e=1

πτ,e
,dede

=
1

|B0|
nelem

A
e=1

∫

Be
0

[
(Be

ϕ̃)
T∂2FF ψ̂

h
B

e
ϕ̃ (Be

ϕ̃)
T (−τ∂2F sψ̂

h)Be
H̃

(Be
H̃

)T (−τ∂2sF ψ̂h)Be
ϕ̃ (Be

H̃

)T τ 2∂2ssψ̂
h
B

e
H̃

+ (Ne
H̃

)T τ∂2
HH

φ̂h
N

e
H̃

]
dV .

(5.24)

A converged microscopic state is obtained by solving the system of equations (5.16) iter-
atively using, for example, a Newton–Raphson method

d ⇐ d−K
−1
R until ||R|| ≤ tolmicro . (5.25)
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5.2.7 Effective macroscopic dual fields and moduli tensor

In the numerical setting, taking the variation of πτ at the macroscopic material point
yields

δπτ = δ
{ 1

|B0|
nelem

A
e=1

πτ,e
}
=

1

|B0|
nelem

A
e=1

∫

Be
0




δde

δF

DivδH

δH



·




πτ,e
,de

∂F ψ̂
h

−τ∂sψ̂h + 1
3
τ∂
H

φ̂h ·X
τ∂
H

φ̂h




dV

=
1

|B0|
nelem

A
e=1

∫

Be
0




δF

DivδH

δH


 ·




∂F ψ̂
h

−τ∂sψ̂h + 1
3
τ∂
H

φ̂h ·X
τ∂
H

φ̂h


 dV ,

(5.26)

where R := πτ
,d =A

nelem

e=1 πτ,e
,de vanishes at the solution point of the microscopic boundary-

value problem. As a consequence, the macroscopic first Piola–Kirchhoff stress tensor P

and the negative gradient of the chemical potential M (the latter being the driving force
of the macroscopic solvent-volume flux) are determined as averages of the corresponding
microscopic analogues

P := ∂
F
πτ =

1

|B0|
nelem

A
e=1

∫

Be
0

∂F ψ̂
h dV and M := ∂

H

πτ =
1

|B0|
nelem

A
e=1

∫

Be
0

∂
H

φ̂h dV . (5.27)

However, the macroscopic chemical potential follows from a different averaging process

µ := ∂ sπ
τ =

1

|B0|
nelem

A
e=1

∫

Be
0

∂sψ̂
h − 1

3
∂
H

φ̂h ·X dV . (5.28)

We observe that µ does not only depend on the average of the microscopic chemical
potential but also on its gradient and the spatial dimensions of the RVE. As a consequence,
the macroscopic effective response depends on the size of the RVE, which will be discussed
in detail in the next section.

Considering a continuous setting and exploiting tensorial manipulations in (5.27) and
(5.28), we can express the effective dual fields in terms of the surface integrals over the
boundary of the RVE as

P =
1

|B0|

∫

∂B0

(P ·N)⊗X dA,

M =
1

|B0|

∫

∂B0

µN dA,

µ =
1

3|B0|

∫

∂B0

µN ·X dA .

(5.29)

Adopting the notation F := [F , DivH , H ]T , we can write the first-order terms in the
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linearization of (5.26) at the macroscale in a compact form as

∆δπτ = δF : ∂
F F
πτ : ∆F =

1

|B0|
nelem

A
e=1



δde

δF


 ·


π

τ,e
,dede πτ,e

,deF

πτ,e

,Fde
πτ,e

,FF


 ·



∆d

e

∆F


 , (5.30)

where

πτ,e

,FF
:=

∫

Be
0




∂2FF ψ̂
h −τ∂2F sψ̂

h 0

−τ∂2sF ψ̂h τ 2∂2ssψ̂
h + 1

9
τX · ∂2

HH

φ̂h ·X 1
3
τX · ∂2

HH

φ̂h

0
1
3
τ∂2
HH

φ̂h ·X τ∂2
HH

φ̂h


 dV , (5.31)

πτ,e

,de F
:=

∫

Be
0



(Be

ϕ̃)
T∂2FF ψ̂

h (Be
ϕ̃)

T (−τ∂2F sψ̂
h) 0

(Be
H̃

)T τ∂2sF ψ̂
h (Be

H̃

)T τ 2∂2ssψ̂
h + (Ne

H̃

)T (1
3
τ∂2
HH

φ̂h ·X) (Ne
H̃

)T τ∂2
HH

φ̂h


 dV .

(5.32)

Combining (5.23), (5.26) and (5.30), we obtain an elimination equation at the macro-
scopic level for the microscopic degrees of freedom, that is

∆d =
nelem

A
e=1

∆d
e = −

[
1

|B0|
nelem

A
e=1

πτ,e
,dede

]−1[
1

|B0|
nelem

A
e=1

πτ,e

,deF

]
= −K

−1
L : ∆F . (5.33)

Considering the results of the latter equation in (5.30), we obtain

∆δπτ = δF : C : ∆F = δF :

{
1

|B0|
nelem

A
e=1

πτ,e

,FF
− L

T
K

−1
L

}
: ∆F . (5.34)

wherein we have identified the macroscopic coupled moduli

C =
1

|B0|
nelem

A
e=1

πτ,e

,FF
− L

T
K

−1
L . (5.35)

Now having determined the macroscopic dual fields (5.27) and (5.28) as well as the
macroscopic moduli (5.35), we could solve a macroscopic boundary value problem under
prescribed boundary and initial conditions by using a conforming finite-element discretiza-
tion analogous to Section 5.2.6.

5.3 Size effects in the homogenization of transient diffusion

In equations (5.28), (5.31) and (5.32), we observe terms that are scaled with the coordi-
nates of the RVE. This gives rise to a size-dependent effective response at the macroscale.
To have more insight into the problem, we simplify the above described formulation (5.10)
to the diffusion in rigid solids by neglecting any elastic effects. Then, the problem at hand
reads

πτ (H̃⋆;H) = inf
H̃∈W

H̃

1

|B0|

∫

B0

ψ̂chem(s) + τφ̂(H) dV . (5.36)
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To determine the macroscopic response of the material, we take the variation of (5.36)
and arrive at the definition of the macroscopic chemical potential

µ =
1

|B0|
nelem

A
e=1

∫

Be
0

∂sψ̂
h
chem − 1

3
∂
H

φ̂h ·X dV . (5.37)

Considering the dissipation-potential function φ̂(H) = 1
2M

‖H‖2 for the diffusion process
in rigid solids with mobility parameter26 M , we can reformulate the size-dependent term
µsize of the chemical potential µ in (5.37) as

µsize ∝
τ

3|B0|
nelem

A
e=1

∫

Be
0

1

M
H ·X dV =

τ

3|B0|
nelem

A
e=1

∫

Be
0

1

M
(H + H̃ +

1

3
DivHX) ·X dV .

(5.38)

Furthermore, by considering (5.4) and (5.5), we obtain

µsize ∝
τ

3|B0|
nelem

A
e=1

(
H ·

∫

Be
0

1

M
X dV +

∫

Be
0

1

M
H̃ ·X dV +

DivH

3

∫

Be
0

1

M
‖X‖2 dV

)
.

(5.39)

We observe that the macroscopic effective response depends on the size of the RVE and
the mobility parameter M . Note that the first and second term on the right-hand side of
(5.39) vanish for specific realizations of RVEs.27 In general, however, we expect variations
among the effective responses depending on the particular selection of RVEs from periodic
microstructures. Due to the size dependence, the effective response of a single unit cell
D differs from the effective response of an ensemble of identical unit cells nD, n ∈ N3.
In the following, we provide some numerical examples that describe the mentioned size
effect for RVEs with different sizes and material parameters.

5.4 Representative numerical examples

In order to demonstrate the capabilities of the variational homogenization procedure dis-
cussed above, we present some numerical examples. The first numerical examples consider
pure diffusion phenomena and investigate the influence of material parameters, geometry
as well as the size of RVEs on the effective, macroscopic response of composite materials
(Section 5.4.1). In a second study, we extend the formulation by elastic effects of the
solid matrix and couple it to the diffusion processes. In doing so, we will investigate
swelling-induced pattern transformations of periodic hydrogels (Section 5.4.2).

In what follows, we assume that the relaxation time of the material is much longer
than the solvent’s diffusion time. We thus neglect any viscoelastic effects of the material
and consider standard Fickian-type diffusion [20, 19, 8]. For an implementation that takes
into account the viscoelasticity of the material we refer to Govindjee and Simo [15].

26The mobility parameter M can be computed via the Stokes–Einstein relation

M =
νD

kBT
=

ν

6πRη
,

where ν is the volume of a single solvent molecule, D is the diffusivity, kB is the Boltzmann constant, T
is the absolute temperature, R is the radius of the solvent molecules and η is the viscosity of the solvent
[10, 20].

27One such realization is given by a symmetric RVE that is parameterized with coordinate axes that
originate from the spatial center of the RVE.
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Figure 5.5: RVE under macroscopic loading conditions. An RVE with circular inclusion
of volume fraction f0 = π/16 is attached to a macroscopic material point X and driven by

the macroscopic fields H = 0 m/s and DivH = γ s−1.

5.4.1 Investigation of the macroscopic properties of porous rigid solids

In this subsection, we analyze the influence of material parameters and the size of RVEs
on the macroscopic response of two-phase materials. We will find that the macroscopic
mobility parameter lies within the classical Voigt and Reuss bounds for vanishing RVE
size.

5.4.1.1 Microscopic constitutive functions

In Section 5.2.2, we have discussed the basic forms of the energy-storage and dissipation-
potential function. In case of a pure diffusion processes (for ϕ = const. with F = 1 ), the
energy-storage function reduces to ψ̂(s) = ψ̂chem(s). As our main focus is to investigate
fundamental effects, we select the simple quadratic function (Kaessmair and Steinmann
[21])

ψ̂chem(s) =
A

2
(s− 1

2
)2 , (5.40)

where A is a chemical material parameter. As dissipation-potential function we again
consider φ̂(H) = 1

M
‖H‖2 with the mobility parameter M .

5.4.1.2 Description of the problem

In the following, we consider periodic microstructures with circular inclusions. For such
microstructures it is straightforward to indentify a periodic unit cell (see Fig. 5.5a). In a
typical homogenization framework, the effective response of the material could be com-
puted uniquely by considering an RVE that resembles exactly that unit cell. However,
as we could see in Section 5.3, the homogenization of transient diffusion processes comes
along with well-known size effects in the sense that the physical size of the considered
RVE influences its effective response.

In order to analyze this size effect, we will alter the size of associated RVEs in the
following way. On the one hand, we will change the size by adjusting the lateral length
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of the underlying unit cell. On the other hand, we will change the size by composing an
RVE of a certain number of unit cells. In both cases the RVEs will be generated from
a primitive square-shaped unit cell having the lateral length of 1 mm. We adopt the
following name convention: ’nRVEmm’ designates a unique realization of an RVE, where
n indicates the scaling of the dimensions of the primitive unit cell and mm indicates a
pattern of m ×m primitive unit cells. For example, 2RVE11 and RVE22 both represent
an RVE with side length of 2 mm, but while the former is realized by scaling the primitive
unit cell by a factor of 2, the latter is made up of 2× 2 primitive unit cells. Please refer
to Fig. 5.8 for a corresponding visualization. In all following simulations, we consider a
volume fraction of the inclusions of f0 = π/16.

In a purely diffusive process, the RVEs can be driven by the macroscopic solvent-
volume flux H and its divergence DivH . As the size effect is due to the linear terms
appearing in the solvent flux vector in (5.5)2 (see also (5.39)), we take into account the
following macroscopic loading conditions

H = 0 m/s and DivH = γ s−1 , (5.41)

where γ is a loading parameter. In the current case, we assume that the divergence of the
macroscopic solvent-volume flux increases linearly with time, i.e, γ ∝ t, see Fig. 5.5b. All
simulations are carried with the time incrementation τ = 0.01 s. The chemical parameter
of the matrix and the inclusion is selected as Amat = Aincl = 10 N/mm2. Further-
more, at the beginning of the simulation, the solvent-volume concentration at micro- and
macroscale is assumed as s(t = t0) = s(t = t0) = 0. Dirichlet boundary conditions for
the normal projections of the fluctuations of the solvent-volume flux are considered, i.e.,
we set28 H̃ ·N = 0 on ∂B0.

5.4.1.3 Influence of mobility parameters on the effective macroscopic response

We now investigate the influence of mobility parameters of the individual constituents on
the macroscopic response of the two-phase material.

In a first step, we consider different kinds of square-shaped RVEs with constant mo-
bility parameter Mmat = 0.1 mm4/(Ns) of the matrix and altering mobility parameters of
the inclusions.

In Fig. 5.6a we observe discrepancies in the results depending on the realization of
the respective RVE. An increasing size of the RVE leads to a higher magnitude of the
effective chemical potential. This effect is due to the last term in (5.39), which arises
as the result of the transient nature of the problem. We refer to Larsson et al. [24] for
a similar analysis. As expected from (5.39), the discrepancies of the effective responses
of different RVEs decrease when we increase the mobility parameter of the inclusions.
However, since we keep the mobility parameter of the matrix unchanged at a comparably
low level (Mmat = 0.1 mm4/(Ns)) the size effect is still pronounced. Further comparing
the responses of 2RVE11 and RVE22, we observe that when the mobility parameter of the

28We note that in the Raviart–Thomas finite-element implementation anti-periodic boundary condi-
tions need to be considered for the flux degrees of freedom across the boundary of the RVE in order to
guarantee a continuous solvent normal flux throughout the microstructure. This can be achieved, for
example, by augmenting the shape functions corresponding to the edge-based degrees of freedom at a
boundary point X+ on ∂B+ with a different sign compared with the shape functions at X− on ∂B−.
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Figure 5.6: Effective chemical potential depending on the size of the RVE and the mobility
parameter of the inclusions. The evolution of the macroscopic chemical potential µ for
different realizations of RVEs is depicted as function of the divergence of the macroscopic
solvent-volume flux DivH for selected mobility parameters of the inclusions given by (a)
Mincl = 10−4 mm4/(Ns), (b) Mincl = 10−2 mm4/(Ns) and (c) Mincl = 10 mm4/(Ns). We
observe that the effective chemical potential µ depends strongly on the size of the RVE.
Furthermore, the effective response of a single periodic unit cell differs from the effective
response of an ensemble of identical periodic unit cells. The observed discrepancies decrease
with increasing mobility parameter of the inclusions and vanish when nearly homogeneous
microstructures of equal size are considered (e.g., 2RVE11 and RVE22 in b).

matrix and the inclusion have a similar magnitude, the corresponding effective responses
nearly coincide (Fig. 5.6b). In fact, if we would assume Mmat ≡ Mincl, the responses
would be identical since then the RVEs are homogeneous.

In Fig. 5.7, we show the influence of the mobility parameter of the matrix mate-
rial on the effective response for fixed mobility parameter of the inclusions Mincl =
10−4 mm4/(Ns). We observe decreasing discrepancies in the effective responses with
increasing mobility parameter of the matrix. This effect can be attributed to the higher
volume fraction of the matrix.

Contour plots of the microscopic chemical potential µ for different realizations of RVEs
are shown in Fig. 5.8. Remarkable differences in the microscopic response of the RVEs
are evident. This confirms that the underlying periodicity cannot be used to reduce
computations over an enlarged RVE to computations over a unit-cell RVE.

Above we have demonstrated that the effective chemical potential strongly depends on
the mobility parameters of the individual phases as well as on the size and realization of
the RVE. We now take a close look at the evolution of the chemical potential for various
RVEs over time (Fig. 5.9). In analogy to the previous examples, we consider square
RVEs that are either made up of a certain number of equal-sized unit cells or made up
of a scaled-up unit cell. The macroscopic loading is again formulated in terms of the
loading parameter γ, which will first be linearly decreased to a minimum value and then
increased to zero. After that, it will be kept fixed. Please refer to Fig. 5.5c for a graphical
illustration, in which the negative sign of the loading parameter is related with an influx
of the solvent. For time in incrementation we consider the time step τ = 0.1 s.
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Figure 5.7: Effective chemical potential depending on the size of the RVE and the mobility
parameter of the matrix. The evolution of the macroscopic chemical potential µ for different
realizations of RVEs is depicted as function of the divergence of the macroscopic solvent-
volume flux DivH for selected mobility parameters of the matrix given by (a) Mmat =
0.1 mm4/(Ns) and (b) Mmat = 5.0 mm4/(Ns). Like in the previous study (Fig. 5.6) we
observe that the effective chemical potential µ depends strongly on the size of the RVE. The
observed discrepancies decrease with increasing mobility parameter of the matrix.

In Fig. 5.9a we observe that the different RVEs show the expected differences in their
initial effective response. However, after a certain period of time the responses of all
RVEs converge to the same stationary solution, where low mobility parameters of the
inclusions lead to longer relaxation times (compare Fig. 5.9a,b,c). We further observe
that an increase of the mobility parameter of the inclusions has negligible influence on the
behavior under loading, but strongly influences the unloading phase (compare Fig. 5.9a,d
with Fig. 5.9b,e respectively). In contrast to that, changing the mobility parameter of
the matrix strongly influences the loading phase, but shows qualitatively similar trends
in the unloading regime (compare Fig. 5.9a,d with Fig. 5.9c,f respectively). As a final
observation we note that the stationary solutions of different RVEs converge to the same
values, even when the material parameters of the individual phases are different. (compare
Fig. 5.9b with Fig. 5.9e). This behavior could be expected from the size-dependent
contribution of the effective chemical potential given in (5.39). There, the first term has
been assumed zero per definition and the last term of the right-hand side is zero after
full unloading. As a consequence, the second term fades out over time due to internal
redistributions of the solvent such that finally H̃ → 0 and thus µsize → 0. In the stationary
state, the size-independent term of the macroscopic chemical potential (5.37) is identical
for all considered RVEs since we assume the same chemical parameters for both phases
in the microscopic chemical energy (5.40).
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Figure 5.8: Chemical potential field µ in consideration of two different periodic RVEs at
three different instances of time. Although the considered RVEs are composed of periodic
unit cells, we observe remarkable differences in their response. The chemical parameters for
the matrix and the inclusions are Amat = Aincl = 10 N/mm2. The mobility parameter of
the matrix is given by Mmat = 0.01 mm4/(Ns) and the mobility parameter of the inclusions
is Mincl = 10−4 mm4/(Ns).

5.4.1.4 Influence of the size of the RVE on the macroscopic moduli

Next, we study the effect of the size of the RVE on the resulting macroscopic moduli. The
influence of the size of the RVE for Mmat = 10−1 mm4/(Ns) and Mincl = 10−4 mm4/(Ns)
on the effective response is shown in Fig. 5.10.

We observe that as the size of the RVE increases the macroscopic chemical parameter
∂2s sπ as well as the macroscopic mobility parameter 1/(∂2

H1H1

π) (see (5.35)), increase

monotonically although the microscopic material parameters are not changed. However,
for lmicro → 0, the macroscopic moduli saturate. As becomes visible in Fig. 5.10a, the
macroscopic chemical parameter approaches the average value of the microscopic chemical
parameters, i.e., 〈∂2ssψ〉 := 1

B0|
∫
B0
∂2ssψ dV = 10 N/mm2. Analogously, in Fig. 5.10b, the

macroscopic mobility parameter for lmicro → 0 is bounded by the classical Voigt and Reuss
bounds (Zohdi and Wriggers [43])

(
1

|B0|

∫

B0

∂2
H1H1

φ̂ dV

)−1

︸ ︷︷ ︸
Reuss bound

≤ 1

(∂2
H1H1

π)
≤ 1

|B0|

∫

B0

(∂2
H1H1

φ̂)−1 dV

︸ ︷︷ ︸
Voigt bound

. (5.42)

To further study the influence of the size of the RVE depending on the mobility
parameter of the microstructure, we provide three-dimensional plots for the different
mobility parameters of the matrix Mmat = {0.001, 0.1, 1.0} mm4/(Ns) in Fig. 5.11.
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Figure 5.9: Evolution of the effective chemical potential µ versus loading time t for different
microstructures and mobility parameters of the individual phases. RVEnn denote equal-sized
RVEs with lateral length of n mm made up of n × n unit cells. nRVE11 denotes scaled
RVEs made up of one unit cell having a lateral length of n mm. In the plots, the mobility
parameter of the matrix and the inclusion is given by (units in mm4/(Ns)) Mmat = 10−1

and Mincl = 10−4 (a and d), Mmat = 10−1 and Mincl = 10−2 (b and e) and Mmat = 5.0
and Mincl = 10−4 (c and f). We observe that the transient response of the individual
RVEs is sensitive with respect to changes of material parameters, but converges to a unique
stationary solution.

We plot the macroscopic chemical parameter and the macroscopic mobility parameter
against RVE size (lmicro ∈ [0.002, 2.0] m) and mobility parameter of inclusions (Mincl ∈
[0.001, 10] mm4/(Ns)) in Fig. 5.11a–c and d–f, respectively.

In Fig. 5.11a–c, we observe that the macroscopic chemical parameter is highly de-
pendent on the RVE size lmicro as well as the mobility parameter of the matrix material
Mmat. As Mmat increases the macroscopic chemical parameter decreases. However, the
influence of the mobility parameter of the inclusions is lower than the one of the matrix
material. In Fig. 5.11c, we see that as Mincl → 0 the effective chemical parameter in-
creases in the given range. In all instances of Mmat, Mincl and lmicro, the macroscopic
chemical parameter approaches 10 N/mm2 when the RVE size approaches zero.

In Fig. 5.11d–f, we observe that the macroscopic mobility parameter is highly depen-
dent on the size of the RVE and the mobility parameter of the matrix. We also see that
for lower values of matrix mobility parameter, the influence of the mobility parameter
of the inclusions becomes more pronounced. Additionally, the RVE size becomes more
relevant for increasing magnitudes of Mmat.
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Figure 5.10: Selected macroscopic moduli depending on the size lmicro of square-shaped
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∫
B ∂ssψ̂ dV .

(b) Furthermore, for vanishing size of the RVE, the macroscopic mobility parameter ∂2
HH

π

lies firmly within the Voigt and Reuss bound according to (5.42).

Finally, in Fig. 5.11g–i we illustrate regions of macroscopic mobility parameter that are
bound from above by the classical Voigt bound (5.42). It is evident that low magnitudes
of matrix mobility parameter lead to larger regions bounded by the Voigt bound. The
size of the RVE has a converse influence on this region.

5.4.2 Coupled diffusion-deformation processes in periodic hydrogels

We now present a numerical example that demonstrates the coupled chemo-mechanical
response of a two-phase periodic hydrogel microstructure. To be specific, we analyze
a pattern transformation due to diffusion-induced swelling phenomena (we refer to Zhu
et al. [42] for experimental evidence). In order to model such phenomenon, we need to
consider appropriate constitutive equations that take into account the coupled response
of hydrogels. The subsequent sections are thus first devoted to the discussion of the
used microscopic constitutive functions. Thereafter we analyze the behavior of a peri-
odic hydrogel in consideration of typical geometrical and physical properties under given
macroscopic loading conditions.

5.4.2.1 Microscopic constitutive functions

We assume that the mechanical contribution of the energy-storage function in (5.9) can
be described by a neo-Hookean function. The chemical energy function is considered to
be of the Flory–Rehner-type. These functions are given as

ψ̂mech(F ) =
γ

2
(F : F − 3− 2 lnJ) and ψ̂chem(s) = α[s ln(

s

1 + s
) +

χs

1 + s
] , (5.43)

where α is a mixing modulus and χ is a dimensionless Flory–Huggins interaction parame-
ter. The coupling of the mechanical and the chemical response of the material is modeled
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Figure 5.11: Macroscopic incremental moduli depending on mobility parameters and
size of the RVE. (a)–(c) Macroscopic chemical parameter and (d)–(f) selected macro-
scopic mobility parameter depending on the mobility parameter of the matrix Mmat =
{0.0001, 0.1, 1.0} mm4/(Ns) and the inclusion Mincl ∈ [0.001, 10.0] mm4/(Ns) as well as
the size of the RVE lmicro ∈ [0.002, 2.0] N/mm2. (h)–(i) Red areas indicate regions of the
macroscopic mobility parameter that are bounded from above by the Voigt bound.

with the function

ψ̂coup(J, s) =
ǫ

2
(J − 1− s)2 , (5.44)

where ǫ is a penalty parameter enforcing the volumetric constraint J = 1 + s, see Böger
et al. [4]. The dissipation-potential function is a convex function of the solvent flux

φ̂(H ;F n, sn) =
1

2Msn
Cn : (H ⊗H) , (5.45)
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Table 5.6: Material parameters of the two-phase periodic hydrogel composites.

No. Parameter Name, unit Matrix Inclusion

1. γ Shear Modulus, N/mm2 0.1 10−4

2. α Mixing modulus, N/mm2 24.2 24.2

3. χ Mixing parameter, – 0.1 0.1

4. M Mobility parameter, mm4/(Ns) 10−4 103

5. ǫ Penalty parameter, N/mm2 10 10−3

6. J0 Pre-swollen Jacobian, – 1.01 1.01

where C is the right Cauchy–Green tensor and M is a mobility parameter (Böger et al.
[4]).

We note that the swelling-volume concentration s ≥ 0 is a non-negative quantity and
s = 0 corresponds to a dry hydrogel polymer network. However, due to the present
singularity of (5.43)2 at the dry state we employ a stress-free pre-swollen state as the
reference configuration for the Flory–Rehner energy function. We refer to Hong et al.
[20, 19], Böger et al. [4] for detailed discussions. Consequently, we write the final forms
of the energy-storage function

ψ̂ =
γ

2J0
[J

2/3
0 F : F − 3− 2 ln(JJ0)] +

α

J0
[s ln(

s

1 + s
) +

χs

1 + s
] +

ǫ

2J0
(JJ0 − 1− s)2 ,

(5.46)

and the dissipation-potential function

φ̂ =
1

2J
1/3
0 Msn

Cn : (H ⊗H) , (5.47)

where J0 is a Jacobian that characterizes the volume change due to uniform pre-swelling.
The initial solvent-volume concentration is determined from the assumption of a stress-
free reference configuration as

s0 =
γ

ǫ

(
J
−1/3
0 − 1

J0

)
+ J0 − 1 . (5.48)

The macroscopic solvent concentration s0 at the pre-swollen state is defined as the average
of the microscopic solvent-volume concentration s0.

5.4.2.2 Description of the problem

To analyze the effective chemo-mechanical behavior of a hydrogel we consider a two-phase
square-shaped RVE with size lmicro = 2 mm build out of four periodic unit cells (the unit
cell is depicted in Fig. 5.5). The volume fraction of the inclusions is π/16. The inclusions
are softer than the matrix and have a higher mobility parameter. The material parameters
are listed in Table 5.6.

The RVE is loaded with the macroscopic fields

F = 1 , H = 0 m/s and DivH = −10−3 s−1 . (5.49)
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Figure 5.12: Pattern transformation due to macroscopically driven swelling of a periodic
RVE. Due to swelling of the matrix, the microscopic inclusions initially shrink homoge-
neously. Then, at a critical loading point, the periodic RVE undergoes a pattern transfor-
mation such that the initially circular inclusions deform to non-circular shapes. The contour
shows the P11 component of the first Piola-Kirchhoff stress tensor P at three different time
steps for an RVE build out of four unit cells.

in consideration of periodic boundary conditions for the fluctuations of the deformation
map ϕ̃ and homogeneous Dirichlet boundary conditions for the fluctuations of the outward
normal flux H̃ · N . The computations are performed with a time incrementation of
τ = 0.1 s. To ensure that the problem is well-defined, we fix the fluctuations of the
deformation map at the corner nodes of the RVE.

5.4.2.3 Swelling-induced pattern transformation of a periodic hydrogel

As a numerical example, we analyze a swelling-induced pattern transformation of a two-
phase periodic hydrogel. The periodic RVE is discretized by using 16, 000 Q2RT0 finite
elements. In Fig. 5.12, we illustrate contour plots of the P11-component of the first Piola–
Kirchhoff stress at three different time instances.

We observe that initially the soft inclusions having a volume fraction of π/16 shrink
uniformly until a critical loading point is reached. At critical loading, the RVE undergoes
a pattern transformation in the form of a buckling mode. A similar behavior has been
observed in experiments by Zhu et al. [42]. When the microstructure buckles the shape of
the inclusions becomes non-circular, a state which is typically referred to as the diamond-
plate pattern [42]. Such an instability mode has also been observed by Bertoldi et al.
[2] for periodic elastic structures with voids or soft inclusions under purely compressive
loading. To trigger the buckling mode shown in Fig. 5.12, we have slightly perturbed the
finite-element mesh in the given directions.
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5.5 Summary

We provided a computational homogenization framework for diffusion-deformation pro-
cesses within a variationally consistent minimization-based setting that takes into ac-
count the deformation map and solvent-volume flux as independent field variables. We
have discussed the theoretical aspects as well as the finite-element implementation of the
formulation. The latter was realized by means of a conforming Raviart–Thomas-type
discretization. By doing so, we were able to compute the macroscopic dual fields and
incremental moduli in the numerical setting. Consistent with previous works from the
literature, we found that the formulation yields a size-dependent macroscopic response.
We confirmed this effect in a number of numerical examples by consideration of differ-
ent RVEs with different mobility parameters and sizes. We further confirmed that the
macroscopic mobility properties are bounded by the classical Reuss and Voigt bounds
when the RVE size approaches zero. We also presented a numerical example showing a
swelling-induced buckling mode of a soft periodic hydrogel.
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[39] Voigt, W., [1887]. Über die Beziehung zwischen den beiden Elastizitätskonstanten
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Abstract

We investigate pattern transformations of periodic hydrogel systems that are triggered by
swelling-induced structural instabilities. The types of microstructures considered in the present
work include single-phase and two-phase voided hydrogel structures as well as reinforced hy-
drogel thin films. While the observed transformations of the single-phase structures show good
agreement with experimental findings, the two-phase materials provide novel patterns associ-
ated with wrinkling of internal surfaces. Furthermore, an extensive parametric study on the
reinforced hydrogel thin films reveals new opportunities for the design of complex out-of-plane
surface modes caused by swelling-induced instabilities. Next to the mentioned buckling-type in-
stabilities, we encountered the development of micro-creases at the internal surfaces of periodic
media.

Keywords: periodic hydrogel structures, pattern transformations, buckling, Bloch-Floquet
analysis, swelling-induced instabilities, strong ellipticity

6.1 Introduction

Hydrogels are polymeric, soft and biocompatible materials that undergo large deforma-
tions under swelling [32]. At swollen state, their mechanical response depends on both
the properties of the polymer and the solvent phase. While the elastic stiffness correlates
with the density of cross-links of the polymer network, viscoelasticity is driven by the
viscosity of the solvent [1]. Depending on how the polymer network is held together,
hydrogels can be categorized as physical (reversible) or chemical (permanent), see [67]
and [32] for specific examples related to each category. In the former group, the network
is interconnected by polymer-chain entanglements as well as possible additional forces
resulting from ionic or hydrophobic interactions and hydrogen bonding [81]. The latter
group of hydrogels is based on covalently cross-linked networks. Both physical and chem-
ical hydrogels can be inhomogeneous due to clustered regions of cross-links and swelling,
as well as the existence of defects in the polymer network. Furthermore, hydrogels can be
classified as conventional or (multi-)stimuli responsive [32]. While both are hydrophilic
and undergo swelling in a solvent, (multi-)stimuli responsive hydrogels may also respond
to changes in pH, temperature or electric field [31]. In the present work, we will focus
on conventional hydrogels and describe their chemo-mechanical response related to the
diffusion of a solvent through their polymer network.
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6.1.1 Engineering and biomedical applications of hydrogels

Since hydrogels have favorable properties and show tunable, versatile response, they have
a wide range of applications, such as fertilizer encapsulaters in agriculture [68], soft ac-
tuators [40] in engineering as well as artificial muscles [45], tissue-engineered auricles [3],
contact lenses and wound dressings [8] in biomedicine, see also [67, 4, 32] and the ref-
erences therein. By virtue of intricate fabrication techniques, further applications are
being realized not only at macroscopic scale, but also at micro- and nanoscopic scales
[53, 69]. Here, we mention in particular the fabrication by means of photolithography,
which has attracted increased attention for the manufacturing of patterned and composite
hydrogels exhibiting controllable deformations [53, 51]. We refer to [76, 52] for the use of
photolithography to fabricate composite periodic hydrogel structures composed of high-
swelling and non-swelling regions. By means of the latter, the authors were able to induce
out-of-plane buckling in water yielding various periodic buckling patterns. Consequently,
by designing associated hydrogel microstructures and by tuning material parameters, a
rich set of deformation modes can be activated which increases their potential application
as soft devices exploiting chemo-mechanical interactions.

Besides pattern transforming instabilities in periodic systems, surface wrinkling and
creasing are observed in hydrogel structures. These instabilities can be exploited to further
advance engineering and biomedical applications. In particular, wrinkling of hydrogels can
be utilized for controlled formation of microgears [79], generation of multicellular spheroids
[84], controlled cell spreading [41] among many other possibilities, see also [49, 25] and the
detailed review [14] on instabilities in gels. We further refer to the recent experimental
realization of nano-wrinkled architectures by means of laser direct assembly [19].

6.1.2 Continuum-mechanical models for hydrogels

Not least because of the above mentioned favorable properties and applications, hydrogels
have gained increased attention in theoretical and computational research. Here, one
main goal is to develop versatile and reliable models to simulate their response. Related
models can give further insights into underlying features, provide access to the design
of pertinent microstructures for specific applications and allow the investigation of the
influence of various parameters on the respective behavior. In particular continuum-
mechanical models are established and widely used to capture the response of hydrogels
at macroscopic as well as microscopic scales. These models take into account chemo-
mechanical interactions within the polymer network of a hydrogel, as well as between the
polymer network and the diffusing solvent. We refer to [83, 35] for continuum-mechanical
models of gels based on Flory–Huggins theory [20, 37], see also the Flory–Rehner type
models [21, 22]. Finite-element implementations of the models [83, 35] have been applied
to the simulation of transient diffusion processes in [80] and drying-induced instabilities
in [34]. We further refer to the continuum approaches addressed in [10, 11, 7].

Note that the finite-element formulation of the above mentioned models has been based
on the chemical potential as a primary unknown. In combination with the mechanical
deformation map, this corresponds to a saddle-point formulation. Because of the a priori
indefiniteness of the underlying system of equations, related implementations could result
in numerical challenges associated with inf-sup instabilities [73]. Such challenges can be
overcome by employing a minimization-based variational formulation as proposed by [6]
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for hydrogels; see [56] for a basis rooted in poromechanics.

A further similarity of the above mentioned approaches is the use of Biot’s theory [5, 12]
relying on a Flory–Rehner-type energy function and Fick’s law of diffusion. Alternative
continuum-mechanical models have been established on the basis of the so-called Theory
of Porous Media [16, 17, 18]. We further refer to recent multiscale modeling approaches
to describe the diffusion process in heterogeneous microstructures [50, 44, 64, 63, 43].

6.1.3 Instabilities of hydrogels and their prediction

Continuum-mechanical models of hydrogels have further been exploited to investigate
complex instability phenomena such as surface wrinkling, creasing and pattern transfor-
mations as a result of deformation-diffusion processes [14] (see Fig. 6.1 for an illustration).
Experimental investigations of surface instabilities have been documented, for example,
in [71, 75, 27]. In [27], wrinkling and creasing-type instabilities have been studied in
pHEMA gels29, where it has been shown that the resulting surface morphology strongly
depends on cross-linker concentration and solvent-polymer interaction. In particular, the
authors demonstrated that while a specific hydrogel layer develops wrinkling in water,
the same layer shows a transition from wrinkling to creasing when exposed to alcohol and
alcohol-water mixture. In [25], surface wrinkling was exploited to control stem-cell mor-
phology and differentiation. Further studies on wrinkling and creasing of hydrogel bilayers
have been performed analytically in [47, 46, 78, 39] and computationally in [15, 38, 70].
Although analytical and semi-analytical formulations can be exploited for the efficient
instability analysis of hydrogels in the transient setting [39], they can have limitations
for the analysis of structures with complex geometries. In the latter case, computational
models can be used.

29The acronym pHEMA stands for poly(2-hydroxyethyl methacrylate) [27].
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Figure 6.1: Examples of swelling-induced instabilities in constrained hydrogel structures.
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In addition to surface instabilities, pattern-transforming instabilities in periodic hy-
drogel structures have been investigated experimentally in [82, 85, 77]. In [82], the authors
have shown that when PDMS gels30 with periodically embedded circular pores of 1 µm
diameter are swollen in toluene, an organic solvent, elastic buckling of circular pores into
elliptic shapes is observed. In the buckled state, the major axes of the ellipses are mutu-
ally orthogonal to one another developing a so-called diamond-plate pattern (see Fig. 6.1).
The authors have utilized this instability for the one-step assembly of patterned func-
tional surfaces using superparamagnetic nanoparticles. In [85], similar buckling patterns
are exploited to manipulate the optical properties of pHEMA-based periodic hydrogel
membranes. In this case, the authors observed diamond-plate patterns during drying of
the membrane below a critical temperature after immersing it in deionized water. Fur-
ther experimental studies on periodic hydrogel films are documented in [76, 52], where
microstructures with high-swelling and non-swelling regions developed out-of-plane buck-
ling patterns. It can be shown that the observed patterns depend significantly on the
morphological parameters of the microstructure.

Similar to the mentioned experimental studies, [62, 61] deal with the 2D numerical
investigation of the effect of prestrain and imperfections on the instability of periodically
perforated hydrogels under plane-strain conditions. Their simulations are performed on a
larger domain of a periodic structure contained from 2×2 and 10×10 unit-cell representa-
tive volume elements. In line with experiments, they have found that the diamond-plate
patterns are a dominant instability mode, which are obtained considering random imper-
fections of the voids without eigenvalue analysis. Following the theoretical and numerical
modeling approaches of these works supplemented further with eigenvalue buckling anal-
ysis in Abaqus, in [59, 48] 3D pattern transformations on a gel film bonded to a soft
substrate are investigated. The authors have studied sequential bifurcations on bifur-
cated paths considering that the first bifurcation is associated with a hexagonal dimple
mode, which led to complex patterns such as herringbone and labyrinth and gave fur-
ther insight into the nature of the formation of these patterns. We note that in these
contributions, the chemical potential is assumed spatially constant within the hydrogel
domain, so that transient effects (such as time-dependent diffusion) was not considered.
Furthermore, the instability analyses are usually considered on larger domains, which can
be reduced to unit-cell computations based on Bloch-Floquet representation theorem as
discussed in this work.

All mentioned experimental and numerical studies highlight the wide-ranging oppor-
tunities to tune the response of periodic systems by exploiting instabilities and hence to
obtain materials with enhanced functionalities that could be considered, for example, in
the development of soft and smart devices.

6.1.4 Novel features and objectives of the present contribution

Motivated by the above mentioned works, we study numerically structural as well as ma-
terial instabilities in periodic hydrogel systems. All considered numerical setups are based
on corresponding experimental investigations and the prescription of experimentally mo-
tivated boundary conditions. In particular, we study instabilities of perforated composite
hydrogel microstructures in two dimensions (cf. [82, 85, 77]) as well as in composite hy-

30The acronym PDMS stands for poly(dimethyl siloxane) [82].
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drogel thin films in three spatial dimensions (cf. [76, 52]). Here, we do not only observe
short-wavelength structural instabilities, which alter the periodicity of the microstructure,
but also long-wavelength structural instabilities considering a transient diffusion process.

To model the transient diffusion process in hydrogels, we employ a rate-type variational
minimization formulation following [56, 6], see also [64] for an embedding into a multiscale
framework. For spatial discretization in two dimensions, we exploit Raviart–Thomas-type
finite elements coupled with an implicit Euler scheme for time discretization. In three
spatial dimensions, we discretize the domain with (non-conforming) hexahedral finite
elements. Within both space-time discrete formulations, we implement Bloch–Floquet
wave analysis to determine pattern-transforming instabilities together with the altered
periodicity of the microstructure on a unit-cell based computations without considering
any imperfections apriori. Furthermore, we derive a condition for the loss of strong
ellipticity based on effective moduli of perforated microstructures. The latter is based on
an extension of the surface-averaging approach of [55] to the coupled problem of transient
chemo-mechanics.

Our studies reveal various experimentally confirmed as well as novel buckling patterns
of periodic hydrogel systems depending on their morphology and associated material prop-
erties. For example, it will be shown that micro-coated hydrogel microstructures develop
complex combinations of the well-known diamond-plate pattern coupled with intricate
micro-wrinkling along internal surfaces. To our best knowledge, such pattern transforma-
tions have not been recorded yet and could serve for additional applications of periodic
hydrogels. Furthermore, our numerical studies in three spatial dimensions indicate new
opportunities for the design of complex instability-induced pattern transformations driven
by the morphology of the underlying microstructure.

6.1.5 Outline

The present work is structured as follows. As a theoretical basis for the computational
analysis of hydrogels, we discuss a variational formulation and its numerical implementa-
tion in Section 6.2. Based on that, we address fundamental aspects of structural and ma-
terial stability analysis as well as the associated numerical implementation in Section 6.3.
The developed framework will then be applied to the computational investigation of insta-
bilities of two- and three-dimensional hydrogel microstructures as well as corresponding
parametric studies in Section 6.4. Here, we also document a set of newly observed pat-
tern transformations. We close with a discussion of the main contributions and findings
in Section 6.5.

6.2 Variational formulation of deformation-diffusion processes

In this section, we discuss the continuum modeling and computational implementation of
the coupled chemo-mechanical problem. Opposed to the saddle-point formulations docu-
mented in [83, 35, 10, 11, 7], we adopt a variational minimization formulation according
to [56, 6]. Such a formulation has proven convenient for the investigation of instabilities
[70]. In the underlying variational principle, the deformation map and the solvent-volume
flux are chosen as the primary unknowns [56, 6]. The main ingredients of this formulation
are an energy-storage functional, a dissipation-potential functional and an external-power
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functional, where the latter arises due to applied traction and chemical-potential bound-
ary conditions. For the latter, we propose additional boundary conditions in terms of
the jumps of primary fields, which proves useful for the investigation of instabilities in
periodic hydrogel structures.

6.2.1 Primary state variables and the second law of thermodynamics

We choose the deformation map ϕ and the solvent-volume flux H as the primary state
variables of the considered minimization principle. If we denote by B0 and Bt the reference
and the current configuration of the body, respectively, we can describe the mapping of
these fields as

ϕ :

{
B0 × T → Bt ⊂ R3

(X, t) 7→ ϕ(X, t)
and H :

{
B0 × T → R3

(X, t) 7→ H(X, t)
, (6.1)

where the deformation map characterizes the deformed position x = ϕ(X, t) of a material
point X ∈ B0 at a given time t ∈ T . The solvent-volume flux is a relative Lagrangian
field characterizing local transport of the solvent volume relative to the motion of the
polymer31.

An additional state variable associated with the solvent-volume flux is given by the
solvent-volume content s : B0 × T → R+. For an arbitrary subdomain P0 ⊆ B0, the
solvent-volume content is determined from the balance of solvent volume [24]

d

dt

∫

P0

s dV = −
∫

∂P0

H ·N dA ⇒ ṡ = −DivH in P0 . (6.2)

Note that the flux field is defined in the Lagrangian configuration, so that no convective
terms related to the spatial change of the solvent-volume content arise.

Based on the second law of thermodynamics, we can write the following inequality for
the evolution of the stored-energy density of an arbitrary subdomain P0 ⊆ B0

d

dt

∫

P0

ψ dV ≤
∫

∂P0

T · ϕ̇ dA−
∫

∂P0

µh dA

︸ ︷︷ ︸
Pext(ϕ̇,H)

, (6.3)

where we have introduced the traction vector T acting on the surface of the deformed
subdomain, defined per unit undeformed area ∂P0, as well as the surface flux h = H ·N ;
µ is the chemical potential of the solvent and characterizes the supplied energy to the
system as a result of the influx of solvent volume. We refer to [13] for an analogous
interpretation in poromechanics. Localizing the above inequality and distinguishing local
and diffusive parts of the dissipation, we obtain

Dloc := P : Ḟ + µṡ− ψ̇ ≥ 0 and Ddif := H ·M ≥ 0 , (6.4)

where F := Gradϕ is the deformation gradient with J := detF > 0 and M := −Gradµ
denotes the negative gradient of the chemical potential. Since we assume diffusion to
take place in an otherwise elastic solid, the local part of the dissipation must vanish, i.e.,

31We refer to [13] for a micromechanically motivated description of poromechanics.
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Dloc = 0. Thus, (6.4)1 can be exploited to obtain the constitutive relations for the first
Piola-Kirchhoff stress tensor P = ∂F ψ̂(F , s) and for the chemical potential µ = ∂sψ̂(F , s).
The inequality (6.4)2 characterizes the dissipation due to the diffusion process, where M
is the driving force for the solvent-volume transport. The latter can be determined from
a dissipation-potential density φ̂(H ;F , s) for a given constitutive state, i.e., M = ∂

H

φ̂.

6.2.2 Constitutive functions: The free-energy and the dissipation-potential
density

As we have seen above, the stress tensor, the chemical potential and the negative gradient
of the chemical potential are local constitutive fields. They are determined from a free-
energy density ψ̂(F , s) and a dissipation-potential density φ̂(H ;F , s).

In what follows, we consider an additive free-energy function of the form [36, 33, 6, 10]

ψ̂(F , s) = ψ̂mech(F ) + ψ̂chem(s) + ψ̂(J, s) . (6.5)

While the mechanical contribution of the free-energy function is assumed to be of Neo-
Hookean-type, the chemical contribution is specified as a Flory–Rehner-type function [22].
These contributions together with a coupling term yield the overall free-energy function

ψ̂(F , s) =
γ

2

[
F : F − 3− 2 ln(detF )

]
+ α

[
s ln

( s

1 + s

)
+

χs

1 + s

]
+
η

2

(
detF − 1− s

)2
,

(6.6)

where γ is the shear modulus and α := kT/ν is a mixing modulus with Boltzmann
constant k, absolute temperature T and volume of a solvent molecule ν; χ is the Flory–
Huggins interaction parameter; η is a penalty parameter to constrain detF = 1 + s for
incompressible hydrogels. We refer to Table 6.7 for further information on the given
parameters.

The dissipation-potential function is chosen such that (6.4)2 is satisfied a priori. There-
fore, φ̂(H ;F , s) is assumed to be a convex and normalized function of the solvent-volume
flux H according to φ̂(0 ) = 0 and ∂

H

φ̂(0 ) = 0 at the reference configuration. In the
present work, we will consider a dissipation function related to Fickian diffusion given by

φ̂(H ;C, s) =
1

2Ms
C : (H ⊗H) , (6.7)

where M is referred to as a mobility parameter and C = F TF is the right Cauchy-Green
deformation tensor. The dissipation-potential function is formulated in terms of given
values {F , s} and therefore evaluated numerically at the previous time step (·)n within
an incremental variational formulation [56, 6], see Section 6.2.4 for details.

The above introduced constitutive functions are given with respect to a dry reference
configuration. Since (6.6) is singular for the dry state s(t = 0) = 0, a pre-swollen state
is usually considered as the reference configuration [36, 33, 6]. According to that, the
constitutive functions (6.6) and (6.7) defined per unit volume of the pre-swollen reference
configuration and appear as

ψ̂ =
γ

2J0
[J

2/3
0 F : F − 3− 2 ln(JJ0)] +

α

J0
[s ln(

s

1 + s
) +

χs

1 + s
] +

η

2J0
(JJ0 − 1− s)2 (6.8)
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and

φ̂ =
1

2J
1/3
0 Msn

Cn : (H ⊗H) , (6.9)

where the pre-swollen state is characterized by a Jacobian J0. The initial condition for
the solvent-volume content associated with the pre-swollen reference configuration reads

s(t = 0) = s0 =
γ

η

(
J
−1/3
0 − 1

J0

)
+ J0 − 1 . (6.10)

The chemical potential at the pre-swollen reference configuration is determined as [6]

µ0 = − η

J0
(J0 − 1− s0) +

α

J0

[
ln
( s0
1 + s0

)
+

1

1 + s0
+

χ

(1 + s0)2
]
. (6.11)

The latter relation is particularly required when applying chemical-potential boundary
conditions in the minimization formulation, see Section 6.4.

6.2.3 Boundary conditions for periodic hydrogel structures

D0

Bt

H0

∂Bt

X x

ϕ(X, t)

n+n− ϕ−

ϕ+

[[ϕ]]

H H H

microstructure of
periodic hydrogel unit-cell RVE

Figure 6.2: Boundary conditions for a two-dimensional periodic hydrogel microstructure.
The response of periodic materials can be determined by means of unit-cell representative
volume elements (unit-cell RVEs) of their microstructure. In the present approach, the
unit-cell problem is solved in consideration of the jump conditions for the deformation map
[[ϕ]] = FX and the solvent-volume flux [[H ]] ·N = 0 across the external boundary according
to (6.12). As can be seen in the figure, the solvent is assumed to enter the RVE through
the boundary of the voids. In our computations, this is realized by applying the chemical
potential at the void’s boundary according to (6.47).

Since our main aim is to investigate instabilities in periodic hydrogels, we will now
provide a suitable setup for associated boundary conditions. As we will see, these are
partly inspired from homogenization theory such that they allow for the definition of
effective quantities, which could be used in the material stability analysis to be discussed
later.

For illustration, let us consider the two-dimensional representation of a periodic hy-
drogel as depicted in Fig. 6.2. Here we assume that any out-of-plane deformation could
be neglected and therefore typical plane-strain conditions apply. Since the structure is
periodic, any stability analysis could be reduced to the smallest periodic domain, here
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given in terms of a square-shaped matrix with a circular void such that B0 = D0 ∪ H0

with H0 denoting the domain of the void. In the following, we will refer to such a smallest
possible periodic domain as a unit-cell representative volume element (unit-cell RVE).

For the chemo-mechanical loading of the unit-cell RVE we prescribe boundary condi-
tions of the generalized form

[[ϕ]] = FX and [[H ]] ·N = 0 on ∂B0 , (6.12)

where we have introduced an effective or macroscopic deformation gradient F [57, 64].
The dual variable to the effective deformation gradient is the effective first Piola-Kirchhoff
stress tensor P . Both quantities can be determined as the volume averages of their
microscopic counterparts as32

F =
1

|B0|

∫

∂B0

ϕ⊗N dA and P =
1

|B0|

∫

∂B0

(PN )⊗X dA , (6.13)

where |B0| denotes the volume of a unit-cell RVE. Note that according to (6.12)2, we have
defined vanishing jump conditions for the solvent-volume flux such that no effective flux
is applied on the RVE. This setting is motivated by the assumption that the diffusion
process is driven exclusively by suitable chemical-potential boundary conditions acting at
the internal boundary of unit-cell RVEs. Please refer to Section 6.4 for more details.

6.2.4 Rate-type variational formulation of the deformation-diffusion problem

Above, we have introduced the energy-storage function ψ̂(F , s), the dissipation-potential
function φ̂(H) and the external-loading functional Pext(ϕ̇,H). Having these functions at
hand, we define a rate-type potential to characterize the deformation-diffusion response
[56]

Π(ϕ̇,H) :=

∫

B0

π(ϕ̇,H) dV − Pext(ϕ̇,H) with π(ϕ̇,H) :=
d

dt
ψ̂(F , s) + φ̂(H ;F , s) ,

(6.14)

where π(ϕ̇,H) is the internal-power density. As a result, the variational principle for the
considered problem in the continuous setting can be introduced as

{ϕ̇⋆,H⋆} = Arg
{

inf
ϕ̇∈Wϕ̇

inf
H∈W

H

Π(ϕ̇,H)
}
, (6.15)

where Wϕ̇ and W
H

are the admissible spaces for the rate of the deformation map and the
solvent-volume flux

Wϕ̇ := {ϕ̇ ∈ H1(B0)
∣∣ ϕ̇ = ϕ̇D on ∂Bϕ

0 } and

W
H

:= {H ∈ H(Div,B0)
∣∣
H = HD on ∂Bh

0} .
(6.16)

32We note that when we prescribe the effective deformation F via the RVE boundary, the effective
stresses can be determined via (6.13)2. Vice versa, it is also possible to apply effective stresses P on the
RVE. In that case, the effective deformation gradient can be determined via (6.13)1, see [55, 58].
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The Euler-Lagrange equations follow as the necessary conditions of the variational for-
mulation as

Balance of linear momentum: Div[∂F ψ̂] = 0 in B0

Inverse Fickian law: ∇[∂sψ̂] + ∂
H

φ̂ = 0 in B0

Mechanical traction: ∂F ψ̂ ·N − T = 0 on ∂BT
0

Chemical potential: −∂sψ̂ + µ = 0 on ∂Bµ
0

(6.17)

6.2.5 Space-time discretization of the variational formulation

We solve (6.15) using a conforming finite-element formulation. Before considering the
discretization in space, we apply a modified version of the implicit Euler scheme in a time
interval τ := t − tn with t being the current time step with 0 < t ≤ T in a considered
overall simulation time T . Note that for the variables evaluated at the current time step,
we do not use subscripts. Consequently, the time-discrete version of (6.14) reads33 [56]

Πτ (ϕ,H) :=

∫

B0

ψ̂(F , s) + τφ̂(H ;F n, sn) dV − P τ
ext(ϕ,H) , (6.18)

where the solvent-volume content at the current time step is determined by s = sn −
τ Div[H ]. The dissipation-potential function φ̂(H ;F n, sn) is evaluated using the defor-
mation gradient and the solvent-volume content from the previous time step tn in order
to stay consistent with the continuous variational setting [56, 6]. For the explicit form of
φ̂ we refer to (6.9). The time-discrete external-power functional reads

P τ
ext(ϕ,H) =

∫

∂B0

T · ϕ dA−
∫

∂B0

τµh dA . (6.19)

As a result, we obtain the time-discrete variational formulation with an initial condition
for the solvent-volume content as

{ϕ⋆,H⋆} = Arg{ inf
ϕ∈Wϕ

inf
H∈W

H

Πτ (ϕ,H)} with s(t0) = s0 , (6.20)

where Πτ refers to the time-discretized potential functional. The above formulation is
implemented into a conforming finite-element formulation by using a combination of
Lagrange- and Raviart–Thomas-type shape functions [6, 64]. This then results in a min-
imization principle in the space-time discrete form as

d
⋆ = Arg{min

d

Πτh(d)} , (6.21)

where Πτh denotes the space-time discrete potential functional and d contains all degrees
of freedom comprising the node-based displacements and the edge-based normal-projected
solvent-volume fluxes.

33We remark that the variational formulation (6.18) should also contain the energy-storage function as
well as the external-power functional evaluated at the previous time step. However, since these terms are
constant they vanish under variation and are therefore omitted from the equations to arrive at a compact
representation.
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6.3 Stability analysis of periodic hydrogel systems

In this section, we describe methods to investigate the structural and the material sta-
bility of periodic hydrogel systems. For the structural stability analysis, we utilize the
minimization structure of the underlying incremental system of equations [29, 30, 57].
In doing so, we investigate in particular short-wavelength and long-wavelength instabil-
ities. The former are usually associated with a change in periodicity of an underlying
microstructure, which could arise, for example, due to wrinkling of internal surfaces in
perforated systems. We will detect these types of instabilities via Bloch–Floquet analysis.
Long-wavelength instabilities are related to the loss of strong ellipticity of a correspond-
ing homogenized continuum. These kinds of instabilities can be detected by checking the
positive definiteness of an underlying acoustic tensor. In what follows, we will also present
a corresponding numerical method for the analysis of related instabilities.

6.3.1 Minimization-based structural stability analysis

Within a minimization-based approach, hydrogel systems are considered to be structurally
stable at an equilibrium state d

⋆, if all variations of the incremental potential from this
equilibrium state under infinitesimally small perturbations are positive, that is [57]

∆Πτh(d⋆, δd) := Πτh(d⋆ + ǫδd)− Πτh(d⋆) > 0 , (6.22)

where ǫ is a small parameter. Considering a Taylor approximation of (6.22) and truncating
higher-order terms, we obtain

∆Πτh(d⋆, δd) ≈ d

dǫ

∣∣∣∣
ǫ=0

Πτh(d⋆ + ǫδd) +
1

2

d2

dǫ2

∣∣∣∣
ǫ=0

Πτh(d⋆ + ǫδd) > 0 . (6.23)

Since the first variation vanishes at equilibrium, we arrive at

∆Πτh(d⋆, δd) ≈ 1

2

d2

dǫ2

∣∣∣∣
ǫ=0

Πτh(d⋆ + ǫδd) > 0 . (6.24)

Consequently, structural stability is associated with the second variation of the incremen-
tal potential in the sense that

∆Πτh(d⋆, δd) =
1

2
δdT

[
Πτ (d),dd

]
d
⋆δd = ΛδdT δd > 0 . (6.25)

The latter results in an eigenvalue problem in terms of the tangent of the underlying
system of equations according to

Λ = min
n∈N3

min
d

{
∆Πτh(d, δd)

/
‖δd‖2

}{
> 0 for stable state d

⋆

≤ 0 for unstable state d
⋆ , (6.26)

where n ∈ N3 denotes the number of unit-cells in RVEs with respect to three spatial
directions [60]. The minimization over n allows for the detection of instabilities that
would not be describable by means of a unit-cell RVE. However, the above approach is
computationally inefficient since it requires the consideration of various realizations of
RVEs that grow in size with growing n. Therefore, we use Bloch–Floquet analysis to
detect such critical structural instabilities on a unit-cell RVE [23].
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Based on Bloch–Floquet analysis, the variations δd of the degrees of freedom can be
represented in terms of unit-cell variations δdB0

as

δd(X) = δdB0
(X) exp[ik ·X] with δd+

B0
= δd−

B0
on ∂B0 = ∂B+

0 ∪ ∂B−
0 , (6.27)

where k is referred to as Bloch vector, which characterizes the wavelength of the variations.
Consequently, this expression leads to the boundary conditions

δd(X+) = δd(X−) exp[ik · (X+ −X−)] (6.28)

for a unit-cell RVE. Here, X+ and X− denote the reference placement of periodic nodes,
which are located at opposite boundaries of the unit-cell RVE, see Fig. 6.2. It follows a
stability criterion related to the tangent of a unit-cell RVE according to34

Λ = min
ki∈[0,π]

min
d

{
∆Πτh(d, δd)

/
‖δd‖2

}{
> 0 for stable state d

⋆

≤ 0 for unstable state d
⋆ . (6.29)

Depending on the values of the Bloch vector components ki ∈ R3, we distinguish three
types of instabilities: (i) unit-cell periodic instabilities for ki = 0; (ii) short-wavelength
instabilities for finite values of ki usually spanning RVEs made of multiple unit cells,
where the explicit number of cells can be computed as ni = 2π/ki; (iii) long-wavelength
instabilities for k → 0 . We note that the latter could also be determined from the effective
mechanical moduli of periodic hydrogels, see below.

6.3.2 Loss of strong ellipticity: Material stability analysis at macroscale

Having defined macroscopic mechanical boundary conditions in terms of F , we assume
that at macroscale we need to fulfill the balance equation [64]

Div[P (F ,Div[H ])] = ρ0ϕ̈ . (6.30)

In order to check if the latter equation satisfies the strong-ellipticity condition, we super-
impose a plane wave of the form δϕ = nf(X ·N − ct), such that for infinitesimal δϕ it
holds that [30, 57]

Div[δP ] = Div[A : δF ] = ρ0δϕ̈ with δF = Gradδϕ , (6.31)

where A are the effective mechanical moduli of the microstructure. Note that since we
do not consider any macroscopic loading in terms of Div[H ], we do not have to take into
account a corresponding variation in the above equation. After some modifications, (6.31)
appears as

n ·Q · n = ρ0c
2 , (6.32)

where Qab = (A) A B
a b NANB is the mechanical acoustic tensor defined in terms of the

effective mechanical moduli. It follows the criterion for the material stability at the
macroscopic scale

Λ = min
‖N‖=1

{
n ·Q · n

}{
> 0 for materially stable state
≤ 0 for materially unstable state

. (6.33)

34For details related to the numerical implementation we refer to [74, 2, 66, 65].
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6.3.3 Computation of the effective mechanical moduli of voided hydrogel
structures

We now describe the computation of the effective mechanical moduli of voided hydrogel
structures following the approach proposed by Miehe and Koch [55]. This approach allows
to determine effective moduli based on surface integrals along the external boundary of
RVEs. Starting point is the definition of the effective mechanical stresses (6.13)2 and the
effective chemical potential [64]

P =
1

|B0|

∫

∂B0

(PN)⊗X dA and µ =
1

3|B0|

∫

∂B0

(µN) ·X dA , (6.34)

where ∂B0 denotes the external boundary of an RVE. In the discrete setting, the above
equations can be given as follows (see [55] for the purely mechanical case)

P =
1

|B0|

P∑

I=1

λ
f
I ⊗

[[
Xb

I

]]
and µ =

1

3|B0|

P∑

I=1

λµIN ·
[[
Xb

I

]]
, (6.35)

where λf
I , λ

µ
I and Xb

I denote the nodal forces, the chemical potential and the coordinates
associated with the node I on the external boundary of an RVE, respectively. The number
P = M/2 is defined from the total number of boundary nodes M . Introducing an array
of nodal forces and chemical potentials λ := [λf

1 , λ
µ
1 , ...,λ

f
P , λ

µ
P ]

T as well as an array
containing the effective stresses (in vector notation) and the effective chemical potential

P := [P , µ]T , we can write (6.35) in a compact form35

P =
1

|B0|

P∑

I=1

QIλI =
1

|B0|
Qλ , (6.36)

where Q := [Q1, ...,QP ] is the array of projection tensors with

QT
I :=




[[
(Xb

I)1
]]

0
[[
(Xb

I)2
]]

0 0

0
[[
(Xb

I)2
]]

0
[[
(Xb

I)1
]]

0

0 0 0 0
1

3

[[
Xb

I

]]
·N


 (6.37)

in two dimensions.

In the following, we are only interested in the effective mechanical moduli. Since these
relate the incremental effective stresses to the incremental effective deformation gradient
according to ∆P = A : ∆F , we first determine the increment of the first Piola-Kirchhoff
stress tensor in vector notation from (6.36) as

∆P = L∆P =
1

|B0|
LQ∆λ , (6.38)

where L is a projection tensor with entries 0 or 1.

In order to obtain the final expression for the effective-moduli tensor, we need to have
a relation between the increment of the generalized nodal forces ∆λ and the effective

35
P := [P 11, P 22, P 12, P 21, µ]

T is considered for the corresponding array in two dimensions.
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deformation gradient F . We obtain such a relationship from the following variational
principle in the space-time discrete setting

Π̃τh(d,λ) = Πτh(d) + λ · (
[[
d
b
]]
−QT

F) , (6.39)

where F := [F ,DivH ]T is an array given by F = [F 11, F 22, F 12, F 21,DivH ]T in two
dimensions.

The second term on the right-hand side of (6.39) considers the Lagrange multiplier
method to enforce the jump boundary conditions for the deformation map and the fluid-
volume flux vector of the form

[[ϕ]] = F [[X]] and [[H ]] ·N =
1

3
DivH [[X]] ·N , (6.40)

refer to (6.12) as well as to [64] for more details. Furthermore, Xb := [Xb
1, ...,X

b
P ]

T

in (6.39) contains the coordinates of the nodes at the external boundary of an RVE.
The Lagrange multiplier λ can be identified as the array of nodal forces and chemical
potentials. Its interpretation follows from the Euler-Lagrange equations of the variational
principle. Furthermore, db := [db

1, .., d
b
P ]

T denotes the degrees of freedom at the boundary
of the unit-cell RVE. In (6.39), we can express the jump of the degrees of freedom in terms
of the latter as

[[
d
b
]]
:=

P

A
I=1

[
(db

ϕ)
+
I − (db

ϕ)
−
I

(dbh)
+
I + (dbh)

−
I

]
= Pdb , (6.41)

where P is a projection tensor with entries {−1, 0, 1}. Note that, since we are considering
Raviart–Thomas-type elements, the edge-based solvent-volume flux degrees of freedom
are anti-periodic at the external boundary [64].

The microscopic problem is usually solved under constant macroscopic deformation
gradient for each time step. Therefore, the first variation of (6.39) gives

δΠ̃τh =



δdi

δdb

δλ


 ·




∂
d
iΠτh

∂
d
bΠτh + Pλ

Pdb −QT
F


 =



δdi

δdb

δλ


 ·




R
i

R
b + Pλ

Pdb −QT
F


 = 0 , (6.42)

where di denote the interior degrees of freedom of a unit-cell RVE. Once the above system
of equations is solved at the microscale, the sensitivity of the system with respect to the
macroscopic deformation gradient can be determined from

∆δΠ̃τh =



δdi

δdb

δλ


 ·



K

ii
K

ib
0 0

K
bi

K
bb PT 0

0 P 0 −QT


 ·




∆d
i

∆d
b

∆λ

∆F


 = 0 . (6.43)

First, from the variations with respect to δdi and δdb in (6.43)1 and (6.43)2, we obtain
elimination equations for ∆d

i and ∆d
b as

∆d
i = −(Kii)−1

K
ib∆d

b and ∆d
b = −(K̃bb)−1PT∆λ , (6.44)
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where K̃
bb = K

bb − K
bi(Kii)−1

K
ib. Next, we consider the variation with respect to δλ in

(6.43) and obtain the searched expression of ∆λ given by

∆λ =
[
P(K̃bb)−1PT

]−1QT∆F . (6.45)

Finally, we can compute the effective mechanical moduli as

∆P =
1

|B0|
LQ

[
P(K̃bb)−1PT

]−1QTLT∆F ⇒ A :=
1

|B0|
LQ

[
P(K̃bb)−1PT

]−1QTLT .

(6.46)

6.4 Numerical investigation of instabilities in hydrogel struc-
tures

We now investigate computationally microscopic and macroscopic instabilities in two- and
three-dimensional periodic hydrogels, where all considered boundary value problems are
motivated from experimental studies (e.g., [82, 85, 77]). The two-dimensional studies of
single- and two-phase voided hydrogel microstructures under plane-strain conditions are
summarized in Section 6.4.1. Corresponding investigations of structrual instabilities of
three-dimensional hydrogel thin films are documented in Section 6.4.2. In all cases, we
examine the influence of physical properties and microscopic morphology on the onset
and the type of instabilities.

6.4.1 Two-dimensional hydrogel structures

In this section, we study instabilities in single-phase and two-phase voided hydrogel mi-
crostructures. While the single-phase hydrogels consist of a hydrogel matrix and voids,
the two-phase hydrogels further contain stiff, permeable coatings surrounding the voids
as described in Fig. 6.3. The latter structures are motivated from experimental studies on
constrained plane bilayer films, which reveal a rich set of wrinkling patterns [28, 26, 27];
see also the analytical and numerical studies [47, 46, 9, 78, 15, 70]. Associated wrinkling
phenomena have not only been reported for plane bilayers, but also for bilayer tubes
[42, 70] and could be exploited in various engineering and biomedical applications such
as controlled formation of micro-gears [79], generation of multi-cellular spheroids [84],
controlled cell spreading [41], see also [49, 25]. To the best of our knowledge, swelling-
induced micro-wrinkling at internal surfaces of periodic hydrogels has not been reported
in the literature yet. The sole experimental study coming close to the results reported
here is the one recently documented in [19].

In the following, we first discuss suitable boundary conditions and numerical setups of
boundary value problems to analyze the given hydrogel microstructures. Next, we provide
some numerical studies in order to give further insight into the response of the voided
hydrogel microstructures. Eventually, we perform a set of computational investigations
demonstrating instabilities in two-dimensional hydrogel microstructures.
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Figure 6.3: Unit-cell RVEs of two periodic hydrogel microstructures. We consider (a)
single-phase hydrogels (consisting of hydrogel matrix and voids) and (b) two-phase hydrogels
(consisting of hydrogel matrix, hydrogel coatings, and voids). The coating is realized as a
stiff film that is perfectly bonded to the matrix (highlighted in green). It is further assumed
that the solvent enters the hydrogel through the internal boundary ∂H0, where we prescribe
suitable boundary conditions in terms of the chemical potential. At the external boundary
∂B0, the jump conditions for the deformation as well as for the solvent-volume flux are
applied as described in Section 6.2.3.

6.4.1.1 Boundary conditions in the two-dimensional setting

Since we consider periodic hydrogel microstructures, all computations are reduced to a
periodic unit-cell RVE as discussed in Section 6.2.3. Thus, the jump conditions for the
deformation map and the solvent-volume flux according to (6.12) are considered at the

external boundary of the RVE. In what follows, we set F = 1 to mimic an effectively
constrained hydrogel composite. We further assume that a solvent diffuses into the hy-
drogel solely through the boundary of the voids ∂H0 and thus consider the mechanical
traction and chemical potential on ∂H0 as

P ·N = 0 and µ = λ(t)µ0 on ∂H0 with λ(t) =

{
1− t for t ≤ 1 sec

0 for t > 1 sec
,

(6.47)

where µ0 is the chemical potential of the reference state, see (6.11). As can be seen in
the latter equation, the chemical potential is linearly increased from µ0 to zero within one
second [6, 15].

In the present work, we consider a time step of τ = 4 · 10−3 sec in order to determine
instability points accurately. We note that a suitable time-step size is related to the
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Table 6.7: Material parameters of the considered hydrogel microstructures.

Parameter Name, unit Value Eq.

γ Shear modulus, N/mm2 0.01 (6.8)

α Mixing modulus, N/mm2 20.0 (6.8)

χ Mixing parameter, – 0.1 (6.8)

M Mobility parameter, mm4/(Ns) 10−4 (6.9)

η Penalty parameter, N/mm2 10γ (6.8)

J0 Volumetric pre-swelling, – 1.01 (6.8) & (6.9)

material parameters of the boundary value problem as well as its numerical discretization
[73].

In Fig. 6.3, we depict illustrations of microstructures considered in the first part of our
studies. The microstructures are discretized using Raviart–Thomas-type finite elements
of the type Q2RT0, where the displacement field is interpolated using bi-quadratic La-
grangian shape functions associated with node-based degrees of freedom and the solvent-
volume flux field is interpolated using linear Raviart–Thomas shape functions associated
with edge-based degrees of freedom [6, 64]. Depending on the geometry of the problem,
approximately ≥ 9, 000 finite elements (corresponding to approximately ≥ 30, 000 nodes)
are used for the discretization of a unit-cell RVE. We refer to Appendix A for further
details of the numerical implementation. The used material parameters are summarized
in Table 6.7.

6.4.1.2 Response of voided hydrogel microstructures

To obtain a first insight into the behavior of voided hydrogel microstructures, we analyze
a sequence of RVEs with the void-volume fractions f0 ∈ [10%− 50%] and illustrate their
response over the simulation time in Fig. 6.4. In Fig. 6.4a and b, we observe that the radius
related to a given void-volume fraction f0 changes significantly due to the influx of solvent,
even after loading t ≥ 1 sec. In Fig. 6.4c, we illustrate the solvent volume entering through
the boundary of the voids over time according to hvoid = −

∫
∂H0
H ·N dA with N being

a unit normal vector pointing outward the hydrogel matrix. We observe that the influx of
the solvent volume increases as we decrease the chemical potential at the void boundary
until it finally reaches its maximum at t = 1 sec and µN

void = 0.0N/mm2. In Fig. 6.4d,

we have plotted the effective (averaged) first Piola-Kirchhoff stress P 11 = P 22 normalized
with respect to the matrix shear modulus γ, see (6.13)2. Notably, the normalized effective
stress response is in a similar range for all considered microstructures.

Since the applied chemical potential µN
void at the void boundary ∂H0 is zero after

t = 1 sec, it is not suitable for the description of the behavior beyond t > 1 sec. Therefore,
the instability studies documented in the following sections will be discussed with respect
to time rather than applied chemical potential.

Creasing instabilities. Before we come to the analysis of structural instabilities, we
take a look at two snapshots of the unit-cell RVE with 50% void-volume fraction during its
deformation, see Fig. 6.5. There we observe the development of creases during the swelling
process. When comparing to the results shown in Fig. 6.4, we note that creasing takes
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Figure 6.4: Response of voided hydrogel microstructures versus simulation time. (a)
Radius rA of voids and (b) change in the radius ∆rA of voids measured at the point A as
depicted in Fig. 6.3 with the initial radius rinitial =

√
f0/π; (c) Solvent volume entering

the hydrogel matrix through the void boundary hvoid = −
∫
∂H0
H · N dA; (d) Effective

(averaged) first Piola-Kirchhoff stress P 11 normalized with respect to the shear modulus
of the matrix γ.

place after the microscopic instability point and also after the loss of strong ellipticity.
Nevertheless, the studies documented in Appendix A indicate that the creasing instability
is highly dependent on the finite-element discretization, so that under further refinement
of the mesh creasing occurs even earlier than the loss of strong ellipticity. An in-depth
study of creasing and its numerical implications is however beyond the scope of the present
work.

6.4.1.3 Instabilities in single-phase hydrogels with voids

We now study the onset of instabilities for the voided hydrogel microstructures as de-
scribed in Fig. 6.3a. In particular, we analyze the influence of the void-volume fraction
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t = 1.0 sec t = 1.284 sec

Figure 6.5: Snapshots of the deformed hydrogel microstructure with the void-volume frac-
tion f0 = 50%. The diffusion of solvent volume takes place through the boundary of the void
∂H0, where we prescribe the chemical potential according to (6.47). The contour indicates
the chemical potential, where blue corresponds to the minimum and red to the maximum
value, respectively. We observe that at the time instant t = 1.284 sec, the void boundary
has developed creases.

f0, the mobility parameter M and the chemical parameter α of the matrix. As in the
preceding studies, the remaining material parameters are taken from Table 6.7.

The onset of instabilities for the considered initial boundary value problem is depicted
in Fig. 6.6a–d. In Fig. 6.6a and c, we plot the critical time versus the void-volume fraction
depending on the mobility parameter M and the chemical parameter α, respectively. We
observe that both parameters have a significant impact on the time at which a critical
instability occurs. As expected, instabilities are initiated earlier for larger M (that is,
for faster diffusion through the matrix) and larger α (that is, for an enhanced chemo-
mechanical interaction). In Fig. 6.6b and d, we plot the normalized critical first Piola-

Kirchhoff stress P 11 = P 22 at the instability points for different values of the mobility and
the chemical parameter. We observe that the critical stresses associated with the various
hydrogel microstructures are all in the same range. This indicates that the instability
point is strongly correlated with the effective normalized compressive stress state. We
further observe that the short-wavelength (microscopic) instabilities are primary for the
microstructures with the void-volume fractions f0 ∈ {20% − 50%} and that the long-
wavelength (macroscopic) instabilities are primary for the microstructures with the void-
volume fractions f0 ∈ {10% − 15%}. As a result of the microscopic instabilities, the
hydrogel develops the so-called diamond-plate pattern, resulting in a change of periodicity
of the microstructure as described in [82, 85, 77] and depicted in Fig. 6.8f36.

We note that the macroscopic instabilities were detected by means of Bloch–Floquet
wave analysis with k → 0 and coincide with the loss of strong ellipticity of the effective

36We note that the buckling modes are derived from the critical eigenvectors (see, e.g., [66]) and are
not obtained from a post-buckling analysis.
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Figure 6.6: Onset of instabilities depending on the mobility M and the chemical parame-
ter α. Results are plotted with respect to the critical time t (a and c) and the normalized

effective (averaged) first Piola-Kirchhoff stress P 11/γm (b and d) with γ being the shear
modulus of the matrix. We observe that while the mobility and the chemical parame-
ters have significant influence on the critical time, the normalized critical stresses are all
in the same range. Note that next to short-wavelength (pattern-transforming) instabili-
ties, we observe long-wavelength instabilities for the void-volume fractions f0 = 10% and
f0 = 15%.

mechanical moduli as discussed in Section 6.3.2.

6.4.1.4 Instabilities of two-phase hydrogels with voids

We proceed with analyzing instabilities of two-phase voided hydrogel microstructures as
described in Fig. 6.3b. As can be seen in this figure, we take into account microstructures
composed of hydrogel matrix (m), voids (v) and hydrogel coatings (c) surrounding the
voids.

In the following, we investigate the influence of the thickness of the coating as well
as of the ratios between the shear moduli and the mobility parameters of the hydrogel
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Figure 6.7: Onset of instabilities for the composite hydrogels with void-volume fraction
f0 = 20% for varying shear-modulus ratios γc/γm of the coating (c) and the matrix (m) as
well as coating thickness ω. The results are plotted with respect to (a) the critical time

t and (b) the normalized effective (averaged) first Piola-Kirchhoff stress P 11/γm. Again,
most instabilities induce pattern transformations from one unit-cell RVE to 2×2 unit-cell
RVEs. Furthermore, we observe macroscopic instabilities (k → 0 ).

coating and the hydrogel matrix on the formation of instabilities. Here, we take into
account a fixed void-volume fraction f0 = 20% and boundary conditions as described in
Section 6.4.1. Material parameters for the matrix and the coating are listed in Table 6.7.

In Fig. 6.7, we illustrate the critical time tcrit and the effective first Piola-Kirchhoff
stress P 11 = P 22 versus the coating thickness ω for various values of shear-modulus ratio
γc/γm of the coating and the matrix. In all studies we assume that the mechanical stiffness
of the coating is higher than that of the matrix γm = 0.01N/mm2. In the present example
the mobility parameter of both matrix and coating is set to Mm =Mc = 10−4mm4/(Ns).

From Fig. 6.7a, we observe that the shear-modulus ratio γc/γm has a significant in-
fluence on the critical instability point, such that microscopic instabilities occur much
earlier than in case of the corresponding single-phase voided microstructures. Similarly,
the critical effective stresses strongly depend on the shear-modulus ratio, see Fig. 6.7b.
In that context we observe in particular that for γc/γm = 5.0 and the coating thickness
ω < 0.025, instabilities occur much earlier at much lower critical stresses.

We note that while most of the triggered instabilities show a critical periodicity of
2 × 2 unit cells, the observed microcopic patterns are highly dependent on the thickness
of the coating and the ratio of shear moduli, see Fig. 6.8. In particular, two distinct kinds
of pattern transformations given by (i) micro-wrinkling and (ii) diamond-plate patterns
(mutual deformation of voids into ellipses) are recorded. In the first case, pattern transfor-
mations due to wrinkling of the coating are detected for γc/γm < 30. Here, the number of
micro-wrinkles can be tuned by means of the shear moduli of the matrix and the coating.
When the shear-modulus ratio exceeds the value of γc/γm = 30, diamond-plate patterns
with smooth internal boundaries as in case of the single-phase hydrogel structures are
observed.37.

37We note that while the Bloch–Floquet analysis indicated a long-wavelength instability for the shear-
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Figure 6.8: Buckling modes of two-phase hydrogels depending on the shear modulus ratio of
the coating (c) and the matrix (m). The periodic hydrogels are composed of hydrogel matrix,
hydrogel coatings with thickness ω = 0.02mm, and voids with volume fraction f0 = 20%.
Depending on the shear-modulus ratio of coating and matrix γc/γm, pattern-transforming
instabilities with and without wrinkling of internal surfaces can be observed.

In Fig. 6.9, we further study instabilities for a wide range of shear-modulus ratios and
coating thicknesses ω ∈ {0.02, 0.03, 0.04, 0.05}mm. The graphs describe the critical time

tcrit and the effective first Piola-Kirchhoff stress P 11 depending on the shear-modulus ratio
γc/γm. Similar to the previous cases, we observe that for small values γc/γm < 10, the
critical instability time increases exponentially. As the stiffness of the coating increases,
the corresponding compressive stresses rise and induce earlier buckling. A slightly different
response is observed for the thicker and stiffer coatings due to a stabilizing effect, see the
intersection of corresponding curves in Fig. 6.7a.

In Fig. 6.10, we study the influence of various mobility-parameter ratios Mc/Mm of
the coating and the matrix on the onset and the type of instabilities in consideration of a
shear-modulus ratio of γc/γm = 5.0 with γm = 0.01N/mm2 and a mobility parameter of

modulus ratio γc/γm = 5.0 (see black bullet in Fig. 6.7), the analysis of effective moduli did not show a loss
of strong ellipticity. A further analysis of strong ellipticity beyond the critical point was not possible due
to missing convergence. Refining the time-step size did not help to overcome this issue. We refer to [15],
who observed a competition between short- and long-wavelength instabilities for small shear-modulus
ratios in plane bilayer systems. Their results indicate that for a refined mesh, the long-wavelength
instabilities become the primary ones. Further discussions concerning the competition between short-
and long-wavelength instabilities can be found, for example, in [39].
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Figure 6.9: Onset of instabilities for the composite hydrogels with the void-volume frac-
tion f0 = 20% depending on the shear modulus ratio γc/γm of the coating (c) and the
matrix (m) as well as the coating thickness ω. The results are plotted with respect to (a)
the critical time t and (b) the normalized effective (averaged) first Piola-Kirchhoff stress

P 11/γm. The short-wavelength buckling patterns span 2× 2 unit-cell RVEs.
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Figure 6.10: Onset of instabilities for the composite hydrogels with the shear-modulus ra-
tio γc/γm = 5 and the void-volume fraction f0 = 20% depending on the mobility-parameter
ratio Mm/Mc of the coating (c) and the matrix (m) as well as the coating thickness ω.
The results are plotted with respect to (a) the critical time t and (b) the normalized effec-

tive (averaged) first Piola-Kirchhoff stress P 11/γm. The pattern-transforming instabilities
span 2× 2 unit-cell RVEs.

the coatingMc = 10−4mm4/(Ns). We illustrate the critical time tcrit and the effective first

Piola-Kirchhoff stress P 11 = P 22 depending on the thickness ω of the coating. Since the
mobility parameter is associated with the diffusivity of the hydrogel, the solvent tends
to accumulate in the coating when Mc/Mm > 1. As a result, the coating reaches the
critical stress faster and the instabilities occur at lower critical time, see Fig. 6.10a. In
Fig. 6.10b, we depict the corresponding effective critical stresses over the coating thickness
ω depending on the mobility-parameter ratio. In all considered problems, we observe
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Figure 6.11: Boundary value problem for the three-dimensional composite hydrogel thin
films. (a) The periodic microstructure of a thin film is represented by a unit-cell RVE,
where the jump conditions for the deformation map and the solvent-volume flux refer only
to the side boundaries, see (6.48). In the three-dimensional setting it is assumed that the
solvent diffuses through the top and the bottom surfaces, which is realized by applying
associated boundary conditions for the chemical potential. (b) A top view of the thin film
indicated that the periodic microstructure can be described by means of unit-cell RVEs given
by right parallelogrammic prism with cylindrical inclusions. In all considered examples, we
assume that the inclusions have lower diffusivity and higher mechanical stiffness than the
matrix.

the buckling instabilities resulting in 2 × 2 unit-cell RVEs. For a coating thickness of
ω = 0.02mm, the long-wavelength instabilities are detected again.

6.4.2 Three-dimensional hydrogel films

The previous studies were limited to a two-dimensional plane-strain scenario. We now
extend the analysis to the three-dimensional case and investigate structural instabilities
in hydrogel thin films. The considered films comprise cylindrical hydrogel inclusions that
are embedded into a hydrogel matrix in a periodic manner, see Fig. 6.11. We assume that
the diffusivity of the inclusions is low compared with the matrix, so that swelling of the
inclusions is not pronounced. The considered setup is motivated from the experimental
works [76, 52].

Before we provide the results of a parametric study in consideration of various ge-
ometrical properties of microstructures, we discuss suitable boundary conditions for the
numerical realization of three-dimensional hydrogel films considering plane periodicity. In
that context, we also comment on relevant ingredients of the numerical discretization and
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finite-element implementation.

6.4.2.1 Boundary conditions in the three-dimensional setting

Because of the periodic nature of the problem, the following computations can again be
reduced to a selected unit-cell RVE. In this connection, we consider the jump boundary
conditions across the lateral boundaries of the RVE

[[ϕ]] = F̂ [[X]] and [[H ]] ·N = 0 on ∂Bside
0 , (6.48)

where F̂ is the effective (averaged) deformation gradient in the plane of periodicity, see
also Fig. 6.11a. We assume that the hydrogel is mechanically constrained in plane and
that no stresses arise in out-of-plane direction, that is

F̂ =




1 0 0
0 1 0
0 0 ·


 and P ·N = 0 on ∂Btop,bottom

0 . (6.49)

On the chemical side, the solvent is assumed to enter the hydrogel only through the top
and the bottom surfaces of the film, which is reflected by the chemical-potential boundary
condition

µ = λ(t)µ0 on ∂Btop,bottom
0 with λ(t) =

{
1− t for t ≤ 1 sec

0 for t > 1 sec
, (6.50)

where µ0 is the chemical potential of the reference state, refer to (6.11). In what follows,
we consider a time-step size of τ = 4 · 10−3 sec.

The geometry of the boundary value problem and the corresponding unit-cell RVE
are described in Fig. 6.11b. Here, the film has the thickness ω = 0.02mm and plane
dimensions of a × b with a fixed length of a = 1.0mm. The inclusions with radius r =
0.25mm have lower diffusivity and higher elastic stiffness than the matrix (Mi/Mm = 0.01,
γi/γm = 10). The remaining material parameters of both phases are taken from Table 6.7.

The microstructures described in Fig. 6.11b are discretized using hexahedral finite
elements of the type H1H1. Here, the displacement field and the solvent-volume flux
are assumed as nodal degrees of freedom resulting in six degrees of freedom per node.
Depending on the morphology, 5, 500 to 9, 000 finite elements (8, 500 to 14, 000 nodes) are
needed for the discretization of a unit-cell RVE.

6.4.2.2 Instabilities of three-dimensional two-phase hydrogel thin films

In Fig. 6.12, we illustrate the onset of instabilities depending on the morphological pa-
rameters of the RVE. We observe that both the width of the unit cell b as well as the
angle β have a significant influence on the critical time and the critical stress. Since the
volume fraction of the stiff inclusions (for fixed radii) decreases with increasing b, the
composite effectively becomes softer and instabilities occur earlier. A similar behavior
can be observed for decreasing angle β, which results in an effectively larger distance
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Figure 6.12: Onset of instabilities for the three-dimensional composite hydrogel films
depending on their morphology. A shear-modulus ratio of γi/γm = 10 between inclusions
and matrix as well as a morphology with a = 1.0mm and r = 0.25mm are considered.
Instabilities are depicted with respect to (a) the critical time t and (b) the normalized

effective (averaged) first Piola-Kirchhoff stress P 11/γm.
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Figure 6.13: Buckling modes of composite hydrogels with β = 45◦ depending on the width
b of the unit-cell RVE. (a)–(c) Different buckling patterns spanning 2 × 2 unit-cell RVEs;
(d)–(e) Contour plots of the critical eigenvectors (δv3; top view) reveal the change in the
direction of the buckling depending on the width of the unit-cell RVE.

between inclusions in the X2-direction for a fixed value of b. While in most cases we ob-
serve buckling into a configuration described by 2× 2 unit-cell RVEs, some computations
indicate a transition from short-wavelength to long-wavelength instabilities. These points
are indicated by black bullets in Fig. 6.12.
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Figure 6.14: Buckling modes of composite hydrogels with β = 60◦ depending on the width
b of the unit-cell RVE. (a)–(c) Different buckling patterns spanning 2 × 2 unit-cell RVEs;
(d)–(e) Contour plots of the critical eigenvectors (δv3; top view) reveal the change in the
direction of the buckling depending on the width of the unit-cell RVE.

In Fig. 6.13, we illustrate representative buckling patterns for different widths b of the
film for an angle β = 45◦ (see Fig. 6.14 for β = 60◦). In case of β = 45◦, we observe
wrinkling of the microstructure, see Fig. 6.13a–c, where the direction of the wrinkling
pattern can be influenced by adjusting the width b of the unit-cell RVE (see Fig. 6.13d–f).
For β = 60◦, we observe a different buckling pattern in the form of cooperative saddle-
point shapes, see Fig. 6.14. Similar patterns can be observed for films with β = 75◦,
see Fig. 6.15. For better insight into the overall buckling patterns, we refer to Fig. 6.16,
where we plot larger domains of representative buckled films.

6.5 Conclusion

In the present work, we studied instabilities in two-dimensional and three-dimensional
composite hydrogels with periodic microstructures. In two dimensions, we investigated the
onset of instabilities for single-phase voided microstructures as well as two-phase coated
microstructures. We observed that in case of single-phase hydrogels, the periodicity of the
microstructure may change from a unit-cell RVE to a larger RVE containing 2 × 2 unit
cells, forming the well-known diamond-plate pattern frequently observed in experiments.
For two-phase composites with thin coating surrounding the voids, we observed that the
buckling modes can be substantially different from those of the single-phase hydrogel
microstructures. Here, the change in periodicity and the development of patterns can
be attributed either to wrinkling of the coating or to cooperative deformation of voids
into ellipses. A detailed parametric study revealed that the observed patterns depend on
the thickness of the coating as well as on the material parameters of coating and matrix.
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Figure 6.15: Buckling modes of the composite hydrogels with β = 75◦ depending on the
width b of the unit-cell RVE. (a)–(c) Buckling patterns span 2× 2 unit-cells of the hydrogel
films. (d)–(e) contour plots of the critical eigenvectors (δv3) from top view reveal the change
in the direction of buckling region depending on the width of the unit-cell.
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Figure 6.16: Buckling modes of composite hydrogel microstructures composed of unit-cell
RVEs with width b = 0.8mm. (a) We observe wrinkling of the microstructure for β = 45◦

and (b) cooperative buckling for β = 60◦.

Our simulations of three-dimensional composite hydrogel films revealed various buckling
patterns depending on the arrangement of small reinforcing particles within the hydrogel
matrix of the microstructure. These findings could provide access to the design of complex
out-of-plane buckling patterns to be tuned by adjustment of microstructures.
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Appendix

A Numerical implementation and mesh convergence study for single-phase
voided hydrogel microstructures

In this appendix, we provide relevant details on the numerical implementation of the given
model and study the influence of the finite-element discretization on simulation results.

Numerical implementation. The coupled deformation-diffusion initial boundary
value problem is implemented in FEAP [72] exploiting self-coded user element and mate-
rial routines. Furthermore, user macros are implemented to extract the effective properties
of the microstructure considering surface-based integration as discussed in Section 6.3 as
well as to extract the global tangent matrix for stability analysis. The stability analysis
based on the Bloch-Floquet theory and the strong ellipticity condition documented in
Section 6.3 are implemented in MATLAB® [54].

Convergence study. In the following study, we investigate the convergence of the
numerical solutions w.r.t. the time at which an instability can be observed and the corre-
sponding critical effective stress. For that, several mesh-refinement steps are considered,
resulting in a sequence of six different discretizations with {800; 1 800; 3 200; 5 000; 7 200;
9 800}Q2RT0 finite elements (corresponding to {3 360; 7 440; 13 120; 20 400; 29 800; 39 760}
nodes). We refer to Fig. 6.17 for visualizations of selected meshes of a representative hydro-
gel microstructure. The corresponding material parameters are summarized in Table 6.7.

800 finite elements 5 000 finite elements 9 800 finite elements

Figure 6.17: Finite-element meshes of the convergence study. Representative discretiza-
tions of the hydrogel microstructure with void-volume fraction f0 = 15%.

Results of the convergence study are plotted in Fig. 6.18. To overcome convergence
issues in case of the microstructures with the void-volume fractions f0 ≤ 20 % and the
discretizations with { 7, 200; 9, 800} finite elements, we reduced the applied chemical po-
tential at the internal boundary to 10−3N/mm2 instead of zero and employed adaptive
time stepping with maximum and minimum time steps given by τmax = 4 · 10−3 sec and
τmin = 10−3 sec, respectively. For the remaining volume fractions {30, 40, 50} %, a time-
step size of τ = 4 · 10−3 sec has been used. We note that each time step usually requires
three or four Newton iterations to converge.

In Fig. 6.18, the critical instability points are shown for the microstructures with void-
volume fractions f0 = {15%, 30%, 40%, 50%}. We observe that the discretization has a
notable impact on the detection of the instability points, especially for the lower void-
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Figure 6.18: Results of the convergence study with Q2RT0-type finite elements. (a)

Critical time tcrit and (b) effective stress P 11 for voided hydrogel microstructures with
different volume fractions.

volume fractions. Nevertheless, both buckling mode and type of instability are identical
for all discretizations considered.

In Fig 6.19a, we plot data points related to the loss of strong ellipticity and the
development of creases at the internal boundary of the microstructure with void-volume
fraction f0 = 50%. While we observe fast convergence for the critical time at which strong
ellipticity is lost, the critical time for creasing does not seem to have fully converged yet
for the finest mesh discretization. We further did not encounter any creases in case of the
discretization with 800 finite elements. We refer to Fig. 6.19b, where we have illustrated
a creased microstructure with a discretization of 9 800 finite elements.
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Figure 6.19: Results of the convergence study with Q2RT0-type finite elements. (a) Loss
of the strong ellipticity of the effective moduli and (b) development of creases within the
hydrogel microstructure with a void-volume fraction of f0 = 50%.
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Figure 6.20: Results of the convergence study with Q1RT0-type finite elements. (a)

Critical time tcrit and (b) effective stress P 11 for voided hydrogel microstructures with
different volume fractions.

In Fig. 6.20, we further show the results of a convergence study based on Q1RT0 finite
elements. This study shows a similar behavior as in case of quadratic elements. However,
for some microstructures with small void-volume fraction (f0 ≤ 20%) the discretization
with Q1RT0 elements gives rise to short-wavelength instabilities, while the the discretiza-
tions with quadratic finite elements yield long-wavelength instabilities.

As a compromise between accuracy and efficiency, we consider a discretization with
9 800 finite elements for the stability analysis of single-phase voided hydrogel microstruc-
tures in Section 6.4.1.3.
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Investigation of the stability of materials and structures has al-

ways been among the important tasks of mechanics. Since insta-

bilities can induce sudden changes in the response of materials,

they have often been treated as failure points and avoided dur-

ing the designing processes. Ever since complexmaterials in the

form of composites and metamaterials started emerging, insta-

bilities have become paramount for smart applications. Material

and structural instabilities are exploited not only to harvest and

dissipate energy but also to tune the mechanical, acoustical, and

optical properties of composites.

This work aims to investigate the stability of the response of

composites and metamaterials that exhibit electro-, magneto-,

and chemo-mechanical coupling phenomena. To model these

materials and to analyze the associated multiscale stability,

minimization-type variational formulations are developed and

implemented. At the microscale, pattern-transforming structural

instabilities are studied for a rich set of material and geometrical

parameters. Similarly, at the macroscale, localization-type ma-

terial instabilities are investigated.
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