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This article provides an in-depth study of distributional measures for distinguishing

between degrees of semantic abstraction. Abstraction is considered a “central construct

in cognitive science” (Barsalou, 2003) and a “process of information reduction that allows

for efficient storage and retrieval of central knowledge” (Burgoon et al., 2013). Relying

on the distributional hypothesis, computational studies have successfully exploited

measures of contextual co-occurrence and neighbourhood density to distinguish

between conceptual semantic categorisations. So far, these studies have modeled

semantic abstraction across lexical-semantic tasks such as ambiguity; diachronic

meaning changes; abstractness vs. concreteness; and hypernymy. Yet, the distributional

approaches target different conceptual types of semantic relatedness, and as to

our knowledge not much attention has been paid to apply, compare or analyse

the computational abstraction measures across conceptual tasks. The current article

suggests a novel perspective that exploits variants of distributional measures to

investigate semantic abstraction in English in terms of the abstract–concrete dichotomy

(e.g., glory–banana) and in terms of the generality–specificity distinction (e.g., animal–

fish), in order to compare the strengths and weaknesses of the measures regarding

categorisations of abstraction, and to determine and investigate conceptual differences.

In a series of experiments we identify reliable distributional measures for both

instantiations of lexical-semantic abstraction and reach a precision higher than 0.7, but

the measures clearly differ for the abstract–concrete vs. abstract–specific distinctions

and for nouns vs. verbs. Overall, we identify two groups of measures, (i) frequency and

word entropy when distinguishing between more and less abstract words in terms of

the generality–specificity distinction, and (ii) neighbourhood density variants (especially

target–context diversity) when distinguishing between more and less abstract words in

terms of the abstract–concrete dichotomy. We conclude that more general words are

used more often and are less surprising than more specific words, and that abstract

words establish themselves empirically in semantically more diverse contexts than

concrete words. Finally, our experiments once more point out that distributional models

of conceptual categorisations need to take word classes and ambiguity into account:

results for nouns vs. verbs differ in many respects, and ambiguity hinders fine-tuning

empirical observations.

Keywords: lexical-semantic abstraction, abstractness, concreteness, generality, specificity, hypernymy,

distributional semantics, vector spaces
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1. INTRODUCTION

Over the years, interdisciplinary research on lexical semantics has
seen multiple definitions of conceptual abstraction. For example,
Barsalou (2003) considers abstraction as a “central construct in
cognitive science” regarding categorical organisation in memory,
and distinguishes between various types of abstraction. Burgoon
et al. (2013) provide an extensive list and descriptions of past
definitions of abstraction across research fields and research
studies, and summarise the common core of abstraction types as
“a process of information reduction that allows for efficient storage
and retrieval of central knowledge (e.g., categorization).” Among
the various types of abstraction described by Barsalou (2003) and
Burgoon et al. (2013), we find two types that have repeatedly
been connected to each other across disciplines, i.e., abstraction
in terms of the abstract–concrete dichotomy (e.g., glory is more
abstract than banana), and abstraction in terms of the generality–
specificity distinction (e.g., animal is more abstract than fish). For
example, one of the earliest datasets that collected abstractness
ratings generated by humans was performed by Spreen and
Schulz (1966), who in turn exploited two previously suggested
tasks for abstractness ratings on a scale, to quantify abstractness
(a) in contrast to concreteness in the sense of “not perceived
through senses,” and (b) in contrast to specificity in the sense
of “general, generic.” While the sense perception in task (a) was
adopted as the standard task for collecting abstractness ratings
in the following decades, these two categorisations demonstrate
alternative instantiations of semantic abstraction, which were
once more targeted in recent empirical studies. Theijssen
et al. (2011) investigated annotations regarding (a) vs. (b)
for noun senses in a corpus and for noun labels in dative
alternations, and Bolognesi et al. (2020) correlated degrees of
abstraction in collections of human-annotated concreteness vs.
generality. Both studies were performed for English nouns and
relied on existing norms of concreteness ratings (Coltheart,
1981; Brysbaert et al., 2014, respectively) and the hierarchical
organisation of hypernymy in WordNet (Miller and Fellbaum,
1991; Fellbaum, 1998b).

In a similar manner but with yet different distinctions,
we also find various instantiations of abstraction across sub-
fields of computational lexical-semantic research. Relying on
the distributional hypothesis that words which are similar
in meaning also occur in similar linguistic distributions
(Harris, 1954; Firth, 1957), these studies successfully exploited
distributional measures of contextual co-occurrence and
neighbourhood density to distinguish between conceptual
semantic categorisations. For example, Sagi et al. (2009) applied
a measure of neighbourhood density to quantify diachronic
lexical semantic change; Hoffman et al. (2013) proposed
semantic diversity as a measure of lexical semantic ambiguity;
Santus et al. (2014) utilised the information-theoretic measure
entropy to distinguish hypernyms from their hyponyms;
Frassinelli et al. (2017) and Naumann et al. (2018) applied
variants of neighbourhood density and entropy to distinguish
between abstract and concrete words. While these studies
address different lexical-semantic tasks, all tasks have in

common that they involve and model some notion of semantic
abstraction, i.e., diachronic innovative and reductive meaning
change; lexical ambiguity; abstractness vs. concreteness in
word meaning; and hypernymy. Yet, as to our knowledge,
not much attention has been paid to the shared common
meta-level task of quantifying abstraction across computational
approaches, except for Rimell (2014) and Schlechtweg et al.
(2017) using hypernymy measures for semantic entailment
and diachronic change, respectively. Furthermore, a closer look
into distributional neighbourhood variants reveals that the
types of applied neighbourhoods are conceptually different,
exploiting similarity between context words (Sagi et al., 2009;
Hoffman et al., 2013; Naumann et al., 2018) vs. exploiting
similarity between nearest neighbours (Frassinelli et al.,
2017). In sum, most researchers involved in the respective
sub-fields are not necessarily aware of each other, such that
up to now we do not find a comprehensive application and
comparison of distributional abstraction measures across
semantic abstraction tasks.

The current article aims to fill this critical gap and provides a
series of empirical studies that investigate conceptual categories
of abstraction through variants of distributional measures.
Focusing on the two types of abstraction originally suggested
by Spreen and Schulz (1966), and brought back to attention by
Theijssen et al. (2011) and Bolognesi et al. (2020), we distinguish
abstraction in terms of the abstract–concrete dichotomy and in
terms of the generality–specificity distinction. More specifically,
we apply a selection of distributional measures to distinguish
between English (i) abstract and concrete words and (ii)
hypernyms and their hyponyms. As resources for our target
words, we rely on the concreteness ratings in Brysbaert et al.
(2014) and hypernymy relations in WordNet (Fellbaum, 1998b).
Furthermore, we distinguish between noun and verb targets,
given that lexical representations of word classes differ in
their semantic abstraction regarding both concreteness and
hypernymy (Miller and Fellbaum, 1991; Frassinelli and Schulte
im Walde, 2019; Schulte im Walde, 2020). The specific measures
we apply are variants of neighbourhood densities (context-based
and neighbour-based), the distributional inclusion measure
WeedsPrec (Weeds et al., 2014) and the information-theoretic
measure entropy (Santus et al., 2014; Shwartz et al., 2017). The
underlying distributional vector spaces are induced from the
ENCOWweb corpus (Schäfer and Bildhauer, 2012).

Overall, we thus suggest a novel perspective that brings
together and effectively exploits empirical computational
measures across two types of lexical-semantic abstraction.
In this way, our studies enable us to compare the strengths
and weaknesses of the distributional measures regarding
categorisations of abstraction, and to determine and investigate
conceptual differences as captured by the measures. In the
remainder of this article, section 2 introduces previous research
perspectives and studies on the two types of semantic abstraction
we focus on, both from a cognitive and from a computational
perspective. Section 3 then describes the data and methods we
use in our study, before section 4 provides the actual experiments
and results which are then discussed in section 5.
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2. RELATED WORK

In the following, we introduce previous research perspectives
and studies on the two types of semantic abstraction we focus
on, i.e., abstraction in terms of the abstract–concrete dichotomy
and in terms of the generality–specificity distinction. In this vein,
section 2.1 looks into abstraction from a cognitive perspective,
while section 2.2 provides an overview of computational models
of abstraction. In section 2.3, we describe previous empirical
investigations across the two types of abstraction. From a
terminological perspective, we will use the word “concepts”
when referring to mental representations, and “words” when
referring to the corresponding linguistic surface forms humans
are exposed to. Given the distributional nature of our studies, we
will always refer to words as the targets of our analyses.

2.1. Cognitive Perspectives on Abstraction
Barsalou (2003) considers abstraction as a “central construct in
cognitive science” regarding the organization of categories in the
human memory. He attributes six different senses to abstraction:
(i) abstracting a conceptual category from the settings it occurs
in; (ii) generalising across category members; (iii) generalising
through summary representations which are necessary for
the behavioural generalisations in (ii); (iv) sparse schematic
representations; (v) flexible interpretation; and (vi) abstractness
in contrast to concreteness. Barsalou’s classification illustrates
that the term “semantic abstraction” as well as its featural
and inferential implications for memory representations are
vague in that different instantiations go along with different
representations; he himself focuses on summary representations
(iii). Burgoon et al. (2013) provide an extensive list and
description of past definitions of abstraction across research
fields and research studies, and state that, at the meta level,
the term abstraction is referred to as “a process of information
reduction that allows for efficient storage and retrieval of central
knowledge (e.g., categorization).” For their own study, they define
abstraction as “as a process of identifying a set of invariant
central characteristics of a thing,” and in what follows they
compare existing definitions of abstraction regarding their
roots, developments, antecedents, consequences, and methods
for studying.

The distinction of the two abstraction types adopted in the
current study comes from Spreen and Schulz (1966) indicating
that the “definition of abstractness or concreteness in previous
studies shows that at least two distinctly different interpretations
can be made,” and pointing back to previous collections with
judgements on generality by Gorman (1961) and judgements
on concreteness as well as generality by Darley et al. (1959).
Spreen and Schulz (1966) themselves collected ratings on both
abstractness–concreteness and abstractness–specificity (among
others) for 329 English nouns, and found a correlation of 0.626
between the ratings of the two abstraction variables. The two-
fold distinction of abstraction outlined in the work by Spreen
and Schulz (1966) is also included in the various instantiations
of abstraction in Barsalou (2003) and Burgoon et al. (2013). In
the following, we describe the lines of research involved in the

representation and processing of abstract vs. concrete concepts
and then those involved in general vs. specific concepts.

2.1.1. Abstract vs. Concrete Concepts
The most influential proposal about the processing, storing
and comprehension of abstract concepts in contrast to concrete
concepts can be traced back to Paivio (1971). He suggested the
dual-route theory where a verbal system is primarily responsible
for language aspects of linguistic units (such as words), while a
non-verbal system, in particular imagery, is primarily responsible
for sensory-motor aspects. Even though in the meantime, a
range of alternative as well as complementary theories have been
suggested, Paivio’s theory offers an explanation why concrete
concepts (which are supposedly accessed via both routes) are
generally processed faster in lexical memory than abstract
concepts (which are supposedly accessed only via the non-verbal
system) across tasks and datasets, cf. Pecher et al. (2011) and
Borghi et al. (2017) for comprehensive overviews.

Further than the dual-route theory, cognitive scientists have
investigated other dimensions of abstractness. Most notably,
Schwanenflugel and Shoben (1983) suggested the context
availability theory where they compared the processing of
abstract and concrete words in context and demonstrated that in
appropriate contexts neither reading times nor lexical decision
times differ, thus emphasising the role of context in conditions
of abstractness. In addition, a number of properties have been
pointed out where abstract and concrete concepts differ. (i)
There is a strong consensus and experimental confirmation that
concrete concepts are more imaginable than the abstract ones,
and that it takes longer to generate images for abstract than
for concrete concepts (Paivio et al., 1968; Paivio, 1971; Paivio
and Begg, 1971, i.a.). (ii) Abstract concepts are considered to
be more emotionally valenced than concrete concepts (Kousta
et al., 2011; Vigliocco et al., 2014; Pollock, 2018). (iii) Free
associations to abstract concepts are assumed to differ from free
associations to concrete concepts in terms of the number of
types, but at the same time associations to concrete concepts
have been found weaker and more symmetric than for abstract
concepts (Crutch and Warrington, 2010; Hill et al., 2014).
(iv) Based on a feature generation task, features of abstract
concepts are less property- and more situation-related than
features of concrete words (Wiemer-Hastings and Xu, 2005).
(v) Accordingly, an appropriate embedding into situations has
been identified as crucial for abstract vs. concrete meaning
representations (Barsalou and Wiemer-Hastings, 2005; Hare
et al., 2009; Pecher et al., 2011; Frassinelli and Lenci, 2012;
Recchia and Jones, 2012).

Hand in hand with defining and investigating hypotheses
about dimensions of abstract and concrete concepts, a number
of data collections have been created. To name just a prominent
subset of the large number of existing resources, Spreen and
Schulz (1966) collected ratings of concreteness and specificity
(among others) for 329 English nouns (see above); Paivio et al.
(1968) collected ratings for 925 English nouns on concreteness,
imagery and meaningfulness; Coltheart (1981) put together
the MRC Psycholinguistic Database, mostly comprising pre-
existing information for almost 100,000 English words including
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concreteness, imageability, familiarity as well as frequency,
semantic, syntactic, and phonological information; Warriner
et al. (2013) extended the ANEW norms from Bradley and Lang
(1999) with 1,034 English words to almost 14,000, capturing
emotion-relevant norms of valence, arousal and dominance; a
similar collection for 20,000 English words regarding the same
variables but using best–worst scaling instead of ratings has been
done byMohammad (2018); Brysbaert et al. (2014) created the so
far largest human-generated collection containing concreteness
ratings for 40,000 English words. The work by Connell and
Lynott differs slightly on the variable depth, by focusing on the
individual perception modalities and interoception (Lynott and
Connell, 2009, 2013; Lynott et al., 2020).While the vast amount of
abstractness/concreteness datasets has been created for English,
we also find collections for other languages, such as those for
2,654/1,000 nouns in German (Lahl et al., 2009; Kanske and Kotz,
2010, respectively); 16,109 Spanish words (Algarabel et al., 1988);
417 Italian words (Della Rosa et al., 2010); and 1,659 French
words (Bonin et al., 2018). While traditional collections have
been pen-and-paper-based, the collections from the last decade
have moved toward crowd-sourcing platforms. As alternative
to human-generated ratings, previous research suggested semi-
automatic algorithms to create large-scale norms (Mandera et al.,
2015; Recchia and Louwerse, 2015; Köper and Schulte imWalde,
2016; Köper and Schulte im Walde, 2017; Aedmaa et al., 2018;
Rabinovich et al., 2018).

2.1.2. General vs. Specific Concepts
Differently to the above distinction of semantic abstraction in
terms of degrees of concreteness as opposed to abstractness,
where concepts may be judged more or less abstract in
comparison to otherwise semantically unrelated concepts (e.g.,
banana–glory), semantic abstraction in terms of generality is
typically established in contrast to a semantically related concept
(e.g., animal–fish). The lexical-semantic relation of interest here
is hypernymy, where the more general concept represents the
hypernym of the more specific hyponym.

An enormous body of work discusses hypernymy next to
further semantic relations in the mental lexicon. For example,
a seminal description of lexical relations can be found in Cruse
(1986), who states that lexical relations “reflect the way infinitely
and continuously varied experienced reality is apprehended
and controlled through being categorised, subcategorised and
graded along specific dimensions of variation.” Murphy (2003)
focuses on the representation of semantic relations in the
lexicon and discusses synonymy, antonymy, contrast, hyponymy
and meronymy, across word classes. Most of her discussions
concern linguistic vs. meta-linguistic representations of relations,
reference of relations to words vs. concepts, and lexicon storage.
The most extensive resource that systematically explores and
compares types of lexical-semantic relations across word classes
is established by the taxonomy of the PrincetonWordNet, where
hypernymy represents a key organisation principle of semantic
memory (Fellbaum, 1990; Gross and Miller, 1990; Miller et al.,
1990). Miller and Fellbaum (1991) provide a meta-level summary
of relational structures and decisions. As basis for the WordNet
organisation, they state that “the mental lexicon is organised

by semantic relations. Since a semantic relation is a relation
between meanings, and since meanings can be represented by
synsets, it is natural to think of semantic relations as pointers
between synsets.” The semantic relations in WordNet include
the paradigmatic relations synonymy, hypernymy/hyponymy,
antonymy, and meronymy. For nouns, WordNet implements
a hierarchical organisation of synsets (i.e., sets of synonymous
word meanings) relying on hypernymy relations. Verbs are
considered the most complex and polysemous word class; they
are organised on a verb-specific variant of hypernymy, i.e.,
troponymy: v1 is to v2 in some manner, that operates on
semantic fields instantiated through synsets. Troponymy itself is
conditioned on entailment and temporal inclusion.

2.2. Computational Models of Abstraction
Across both types of semantic abstraction, computational
models have been suggested to automatically characterise or
distinguish between more and less abstract words. They have
been intertwined with cognitive perspectives to various degrees.

2.2.1. Abstract vs. Concrete Words
A common idea in this research direction is the exploitation
of corpus-based co-occurrence information to infer textual
distributional characteristics of cognitive semantic variables,
including abstractness as well as further variables such as
emotion, imageability, familiarity, etc. These models are large-
scale data approaches to explore the role of linguistic information
and textual attributes when distinguishing between abstract and
concrete words. A subset of these distributional approaches
is strongly driven by a cognitive perspective, thus aiming to
explain the organisation of human semantic memory and lexical
processing effects by the contribution of linguistic attributes.
Common techniques for organising the textual information are
semantic vector spaces such as Latent Semantic Analysis (LSA)
(Salton et al., 1975), the Hyperspace Analogue to Language
(HAL) (Burgess, 1998), and more recent variants of standard
Distributional SemanticModels (DSMs) (Baroni and Lenci, 2010;
Turney and Pantel, 2010), in combination with measures of
distributional similarity and clustering approaches (Glenberg and
Robertson, 2000; Vigliocco et al., 2009; Bestgen and Vincze,
2012; Troche et al., 2014; Mandera et al., 2015; Recchia and
Louwerse, 2015; Lenci et al., 2018). Finally, our own studies
provide preliminary insights into co-occurrence characteristics of
abstract and concrete words with respect to linguistic parameters
such as window size, parts-of-speech and subcategorisation
conditions (Frassinelli et al., 2017; Naumann et al., 2018;
Frassinelli and Schulte im Walde, 2019). Overall, these studies
agree on tendencies such that concrete words tend to have
less diverse but more compact and more strongly associated
distributional neighbours than abstract words.

2.2.2. General vs. Specific Words
From a computational perspective, hypernymy—which we take
as instantiation to represent degrees of generality vs. specificity—
is central to solving a number of NLP tasks such as automatic
taxonomy creation (Hearst, 1998; Cimiano et al., 2004; Snow
et al., 2006; Navigli and Ponzetto, 2012) and textual entailment
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(Dagan et al., 2006; Clark et al., 2007). An enormous body
of computational work has applied variants of lexico-syntactic
patterns in order to distinguish hypernymy among word pairs
from other lexical semantic relations (Hearst, 1992; Pantel and
Pennacchiotti, 2006; Yap and Baldwin, 2009; Schulte im Walde
and Köper, 2013; Roth and Schulte imWalde, 2014; Nguyen et al.,
2017, i.a.). More closely related to the current study, Shwartz
et al. (2017) provide an extensive overview and comparison of
unsupervised distributional methods. They distinguish between
families of distributional approaches, i.e., distributional similarity
measures (assuming asymmetric distributional similarities for
hypernyms and their hyponyms regarding their contexts, e.g.,
Santus et al., 2016), distributional inclusion measures (comparing
asymmetric directional overlap of context words, e.g., Weeds
and Weir, 2005; Kotlerman et al., 2010; Lenci and Benotto,
2012) and distributional informativeness measures (assuming
different degrees of contextual informativeness, e.g., Rimell, 2014;
Santus et al., 2014). Across modelling systems, most approaches
model hypernymy between nouns; hypernymy between verbs has
been addressed less extensively from an empirical perspective
(Fellbaum, 1990, 1998a; Fellbaum and Chaffin, 1990).

2.3. Empirical Models Across
Types of Abstraction
In addition to interdisciplinary empirical research targeting
concreteness or hypernymy that has been mentioned above, we
find at least two empirical studies at the interface of cognitive
and computational linguistics that brought together our two
target types of abstraction beforehand, Theijssen et al. (2011) and
Bolognesi et al. (2020). Similarly to the current work, Theijssen
et al. (2011) used the observation in Spreen and Schulz (1966)
defining abstraction in terms of concreteness and specificity as
their starting point. They provide two empirical experimental
setups to explore and distinguish between the abstraction types in
actual system implementations, (1) based on existing annotations
of noun senses in a corpus, and (2) based on human judgements
on labelling nouns in English dative alternations. As resources
they used the MRC database (Coltheart, 1981) and WordNet.
Overall, they found cases where concreteness and specificity
overlap and cases were the two types of abstraction diverge.
Bolognesi et al. (2020) looked into the same two types of
abstraction to correlate degrees of abstraction in the concreteness
norms by Brysbaert et al. (2014) and in the WordNet hierarchy,
and to investigate interactions between the four groups of
more/less concrete × more/less specific English nouns from
the two resources. Their studies illustrate that concreteness and
specificity represent two distinct types of abstraction.

Further computational approaches zoomed into statistical
estimation of contextual diversity/neighbourhood density, in
order to distinguish between degrees of semantic abstraction
across types of abstraction. For example,McDonald and Shillcock
(2001) applied the information-theoretic measure relative
entropy to determine the degree of informativeness of words,
where word-specific probability distributions over contexts were
compared with distributions across corresponding sets of words.
The contextual diversity measure by Adelman et al. (2006) is

comparably more simple: they determined the number of
documents in a corpus that contain a word. More recently,
Danguecan and Buchanan (2016), Reilly and Desai (2017) and
our own work in Naumann et al. (2018) explored variants
of neighbourhood density measures for abstract and concrete
words, i.e., the number of (different) context words and the
distributional similarity between context words. Additional
approaches to determine contextual diversity/neighbourhood
density have arisen from other fields of research concerned with
semantic abstraction, i.e., regarding ambiguity and diachronic
meaning change (Sagi et al., 2009; Hoffman et al., 2013; Hoffman
and Woollams, 2015). Overall, these studies demonstrated that
contextual density/diversity differs for more vs. less abstract
words and across types of abstraction, even though the
applications of the measures were rather diverse.

3. MATERIALS AND METHODS

3.1. Abstraction Data:
Concreteness and Hypernymy
In the following, we introduce the resources we used for creating
variants of abstraction data for our distributional experiments
in section 4. As motivated above, we distinguish semantic
abstraction in terms of the abstract–concrete and the generality–
specificity distinctions.

3.1.1. Concreteness Targets
Regarding abstraction in terms of the abstract–concrete
dichotomy (henceforth referred to as concreteness condition),
we rely on the concreteness ratings for approximately 40,000
English words and two-word expressions from Brysbaert et al.
(2014). The ratings were collected via Amazon Mechanical
Turk by asking at least 25 participants to judge the concreteness
vs. abstractness of the targets on a 5-point rating scale from 1
(abstract) to 5 (concrete) regarding how strongly the participants
thought the meanings of the targets can(not) be experienced
directly through their five senses. The overall targets’ scores of
abstractness vs. concreteness are represented by the mean values.
For example, the concrete word banana received the highest
possible average rating of 5.0 because it is strongly perceived by
human senses, while the abstract word glory received a rather
low average rating of 1.45.

The ratings had been collected for the targets out-of-context
and without any further word-class disambiguating information.
In a post-processing step, Brysbaert et al. added part-of-speech
(POS) and frequency information from the SUBTLEX-US corpus
(Brysbaert et al., 2012). We repeated their post-processing step,
however relying on the ENCOW corpus data we also use in our
studies (see below for details), i.e., we automatically assigned each
target its most frequently occurring POS tag in the ENCOW.

If this POS did not represent an overall proportion of
at least 95% of all POS tags of that target or if our most-
frequent POS was not identical to the POS tag assigned by
Brysbaert et al. (2014), we discarded the target in order to
minimise POS ambiguity among targets. We also discarded
target words with an ENCOW frequency below 10,000. Our final
concreteness set of targets contains 5,448 nouns and 1,280 verbs.
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FIGURE 1 | Distributions of concreteness scores on a 5-point rating scale from 1 (abstract) to 5 (concrete) for our full concreteness sets of 5,448/1,280 nouns/verbs

and for the 500/200 most extreme abstract and concrete nouns/verbs.

Henceforth, we will refer to this selection of datapoints as the
full concreteness collection. We also created target subsets of
the 500 most concrete and the 500 most abstract nouns, and
ditto for the 200 most concrete/abstract verbs. We will refer
to these subsets as the concreteness extremes subsets. Figure 1
illustrates the distributions of concreteness scores across the full
and extreme target sets; the underlying files are provided in the
Supplementary Material.

3.1.2. Hypernymy Targets
Regarding abstraction in terms of generality (henceforth referred
to as hypernymy condition), we rely on WordNet, a standard
lexical semantic taxonomy for English developed at Princeton
University (Miller and Fellbaum, 1991; Fellbaum, 1998b) that
was also used by previous work on the generality–specificity
abstraction distinction (Theijssen et al., 2011; Bolognesi et al.,
2020). The lexical database was inspired by psycholinguistic
research on human lexical memory and organises English nouns,
verbs, adjectives and adverbs into classes of synonyms (synsets),
which are connected by lexical and conceptual semantic relations.
Words with several senses are assigned to multiple synsets.
As mentioned above, WordNet implements a hierarchical
organisation of noun synsets relying on hypernymy relations, and
verbs are organised by a verb-specific variant of hypernymy, i.e.,
troponymy: v1 is to v2 in some manner, which itself is conditioned
on entailment and temporal inclusion.

We extracted all noun and verb synset pairs from WordNet
version 3.0 that are in a hyponym–hypernymy relation and
paired all nouns/verbs from the respective subsets (such as trout–
fish and swim–move, where the first word in the pairs is the
semantically more specific hyponym and the second word in the
pairs is the semantically more general hypernym), resulting in
a total of 295,963/67,586 word pairs for nouns/verbs. We then
discarded any pairs containing multiword targets (such as edible
fruit) as well as targets starting with a capital letter (mostly proper
names such as Xhosa) or starting with a number, leaving a total
of ≈110,000/47,500 noun/verb pairs containing ≈38,000/8,500
different nouns/verbs. Figure 2 shows the number of synsets per
level in the noun hierarchy, with level 1 representing the top-most

and therefore most general synset {entity}. For verbs this analysis
is not straightforward, as many synsets do not have a hypernym,
and the top levels are not consistently connected downwards
[also see Richens (2008) on “anomalies in the WordNet verb
hierarchy”]; this is the reason why some hypernymy-level-related
analyses in section 4 will not be performed for verbs.

3.2. Vector Space Variants
The basis for our experiments is represented by the POS-
tagged version of the sentence-shuffled English COW corpus
ENCOW16AX1, containing ≈10 billion words (Schäfer and
Bildhauer, 2012; Schäfer, 2015). From the corpus, we extracted
co-occurrences (i.e., context words) for all nouns and verbs
in the corpus by applying a standard range of co-occurrence
options: We relied on 2-word and 20-word symmetric windows
(left+right) across the lemmatised version of the corpus and
distinguished between (a) taking only co-occurring noun context
words into account (henceforth: N space) and (b) taking all co-
occurring nouns, verbs and adjectives into account (henceforth:
N-V-A space), when creating our noun–context and verb–
context matrices. The windows were applied within-sentence
because the corpus is sentence-shuffled for copyright reasons,
such that going beyond sentence border is not meaningful.
Furthermore, to reduce noise in the co-occurrence data, we
restricted the corpus lemmas to words starting with at least
two letters; by using a co-occurrence frequency cut-off of 50;
and by discarding the most frequent content words: people,
time, year (nouns); be, do, have (verbs); and other, more,
many, such, same, few, most (adjectives), given that high-
frequency words are notorious hubs and popular nearest
neighbours in the vector spaces (Radovanović et al., 2010;
Dinu et al., 2015; Köper et al., 2016, i.a.). The raw co-
occurrence frequency counts were weighted by the association
measure local mutual information (lmi), cf. Evert (2005). LMI
is an information-theoretic association measure that compares
observed frequencies O with expected frequencies E, taking

1https://www.webcorpora.org/encow/ provides details on corpus version and

toolchains.
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FIGURE 2 | Number of synsets per hypernymy level in the WordNet noun hierarchy, with level 1 representing the top-most and therefore most general synset {entity}.

TABLE 1 | Sizes of vector space variants in terms of numbers of target types and

dimension types in the co-occurrence (context) matrices.

Target POS Window size Dimension POS # targets # dimensions

N 2 N 22,017 22,017

N-V-A 24,279 40,571

20 N 29,721 29,721

N-V-A 30,748 51,249

V 2 N 6,259 16,373

N-V-A 6,544 28,736

20 N 7,338 25,254

N-V-A 7,530 43,329

marginal frequencies into account: LMI = O × log O
E , with

E representing the product of the marginal frequencies over the
sample size.2

Our co-occurrence matrices are general-purpose and not
prone to our specific resource-induced targets, which is required
by some abstraction measures (see following section 3.3). Table 1
shows the sizes of our vector space matrix variants in numbers
of targets and dimensions, i.e., context words. Table 2 shows co-
occurrence frequencies and lmi scores for a sample noun, i.e.,
fish, and a selection of its context words within a window of
±20 words.

2See http://www.collocations.de/AM/ for a detailed description of association

measures.

TABLE 2 | Example context words for the target noun fish within a window of

±20 words, accompanied by co-occurrence frequencies and local mutual

information (lmi) scores.

Context word and POS Frequency LMI

water NN 56,049 133387.53

tank NN 39,118 150223.00

catch V 37,003 117624.73

eat V 31,558 87119.87

small ADJ 30,864 45470.63

big ADJ 24,835 37067.61

chip NN 19,407 72473.17

oil NN 18,404 41075.69

salmon NN 8,983 38461.76

tropical ADJ 6,629 23600.64

serve V 6,571 4433.21

eye NN 4,052 1701.02

3.3. Abstraction Measures
The following subsections introduce our selection of
distributional methods to measure abstraction both in terms of
the abstractness–concreteness dichotomy and in terms of the
generality–specificity distinction.

3.3.1. Neighbourhood Densities
Our main focus regarding vector space measures of abstraction
lies on variants of neighbourhood densities. As described in
section 2, previous work has applied such measures to a number
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of tasks involving semantic abstraction (not necessarily using
the identical term “neighbourhood density”), such as lexical
semantic ambiguity (Hoffman et al., 2013), lexical semantic
change (Sagi et al., 2009), hypernymy (Santus et al., 2014) and
lexical concreteness (Frassinelli et al., 2017; Naumann et al.,
2018). The underlying assumption of the empirical models across
tasks is that the neighbourhood density of more abstract words
is lower than the neighbourhood density of less abstract (i.e.,
more specific/concrete) words, because conceptual connections
between abstract words and their semantically associated
words are more diverse/variable and less meaning-specific than
conceptual connections between more specific/concrete words
and their semantically associated words.

In this vein, neighbourhood density measures score the
variability of contexts in which words occur in different
ways. They either (i) measure neighbourhood density by
relying on context words, assuming that more abstract words
co-occur with a larger variety of context words, or they
(ii) measure neighbourhood density by relying on neighbour

words, assuming that more abstract words have a larger
variety of distributionally similar words. As mentioned above,
these types of neighbourhood densities are conceptually rather
different, exploiting similarity between context words vs.
exploiting similarity between nearest neighbours. In addition,
neighbourhood density measures differ with respect to involving
(or not involving) the respective target words in the calculation.
Finally, all variants of measures need to define the number k
of context/neighbour words that are taken into account, i.e.,
how many words are involved as “strongest” context/neighbour
words. The four variants are defined and computed as follows.

CC The neighbourhood density of a target word t is defined as
the average vector-space distance between the k strongest

context words of t.
TC The neighbourhood density of a target word t is defined

as the average vector-space distance between t and its k

strongest context words.
NN The neighbourhood density of a target word t is defined

as the average vector-space distance between the k nearest

neighbours of t.
TN The neighbourhood density of a target word t is defined

as the average vector-space distance between t and its k

nearest neighbours.

The strongest context words are determined on the basis of the
local mutual information strength of co-occurrence (see previous
section 3.2). Vector-space distance between words in order to
determine nearest neighbours is computed by calculating the
cosine of the angle between the respective word vectors. See
Supplementary Table 1 in Appendix 1 for examples of strongest
context and neighbour words regarding a selection of target
nouns and verbs.

3.3.2. Contextual Entropy
For measuring the contextual entropy of a target word we
rely on standard word entropy, which has been suggested as
an asymmetric method for hypernymy prediction by Shwartz
et al. (2017), inspired by a previous second-order co-occurrence

variant (Santus et al., 2014). The underlying assumption is
that more abstract words are more uncertain (and therefore
receive a higher entropy value) than less abstract (i.e., more
specific/concrete) words. For each target word w in our vector
spaces we calculated the word entropy H(w), taking all of
w’s context words c from our vector spaces into account, see
Equation (1). The computation requires per-target probabilities
over context words, which we calculated based on the raw target–
context co-occurrence frequencies.

H(w) = −
∑

c

p(c|w) · log2(p(c|w)) (1)

3.3.3. Weeds Precision
Weeds Precision (WeedsPrec) represents an asymmetric method
suggested by Weeds et al. (2004) that quantifies the weighted
inclusion of the features of word w1 in the features of word
w2. In our case the features refer to the words’ context words c.
The underlying assumption is that more context words c of the
more specific hyponym are among its hypernym’s context words
than there are context words of the more general hypernym
among its hyponym’s context words. If WeedsPrec(w1,w2) >

WeedsPrec(w2,w1), then w1 is predicted as the hyponym and w2

as the hypernym, and vice versa, see Equation (2). For example,
one would expect more context words of the hyponym cat also
as context words of its hypernym animal (such as eyes, fur, tail)
than vice versa, because the hypernym also co-occurs with words
relevant for other animals (such as flapper for fish) that are
however not relevant for cats.

The computation requires raw target–context co-occurrence
frequencies |wic|. Next to the original weighted, token-based
version of WeedsPrec in Equation (2) we also apply a non-
weighted, type-based version (WeedsPrec′) where we compute
whether a context word is included in a specific vector, rather than
how often it is included, see Equation (3).

WeedsPrec(w1,w2) = weeds–token =

∑
c∈(−→w1∩

−→w2)
|w1c|∑

c∈−→w1
|w1c|

(2)

WeedsPrec′(w1,w2) = weeds–type =

∑
c∈(−→w1∩

−→w2)
1

∑
c∈−→w1

1
(3)

4. DISTRIBUTIONAL ABSTRACTION
EXPERIMENTS

In this section we report our empirical experiments on
distributional models of abstraction. Section 4.1 describes the
setup of the experiments, and section 4.2 presents the results
of distinguishing between degrees of abstraction in terms of
concreteness and hypernymy.

4.1. Abstraction Experiments: Setup
4.1.1. Main Experiments
The nature of our target datasets differs with respect to the
underlying type of abstraction. For this reason, we defined a
common strategy to make the results comparable across datasets:
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FIGURE 3 | Concreteness ranges of noun and verb subsets (each containing 20% of respective total data).

As a major point of comparison we rely on pairs of target words,
which combine abstract with concrete words, and hypernyms
with their hyponyms. For the hypernymy pairs, the two words
are directly provided by the resource: we paired each word in
a synset with each word in the superordinated synset(s), see
section 3.1; for the concrete–abstract pairs, we followed our
previous work (Naumann et al., 2018; Frassinelli and Schulte
im Walde, 2019) and took our collection of extremes with
500+500 nouns and 200+200 verbs to create 250,000/40,000
concrete–abstract noun/verb word pairs. Note that Figure 1

already included the distributions of concreteness scores for these
extreme target subsets.

The task for our measures regarding target pairs was to
identify the more abstract word in each pair. The results
are computed by determining precision (which in this setup
is identical to accuracy), i.e., the proportion of empirically
identified abstract words that were indeed the more abstract
words in the pairs. We focus on precision here because the
differences of our vector spaces regarding the proportions of
target words they cover (i.e., their recall) is only marginal. We
nevertheless include the numbers of retrieved distinctions per
measure and target space in the full results in Appendix 2.

In addition to this first set of experiments where we compared
all of our abstraction measures on noun and verb concreteness
and hypernymy pairs across vector spaces, we then focused on
specific aspects in the experimental paradigm, as follows.

4.1.2. Strength of Abstraction
We hypothesised that the measures are more or less successful
with respect to how “different” the concrete and abstract words
are in their degrees of concreteness (again, for noun and verb
targets), and how “different” the hypernyms and hyponyms are
in their degrees of specificity (for nouns only, cf. section 3.1).
Similarly to the previous experiments, this setup also relies on
concrete–abstract and hyponym–hypernym pairs but the target
sets were created in a different way.

For concreteness, we took our full concreteness dataset (see
section 3.1) and divided the 5,448/1,280 nouns/verbs (separately
for each word class) into five equally-sized subsets, after having
sorted them by their concreteness scores. Figure 3 shows the
distributions of concreteness scores across the five 20% dataset
proportions. Then we created pairs using the targets in subset 1
and the targets in subset 2 (i.e., pairing the 20% most abstract
words with each of the targets in the second 20% most abstract
words), for each of the targets in subset 1 with each of the targets
in subset 3, etc., resulting in a total of 1,187,010 pairs per range
combination for nouns, and 65,536 pairs per range combination
for verbs. In this way, we compare distinctions for pairs that are
more or less similar in their degrees of concreteness, rather than
the most extreme subsets. Note, in this respect, that the sizes of
the boxes in Figure 3 indicate that we are facing a large number
of very concrete nouns, while for verbs the majority is located in
the range [2; 3].

For hypernymy, we took into account the hierarchical levels
of nouns when creating pairs, by pairing the top-level noun in
the hierarchy (entity) with all second-level nouns, then with all
third-level nouns, etc., and by pairing all second-level nouns with
all third-level nouns, then with all forth-level nouns, etc. Figure 4
shows the numbers of pairs after combining words from synsets
of specific hierarchical hypernymy levels. Note that we go down
to level 11 in the WordNet hierarchy for this specific analysis.
In the actual experiments we will however disregard the level
combinations with <100 pairs (i.e., 1–2, 1–3, 2–3).

4.1.3. Correlations and Interactions

Between Measures
We zoomed into correlations and interactions of abstraction
distinctions across measures, in order to see whether the actual
decisions of the measures are more or less strongly correlated
with corpus frequency and with each other, and how they interact
and complement each other. For this set of experiments we only
used the concreteness targets (both nouns and verbs), which
provide scores on a scale, differently to the pair-wise organised
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FIGURE 4 | Numbers of word pairs in synset combinations across hierarchical levels.

hierarchical hypernymy targets (which we could organise into
hypernymy-based chains of levels but this would add a level of
interpretation to the actual human categorisations that we do not
judge appropriate). In addition, we used the 329 noun targets
from Spreen and Schulz (1966) which are rated on a scale for
both concreteness and specificity. For this set of experiments we
exploit Spearman’s rank-order correlation coefficient ρ (Siegel
and Castellan, 1988) and regression models.

We now describe how we apply the abstraction measures
to the pair-wise distinction between degrees of abstraction
in concrete–abstract pairs and hyponym–hypernym pairs. For
measuring contextual word entropy and WeedsPrec, we follow
a straightforward one-step procedure: Relying on one of our
vector-space matrices, we compute the extent of feature inclusion
(WeedsPrec) regarding both words’ dimensions, and we compute
the word entropy for both words; the comparison of the
respective two values then decides which word in a word pair
is predicted as the more/less abstract one, see section 3.3.
For measuring neighbourhood density, two-step procedures are
required: Regarding the CC and TC variants, we first need
to identify the k strongest context words (i.e., co-occurrence
dimensions) for each target word, and then compute the
respective average cosine distances between the strongest context
words (CC) or between the target and the strongest context
words (TC). Regarding the NN and TN variants, we first need to
identify the k nearest neighbour words for each target word, and
then compute the respective average cosine distances between

the strongest neighbour words (NN) or between the target and
the strongest neighbour words (TN). For all four neighbourhood
density variants we rely on one of our vector-spacematrices in the
first step (i.e., N vs. N-V-A dimensions), and in step two we again
face the same choice between the vector-space matrix variants.
SeeAppendix 1 for a selection of noun and verb targets and their
strongest context and neighbour words.

4.2. Abstraction Experiments: Results
4.2.1. Main Experiments
Figures 5–8 present the results when distinguishing between
degrees of abstraction across measures in terms of precision, i.e.,
the proportion of abstract words suggested by the measures that
were indeed the more abstract words in the pairs. As baseline
we use frequency, assuming that a word in a word pair is
more abstract if it is more frequent. The weighted vs. non-
weighted variants of WeedsPrec are referred to as “weeds-token”
vs. “weeds-type,” respectively. For neighbourhood density we
report results for 5, 10, 20, and 50 contexts/neighbours across
our four variants CC, TC, NN, and TN, and we distinguish
between taking into account only nouns or only verbs (depending
on the target POS)3 as contexts/neighbours vs. all nouns, verbs

3When taking into account a single POS for context/neighbour words, as context

words we use nouns for both noun and verb targets, and as nearest neighbours

we use same-POS neighbour words (i.e., noun nearest neighbours for noun targets

and verb nearest neighbours for verb targets).
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FIGURE 5 | Pair-wise precision results for concreteness of nouns relying on an N-V-A vector space. Densities take only nouns as context/neighbour words into

account.

FIGURE 6 | Pair-wise precision results for concreteness of verbs relying on an N-V-A vector space. Densities take only nouns as context/neighbour words into

account.

and adjectives (N-V-A). We only show results using the N-V-
A vector spaces induced from a co-occurrence window of 20
words, and the density variants that take only single-POS words
as contexts/neighbours into account, because these generally
provided the best results; the full result tables are available in
Appendix 2.

For both noun and verb targets, distinguishing between
degrees of concreteness in Figures 5, 6 is performed best when
applying the neighbourhood density measure TC: the strength of

distributional similarity between a target word and its strongest
context words distinguishes between the most abstract and the
most concrete words with a precision of up to 0.79 for nouns and
0.67 for verbs, respectively. This means that the distributionally
most similar context words in relation to a target are most
indicative of the target’s concreteness, and the higher this average
vector-space similarity is, the more concrete are the target words.
The next-best variants differ across the two POS types of our
targets: for noun targets, the density measures are generally
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FIGURE 7 | Pair-wise precision results for hypernymy of nouns relying on an N-V-A vector space. Densities take only nouns as context/neighbour words into account.

FIGURE 8 | Pair-wise precision results for hypernymy of verbs relying on an N-V-A vector space. Densities take only nouns as context/neighbour words into account.

better than the baseline, weeds-token/-type and entropy, with
density-NN representing the worst of the four density variants;
for verb targets, the other density variants are at most en par
with the baseline, weeds-token/-type and entropy, and overall
the density variants are worse than for nouns, while the other
measures perform better distinctions than for nouns. I.e., the
baseline, weeds-token and entropy achieve 0.46/0.42/0.53 for
nouns and 0.54/0.54/0.57 for verbs; for nouns the frequency
baseline is even below the random baseline of 0.5. An additional
insight from the figures is that in the vast majority of cases the
strongest five or ten contexts/neighbours are the most indicative

of their degrees of concreteness: in most cases the results
worsen when more contexts/neighbours are taken into account.
Including as contexts/neighbours only nouns/same-POS words
(as in Figures 5, 6, cf. footnote 3) vs. nouns, verbs and adjectives
(see “all” in the full result tables in the Appendix) does not seem
to strongly influence the qualities of the distinctions.

The prediction of hypernymy in Figures 7, 8 provides a totally
different pattern of results. For both noun and verb targets the
best results are achieved by the frequency baseline (0.73/0.71),
entropy (0.72/0.71), and the WeedsPrec variants: 0.72/0.73 for
weeds-token and 0.73/0.71 for weeds-type, in comparison to
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FIGURE 9 | Results across combinations of concreteness ranges for nouns.

the best density variants (for noun targets and density-NN-
5: 0.52; for verb targets and density-NN-10: 0.56). Overall, most
of the density-based results hardly beat the random baseline (0.5).
Furthermore, the tendency that the density-based distinction
results decrease when taking more context/neighbour words
into account is visible only in some variants, and also not
as clearly as in the results for distinguishing between degrees
of concreteness.

4.2.2. Strength of Abstraction
Following the main set of experiments we now zoom into
the role of differences in results according to the strengths
of concreteness and the levels of hypernymy. We hypothesise
that the measures are more or less successful with respect to
how “different” the concrete and abstract words are in their
degrees of concreteness, and how “different” the hypernyms and
hyponyms are in their degrees of specificity. We once more
compare the baseline, weeds-token/-type, and entropy; for the
neighbourhood variants we present the results relying on the 10
strongest context/neighbour words, because these proved rather
successful and stable in the main experiments, and here we
are not interested in the best results but rather in tendencies
across subsets.

Figure 9 shows the results4 across four sets of combinations
of concreteness degrees for nouns. Note that we use the interval
[0.4; 0.8] for precision values on the y-axis, for better visibility
of trends and differences in results. The left-most set of results
compares the distinctions between the most abstract and the
second most abstract 20% of the targets, then the second and
the third most abstract 20% of the targets, etc. So in this first set,
the distances between concreteness degrees are identical (i.e., we
use adjacent levels), but the concreteness ranges of the involved
subsets differ. We can see that for the best three measures
(densities TC, CC and TN) there is a slight upward trend which

4Note that even though the precision scores are discrete, we use lines to illustrate

the results, for better visibility and comparison.

only drops for a mid-range comparison (subsets 3–4), even
though we always look at adjacent levels. The four measures
frequency, entropy and weeds-token/-type are better for mid-
range nouns than for extremely abstract/concrete nouns but
overall obtain lower precision values than the above three density
variants. Density-NN shows the most idiosyncratic pattern of
results, with mid-range precision values.

When comparing the results for nouns with increasing
differences in concreteness degrees (see second, third and forth
sets of results, using reference labels 1, 2, and 3), we can clearly
see that for the four density variants the task becomes easier
(and, accordingly, the results of the best measures improve) with
stronger differences in concreteness scores. The overall best result
(0.77) is obtained when distinguishing between nouns in levels 1
vs. 5, which represents the strongest difference in concreteness
scores and is therefore similar to the previous extreme-range
distinctions in the main experiments. The measures frequency,
entropy and weeds-token/-type also show a slight increase in
precision values but then drop for every comparison involving
the most extreme concrete nouns (i.e., set 5).

Regarding abstraction measures, our insights from the main
experiments are confirmed: for distinguishing between degrees
of noun concreteness, the neighbourhood density measure TC
is the best and most consistent in all cases, density-TN and
density-CC are the next-best measures, and density-NN as well
as frequency, entropy and weeds-token/-type represent the least
successful measures.

Figure 10 shows the results across four sets of combinations
of concreteness degrees for verbs. Note that we now use the
interval [0.4; 0.65] for precision values on the y-axis, for better
visibility of trends and differences in results. The left-most set of
results across concreteness ranges for adjacent subsets shows a
less clear pattern than for nouns. Acrossmeasures, the best results
are achieved for the most abstract and for the most concrete
subset combinations (1–2 and 4–5) and drop for themiddle range
combinations (2–3 and 3–4).
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FIGURE 10 | Results across combinations of concreteness ranges for verbs.

When comparing the results for verbs with increasing
differences in concreteness degrees (see second, third and forth
sets of results, again using reference labels 1, 2, and 3), we can see
that the task is once more the easiest for the strongest differences
in concreteness scores. But as for the adjacent-level comparisons
for verb subsets, decisions involving the middle ranges are worse.
Overall, the results are clearly below those for nouns, with a
best result of 0.62 obtained by density-TC when distinguishing
between verbs in levels 1 vs. 5.

Regarding abstraction measures, our insights from the main
experiments are confirmed to some extent: for distinguishing
between degrees of verb concreteness, the neighbourhood
measure density-TC is the best in most cases, and frequency,
entropy and weeds-token/-type are extremely similar to each
other and represent the next-best set of measures, however
clearly below density-TC precision results and not much above
the other density variants. Density-CC seems to be least
influenced by the degree of concreteness, showing similar results
across comparisons.

Figure 11 shows the results across four sets of combinations
of hypernymy levels for nouns. Note that in this case we
use the full interval [0; 1] for precision values on the y-axis.
The left-most set of results compares the distinctions between
pairs of related nouns from adjacent levels of hypernymy.
Please remember that we omit the combinations 1–2, 1–3,
and 2–3 because these sets of pairs contain only 2, 16, and
22 pairs, respectively. Differently to the noun concreteness
distinctions, there seems to be a slight downward trend in
precision. At the same time, there is more up and down
across the level combinations, so the trends are also less
clear overall. What is clearly visible, on the contrary, is that
frequency, entropy and weeds-token/type are by far the best
measures in this left-most set of distinctions for directly

hypernymy-related nouns across levels in the hierarchy (down to
level 11).

Similarly, when comparing the results for related nouns with
increasing differences in hypernymy levels (see second, third
and forth sets of results, again using reference levels 1, 2,
and 3), we can clearly see that also here the task becomes easier
(and, accordingly, the results improve) with stronger differences
in hypernymy levels. While this is clearly true for frequency,
entropy and weeds-token/type, the patterns differ more strongly
for the density variants which mostly show less variability in
results. Similarly to the main results for hypernymy prediction,
we oncemore observe that frequency, entropy and weeds-token/-
type generally represent the best measures, while the density
variants are worse.

4.2.3. Correlations and Interactions

Between Measures
Overall, when looking at the distributions of frequency, entropy,
weeds-token/-type and the neighbourhood densities across
types of abstraction and POS we see how subgroups of the
measures are often extremely similar to each other (and possibly
interchangeable) in terms of predictive power. We now zoom
into correlations and interactions of abstractness distinctions
across abstraction measures, in order to see whether the actual
scores provided by the measures are more or less strongly
correlated with corpus frequency and with each other, and
how they interact and complement each other. For this set
of experiments we thus compare scores for words rather than
binary decisions for word pairs, and as mentioned above we use
our concreteness targets (both nouns and verbs), which provide
scores on a scale, and we use the 329 noun targets from Spreen
and Schulz (1966) because those were rated on a scale for both
concreteness and specificity. We disregard the weeds-token-type
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FIGURE 11 | Results across combinations of hypernymy levels for nouns.

FIGURE 12 | Spearman’s ρ correlations between noun concreteness measures (N-V-A space).

FIGURE 13 | Spearman’s ρ correlations between verb concreteness measures (N-V-A space).

precision measures, as they would require setting additional
parameters in order to generate one score out of the two scores
per pair.

4.2.3.1. Correlations

Figure 12 shows the correlations between noun concreteness
scores, corpus frequency, entropy, and our four neighbourhood
density variants (once more relying on k=10). As before, the
measures use N-V-A spaces with a window of 20 words. First
of all, we can see that the concreteness scores using entropy are
strongly correlated with corpus frequency (ρ=0.964), while the
density measures show no or very low correlations with corpus
frequency and entropy, so the density measures produce rather
different scores for abstraction in comparison to frequency and

entropy. Among themselves, the density measures show stronger
agreement on their scores: regarding context densities, CC-
10 and TC-10 correlate strongly (ρ=0.814); regarding nearest
neighbour densities, NN-10 and TN-10, we find ρ=0.719. In
contrast, we see low correlations for NN-10 with CC-10/TC-10
(ρ<0.3), while for TN-10 we find medium-level correlations of
ρ≈0.5 with the two context variants.

Figure 13 shows the correlations between verb concreteness
scores, corpus frequency, entropy and our four neighbourhood
density variants (k=10). As for the nouns, we find extremely
high correlations between corpus frequency and entropy; no
correlations between these two measures and concreteness
scores; strong correlations for CC-10/TC-10 and NN-10/TN-10;
moderate correlations between TN-10 and the context
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variants; and low correlations between NN-10 and the context
variants. Differently to the noun distinctions, we do not find
any correlation between any of the abstraction measures
and concreteness.

Figures 14, 15 look into correlations between abstraction
ratings and abstraction measures for a subset of 226 noun targets
from Spreen and Schulz (1966). These 226 targets represent the
intersection of the nouns in Spreen and Schulz (1966) and our full
concreteness subset Brysbaert et al. (2014). First of all, Figure 14
shows the correlations between the concreteness and specificity
ratings for these 226 noun targets in the two norms. The two
sets of concreteness ratings, which represent the main point
of comparison, strongly correlate (ρ=0.939). Between the two
sets of concreteness ratings and the specificity ratings we find a
lower but still meaningful correlation of ρ≈0.7 for both resources
(Note that Spreen and Schulz (1966) report a correlation of 0.626
between the concreteness and specificity ratings for their full set
of 329 nouns).

As in Figures 12, 15 shows the correlations between noun
concreteness scores, corpus frequency, entropy, and our four
neighbourhood density variants (once more relying on k=10)
for the set of 226 nouns, once more using N-V-A spaces with
a window of 20 words. The overall picture is very much the
same as for our full set of 5,448 target nouns in Figure 12,
for the concreteness ratings in Brysbaert et al. (2014) and
the concreteness and specificity ratings in Spreen and Schulz
(1966), with one exception: frequency and entropy show a
moderate negative correlation with all abstraction rating sets:
−0.47<ρ<−0.41 for both sets of concreteness ratings, and
−0.65<ρ<−0.51 for specificity ratings. The outcome of this
last analysis is in line with what we would have expected (but

FIGURE 14 | Spearman’s ρ correlations between the Spreen and Schulz

(1966) and Brysbaert et al. (2014) ratings for the subset of 226 nouns in the

intersection.

did not happen) to see in all three figures: generally, abstract
nouns are more frequent/entropic than concrete nouns, as we
will also see below in the regression analysis, so we expected a
negative correlation between both frequency and entropy and the
concreteness ratings.

Overall, the correlations for nouns and verbs (and for
our targets and the subset of the targets from Spreen
and Schulz, 1966) show similar patterns regarding strong
frequency–entropy correlations and tendencies in the intra- and
extra-density correlations. We however did not observe any
meaningful correlation between the abstraction measures and
the concreteness scores of our verb targets, while we found
correlations of ρ≈0.3 between the abstraction measures and our
noun ratings. This fits to our insights from the main experiments,
where the pair-wise distinctions for concreteness of verbs were
worse than for nouns, and often similar to a random baseline;
nevertheless we reached precision scores of up to 0.79/0.67 for
nouns/verbs, respectively. For the much smaller set of 226 nouns
from Spreen and Schulz (1966) the picture is similar to that
for our noun targets, but in addition frequency and entropy
show amoderate negative correlation with both concreteness and
specificity ratings.

4.2.3.2. Interactions

The correlation analysis reported in Figure 12 shows a strong
positive relationship for nouns in the N-V-A space between
frequency and entropy as well as between the density variants TC,
CC, TN, and NN. For this reason, we must consider collinearity
issues between the various predictors (features) when modeling
concreteness using linear regression models. In the following
analyses, we will model concreteness (as a continuous value
ranging from 1 to 5) given different feature combinations. After
centering around the mean all the predictors, to test which triplet
of variables best captures variability in concreteness scores, we
run eight independent models and select the one with the highest
adjusted R-squared value, as a measure of explained variance in
the data. For an overview of the performance of the eight models,
see Table 3. The model including entropy, density-TC, and
density-TN (highlighted by bold font) is the one explaining the
highest amount of variance in the concreteness scores (adjusted
R-squared: 13.4%) and does not show any collinearity problem
(VIF<1.64). For this reason, we will focus the following analysis

FIGURE 15 | Spearman’s ρ correlations between ratings and measures for the subset of 226 nouns in the intersection of Spreen and Schulz (1966) and Brysbaert

et al. (2014).
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TABLE 3 | Comparison of model variants processing noun targets in the N-V-A

space, and their explained variance (represented in terms of adjusted R-squared).

Formula Adj. R-squared (%)

freq (ENCOW) + (density-TC × density-TN) 12.5

freq (ENCOW) + (density-TC × density-NN) 11.9

freq (ENCOW) + (density-CC × density-TN) 9.3

freq (ENCOW) + (density-CC × density-NN) 8.1

entropy + (density-TC × density-TN) 13.4%

entropy + (density-TC × density-NN) 12.8

entropy + (density-CC × density-TN) 9.9

entropy + (density-CC × density-NN) 8.5

The dependent variable is concreteness (1–5).

on this model. The results discussed below are also fully in line
with the results in the other sevenmodels fromTable 3. As shown
in Table 4, all three predictors (entropy, density-TC, density-TN)
are highly significant (p<0.0001, after alpha correction because of
multi-comparisons) when modeling the concreteness of a noun.
Words that are more concrete show: significantly lower entropy
scores, higher density-TC and higher density-TN; moreover, the
interaction between the two density measures indicates a positive
overall effect. In the same table, we also report the “relative
importance” of each predictor (normalised to 100%) using the
method developed by Lindeman et al. (1980). This measure
indicates the contribution of each predictor to the total amount
of variance explained by the model. Density-TC by itself explains
68.7% of the variance captured by the model, density-TN 20.7%
and entropy only 7.3%. The contribution of the various features is
very stable acrossmodels and in line with what has been discussed
in the previous sections. When looking at all eight models,
density measures involving contextual information like density-
TC and density-CC always contribute the most, as opposed to
nearest neighbour measures like density-NN and density-TN.

In Table 5, we see similar patterns to those emerged for
nouns also for verbs. Once again, the model including entropy,
density-TC and density-TN is the one obtaining the highest
R-squared value. However, compared to nouns, the explained
variance is extremely low (only 2%). When zooming in on the
effect of the single predictors on concreteness, Table 6 indicates
some differences. The model shows only a strong significant
positive effect of density-TC (p<0.0001; after alpha correction)
indicating that the contextual density of concrete words is higher
than the abstract one. For verbs, entropy (p=0.008), density-TN
(p=0.031) and the interaction between the two density measures
(p=0.910) do not reach significance. Once more, density-TC is
the feature with the strongest effect on concreteness scores, both
for nouns and verbs.

5. DISCUSSION

The previous section provided a series of vector-space
experiments to investigate two conceptual categorisations
of lexical-semantic abstraction (abstractness–concreteness
and generality–specificity) through variants of distributional

TABLE 4 | Linear regression output for the best predictor combination for nouns

in the N-V-A condition: entropy + (density-TC × density-TN).

Estimate Std. error t-value p-value RI (%)

(Intercept) 3.44 0.01 234.91 *** -

entropy −0.11 0.01 −8.53 *** 7.3

density-TC 2.80 0.17 16.76 *** 68.8

density-TN 0.83 0.12 7.07 *** 20.7

density-TC × density-TN 4.45 0.86 5.20 *** 2.3

RI indicates the relative importance (normalised to 100%).

The significance codes are all adjusted because of the 8 multi-comparisons.

Significance codes: *p<0.006, **p<0.001, ***p<0.0001.

TABLE 5 | Comparison of model variants processing verb targets in the N-V-A

space, and their explained variance (represented in terms of adjusted R-squared).

Formula Adj. R-squared (%)

freq (ENCOW) + (density-TC × density-TN) 1.5

freq (ENCOW) + (density-TC × density-NN) 1.2

freq (ENCOW) + (density-CC × density-TN) −0.2

freq (ENCOW) + (density-CC × density-NN) −0.2

entropy + (density-TC × density-TN) 2.0

entropy + (density-TC × density-NN) 1.6

entropy + (density-CC × density-TN) 0.0

entropy + (density-CC × density-NN) 0.0

The dependent variable is concreteness (1–5).

TABLE 6 | Linear regression output for the best predictor combination for verbs in

the N-V-A condition: entropy + (density-TC × density-TN).

Estimate Std. error t-value p-value RI (%)

(Intercept) 2.58 0.02 140.42 ∗ ∗ ∗ -

entropy −0.04 0.02 −2.67 18.5

density-TC 1.21 0.25 4.84 ∗ ∗ ∗ 72.4

density-TN −0.33 0.15 −2.16 9.0

density-TC × density-TN −0.16 1.40 −0.11 0.0

RI indicates the relative importance (normalised to 100%). The significance codes are all

adjusted because of the 8 multi-comparisons.

Significance codes: *p<0.006, **p<0.001, ***p<0.0001.

computational measures. The current section summarises,
interprets and discusses the insights from the empirical
experiments with respect to differences in the conceptual
organisation of English nouns and verbs, and the roles of corpus
frequency, distributional co-occurrence, distributional similarity
and distributional neighbourhoods for mental distinctions
between degrees of semantic abstraction.

Our experiments brought together a variety of distributional
vector-space measures that had previously been applied to
different tasks of lexical-semantic abstraction. We focused on the
two types of semantic abstraction originally suggested by Spreen
and Schulz (1966) and brought back to attention by Theijssen
et al. (2011) and Bolognesi et al. (2020). They distinguished
abstraction in terms of the abstract–concrete dichotomy (e.g.,
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glory is more abstract than banana), and abstraction in terms
of the generality–specificity distinction (e.g., animal is more
abstract than fish). Assuming that a large-scale web corpus
provides an adequate basis for general-language distributional
information, we empirically explored corpus frequency and
corpus co-occurrence as proxies to lexical-semantic meaning
and lexical meaning relatedness. We thereby relied on the
distributional hypothesis (Harris, 1954; Firth, 1957) indicating
that words which are similar in meaning also occur in similar
linguistic distributions.

In this vein, we induced variants of neighbourhood densities
(context-based and neighbour-based), token- and type variants of
the distributional, vector-based inclusion measureWeedsPrec, as
well as word frequency and word entropy, in order to empirically
capture noun and verb target words differing in their degrees of
semantic abstraction. We applied these distributional measures
to distinguish between degrees of abstraction regarding the
abstract–concrete dichotomy as well as regarding the generality–
specificity distinction. Overall, we identified reliable vector-space
measures for both instantiations of lexical-semantic abstraction
(reaching a precision higher than 0.7), but the measures clearly
differed for concreteness vs. hypernymy and for nouns vs.
verbs. In order to distinguish between more and less abstract
words in terms of hypernymy, we found that word frequency
computed on corpus data, word entropy, and the distributional
inclusion measure (originally suggested for hypernymy) were
the most salient predictors, while neighbourhood density
measures could hardly beat the random baseline. In order to
distinguish between more and less abstract words in terms
of concreteness, the neighbourhood density measures were
generally more successful than frequency, word entropy and
distributional inclusion, especially when integrating only the
strongest contexts/neighbours. Among the density measures the
variant that considers the distributional similarity between a
target word and its strongest context words (density-TC) seems
the most appropriate and is also the one with the highest impact
in the regression studies. This overall picture was similar for
concreteness ratings for nouns and verbs, but (i) the precision
scores for verbs were generally lower than for nouns and could
hardly beat the random baseline, and (ii) frequency, entropy and
weeds-token were not much different from (or even better than)
the density variants CC, NN and TN.

As a side line of research we explored differences in
distinctions between degrees of abstraction regarding variants
of vector spaces in the experimental paradigm. While our main
set of experiments did not go into depth regarding this variable,
our full results in the Appendix demonstrate surprisingly
clear differences regarding window size and parts-of-speech
of vector dimensions: Results exploiting vector spaces induced
from a co-occurrence window of ±20 words (in comparison
to only ±2 words) and density variants taking only single-POS
words as contexts/neighbours into account generally provided
the best results. Whether it was more profitable to rely on
noun-only vs. N-V-A (nouns, verbs, adjectives) dimensions
in the co-occurrence vectors depended on the target POS
and type of abstraction: For noun concreteness the N-V-A
spaces seemed more indicative, while for verb concreteness

and noun and verb specificity the noun-only spaces were
more salient.

When zooming into the role of measure-based distinctions
according to the strengths of concreteness and the levels of
hypernymy, i.e., hypothesising that the measures are more or
less successful with respect to how “different” the concrete and
abstract words are in their degrees of concreteness, and how
“different” the hypernyms and hyponyms are in their degrees of
specificity, our insights from the main experiments were largely
confirmed and partially even strengthened: The stronger the
differences in concreteness, the better the quality of distinctions
in terms of precision. While this is true for both noun and
verb targets, the picture was again clearer for nouns than for
verbs; in the latter case, distinctions for target verbs involving
the mid-range scale of concreteness were worse than those
involving any of the extreme ranges. Taking into account that the
concreteness ranges for verbs in the mid-range subsets are rather
small ([2.0; 2.3] for subset 2; [2.3; 2.6] for subset 3; and [2.6; 3.1]
for subset 4), this tendency is reasonable because concreteness
scores from different subsets were still rather similar to each
other. Also, mid-range concreteness scores are generally more
difficult in their generation by humans and consequently noisier
in their distributional representation (Pollock, 2018). Finally,
verbs are generally more ambiguous than nouns, especially when
their semantic properties have been evaluated out of context,
and furthermore perception-based concreteness ratings might
not be as appropriate for verbs as they are for nouns. Regarding
abstraction measures, our zooming-in experiments confirmed
that the target–context measure density-TC is the best one for
predicting abstraction in terms of concreteness, while frequency,
entropy and weeds-token/-type are the best ones for predicting
abstraction in terms of hypernymy.

A final study looked into correlations between concreteness
and specificity ratings, the abstraction measure, and their
interactions. These correlations confirmed that corpus frequency
and word entropy measure abstraction in a similar way, and
ditto for the context-based density measures CC and TC and the
neighbour-based density measures NN and TN (while density-
NN seems to differ most from the other density variants).
Moreover, based on a series of regression studies, we confirmed
that density-TC is the strongest option to quantify concreteness
both for nouns and for verbs.

Bringing together our results across experiments, we can
identify two groups of measures, (i) frequency and word entropy,
whose distinctions are correlated and which are stronger than
neighbourhood density measures when distinguishing between
more and less abstract words in terms of the generality–specificity
distinction, and (ii) the neighbourhood density variants, which
are stronger than group (i) when distinguishing between more
and less abstract words in terms of the abstractness–concreteness
dichotomy. The distributional inclusion variants of WeedsPrec
cluster together with frequency and entropy, and are clearly more
useful for hypernymy than for concreteness. Regarding group (i),
the relationship between frequency, word entropy and the lexical-
semantic relation hypernymy has been demonstrated before
(Shwartz et al., 2017; Bott et al., 2021), and our experiments
confirmed this strong interaction across a variety of experimental
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conditions regarding strength of hypernymy. Regarding group
(ii), we effectively and successfully exploited the usefulness
of neighbourhood density measures that had previously been
suggested and applied to different instantiations of lexical-
semantic abstraction. At the same time we demonstrated that
there are indeed conceptual differences between the measures
that result in different distinction qualities for our two target
types of abstraction.

Now let us look at these empirical results and insights from
a conceptual perspective. First of all, we can induce from our
results that lexical-semantic abstraction in terms of generality
in the human lexicon is mirrored by how often we use words,
which itself is highly correlated with the words’ entropy values.
While this is neither surprising nor novel, one might not have
expected such a clear picture over diverse settings regarding
degrees of generality. That is, more general words are used more
often and are therefore also less surprising. The density measures
do not seem appropriate to model the generality–specificity
distinction, thus indicating that they do not capture degrees of
semantic relatedness (which is taken into account by the vector
similarity variants of WeedsPrec, for example). Secondly, we can
induce from our results that contextual diversity/neighbourhood
density is a strong indicator of lexical-semantic abstraction in
terms of concreteness. Given that density-TC seems to represent
the overall most salient measure, we may induce that abstract
words establish themselves empirically in semantically more
diverse contexts than concrete words, thus abstract concepts are
lexically connected to more different concepts, while concrete
concepts are lexically connected to less diverse but on the
other hand semantically more strongly associated concepts,
and these semantically most indicative associated words are
predominantly represented by nouns. In this vein, lexical entries
of abstract and concrete words may be refined with respect
to their tendencies to co-occur with more or less highly
distributionally similar, and consequently—according to the
distributional hypothesis—also more or less semantically related
words (nouns). The differences in the success of the abstraction
measures regarding our two target types of semantic abstraction
seems directly related to a core distinction: while words differing
in their degree of concreteness are not necessarily semantically
related (e.g., glory–banana), words differing in their degree
of specificity (e.g., animal–fish) are, at least with regard to
hypernymy inWordNet. Overall, our insights should generally be
useful for computational models exploiting degrees of semantic
abstraction, such as standard classification approaches and topic
models, and similarly for more complex computational systems
where the degree of contextual abstraction plays a role, such as
figurative language detection, text simplification, summarisation,
and machine translation.

Our experiments also point out once more that distributional
measures, distributional similarity and distributional semantic
relatedness differ across word classes. On the one hand,
concreteness and hypernymy represent two lexical-semantic
types of abstraction, and therefore their organisation is also
defined in different ways in the respective resources. That
is, concreteness scores had been collected on a word-type
basis, where participants were not provided a part-of-speech
categorisation and part-of-speech tags were assigned post-hoc.

Even though we applied a rather restrictive procedure to
POS label identification and discarded ambiguous words, this
basis is sub-optimal for any word-class-dependent analyses: we
calculated Spearman’s ρ correlation for the POS assignment
based on SUBTLEX (Brysbaert et al., 2012) and our ENCOW-
based procedure, obtaining ρ=0.624 for our noun targets and
ρ=0.750 for our verb targets, which we consider as rather low
and pointing to an undesired disagreement in POS assignment.
On the other hand, all our studies have been on a type-
basis: vector spaces and concreteness ratings are type-based, and
while WordNet does distinguish between word senses, we only
indirectly used this option, because we utilised all senses in
word pairs, but we did not distinguish between senses. This is
more crucial for verbs than for nouns, which are notoriously
more ambiguous. Overall, future work should therefore target
contextualised, token-based distributional representations and
sense-based abstraction ratings.

6. CONCLUSION

In this article, we provided a series of empirical studies
that investigated conceptual categories of semantic abstraction
through distributional variants of abstraction measures. We
distinguished abstraction in terms of the abstract–concrete
dichotomy and in terms of the generality–specificity distinction,
and brought together a variety of distributional measures that
had previously been applied to different tasks of lexical-semantic
abstraction. We thus suggested a novel perspective that exploited
empirical measures across two types of semantic abstraction,
in order to compare the strengths and weaknesses of the
measures for categorisations of abstraction, and to determine and
investigate conceptual differences as captured by the measures.

In a series of experiments we identified reliable vector-space
measures for both instantiations of lexical-semantic abstraction
(reaching a precision of >0.7), and we demonstrated that
the measures clearly differed for concreteness vs. hypernymy
and for nouns vs. verbs. We could identify two groups
of measures, (i) frequency, word entropy and weeds-token/-
type when distinguishing between more and less abstract
words in terms of the generality–specificity distinction, and
(ii) the neighbourhood density variants (especially target–
context diversity, with nouns providing the most salient context
words) when distinguishing between more and less abstract
words in terms of the abstractness–concreteness dichotomy.
We concluded that more general words are used more often
and are therefore also less surprising than more specific words,
and that abstract words establish themselves empirically in
semantically more diverse contexts than concrete words, i.e.,
abstract concepts are lexically connected to more different
concepts, while concrete concepts are lexically connected to
less diverse but at the same time semantically more strongly
associated concepts.

Finally, we demonstrated the need to take word classes and
ambiguity into account. On the one hand, results for nouns vs.
verbs clearly differ, and both ratings and vector spaces should
take semantic differences between word classes into account; on
the other hand, ambiguity (which is more severe for verbs than
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for nouns) prevents from fine-tuning empirical observations
and conclusions.
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