
A Method for Pattern Application
based on Concrete Solutions

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Michael W. Falkenthal

aus Böblingen

Hauptberichter: Prof. Dr. Dr. h. c. Frank Leymann

Mitberichter: Univ. Prof. Dr. Schahram Dustdar

Tag der mündlichen Prüfung: 01. Februar 2024

Institut für Architektur von Anwendungssystemen

2024

Contents

1 Introduction and Motivation 13
1.1 Research Challenges and Contributions 21
1.2 Summary of the Contributions 27
1.3 Scientific Publications 28
1.4 Structure of the Thesis 31

2 Fundamentals and Related Work 33
2.1 Patterns, Pattern Languages, and Pattern Application . . 34
2.2 Formalization of Pattern Languages and Pattern Aggre-

gation . 38
2.3 Pattern Application and Reuse of Implementations . . . 40
2.4 Patterns and Frameworks 45
2.5 Pattern Libraries and Pattern Repositories 48
2.6 Limits in Pattern Application 51

3 The EINSTEIN-Method 55
3.1 Roles participating in the EINSTEIN-Method 56
3.2 General Prerequisites and Requirements 57
3.3 Steps of the EINSTEIN-Method 61
3.4 Implementation of the EINSTEIN-Method 75

3

3.5 Chapter Conclusion 77

4 Pattern Languages and Pattern-based Design 79
4.1 Pattern Languages as Graphs 80
4.2 Pattern Refinement . 88
4.3 Pattern-based Designs 98
4.4 Pattern-based Design Models 101
4.5 Implementation of the Design Model Concept 102
4.6 Chapter Conclusion 103

5 Reuse of Pattern Implementations as Concrete Solutions 105
5.1 Concrete Solutions . 106
5.2 Formalization of Concrete Solutions 110
5.3 Accessing Concrete Solutions via Selection Criteria . . 115
5.4 Requirements and Capabilities 117
5.5 Pattern Graph with Connected Concrete Solutions . . . 119
5.6 Solution Models . 121
5.7 Chapter Conclusion 124

6 Aggregation of Concrete Solutions 127
6.1 Solution Algebras . 128
6.2 Solution Languages and Concrete Solution Aggregation

Descriptors . 135
6.3 Concrete Solution Aggregation Programs 139
6.4 Chapter Conclusion 147

7 Semi-Automated Aggregation of Concrete Solutions 149
7.1 Concept of a Toolchain to support the EINSTEIN-Method150
7.2 Algorithmic approach to implement the semi-automated

Aggregation of Concrete Solutions 154
7.3 Discussion . 158
7.4 Chapter Conclusion 160

8 Toolchain and Validation 163
8.1 Prototypes to support the EINSTEIN-Method 164

4

8.2 Validation . 167
8.3 Chapter Conclusion 178

9 Conclusion and Outlook 181

Bibliography 185

List of Figures 209

List of Symbols 211

List of Algorithms 217

List of Definitions 219

5

Zusammenfassung

Muster und Mustersprachen haben sich in vielen Domänen zu wertvollen
Werkzeugen zur Repräsentation von bewährten Lösungen für oft
wiederkehrende Probleme etabliert. Die Anwendung von Mustern ist
in der Praxis jedoch mit einigen Herausforderungen verbunden. So ist es
beispielsweise schwierig, die richtigen Muster für ein Problem zu finden.
Zudem ist die Anwendung von Mustern oft mit einem hohen manuellen
Aufwand verbunden, da die Abstraktion von Implementierungsdetails
beim Verfassen der Muster dazu führt, dass Musterimplementierungen
nicht systematisch wiederverwendet werden können. Dies führt dazu, dass
Muster zwar bewährtes Wissen für konzeptionelle Lösungen liefern, diese
jedoch stets manuell implementiert werden müssen, wenn sie in einem
bestimmten Anwendungsfall verwendet werden. Insbesondere das Zusam-
menspiel von Mustern in Mustersprachen führt so zu hohem manuellen
Aufwand bei der Umsetzung komplexer Anwendungsfälle.

In dieser Arbeit wird deshalb ein Ansatz vorgestellt, welcher die Anwen-
dung von Mustern in der Praxis erleichtern soll. Der Ansatz basiert auf
der Idee, dass Implementierungen von Mustern als konkrete Lösungen
vorliegen, die bei der Umsetzung von Anwendungsfällen direkt wiederver-
wendet werden können. Dazu wird mit der EINSTEIN-Methode ein Rah-

7

men geschaffen, der die systematische Speicherung konkreter Lösungen
für deren Wiederverwendung ermöglicht. Die Methode nutzt Muster-
basierte Entwurfsmodelle zur Modellierung konzeptioneller Lösungen,
welche anschließend semi-automatisiert in konkrete Lösungen überführt
werden können. Dabei wird die Verfeinerung von abstrakten Mustern
über technologisch spezifischere Muster in Richtung konkreter Lösungen
unterstützt. Basierend auf einer Formalisierung von Mustersprachen als
Graphen werden Mustergraphen mit verbundenen konkreten Lösungen
eingeführt, welche die systematische Wiederverwendung konkreter Lö-
sungen ermöglichen. Da Muster oft in Kombination verwendet werden,
wird ein Ansatz zur automatischen Aggregation konkreter Lösungen mit-
tels Aggregationsoperatoren vorgestellt. Dabei wird mit Lösungssprachen
zunächst ein Ansatz präsentiert, der die manuelle Aggregation konkreter
Lösungen zu einer Gesamtlösung unterstützt. Für die Wiederverwendung
konkreter Lösungen wird ein iterativer IT-gestützter Ansatz vorgestellt, der
es ermöglicht, Muster in Entwurfsmodellen mit konkreten Lösungen zu
ersetzen. Daraus entstehende Lösungsmodelle können dann mittels Ag-
gregationsoperatoren zu einer Gesamtlösung aggregiert werden. Für die
Automatisierung der Aggregation konkreter Lösungen werden Lösungsal-
gebren eingeführt, die es erlauben anhand von Aggregationsoperatoren
mathematische Strukturen über der Menge an konkreten Lösungen zu
definieren, wobei Aggregationsoperatoren für die automatisierte Aggre-
gation konkreter Lösungen als Lösungsaggregationsprogramme imple-
mentiert werden können. Diese ermöglichen es, Lösungsmodelle semi-
automatisiert zu Gesamtlösungen zu aggregieren, wofür ein Algorith-
mus vorgestellt wird. Die praktische Umsetzbarkeit der vorgestellten An-
sätze sowie die Übertragbarkeit der EINSTEIN-Methode auf verschiedene
Domänen wird durch den Entwurf einer Werkzeugumgebung und anhand
entwickelter Werkzeugprototypen dargelegt. Abschließend wird die An-
wendbarkeit der vorgestellten Konzepte anhand von Validierungsszenarien
in verschiedenen Domänen gezeigt.

8

Abstract

Patterns and pattern languages have become valuable tools in many do-
mains for representing proven solutions to frequently recurring problems.
However, the use of patterns presents some challenges in practice. For
example, it is often difficult to find the right patterns for a problem at
hand. In addition, the application of patterns often involves a lot of manual
effort, since the abstraction of implementation details when writing the pat-
terns means that pattern implementations cannot be systematically reused.
As a result, although patterns provide proven knowledge for conceptual
solutions, they always have to be manually transformed into concrete im-
plementations when a pattern is used in a specific use case. In particular,
the interaction of patterns in pattern languages, thus, leads to high manual
effort when implementing complex use cases.

Therefore, in this thesis an approach is presented which aims at facilitating
the use of patterns in practice. The approach is based on the idea that
implementations of patterns are kept available as Concrete Solutions that
can be directly reused in the implementation of use cases. To this end,
the EINSTEIN-Method provides a framework for systematically storing
concrete solutions for their reuse. The method uses Pattern-based Design
Models to model conceptual solutions, which can subsequently be trans-

9

formed into concrete solutions in a semi-automated way. This involves
supporting the refinement of abstract patterns via more technologically
specific patterns towards concrete solutions. Based on a formalization
of pattern languages as graphs, Pattern Graphs with connected Concrete
Solutions are introduced, which enable the systematic reuse of concrete
solutions. Since patterns are often used in combination to solve complex
problems, an approach for automating the aggregation of concrete solu-
tions using Aggregation Operators is presented. In addition, the principle
of pattern languages is also projected to the space of concrete solutions
and, thus, with Solution Languages an approach is presented that also sup-
ports the manual aggregation of concrete solutions to an overall solution.
For the reuse of concrete solutions, an iterative IT-supported approach is
presented that allows to replace patterns in design models with concrete
solutions. Resulting Solution Models can then be aggregated to an overall
solution using aggregation operators. For automating the aggregation of
concrete solutions, Solution Algebras are introduced that allow mathe-
matical structures to be defined over the set of concrete solutions. For
automating the aggregation of concrete solutions, it is also shown how
the concept of aggregation operators can be implemented as Solution Ag-
gregation Programs. These allow solution models to be aggregated into
overall solutions in a semi-automated manner controlled by the user. For
the identification of potential aggregation steps in a solution model, an
algorithm is presented that supports the user in the selection of concrete
solutions to be aggregated in the solution model.

For the transferability of the EINSTEIN-Method into different domains, a
tool environment is conceptually described. The practical feasibility of the
presented approaches as well as the tool environment is demonstrated by
an overall architecture and various tool prototypes. Finally, the feasibility
of the presented concepts is shown by means of validation scenarios in
different domains.

10

Acknowledgements

First of all, I would like to thank Prof. Hon.-Prof. Dr. Dr. h. c. Frank
Leymann for his support and guidance while working on this dissertation.
He brought me to the University of Stuttgart and thus enabled me to conduct
the research presented in this thesis. It has been my privilege to be part of
the Institute of Architecture of Application Systems and I am grateful for
the many opportunities and experiences it has provided me. Furthermore,
I would also like to thank Prof. Dr. Schahram Dustdar for taking on the
second reviewer position. Many thanks go also to my colleagues at the
Institute of Architecture of Application Systems who supported me during
my time at the University of Stuttgart and beyond. In particular, I would
like to thank Prof. Dr. Uwe Breitenbücher and Dr. Oliver Kopp, with
whom I have developed a close friendship over the years. With them I
was able to have many interesting discussions late into the night, and they
always challenged but also always supported me in my research work. I
would like to dedicate this thesis to the people in my life who made it
possible for me to follow the path that led me to this thesis – my parents
Monika and Klaus Falkenthal. Finally, I would also like to dedicate this
work to my family, who grew up during the dissertation, my children Henri
and Lotta Falkenthal, and especially my wife Julia Falkenthal. They have
always been the rock of my life while working on this dissertation.

11

C
ha

pt
er 1

Introduction and Motivation

Pattern languages, originally introduced by Alexander et al. [AIS77] in
the domain of building architecture, evolved during the last decades in
many domains to powerful means for documenting and communicating
knowledge about proven solutions for frequently recurring problems. In his
work, Alexander defines patterns by the following characteristics: “Each
pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without
ever doing it the same way twice” [AIS77, p.x]. Thereby, “the pattern
is, in short, at the same time a thing, which happens in the world, and
the rule which tells us how to create that thing” [Ale79, p.247]. Thus,
patterns encapsulate knowledge about designs that have proven to solve
problems we are often faced within specific contexts. Moreover, patterns
are interwoven to pattern languages, i.e., to networks of patterns that help
to solve more complex and holistic problems [Koh10]. Such connections
of patterns offer generativity that goes far beyond isolated patterns. In this
sense, they are capable of creating entire structures [AIS77; App97].

13

1 Introduction and Motivation

This is why throughout the years a manifold of pattern languages has been
authored in many different domains. For example, pattern languages de-
scribe, among others, how costumes can be used in films to communicate
certain character traits, moods or character stereotypes in the humani-
ties [Bar18]. Further, pattern languages from the domain of educational
sciences describe how creative learning [IM10] can be supported or how
good teaching [Ant96] can be carried out. In addition, there also exist
pattern languages for surviving earthquakes [FSS+13] or to purposefully
manage challenges due to ongoing societal change [FHM+15]. Domains,
where pattern languages got also prevalent, are computer science and
information technology. For example, looking at designing application sys-
tems one can identify a variety of available pattern languages dealing with
this topic. Moreover, there are pattern languages dealing with message-
based integration of application components [HW04], the interplay of
Internet of Things devices [RBF+16; RBF+17a; RBF+17b; RBF+17c;
RBF+19; RFBL17], the development of cloud-native application compo-
nents enabling them to scale for alternating workloads [FLR+14]. Also
new emerging technologies, such as quantum computing, are covered
by pattern languages [BBB+23; BBL+22; WBLS20; WBLS21]. Thus,
it is a common approach for practitioners to design applications based
on available languages, which is not least evident from the book series
Pattern-oriented Software Architecture [BMR+96].

Consequently, patterns are a powerful means to solve frequently recurring
problems because they capture the essence of many proven solutions in
an abstract way, i.e., technology and implementation agnostic [AIS77;
Ale79]. Thus, the solutions described in pattern documents are not limited
to specific use cases or setups but rather enable to transfer the captured so-
lutions principles to individual situations. However, although this principle
promotes broad reusability, it also opens up challenges in using patterns
and pattern languages. E.g., this can be attributed to the fact that pattern
implementations are lost during the authoring process of patterns, although
they might be helpful when applying patterns later. Thus, while concrete
implementations are sometimes described textually in pattern sections such

14

Identify
Abstract
Author

Study preserved knowledge
in Pattern Language

Selection of Solution Path
to solve problem at hand

Manual Implementation of
Concrete Solutions and
their aggregation

4

3

2

1

P2
P3

P5

P6

P1 P4

P2
P3

P5

P6

P1 P4

Observe concrete implementations
and capture solution principles into
Pattern Language P2

P3
P5

P6

P1 P4

???

Figure 1.1: Current state of the art of pattern application

as Known Uses or Examples [MD97] or in the form of (pseudo) program-
ming code in the domain of IT, the actual implementations are not captured
in the patterns themselves. This shortcoming is conceptually depicted in
Figure 1.1, where proven solution principles are identified on the basis of
concrete implementations and then abstracted and authored into patterns
and pattern languages in Step 1. Those pattern languages can then be used
to solve recurring problems that are addressed by one or several patterns
or their interplay, respectively.

Due to the abstract nature of the captured solution knowledge in the pat-
terns they can be applied for many different use cases because they are not
bound to specific technologies, tools, or environmental constraints [AIS77;
Ale79]. However, for purposefully applying a pattern language it has to
be closely studied beforehand, such that especially the interplay of the
patterns is grasped and understood as depicted in Step 2. When applying
a pattern language an user has to find and select matching patterns that

15

1 Introduction and Motivation

typically solve his or her problem at hand in combination. Such a selec-
tion results in pattern sequences or so-called solution paths [Zdu07] or
solution graphs [FBB+15], respectively, as shown in Step 3 in Figure 1.1.
It has to be noted that these selected patterns provide solution principles
on the conceptual level and have to be implemented for a concrete use
case at hand. However, since concrete implementations typically get lost
during the authoring process of the patterns, the initially investigated solu-
tion artifacts cannot be reused for pattern application. The patterns must,
therefore, be implemented for each application manually as indicated in
Step 4 of Figure 1.1. This also applies to use cases in which previous
implementations could be reused. All this leads to an immense amount of
time spent applying patterns [FBB+14a; FBB+14b], often accompanied
by implementation mistakes that could be prevented if pattern implemen-
tations could be reused and improved over time – the same way patterns
themselves strive for reusability of proven knowledge. According to this,
the concept of pattern languages currently only supports conceptually solv-
ing problems and designing solutions but is decoupled from the level of
the actual implementation.

This is where the vision of this thesis is heading to overcome the discon-
nection of conceptual pattern-based solution designs from their actual
implementation. The core idea is to establish guidance for pattern applica-
tions as depicted in Figure 1.2. Instead of leaving users alone after selecting
patterns, the implementation of the patterns should be supported.

The vision of this thesis, as shown in Figure 1.2, therefore, strives for
supporting the user after Step 3. Thereby, rather than studying patterns
and applying them manually users can utilize the selected patterns to
conceptually design the desired solution to solve the problems at hand,
which is shown in the differently shaped Step 4 in Figure 1.2 in contrast to
Figure 1.1. Thereby it is important that the selected patterns represent real
entities from the domain addressed by the pattern language. They describe
an entity, which is ultimately part of the system to be built and at the same
time, abstractly, how the entity itself is built [Ale79]. Such patterns are
referred to as generative patterns in contrast to non-generative patterns,

16

Selection of Solution Path to
conceptually solve problems

Selection of Concrete Solutions6

3
P2

P3
P5

P6

P4P1

S

S

S

S

S

S

Generation of
Aggregated Concrete Solution7

Implementation-specific
Pattern Refinement

5

Modeling of Context-specific
Conceptual Solution Design

4

P2

P3 P5 P6
P2

P3
P5

P6 Design

P2’ P5’

P2

P3 P5 P6

Refine
P2’

P3 P5’ P6

P2’

P3 P5’ P6

S

S

Identify
Abstract
Author

Study preserved knowledge
in Pattern Language2

1

P2
P3

P5

P6

P1 P4

Observe concrete implementations
and capture solution principles into
Pattern Language P2

P3
P5

P6

P1 P4

Figure 1.2: Vision of pattern application based on the selection of concrete
solutions and their aggregation

17

1 Introduction and Motivation

which just describe phenomena without providing hints about how to solve
or reproduce them [App97]. The conceptual design of solutions on the
basis of patterns transforms the solution path into a model that represents
the interplay of the selected patterns according to the real problem to be
solved. This means that the connections between the patterns are enriched
and supplemented by semantics that is specific to the domain of the use case.
In this way, the patterns are arranged according to the actual context and
requirements a user is confronted with. This is necessary, e.g., if a pattern
serves as the basis for the succeeding patterns in a selected solution path.
Depicted in Step 4 of Figure 1.2, the entities represented by the patterns
%3 and %5 are interrelated with %2. This connection explicates domain-
specific semantics in the designed conceptual solution. Furthermore, if
multiple instances of a pattern are required in the intended target solution
design this has to be specified in such a model. Thus, the solution path
has to be translated into an interplay of patterns representing the desired
system configuration.

In some cases, pattern languages exist that allow to refine such conceptual
solution designs via patterns that capture solution principles that describe
more specific implementation contexts. Thus, a user can replace more
abstract patterns with those that explain how to elaborate implementations
of the pattern closer to actual implementations. The refinement of the
two patterns %2 and %5 by the patterns %2′ and %5′ is illustrated in Step 5
of Figure 1.2. This allows to reduce the gap towards the concrete imple-
mentations of solution concepts described by patterns. An example for
this principle can be found in the interplay of the technology-agnostic
patterns by Fehling et al. [FLR+14] and the more technology-specific ones
by Amazon Webservice [Ama13] and Homer et al. [HSB+14]. Patterns
from the latter pattern languages can be used to refine patterns by Fehling
et al. [FLR+14] towards the respective cloud environments from AWS
and Microsoft. In that respect, a user can receive implementation advice
regarding the technical context of these cloud offerings and update the
conceptual design by the more specific patterns.

18

Finally, to overcome the disconnection between conceptual solutions cap-
tured in patterns and their actual implementations for specific use cases,
Concrete Solutions are introduced which are captured along with the pat-
terns they implement. This is depicted in Step 6 of Figure 1.2. Once a
pattern is implemented the developed artifacts implementing the pattern
can be stored to be reused later. Concrete solutions enable to reduce efforts
for the application of patterns because they either can be reused directly
or at least they can provide a basis for the implementation of a pattern
for a specific use case, which also supports reusability of proven artifacts.
Furthermore, by keeping concrete solutions connected with the patterns
themselves they can evolve over time in quality by reuse. This is because
they can be reused and improved each time a pattern needs to be applied.
Of course, concrete solutions of a single pattern can vary significantly
depending on technical requirements and implementation contexts. An
example are implementations in different programming languages. This
creates more and more concrete solutions over time, which have to be man-
aged to reuse them appropriately according to different problems, technical
circumstances, and requirements of an user.

Therefore, as part of the vision if this thesis, it is also important to propagate
the principle of combining patterns to the level of concrete solutions. This
is illustrated in Figure 1.2 in the succeeding and final Step 7. To this
end, a mechanism to ease the aggregation of concrete solutions to overall
solutions is envisioned. For this purpose, Aggregation Operators that
provide domain-specific logic to assemble concrete solutions and generate
an implementation of the formerly specified interplay of patterns in the
conceptual solution design are used. Thus, by selecting concrete solutions
and aggregating them, the conceptual solution design is converted into an
implementation, which can then be refined and adapted manually.

To summarize, the vision of this thesis targets systematically reusing ex-
isting implementations of patterns rather than redeveloping them every
time a pattern is applied. This supports a change in the way patterns
are applied for use cases at hand and aims for easing their application.
Moreover, it shifts the focus from spending efforts for the recurring design

19

1 Introduction and Motivation

and construction of pattern implementations towards finding and reusing
appropriate concrete solutions connected to patterns and aggregating them.
This enables that new implementations of patterns in the form of concrete
solutions can be subjected to the same quality assurance and improvement
over time as the solutions that originally led to patterns. Since the findings
and results of this thesis primarily stem from the analysis of patterns from
the IT-domains of application architecture and cloud computing, the contri-
butions and concepts will be explained and discussed mainly in this context.
However, to demonstrate the transferability of the presented concepts to
other domains, they will also be applied and discussed in the non-IT area
of Costumes in Films.

20

1.1 Research Challenges and Contributions

1.1 Research Challenges and Contributions

Challenge 1: The Need for a methodical Approach for Applying Patterns
based on Concrete Solutions and their Aggregation

As motivated above, there is currently a lack of reuse of concrete solutions
at the time of pattern application. Consequently, there is also a lack of a
fundamental methodical approach that allows to leverage the connection
between patterns and their implementations to establish, ease, and guide
reuse of the latter. Thereby, it has to be considered that patterns are typically
applied in combination rather than as single solutions. More precisely, pat-
terns are often used as interwoven artifacts in conceptual solution designs.
Therefore, it is inevitable to reflect this fact in a methodical framework that
enables to capture besides concrete solutions also documentation and, if
applicable, proper logic and programs allowing to automatically aggregate
concrete solutions. This must enable the translation of pattern-based con-
ceptual solution designs, which specify the combination of patterns, to the
level of concrete solutions along with mechanisms enabling to aggregate
them as intended by the pattern-based solution design. Furthermore, to
leverage the reusability of concrete solutions, the aggregation of them has
to be automated.

Contribution 1 (The EINSTEIN-Method) In this work, the
EINSTEIN-Method (pattern application based on concrete solutions)
for applying patterns supported by means of concrete solutions, which
are concrete implementations of patterns, and their aggregation is pre-
sented. The EINSTEIN-Method is based on a formalization of pattern
languages as Pattern Graphs with connected Concrete Solutions. The
concrete solutions are stored along with Aggregation Descriptors and
Aggregation Operators forming Solution Languages. Thereby, aggrega-
tion operators represent domain-specific logic that enables to combine
concrete solutions. The individual building blocks are further detailed
in the next contributions of this work.

21

1 Introduction and Motivation

Challenge 2: Design Modeling based on Patterns from different Pattern
Languages

Pattern languages typically cover a limited scope of problems and solutions
in a domain and, therefore, provide a strict network of patterns. However,
since the design of solutions is mostly an endeavor that requires expertise
from many different perspectives, different pattern languages from different
domains typically have to be used in combination to develop comprehensive
solutions [FBL18]. But since authored in different pattern languages, they
are disconnected from each other in the first place. Therefore, it is essential
to establish an approach that enables to combine pattern languages in the
sense that relations between patterns from different pattern languages can
be captured. This is especially of interest if patterns from different pattern
languages refine each other in terms of details that ease and guide their
realization with different technologies [FBB+15], or if a user requires to
combine patterns from different yet disconnected pattern languages in a
way that was not reflected by the initial languages [WBB+20]. Thereby, it
is also useful to support to reduce the initially vast number of patterns from
different pattern languages to only those that are of interest for solving the
problems under investigation. To systematically reuse concrete solutions it
is necessary to lay a foundation via pattern-based solution designs.

Contribution 2 (Pattern Graphs and Pattern-based Design Models)
As a prerequisite to translate problem solving via pattern languages to
the reuse and aggregation of concrete solutions, a formalization of pat-
tern languages as Pattern Graphs is introduced. Pattern graphs enable
to link patterns, even from different pattern languages, via express-
ing the relations between patterns. Those relations can be enriched
by arbitrary additional structured explanations, which guide users in
applying patterns in combination. These structures are formalized as
typed edges of a pattern graph. As a foundation for expressing solution
designs with patterns, Pattern-based Design Models are introduced as
the conceptual specifications of overall solutions.

22

1.1 Research Challenges and Contributions

Challenge 3: Linking Patterns and Concrete Solutions

To enable the systematic reuse of concrete solutions, all artifacts that form
the concrete solutions have to be gathered and stored. It is important to
note that some kinds of concrete solutions can be directly stored, such as
programming code or configuration files, while for others it is necessary
to create digital representations beforehand. The latter applies typically
to concrete solutions that are tangible in the sense that they are physical
objects, such as costumes in films [FBB+17], or complex concepts, such
as specific intonations and tone sequences in music [BBE+17]. How-
ever, since a pattern can be implemented in many different manners, the
amount of concrete solutions gathered increases over time and can easily
get unmanageable. Therefore, it is important to systematically connect
concrete solutions with the patterns they implement along with additional
information that allows users to purposefully search the set of available so-
lutions [FBB+14a; FBB+14b]. It is not only to support distinguishing the
different concrete solutions but to enable resolving specific requirements
of users by selecting proper concrete solutions of a pattern.

Contribution 3 (Concrete Solution Descriptors and Pattern Graphs
with connected Concrete Solutions) Concrete solutions are the core
means to enable the systematic reuse of pattern implementations as de-
scribed in this work. Therefore, pattern implementations are enriched
by metadata and linked with the patterns they implement to form Pat-
tern Graphs with connected Concrete Solutions. Metadata annotated
to concrete solutions is documented in Concrete Solution Descriptors
capturing requirements, capabilities, and arbitrary selection criteria.
Requirements define circumstances and constraints that have to hold to
apply a concrete solution while capabilities describe features, which
are added by a concrete solution. This means capabilities of a concrete
solution can fulfill requirements of others to generate a concrete solu-
tion aggregate. In addition, selection criteria add metadata to support
the selection of appropriate concrete solutions.

23

1 Introduction and Motivation

Challenge 4: Domain-specific Analysis, Formalization, and Documentation
of Concrete Solution Aggregation

While pattern graphs with connected concrete solutions help in the selec-
tion of concrete solutions of individual patterns, the conversion of pattern-
based design models into comprehensive implementations often requires
the aggregation of concrete solutions of different patterns. This is because
the implementation of pattern-based design models requires the interplay
of concrete solutions associated with the patterns contained in the models.
This is referred to as Concrete Solution Aggregation, i.e., the artifacts of
the concrete solutions are put together to form an aggregate [FBB+14a;
FBB+14b]. However, since artifacts of concrete solutions from different
domains typically differ in their technical realization, a means is required
to systematically analyze and grasp the domain-specific properties and
operations required to aggregate concrete solutions. This is especially
important in all domains where concrete solution aggregation can be au-
tomated. In addition, in areas that are concerned with concrete solutions
that cannot be aggregated automatically, it is necessary to document how
they can be combined for reuse [FBBL17; FL17].

Contribution 4 (Solution Algebras and Solution Languages for
Concrete Solution Aggregation) Aggregation Operators are intro-
duced to capture the logic required for aggregating concrete solutions
according to the conceptual interplay of the patterns they implement.
Aggregation operators are used to define structures on sets of concrete
solutions, which are denoted Solution Algebras. Solution algebras
encapsulate the algebraic properties of concrete solution aggregation
and are specific for different types and domains of concrete solutions.
They are the foundation for systematically describing and implement-
ing aggregation logic. Further, the concepts of Solution Languages
along with Concrete Solution Aggregation Descriptors as documenta-
tion artifacts allowing to systematically keep knowledge about how to
aggregate different concrete solutions are introduced.

24

1.1 Research Challenges and Contributions

Challenge 5: Automating the Selection and Aggregation of Concrete
Solutions to create Solution Aggregates

Concrete solution aggregation descriptors facilitate and guide the aggre-
gation of concrete solutions in areas where it cannot be fully automated.
They provide user readable explanations of how actual aggregations can be
performed. However, in many areas, especially in IT, the concrete solution
artifacts that are created when applying a pattern are typically digital. In
the same course the fast growing number of new base technologies and
products in IT leads to many different pattern applications. Thereby, an
even bigger number of concrete solutions is created, which requires to be
managed and searched in order to enable their systematic and purposeful
reuse. Therefore, it is reasonable to enable and support the automated
selection and aggregation of concrete solutions related to patterns. In prin-
ciple this means that the selection of proper concrete solutions, aggregation
operators, and their execution have to be supported by algorithms and tools.
Thereby, it is important to provide users with the opportunity to specify
requirements and constraints that have to hold for an overall solution, which
complement previously created pattern-based design models.

Contribution 5 (Semi-automating Approach for the Selection and
Aggregation of Concrete Solutions) A semi-automated approach
is introduced that enables to guide and automate the process of se-
lecting and aggregating of concrete solutions. Thereby, pattern-based
design models are translated into Solution Models that represent the
interplay of concrete solutions and Solution Aggregation Programs are
introduced as implementations of aggregation operators that support
the automated aggregation of concrete solutions. An algorithm is in-
troduced, which consumes solution models and solution aggregation
programs to enable the iterative and semi-automated aggregation of
the concrete solutions in the solution model.

25

1 Introduction and Motivation

Challenge 6: Validation and Tool Support

The overall approach as presented in this work is all about capturing and
reusing existing implementations of patterns. To provide evidence about
the practical feasibility of the presented approaches and concepts, a pro-
totypical implementation covering all aspects of the EINSTEIN-Method
is required. Thus, fundamental artifacts such as connected pattern and
solution repositories are needed. Alongside, components based on those
repositories have to be developed that allow to specify user inputs, such as
pattern-based design models, the documentation of solution languages, and
the execution of solution aggregation programs. Thereby, it is important
to enable users to influence the selection of concrete solutions and their
aggregation where needed by specifying their requirements. Whereas,
cumbersome, time-consuming, and error-prone steps, such as the actual
selection of suitable concrete solutions from a solution repository or the
aggregation of them to overall solutions, have to be automated as much as
possible. All these aspects target to leverage reuse of concrete solutions to
gain time-savings and preventing errors when (re)implementing patterns
over and over again.

Contribution 6 (Toolchain for the EINSTEIN-Method) To demon-
strate the practical feasibility of the EINSTEIN-Method, concepts and
approaches introduced, an architecture and prototype of a toolchain
for connecting patterns, concrete solutions, and aggregation operators
is presented. On the one hand, the toolchain consists of extendable
pattern and solution repositories enabling to capture and store pattern
languages, solution languages, concrete solution aggregation descrip-
tors, and solution aggregation programs. On the other hand, it enables
to connect additional services, such as engines for automating concrete
solution selection and the aggregation of concrete solutions, aiming
for extendability of the functionalities of the underlying repositories.

26

1.2 Summary of the Contributions

Contribution II:
Combination of

Pattern Languages
and Pattern-based

Design Models

Contribution I: A Method for Applying Patterns based on Concrete Solutions

Contribution VI: A Toolchain for Linked Patterns and Concrete Solutions
Architecture and Prototype

Contribution III:
Linking Patterns with
Concrete Solutions

to Enable their
Selection and Reuse

Contribution IV:
Solution Algebras and
Solution Languages

for the Aggregation of
Concrete Solutions

Contribution V:
Guiding and

Automating the
Aggregation of

Concrete Solutions

Figure 1.3: Overview of the research contributions

1.2 Summary of the Contributions

The vision outlined in the previous section can be broken down into six
major research challenges and contributions that were elaborated in the
course of this thesis. The contributions complement and build on each
other to realize the outlined vision, as depicted in Figure 1.3. Thereby,
Contribution 1 is the EINSTEIN-Method for applying patterns based on
concrete solutions, which lays a systematic framework for the reuse of
concrete solutions. Further, Contribution 2 introduces a concept to ease
the usage of patterns from different pattern languages in pattern-based
design models. To bridge the gap between conceptual design via patterns
and their implementation, Contribution 3 introduces concrete solutions as
reusable pattern implementations that are organized in solution repositories.
Contribution 4 introduces solution algebras as the formal foundation of
automated concrete solution aggregation. This, in turn, is introduced as
Contribution 5 by means of a semi-automated approach that enables to
aggregate concrete solutions based on constraints specified by the user.
Finally, Contribution 6 is the technical validation of the presented concepts
by means of an architecture and prototype supporting the EINSTEIN-
Method along with validation scenarios from different domains.

27

1 Introduction and Motivation

1.3 Scientific Publications

The following peer-reviewed papers were published in journals and confer-
ences and resulted from research conducted in the course of this thesis.

1. M. Falkenthal et al. “From Pattern Languages to Solution Imple-
mentations”. In: Proceedings of the Sixth International Conferences
on Pervasive Patterns and Applications. Xpert Publishing Services,
May 2014, pp. 12–21

2. M. Falkenthal et al. “Efficient Pattern Application: Validating the
Concept of Solution Implementations in Different Domains”. In:
International Journal On Advances in Software 7.3&4 (Dec. 2014).
IARIA, pp. 710–726

3. M. Falkenthal et al. “Leveraging Pattern Application via Pattern
Refinement”. In: Proceedings of the International Conference on
Pursuit of Pattern Languages for Societal Change. epubli, June
2015, pp. 38–61

4. M. Falkenthal and F. Leymann. “Easing Pattern Application by
Means of Solution Languages”. In: Proceedings of the Ninth Inter-
national Conferences on Pervasive Patterns and Applications. Xpert
Publishing Services, 2017, pp. 58–64

5. M. Falkenthal et al. “Solution Languages : Easing Pattern Composi-
tion in Different Domains”. In: International Journal On Advances
in Software 10.3&4 (2017). IARIA, pp. 263–274

6. M. Falkenthal et al. “Pattern research in the digital humanities: how
data mining techniques support the identification of costume pat-
terns”. In: SICS Software-Intensive Cyber-Physical Systems 32.3-4
(2017). Springer, pp. 311–321

7. M. Falkenthal et al. “On the Algebraic Properties of Concrete So-
lution Aggregation”. In: SICS Software-Intensive Cyber-Physical
Systems (2019). Springer

28

1.3 Scientific Publications

8. M. Falkenthal et al. “The Nature of Pattern Languages”. In: Pur-
suit of Pattern Languages for Societal Change. Edition Donau-
Universität Krems, 2018, pp. 130–151

The next list shows co-authored publications that additionally complement
the approaches presented in this work, but were also shaped on the basis
of these.

1. R. Reiners et al. “Requirements for a Collaborative Formulation
Process of Evolutionary Patterns”. In: Proceedings of the 18th

European Conference on Pattern Languages of Programs EuroPlop.
ACM, 2013, Article No. 16

2. C. Fehling et al. “PatternPedia – Collaborative Pattern Identification
and Authoring”. In: Proceedings of Pursuit of Pattern Languages for
Societal Change. The Workshop 2014. epubli, Aug. 2015, pp. 252–
284

3. H. Finidori et al. “The PLAST Project – Pattern Languages for
Systemic Transformations”. In: International Journal of the Spanda
Foundation VI.1 (2015). Spanda Foundation, pp. 205–218

4. L. Reinfurt et al. “Internet of Things Patterns”. In: Proceedings of
the 21th European Conference on Pattern Languages of Programs.
ACM, 2016

5. C. Endres et al. “Declarative vs. Imperative: Two Modeling Patterns
for the Automated Deployment of Applications”. In: Proceedings
of the Ninth International Conference on Pervasive Patterns and
Applications. Xpert Publishing Services, Feb. 2017, pp. 22–27

6. L. Reinfurt et al. “Internet of Things Patterns for Devices”. In: Pro-
ceedings of the Ninth International Conferences on Pervasive Pat-
terns and Applications. Xpert Publishing Services, 2017, pp. 117–
126

29

1 Introduction and Motivation

7. L. Reinfurt et al. “Internet of Things Patterns for Devices: Powering,
Operating, and Sensing”. In: International Journal on Advances in
Internet Technology (2017). IARIA, pp. 106–123

8. L. Reinfurt et al. “Applying IoT Patterns to Smart Factory Systems”.
In: Proceedings of the 11th Advanced Summer School on Service
Oriented Computing. IBM Research Division, 2017, pp. 1–10

9. L. Reinfurt et al. “Internet of Things Security Patterns”. In: Pro-
ceedings of the 24th Conference on Pattern Languages of Programs.
ACM, 2017

10. L. Reinfurt et al. “Internet of Things Patterns for Device Bootstrap-
ping and Registration”. In: Proceedings of the 22nd European Con-
ference on Pattern Languages of Programs. ACM, 2017

11. J. Barzen et al. “The vision for MUSE4Music – Applying the MUSE
method in musicology”. In: Computer Science - Research and
Development 32.3-4 (2017), pp. 323–328

12. L. Harzenetter et al. “Pattern-based Deployment Models and Their
Automatic Execution”. In: 11th IEEE/ACM International Confer-
ence on Utility and Cloud Computing. IEEE, 2018, pp. 41–52

13. L. Reinfurt et al. “Internet of Things Patterns for Communication
and Management”. In: Transactions on Pattern Languages of Pro-
gramming IV (2019)

14. K. Saatkamp et al. “An Approach to Determine & Apply Solutions
to Solve Detected Problems in Restructured Deployment Models
using First-order Logic”. In: Proceedings of the 9th International
Conference on Cloud Computing and Services Science. SciTePress,
2019, pp. 495–506

15. L. Reinfurt et al. “Where to Begin - On Pattern Language Entry
Points”. In: SICS Software-Intensive Cyber-Physical Systems 35
(2020). Springer

30

1.4 Structure of the Thesis

16. M. Weigold et al. “Pattern Views: Concept and Tooling for Inter-
connected Pattern Languages”. In: Communications in Computer
and Information Science 1310 (2020), pp. 86–103

Including these listed publications, in the course of this thesis, 53 peer
reviewed papers were published.

1.4 Structure of the Thesis

The remainder of this thesis is structured as following: the fundamentals of
pattern languages and pattern application are set out in Chapter 2. Thereby,
existing formalizations of patterns and pattern languages are discussed
besides embedding the concepts of this work in the model-driven architec-
ture and computer-aided software engineering approaches. Finally, related
work on pattern repositories is discussed regarding the applicability and
suitability for the approaches and concepts introduced in this thesis.

The EINSTEIN-Method is introduced in Chapter 3 and forms a methodical
bracket around the concepts of this work. There, challenges and require-
ments for the systematic reuse of concrete solutions are discussed as well
as the interplay of different roles that participate in the method.

Chapter 4 lays the conceptual foundation for the creation of Pattern-based
Design Models by formalizing pattern languages on the basis of graph
theory. This is the fundamental structure underlying the concepts of this
thesis. However, in order to allow the combination of patterns from dif-
ferent pattern languages the concept of Pattern Language Aggregation is
introduced based on the previous formalization of pattern graphs.

It is further explained how to foster the reuse of concrete solutions by
Concrete Solution Descriptors in Chapter 5. In combination with Selection
Criteria those are means to systematically store concrete solutions con-
nected with patterns. Based on these concepts the formalization of pattern
graphs is extended to pattern graphs with connected concrete solutions.

31

1 Introduction and Motivation

The aggregation of concrete solutions is introduced in Chapter 6. Besides
the documentation of aggregation possibilities of concrete solutions via
Solution Languages, Aggregation Operators are introduced as the means
to capture (i) the algebraic properties of concrete solution aggregation
along with (ii) the actual logic describing how concrete solutions are
aggregated. The former aspect provides a means to systematically analyze
concrete solutions in order to organize them into sets of related concrete
solutions that can be aggregated by specified aggregation operators, which
results in Solution Algebras. The latter aspect sets the basis for automating
the aggregation of concrete solutions by applying Solution Aggregation
Programs from a solution algebra on concrete solutions.

Chapter 7 introduces a domain-independent approach for automating the
aggregation of concrete solutions. The approach considers user inputs to
reflect requirements that have to hold for individual concrete solutions and
the overall solution aggregate. It shows how Design Models are translated
into Solution Models which, in turn, can be used to iteratively perform
aggregations on the contained concrete solutions until a final concrete
solution aggregate is generated.

The feasibility of the presented approach is shown by the architecture
of a prototypical Toolchain in Chapter 8. Validation scenarios spanning
different application domains show how the concepts presented in this
work can be applied to different pattern languages and application areas.

Finally, the thesis is concluded in Chapter 9 where the results are reflected
and an outlook to future work is given, which can further strengthen and
extend the presented work valuably.

32

C
ha

pt
er 2

Fundamentals and
Related Work

This chapter discusses the fundamentals and related work on which the
presented work is based. It starts with a discussion of the concept of
patterns and pattern languages in general and provides informal definitions
of essential terms, such as patterns and pattern languages, as used in this
work. Furthermore, the state of the art regarding the formalization of
patterns, their aggregation and pattern languages is discussed. Moreover,
the usage and application of patterns in programming languages, modeling
languages, and frameworks is discussed with special attention to the reuse
of pattern implementations. The chapter concludes with a discussion of
the state of the art of pattern repositories and pattern libraries and identifies
deficiencies, which lay the foundation for the research challenges that are
tackled in this thesis and led to the contributions of the presented work.

33

2 Fundamentals and Related Work

2.1 Patterns, Pattern Languages, and Pattern
Application

The concept of patterns and pattern languages was originally developed
by Christoper Alexander in the area of building design. The basic ideas
about patterns and pattern languages originated in his work Notes on the
Synthesis of Form [Ale64], a study about the process of designing building
architectures that are rated good, vital, and liveable by people. Thereby,
he identifies that design problems can be solved by identifying misfits and
forces between them. They span a network of trade-offs, called diagram
by Alexander [Ale64], that have to be balanced once misfits get solved.
The fundamental idea Alexander adds to this is that such a network of
trade-offs can be analyzed to find significant subsets of misfits that can be
solved in combination quite well because the misfits are correlated. This
means, creating a design that solves one misfit tends to also solve others
in the subset or, in the case of negative correlations, a design decision
preferring one misfit over the other has to be taken. The general design
principle Alexander suggests is to decompose the overall diagram, which
is to complex and overwhelming to be tackled, into smaller subsets until
the complexity reaches a manageable level [Ale64, p.93ff]. Such small
subsets can then be solved and the worked out designs can be aggregated
until the overall network of trade-off or misfits is solved.

This fundamental idea can be grasped as the nucleus of the pattern and
pattern language idea by Christopher Alexander. Since significant subsets
are those that influence the realization of real world use cases the most,
it is worth to analyze how those can be resolved properly and how the
resulting solutions can be composed to solve the initial overall network of
trade-offs [Ale64, p.64ff]. Thus, abstracting the essence of solutions of
such subsets leads to solution principles, which solve recurring problems.
Especially those solutions are of interest, which resolve subsets of misfits
in a way that satisfies the requirements of a given use case by considering
also the implications imposed by the correlation of the misfits. In the do-

34

2.1 Patterns, Pattern Languages, and Pattern Application

main of building architecture this means the underlying solution principles
materialize in buildings that are rated good, vital, and liveable by people
as mentioned above. Such solution principles can be grasped as good
designs or proven solutions to resolve the tackled trade-offs because they
are evaluated by every days live.

Adding those fundamental ideas together, Alexander et al. [AIS77] end up
with the definition of what a pattern is:

“Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the
same way twice.” [AIS77, p.x]

The essence of Alexander’s definition is that a pattern captures core solution
principles enabling to create manifolds of new designs and things on
those principles. However, since a pattern itself is the captured essence
of solutions, which have proven to be good, Alexander’s definition lacks
clarity on whether already present solutions could be reused or whether
solutions have to be crafted every time a pattern has to be applied (cf.
“[...] without ever doing it the same way twice.”). This can be traced
back to the fact that Alexander discovered patterns in the domain of towns
and buildings, which merely deals with purely physical entities. However,
especially in computer science, the things under investigation are in many
cases logical parts, models, code snippets, and in general data, which
can be copy and pasted without any effort, which means being highly
reproducible. This enables reusability of already existing solutions, which
goes beyond the definition of a pattern by Alexander. Thus, Alexander’s
definition focusses on tangible things, such as structures in towns and
buildings, but falls short of what is possible with intangible solutions, such
as computer programs or digital representations of things. As a result, the
main difference between tangible and intangible digital solutions is, that
the latter ones can easily be copied and reused.

35

2 Fundamentals and Related Work

This requires an adjustment of the above definition of a pattern. The
following informal definition of a pattern is used in this work.

Definition 2.1.1 (Pattern – informal) A pattern is a proven conceptual
solution to a recurring problem in a certain context. Thereby, the context
specifies the situation and setting in which the solution solves the prob-
lem, while the solution captures the essence of multiple good solutions
implemented in practice, whereby some of them are referenced as known
uses. Thus, applying a pattern means applying the solution principles of
the pattern to a certain context to craft a suitable solution. �

In many domains, patterns emerged to a Lingua Franca of the domain, i.e.,
they form a terminology to communicate about problems and their solu-
tions [DF06]. However, patterns typically do not stand alone, they rather
solve overall problems in combination. This has already been illustrated
above by the decomposition of misfits into significant subsets, which are
solved and the resulting solutions are composed to form an overall solution
as described by Alexander [Ale64, p.93ff]. This fundamental principle
leads to the definition of an interplay of patterns that is required to design
a new whole, which corresponds to a solution of the starting point of the
above mentioned decomposition of misfits. To form a whole, Alexander
identifies two basic principles: (i) a pattern is itself a whole, i.e, it defines a
space which is filled by other patterns [Ale79, p.185] and (ii) the interplay
of patterns required to form a whole. Often this interplay of patterns is
called a pattern language [Ale79, p.191]. Alexander projects this princi-
ples to the area of designing towns, buildings, and further constructions
in an interplay. He shows, that a whole, such as a town, is essentially
made by the interplay of smaller parts, for example, buildings, garages,
parks, and all the other sites of a town [Ale79, p.191]. The rational behind
that is pointed out in A Pattern Language: Towns, Buildings, Construc-
tion [AIS77] highlighting the importance of the interplay of patterns:

36

2.1 Patterns, Pattern Languages, and Pattern Application

“[...] when you build a thing you can not merely build
that thing in isolation, but must also repair the world around
it, and within it, so that the larger world at that one place
becomes more coherent, and more whole; and the thing which
you make takes its place in the web of nature as you make
it.” [AIS77, p.xiii]

Alexander underlines this by imposing a structure on a pattern language.
He points out that patterns follow a certain dualism by stating that patterns
are elements and rules at the same time [Ale79, p.185]. Elements in the
sense that a pattern is a thing in the real world and rules in the sense that a
pattern describes the interplay of smaller patterns fulfilling the larger space
that is made by the pattern itself [Ale79, p.247]. This structure implies a
specific semantics represented in a pattern language, namely that there are
larger and smaller patterns. This fundamental understanding of a pattern
language is condensed in the following informal definition Definition 2.1.2
that lays the informal basis for the formalisms of this work.

Definition 2.1.2 (Alexandrian Pattern Language – informal) A pattern
language according to Alexander is a directed acyclic graph comprising
of patterns as nodes and relations between the patterns as edges. An edge
directing from one pattern to another pattern specifies the semantics that
the pattern at its start is a larger pattern than the pattern at its end. �

This principle was transferred to the discipline of software design and
architecture in the mid of the 1990s. The seminal work Design Patterns:
Elements of Reusable Object-oriented Software [GHJV94] by Gamma et al.
[GHJV94], Software Patterns by Coplien [Cop96] and Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns by Buschmann
et al. [BMR+96] are among the first works that introduced patterns to
the discipline of software engineering. They show that also IT systems
and other artifacts of software engineering can be designed by apply-
ing patterns. Many more pattern collections and pattern languages have
been published since then, which, over the years, cover a wide range

37

2 Fundamentals and Related Work

of domains, such as Cloud Computing [FLR+14; YBB+22], Internet of
Things [RBF+16], Microservices [Ric18], Service Meshes [DF23], Con-
sensus Algorithms in Blockchains [SU23], or Patterns for Quantum Soft-
ware Development [BBB+23; BBL+22; GBB+23; WBLS20; WBLS21;
WBLV21]. However, the basic principles of patterns and pattern languages
are still the same as introduced by Alexander. But in contrast to the do-
main of building architecture, the implementations of patterns in software
engineering are not tangible things, but rather intangible things, such as
computer programs that can be reproduced digitally.

Interestingly, although a multitude of patterns and pattern languages have
been published in the domain of IT, another guiding principle of Alexan-
der’s work — that pattern languages are living systems, which should
evolve over time and being adapted to networks of patterns (cf. [Ale79,
p.341]) — is not very present in this domain. Therefore, in contrast to
the integrative work by Alexander et al. [AIS77], which covers (i) the
planning of cities and shaping the landscape, (ii) designing of districts of a
city, (iii) designing buildings and their surrounding, and (iv) designing the
interior of buildings to meet requirements for good and comfortable living,
the domain of IT is still lacking a comprehensive pattern language that
covers the design of IT systems in general, interweaving all the different
viewpoints and languages. Thus, it is typically up to the reader to combine
patterns from different pattern languages to cover the whole design of a
specific IT system.

2.2 Formalization of Pattern Languages and Pattern
Aggregation

Since the vision of this thesis is to reuse concrete solutions connected to
patterns, it is necessary to investigate how patterns can be formalized and
how the interplay of conceptual solutions can be expressed. Thereby, many
approaches were proposed to formalize pattern languages and to support

38

2.2 Formalization of Pattern Languages and Pattern Aggregation

the aggregation of patterns. For example, Bayley and Zhu [BZ11; ZB15;
Zhu14] propose a pattern composition algebra, which allows to compose
patterns to form new patterns. This approach can be used in pattern-
oriented software design to ensure the validity of pattern compositions at
the model level via a pattern composition algebra for object-oriented design
patterns. A pattern is characterized as points within a design space that
satisfies particular criteria, while pattern compositions can be constructed
by utilizing operators.

Mirnig and Tscheligi [MT14] characterize patterns as collections of inter-
connected components rather than standalone entities, aligning with the
scientific understanding of complex issues involving numerous pertinent
factors. Using this framework, established pattern languages can be formal-
ized. Since the framework bases on set theory, it is generally applicable and
can be used as a foundation for creating new pattern languages, irrespective
of the specific domain for which they were originally conceived.

Bottoni et al. [BGd10] present a structured concept of how models can
fulfill patterns and introduce mechanisms for suggesting model adaptions
to ensure their alignment with the patterns. Their approach allows to
formalize patterns based on graphs and category theory to enable the adap-
tation of domain-specific models by applying patterns. They also establish
procedures for combining patterns and conducting conflict analysis in mod-
els. The presented approach’s ability to function independently of specific
languages renders it well-suited for integration into meta-modeling tools
and its applicability within the field of Model-Driven Engineering. When
modeling pattern-based designs, a tool can complete models via a palette
of patterns and assures that the model complies with the used patterns.

Finally, Waseeb et al. [WKWV20] identify that patterns gain strength in
combinations, thus, connecting them just informally in the text of patterns
hinders their combined reuse. Thus, they investigate how text mining and
natural language processing can be used to identify relationships between
patterns from the pattern texts. They extend their work by organizing pat-
terns and pattern languages in a semantic graph, which allows to identify

39

2 Fundamentals and Related Work

relationships between patterns and pattern languages [WV23]. The re-
sulting ontology is designed to facilitate the expression and dissemination
of semantic knowledge among patterns. However, while the discussed
approaches focus on pattern aggregation, none of them considers imple-
mentations of the patterns.

2.3 Pattern Application and Reuse of Implementations

Although pattern research lead to a vast amount of publications and works
on new patterns in different domains, on methods about to capturing and
authoring patterns [FBBL14; MD97], and on approaches targeting how
to eventually form pattern languages, only few research is conducted fo-
cussing on the implementation of patterns. This is because many authors
understand patterns only as design rules and guidelines rather than entities
that can be mapped to actual implementations [Bos96]. This position
must be questioned because already Christopher Alexander pointed out
the dualism of patterns by stating that they are elements and rules [Ale79,
p.185]. More concretely, he stresses that a pattern is “at the same time
a thing, which happens in the world, and the rule which tells us how to
create that thing” [Ale79, p.247], what was taken up by Coplien [Cop96]
and confirmed for software patterns. Much more it can be stated that
patterns immanently abstract the conceptual solution of a large number of
implementations that have proven themselves. This is why it is common
sense in the pattern community that patterns are mined from a reasonable
amount of real world solutions [Cop96; Koh12; KU09; Rei13]. Thus,
when authoring patterns, it is inevitable to provide evidence that a pattern
represents a proven solution, which led to the rule of three [Cop96; KU09].
This rule means that a solution has to be detected in at least 3 real world
scenarios in order to be accepted as proven, which means that patterns
directly rely on real implementations. However, during the authoring of
patterns, those implementations are typically not captured and at most are
mentioned textually in pattern sections, such as known uses [GHJV94;

40

2.3 Pattern Application and Reuse of Implementations

MD97]. Some pattern formats provide examples fitting to the intended
audience [BHS07b], some provide code snippets in selected programming
languages [Hen01; MD97], or via UML diagrams [BHS07a; BMR+96;
GHJV94]. Still others follow the notion of diagrams as introduced by
Christopher Alexander [Ale64; Ale79] and illustrate pattern implementa-
tions using sketches (e.g., [FLR+14; HW04; RBF+16]). While all those
means support the understanding and rationale of a pattern they provide
merely no sophisticated guidance and support for applying a pattern in real
use cases at hand [FBB+14a; FBB+14b]. Even provided code snippets
often cannot be reused directly as artifacts because they are printed in
books.

In the area of software architecture, the above identified lack of coupling
patterns and their concrete implementations is also persistent and referred
to as the traceability problem [Bos96]. At the same time, it is identified
that implementing patterns manually from scratch for individual use cases
results in immense implementation overheads because a significant amount
of boilerplate code has to be implemented each time [Bos96; Sou95].

Those findings led to approaches targeting to reflect patterns as enti-
ties in programming languages. Thereby, especially the Design Patterns
by Gamma et al. [GHJV94], which capture proven design knowledge for
object-oriented software have been objective to research aiming for the
automated generation of pattern implementations. For example, Budinsky
et al. [BFYV96] focus on the generation of C++ programming code for
individual patterns. This is supported by a software tool that allows repre-
senting pattern sections on individual views such that the user can navigate
sequentially through the sections of a pattern. One special section, the code
generation page, provides a means for users to specify goals. This way the
user can specify, for example, if only declarations in terms of C++ headers
should be generated or if also implementations of whole classes shall be
generated. Further, the code generation allows selecting between different
implementation trade-offs. Those can be selected by the user, which re-
sults in different code. Thus, the tool allows selecting between different
implementations of a pattern in C++ code. To generate code, they use

41

2 Fundamentals and Related Work

the code generation language COGENT that allows specifying scripts and
code templates with placeholders, which in turn enables to wire code frag-
ments dynamically. They argue that the support of further object-oriented
languages, such as SmallTalk, can be supported by implementing new code
fragments for those languages. The work by Budinsky et al. [BFYV96]
also motivates the need for reusing pattern implementations very well be-
cause they show how implementation efforts can be reduced once pattern
implementations can be generated. They also show that it is important to
address the need to reflect different trade-offs in pattern implementations,
i.e., they identify the demand to select pattern implementations that fit
best to the situation a programmer is faced with. However, since this work
focusses only on the Design Patterns by Gamma et al. [GHJV94], which
is just a catalog of 23 patterns rather than a pattern language, they do not
cover the combined application of patterns. Furthermore, the capabilities
of the software tool are tailored to the application of the Design Patterns,
e.g., the tool only supports the pattern format on which they are based (cf.
[GHJV94]). Thus, the presented approach of automatic code generation is
tightly coupled to the Design Patterns through the provided tooling.

Bosch [Bos96] argues in a similar direction. He points out that patterns
provide concepts, which are widely used concepts by experienced software
engineers in their daily work. Thus, he identifies the requirement to reflect
them as constructs in programming languages in order to support the reuse
of proven solutions in software engineering. To overcome the lack of pat-
terns as constructs in programming languages, Bosch [Bos96] introduces
the layered object model LayOM, which enables using layers to represent
design patterns. By this means he shows that patterns can be put on the
implementation level, which allows automating their application. This
is realized by translating LayOM into C++ code. Thereby, the specified
patterns in LayOM are applied or respectively implemented automatically,
which couples them with corresponding implementations in C++ code.
More specifically, implementations of the patterns can be directly reused
through the automated generation, which eases their repeated usage in
different use cases.

42

2.3 Pattern Application and Reuse of Implementations

Another approach, which addresses the application of the Design Pat-
terns [GHJV94] in the programming language Java, is presented by Santos
and Coelho [SC16]. They introduce Java annotations to be used for the
automated implementation of Design Patterns. For effecting this, they
extended Lombok1, which is a Java library that allows defining arbitrary
Java annotations. Those annotations are then used to adapt the abstract
syntax tree of Java programs at compile time. This way, they introduce
Design Patterns as Java annotations that can be used by programmers to
enrich their code. For instance, one can annotate classes or methods by
Singleton, Visitor, Decorator, or Observer to specify that code templates
are injected during compile time, which directly corresponds to generating
implementations of the respective patterns automatically. Thereby, it is
even possible to specify the interplay of different interfaces, classes, and
methods to realize implementations of more complex patterns, such as the
Visitor pattern [GHJV94, p.331]. The introduced Java extensions focus
on the mentioned Design Patterns, which makes the concept of patterns
directly usable on the level of a programming language. However, while
this approach helps to automatically generate implementations of the men-
tioned Design Patterns, it is limited to the programming language Java and
the concept of annotations because of Lombok. Thus, the approach can
only be transferred to programming languages that support annotations.

The idea of using patterns to capture proven designs was also brought to
the field of Model-driven Architecture (MDA). Krleža and Fertalj [KF14]
show how patterns can be used to guide modelers to reuse proven solutions
in system designs. Thereby, patterns help to limit the arbitrary design
space in Computational Independent Models (CIM), Platform Independent
Models (PIM), and Platform Specific Models (PSM) to proven designs.
Furthermore, by specifying proper transformation rules, patterns can be
translated from abstract representations in CIM via PIM towards represen-
tations close to the level of execution in PSM. However, while the approach
by Krleža and Fertalj [KF14] focusses on supporting users to create con-

1https://projectlombok.org

43

https://projectlombok.org

2 Fundamentals and Related Work

sistent MDA models it lacks the possibility to purposefully reuse pattern
implementations in specific technologies. This could be maintained by
introducing further transformation rules enabling to generate executable
artifacts from PSMs but this would introduce another layer of complex-
ity. Instead of reusing pattern implementations directly they had to be
implemented again in the form of transformation rules.

The PALMA-framework by Breitenbücher [Bre16] describes domain-
specific concepts similar to the idea of concrete solutions and their ag-
gregation to overall solutions as introduced in this work. This framework
focusses on the domain of application management and introduces a means
to manage applications based on management patterns [FLR+13]. An
instance model describes the current state of an application with respect to
its configuration and runtime parameters [Bre16, p.103ff]. An automated
management pattern can then be applied to transform an instance model
into a declarative management model [BBKL13; BBKL14]. This result-
ing model contains so-called management annotations that describe the
solution of the applied management pattern declaratively. To execute such
a model, the framework enables to transform it into an imperative process
model by composing so-called Management Planlets [BBKL13; BBKL14].
Thus, the resulting imperative process model is a concrete solution of the
applied management pattern for a certain type of application, which can be
reused to manage other deployment instances of this application without
generating the process model again.

Bibartiu et al. [BDR21] and Bibartiu [Bib23] present an approach that al-
lows to use patterns as modeling elements in cloud architectures. Thereby,
cloud computing patterns are placeholders that can be systematically re-
fined to concrete service offerings of cloud vendors. The patterns are
connected to other elements of the architecture model via message se-
quence charts that specify their relationship. Harzenetter et al. [HBF+18a]
show how patterns can be used in deployment models to represent the
essential semantics of components independently from a specific tech-
nology. They also introduce a method for the automatic identification of
design patterns within declarative deployment models [HBF+21]. This

44

2.4 Patterns and Frameworks

helps to prevent delving into technical specifics concerning components,
relationships, and configurations and allows to focus on pattern-based
deployment modeling by introducing patterns as modeling elements for
deployment models [HBF+18a; HBF+20]. The approach enables to refine
the placeholders later with specific components of the deployment model
to execute the deployment, which corresponds to replacing patterns with
concrete solutions as introduced in this work [HBF+18a]. Thus, it shows a
domain-specific adaptation and realization of concrete solutions.

Scheibler [Sch10] presents a method for the automated generation of inte-
gration solutions based on patterns. The method is based on the Enterprise
Integration Patterns by Hohpe and Woolf [HW04]. The method enables
to model integration solutions based on parameterizable patterns and to
generate executable integration solutions from the model. Thus, it shows
a domain-specific realization of design models as introduced domain-
independently in this work. Further, a meta model for parameterizable
integration patterns allows to specify pattern semantics in a technology-
agnostic way, such that algorithms can generate implementations of the
patterns for different integration technologies. In this process, pattern
implementations are not directly reused, but are generated automatically
and composed to overall integration solutions. Thus, Scheibler [Sch10]
provides a complementary approach to the one presented in this work,
which enables the generation of holistic solutions from patterns. But by
focussing on the generation of integration solutions, it does not provide a
domain-independent framework and is, therefore, limited to the domain
of integration solutions and the Enterprise Integration Patterns by Hohpe
and Woolf [HW04].

2.4 Patterns and Frameworks

Since new technologies and frameworks origin and evolve over time, the
list of frameworks mentioned here is of course not exhaustive. But it
is intended to give an impression of how patterns relate to frameworks,

45

2 Fundamentals and Related Work

how they are used there, and how they can be applied using frameworks.
Frameworks are often based on the conceptual knowledge provided by
patterns of the specific domain the framework addresses. They provide
good practices, conceptual designs, and solutions from a specific area
for a specific area. Thereby, these frameworks often rely on conceptual
solutions of patterns and pattern languages and provide a blueprint of their
interplay for implementations in a specific technology. Those skeletons
can be adapted by users to implement required functionalities, whereby
the good design as captured by the underlying patterns is preserved. As
denoted by the name framework, they build on proven design principles of
patterns and guide the development of applications.

For example, the Spring Framework2 heavily uses the Inversion of Control
pattern to wire different components of a Spring application [Pra09; RJ07].
Besides, it uses many other patterns from the Design Patterns, such as Sin-
gleton for Bean instantiation or Proxy to generate generic implementations
for data access components, to name just a few [Alb20]. Thus, Spring
incorporates several patterns to a framework that can be used to implement
applications. Thereby, the patterns incorporated in the framework auto-
matically become part of the applications themselves, i.e., by using the
framework they get automatically applied. However, since the framework
predefines the wiring of the patterns there exists typically no freedom for
developers to alter their interplay.

Other frameworks, such as Apache Camel 3 or Spring Integration 4, focus
on the integration of applications and components and support the Enter-
prise Integration Patterns by Hohpe and Woolf [HW04]. In the case of
Apache Camel, even evolving patterns, such as the Microservice Patterns
by Richardson [Ric18], are supported by the latest releases. In contrast to
Spring, Apache Camel and Spring Integration support to create integration

2https://spring.io
3https://camel.apache.org
4https://spring.io/projects/spring-integration

46

https://spring.io
https://camel.apache.org
https://spring.io/projects/spring-integration

2.4 Patterns and Frameworks

solutions based on those patterns. They do not just allow the implicit usage
of patterns through the blueprint offered by the framework. They rather
allow composing the mentioned patterns as required to design and imple-
ment applications. The patterns are directly usable concepts of Apache
Camel and Spring Integration, i.e., a developer can use them as program-
ming constructs. For instance, Apache Camel provides means to specify
the usage of a pattern directly in programming code via a domain-specific
language based on Java 5. Thereby, multiple of the above-mentioned pat-
terns can be composed to implement, e.g., a sequence of computation steps
required to integrate different applications. For example, if an application
may only receive certain messages and the data must be transformed into
the format of the target system, then a Message Filter [HW04, p.237] can
ensure that only intended messages are forwarded, followed by a Message
Translator [HW04, p.85], which is capable of transforming the transmitted
data to the target format.

Bulka [Bul02] discusses the automation of design patterns from a gen-
erative perspective. He identifies and describes three automation levels
for pattern application, starting from Single Templates via Parameterized
Pattern Templates to Intelligent Patterns. While the first category represent
static code snippets, the second already provides user guidance to select
proper implementations. Finally, the last category identifies approaches
that enable to automatically integrate components and structures into UML
diagrams while maintaining the validity of the UML at the same time.
Those enable to implement Wizards into IDEs that support the pattern
implementation process. However, the discussed Wizard approach is lim-
ited to UML and does not cover the implementation of patterns in other
programming languages and beyond.

Other works by Bosch [Bos98a; Bos98b] focus on interweaving patterns
and implementations of them into programming languages and frameworks
to support the reuse of proven solutions. Thereby, patterns are represented

5https://camel.apache.org/manual/latest/enterprise-integration-patterns.html

47

https://camel.apache.org/manual/latest/enterprise-integration-patterns.html

2 Fundamentals and Related Work

as language constructs to enable their reuse directly. As a result, the object-
oriented design patterns [GHJV94] are represented as language constructs
in object-oriented programming languages.

2.5 Pattern Libraries and Pattern Repositories

Since patterns and pattern languages are basically about providing proven
solution knowledge in a reusable way, in the following it will be considered
how patterns can typically be retrieved, adapted, and enriched by readers.
Thereby, especially the limitations regarding pattern reuse are investigated.
In general, there exist three approaches when it comes to authoring and
publishing pattern languages. The first and most straight forward is the
so-called pattern guru approach [Rei13] combined with publishing pat-
terns and pattern languages in research papers and text books. Back in
the late 1980s and 1990s, when pattern research in IT was in its infancy,
few authors documented their knowledge about proven design principles
for software designs via patterns. Although discussion-centric confer-
ences, such as the Pattern Languages of Programs (PLoP) conferences
of the hillside group 6, have emerged quickly back then, patterns were
typically authored by only few people if not even by individual authors
alone. Patterns were then discussed at research conferences gaining only
few feedback loops from a community to improve them. Once the patterns
were published in papers and text books they got fixed due to the used
media, i.e., adapting them to new contexts and domains was not supported
by any system. However, since most of the relevant pattern conferences,
such as the PLoP conferences of the hillside group, the IARIA Patterns 7,
or the PURPLSOC 8 typically publish the research papers about patterns
as open access, their online proceedings can be seen as digital pattern

6https://www.hillside.net/conferences
7https://www.iaria.org/conferences/PATTERNS.html
8https://www.donau-uni.ac.at/en/research/project/U7_PROJEKT_4294969506

48

https://www.hillside.net/conferences
https://www.iaria.org/conferences/PATTERNS.html
https://www.donau-uni.ac.at/en/research/project/U7_PROJEKT_4294969506

2.5 Pattern Libraries and Pattern Repositories

repositories. Due to the characteristics of conference proceedings, the
patterns and pattern languages are just contained in the published papers
and are, therefore, not first level entities, which makes it difficult to keep
the overview of all. Nevertheless, digital conference proceedings must still
be seen as the hugest library of patterns among different disciplines.

The second approach is publishing whole pattern languages via static
web pages. This is an approach that can be seen for pattern languages,
which are authored by one to few authors who are especially interested
in spreading the pattern knowledge widely. For instance, the Cloud Com-
puting Patterns 9 by Fehling et al. [FLR+14], the Enterprise Integration
Patterns10 by Hohpe and Woolf [HW04], the Pattern Language for Mi-
croservices11 by Richardson [Ric18], the Internet of Things Patterns12

by Reinfurt et al. [RBF+16], the Cloud Design Patterns13 by Amazon Web
Services [Ama13], or the Pattern Library for Interaction Design14 by Welie
and Veer [WV03] are examples for this category. Here, the individual
patterns are treated as first level entities and even the pattern languages
themselves are essential parts typically represented as visualized graph
structures or hyperlinks between patterns. Thereby, patterns are often
assigned with an icon, which, in combination with the links between the
patterns, eases the study and application of the pattern languages. However,
the patterns are published typically once and the underlying systems are
only capable of serving them as web pages. Community-driven features,
such as collaboration on authoring and evolvement of the patterns or dis-
cussions about actual applications of the patterns and their transfer to new
use cases, are not supported. Therefore, more far-reaching aspects such as
connecting concrete solutions with patterns are not supported as well.

9https://www.cloudcomputingpatterns.org
10https://www.enterpriseintegrationpatterns.com
11https://microservices.io/patterns/index.html
12http://internetofthingspatterns.com
13http://en.clouddesignpattern.org/index.php/Main_Page
14http://www.welie.com

49

https://www.cloudcomputingpatterns.org
https://www.enterpriseintegrationpatterns.com
https://microservices.io/patterns/index.html
http://internetofthingspatterns.com
http://en.clouddesignpattern.org/index.php/Main_Page
http://www.welie.com

2 Fundamentals and Related Work

The third approach is based on the idea of capturing and managing pattern
languages via IT-supported repositories. A repository is, thereby, an ap-
plication system that allows to capture patterns, connect them to pattern
languages, structure the pattern format and enable the collaborative work
on the captured content. The technically most straight forward form is the
approach by Cunningham and Mehaffy [CM13]. They show how a wiki
can be used to author a pattern language as linked wiki pages. Thereby,
the wiki functionality provides collaboration capabilities to formulate and
advance patterns together. However, such a system does not automatically
support the authoring of patterns in a common format. For instance, the
canonical format of a pattern language cannot be defined and it is up to
the users to apply a common format. Since the wiki system is based on
wiki pages, users have to ensure that patterns become first level entities by
putting them on separate wiki pages. The pattern language then emerges
by linking to other wiki pages and by introducing cross-cutting wiki pages
that describe the pattern language. Thus, it is up to the users to transfer
the principle of wiki pages to patterns and pattern languages in a way that
they are adequately represented.

More sophisticated approaches are pattern repositories that are specifically
designed to capture patterns and pattern languages, such as presented by
Fehling et al. [FBFL15], van Heesch [Hee14], Pavlič et al. [PHPR09], and
Reiners [Rei13]. For example the PatternPedia approach by Fehling et al.
[FBFL15] enhances the wiki approach by semantic extensions, which en-
able to create meta structures that allow attaching meta information to wiki
pages to form pattern languages as constructs. Others, such as the approach
by Reiners [Rei13] or Pavlič et al. [PHPR09], focus on representing pat-
terns and pattern languages as first level entities in a content management
system or ontology, respectively. This allows them to provide canonical
formats for patterns and pattern languages, which can be used to author
patterns and pattern languages in a common format. The presented work
contributed and influenced the conceptual extension of the PatternPedia
approach by Leymann and Barzen [LB21]. They introduce the metaphor
of a PatternAtlas, which is enables to link patterns from different pattern

50

2.6 Limits in Pattern Application

languages and even allows to create pattern views among them, which are
selections of patterns from different pattern languages that are relevant
for a specific use case [WBB+20]. Still, this practice shows that pattern
repositories are often focussed to capture just one pattern language. In
some cases, this is because they are not feasible to distinguish different
pattern languages because they do not provide a suitable domain model
that contains the entity pattern language.

Moreover, many pattern languages are published on the web as structured
and linked web pages [cf. among others Ama13; Feh17; Fow03; Hoh17;
Rei17; Ric20]. Thus, they can be seen as read-only pattern repositories.
While they enable to retrieve the patterns and navigating through the pat-
tern language by means of hyperlinks, they are limited to viewing the
contents of the patterns because collaboration and adaptation of contents
is not supported. Even the first wiki on pattern languages by Ward Cun-
ningham [Cun], the founder of the Wiki, falls under this category for some
time now. In all cases, the repos cover just patterns and pattern languages
but lack for keeping implementations of the patterns accessible.

2.6 Limits in Pattern Application

Throughout this chapter, the limitations and gaps in the state of the art of
pattern language application were discussed. In summary, the following
deficiencies can be summarized, which drive the research challenges of
this work as presented in Chapter 1 as well as the requirements for the
methodical framework presented in Chapter 3.

Deficit 1 (Lack of Solution Reusability) Current pattern approaches typi-
cally do not consider the systematic reuse of concrete solutions. This poses
a significant barrier for users who seek to reuse and integrate previous im-
plementations of patterns. This leads to recreating pattern implementations
over and over again when a pattern has to be applied.

51

2 Fundamentals and Related Work

Deficit 2 (Implicit Reuse and Aggregation) While there is some capabil-
ity for implicit and technology-coupled reuse especially in programming
frameworks and domain-specific languages, there is no general theory and
domain-independent approach that aids the reuse of pattern implementa-
tions. Although designing solutions with patterns is a common approach in
multiple domains, projecting these designs to the level of already present
pattern implementations is lacking. Despite some programming frame-
works and programming languages incorporate the aggregation of pattern
implementations, they are limited to those pattern implementations that are
an inherent part of the frameworks themselves. Thus they lack the capabil-
ity to integrate pattern implementations from different pattern languages,
which are not yet part of the frameworks’ structures.

Deficit 3 (Absence of Automation) The guidance and automation of
aggregating pattern implementations is limited to few domain-specific
approaches. There is no general approach that allows to organize the
aggregation logic for aggregating pattern implementations in a systematic
and domain-independent way.

Deficit 4 (Coupling to specific Domains) The state of the art approaches
for pattern application are typically tailored to specific domains. Thus,
they are often limited to the patterns of the respective domain and do not
consider to combine patterns from different pattern languages. This is also
often reflected by limited capabilities of pattern repositories to capture and
interweave different pattern languages, which narrows their usability to
specific domains.

Deficit 5 (Organizational Limitations) While pattern repositories are
used and discussed for years in many domains, repositories for systemati-
cally collecting, reusing, and linking pattern implementations with patterns,
although conceptually described, are missing in practice. Further, there
are no systematic domain-independent approaches that facilitate the ag-
gregation of pattern implementations according to pattern-based solution
designs. Thus, the aggregation of pattern implementations is typically done

52

2.6 Limits in Pattern Application

manually, which leads to a lack of systematic approaches for organizing the
aggregation of pattern implementations. Moreover, repositories, as they
currently exist or being discussed in research, mostly focus on a specific
pattern language. Thereby, they represent only the structure of a specific
pattern language, but they fall short in facilitating combinations across
different pattern languages. Again, although conceptually described by
the PatternAtlas approach by Leymann and Barzen [LB21], in practice,
this still leaves different pattern languages disconnected from each other
because the interlinking of their patterns is not elaborated and captured in
the repository.

The research challenges and contributions outlined in Section 1.1 of this
work tackle those deficiencies, while requirements to a general methodical
framework are deduced in Section 3.2.

53

C
ha

pt
er 3

The EINSTEIN-Method

In this chapter, the methodical basis for the application of patterns by
means of concrete solutions is introduced. The underlying method is
called EINSTEIN-Method, which is an acronym for pattern application
based on concrete solutions. The EINSTEIN-Method represents Contri-
bution 1 of this thesis and describes the interplay of Designers, who use
patterns as modeling elements to design conceptual solutions and respec-
tive Implementers, realizing the specified models optimally by reusing as
many existing concrete solutions as possible. Thus, the method extends
the idea to reuse proven solutions via patterns in designs to actual use
case and environment-specific implementations. The method is not bound
to already existing procedure models or methods but can be applied as a
supporting instrument whenever conceptual designs are worked out, which
then need to be implemented. Thereby, the EINSTEIN-Method enables to
resort on proven solutions in the design utilizing patterns as well as in the
implementation by concrete solutions, respectively.

55

3 The EINSTEIN-Method

Therefore, in Section 3.1 the involved roles of the Designer and the Im-
plementer as used in the course of this thesis are introduced. Based on
those roles, requirements and challenges the EINSTEIN-Method has to
tackle are pointed out in Section 3.2. Then, the EINSTEIN-Method is
explained in detail in Section 3.3, whereas their embedding in different
domains and procedure models is discussed in Section 3.4. Finally, the
chapter is concluded in Section 3.5.

3.1 Roles participating in the EINSTEIN-Method

All approaches introduced in this work rely on the usage of patterns to
create designs and the systematic reuse of concrete solutions. Therefore,
the roles of a Designer and an Implementer are distinguished, which both
participate in the EINSTEIN-Method. The two roles focus on different
aspects with regard to the usage of patterns and are introduced in the
following in a domain-agnostic manner. A discussion how to implement
the EINSTEIN-Method and also how to the presented roles can be fulfilled
in different domains is given and exemplified by the roles of architects and
software engineers in Section 3.4. The Designer addresses the analysis
of conceptual requirements, i.e., overall qualities an intended system has
to fulfill. For instance, in the discipline of software architecture, these
qualities are typically referred to as quality attributes [cf. BCK03; CKK11]
of a system or application architecture. Thus, the Designer is responsible
to analyze and understand functional and non-functional requirements and
translate them into proper system architectures. To elaborate a proper
solution and to make appropriate decisions, the Designer typically harks
back to patterns and pattern languages that provide knowledge about proven
solution concepts to solve his or her problems at hand. The requirements,
which are considered in the conceptual solution design by the Designer, are
typically technology- and implementation-agnostic. Hence, the Designer
does not deal with technology- or implementation-specific questions and
details, but relies on abstract solution concepts.

56

3.2 General Prerequisites and Requirements

Such realization details are addressed during the implementation of the
conceptual solution by means of specific technologies and artifacts. Here
the Implementer steps in. The Implementer takes over the conceptual
solution modeled via patterns and realizes a working solution guided by
the best practices as described by the patterns and their interplay in the
conceptual solution model. Concretely, this means that the Implementer
has to come up with implementations of the patterns contained in the
conceptual solution and has to integrate them into a real solution. Thus,
while the Designer uses patterns to describe the conceptual solution, the
Implementer realizes these patterns and implements their solutions. Espe-
cially, the Implementer can benefit a lot from concrete solutions that are
linked with patterns. By searching and reusing them directly, they can save
efforts once patterns have to be applied, because the implementations do
not have to be reworked every time a pattern is contained in a conceptual
solution developed by a Designer. In fact, the Implementer can hark back
to the existing concrete solutions to reuse and adapt them to meet the
requirements of the use case at hand and to refine them to provide the
needed business functionality.

3.2 General Prerequisites and Requirements

In the following, prerequisites are discussed that lay out general conditions
to apply the EINSTEIN-Method in practice. Subsequently, requirements
for the method are discussed. These should ensure that the EINSTEIN-
Method provides a framework that enables the vision presented in this
work to be applied in practice. The specific requirements are identified by
numbers. These numbers are referred to in the introduction and discussion
of the different steps of the EINSTEIN-Method in Section 3.3 to indicate
where and how they are realized.

The general prerequisite that lays the foundation of the EINSTEIN-Method
is the concept of patterns and pattern languages itself. Specifically, the
EINSTEIN-Method is based on the idea to use patterns as modeling ele-

57

3 The EINSTEIN-Method

ments that help to design good solutions. Thus, the EINSTEIN-Method
relies on the assumption that patterns and pattern languages provide proven
solution knowledge for frequently recurring problems as intended and
defined originally by Christopher Alexander et al. [AIS77]. Today, this is
ensured by pattern authoring processes [FEL+12; MD97] and the fact that
patterns are often discussed and quality-assured in writers workshops at
pattern conferences etc., such as the PLoP-conferences12. However, the
EINSTEIN-Method is not immune to bad designs based on patterns be-
cause the design process lays still in the hands of a Designer. It rather aims
to project pattern-based designs to the level of their implementations.

Further, since patterns are the core design elements, the EINSTEIN-
Method is only applicable to domains and approaches where the concept of
patterns is already established as means to capture and reuse good design
knowledge, such as in many fields in IT as already mentioned in Chap-
ter 1. Otherwise, a body of knowledge in the form of patterns and pattern
languages has to be elaborated beforehand. Thereby it is important that
also the typical interplay of patterns is reflected in the form of pattern
languages. In contrast to unstructured pattern catalogs, pattern languages
already reflect typical combinations of patterns and, therefore, can be used
as blue prints for the design of conceptual solutions by eliminating the
arbitrariness of pattern combinations due to the captured pattern interplays.
In the wide field of the various disciplines of computer science, there exist
many different pattern languages, which is why this essential prerequisite
is fulfilled for the areas investigated in this thesis. Besides this general
prerequisite the following requirements have to be fulfilled by the method
in order to overcome the deficits identified in Section 2.6.

Requirement 1 (Patterns as Modeling Elements) The general prerequi-
site that patterns can be used as design elements as formulated above is
itself a requirement the EINSTEIN-Method has to fulfill. The assumption

1https://europlop.net
2http://www.hillside.net/plop

58

https://europlop.net
http://www.hillside.net/plop

3.2 General Prerequisites and Requirements

that patterns capture proven conceptual solution knowledge and represent
things and rules how to create that thing (cf.[Ale79, p.247]) is thereby
the core idea that allows to use them as modeling elements for conceptual
solution designs. Especially in the field of application architectures, pat-
terns play a vital role in specifying architecture models [AZ05; BMR+96;
FLR+14; HW04]. Thus, the EINSTEIN-Method has to ensure that patterns
and their interplay in specific use cases at hand can be captured as the
conceptual baseline for the implementation of solutions. This requirement
addresses Deficit 1 because using patterns as modeling elements for a
conceptual solution design is the foundation, such that implementations
of them can be systematically reused for implementing the conceptual
solution design.

Requirement 2 (Reuse of Existing Pattern Implementations) In order
to avoid reworking pattern implementations each time a pattern has to
be applied in a specific use case, a user has to be able to reuse already
existing implementations. The EINSTEIN-Method has to assure that the
applicability of existing pattern implementations for use cases at hand can
be identified. This requirement addresses Deficit 1 and Deficit 2 because
it ensures that existing pattern implementations can be reused in the im-
plementation of conceptual solution designs. Furthermore, it incorporates
Deficit 5, as it also implies proper tools to support the EINSTEIN-Method.

Requirement 3 (Tailoring of Existing Pattern Implementations to spe-
cific Use Cases) On the one hand, the EINSTEIN-Method has to aim to
reuse pattern implementations systematically. However, on the other hand,
the EINSTEIN-Method also has to enable use case-specific adaptations of
the implementations for new use cases. Therefore, it is inevitable in many
cases that the existing pattern implementations to be reused have to be en-
riched and adapted, for example by manipulating the business logic. Thus,
the EINSTEIN-Method as a framework has to allow adaptations of existing
pattern implementations and their aggregations. Further, the selection of
existing pattern implementations has to consider requirements, such as the

59

3 The EINSTEIN-Method

need for specific technologies or configurations. This requirement tackles
the aspect of Deficit 2 that pattern implementations are often interwoven
into frameworks and cannot easily be adapted.

Requirement 4 (Aggregation of Existing Pattern Implementations)
Requirement 1 focusses to provide conceptual solution designs by means
of interplays of patterns. However, in order to support the systematic
reuse of pattern implementations also this interplay has to be propagated
to the implementation level. Therefore, the EINSTEIN-Method has to
support the aggregation of existing pattern implementations. Moreover,
the EINSTEIN-Method has to ensure that the aggregation of implemen-
tations can be executed automatically if technically possible. Otherwise,
proper guidance has to be provided for Implementers, which implies that
aggregation knowledge has to be captured. This requirement extends Re-
quirement 2 by addressing the aggregation of pattern implementations. It
further tackles both, Deficit 3 and Deficit 5, by requiring guidance for the
automated aggregation of pattern implementations.

Requirement 5 (Openness to new Technologies) Patterns aim to provide
proven solutions to recurring problems. Thus, they provide a viewpoint
on solution principles that have proven to be efficient in the past. Through
the abstraction of such principles from specific technologies, patterns are
sometimes seen to capture timeless ideas and concepts [AIS77; Ale79;
AZ05; Rei13]. However, especially in the field of IT, emerging technologies
are a driver of innovation. Thus, the EINSTEIN-Method has to be open
for emerging technologies, which require new specific implementations
of patterns and their aggregation. This requirement addresses Deficit 4
because it implies that new emerging pattern languages must be interwoven
with already existing ones, which must also be reflected in tools supporting
the EINSTEIN-Method.

Requirement 6 (Domain-independent Applicability) Although the gen-
eral prerequisite to apply the EINSTEIN-Method is that patterns and pattern
languages have to exist for the application domain, the method has to be

60

3.3 Steps of the EINSTEIN-Method

applicable independently from specific domains. The approach in its gen-
eral form must be tailored to the general concept of patterns and pattern
languages rather than specific structures of pattern languages that reflect
interplays in a specific domain. Thus, the general approach framed by
the EINSTEIN-Method has to be technology- and environment-agnostic
so that it can be adapted and implemented for different specific domains.
Building upon Requirement 5 this requirement addresses Deficit 5 as well
by imposing the support of managing patterns, pattern languages, and
pattern implementations from different domains.

Requirement 7 (Compatibility to Procedure Models and Frameworks)
In practice, there are many different procedure models in place that are
optimized for different purposes of use (e.g., waterfall, Scrum and spi-
ral model etc.), software development approaches (e.g., model-driven
architecture), or even ways of thinking (e.g., agile methods). Thus, the
EINSTEIN-Method must not replace a present procedure model but be in
place to support activities in there. Therein, it has to focus on translating
pattern-based design to aggregated implementations. This requirement
is general and assures that the EINSTEIN-Method does not incorporate
constraints and limitations imposed by a specific procedure model.

3.3 Steps of the EINSTEIN-Method

In this section, the vision of this thesis (cf. Figure 1.2) is translated into a
methodical framework. Thereby, core concepts are introduced and infor-
mally defined. First, the EINSTEIN-Method is presented in a comprehen-
sive overview, and then the individual steps of the method are detailed in
separate sections. The method is shown in Figure 3.1.

The method is designed to transform abstract pattern-based solutions into
directly usable solutions. For instance, in the context of software develop-
ment, this means that the EINSTEIN-Method can be used to transform a
conceptual solution design into a concrete software implementation. To

61

3 The EINSTEIN-Method

achieve this, 7 steps are defined as shown in Figure 3.1. The first two steps
– Design Conceptual Solution and Refine Conceptual Solution – are con-
ducted by the Designer. During these steps the Designer uses patterns as the
main design elements to create an abstract model of the intended solution,
which is called a Pattern-based Design Model or Design Model in short.
Thereby, the first step focusses on modelling an initial design model mostly
independent from any technological or implementation specific considera-
tions, which is illustrated by the modelled graph of connected patterns A, B,
C, and X as rounded squares attached to the arrow directing from Step 1 to
Step 2. The second step takes such technology- or implementation-specific
constraints into account by replacing initially used technology-agnostic
patterns in the design model with those that already describe technology-
or implementation-specific solution concepts. This is exemplified by the
refinement of pattern C into pattern C’ as the outcome of Step 2. The basis
for both steps are patterns authored and available in a pattern repository
representing a reusable body of knowledge.

Starting from Step 3, the Implementer takes over and turns the design
model via Step 4 to 6 into an Aggregated Concrete Solution that can finally
be used. First of all, in Step 3 the Implementer selects concrete solu-
tions, i.e., concrete implementations of the patterns stored in a Solution
Repository to avoid reimplementing the patterns over and over again. This
is indicated in the outcome of Step 3 where the interplay of patterns is
replaced by an interplay of concrete solutions illustrated as circles. In par-
ticular, the selection of appropriate concrete solutions that meet technical-
and implementation-specific requirements at hand can be supported by
automation (cf. Section 3.3.3 and Chapter 5), as illustrated by the interlock-
ing gears in Figure 3.1. The EINSTEIN-Method takes into account that
concrete solutions are subject to a much faster life cycle decay and become
irrelevant much faster than patterns. This is due to the fact that patterns
prepare solution essences, i.e., contain timeless knowledge, while concrete
solutions represent implementations of these concepts by means of tech-
nologies – and these technologies change more often in many domains. For
example, concrete solutions implemented in a specific programming lan-

62

3.3 Steps of the EINSTEIN-Method

Pattern
Repository

P

Solution
Repository

Implement Missing
Concrete Solutions

4

Design
Conceptual Solution

1
Refine

Conceptual Solution

2
Select

Concrete Solutions

3

Generate Concrete
Solution Aggregate

5
Integrate and

Refine Manually

6
Use Concrete

Solution Aggregate

7

A

C

XA

B A

XA

B

C‘

A

XA

B

C‘

A

XA

B

C‘

XA

C‘
A BA B

C‘

XA

Optional Step

Designer

Implementer

S

Automation

Figure 3.1: Conceptual overview of the EINSTEIN-Method

guage are outdated once the programming language itself is no longer used
in practice. Thus, continuous change and emerging innovations towards
new technologies make it necessary for concrete solutions to be updated
in the solution repository from time to time. Moreover, of course there
could also patterns be used in the design model, for which no concrete
solutions are available, so that they must be implemented manually. This
is what the EINSTEIN-Method supports by the optional Step 4. To pick
up on the example outlined in Figure 3.1, where, for example, no suitable

63

3 The EINSTEIN-Method

concrete solution could be found in the solution repository for pattern X in
Step 3, the missing concrete solution for pattern X is implemented by the
Implementer in Step 4 and then stored in the solution repository for reuse.
This is also shown in the result of Step 4, where a concrete solution is now
available for pattern X as well. Thus, the method also opens up application
areas and technologies for which solution repositories do not yet exist and,
accordingly, concrete solutions do not yet exist for systematic reuse. By
applying the method, Step 4 assures that the solution repository is succes-
sively filled and a growing pool of concrete solutions can be accessed for
new use cases.

Of course, the concrete solutions only result in a functioning whole once
they are integrated. This is achieved in Step 5 through their aggregation.
The aggregation of concrete solutions is not arbitrary but based on the
conceptual interplay of patterns as expressed in pattern languages and
the design model at hand. Thus, the principles of the interaction of pat-
terns in the design model and pattern languages must also be projected to
the level of concrete solutions. In this work, the approaches of Solution
Languages, Aggregation Operators, and Solution Algebras (cf. Chapter 6
and Chapter 7) are presented to systematically support and automate this
step for Implementers. In this process, the previously isolated concrete
solutions are integrated by means of Aggregation Operators (⊕) to form a
concrete solution that functions as a whole. This is shown in Figure 3.1
by the connected concrete solutions as part of a coherent block as a result
of Step 5. If aggregation operators for the selected concrete solutions do
not yet exist in the solution repository, aggregation must be performed
manually by the Implementer, what is intended in the optional Step 6.

Finally, the concrete solution aggregate is ready for use as indicated in
Step 7 of the EINSTEIN-Method. In many cases, the generated solution
aggregate still needs to be adapted for the intended use and function. This
is essentially due to the fact that the concrete solution generated up to that
point is based on the interaction of general solution principles from patterns.
Of course, these do not yet specifically take into account the semantics
of the actual use case to be realized, i.e, the business logic. Using the

64

3.3 Steps of the EINSTEIN-Method

Generativity of Pattern Language
helps to Design Conceptual Solution

Design Model represents
Interplay of Patterns to

Solve Concrete Use Case

P5 P6

P2

Pattern
Language P2

P3

P5

P6

P2

P3Design Model

Designer translates
Pattern Language
into Design Model

Design

P7

P8

Figure 3.2: A selection of patterns is translated into a design model

example of program code it can be stated that patterns and, therefore, also
concrete solutions are agnostic about business logic. Accordingly, this
must still be finally incorporated into the solution aggregate. Nevertheless,
it must be emphasized that the EINSTEIN-Method allows the Implementer
to concentrate on exactly these important aspects because the core of the
implementation of the use case can be generated in essential parts on the
basis of reusable concrete solutions.

Up to this point, the method has been explained in general terms and the
individual method steps have been explained in an abstract way. There-
fore, all method steps will be explained and discussed in detail in the
following.

3.3.1 Step 1: Design Conceptual Solution

The first step of the EINSTEIN-Method provides guidance to derive so-
lution designs from a pattern language taking into account how pattern
languages provide design knowledge and how designs for concrete prob-
lems at hand have to be layed out. Pattern languages show the interplay
of patterns in a general way. Thereby, the patterns of a pattern language

65

3 The EINSTEIN-Method

describe aspects of a domain that have to be interwoven to overall designs
for solving recurring problems. A pattern language itself describes the
dependencies between the patterns which can be grasped as rules, guid-
ance, and best practices about how to combine the patterns to design good
designs solving concrete problems at hand. However, there is a difference
between a pattern language and designs derived from it. A pattern lan-
guage forms a body of knowledge in a particular field that captures good
design. A design, in turn, applies the patterns to a concrete use case. That
is, patterns can appear multiple times in the design. For example, when de-
signing a cloud application, the business logic is typically encapsulated in
multiple independent Processing Components [FLR+14, p.180ff]. When
designing multifamily houses, an architect has to place multiple Main
Entrances [AIS77, p.540ff] in a building plan. When arranging a scene
in a western movie, a costume designer often has to establish multiple
versions of the Wild West Outlaw [SBLE12]. Thus, if a Designer wants to
use patterns as model elements for the design solving concrete use cases
at hand, they must accordingly include one and the same pattern several
times in the model. Note, that composite patterns, such as Content Dis-
tribution Network [FLR+14, p.300ff] or Scatter-Gather [HW04, p.297ff],
which explain the interplay of patterns solving more complex problems in
combination, do not deal with the above. Because these interplays have
proven to be good solutions they are promoted to patterns themselves and
can, therefore, also be used multiple times in the model.

In this work, the resulting design is a model using patterns as the main
modeling elements and is called pattern-based design model, or design
model in short. The Designer navigates through the pattern language
and chooses suitable patterns and arranges them in a way solving the
problem at hand guided by the pattern language. The act of designing,
thus, corresponds to mapping a pattern language onto a design model
solving a concrete problem. This is shown in Figure 3.2. There, e.g.,
pattern %2 from the pattern language at the top of the figure is used twice
in the design model at the bottom. Further, the patterns %7 and %8 are not
used at all by the Designer in the resulting Design Model. The Designer

66

3.3 Steps of the EINSTEIN-Method

sometimes has to resolve interdependencies between patterns in a pattern
language manually, e.g., if they are stated not specifically but conceptually
exist transitively between a series of patterns. This scenario can occur if a
pattern language contains patterns, which make coarse-grained patterns
more specific to a certain solution principle or setup.

Definition 3.3.1 (Pattern-based Design Model – informal) A Pattern-
based Design Model, or Design Model for the sake of brevity, is a concep-
tual model defining the interplay of the main building blocks of a solution,
wherein patterns are the modeling elements for these building blocks.
They are connected with each other so that the design model represents
the structure of the solution. �

For instance, the cloud computing pattern language by Fehling et al.
[FLR+14] introduces User Interface Component [FLR+14, p.175ff], Pro-
cessing Component [FLR+14, p.180ff], and Batch Processing Compo-
nent [FLR+14, p.185ff] – all patterns describing different kinds of applica-
tion components. If the Designer wants to model an application receiving
user input and processing it asynchronously in batch jobs to reduce the
number of processing instances, they finally want to come up with a design
model connecting the User Interface Component pattern and the Batch
Processing Component pattern. However, the pattern language relates the
User Interface Component pattern just to the more general Processing
Component pattern by describing how they act together. The Processing
Component pattern in turn relates further to Batch Processing Component,
which provides the solution actually required. Thus, using this pattern
language the Designer has to find User Interface Component, then follow
the relation to Processing Component to finally navigate to Batch Process-
ing Component. This shows, that a pattern language does not necessarily
provide all possible connections between the contained patterns, so that the
Designer rather has to resolve such transitive relations to pick the most suit-
able patterns and connect them in a design model. The formal introduction
of design models is layed out in Section 4.3.

67

3 The EINSTEIN-Method

3.3.2 Step 2: Refine Conceptual Solution

Once a design Model balancing conceptual trade offs is modeled, the ques-
tion arises how it can be implemented. This requires taking implementation-
specific considerations into account. For instance, if the design model of a
cloud application has to be implemented with specific technologies, such
as services provided by a specific cloud vendor, then the question arises
how to implement the patterns of the design model within the specific
cloud environment. This requires to refine the solution principles captured
by the patterns used in the design model towards constraints and technical
specifications of the cloud services and technologies of the targeted cloud
environment. To draw a non-IT example: if costumes in a film have to be
arranged for specific setups like a historical point in time, all circumstances
coming in from the era the film is playing in have to be considered. This
may mean, for example, that a sheriff’s costume needs to be refined into a
Wild West sheriff’s costume.

However, patterns used in a design model might not cover the translation of
their provided conceptual solution towards such more constrained contexts.
Although patterns refer to concrete implementations of solution principles
via known uses [MD97] or examples [WF12], the constant evolution of new
technologies can lead to situations where a pattern is outdated with respect
to references to actual implementations with state of the art technology.
This shows that the design model created in Step 1 of the EINSTEIN-
Method has to be refined in some use cases by the Designer taking into
account more implementation-specific constraints. In computer science in
particular, there are several pattern languages by different authors, many
of which have domain-specific overlaps in terms of the problems and
solutions they capture. Thus, the Designer can make use of pattern lan-
guages capturing more details on how to implement a pattern in a specific
technology to refine a design model. For example, the pattern language
by [Ama13] provides implementation hints for the solution concepts of the
cloud computing pattern language by [FLR+14]. Thereby, the Designer
replaces patterns in the design model with patterns dealing with the same

68

3.3 Steps of the EINSTEIN-Method

problem but refining the solution principles into implementation-specific
solution building blocks. Such building blocks can be, e.g., specific cloud
services and technologies along with configurations describing how to
wire them. Or to recap the non-IT domain of costumes in films, a De-
signer can exchange the general sheriff pattern with the Wild West sheriff
pattern [FBB+15], thereby enriching the design model with rules how to
realize the intended costume with Wild West-specific characteristics.

Since this step relies on the availability of patterns containing technology-
specific hints, it is performed optionally. Nevertheless, this step can also
act as a hook enabling to enrich existing patterns with new examples an
known uses. For instance, if the Designer makes use of patterns from a
pattern repository, this can enable to add new examples or known uses to
patterns [FBFL15; Rei13]. How pattern languages can be organized to sup-
port pattern refinement within design models is detailed in Section 4.2

3.3.3 Step 3: Select Concrete Solutions

Once the Designer prepared a design model and optionally refined it via
patterns providing more specifics on their implementation they can over-
hand it to the Implementer who does the actual implementation work. The
Implementer can make use of the design model and use it as the conceptual
blueprint to understand the intended overall solution. The patterns and the
relations among them captured in the design model are thereby the con-
ceptual guideline on what has to be implemented, whereas the conceptual
information found in the patterns also describes which tradeoffs have to
be considered and which solution principles have to be realized. However,
to avoid reimplementing patterns over and over again, the Implementer
can hark back to implementations of the patterns and reuse them. This
can be achieved by capturing implementations of patterns over time in
a solution repository [FBFL15]. There, implementations of patterns are
systematically stored and linked with the implemented patterns. This links

69

3 The EINSTEIN-Method

conceptual solutions of the patterns with concrete solutions in the form
of implementations. This is why implementations of patterns are called
concrete solutions in this work based on the following definition.

Definition 3.3.2 (Concrete Solution – informal) A Concrete Solution is a
reusable implementation of a pattern. It implements the solution principles
detailed in a pattern with a specific technology and is stored along with
relevant metadata in a solution repository. �

Concrete solutions can be, for example, programs, programming code, con-
figuration files, components of deployment models or further IT-artifacts,
which can be combined with concrete solutions related to other patterns.
In the case of the non-IT domain of costumes in films, concrete solutions
stored in a solution repository are digital representations of the actual
tangible costumes or even artifacts of a costume themselves [FBFL15].
When dealing with tangible concrete solutions, such as costumes, it can be
necessary to capture many details of a concrete solution in order to create a
digital representation. Concrete solutions, which are IT artifacts, typically
do not require as much detail because they are themselves digital. Never-
theless to enable the reuse for concrete use cases at hand, metadata, such as
the path to the IT-artifact, or Selection Criteria enabling to distinguish them
and make them searchable are required. Especially, the selection criteria
are essential means to find and reuse relevant concrete solutions because
they capture domain-specific knowledge and terms determining when to
use a certain concrete solution. Thus, they allow to filter all concrete solu-
tions attached to a pattern according to the use case-specific needs at hand.
For example, selection criteria can express the programming language or
specific technology a concrete solution is realized with or the costs that
had to be spent based on used cloud resources if the concrete solution is
used. When searching concrete solutions in terms of costumes in films,
selection criteria such as the historical era or the style of a location, region,
or country a costume is designed for can be of interest when selecting
proper concrete solutions.

70

3.3 Steps of the EINSTEIN-Method

Definition 3.3.3 (Selection Criteria – informal) A Selection Criterion is
metadata stored along with a concrete solution in a solution repository. It
expresses characteristics of a concrete solution required to distinguish it
from other concrete solutions in a human- and machine-readable way. The
characteristics are captured using domain- and technology-specific terms,
which makes searching them applicable for Implementers with respective
domain knowledge. �

A solution repository provides a schema, API, and often also an user
interface to store and retrieve all relevant metadata about concrete solutions
along with the concrete solutions themselves in order to support and guide
the Implementer to find and reuse them. Thus, an Implementer can search
a solution repository to find proper implementations of the patterns defined
in a design model. Thereby, conditions can be defined that must be met
by concrete solutions of all patterns in the design model. For example, if
an application has to be implemented using a specific framework, such as
Spring Boot3, the Implementer can filter for relevant concrete solutions via
the selection criteria specifying that a concrete solution is implemented
with this technology. Likewise, when designing costumes for a film playing
in a specific geographic region, costumes can be selected, which reflect
the cultural circumstances of the region. Using these mechanisms, the
Implementer can refine the design model further by selecting and reusing
concrete solutions of the patterns.

3.3.4 Step 4: Implement Missing Concrete Solutions

If the Implementer does not find suitable concrete solutions for all patterns
contained in the design model, the concrete solutions have to be imple-
mented manually. This step is often required for new pattern languages
for which a solution repository is just set up. In rare cases (cf. [Bar18]),

3https://spring.io/projects/spring-boot

71

https://spring.io/projects/spring-boot

3 The EINSTEIN-Method

when for example a completely new field of research builds upon a solution
repository by starting with gathering concrete solutions and then mining
patterns or even a whole pattern languages from them, this step of the
EINSTEIN-Method can be skipped. In other cases, crawling for imple-
mentations in open source software repositories [cf. Wet17] can also help
to identify and gather candidates for concrete solutions, which then can be
added to a solution repository and being linked to patterns and enriched
by selection criteria after quality assurance by an Implementer.

Since the solution principles described by patterns are typically technology-
agnostic, the solution knowledge of patterns is relevant for a long time.
Some authors even speak of the timelessness of patterns [AIS77; Rei13].
In contrast, the body of concrete solutions in a solution repository is subject
to constant renewal, as technologies and frameworks evolve over time or
even completely new technological approaches such as new programming
languages or even completely new computing models, such as quantum
computing [LBF+20], emerge. This applies not only to solution reposito-
ries from IT, but also to other domains such as costumes in films. There
new films are constantly being created whose vestimentary communication
must be followed by new costumes in the solution repository in order to
keep up with the times. Nevertheless, the value of older concrete solutions
can potentially also increase over time. In IT, for example, it is often the
case that technologies are no longer actively developed and are hardly mas-
tered by experts, but are still in use in important and long running systems,
such as the IT backends of insurances. In this case, solution repositories
built up over time can preserve knowledge about implementations with
specific technologies and keep it accessible.

3.3.5 Step 5: Generate Concrete Solution Aggregate

The core of the EINSTEIN-Method is the generation of a solution aggre-
gate from the selected concrete solutions. This step is intended to relieve
the Implementer of time-consuming manual work by aggregating con-

72

3.3 Steps of the EINSTEIN-Method

crete solutions automatically using aggregation operators. Aggregation
operators encapsulate the logic to assemble compatible concrete solutions
to overall concrete solution aggregates. Since aggregation of concrete
solutions must take into account the technological specifics of compatible
concrete solutions, aggregation operators have to be created and main-
tained for different technologies. For example, typically only concrete
solutions created in the same programming language or technology are
compatible with each other. If the formerly created design model repre-
sents a deployment model of an application, the selected concrete solutions
typically have to be implementations of deployment descriptors of the
same deployment technology and, therefore, an aggregation operator is
required that is capable of aggregating them to solution aggregates. In
IT, often APIs are used to abstract technical details, such as programming
languages, to integrate components more easily. The EINSTEIN-Method
is agnostic to such abstractions, thereby, grasping APIs as a specific type
of concrete solutions. In addition, aggregation operators must ensure that
the generated aggregate is valid for the corresponding technology so that
it is a relevant aggregation result for the Implementer.

Definition 3.3.4 (Aggregation Operator – informal) An Aggregation
Operator encapsulates the technology-specific logic required to aggregate
concrete solutions. �

The automation aspect of this step is represented by the gear symbol in
Figure 3.1. Accordingly, the Implementer triggers this step and receives
either a complete solution aggregate if the automated aggregation of all
concrete solutions was successful, or partial aggregates that must then be
integrated manually in the next step. The formal foundation of aggregation
operators, their development, and how to structure and organize sets of
concrete solutions in a solution repository is detailed in Chapter 6.

73

3 The EINSTEIN-Method

3.3.6 Step 6: Integrate and Refine Solution Aggregate manually

This step of the EINSTEIN-Method is conducted optionally by the Im-
plementer if the automated aggregation of the selected concrete solution
was not completely successful in the previous step. In this case, the Imple-
menter receives the automatically generated aggregates and then has the
option to manually integrate further concrete solutions with the solution
aggregates. For this purpose, the Implementer can use a solution language
that provides descriptions of steps required for manually aggregating con-
crete solutions (cf. Section 6.2). In addition, the Implementer can also
make adjustments and refinements to the generated solution aggregates in
this step in order to customize them in detail for productive use. This can
involve, for example, adding business logic to components of an application
or making configurations relevant for productive use.

3.3.7 Step 7: Use Concrete Solutions Aggregate

In the final step of the EINSTEIN-Method, the Implementer uses the final
aggregated solution for productive use. This may mean that environment-
specific configurations still need to be incorporated for execution in target
systems, or the generated solution still needs to be compiled in a build
pipeline for production use. This last step also provides a possibility for
the identification of frequently occurring solution aggregates. Frequently
occurring solution aggregates can provide an indication of so-called com-
posite patterns, which correspond to recurring proven pattern combinations.
Such indications of composite patterns can be fed into existing pattern
authoring processes to complement an existing pattern language and also
to associate entire solution aggregates with composite patterns.

74

3.4 Implementation of the EINSTEIN-Method

3.4 Implementation of the EINSTEIN-Method

The introduced method abstracts from specific domains. Accordingly, it
can and must be adapted for different domains. In particular, it is a matter
of assigning the domain-specific artifacts but also roles accordingly to
those presented in the method. Therefore, the described roles represent
a domain-agnostic view. For the application of the EINSTEIN-Method,
domain-specific roles accordingly coincide with those described here. In
this way, the roles underlying the EINSTEIN-Method have to be refined
in a domain-specific manner. Inherent in the application of the method
in different domains, however, is that solutions are conceptually designed
and then refined to the point of implementation. It is precisely this flow,
from design to concrete implementation, that is reflected in the interaction
between the roles of the Designer and the Implementer. Of course, these
roles can also be performed by one and the same person. For example, in
software development, it is often necessary that heterogeneous teams com-
bining different roles are formed to elaborate complex software systems.
Thereby, the roles of enterprise architects, solution architects, and software
engineers are the relevant IT-roles that, depending on an actual IT project
can fullfil the role of the Designer. Enterprise architects are typically
responsible for the overall architecture of an IT landscape and, thereby,
ensure that the overall architecture is in line with the IT strategy of an
organization, which involves also the governance of allowed technologies,
frameworks, or vendor-specific solutions. For instance, the governance
of a specific cloud vendor can be in place, which requires to use specific
cloud services and technologies. Thus, enterprise architects can take on the
role of the Designer and formulate constraints for the Implementer, which
have to be considered when implementing a concrete solution. Solution
architects, in turn, are typically responsible for the overall architecture of
systems and applications. Thereby, they often rely on patterns to design the
intended architecture of an application, which, consequently, makes them
most closely correspondent to the abstract role of the Designer. However,
depending on the size and organizational structure of an organization also

75

3 The EINSTEIN-Method

experienced software engineers can take on the role of the Designer very
similar to a solution architect. The responsibility to select proper tech-
nologies and frameworks for implementations depends on multiple factors,
such as the size of an organization, the organizational structure, and even
the architecture style. For example, in a microservice architecture, the re-
sponsibility to select technologies and frameworks is often delegated to the
software engineers implementing the microservices, while in a monolithic
architecture the responsibility to select technologies and frameworks is
often taken by solution architects. While solution architects typically focus
on the architecture of an application and tend to do less implementation
work, the opposite is true for software engineers. Thus, software engi-
neers are typically responsible for the implementation of an application
and, therefore, can take on the role of the Implementer. However, since in
practice no definitive sharp line can be drawn between solution architects
and software engineers, both IT roles can take over the role of an Designer
and an Implementer.

Furthermore, domains can differ in terms of what the concrete solutions
look like. In IT, we are usually dealing with digital concrete solutions, for
example, program code, configuration files, deployment models, or similar.
These are correspondingly easier to store as concrete solutions and thus also
to reuse than, e.g., concrete solutions that exist as tangible artifacts such
as costumes [BL15]. For these, a digital representation must be created
accordingly for automated processing, as illustrated by the work of Barzen
[Bar18], Barzen et al. [BBE+17], and Barzen and Leymann [BL15]. In the
specific case, the applicability of the EINSTEIN-Method is linked to the
cost/benefit ratio, especially for the creation of the digital representations
of the concrete costumes because this can involve the development of
sophisticated concrete solution meta-models and solution repositories,
such as described by Fehling et al. [FBFL15], along with manual work to
capture the costumes. In other digital cases, at least harvesting the concrete
solutions, e.g., from code repositories, can be automated and thus does not
contribute to the effort [WBFL17; Wet17].

76

3.5 Chapter Conclusion

Finally it has to be emphasized that the EINSTEIN-Method is put on or-
thogonally to already existing domain-specific procedure models and is
not intended to replace these. Agile process models and frameworks from
software development, such as Scrum [Sch97] or SAFe [Sca], can be men-
tioned here as examples. For example, Scrum does not distinguish between
different roles of architects because the focus is on the organization of the
agile development of software in iterations. However, also when develop-
ing software solutions in Scrum teams architecture is an important aspect
that has to be considered. This is often achieved either by members of the
Scrum team who take on the role of a solution architect or the Scrum team is
supported by solution architects on demand. In any case, if the development
is driven based on patterns and pattern languages, the EINSTEIN-Method
can be used to support the development of software solutions in Scrum
teams that bring together the heterogeneous roles of architects and soft-
ware engineers. This shows, that since the EINSTEIN-Method supports
the pattern-based design of solutions and the implementation based on
concrete solutions, it can be used in combination with existing procedure
models and frameworks. Thereby, the roles Designer and Implementer
might not always be exactly mappable to distinguished roles in a domain
or in procedure models, but are fulfill by a domain-specific interplay of
roles that are responsible to design and implement solutions. Thus, the
key driver to implement the EINSTEIN-Method in a specific domain is to
identify the roles and processes in such process models that are intended
for creating and transferring designs into implementations and, therefore,
can be mapped to the introduced roles and methodical steps as introduced
in Section 3.1 and Section 3.3.

3.5 Chapter Conclusion

In this chapter, the EINSTEIN-Method has been introduced as a methodical
framework for the systematic reuse of concrete solutions. The EINSTEIN-
Method is based on the idea of pattern-based design and the reuse of

77

3 The EINSTEIN-Method

concrete solutions. Thereby, it is designed to ease and support the genera-
tion of whole solution aggregates from an interplay of individual concrete
solutions. The EINSTEIN-Method is intended to be applicable in different
domains and to support the reuse of concrete solutions independently of
specific procedure models. This is achieved by binding the methodical
steps to the roles of the Designer and the Implementer, who are respon-
sible for the design and implementation of solutions, respectively. The
EINSTEIN-Method is designed to be open to new technologies and to sup-
port the reuse of concrete solutions in different domains. In the following
chapters, the main concepts required to implement the EINSTEIN-Method
are introduced and formalized, such that they can be used as a conceptual
blue print to establish the EINSTEIN-Method in new domains.

78

C
ha

pt
er 4

Pattern Languages and
Pattern-based Design

The first two steps of the EINSTEIN-Method enable to model conceptual
solutions via patterns in design models and to refine abstract patterns in
them with patterns providing implementation hints. In this chapter, a
formalization of pattern languages based on graphs is given, which builds
upon the Pattern Language by Alexander et al. [AIS77] and the informal
definition given in Definition 2.1.2. The informal definition of pattern
languages is generalized and formalized via the mathematical concept
of graphs, which allows to transfer the concept of a pattern language to
the domains and pattern languages investigated and applied in this work.
Furthermore, it is shown how existing pattern languages can be connected
to enable pattern refinement as described in Section 3.3.2. Building on
this, the concept of pattern-based design models as informally introduced
in Definition 3.3.1 is formalized. This chapter condenses the results from
the work presented by Falkenthal et al. [FBB+15] and Falkenthal et al.
[FBL18] and builds upon them.

79

4 Pattern Languages and Pattern-based Design

4.1 Pattern Languages as Graphs

A pattern language interweaves multiple patterns by representing how they
conceptually interact in design and implementation. Alexander introduced
a pattern language as a directed acyclic graph with implicit larger and
smaller semantics on the edges between patterns (cf. Definition 2.1.2).
These specific semantics are sufficient to express the relation of patterns
in the original domain of towns, buildings, and construction investigated
by Alexander [AIS77]. However, when the concept of patterns and pattern
languages got transferred to other domains, such as computer science, these
specific semantics have not endured and is often replaced. Among others,
Zimmer [Zim95] identifies categories of relations between the patterns
for object-oriented design by Gamma et al. [GHJV94]. Zimmer [Zim95]
describes relations between patterns with the following semantics: ”X
uses Y in its solution”, ”X is similar to Y”, and ”X can be combined with
Y”. Reiners [Rei13] suggests AND, OR, and XOR semantics to link emer-
gency response patterns in a pattern library. Fehling et al. [FLR+14] use
semantics such as see also or consider after within their cloud computing
pattern language. Zdun [Zdu07] and Zdun et al. [ZHD07] additionally
introduce weights with different values on edges beyond primitive lexical
semantics. Further examples of additional relation semantics are captured
by Falkenthal et al. [FBB+15] and Falkenthal et al. [FBL18].

As a consequence, the strict limitation to the larger and smaller semantics
as stated by Alexander has to be relaxed and generalized to transfer the
concept of pattern languages in other domains. In general, the semantics
of relations between patterns must be extended to allow arbitrary weights,
including text documenting how two patterns are related to each other
beyond the pure meaning of the relation. To reflect this, Edge Types are
introduced in this work allowing to map arbitrary information onto relations
between patterns, which is a generalization of the formulation of pattern
relation descriptors via semantic web technologies introduced by Krieger
[Kri18c]. They are organized in domains reflecting different types of

80

4.1 Pattern Languages as Graphs

structures being reused to specify arbitrary weights on edges. The basic
definition of a pattern language as a directed pattern graph with types as
weights on which this work is based follows in Definition 4.1.1.

A domain of edge types is a set of values that can be used to describe
the relation between two patterns in a pattern language. Thus, a specific
domain covers a set of symbols or words that represent termini required to
express the relations between patterns of a pattern language. For example,
in the case of the pattern language by Alexander et al. [AIS77], the relation
between patterns is expressed by the termini larger and smaller. Since
Alexander introduces directed edges between patterns that alway pointing
from larger patterns to smaller patterns, the relevant termini can even be
reduced to smaller. Thus, the domain of edge types for the pattern language
by Alexander et al. [AIS77] is �Alexander = {smaller}.

Definition 4.1.1 (Pattern Language)

A Pattern Language is a directed pattern graph G with typed weighted
edges. Thereby, a typed edge has a reusable structure assigned to represent
type-specific descriptions detailing the relationship of two patterns, s.t.,

G = (P, EP, W, D, U, V)

with

(i) P being a set of patterns where 20A3 (P) ∈ N

(ii) EP ⊆ P×P× W

(iii) W≠ ∅ being a set of edge weights

(iv) e = (?1, ?2, F) ∈ EP, then c1(e) is the starting point ?1 of edge
e, c2(e) is the endpoint ?2 of edge e and c3(e) is the weight F
assigned to e

(v) ∀e ∈ EP : c1(e) ≠ c2(e)

81

4 Pattern Languages and Pattern-based Design

(vi) ?1, ?2, . . . , ?: ∈ P is a path from pattern ?1 to pattern ?: :⇔
(?1, ?2, F1,2), (?2, ?3, F2,3), . . . , (?:−1, ?: , Fk−1,k) ∈ EP

(vii) A path ?1, ?2, . . . , ?: ∈ P is a simple path :⇔
∀2 ≤ 8, 9 ≤ : − 1 : ?8 ≠ ? 9

(viii) ∀?8 , ?8+1, . . . , ?< ∈ P that are simple paths holds ?8 ≠ ?<

(ix) ∀48 , 4: ∈ EP : c1(48) = c1(4:) ⇒ c2(48) ≠ c2(4:)

(x) D being the set of all domains of types used to specify sets of values
for type-specific descriptions of edges

(xi) U : W→ ℘(D)

(xii) V : EP→
⋃

e∈EP ×�∈DU(c3 (e))
�

(xiii) ∀e ∈ EP : V(e) ∈ ×�∈DU(c3 (e))
�

where U is a map that types weights by assigning subsets of all domains to
weights and V is a map that assigns type-specific descriptions to edges. �

From Definition 4.1.1 follows that a pattern language is a directed acyclic
and weighted graph with patterns as nodes and edges denoting the relation-
ship between patterns in terms of semantics and descriptions structured by
types. Although in many pattern languages references between patterns
exist in both directions, in this work such references are understood as just
one edge between the patterns. This can be attributed to the fact that such
references in pattern languages are intended for easy navigation by the
reader between all patterns, but do not capture the semantic interplay of
two patterns differently. Rather, the references to other patterns carried
out in pattern languages are materializations of the typed weighted edges
described in Definition 4.1.1 in the patterns themselves, i.e., pattern lan-
guages can be understood as renderings of pattern graphs as defined above.
For instance, two patterns ?1 and ?2 from a pattern language can reference
each other denoting that if pattern ?1 is applied then one is typically faced
with further design decisions captured by pattern ?2. In such cases, ?2

82

4.1 Pattern Languages as Graphs

typically also references ?1 by describing the context in which ?2 can be
applied. However, to express the semantics of the relation between ?1
and ?2 in a pattern language, just one edge is required that expresses the
semantics of the relation between ?1 and ?2. Since pattern languages are
mostly authored in text books or wiki pages with ordinary references or
hyperlinks respectively, the above defined edges are typically materialized
in the plain text of the patterns themselves. Thus, if a pattern language is,
for example, presented as wiki pages, the edges between the patterns are
materialized as hyperlinks between the patterns.

The above concept of a pattern language can be applied to the original
Pattern Language by Alexander et al. [AIS77] as follows. Alexander
defines that the semantics of relations between patterns strictly denote that
one pattern is larger than the other pattern. He defines the structure of a
pattern language by the following quote.

“And you see then what a beautiful structure a pattern
language has. Each pattern is itself a part of some larger
pattern […]. And each pattern itself gives birth to smaller
patterns […]” [Ale79, p.322]

Applied to Definition 4.1.1, the set of patterns is connected with edges of
type smaller allowing to navigate from a pattern to all smaller patterns,
which help “to complete it” [Ale79, p.313]. One example among many are
the patterns 29 Density Rings [AIS77, p.156ff] and 39 Housing Hill [AIS77,
p.209ff], where 29 Density Rings references 39 Housing Hill. Therefore,
the semantics of the relation between these two patterns is clearly defined by
the edge 4 = (DensityRings,HousingHill, F) according to Definition 4.1.1.
Since the structure of this pattern language is constructed via the smaller
semantics, F is mapped via U in this example to {�Alexander}, while V

maps the edge 4 to {smaller}. Thus, also all other edges in the pattern
language by Alexander et al. [AIS77] have the same weight w while V

maps all edges to {B<0;;4A}.

83

4 Pattern Languages and Pattern-based Design

Interface description

Remote object
Client proxy

Describes interface of Describes interface of

Requestor
Build requests

Figure 4.1: Excerpt of the Remoting Patterns by Zdun et al. [ZKV04]

The pattern language by Zdun et al. [ZKV04] can be grasped as a pattern
language with more complex typed edges as introduced in this work. In
their Remoting Pattern Language, they describe patterns for the design of
distributed object middleware solutions. Thereby, among others, they in-
troduce the so-called basic remoting patterns Interface description, Client
proxy, Marshaller, Remote object, Requestor, Remoting error, Invoker,
Client-request handler, and Server-request handler. Further, they use the
termini to describe the semantics between the patterns given by the domain
�remoting = {Describes interface of, Builds requests, Marshalling requests,
Demarshalling requests, Invocation, Raises, Send requests, Requests, Com-
municates with}. To show, how the above introduced formalism can be
applied to the pattern language by Zdun et al. [ZKV04], the patterns Inter-
face description, Client proxy, and Remote object are considered in more
detail. An excerpt of the remoting patterns by Zdun et al. [ZKV04] is
shown in Figure 4.1. The pattern Interface description is connected to
the pattern Client proxy via the edge 41 = (Interface description, Client
proxy, F1) with U(F1) = �remoting and V(41) = {Describes Interface of }.
Further, Interface description is connected to Remote object via the edge
42 = (Interface description, Remote object, F1) with V(42) = {Describes
Interface of }. This shows, that both, 41 and 42 carry the same semantics.
Finally, Client proxy is connected to Requestor via the edge 43 = (Client
proxy, Requestor, F1) with V(43) = {Build requests}.

84

4.1 Pattern Languages as Graphs

The remaining patterns can be connected in a similar manner utilizing
the introduced formalism of Definition 4.1.1. Note, that for both of the
above examples just one domain is used to describe the semantics of
the relation between two patterns. However, the introduced formalism
allows to use multiple domains to describe the semantics of the relation
between two patterns, which can be useful, for example, if formerly isolated
pattern languages are connected to an overall pattern language. Then, the
semantics of the relations between patterns from the pattern languages can
be expressed by different domains.

The definition of pattern languages according to Definition 4.1.1 also
allows Alexander’s ideas for extending pattern languages to be conceived
very simply. Alexander describes that a pattern language is frequently
subject to changes, adaptations, and extensions. Especially in situations
when multiple pattern languages deal with aspects that belong together on
a higher level, it can be beneficial to combine those pattern languages to
provide an overall body of knowledge among all captured solution concepts.
An example is the original pattern language by Alexander itself. It can be
grasped as three individual pattern languages, one dealing with the design
of towns, one with the design of buildings, and one with their construction.
Nevertheless, Alexander et al. [AIS77] showed that bringing these three
perspectives together in one pattern language creates one overall body of
knowledge. Thereby, they formulate the process how to aggregate pattern
languages by the following phrase.

“And, more subtly, we find also that different patterns in
different languages, have underlying similarities, which sug-
gest that they can be reformulated to make them more general,
and usable in a greater variety of cases.” [Ale79, p.330]

The Definition 4.1.1 of a pattern language introduced above allows to un-
derstand their informal definition and introduction about how to aggregate
pattern languages by means of set theory. Based on the concept of pattern
languages as graphs containing patterns as a set of nodes and the relations

85

4 Pattern Languages and Pattern-based Design

among the patterns as sets of typed edges, the aggregation of pattern lan-
guages to overall ones can be fully understood by the following definition
of a Pattern Language Aggregator.

Definition 4.1.2 (Pattern Language Aggregator) Let G be the set of
all pattern language graphs. Two pattern language graphs G1 and G2 are
aggregated based on a set of new edges E. Thereby,

� : G ×G × E → G

is the Pattern Language Aggregator function that aggregates two pattern
language graphs to a new single one containing new edges E with

(i) E ⊆ (c1(G1) ∪ c1(G2)) × (c1(G1) ∪ c1(G2)) × W

(ii) ∀4 ∈ E : c1(4) ∈ c1(G1) ⇒ c2(4) ∈ c1(G2) ∧ c2(4) ∈ c1(G1) ⇒
c1(4) ∈ c1(G2).

� aggregates two pattern graphs G1 and G2 by using the fundamental union
operation of set theory, s.t.

G3 = �(G1,G2, E) = (P1 ∪P2, E1 ∪ E2 ∪ E)

with P being the set of patterns of G1 and P2 being the set of patterns of
G2 as well as E1 and E2 being the edges of G1 and G2, respectively. �

For the sake of brevity, the infix notation is G3 = G1�EG2. � is associative
and commutative due to G1 �E G2 = (P1 ∪P2, (E1 ∪ E2) ∪ E) = (P2 ∪
P1, E1∪E2∪E) = (P2∪P1, E2∪E1∪E) = (P2∪P1, (E2∪E1) ∪E) =
G2 �E G1.

To solve use cases, it is often necessary to combine patterns from different
pattern languages. In order to combine patterns from different pattern
languages to an overall pattern language, another operator is required that

86

4.1 Pattern Languages as Graphs

allows to select a subgraph of a pattern language. For example, to imple-
ment an application that is based on asynchronous communication that has
to be hosted and managed on a cloud platform, then just the subgraph of pat-
terns from the pattern language by Hohpe and Woolf [HW04] dealing with
asynchronous communication and the subgraph of patterns dealing with
application hosting from the pattern language by Fehling et al. [FLR+14]
are required. Thus, the operator E is introduced in the following to select
a subgraph of a pattern language.

Definition 4.1.3 (Pattern Language Subsetting Operator) Let G be
a pattern language graph. A subgraph of G is selected by the Pattern
Language Subsetting Operator

E: G→ G

with

(i) #̂ ⊆ c1(G)

(ii) E (#̂) is the subgraph of G spanned by #̂

�

To select patterns from different pattern languages G1, . . . ,G= to combine
them into an overall one the relevant pattern language subgraphs can
be selected as Ĝ8 =

=
E
8=1
G8. Then, the overall pattern language can be

constructed as Ĝ = Ĝ1 �E1 . . . �E=−1 Ĝ=.

The pattern language aggregator � and the pattern language subsetting
operator E show that the definition of pattern languages as presented in this
work enables to understand and reason about the mechanisms of pattern
languages informally introduced by Alexander et al. [AIS77] and Alexander
[Ale79] with mathematical rigor. Further concepts described in Section 5.5
and also the prototypical implementation of the framework to support the
EINSTEIN-Method described in Chapter 8 build upon the understanding
and formulation of pattern languages as described in this section.

87

4 Pattern Languages and Pattern-based Design

4.2 Pattern Refinement

Step 2 of the EINSTEIN-Method is about refining abstract patterns with
patterns providing implementation guidance for certain technologies. To
support this step, the concept of Pattern Refinement is introduced in this
section. The formulation of pattern languages as graphs together with the
concept of the pattern language aggregator (see Definition 4.1.2) show
how pattern languages authored independently from each other can be
connected. A special case of connecting formerly independent pattern
languages is introduced in the following as pattern refinement.

Patterns are typically provided with a section about known uses or exam-
ples [MD97] illustrating the evidence that the introduced solution principles
are proven in different real world use cases. Some even provide guidance
via examples, e.g., in the form of programming code snippets [GHJV94].
However, broad guidance covering different technologies and implemen-
tation scenarios is typically not given. This is the outcome of pattern
authoring processes (cf. [FBBL14; MD97]), where general solution prin-
ciples are condensed into the ”gestalt” of the pattern (cf. [Koh10; Koh11;
Koh12]). The gestalt of a pattern abstracts away all implementation details
and keeps the emergent qualities of a solution concept [Koh12]. According
to Kohls [Koh12] this is because the process of abstraction decreases the
number of constraints, which, at the same time, reduces also the guidance
when applying a with specific technologies. This means that patterns
following this principle are less instructive but open up more choices at
realizing concrete implementations of a pattern, which corresponds to the
definition by Alexander et al. [AIS77] that a pattern provides a proven
solution which can be applied over and over again to many different use
cases. At the same time, patterns focusing just on the gestalt and leaving
out all technological hints lead to time-consuming efforts when it comes
to applying them for use cases with specific technologies or technical
constraints.

88

4.2 Pattern Refinement

While being reusable for many use cases, such patterns open an abstraction
gap between the represented solution principles and their actual implemen-
tations as depicted in Figure 4.2. The abstraction gap indicates that users
of a pattern language have to refine the solution principles of patterns each
time they want to apply them in implementations, which means they re-
quire deep knowledge about the targeted technologies and have to balance
technological constraints being part of a use case at hand – all resulting
in time-consuming efforts for implementing the patterns and, in case of
unexperienced users, even in erroneous implementations [FBB+15]. In
Figure 4.2, this relationship is indicated by the dashed arrows that connect
the patterns to concrete use cases across the abstraction gap. Also if exam-
ples were kept at the point of authoring patterns, be it as links to external
resources or by capturing example implementations, they get typically not
updated and extended with examples from new emerging technologies.
This is because most pattern languages are still published in text books
or scientific papers. Those are immanently prone to abstraction gaps over
time. Consequently, all this can be condensed into the following problems:
(i) pattern languages often either do not provide guidance to implement
the contained patterns or (ii) the actuality of examples and implementation
guidance cannot be preserved because the availability of external sources
cannot be ensured and patterns are not updated considering new emerging
technologies.

These principles can be exemplarily revealed by investigating the pattern
language by Fehling et al. [FLR+14]. In summary, the cloud computing
patterns lift the captured solution principles to an architectural perspec-
tive for designing cloud-native applications leveraging capabilities and
principles of cloud environments. Therefore, they are a means for mod-
eling architectures and designs for such applications. However, they do
not capture implementation examples in the pattern language itself but
just provide references for further reading in external sources within the
known uses section of the patterns. To take further examples, the im-
plementation hints within the book on object-oriented design patterns
by Gamma et al. [GHJV94] do not capture programming languages and

89

4 Pattern Languages and Pattern-based Design
C

on
cr

et
e

U
se

 C
as

es

Ad hoc refinement for
specific Use Cases

Problem: Typically
not documented

Ab
st

ra
ct

Pa

tte
rn

s

Pattern Language A

UC2UC1

Ab
st

ra
ct

io
n

G
ap

P1

P2

P3

P4

Pn

Pattern Language X

P1’

P3’

P2’

Pm’

…

UCpUC3

Figure 4.2: Abstracting details on implementations from patterns makes
them applicable to many use cases at hand but creates an
abstraction gap towards implementations

their specifics that have evolved after the time of writing the original book.
The patterns on messaging-based integration of enterprise applications
by Hohpe and Woolf [HW04] do not consider latest communication proto-
cols and middlewares. The green IT patterns by Nowak et al. (cf. [NBL14;
NL13; NLS+11; Now14]) do not consider new emerging technologies and
paradigms, such as quantum computing, which promises energy savings in
computation [JM22]. This list of examples is not exhaustive, but shows the
immanent principle of arising abstraction gaps due to focussing on gestalt
in patterns or abstraction gaps evolving over time.

A first attempt to bridge this gap is done in the EINSTEIN-Method in
Step 2, in which pattern refinement takes place. Pattern refinement helps
to overcome the lack of guidance towards pattern implementations arising
from focussing on abstract solution principles by interweaving formerly iso-
lated pattern languages. Thereby, abstract patterns are linked with patterns

90

4.2 Pattern Refinement
C

on
cr

et
e

U
se

 C
as

es
Ab

st
ra

ct

Pa
tte

rn
s

UC2UC1

Reduced Abstraction Gap

Pattern Language A

P1
P2

P3

P4

Pn

Pattern Language B

P1’

P3’

P2’

Pm’

Refinement Links

Solution
ArtifactX

Solution
ArtifactY

Pa
tte

rn
s

w
ith

Im
pl

em
en

ta
tio

n
G

ui
da

nc
e

Abstract
Pattern Primitives

Concrete
Pattern Primitives

Implementations

refined by

describe

Figure 4.3: The abstraction gap can be closed via patterns providing im-
plementation hints for specific technologies and constraints

which provide implementation guidance for specific technologies. Thus,
pattern refinement relies on the presence of patterns either being authored
on different levels of abstraction or providing additional implementation
hints. This is conceptually depicted in Figure 4.3 where Pattern Language
B contains patterns that help to close or at least reduce the abstraction
gap as initially illustrated in Figure 4.2. Thereby, patterns just providing
abstract solutions and few to no implementation hints from the depicted
Pattern Language A are connected with those from Pattern Language B
providing the missing implementation guidance. This principle can be
applied to multiple levels of abstractions. Below, it is exemplified via two
case studies in Section 4.2.1 and Section 4.2.2, respectively.

91

4 Pattern Languages and Pattern-based Design

The links express the semantics that the targeted patterns refine the source
patterns by providing implementation guidance capturing a more specific
context, such as cloud services of a vendor or specific technology stacks.
The targeted more concrete patterns refine the pattern primitives, which
are domain-specific terminology and elements (cf. [ZAHD08]) used to
describe the respective solution principles. Thus, they map abstract pattern
primitives to more concrete ones, which ultimately allows users to translate
the solution knowledge contained in the patterns more easily to concrete
implementations. Applying the concept of the pattern language aggregator
shows how an overall pattern graph can be formulated by specifying the
two refinement links illustrated in Figure 4.3 as new edges connecting %1
and %1′ as well as %= and %<′ as G = G� �{(%1,%1′) , (%= ,%<′) } G�.

4.2.1 Case Study: Pattern Refinement of Cloud Computing Patterns

The concept of pattern refinement can be applied in the domain of cloud
computing. The above already mentioned pattern language by Fehling et al.
[FLR+14] provides recurring problems and proven solutions in an abstract,
cloud provider- and technology-independent manner for the purpose of
designing cloud-native applications. However, design principles for cloud
applications are also captured in pattern languages authored by the cloud
vendors Amazon Web Services (AWS) [Ama13] and Microsoft [HSB+14;
Mic14]. While the pattern language by Fehling et al. [FLR+14] provides
patterns without any technology-specific implementation guidance this
abstraction gap is filled by patterns from the other two pattern languages
— each focussing on implementation guidance for the specific cloud ven-
dor technology and service stack. Conceptually, the pattern language by
Fehling et al. [FLR+14] can be seen as more abstract in comparison to
the other two. Thereby, the patterns by AWS and Microsoft connect the
presented solution concepts expressed by technology and vendor-agnostic
primitives by Fehling et al. [FLR+14] with terminology, services, and
technologies available within the respective cloud environment.

92

4.2 Pattern Refinement

Overarching, 16 patterns can be found in the pattern languages by AWS and
Microsoft, which take solution concepts by Fehling et al. [FLR+14] and
refine them for the respective cloud environment [Fau16]. Exemplarily, this
is shown and discussed by the patterns Elastic Load Balancer and Stateless
Component by Fehling et al. [FLR+14] as well as Scale out Pattern and
State Sharing Pattern by AWS [Ama13] in the following.

When designing cloud applications, it is often intended that the applica-
tion is capable of processing varying amounts of workloads. Thereby,
it is necessary that the number of different application components can
be scaled independently from each other to match different workloads.
The patterns Elastic Load Balancer and Scale Out Pattern show how
this can be achieved. More precisely, the patterns describe how appli-
cation components can be provisioned and no longer needed ones can
be decommissioned based on monitored workload, i.e., how they can be
elastically scaled. As mentioned above, because the abstract patterns by
Fehling et al. [FLR+14] do not provide implementation guidance, the
Elastic Load Balancer pattern does not give hints on how the presented
solution concepts can be implemented e.g., with the cloud offerings of
AWS or Microsoft. However, this guidance can be found in the Scale out
Pattern by AWS [Ama13].

Figure 4.4 shows how the Scale out Pattern refines the primitives used in
Elastic Load Balancer to AWS-specific components and services. While
Elastic Load Balancer introduces the component capable of spreading
workload among different instances of an application component being a
Load Balancer, the Scale out Pattern helps to map this concept to a actual
service in the AWS ecosystem, which is called Elastic Load Balancer
Service. This service can multiplex workload among application instances
hosted and managed in the AWS cloud. Thus, the Scale out Pattern provides
concrete guidance how the concept of a Load Balancer can be realized
within the AWS cloud. Another concept required for scaling application
components due to encountered workload is Monitoring as depicted on
the left in Figure 4.4. Scale out Pattern helps to translate the concept of
monitoring to the Cloud Watch service of the AWS cloud offering. Of

93

4 Pattern Languages and Pattern-based Design

Elastic Load Balancer Scale Out Pattern

Load Balancer

Monitoring

Elastic Infrastructure

Elastic Load Balancer
Service

Cloud Watch

Elastic Compute Cloud

Auto Scaling

Amazon Machine ImagePrimitive
Refinement of Concepts

Figure 4.4: Pattern refinement allows to map abstract primitives of the
Elastic Load Balancer pattern by Fehling et al. [FLR+14] to
vendor-specific primitives of the Scale out Pattern of the AWS
Cloud Design Patterns [Ama13]

course, also automated provisioning and decommissioning of application
component instances is required to enable elastic scaling. The Elastic
Load Balancer describes the concept of an Elastic Infrastructure allowing
for these capabilities. In the AWS cloud, the pendant to the concept is a
combination of Elastic Compute Cloud, which is a service to provisioning
compute resources, Auto Scaling, which is a service configuring the elastic
scaling of compute instances, and Amazon Machine Images, which are
templates for launching virtual machines. Those are the primitives used in
the Scale out Pattern to describe how the more abstract solution concept
represented by the primitive Elastic Infrastructure can be realized with
the AWS cloud stack. Thereby, the Scale out Pattern provides concrete
guidance how those refined primitives have to be combined and configured
to allow elastic scaling within AWS.

Further, to efficiently scale application components elastically, they ide-
ally have to follow design principles introduced in the pattern Stateless
Component by Fehling et al. [FLR+14]. Specifically, this pattern insists

94

4.2 Pattern Refinement

CSnCS2CS1 CS3

State Sharing
PatternScale out

Pattern

Stateless
Component

Elastic Load
Balancer

Abst
rac

t

Patt
ern

s

Refin
ed

 to
ward

s

Tech
no

log
y

Con
cre

te

Solu
tion

s

Figure 4.5: The Cloud Computing Patterns by Fehling et al. [FLR+14] can
be linked with AWS Cloud Design Patterns [Ama13] to allow
the refinement of solution concepts towards implementations
within the AWS cloud offering. [FBB+15]

that application components should not maintain session state internally,
but rather retrieve it on every execution call. This eases elastic scaling
because no further management of session state is required, which finally
reduces complexity and also leads to failure resiliency. Of course, when
applying this pattern in real use cases this principle has to be realized
within a respective cloud environment, thus, how state can be held external
from an application component has to be mapped to technical solutions
and services provided by the cloud. The State Sharing Pattern by Amazon
Webservice [Ama13] helps to map this solution principles to virtual servers
in combination with key-value stores, which allow to externalize the state
from application components.

95

4 Pattern Languages and Pattern-based Design

Figure 4.5 shows the described scenario schematically and illustrates how
refinement links enable users to work with Fehling’s technology-agnostic
pattern language on the one hand and to dive into AWS’s pattern language
on the other hand to understand corresponding relevant solution concepts
from the AWS cloud. The illustrated overall pattern language can be
expressed as G = GCCP �{(ELB,SoP) , (SC,SSP) } GCDP with ELB, SoP, SC,
and SSP being abbreviations for the respective patterns and CCP as well
as CDP representing the Cloud Computing Patterns and the AWS Cloud
Design Patterns.

4.2.2 Case Study: Pattern Languages for Costumes in Films

To show the applicability of pattern refinement beyond the domain of
IT, in the following, patterns from the domain of costumes in films are
investigated. Patterns have proven to be a valuable means to capture
design elements, which are essential to communicate specific stereotypical
characters via costumes in films [Bar18]. Patterns thereby capture relevant
parameters of a costume, such as base elements and primitives a costume
is made of, colors of the base elements and primitives, modifications of the
base elements and primitives, etc., which are essential for the vestimentary
communication of clothes [Bar18; FBB+15; FBB+17].

The initial patterns of the pattern language on costumes in films by Schumm
et al. [SBLE12] show how design knowledge for costumes in films can be
captured and normalized into a canonical pattern format. Based on this
pattern format, Barzen and Leymann [BL15] suggest that pattern languages
for costumes in films can be organized according to different film genres
because each genre requires specific design elements and conventions,
which are expressed by corresponding genre-specific patterns. For instance,
costumes in a western film have to follow the clothing characteristics
of the wild west era while costumes for science-fiction films typically
have to show some technologically advanced parts in order to work in

96

4.2 Pattern Refinement

Marshal Will
Kane

(High Noon)

Outlaw
Sheriff

Science Fiction
Sheriff

Jake Lonergan
(Cowboys &

Aliens)

Wild West
Sheriff

Abst
rac

t

Patt
ern

s

Refin
ed

 to
ward

s

Gen
re

Con
cre

te

Cost
um

es

Figure 4.6: Genre-specific Costume Pattern Languages [BL15] can be
connected via refinement links. [FBB+15]

this genre. Figure 4.6 shows this genre-specific organization of costume
pattern languages conceptually by a western costume pattern language and
a science fiction costume pattern language.

The Wild West Sheriff and Science Fiction Sheriff patterns are shown there
as examples. Moreover, a closer look at the two concrete manifestations of
these patterns presented – once with the role of Marshal Will Kane (Gary
Cooper) in the Film High Noon (1952, Director: Fred Zinnemann) and
once with the role of Jake Lonergan (Daniel Craig) in the film Cowboys &
Aliens (2011, Director: Jon Favreau) – reveals that genre-specific costume
elements are present, such as spurs or high-tech gear but also generic
ones, such as the sheriff’s star. Thus, the generic aspects of such costumes
can be captured into a genre-agnostic costume pattern language, which is
depicted above the genre-specific languages in Figure 4.6. This generic
pattern language not only allows to capture essential design elements
of a costume, such as the sheriff’s star that are used in different genres,

97

4 Pattern Languages and Pattern-based Design

but also interactions between different costumes, which typically occur
among all genres, such as the constant conflict between good and evil
expressed through the contrast between a sheriff and an outlaw. Thus, this
layers of abstraction allow for a clear separation of concerns among the
genre-specific pattern languages on the one hand. On the other hand, in
order to develop costumes starting from basic genre-agnostic essential
design elements used in different film genres, such as the sheriff’s star, the
pattern languages can be connected using pattern refinement. The abstract
pattern language on the top of Figure 4.6 thereby allows for a similar
technology-agnostic perspective as the pattern language by Fehling et al.
[FLR+14] as discussed above does. The refinement links connecting the
more abstract patterns with the genre-specific ones then also allows to get
more guidance on implementing the respective costumes for the setting of a
specific genre, which corresponds to specific cloud environments from the
above example of the cloud patterns and vendors. The illustrated scenario
in Figure 4.6 can be expressed using the pattern language aggregator as
G = (GCP �{(Sh,WWSh) } GWCP) �{(Sh,SFSh) } GSFCP with Sh, WWSh, and
SFSh being abbreviations for the respective patterns and CP, WCP, as well
as SFCP representing the Costume Pattern Language, the Western Costume
Pattern Language and the Science Fiction Costume Pattern Language.

4.3 Pattern-based Designs

Alexander describes patterns being a dualism of “things and the rules to
create that things” [Ale79, p.185, p.247]. Consequently, patterns represent
entities and the knowledge about how to place those entities within the
interplay of other entities in a specific domain. Thus, when designing
conceptual solutions, Designers can use patterns in design models to reflect
an overall solution, as intended by the EINSTEIN-Method. Many pattern
languages support this by providing meaningful icons for the patterns,
which can then easily be used even on whiteboards to design with the

98

4.3 Pattern-based Designs

patterns of the pattern languages. Among many others, this is realized
in the patterns and pattern languages languages by [EBF+17; FLR+14;
HW04; NLS+11; RBF+16; Rei13; Ric18; SBLE12].

In computer science and especially in application architecture designing
with patterns is a widely applied approach (cf. among others [AEK+07;
AFL12; AZ05; BBKL13; BDH05; Bec07; Bec96; BMR+96; Bre16;
FLR+14; HW04; RBF+16; Ric20; WBLV21]). For instance, guided by the
structure of the pattern language by Fehling et al. [FLR+14], Designers can
incrementally create the design of cloud-native applications. However, the
architecture of more than just oversimplified example applications requires
typically a sophisticated interplay of multiple patterns, which is often not
already represented in the used pattern languages. For example, if a cloud
application consists of multiple components all hosted on different cloud
platforms, the architecture requires to express this by multiple instances of
the Processing Component pattern connected to multiple instances of the
Elastic Platform pattern. The same applies, for instance, to applications
designed with the messaging patterns by Hohpe and Woolf [HW04] if mul-
tiple Message Endpoints are integrated. Or if a microservice architecture
makes use of multiple Circuit Breakers and API gateways (cf.[Ric18]).
Or, finally, if multiple Mains-Powered Devices are connected to multiple
Device Gateways modelled using the patterns by Reinfurt et al. [RBF+16;
RBF+17c]. This is not an exhaustive list but only a selection from the
domain of application architecture to illustrate that for real world use cases
it is often inevitable to model multiple instances of patterns and their
interplay to realize the intended architecture of a complex system.

This phenomenon is not limited to computer science. Also in non-IT do-
mains, such as designing whole towns or costumes for films, this principle
can be recognized. For instance, when designing districts of a city or build-
ings within there, typically multiple instances of the patterns by Alexander
et al. [AIS77] are required to construct sophisticated conceptual solutions.
Or when arranging a whole movie scene with multiple characters it is
often necessary to combine multiple instances of the costume patterns by
Schumm et al. [SBLE12].

99

4 Pattern Languages and Pattern-based Design

Pattern Language

Design Model

P5,2

P6,1

P2,2

P2

P3

P5

P6

P3,2

P7

P8

P5,1

P2,1

P3,1

Designer selects
Patterns from a Pattern
Language and arranges
them to reflect the
Solution Design

Figure 4.7: Designing with patterns means projecting pattern languages
to a design model

In conclusion, this means that designing solutions with patterns results in
pattern graphs, which are not just simple subgraphs of the used pattern
language. According to the EINSTEIN-Method, pattern-based design
rather leads to design models that go beyond the mere structure of the
pattern language used.

Figure 4.7 illustrates this principle of pattern-based design. Starting from
a pattern language, patterns are selected when designing a concrete so-
lution. However, since individual patterns are required multiple times in
the intended solution design, the patterns are indexed according to their
number of occurrence in the design model. The respective indices of the
patterns indicate multiple instances of a pattern in the design model. This
allows the Designer to express the interplay of different usages of a pattern
in a design model properly. For instance, pattern %2 is contained twice in
the design model in Figure 4.7 reflected by %2,1 and %2,2. By connecting

100

4.4 Pattern-based Design Models

the instances of %3 and %5 with %2,1 the Designer can express that those
form an interplay in the design model, while %2,2 and %6,1 form another
interplay. Thus, the design model unambiguously expresses the occurrence
of multiple pattern usages and their respective interplay required in the
final implementation of the solution design.

4.4 Pattern-based Design Models

A pattern-based design model is according to Definition 4.4.1 a pattern
graph that defines the structure of an intended overall solution by specifying
which patterns have to be aggregated.

Definition 4.4.1 (Pattern-based Design Model) A Pattern-based Design
Model, in short Design Model, specifies an intended solution design by the
interplay of patterns, which solves a concrete problem at hand.

Given a pattern language G and the index set �, then (?8)8∈� with ?8 ∈
c1(G) is the family of patterns from a pattern language contained in a
Design Model.

A Design Model is a graph G3< = (P3<, E3<, W3<, D, U3<, V3<), s.t.,

(i) P3< is the multiset induced by the family (?8)8∈� with ?8 ∈ c1(G)
and card(P3<) ∈ N

(ii) E3< = P3< ×P3< × W3<

(iii) W3< is a set of weights representing domain-specific semantics of
the interplay of patterns

(iv) U3< : W3< → ℘(D)

(v) V3< : E3< →
⋃

e∈E3<
×�∈DUdm (c3 (e))

�

(vi) ∀e ∈ E3< : Vdm(e) ∈ ×�∈DUdm (c3 (e))
�

�

101

4 Pattern Languages and Pattern-based Design

The edges within a design model are directed weighted to express specific
semantics of the targeted domain of the design model along with the
semantics that connected patterns have to be aggregated to form an overall
solution. This work limits design models to express the structural interplay
of patterns, although other work has already shown that further semantics
can be introduced to express also an adaptive influence of patterns on each
other [HBF+20].

4.5 Implementation of the Design Model Concept

A design model is conceptually similar to domain-specific languages,
such as different modeling or design languages1, which rely on modeling
graphs. However, rather being a specific modeling language focusing and
covering a domain-specific purpose, it is a modeling language independent
concept that allows to model solutions with patterns. Thus, in some cases
it can be beneficial to translate the concept of design models into modeling
concepts within specific modeling languages. This is inevitable if a specific
language is the de facto Lingua Franca in a domain. The concept of
design models can be transferred to a domain-specific language under the
following conditions:

• The modeling paradigm is graph-based

• Patterns can be introduced as new modeling elements

• The relations between patterns can either be specified by existing
relation types, or the relation types can be extended to express that
two modeling elements of type pattern have to be aggregated

1see among others ArchiMate [Ope22], UML [Ope22], or TOSCA [OAS13]

102

4.6 Chapter Conclusion

Some modeling languages are designed to be extensible. For instance, the
Unified Modeling Language (UML) [OMG07] can be extended via UML-
profiles and the Object Constraint Language (OCL) [Obj14] enabling to
model pattern languages [Gri11]. Other approaches extend UML to map
domain-specific primitives with pattern concepts, which enables to model
variants of patterns in terms of elements of the patterns [DY03; MDM+18;
RS09]. Harzenetter et al. [HBF+18b; HBF+20] show how patterns can get
modeling elements within deployment models. All these examples show
how the concept of design models can be translated into specific modeling
languages. Nevertheless, this work sticks to the pure concept of design
models to express the interplay of structural patterns in order to design
larger solutions consisting of the interplay of multiple patterns. This is to
help ensure that the concepts presented in this work remain agnostic of
a domain-specific language and, thus, can be applied to domains beyond
those mentioned in this work.

4.6 Chapter Conclusion

This chapter layed the foundation for the concept of design models, which
are used in the EINSTEIN-Method to conceptually design solutions with
patterns. The core understanding of pattern languages being graphs was
introduced and the concept of the pattern language aggregator was pre-
sented. The formalization of pattern languages as graphs is the basis for
further concepts introduced in the following chapters. The formalization
will be refined stepwise to incorporate further concepts, such as concrete
solutions, which are introduced in the next chapter. The concept of design
models is kept domain-independent to allow for a broad applicability of
the EINSTEIN-Method.

103

C
ha

pt
er 5

Reuse of
Pattern Implementations

as Concrete Solutions

One of the main parts of this work is the reuse of pattern implementa-
tions, which are referred to as Concrete Solutions. This chapter builds
upon the introduced concepts and formalizations of pattern languages and
pattern refinement in the previous chapters. Firstly, the concept of concrete
solutions is introduced and it is shown how concrete solutions can be con-
ceptually understood and how they can be represented digitally. Secondly,
the formalizations of pattern languages as graphs of patterns as well as
pattern refinement as presented in Chapter 4 are extended to the conceptual
model laying the basis for the reuse of concrete solutions. This chapter
builds upon the work on concrete solutions and patterns by Falkenthal et al.
[FBB+14a; FBB+14b] and the work on representing concrete solutions
based on semantic web technologies by Krieger [Kri18c].

105

5 Reuse of Pattern Implementations as Concrete Solutions

5.1 Concrete Solutions

Today, pattern languages are usually harvested by experts [Rei13]. By
abstracting the problems and solutions from their expertise and experi-
ence, these experts determine the content of the patterns. This approach
is referred to as the pattern guru approach by Reiners [Rei12; Rei13]
because the captured patterns rely on the consensus of usually a small
group of experts. This results in two caveats. Firstly, patterns created
in this way are difficult to verify whether they actually represent proven
solution knowledge for recurring problems. Even though the section on
known uses of a pattern shows that it is used in practice, it is difficult to
trace the concrete characteristics of the pattern in detail, as one often does
not have access to the actual implementation. This leads to the fact that
pattern provenance can only be specified to a limited extent at the time
of formulating a pattern. Moreover, once a pattern is applied to further
new use cases, the pattern itself can just hardly be extended by adding
new applications as evidence for the pattern. Secondly, the abstraction of
solution principles into patterns also detaches them from their underlying
concrete implementations. Meaning that both, for known uses of patterns
and also new applications, the pattern implementations get lost for later
reuse or advice. Thus, manual effort and knowledge is required to apply
the patterns to concrete use cases every time a pattern has to be applied.

Recent research approaches by Barzen [Bar18], Barzen et al. [BBE+17],
Falkenthal et al. [FBB+17; FBD+15], and Strehl [Str15] have shown that
pattern authoring processes can be supported by data analytics techniques
and approaches such that harvesting proven solution principles can be
systemized, partially automated, and most importantly gets repeatable
and plausible based on given data. Thereby, the process of revealing
costume patterns from a corpus of concrete costumes captured from movies
shows that systematically storing concrete solutions enables to establish
provenance and evidence for known uses of patterns and the rational why a
pattern is proven in practice. In addition, it is possible to retrieve concrete
solutions quickly if the derived patterns are linked to the concrete solutions.

106

5.1 Concrete Solutions

Fehling et al. [FBFL15] demonstrate this for costume patterns and concrete
costumes on the basis of a repository for costume patterns and a solution
repository for concrete costumes.

Even though also other approaches exist to derive and underpin patterns
by concrete evidence and concrete solution knowledge iteratively [FJZ+12;
Rei13], the actual concrete solutions are typically not stored for systematic
reuse. They are rather abstracted into informal evidence in the form of
textual descriptions formulated within the canonical structure of the pattern
documents similarly to known uses, or are not captured at all. In this case,
the concrete solutions get also lost during the pattern authoring process,
although mechanisms are foreseen in the managing pattern repository to
keep evidence and known uses of patterns up-to-date [Rei13]. Nevertheless,
also such approaches hinder to directly reuse concrete solutions connected
to patterns and, thus, lead to manual efforts over and over again when it
comes to applying a pattern.

Therefore, concrete solutions are introduced in this work as core concepts
being not just informal parts of pattern descriptions but full-fledged entities
of a theory connecting pattern languages and concrete implementations
of the patterns. Thus, concrete solutions are reusable building blocks
representing implementations of the solution principles documented in a
pattern. This means, that concrete solutions are realizations of a pattern
in specific contexts, such as specific technologies, cloud environments,
programming languages, film genres, urban environments and construction
sites, among others. The conceptual shift, from textual evidence, exam-
ples, and known uses in pattern documents, to concrete solutions being
individually managed entities linked to patterns is depicted in Figure 5.1.

The approach on connecting patterns and implementations of them as
introduced in this work specifically considers the aspect of reusing proven
implementations. In this terms, this work extends the fundamental pat-
tern theory by Christopher Alexander. Alexander specifically studied the
process of design analyzing and identifying invariants of design concepts
for buildings and construction. He layed the focus on reusing proven con-

107

5 Reuse of Pattern Implementations as Concrete Solutions

Known Uses

Examples

PA

Traditional Approach Connecting Patterns and
Concrete Solutions

S1
S2

S3

analyze
abstract
harvest

search
study
reuse

PA

Figure 5.1: Keeping concrete solutions connected to patterns enables their
reuse while establishing evidence and provenance for patterns

ceptual design principles. This work extends the core idea to also make
implementations, which have proven to work in actual real life scenarios,
to be reusable. The proposed inherent connection between patterns and
concrete solutions enables the latter to be reused, and conversely, patterns
to be derived and underpinned. It is important to point out that in general
no pattern can exist without concrete solutions of the pattern being part
of some implementations. This is because the set of concrete solutions
form the evidence that a particular design principle manifested in the con-
crete solutions is actually a pattern due to the definition of a pattern being
a proven solution for often recurring problems in a specific context (cf.
Definition 2.1.1) – which requires at least three concrete solutions to meet
the rule of three [Cop96; KU09].

Accordingly, a variety of concrete solutions exist for each pattern in the
form of context-specific implementations. Thereby, the concrete solutions
range from being helpful to understand how a pattern can be implemented
in a specific context to directly reusable concrete solutions, which can be
applied in a specific context without any further adaption.

108

5.1 Concrete Solutions

Consider, for example, the Model-View-Controller pattern (MVC) [Ree03],
which describes how user interactions can be implemented via a graphical
user interface loosely coupled with the system logic. In practice, realiza-
tions of this pattern exist in applications implemented in many different pro-
gramming languages. Once systematically captured, stored, and connected
with the MVC pattern, concrete solutions in the form of programming code
in different languages can be reused when implementing new applications.
Since the MVC implementations typically have to be adapted to the specific
context to realize the look and feel of the application at hand, the concrete
solutions can be used as implementation hints providing skeletons to learn
directly from. Thus, they can be used as a starting point for implementing
the MVC pattern in a new context. In contrast, for example, the Wire Tap
pattern [HW04] is a pattern that does not require many adaptations to
realize it in a new context. It describes how to intercept point-to-point
channels in a message-based system to inspect the transmitted messages for
monitoring, testing, and troubleshooting purposes. The pattern describes
that this can be achieved by inserting a generic Wire Tap that forwards a
copy of the messages to a monitoring system. Thus, a concrete solution
of the Wire Tap pattern can be realized as a generic implementation for a
message-based system, which can be configured with the specific channel
to intercept and an endpoint to forward the intercepted messages to. This
concrete solution can be reused in different contexts without any further
adaptation of the interception and forwarding logic.

The systematic capturing and organization of concrete solutions is a vital
aspect of the proposed approach in this work. In order to capture concrete
solutions along with patterns there are in general three possibilities: (i)
the concrete solutions can be captured and stored systematically as part
of the pattern authoring process (cf. [Bar18]), (ii) they are captured and
stored when applying a pattern in a new context, such as an implementation
with a new programming language, or (iii) they are explicitly developed
for easing the reuse of a pattern because they are identified as recurring
implementation parts where direct reuse promises time savings or assures
proper functionality of critical system parts. Especially, in security critical

109

5 Reuse of Pattern Implementations as Concrete Solutions

systems the last aspect plays an important part. In IT, it is generally seen
as good practice to reuse proven open-source libraries, such as creating
pseudo random numbers or encrypting or decrypting messages instead of
implementing such functionality themselves.

Since concrete solutions are independent entities, they are stored and
organized in solution repositories (cf. [FBFL15]). In the following, it is
introduced and described how concrete solutions can be grasped formally
to design solution repositories capturing the domain-specific details and
aspects of concrete solutions.

5.2 Formalization of Concrete Solutions

The concept of concrete solutions can be implemented differently in dif-
ferent domains concrete solutions. Even in a specific domain, concrete
solutions typically vary with respect to the specific context they are imple-
mented for. For example, the design patterns by Gamma et al. [GHJV94]
can be implemented in different object-oriented programming languages,
thereby, resulting in different concrete solutions. However, although im-
plemented in different programming languages the resulting artifacts have
some characteristics in common. For example, assuming they are pro-
gramming code, they have in common that they can be versioned in a
version control system such as git1 or subversion 2. They are software
and, therefore, underlay copyrights, which are typically specified by a
software license. Further, they are compatible with specific versions of
a programming language compiler or runtime. The list of characteristics
can be continued, i.e., those mentioned are examples of many others.

1https://git-scm.com
2https://subversion.apache.org

110

https://git-scm.com
https://subversion.apache.org

5.2 Formalization of Concrete Solutions

In contrast, concrete solutions from other domains have completely differ-
ent specifics. For example, looking at the domain of costumes in films, it
is notable that concrete solutions in the form of costumes must be stored
completely differently for systematic reuse than the previously described
programming code. Here the first essential difference to artifacts from
IT is already the fact that costumes must first be represented digitally in
a solution repository. The research on vestimentary communication of
costumes in films by Barzen [Bar18] shows that characterizing properties
with underlying taxonomically organized domains containing more than
3000 concepts are necessary to describe a costume (cf. [BBL22]).

And so it is for concrete solutions from further domains and contexts.
Thereby, the structure and information content of a stored concrete solu-
tion are essential for its systematic reuse, because this is what a user enables
to systematically search, understand, and reapply a concrete solution in
a specific use case at hand. Thus, in order to systematically reuse con-
crete solutions they have to be stored along with structured metadata and
domain-specific semantics describing them. Most importantly, concrete so-
lutions require Identity. This means, that concrete solutions are raised from
arbitrary solution snippets to entities connected to a pattern language by
assigning a specific unique identifier. This identifier enables to distinguish
them and making them specific entities, which can be connected to patterns
the same time. In contrast to known uses or exemplary text passages in
pattern documents, this mechanism enables to manage concrete solutions
independently from patterns. The second invariant, which all concrete
solutions share, is that they have a specific Type. Thereby, different types
reflect that the concrete solutions are non-compatible, e.g., being imple-
mented in different technologies such as different programming languages,
or even being artifacts from completely different domains as shown above.
The third invariant, which all concrete solutions share, is that a domain-
specific Structure is required to describe them and make them reusable.
This structure covers the semantics to locate the concrete solution and all
domain-specific metadata required by experts to systematically reuse the
concrete solution. In case of programming code, e.g., the location can be a

111

5 Reuse of Pattern Implementations as Concrete Solutions

Essential Invariants of
Concrete SolutionsP

S
Identity allows to reference
Concrete Solutions as entities of a
Pattern Language

A Concrete Solution comprises of
a structure of metadata, a
representation of the Concrete
Solution and a locator to retrieve it

Identity

Structure

Type
Types classify Concrete Solutions
sharing common characteristics

Figure 5.2: A concrete solution has an identity, a type, and captures all
relevant metadata required for its systematic reuse

code repository, thus, the structure describing the concrete solution has to
support to store a link to code repositories. In case of tangible costumes in
films, the location can be expressed by a descriptor pointing to a specific
wardrobe or compartment within it, depending on how and where the
concrete costumes are kept. However, since the actual physical costumes
might sometimes not be kept for direct reuse, costumes can be expressed
and represented in a solution repository digitally. Representing tangible
concrete solutions digitally enables to preserve all aspects about it omitting
the necessity to handle the actual physical objects such as the costumes
but, at the same time, keeping the essence for reproducing them when
needed. The same applies for scores in the domain of music [BBE+17]
and, considering the same principles, can be extended to construction
drawings addressed by the pattern language by Alexander et al. [AIS77].

These structural invariants among concrete solutions are captured as de-
picted in Figure 5.2. Domain-specific concrete solutions refine this concept
by structures relevant for the domain under consideration, as exemplarily
described above. The metadata can be developed according to the needs
of a certain domain, which assures that the concept of a concrete solution
itself is domain-independent. As a consequence, this structure enables to

112

5.2 Formalization of Concrete Solutions

describe concrete solutions digitally. Thereby, concrete solutions can be
operationalized in solution repositories, which are IT-systems introduced
later in this work. Solution repositories can be implemented with different
technologies. A first example, that can be mentioned is the repository for
storing and analyzing costumes in films by Fehling et al. [FBFL15]. It is
based on a relational database and a single page application implementing
the specifics to enter detailed descriptions of costumes. In this case, the
structure of the concrete solutions of costumes is translated to a relational
database schema. To analyze the corpus of costumes, data mining systems
and machine learning pipelines are connected, which are used to process
the metadata of the concrete solutions [FBD+15; Str15].

Another example that shows the realization of a solution repository via
semantic web technology is shown by Krieger [Kri18c]. The solution
repository is implemented as a Resource Description Framework (RDF)
triple store. Using the capabilities of RDF to specify subjects, objects,
and relations among them, concrete solutions are operationalized as sets
of RDF-triples (cf. [Kri18c, p.47]). This enables to formulate concrete
solutions based on the semantic web stack, which allows to form a whole
ontology of concrete solutions, patterns, and connections among them.

Independently from specific domains, in the following, concrete solutions
are formally introduced and defined. The informal definition of concrete
solutions Definition 3.3.2 can be refined to a formal definition of concrete
solutions as follows.

Definition 5.2.1 (Concrete Solution) Let T be the set of all concrete
solution types, D%) be the set of all domains of property types used to
specify value ranges for type-specific descriptions of concrete solution
properties, and S be the set of all concrete solutions.

Then, a Concrete Solution is a tuple B = (id, type,Props, D%) , W, X) ∈ S,
s.t.,

(i) id ∈ ID, where ID is the set of all identifiers of concrete solutions

113

5 Reuse of Pattern Implementations as Concrete Solutions

(ii) type ∈ T

(iii) Props is the set of all properties

(iv) ∀B8 , B 9 ∈ S : c1(B8) ≠ c1(B 9)

(v) W : Props→ ℘(D%))

(vi) X : Props→ ⋃
prop∈Props ×D∈D%)W (prop)

D

(vii) ∀prop ∈ Props : X(prop) ∈ ×D∈D%)W (prop)
D

where W is a map that assigns schemas to properties of concrete solutions
and X is a map that assigns values to properties from the respective domain
of the property. The set of all properties Props specifies the schema and
values of metadata describing a concrete solution. �

While T allows to distinguish, for example, concrete solutions that are
python programs from those that are costumes, the domains of property
types D%) provide domain-specific vocabulary to express the meta data
of concrete solutions. For example, a domain �color ∈ D%) can be used
to specify the valid set of colors to describe a costume, while a domain
�license ∈ D%) can be used to specify the set of software licenses that can
be assigned to concrete solutions. In summary, this structure enables to
describe concrete solutions and managing them in solution repositories,
such as those by Fehling et al. [FBFL15] or Krieger [Kri18c]. Thereby,
they establish identity among all concrete solutions and capture all relevant
metadata about them in structured properties. The properties are essentially
data structures, which have to be implemented in solution repositories to
capture and manage concrete solutions, which then ultimately enables to
connect them later with patterns in a pattern repository.

114

5.3 Accessing Concrete Solutions via Selection Criteria

S

Identity

Structure

Further
Properties

Selection
Criteria

Selection Criteria are special types of
properties for defining context-specific
metadata to ease the selection of concrete
solutions for use cases

E.g.: Costs, Location, Technology, Vendor,
Genre

Type

Figure 5.3: Selection criteria of concrete solutions

5.3 Accessing Concrete Solutions via Selection Criteria

After a user selects a pattern, they encounter the challenge of determining
which concrete solution adequately addresses their issue in their specific
context. The context encapsules all aspects of the situation at hand, which
are relevant to design and implement a solution consisting of multiple
concrete solutions. This means, in order to balance all requirements and
constraints present in a users context, selecting an appropriate and working
set of concrete solutions is inevitable. To facilitate the appropriate selection
of concrete solutions for a pattern, Selection Criteria are introduced, which
help to identify when a particular concrete solution can be used.

Selection criteria are special types of properties of the concrete solutions
and, therefore, incorporate additional metadata to them. They offer a way
to guide the selection process using supplementary meta-information not
included in the concrete solution itself. Selection criteria can be either
human-readable or software-interpretable descriptions that indicate when
to choose a specific concrete solution. Thus, they enable to add a layer
of domain-specific metadata to concrete solutions aiming to ease their
selection for use cases at hand, as depicted in Figure 5.3.

115

5 Reuse of Pattern Implementations as Concrete Solutions

Overall Context of Use Case

P1

S1 S2 …

Selection
Criteria

Pm

Sk Sn

• Costs
• Location
• Technology
• Vendor
…

Figure 5.4: Selection criteria allow to map concrete solutions to use case-
specific and, therefore, implementation-specific contexts

To illustrate the concept, the following example shows concrete solutions
from the field of building architecture enriched by exemplary selection
criteria. In this domain, as discussed by Alexander et al. [AIS77] and
Alexander [Ale79], a concrete solution could be, e.g., an actual entrance
of a building or a specific room layout of a floor, which can be described
in detail through blueprints. Such blueprints capture all relevant aspects
required to rebuild a concrete solution as an implementation of a pattern.
Thus, connected to the corresponding patterns [AIS77; Ale79], blueprints
can act as concrete solutions in this domain. To determine the most suitable
concrete solution for a specific use case, selection criteria, such as the cost
of the architectural concrete solution or the materials used, can be taken
into account.

These criteria function as special properties of the concrete solutions. For
instance, two concrete solutions for the pattern mentioned above, dealing
with room layouts, might vary in the historical style of their construction
and the used materials. In the field of cloud computing, selection criteria
can specify the ability of a concrete solution being deployed on a specific
cloud platform or even if the concrete solution is bound to a certain region,
which might inflict compliance issues if not properly considered when

116

5.4 Requirements and Capabilities

realizing an IT-system in a specific use case. In the domain of costumes in
films, selection criteria can be used, e.g., to specify the genre or a specific
style of a film a costume is most suitable to.

Overall, selection criteria can be used to reflect characteristics of a concrete
solution that are not directly included in the concrete solution itself, but
are important for the selection of concrete solutions in the context of a
specific use case, where typically multiple patterns and, therefore, also
multiple concrete solutions are required (cf. Figure 5.4). In contrast to
the abstract solution descriptions in patterns, selection criteria are used to
make concrete solutions manageable and accessible for users via solution
repositories. Selection criteria enable to add a layer of metadata to the pure
description of a concrete solution, which can also incorporate information
from the context in which a concrete solution is applied.

5.4 Requirements and Capabilities

In order to enable the combined use of concrete solutions it must be assured
that compatible concrete solutions can be identified. More specifically, due
to the fact that concrete solutions of a pattern can be implemented in many
technologies, concrete solutions connected to different patterns in a pattern
language can end up being not aggregatable at all. For instance, concrete
solutions written in a programming language might not be combinable
with components written in another programming language. Another
example are proprietary deployment model fragments for different cloud
providers. Thus, as a basis for the automated aggregation of concrete
solutions, the concept of requirements and capabilities (cf. among others
[OAS13; Wel94]) specified as properties of concrete solutions as depicted
in Figure 5.5 can be used to represent dependencies between concrete
solutions. On the one hand, requirements specify which capabilities have
to be supported by other concrete solutions in order to be aggregatable
with them. On the other hand, capabilities specify functionality or other
properties a concrete solution supports.

117

5 Reuse of Pattern Implementations as Concrete Solutions

S

Identity

Structure

Further
Properties

Selection
Criteria

Requirements enable to define constraints
that must be fulfilled by other Concrete
Solutions.
Capabilities, in turn, enable to specify
which constraints are fulfilled by a
Concrete Solution.Reqs &

Caps

Type

Figure 5.5: Extension of the concrete solution metamodel by requirements
and capabilities

For instance, considering the scenario of an Elastic Load Balancer that
shall be used to scale Processing Components elastically in the environment
of a specific cloud provider. In this case, a concrete solution of an Elastic
Load Balancer can specify that it provides the capability of scaling specific
Processing Components elastically in the environment of a cloud provider.
Further, a concrete solution of Processing Component can specify the
requirement that it in order to be launched and executed it requires another
component that provides this as a capability. This concept corresponds
to left-side and right-side interfaces as introduced by Reisig [Rei18] for
the composition of components in workflows as well as preconditions and
effects for the composition of Management Planlets by Breitenbücher et al.
[BBK+13a; BBKL13] and Breitenbücher [Bre16].

This principle is illustrated conceptually in Figure 5.6. There, the con-
crete solution (: is connected to pattern %1 and the concrete solution (=
to pattern %<. The concrete solution (: specifies the two requirements
Req A and Req B, which must be fulfilled by another concrete solution in
order to be aggregatable with (: . The concrete solution (= specifies the

118

5.5 Pattern Graph with Connected Concrete Solutions

P1

…

Req A

Sk

Req B

Pm

Sn

Cap A
Cap B

Req A is fulfilled by Cap A
Req B is fulfilled by Cap B

à Sk and Sn
can be combined

Figure 5.6: Compatibility of concrete solutions can be determined by their
requirements and capabilities

respective capabilities Cap A and Cap B, thus, these two concrete solutions
are compatible and can be aggregated. How the aggregation of concrete
solutions can be implemented is described in Section 6.3.

5.5 Pattern Graph with Connected Concrete Solutions

Bringing patterns and concrete solutions conceptually together, the fol-
lowing section introduces the notion of a Pattern Graph with connected
Concrete Solutions (PGCS). A PGCS is a pattern graph, which is refined
from Definition 4.1.1 to include concrete solutions that are linked to the
patterns they implement. A PGCS is defined as following.

Definition 5.5.1 (Pattern Graph with connected Concrete Solutions)
Let G = (P, EP, W, D, U, V) be a pattern graph. Then a Pattern Graph
with connected Concrete Solutions GPS is a tuple,

GPS = (P, EP, W, D, U, V,S, EPS)

with

(i) S⊆ S

(ii) EPS ⊆ P×S

119

5 Reuse of Pattern Implementations as Concrete Solutions

P1

P3

P2

P4

P5

P6

Proven Conceptual Design
covered by

a Pattern Language

Implementation-specific
Solution Space

covered by
Concrete Solutions

Pattern Graph with Connected Concrete Solutions

Figure 5.7: A pattern graph with connected concrete solutions maps
conceptual proven solutions in a pattern language to the
implementation-centric solution space of implementations

(iii) ∀B ∈ S∃!? ∈ P : (?, B) ∈ EPS

�

A PGCS connects the conceptual solutions covered by a pattern language
with the implementation-centric design space covered by implementations
of the patterns represented as concrete solutions. More specific, while
a pattern language structures the conceptual design space into proven
solution concepts, which are the patterns of the language (cf. [Zdu07]),
a PGCS extends this to the Solution Space by connecting the patterns to
proven concrete solutions, which implement them.

This means a PGCS enables to map proven conceptual solutions with
reusable and proven implementations to ease the application within specific
contexts and constraints. This mapping is ultimately depicted in Figure 5.7,
which shows a PGCS with connected concrete solutions. There, concrete
solutions of different types indicated by different hatchings are connected
to the patterns they implement.

120

5.6 Solution Models

As introduced above, different types mean that the concrete solutions are
implemented in non-compatible ways, e.g., in different technologies such
as different programming languages. Such specifics are then captured in
the respective selection criteria of the concrete solutions, which allows
to exactly select those concrete solutions, which are compatible with the
specific requirements a user is faced with.

5.6 Solution Models

In Section 4.4 the concept of design models was introduced, which enables
a Designer to model conceptual solutions with patterns. According to
Step 3 of the EINSTEIN-Method, an Implementer makes use of a design
model to design the conceptual solution for a use case at hand. Thereby,
they can make use of concrete solutions, which are connected to patterns as
introduced in the previous section by means of a PGCS. To reuse concrete
solutions of the patterns in a design model, the Implementer has to create
a Solution Model from a design model, which is depicted conceptually in
Figure 5.8 and introduced in the following. In contrast to a design model,
a solution model consists of concrete solutions instead of patterns.

Thus, an Implementer has to decide which concrete solutions have to be
selected to implement the patterns of the design model. In Figure 5.8, as a
first step, pattern � is selected to by the Implementer to select a suitable
concrete solution for. To find proper concrete solutions the patterns of
the design model can be searched in a PGCS which then can be used to
navigate from the patterns to concrete solutions implementing them – in
case of the depicted scenario, an Implementer would search for pattern �

in a PGCS to find a concrete solution that matches their needs. To limit
the number of concrete solutions to a set relevant for a use case at hand,
the Implementer can filter the concrete solutions by their selection criteria,
type, requirements, and capabilities.

121

5 Reuse of Pattern Implementations as Concrete Solutions

Add Solution to
Solution Model S2

A
C
XA

B

A

B
C

XS5
S1

S3
S4S6

S2S7

Filter by
Selection Criteria

SC = { 𝑠𝑐!, 𝑠𝑐", 𝑠𝑐# }

S2S1
Iteratively created

Solution Model

S2S1

S4

S2S1

S3

S4

S2S1

S3

S4

S1

S2

Select Solution
for PatternB

Implementer

Figure 5.8: Modeling of a solution model based on a design model

As described in Section 5.3, an Implementer could, e.g, reduce all concrete
solutions to only those that are implemented in a specific technology, or to
those for a specific offering of a particular cloud provider. The Implementer
can also omit specific filter criteria and navigate in the PGCS to the pattern
of the design model to select a concrete solution.

Once the Implementer has selected a concrete solution for a pattern in
the design model, the concrete solution is put in the solution model, as
depicted in Figure 5.8 where concrete solution (2 is selected for pattern �.
The Implementer then can step to the next pattern in the design model to
select a proper concrete solution likewise. Thereby, it can be checked if
there are compatible solutions for the patterns connected to the replaced
pattern by considering the requirements and capabilities of the concrete
solutions. If there are no compatible solutions for the other patterns, the
Implementer can either select a different concrete solution for the pattern
or implement missing concrete solutions which is inline with the optional
Step 4 of the EINSTEIN-Method in Figure 3.1. The Implementer creates

122

5.6 Solution Models

the solution model iteratively until all patterns of the design model are
represented by a concrete solution in the solution model, as illustrated
as the outcome in Figure 5.8. Thereby, the Implementer also adds the
respective edges between the concrete solutions in the solution model and
assigns the weights from the design model which represent the semantics of
the interplay of the concrete solutions. Informally speaking, this iterative
selection of concrete solutions for the patterns of a design model can
be grasped as replacing the patterns of the design model with concrete
solutions resulting in a solution model.

Note, that in the case of composite patterns, the isomorphism between the
design model and the solution model can get broken. This means, that the
solution model is not necessarily isomorphic to the design model because
a composite pattern can be replaced with a set of related concrete solutions.
This corresponds to replacing graph fragments with other graph fragments,
which is conceptually already solved for example in the domain of process
models [Ebe14; Ma13; Sko17].

Falazi [Fal17a] shows in his work how the selection of concrete solutions
from patterns can be supported by a query language working on a PGCS.
He shows how a query language can be generated from a domain-specific
grammar, which allows to filter concrete solutions of patterns in a PGCS
by specifying constraints on their selection criteria, requirements, and
capabilities. This assures, that only concrete solutions are left that provide
the required characteristics to solve the use case at hand. As a result, Step 3
of the EINSTEIN-Method can be guided and semi-automated.

A solution model is a graph that consists of concrete solutions implement-
ing the patterns of a design model. Therefore, to express the coupling of the
concrete solutions in a solution model and the patterns in a design model
the following definition of a the relation between the respective concrete
solutions and patterns they implement is introduced. A solution model,
worked out by an Implementer specifies the implementation of a design
model by the interplay of concrete solutions solving a concrete problem

123

5 Reuse of Pattern Implementations as Concrete Solutions

at hand. Definition 5.6.1 shows that a solution model is implicitly related
to a design model via a pattern graph with connected concrete solutions
GPS, as already illustrated in Figure 5.8.

Definition 5.6.1 (Solution Model) Let Gdm be a design model and GPS

be a pattern graph with connected concrete solutions used to model Gdm.

Then, a Solution Model is a graph GB< = (SB<, EB<, WB<, D, Usm, Vsm),
s.t.,

(i) SB< is the multiset induced by the family (B 9) 9∈� with B 9 ∈ c7(GPS)
and card(SB<) ∈ N being the nodes

(ii) EB< ⊆ SB< ×SB< × WB<

(iii) ∀4 ∈ EB< : c1(4) ≠ c2(4)

(iv) ∀B ∈ SB<∃!? ∈ c1(Gdm)∃4 ∈ c2(GPS) : c1(4) = ? ∧ c2(4) = B

(v) WB< ⊇ c3(Gdm) is a set of weights representing domain-specific
semantics of the interplay of concrete solutions

(vi) Usm : WB< → ℘(D)

(vii) Vsm : EB< →
⋃

e∈EB<
×�∈DUsm (c3 (e))

�

(viii) ∀e ∈ EB< : Vsm(e) ∈ ×�∈DUsm (c3 (e))
�

�

5.7 Chapter Conclusion

This chapter introduced the concept of concrete solutions, which are im-
plementations of patterns. Concrete solutions are reusable building blocks
representing implementations of the solution principles documented in
a pattern. A formalization of concrete solutions was introduced, which
allows to systematically capture and manage concrete solutions in solution
repositories based on an extendable metamodel. Thereby, it was defined

124

5.7 Chapter Conclusion

that the structure of concrete solutions is domain-independent and, there-
fore, can be used to describe concrete solutions from different domains. In
addition, the concept of selection criteria was introduced, which enables
to add a layer of domain-specific metadata to concrete solutions aiming
to ease their selection for use cases at hand. Further, requirements and
capabilities were introduced as properties of concrete solutions, which
enable to determine the compatibility of concrete solutions. The notion of
a pattern graph with connected concrete solutions was introduced, which
allows to map proven conceptual solutions with reusable and proven imple-
mentations to ease the application within specific contexts and constraints.
Finally, it was shown how design models translated stepwise into solution
models that represent an interplay of concrete solutions. This projects the
conceptual solution designed in a design model to the level of reusable
concrete solutions. As a result, the concepts presented in this chapter
support Step 3 of the EINSTEIN-Method.

125

C
ha

pt
er 6

Aggregation of
Concrete Solutions

In the previous chapter, it has been shown how pattern graphs with con-
nected concrete solutions enable to map proven conceptual solutions of
pattern languages to proven implementations represented as concrete so-
lutions. As they can be used to refine conceptual solutions captured in
design models into solution models, it gets relevant to enable the combined
reuse of the concrete solutions. This is because the selection of individual
concrete solutions based on selection criteria is not enough for the devel-
opment of complex systems because the individual concrete solutions are
not yet integrated into a single overall solution. Therefore, to support Step
5 and Step 6 of the EINSTEIN-Method, in this chapter, the concept of
aggregation is introduced in the form of Solution Algebras, which enable to
formalize the aggregation of concrete solutions by means of Aggregation
Operators. Then, two approaches are introduced that enable to realize
the aggregation of concrete solutions. The first one is based on Solution
Languages containing Concrete Solution Aggregation Descriptors, which

127

6 Aggregation of Concrete Solutions

enable to provide guidance to manually aggregate concrete solutions. The
second one shows how the aggregation of concrete solutions can be auto-
mated by means of Concrete Solution Aggregation Programs. Thus, both
approaches are implementations of the concept of aggregation operators,
with concrete solution aggregation descriptors being manual realizations
of aggregation operators and concrete solution aggregation programs being
automated realizations, respectively. Thereby, this chapter builds on the
work by Beisel [Bei17], Falkenthal et al. [FBB+14a; FBB+14b; FBBL17;
FBBL19], Falkenthal and Leymann [FL17], and Krieger [Kri18c].

6.1 Solution Algebras

The previous chapter described how concrete solutions can be linked with
pattern languages and how they can be selected for reuse based on selec-
tion criteria. The illustration in Figure 5.7 presented a pattern language
as a network of interconnected patterns. Inherent in these patterns is the
conceptual solution knowledge that opens a realm of potential implemen-
tations, i.e., the solution space of the whole pattern language. Concrete
solutions, being specific implementations of individual patterns in the
pattern language, are thus contained within this solution space. They are
linked to the patterns they implement facilitating their reuse upon selection
of a pattern from the pattern language for application. However, as the
interplay of patterns in a pattern language and ultimately also in a design
model reflect that solution principles described by the patterns have to
be combined to solve an overall problem, this has to be also projected to
the solution models elaborating the interplay of concrete solutions. Thus,
an approach is required that guides users through the solution space to
aggregate concrete solutions with overall ones.

This is depicted in Figure 6.1, where the solution space of a pattern lan-
guage is shown as a set of concrete solutions, which are connected to the
patterns they implement. However, currently guidance is missing which
enables to aggregate the concrete solutions as indicated by the dotted lines

128

6.1 Solution Algebras

P1

P3

P2

P4

P5

P6
Pattern Language with
guidance for traversing

among patterns

Solution Space lacks
guidance to aggregate

Concrete Solutions

Figure 6.1: The solution space of a pattern language lacks guidance to
aggregate concrete solutions as indicated by the dashed lines

between the concrete solutions. Therefore, to enable the combination of
concrete solutions, it is necessary to support aggregations among them.
For this purpose, it is necessary to apply a structure on the solution space
of a pattern language by means of aggregations that enable to combine
concrete solutions. This is achieved by introducing the notion of Solution
Algebras, which are used to treat concrete solutions as mathematical ob-
jects on which Concrete Solution Aggregation Operators, or Aggregation
Operators in short, can be applied. Aggregation operators are the means
to operationalize the aggregation of concrete solutions. In order to enable
the aggregation of a multitude of concrete solutions, typically different
aggregation operators are required that are capable of aggregating different
types of concrete solutions.

Concrete solutions sharing common characteristics, such as computer
programs that are implemented in the same programming language, can be
grouped into sets based on their types. Thereby, concrete solutions with the
same type can potentially be combined based on compatible aggregation
operators. For example, code snippets written in the same programming
language share this characteristic, which makes them likely combinable to
a larger code base. Concrete solutions of different types often differ in their

129

6 Aggregation of Concrete Solutions

essential characteristics, such as the technology they are implemented with
or the domain which they stem from. For example, code snippets (domain
software development), costumes (domain costume design), or building
architecture sketches (domain building architecture) are not compatible
at all and, therefore, are of different types. Types of concrete solutions
provide a first structure on the solution space of a pattern language in terms
of sets of concrete solutions.

Definition 6.1.1 (Types of Concrete Solutions) The set of concrete
solutions S can be partitioned into a family of sets (�C)C ∈Θ with ∀C ∈ Θ :
�C ⊆ S. Thereby, Θ is a set whose elements identify all types of concrete
solutions. Then each �C represents a Type of concrete solutions. �

To express that concrete solutions can be combined with each other, the
concept of aggregation operators is combined with the concept of types
of concrete solutions. By utilizing aggregation operators, a structure of
composable concrete solutions emerges as a solution algebra.

Definition 6.1.2 (Solution Algebra and Aggregation Operators) A
Solution Algebra is a pair ((�C)C ∈Θ, (⊕ 9) 9∈�) consisting of a family of
concrete solutions (�C)C ∈Θ and a family (⊕ 9) 9∈� of Aggregation Operators,
s.t.,

(i) � ⊆
∞⋃
:=2

Θ × . . . × Θ︸ ︷︷ ︸
(:+1)−C8<4B

(ii) ⊕ 9 : �C1 × . . . �C: → �C< with 9 = (C1, . . . , C: , C<) ∈ �

�

Typically multiple solution algebras are required to cover the entire so-
lution space of a pattern language. Thereby, solution algebras structure
the solution space of a pattern language into subsets of concrete solutions

130

6.1 Solution Algebras

called types for which aggregation operators exist that are capable of aggre-
gating them. Thus, by means of solution algebras it is possible to structure
the solution space into cohesive parts. This is conceptually illustrated in
Figure 6.2, where concrete solutions are grouped into three sets of concrete
solutions, which form two different solution algebras with their respec-
tive aggregation operators. The solution algebra ({{B1, B2}U}, {⊕(U,U,U) })
specifies a pair, consisting of the family {⊕(U,U,U) } containing just one
aggregation operator, which can aggregate the concrete solutions B1 and
B2 as ⊕(U,U,U) : {B1, B2}U × {B1, B2}U → S. Note that the types of
the concrete solutions are omitted in Figure 6.2 for brevity but are spec-
ified by the index of the operator. The second depicted solution alge-
bra ({{B4, B6}V , {B7, B8}W}, {⊕(V,V,V) , ⊕(W,W,W) }) specifies a separate fam-
ily of aggregation operators on the types V and W of concrete solutions.
In this case, two aggregation operators are defined, whereby ⊕(V,V,V) :
{B4, B6}V × {B4, B6}V → S and ⊕(W,W,W) : {B7, B8}W × {B7, B8}W → S.
Note that Figure 6.2 also shows that no aggregation operator is defined that
can aggregate B6 and B7. This can be due to the fact that the solution algebra
is still under development or if the development of new technologies lead
to new types of concrete solutions for which then also new aggregation
operators have to be defined.

To grasp this concept more intuitively, at this point, the example of scaling
processing components elastically to meet the requirements of actual work-
loads, as introduced in Section 4.2.1, will help. To recap, the scenario is
described by the two patterns Elastic Load Balancer and Stateless Com-
ponent by Fehling et al. [FLR+14]. The pattern Elastic Load Balancer
describes the concept of a load balancer, which distributes incoming re-
quests to a set of components, which are elastically scaled based on the
monitoring of actual workloads. AWS provides an implementation of this
pattern as a service, which can be managed and instrumented via CloudFor-
mation templates [Ama23b], which is the Infrastructure-as-Code language
by AWS that enables to specify cloud resources using JSON. A component
implementing the business logic to be executed can be realized as described
in the pattern Stateless Component and implemented as an Amazon Ma-

131

6 Aggregation of Concrete Solutions

P1

P3
P2

P4

P5

P6

S4 S6
S7 S8

S1 S2
𝑠!, 𝑠" # , ⨁(#,#,#) S9

{ 𝑠', 𝑠() , 𝑠*, 𝑠+ ,},
⨁(),),)), ⨁(,,,,,)

𝛽 𝛾

𝛼

Figure 6.2: Solution algebras structure aggregation operators and the set
of concrete solutions they are capable to operate on

chine Image (AMI) [Ama23a]. The AMI can be referenced in a so-called
LaunchConfiguration, which is a CloudFormation snippet allowing to ref-
erence AMIs as the source of the scaled components. As a consequence,
both, a concrete solution of the Elastic Load Balancer as well as a concrete
solution of the Stateless Component, can be implemented as CloudForma-
tion snippets, which are valid JSON-documents. To combine both concrete
solutions, an aggregation operator ⊕(cf ,cf ,cf) : �cf × �cf → �cf can be
defined that is capable of combining CloudFormation JSON-documents
to a single CloudFormation JSON-document. Thereby, the aggregation
operator understands the domain-specific semantics of CloudFormation
templates and can combine the CloudFormation snippets accordingly by
placing both snippets in a single JSON-document and aggregating them by
adding a so-called Autoscaling Group which allows to reference both, the
Elastic Load Balancer snippet as well as the LaunchConfiguration snippet.
The resulting CloudFormation template, thus, combines the formerly dis-
connected concrete solutions and represents a concrete solution aggregate
that can be deployed to the AWS cloud environment.

132

6.1 Solution Algebras

However, this example can also be slightly modified to show that aggre-
gation operators can also operate on different sets of concrete solutions.
It is also possible to define another aggregation operator ⊕(cf ,ami,cf) :
�cf × �ami → �cf that understands the domain-specific semantics of
CloudFormation and AMIs as well to combine both. In this case, the im-
plementation of the Stateless Component can also be realized as an AMI,
without referencing it in a LaunchConfiguration snippet, which means
the concrete solution is a pure AMI. Then, the aggregation operator can
combine the AMI with the CloudFormation snippet of the Elastic Load
Balancer by wrapping the AMI itself into a LaunchConfiguration snippet,
merging it into the resulting CloudFormation template, and referencing it
in the mentioned Autoscaling Group accordingly. This scenario shows that
aggregation operators can implement domain-specific semantics that allow
to aggregate concrete solutions of different types, which means that they
can work on different carrier sets, which is inline with Definition 6.1.2. Of
course, this is only possible if the aggregation operator understands the
domain-specific semantics of the concrete solutions it operates on, which
shows that aggregation operators have to consider domain knowledge. In
conclusion, solution algebras represent exactly the coupling and cohesion
of domain-specific concrete solutions with aggregation operators that in-
corporate knowledge of the domains the concrete solutions stem from,
which is required to aggregate concrete solutions.

Algebraic properties, such as commutativity and associativity, of aggrega-
tion operators can not be assumed in general, but are a result of the structure
of the solution space of a pattern language and the domain semantics of the
concrete solutions. This is exemplified by the following examples. Firstly,
the aggregation operator ⊕(cf ,cf ,cf) from the example above is commutative,
because the order of the CloudFormation documents as operands does not
matter when referencing both in the Autoscaling Group. But it is not asso-
ciative because when aggregating multiple CloudFormation documents
the overall achieved semantics can be different depending on the order of
aggregation steps. For example, if two Elastic Load Balancers are available

133

6 Aggregation of Concrete Solutions

and each of them shall scale a different Stateless Component, then the
aggregation order has to assure that the each Elastic Load Balancer has to
be aggregated with the corresponding Stateless Component.

In contrast, the discussion of commutativity and associativity is irrelevant
for the aggregation operator ⊕(cf ,ami,cf) , because the operator is defined on
two Sorts and, therefore, has to understand which operand is the AMI to
wrap it in a LaunchConfiguration. By extending the discussion to other
domains, further concrete solutions and aggregation operators impose fur-
ther algebraic properties. For instance, in the domain of cloud application
management (details are discussed in Section 8.2.2) special single-entry-
single-exit (SESE) workflows are used to manage the lifecycle of cloud
applications. Due to the SESE characteristics, an aggregation operator
can be defined that aggregates those workflows, which is associative but
not commutative. This is because the order of the workflows has to be
preserved to reflect their intention which can only be assured if the work-
flows are aggregated in the right order. All these examples show that the
algebraic properties of aggregation operators are highly domain-specific
and, therefore, must be reflected in solution algebras according to each
domain.

Nevertheless, the general guideline — to strive for associativity for aggre-
gation operators — can be deduced from other works, which investigate the
aggregation of system components [FR21; FR23] or system management
flows [Bre16]. This is mainly, because associativity guarantees that the
order of aggregation steps does not matter, which assures that the aggre-
gation among all concrete solutions in a solution model always results in
the same overall solution aggregate. But, as seen by the above examples,
this can only be suggested as a guideline in order to not limit the general
applicability of the presented concepts to different domains. When the
concepts of this work are applied to a specific domain, the aggregation
operators can be analyzed for associativity and the algebraic properties can
be defined accordingly, which allows to implement the required semantics
from a specific domain in a solution algebra.

134

6.2 Solution Languages and Concrete Solution Aggregation Descriptors

Finally, solution algebras do not necessarily partition the solution space
completely, since there may be concrete solutions that are not contained
in any carrier set of specified solution algebras for a pattern language, as
exemplified by concrete solution (9 on the very right in Figure 6.2. This
can be the case, for example, when concrete solutions are implemented in
newly emerging technologies and do not fit to already present ones in the
solution space or if a pattern language is still in its authoring process.

In the next two sections, it is shown how the conceptual approach of
solution algebras can be realized. Firstly, in the next section, a manual
approach is introduced, which is based on concrete solution aggregation
descriptors and solution languages. After that, in the following section,
an automated approach is introduced in the form of concrete solution
aggregation programs.

6.2 Solution Languages and Concrete Solution
Aggregation Descriptors

The previous section has shown that projecting the combined use of patterns
to the level of concrete solutions requires the concept of Aggregation of
concrete solutions. In the following, the concept of Solution Languages
is introduced as a manual approach to implement the concept of concrete
solution Aggregation. The primary objective of solution languages is
to bring the navigation capabilities of pattern languages to the level of
concrete solutions while supporting their manual aggregation, thus, they
materialize possible aggregations in the solution space by text. First,
solution languages introduce semantically typed links between concrete
solutions annotated with meta data to aid users in determining the relevance
of linked concrete solutions for resolving their use case at hand. This is
particularly crucial when multiple patterns and, therefore, several concrete
solutions need to be combined. The semantics of a link can, e.g., determine
that concrete solutions related to different patterns can be combined, that

135

6 Aggregation of Concrete Solutions

specific concrete solutions are implementation variations of the same
pattern, or if only one of several alternative concrete solutions can be used
in conjunction with another.

If required, additional link semantics can be integrated into a solution
language. For instance, semantic links that specifically indicate that chosen
concrete solutions must not be combined can be included as well. This
is beneficial, for example, when concrete solutions could technically be
combined, but their implementation of non-functional attributes hinders the
creation of a suitable combined solution. Such scenarios might occur, e.g.,
in the domain of cloud computing, where applications can be deployed
among different cloud providers worldwide. Restrictions to distribute
certain application components to specific countries can be due to legal
regulations or company compliance policies [BBK+13b]. Therefore, it
is useful to document these limitations at the level of concrete solutions
via the mentioned link semantics preventing users from unnecessarily
navigating to irrelevant concrete solutions.

Linking concrete solutions by means of semantically typed links already
enables users to identify and understand how concrete solutions are related
with each other. However, this does not provide any guidance on how to
combine concrete solutions. Therefore, the concept of a Concrete Solution
Aggregation Descriptors (CSADs) is introduced, which enables to annotate
links between concrete solutions with additional documentation outlining
in a human-readable way how to aggregate the linked concrete solutions.
This documentation can range from a detailed description of the steps
needed to combine the linked concrete solutions, to sketches of the overall
solution resulting from the aggregation supporting the user. As a result,
CSADs enable the inclusion of any relevant documentation into a solution
language regarding the aggregation of concrete solutions. This enables
the iterative creation and enhancement of a solution language over time
preserving the expert knowledge of a domain at the implementation level,
similarly to how pattern languages capture conceptual solution knowledge
by interrelated patterns. In situations where technologies become obsolete
and experts need to maintain systems implemented in those technologies

136

6.2 Solution Languages and Concrete Solution Aggregation Descriptors

P1

P3

P2

P4

P5

P6
Pattern Language

Solution Space
structured by a

Solution Language and
Concrete Solution

Aggregation Descriptors

Figure 6.3: Pattern graph with connected solution language

are rare, such as in the case of the outdated programming language Cobol
that is still the basis of many enterprise applications, solution languages
are a candidate to preserve technology-specific implementation expertise
and aggregation documentation over time.

Figure 6.3 illustrates the overall concept of a solution language, where
concrete solutions are linked to the patterns they implement facilitating
user navigation from patterns to reusable concrete implementations. Be-
sides, concrete solutions are also related enabling navigation at the level of
concrete solutions. Although, for the sake of brevity, Figure 6.3 focuses on
links representing can be aggregated with semantics, the relations between
the concrete solutions can capture further semantics in the CSADs attached
to the relations in order to ease and guide the reuse of concrete solutions
and their aggregation by Implementers as discussed above.

To give an example, the scenario described above of an Elastic Load Bal-
ancer scaling a Stateless Component is revisited. Figure 6.4 shows an
exemplary CSAD, which describes how to combine the concrete solutions
linked to the two patterns Elastic Load Balancer and Stateless Component
of the pattern language by Fehling et al. [FLR+14]. To realize this setup by
means of the Infrastructure-as-Code language CloudFormation [Ama23b]

137

6 Aggregation of Concrete Solutions

for AWS, concrete solutions for both patterns can be implemented as
follows. Firstly, a concrete solution for Elastic Load Balancer can be im-
plemented as a CloudFormation snippet as depicted on the left in Figure 6.4.
The snippet specifies that a load balancer service instance of AWS has to
be configured to consume HTTP traffic on port 80. Secondly, a concrete
solution for Stateless Component can be implemented as a CloudForma-
tion snippet as depicted on the right in Figure 6.4. The snippet specifies a
LaunchConfiguration that describes how to launch instances of a stateless
component in the AWS cloud by defining properties of virtual machines
to be launched. Thereby, the property ImageId references a virtual ma-
chine image in the form of an Amazon Machine Image (AMI) [Ama23a],
which implements the Stateless Component. How both concrete solutions
can be combined to an concrete solution aggregate is described by the
CSAD in the middle of Figure 6.4. The depicted CSAD details the steps
an Implementer has to conduct to combine the concrete solutions of the
two patterns using the provided CloudFormation snippets. The result is an
overall CloudFormation template that can be used to automatically deploy
the whole setup via AWS CloudFormation. Of course, if the combined
concrete solutions result in an aggregate, one could think about saving
this final aggregate also in the CSAD for reuse. However, if one of the
combined concrete solutions needs to be manually changed significantly
then it might be easier to re-execute the CSAD instead of adapting the final
result. Therefore, the CSAD as well as the final aggregates are efficiently
reusable depending on the concrete use case at hand. Further examples of
CSADs can be found in the work by Falkenthal et al. [FBBL17].

As a result, a solution language projects the combinability of solution
concepts of patterns to the level of concrete solutions, thereby, it structures
and organizes the collection of available concrete solutions. Thus, it is an
approach that implements the concept of concrete solution aggregation
by providing guidance for manual aggregations of concrete solutions by
means of concrete solution aggregation descriptors. They can be used to
support the structuring of the solution space of a pattern language and to
guide users through the solution space, which especially provides support

138

6.3 Concrete Solution Aggregation Programs

Elastic Load
Balancer

Stateless
Component

S1 S2

"MyLoadBalancer" : {
 "Type" : "AWS::ElasticLoad
 Balancing::LoadBalancer",

"Properties" :
 { "Listeners" :
 [
 {
 "LoadBalancerPort" : "80",
 "InstancePort" : "80",
 "Protocol" : "HTTP"
 }
]
 }
}

"MyLaunchCfg" : {
 "Type" : "AWS::AutoScaling::Launch

 Configuration",
 "Properties" : {
 "ImageId" :
 "ami-statelessComponent",
 "InstanceType" :
 "m1.large"
 }
}

• Create an AWS::AutoScaling::Auto
ScalingGroup snippet

• Set the property LaunchConfigura-
tionName to the name of the
AWS::AutoScaling::LaunchConfigu-
ration snippet that launches S2

• Add the name of the AWS::Elastic
LoadBalancing::LoadBalancer snippet
that launches S1 to the property
LoadBalancerNames

• Copy all three snippets into the
Resources property of a plain
CloudFormation template

Figure 6.4: An example of a CSAD describing how to combine Cloud-
Formation snippets for an Elastic Load Balancer that scales a
Stateless Component

for creating solution models from design models and aggregating the
contained concrete solutions manually. Prototypical implementations of a
solution repository that enable to create and manage solution languages
were elaborated in the works by Beisel [Bei17] and Krieger [Kri18a].
However, this approach is limited to the manual aggregation of concrete
solutions, which is not efficient in cases when the aggregation of concrete
solutions has to be conducted over and over again. Therefore, the next
section introduces concrete solution aggregation programs, which enable
to automate the aggregation of concrete solutions.

6.3 Concrete Solution Aggregation Programs

As described above, CSADs are a means to provide the necessary doc-
umentation to aggregate concrete solutions in a manual way. However,
in cases when the aggregation of concrete solutions has to be conducted
over and over again, it is beneficial to add a mechanism, which enables to

139

6 Aggregation of Concrete Solutions

automate the aggregation. In order to automate the aggregation of concrete
solutions, the aggregation logic needs to be formalized and also opera-
tionalized. To achieve this, the concept of Concrete Solution Aggregation
Programs, in short Aggregation Programs, is introduced below for the
automated aggregation of concrete solutions, which corresponds to the
automation of CSADs to automatically aggregate concrete solutions in a
solution model.

According to Definition 5.6.1, a solution model is a graph of concrete
solutions, thus, the aggregation of contained concrete solutions can be
mapped to the problem of identifying subgraphs in the solution model
that can be aggregated by an aggregation program. Thereby, the set of all
possible subgraphs having at least two nodes in a solution model is called
the Solution Aggregation Space (SAS) of the solution model. Thus, to
aggregate concrete solutions in a solution model, an aggregation program
must (i) identify subgraphs of the solution model, which can be aggregated
by the program, and (ii) provide the logic to aggregate the concrete solutions
in these subgraphs.

An aggregation program that can aggregate concrete solutions in a solution
model is defined as following, whereby, the elements used in the definition
are subsequently introduced and explained.

Definition 6.3.1 (Concrete Solution Aggregation Program) Let AP
be the set of all aggregation programs. A Concrete Solution Aggregation
Program ⊕ ∈ AP, or Aggregation Program in short, is a tuple ⊕ =

(DG, ^, >, f), where

(i) DG ∈ DG is a Detector Graph (Definition 6.3.3)

(ii) ^ is an Aggregatability Analysis Function (Definition 6.3.5)

(iii) > is an Aggregation Operation Function (Definition 6.3.6)

(iv) f is a Solution Model Update Function (Definition 6.3.7)

�

140

6.3 Concrete Solution Aggregation Programs

S2S1

S3

S4

Cap: A
Cap: Z

Req: B

S1

Req: A
Cap: B

Req: A

Aggregation Program

Aggregation Operation Logic
𝑜:𝔖𝔐×𝔄ℭ → 𝔖

𝜎:𝔖𝔐×𝔄ℭ ×𝔖 → 𝔖𝔐

Cap: A
Cap: Z Detector Graph

𝑤!

𝑤"

𝑤#

𝑤$ Aggregatability Analysis Logic
𝜅:𝔄ℭ → 𝔹

S2S1

S4

Req: A
Cap: A
Cap: Z

𝑤!

𝑤"

Sn

𝑤#

Cap: B

Req: B

T2

Cap: A

T1

Req: A
Cap: B

𝑤$

Solution Model New
Solution Model

Figure 6.5: Concept of a concrete solution aggregation program

Figure 6.5 summarizes the principle of an aggregation program concep-
tually. On the left, a solution model is shown on which the aggregation
program depicted in the middle has to be applied. The identification of
subgraphs in the solution model that can be aggregated by the aggregation
program is performed in two steps: firstly, the aggregation program identi-
fies subgraph candidates in the SAS based on the graph structure of the
solution model and, secondly, the aggregation program validates for each
identified candidate whether it can successfully perform the aggregation.
To identify subgraph candidates in the solution model, an aggregation pro-
gram defines a Detector Graph with placeholders for concrete solutions as
the nodes. The nodes of a detector graph are called Operation Targets and
enable to specify a filter for concrete solutions based on the requirements,
capabilities, and types of the concrete solutions in the solution model, as
depicted exemplarily by the detector graph in Figure 6.5 consisting of the
operation targets)1 and)2.

141

6 Aggregation of Concrete Solutions

Definition 6.3.2 (Operation Target) Let OTbe the set of all operation
targets. An Operation Target is a concrete solution placeholder represented
as a tuple ot = (',�, C), s.t.,

(i) ' is a set of requirements

(ii) � is a set of capabilities

(iii) C ∈ T �

Definition 6.3.3 (Detector Graph) A Detector Graph DG = (OT , EDG)
is a graph, s.t.,

(i) OT ⊆ OT

(ii) EDG ⊆ OT × OT × WB<

(iii) ∀4 ∈ EDG : c1(4) ≠ c2(4)

(iv) ∀ot ∈ OT ∃4 ∈ EDG : c1(4) = ot ∨ c2(4) = ot

(v) ot1, ot2, . . . , ot: ∈ OT is a path (as symbol l(>C1, >C:)) from opera-
tion target ot1 to operation target ot: :⇔
(ot1, ot2, F1,2), (ot2, ot3, F2,3), . . . , (ot:−1, ot: , Fk−1,k) ∈ EDG

(vi) ∀ot, ot′ ∈ OT ∃ot1, . . . , ot: ∈ OT : ot1 = ot∧ot: = ot′ ∧l(ot1, ot:)

�

A detector graph is used to identify subgraphs of a solution model, which
are candidates to be aggregated by an aggregation program. Thereby, a
concrete solution matches with an operation target if the types correspond
and the concrete solution provides at least the requirements and capabili-
ties defined by the operation target. The edges of the detector graph are
weighted to reflect the domain-specific semantics describing the relations
between concrete solutions as a further filter criteria. Thus, a detector
graph of an aggregation program acts as a selector for subsets of the whole

142

6.3 Concrete Solution Aggregation Programs

SAS of a solution model, which can be potentially aggregated by the ag-
gregation program. Compatible subsets of the SAS can be identified by
searching for colored and weighted subgraph isomorphisms of the detector
graph in the solution model. In Figure 6.5, the detector graph is used to
identify the subgraph containing (1 and (3 in the solution model, because
both provide at least the requirements and capabilities defined by)1 and)2
of the detector graph and also the weight of the edge connecting (1 and (3
corresponds to the weight connecting)1 and)2 in the detector graph. Thus,
the subgraph containing (1 and (3 is isomorphic to the detector graph and,
therefore, is identified as a candidate to be aggregated by the aggregation
program. Such candidates are called Aggregation Context.

Definition 6.3.4 (Aggregation Context) Let SM be the set of all solution
models, let Gsm ∈ SM be a solution model, let ap ∈ AP be an aggregation
program, and let DG 3 DG = c1(0?) be the detector graph of ap.

Let F(DG, Gsm) be the set of all subgraph isomorphisms of DG in Gsm.

Then, an Aggregation Context ac is the set of pairs

{(>C, B) |>C ∈ c1(DG), B = 5 (>C)}

induced by a subgraph isomorphism 5 ∈ F(DG, Gsm) that maps the oper-
ation targets of DG to concrete solutions in Gsm. �

An aggregation context represents a subgraph isomorphism of a detector
graph in a solution model. An example of an aggregation context is de-
picted in Figure 6.5, where the detector graph is mapped to the subgraph
containing (1 and (3 in the solution model, which is then identified as the
aggregation context the aggregation program can operate on. To validate
if an aggregation program can aggregate the subgraph of a solution model
identified in an aggregation context ac, it must investigate if the contained
concrete solutions provide all necessary properties the aggregation pro-
gram requires to perform the aggregation, which is necessary because the
automated aggregation of concrete solutions is highly domain-specific and

143

6 Aggregation of Concrete Solutions

requires sophisticated domain knowledge. For this validation, an aggrega-
tion program provides an Aggregatability Analysis Logic ^ that validates if
an aggregation program can aggregate an aggregation context of a given
solution model. Therefore, the logic maps the aggregation context to true
if the analysis concludes that the aggregation program can aggregate the
aggregation context and to false otherwise.

Definition 6.3.5 (Aggregatability Analysis Function) Let Aℭ be the set
of all aggregation contexts. Then, an Aggregatability Analysis Function
^ : Aℭ→ B, is a function, that provides domain-specific logic to validate if
an aggregation program can aggregate an aggregation context of a solution
model. �

Although this could be achieved as well by extensively modeling concrete
solutions and their relations to each other via requirements and capabilities
and, at the same time, by also expressing the compatibility of aggregation
programs to solution model subgraphs by sophisticated detector graphs,
this would be tedious and would move the complexity of the aggregation
logic to the modeling of the concrete solutions, solution models, and
the detector graph of aggregation programs. Thus, to encapsulate this
in aggregation programs, where also the logic to aggregate the concrete
solutions resides makes particularly sense because the aggregation logic
is domain-specific and operates on the concrete artifacts of the concrete
solutions and not only on their representations in the solution model as
already indicated by the CloudFormation snippets above (cf. Section 6.2).
As a result, logic must be written that aggregates the concrete artifacts of
the concrete solutions, whereby the aggregation logic must check whether
it can process the available artifacts of the concrete solutions. For example,
aggregation logic that is capable of aggregating CloudFormation snippets
would check if the given inputs are actually valid CloudFormation snippets.
Thus, exactly this validation logic, which is needed anyway, can also
be used and extended to validate the compatibility of the aggregation

144

6.3 Concrete Solution Aggregation Programs

program with an aggregation context and, thereby, is then also given in the
same domain-specific coding as the aggregation logic, which makes both
understandable with the same expertise.

Finally, as already mentioned above, an aggregation program provides the
Aggregation Operation Logic to aggregate the concrete solutions in the
identified aggregation context. The aggregation logic is implemented in
the Aggregation Operation Function > and the Solution Model Update
Function f. The aggregation operation function > aggregates the artifacts
of concrete solutions and creates a new concrete solution, while the solution
model update function f updates the solution model with the new concrete
solution.

Definition 6.3.6 (Aggregation Operation Function) An Aggregation
Operation Function > : SM×Aℭ→ S, is a function that provides domain-
specific logic to aggregate concrete solutions identified by an aggregation
context in a solution model to a concrete solution aggregate, which itself
is a new concrete solution. �

Definition 6.3.7 (Solution Model Update Function) A Solution Model
Update Function f is a function that provides domain-specific logic to
update a solution model after a successful aggregation of concrete solutions
by replacing the aggregated concrete solutions with the new concrete
solution aggregate ¤B.

Thereby, f : SM × Aℭ ×S→ SM, (Gsm, ac, ¤B) ↦→ ¤Gsm with

(i) (̂ =
⋃
(ot,s) ∈ac {B} is the set of concrete solutions to be replaced by

the aggregate

(ii) �̄ =
{
4 ∈ Gsm | c1(4) ∈ (̂ ∧ c2(4) ∈ (̂

}
is the set of edges between

aggregated concrete solutions

(iii) �c1 =
{
4 ∈ Gsm | c1(4) ∈ (̂

}
\ �̄ is the set of edges where the start

of the edges has to be replaced by the aggregate

145

6 Aggregation of Concrete Solutions

(iv) �c2 =
{
4 ∈ Gsm | c2(4) ∈ (̂

}
\ �̄ is the set of edges where the target

of the edges has to be replaced by the aggregate

(v) bc1 : �c1 × { ¤B} → ESM, ((B1, B2, F), ¤B) ↦→ (¤B, B2, F), where ESM

is the set of all edges of solution models

(vi) bc2 : �c2 × { ¤B} → ESM, ((B1, B2, F), ¤B) ↦→ (B1, ¤B, F)

(vii) ¤Gsm = (c1(Gsm) \ (̂ ∪ {¤B} , c2(Gsm) \ �̄ ∪
⋃

4∈�c1×{ ¤B}
{
bc1 (4)

}
∪⋃

4∈�c2×{ ¤B}
{
bc2 (4)

}
, c3(Gsm), c4(Gsm), c5(Gsm), c6(Gsm))

�

Thereby, the domain-specific logic of f also decides what properties, and
specifically which requirements and capabilities, the concrete solution
aggregate provides. Whenever an aggregation program successfully per-
forms the aggregation of an aggregation context, the aggregated concrete
solutions in the solution model are replaced with the concrete solution
aggregate. Thereby, edges between the aggregated concrete solutions are
removed from the solution model and edges that connected the aggregated
concrete solutions with other concrete solutions are connected to the con-
crete solution aggregate, such that a new solution model results. Please
note that this processing of requirements, capabilities, edges, and prop-
erties is highly domain-specific and, thus, requires this update function
in the aggregation program. The new solution model can then be used
to apply further aggregation programs until all concrete solutions in it
are aggregated as long as only a single remaining concrete solution is
present in the solution model, then the processing finishes. This principle
is depicted in Figure 6.5, where the aggregation program aggregates (1
and (3 to (= and replaces the aggregated concrete solutions in the solution
model with (=, as depicted on the right.

The application of aggregation programs on solution models is discussed in
more detail in the next chapter where it is shown how aggregation programs
can be utilized to support and guide the stepwise aggregation of a solution
model to an overall concrete solution.

146

6.4 Chapter Conclusion

6.4 Chapter Conclusion

In this chapter, the concept of concrete solution aggregation was intro-
duced. To support the aggregation of concrete solutions it is necessary to
formalize aggregations among them. Therefore, the concept of aggregation
operators as a means to formalize the aggregation of concrete solutions
were introduced. It was shown that they enable to create structures among
sets of concrete solutions, which are called solution algebras. solution
languages were introduced, which allows to structure the solution space
of a pattern language by means of concrete solution aggregation descrip-
tors, which provide the necessary documentation to manually aggregate
concrete solutions in a human-readable way. However, in cases when
the aggregation of concrete solutions has to be conducted over and over
again, it is beneficial to add a mechanism, which allows to automate the
aggregation. For this purpose, aggregation programs were introduced,
which correspond to the automation of CSADs. Moreover, the concept
of aggregation programs was developed based on established techniques
for identifying the application of a certain kind of logic on graph-based
models. For example, Breitenbücher [Bre16] uses detector fragments and
subgraph isomorphisms to detect the applicability of management patterns
on topology models, while Harzenetter et al. [HBF+18b; HBF+20] use this
approach to refine patterns in deployment models by topology fragments
implementing them. In this work, the general idea to identify subgraphs in
a graph-based model based on isomorphisms with a detector graph along
with analysis logic for refining the detector was translated and adapted to
the domain of concrete solution aggregation. As a result of identifying
aggregation contexts by means of subgraph isomorphism the discussion
of algebraic properties of aggregation programs is relaxed, because the
mapping of operation Targets to concrete solutions in a solution model
makes commutativity obsolete.

147

C
ha

pt
er 7

Semi-Automated
Aggregation of

Concrete Solutions

This chapter presents a concept for a toolchain supporting the EINSTEIN-
Method. The introduced concepts of this work are set in the context of
this method. Further, an algorithmic approach is presented utilizing aggre-
gation programs to enable the stepwise aggregation of concrete solutions
in a solution model, where the Implementer can gradually incorporate
their requirements for the aggregations. It is conceptually shown, how the
algorithmic approach can be implemented in a toolchain to semi-automate
and guide the aggregation of concrete solutions. This chapter builds on
the works of Beisel [Bei17], Falazi [Fal17a], and Krieger [Kri18c]. Al-
though the aggregation of concrete solutions requires domain-specific logic
the presented concept of a toolchain to aggregate concrete solutions is
generic.

149

7 Semi-Automated Aggregation of Concrete Solutions

7.1 Concept of a Toolchain to support the
EINSTEIN-Method

In the following, a concept for a toolchain is presented that supports the
EINSTEIN-Method. It is intended to present the concept in a domain-
independent way, thus, it shows a blueprint that can be instantiated for
different domains by incorporating the specific requirements of each do-
main. For example, these could be specified in terms of the domain-specific
rendering of patterns in design models or the rendering of concrete so-
lutions in solution models which might differ between domains. Thus,
the overall concept as depicted in Figure 7.1 can be refined towards the
requirements of specific domains and, of course, requires also specific
implementations of tools to meet and support the Designers and Imple-
menters. Although some supporting tools, such as for example a general
pattern repository, can be used in different domains, even such tooling can
benefit from domain-specific adaptations with respect to the visualization
and rendering of patterns according to the needs of a specific domain.

The first illustrated step in Figure 7.1 shows that, based on a use case at
hand, a Designer has to be supported to use a pattern language to create
a design model that encodes the conceptual solution for the problem at
hand by the interplay of patterns. The Designer can be supported by a tool
to create a design model. Thereby, starting with an empty design model,
the tool has to provide the Designer with a palette of patterns organized
in different pattern languages relevant for their problem domain. Since
the relevant patterns can be spread among different pattern languages, the
tool has to incorporate this accordingly by supporting the Designer to
navigate among different pattern languages (cf. [LB21; WBB+20]). This
is conceptually supported by the notion of pattern languages as pattern
graphs, as formally introduced in this work in Definition 4.1.1. Therefore,
to provide pattern languages in the respective form, the tool has to be able
to load pattern graphs from a pattern repository. Further, an underlying
pattern repository also has to support the formulation of pattern languages

150

7.1 Concept of a Toolchain to support the EINSTEIN-Method

Design Model

Solution Model

Concrete Solution
Aggregate

1. Create
Design Model

2. Create
Solution Model

Pattern Graph
with Concrete

Solutions
A

C

XA

B

S1

S4

S3S1

S2

S1 S2

S4

S3S1

S1

S4

S3S1

S2

Use Case

A

C

XA

B

3. Aggregate
Concrete Solutions

apply

apply

use

Selection
Criteria

Solution
Algebra

Aggregation
Engine

Pattern
Language

Figure 7.1: Interplay of the concepts to support the EINSTEIN-Method

as pattern graphs to realize proper inputs for the tool. The modeling tool
must allow to drop patterns from the palette onto the modeling canvas
and enable to create relations between the patterns reflecting the domain-
specific semantics describing the interplay of the patterns to solve to use
case at hand. Thereby, the patterns are interwoven by the Designer to
design a conceptual solution for their problem at hand using design models
as introduced in this work in Definition 4.4.1.

151

7 Semi-Automated Aggregation of Concrete Solutions

The resulting design model then has to be translated into a solution model
by an Implementer as depicted by Step 2 in Figure 7.1. As introduced
in Section 5.6, the means to reuse concrete solutions in the EINSTEIN-
Method are solution models. Thus, the tool has to support the Implementer
to translate the design model into a solution model stepwise. For this
purpose, the tool needs to support selecting concrete solutions for the
patterns of the design model. Thereby, it is required that an Implementer
can search for relevant concrete solutions connected to the patterns of
the design model. This can be supported by querying concrete solutions
connected to the patterns of the design model utilizing selection criteria,
which requires an implementation of the concept of pattern graphs with
connected concrete solutions and selection criteria as specified in Defini-
tion 3.3.3 and Definition 5.5.1. As pattern languages and concrete solutions
are typically managed in different repositories, this requires that patterns
and concrete solutions are linked across repositories. Both, Beisel [Bei17]
and Krieger [Kri18c] have validated the concept of linking patterns and
concrete solutions across repositories. Further, the tool has to support
the Implementer to reuse concrete solutions for the patterns of the design
model and relate them according to the semantic needed to specify their
interplay in the solution model, which is a new modeling canvas besides
the design model.

Once the Implementer modeled a solution model they have to be supported
to aggregate the concrete solutions of the solution model to an overall
concrete solution aggregate as depicted by Step 3 in Figure 7.1. The tool
can support the Implementer by an semi-automated approach. Solution
algebras and concrete solution aggregation programs as introduced in
Section 6.1 and Section 6.3 can be utilized to guide the Implementer to
aggregate the concrete solutions of the solution model. For a given solution
model, the tool can support the Implementer to aggregate the concrete
solutions by providing a list of aggregation programs that can be applied
to the solution model. Thereby, utilizing detector graphs of aggregation
programs, the tool can identify for each available aggregation program on
which subgraphs of the solution model it can operate and highlight the

152

7.1 Concept of a Toolchain to support the EINSTEIN-Method

aggregatable subgraphs of the solution model. If the Implementer selects
an aggregatable subgraph of an aggregation program, the aggregation itself
is conducted by an Aggregation Engine. The aggregation engine is thereby
capable of loading the artifacts of concrete solutions from a solution reposi-
tory along with the aggregation programs. Further, it provides a runtime to
execute the aggregatability analysis logic ^ on a given aggregation context.
Then, if the aggregatability analysis logic ^ returns true, the aggregation
engine can execute the aggregation operation function > and the solution
model update function f of the aggregation program to aggregate the
concrete solutions of the solution model and provide an updated solution
model as the result of the aggregation step. The resulting solution model
can then be further aggregated by the Implementer by again checking
which aggregation programs can be applied on the new solution model.
Then, the Implementer can select again a subgraph of the solution model
to be aggregated and the process can be repeated until the solution model
is a single concrete solution or until no further aggregations are possible
based on the available aggregation programs. Thus, the tool along with
the aggregation engine implement especially the handling of aggregation
programs specified by Definition 6.3.1. In the case that not all concrete
solutions of a solution model could be aggregated based on aggregation
programs, the Implementer can further check in a present solution lan-
guage if there are manual instructions available to further aggregate the
left concrete solutions of the solution model. This overall tool concept
allows to semi-automate the reuse and aggregation of concrete solutions
by guiding the Implementer to aggregate the concrete solutions stepwise
by utilizing the aggregation programs of a solution algebra. While Step 1
and Step 2 described above are manual tasks conducted by Designers and
Implementers, Step 3 also relies on automation aspects. In the next section,
an algorithm is presented to the semi-automate the aggregation of concrete
solutions as described in Step 3.

153

7 Semi-Automated Aggregation of Concrete Solutions

7.2 Algorithmic approach to implement the
semi-automated Aggregation of Concrete Solutions

In the following, the assisted stepwise aggregation of concrete solutions
in a solution model is described in detail and an algorithm is given that
can be implemented in tools to provide semi-automated aggregation. The
overall processing is depicted in Figure 7.2 where, both, a solution model
to be aggregated and the available aggregation programs are the input. The
depicted example in Figure 7.2 shows, how the stepwise aggregation of the
solution model can be assisted. In the following, the algorithmic approach
is described conceptually, whereas, the depicted example in Figure 7.2 can
be used to comprehend the steps of the algorithm.

Algorithm 7.1 Aggregation Step
Require: Solution Model SM, Aggregation Programs AP
Ensure: Return a tuple (SM, aggregationContext, ap, updatedSM) repre-

senting the aggregation step
1: procedure performAggregationStep(SM,AP)
2: mappings← []
3: for all ap ∈ AP do
4: mappingsOfAp←getMappings(SM, ap)
5: mappings.append(mappingsOfAp)
6: end for
7: aggregation←selectAggregation(mappings)
8: aggregationContext←aggregation[0]
9: >←aggregation[1] .o

10: f←aggregation[1] .f
11: csAggregate←>(SM, aggregationContext)
12: updatedSM←f(SM, aggregationContext, csAggregate)
13: return (SM, aggregationContext, ap, updatedSM)
14: end procedure

154

7.2 Algorithmic approach to implement the semi-automated Aggregation
of Concrete Solutions

For a given solution model the procedure performAggregationStep spec-
ified as pseudo code in Algorithm 7.1 can be called. Firstly, performAg-
gregationStep creates a list of potential aggregations supported by the
aggregation programs on the given solution model (cf. lines 2 – 6 in Al-
gorithm 7.1). Valid aggregations are identified and validated by calling
the function getMappings specified in Algorithm 7.2 for each available
aggregation program.

Algorithm 7.2 Find Subgraph Mappings
Require: Solution Model SM, Aggregation Program ap
Ensure: Return a list of all valid subgraph mappings of the aggregation

program’s detector graph in SM
1: function getMappings(SM, ap)
2: mappings← []
3: isos← findSubgraphIsos(SM, ap.DG)
4: for all iso ∈ isos do
5: if ap.^(iso) then
6: mapping←(iso, ap)
7: mappings.append(mapping)
8: end if
9: end for

10: return mappings
11: end function

In turn, getMappings searches for all subgraph isomorphisms of the de-
tector graph of an aggregation program in the solution model (cf. line 3
in Algorithm 7.2). The function findSubgraphIsos can be implemented
utilizing the algorithm VF2 [CFSV01] configured with node and edge
matcher functions that implement the matching constraints for concrete
solutions and operation targets as well as the matching constraints for edges
of the detector graph and the solution model as described in Section 6.3.
As a result, this enables VF2 to search for node-colored and edge-weighted
subgraph isomorphisms of the detector graph in the solution model. Since
VF2 is a state of the art algorithm, the implementation of findSubgraphIsos

155

7 Semi-Automated Aggregation of Concrete Solutions

Solution Model Tool & Aggregation Engine

Aggregation Programs

Sk

Sl

S1 S2

Sk

S4

S3S1

S1

S4

S3S1

S2𝜅
Sk

S4

S3S1

𝜅

Sk

Sl

𝜎

S4

S3S1

Aggregation 1

Sm

Sk

Sl

Aggregation 2 Aggregation 3

Sm

Solution
Repository

S

𝜅

S1

S4

S3S1

S2

𝛼
Ta Tb

𝛽 Te

TdTc

Semi-automated Aggregation

𝛼 𝛽 𝛼

𝜊𝛼
Sk

Sl

𝛽 𝜎𝛼

𝜊𝛼𝜊𝛽
𝜎𝛼

Figure 7.2: Assisted aggregation of concrete solutions

156

7.2 Algorithmic approach to implement the semi-automated Aggregation
of Concrete Solutions

is not further detailed. Moreover, for each found subgraph isomorphism
it is validated if the aggregation context identified by the subgraph iso-
morphism can be aggregated by the aggregation program. Thereby, the
Context-specific Compatibility Analysis Function ^ of the aggregation pro-
gram is executed (cf. line 5 in Algorithm 7.2) for each identified subgraph
isomorphism which ensures that only those subgraph isomorphisms for
which ^ returns true are kept. Finally, the valid subgraph isomorphisms
are stored as a tuple together with the aggregation program in a list of
mappings (cf. line 6 – 7 in Algorithm 7.2). Thus, each mapping represents
an aggregation context along with the aggregation program that can operate
on it.

The mappings of all available aggregation programs are merged to an
overall list of potential aggregations. From this list, Implementers can then
select one aggregation to be executed specified by the abstract function
selectAggregation (cf. line 7 in Algorithm 7.1). The function selectAggre-
gation represents an interaction of the Implementers with the supporting
tool, whereby, they manually select the aggregation to be conducted. Thus,
at this point, Implementers can bring in their domain knowledge and expe-
rience to determine the aggregation. Therefore, the function is not further
specified in this work. For the given example in Figure 7.2 this results in
the identification of the subgraph containing (1 and (2 as indicated by the
dashed line for the fist aggregation illustrated in the left column.

After the Implementer selected the aggregation, it can be performed by
calling the Aggregation Operation Function > and the Solution Model
Update Function f of the aggregation program on the solution model and
the aggregation context (cf. line 8 – 12 in Algorithm 7.1). Thereby, line
8 represents, that the aggregation context is selected from the returned
mapping tuple. Then, references to the functions > and f are stored in
variables in the lines 9 and 10, while they are called in the lines 11 and 12 to
generate the concrete solution aggregate and to update the solution model.
Finally, the algorithm returns a tuple representing the initial solution model,
the aggregation context, the aggregation program, and the updated solution
model of the aggregation step. As depicted in Figure 7.2 the resulting

157

7 Semi-Automated Aggregation of Concrete Solutions

solution model can then be used as the input for the next aggregation step
by the Implementer. For the new solution model, performAggregationStep
can be called again to assist the Implementer to select the next aggregation
and automatically aggregate the respective aggregation context. This can
be iteratively conducted by the Implementer until no further aggregations
are supported by the given aggregation programs.

7.3 Discussion

The presented approach tries to balance the tradeoff between automation
and manual reuse of concrete solutions by incorporating user feedback and
user decisions while automating the aggregation of concrete solutions in a
user-controlled manner. However, a limitation of the presented approach
is the lack of automating the aggregation of whole solution models and
also the automated generation of solution models from design models.
For the latter case, it is possible to automate the selection of concrete
solutions for an entire design model by specifying a query that selects
concrete solutions for all patterns of the design model as conceptually
discussed by Falazi [Fal17a]. However, practical reasons, the query would
have to represent a collection of constraints given by both, the Designer
and the Implementer. This is because both roles typically bring in different
perspectives and requirements, as discussed in Section 3.4. Further, such a
query would have to assure that just one concrete solution is selected for
each pattern in the design model, which is difficult for cases when multiple
concrete solutions matching given constraints are available for a pattern.
Otherwise, either all possible solution models would have to be generated
for the set of selected concrete solutions or the query would have to be
refined by the Implementer to select just one concrete solution for each
pattern – which is close to the stepwise creation of a solution model as
described in this work. Thereby, the focus would shift from iteratively
selecting specific concrete solutions for a use case at hand, which is how
systems are typically developed, to engineering a sophisticated query that

158

7.3 Discussion

selects concrete solutions for all patterns of a design model. Further, if the
query is allowed to return multiple concrete solutions for a pattern, then
the number of possibly generated solution models in the worst case scales
exponentially with the number of patterns in the design model and the
number of concrete solutions for each pattern, whereby, the Implementer
finally needs to select the solution model, which matches best to solve
the use case at hand. But overlooking a whole solution model is much
more complex for an Implementer than dividing the whole complexity and
selecting a concrete solution for each pattern individually.

Further, to automate the aggregation of overall solution models, a possible
sequence of aggregations could be calculated by iteratively searching for
sequences of applicable aggregation programs that collapse the solution
model to a single concrete solution. This corresponds to a planning problem
in the space of valid aggregation sequences. Depending on the algebraic
properties of the available aggregation programs, thereby, a possibly large
amount of aggregation steps and aggregation sequences could be required
to be calculated. Even worse is, due to the fact that the aggregatability
analysis function ^ of the aggregation programs requires to investigate not
only the solution model but also the artifacts of the concrete solutions, all
concrete solution aggregates would also have to be generated to eventually
decide if a sequence of aggregation programs completely aggregates a
whole solution model. To cover the whole search space to assure that all
possible aggregation sequences are investigated, also all possible orders
of aggregation programs would have to be applied over and over again
for each aggregation step, which again increases the complexity for the
automation of overall solution models. This scales exponentially with
the number of aggregation programs by $ (#!) with # being the set of
aggregation programs. This approach quickly leads to a potentially large
number of executions of the getMappings (cf. Algorithm 7.2) function.
Thereby, getMappings itself searches for all subgraph isomorphisms of the
detector graph of an aggregation program in a solution model. The search
for subgraph isomorphisms is a problem with complexity $ (+! ×+) (cf.
[CFSV01]) for + being the set of edges of the solution model.

159

7 Semi-Automated Aggregation of Concrete Solutions

As a result, based on the tradeoffs of this discussion, the presented ap-
proach focuses on the semi-automated and iterative aggregation of con-
crete solutions in a solution model, which also enables to integrate the
EINSTEIN-Method more easily into existing procedure models (cf. Sec-
tion 3.2). Thereby, an Implementer benefits from a feedback loop when
selecting concrete solutions iteratively on the basis of the requirements and
tradeoffs the Implementer is faced with when reusing concrete solutions
to implement an use case at hand. For example, they could start with the
selection of concrete solutions for the most important components as a
basis, which thus act as an anchor for the further selection of concrete so-
lutions. Then, they could complete the overall solution model by selecting
concrete solutions for the remaining patterns in the design model.

7.4 Chapter Conclusion

In this chapter, an approach was presented that can be used to automate the
aggregation of concrete solutions. It is based on the concepts of design mod-
els, pattern graphs with connected concrete solutions and solution algebras.
To aggregate the concrete solutions of a solution model a generic concept
of a toolchain was introduced as a blueprint that allows to instantiate the
concepts of the EINSTEIN-Method for different domains. The aggrega-
tion of concrete solutions was further formulated as a semi-automated
and iterative process that can be conducted by an Implementer. Thereby,
an algorithmic approach was introduced and discussed that specifically
enables an Implementer to iteratively adjust the aggregation of concrete
solutions in a solution model by utilizing the aggregation programs of a
solution algebra. The algorithm, enables a supporting tool to maintain
an overall context for the aggregation of a solution model due to the fact
that each aggregation step provides information consisting of the initial
solution model, the aggregation context, the aggregation program, and the
updated solution model of the aggregation step. By this means, the Imple-
menter can be supported to always trace back the aggregation steps and the

160

7.4 Chapter Conclusion

decisions made during the aggregation process, which is especially help-
ful if the Implementer wants to try out different implementations. Then,
the Implementer can always go back to a previous aggregation to try out
another aggregation. Further, the tool could be implemented to also undo
mistakenly executed aggregation steps.

161

C
ha

pt
er 8

Toolchain and Validation

To validate the technical feasibility of the presented approaches and con-
cepts, a toolchain to support the EINSTEIN-Method as introduced as a
blueprint in the previous chapter was implemented in different prototypes
in the course of this work. The overall interplay of the different tools is
shown in this chapter and illustrated as a coarse architecture. It is discussed
how to implement aspects of the introduced blueprint. Finally, the concept
of concrete solution aggregation is validated by discussing further valida-
tion scenarios in the domains Cloud Application Design and Deployment,
Cloud Application Management, Costumes in Films, and by summarizing
validation scenarios that were already published in other works.

163

8 Toolchain and Validation

8.1 Prototypes to support the EINSTEIN-Method

To support the EINSTEIN-Method, prototypes of tools were developed
in the course of this work that implement the conceptual blueprint as
introduced in the previous chapter. The different tools are depicted in
Figure 8.1, which shows how they form an overall toolchain to support the
EINSTEIN-Method. The tools are grouped into the categories Supporting
Tools for Pattern and Concrete Solution Authoring as well as Tools to sup-
port the EINSTEIN-Method. The first group consists of a pattern repository
and a solution repository, which both can be accessed via an API from
corresponding user interfaces. On the one hand, the Pattern Language
Authoring UI is designed and developed as an extendable web application
based on Angular [Goo23]. It allows to author, maintain, and share pattern
languages, thereby, providing the capability to implement specific render-
ings for the different pattern languages. This enables to adapt the look
and feel of a pattern language to the requirements of the domain it is used
in. Concepts and learnings from the previous works by Beisel [Bei17],
Fehling et al. [FBFL15], Krieger [Kri18c], and Weigold [Wei19] influ-
enced the development of the pattern language authoring UI. For example,
to support the rendering of pattern languages according to the needs of the
covered domains, a plugin-based rendering approach was implemented
that enables to realized different look and feels for that match the needs
of the users. In combination with the API and the pattern repository as
the backend, which are implemented utilizing the Java framework Spring
Boot [VMW23], it already evolved beyond being a prototype for this work.
It is used on a daily basis and is under constant further development in the
research project PlanQK [Pla23c] as part of the PlanQK platform [Pla23b]
to author, manage, and share quantum computing patterns. They were
initially started by Leymann [Ley19] and are constantly extended in the
PlanQK project [Pla23a]. The source code for user interface, API, and
backend is available as part of the Pattern Atlas project as open source soft-

164

8.1 Prototypes to support the EINSTEIN-Method

Pattern Language
Authoring UI

Solution Language
Authoring UI

Design Model and
Solution Model Tool

Concrete Solution
Aggregation Tool

Aggregation
Engine

API

Design and Solution
Model Backend

API

Supporting Tools for Pattern and
Concrete Solution Authoring

Tools for Design / Solution Model modeling
and Concrete Solution Aggregation

Pattern
Repository

API API

Solution
Repository

S2
S1P2

P1

S3
P3

A

C

XA

B

S1

S4

S3S1

S2 A B

C

XA

S1

S4

S3S1

S2

Figure 8.1: Architecture of a Toolchain to support the EINSTEIN-Method

ware [Dev23f][Dev23e]. The Pattern Atlas project bases on the metaphor
of an atlas of patterns as detailed in [LB21]. A container-based setup to
run and test the system is also available [Dev23d].

On the other hand, multiple solution repositories were developed providing
validation of the concepts presented in this work. The first one to mention is
a domain-specific solution repository for the domain of costumes in films. It
is tailored to support the requirements of the domain and was developed and
validated in the course of the MUSE project [Bar18] to capture costumes
and their parts as concrete solutions. It enables to represent and digitalize
tangible concrete solutions in the form of costumes in an IT system. It
was also connected to a pattern repository to link costume patterns with
concrete solutions in the solution repository [FBFL15]. It is available as
open source software [Dev23c][Dev23a] and can be run and tested via a
container-based setup [Dev23b].

165

8 Toolchain and Validation

Further, Krieger [Kri18c] implemented a combined pattern and solu-
tion repository based on semantic web technologies as a supervised
work supporting this thesis. He shows, how patterns and solution lan-
guages can be represented in an ontology and how to query them using
SPARQL [W3C23]. Thereby, concrete solution descriptors reference the
implemented patterns, which allows to query for concrete solutions based
on patterns. This concept is depicted in Figure 8.1 via the connection
between the solution repository and the pattern repository. The source
code is available as open source software [Kri18a][Kri18b]. Finally, the
work by Beisel [Bei17] shows the implementation of a solution repository
for implementations of the Cloud Computing Patterns by Fehling et al.
[FLR+14].

The second group – Tools to support the EINSTEIN-Method – consists
of the Design Model and Solution Model Tool and the Concrete Solution
Aggregation Tool, which all are implemented as extensions of the Pattern
Atlas UI, which is available as open source code [Dev23f]. Those tools
support the aggregation of concrete solutions and were by Graf [Gra20].
Firstly, the Design Model and Solution Model Tool provides a modeling
canvas to create design models based on a pattern language. Thereby,
patterns can be selected from the pattern repository and added to the design
model, such that instances of a pattern are created in the design model
(cf. Section 4.3). They further can be linked to create relations between
the patterns reflecting the intended design to solve a use case at hand by
a Designer. Secondly, the extensions enable to filter and select concrete
solutions from the solution repository that are related to the patterns in the
design model. This way, a solution model can be created. The filtering of
concrete solutions to replace patterns in a design model was further detailed
by Falazi [Fal17a] by means of a grammar-based approach. Thereby, Falazi
[Fal17a] shows how a lexer and a parser can be generated from a formal
language that enables to specify queries on the set of concrete solutions in
the solution repository considering selection criteria provided by a user.
The source code is available as open source [Fal17b].

166

8.2 Validation

A prototypical aggregation engine was developed by Graf [Gra20] as a
proof of concept to aggregate concrete solutions of the Cloud Comput-
ing Patterns by Fehling et al. [FLR+14] and the Messaging Patterns by
Hohpe and Woolf [HW04]. This scenario is available as an exemplary
input for Pattern Atlas and is detailed as a validation scenario below in
Section 8.2.4.

8.2 Validation

To validate the presented approach, different scenarios leveraging the con-
cepts presented in this work are discussed in the following. The validation
scenarios show the feasibility of the presented approaches in the domains
Cloud Application Design and Deployment, Cloud Application Manage-
ment, Costumes in Films, and Message-oriented Application Integration.
Each of the following subsections introduces a scenario as a basis to apply
the concepts of this work. These discussed validation scenarios show the
practical impact and feasibility of the application of concrete solutions
and their aggregation in the mentioned domains. Section 8.2.4 further
discusses a validation scenario that was also realized with the prototyp-
ical implementation of a design / solution model modeling tool and an
aggregation engine.

8.2.1 Cloud Application Design and Deployment

The Cloud Computing Patterns by Fehling et al. [FLR+14] offer established
solutions for the design of cloud applications. These patterns describe
the conceptual components required at an abstract level but do not pro-
vide technical specifics regarding (i) the specific components to use or
(ii) deployment methods. Considering for example the User Interface
Component [FLR+14] pattern, it does not assist in selecting appropri-
ate technologies, such as programming languages, web servers, or cloud
infrastructures for deploying the entire component in a cloud.

167

8 Toolchain and Validation

In this context, the concept of concrete solutions and their aggregation
is useful to obtain proven application structures that define specific tech-
nologies that work seamlessly together. The idea is to associate Topology
Models describing technical components and dependencies among them
with the abstract patterns by Fehling et al. [FLR+14]. When different
patterns with topology models as concrete solutions need to be combined,
these concrete solutions can provide a blueprint for the technical integra-
tion of the different components contained in the topology models. Ideally,
when aggregating topology models the resulting models can be directly
deployed using a deployment system.

In the following, the discussion delves into this concept further, primarily
based on the OASIS standard Topology and Orchestration Specification
for Cloud Applications (TOSCA) [OAS13]. TOSCA is an OASIS standard
aimed at automating application deployment and management. This stan-
dard outlines a declarative deployment metamodel for describing topology
models, which can be processed automatically by deployment systems to
deploy and manage the modeled application. TOSCA allows for the precise
definition of technical blueprints called topology models, specifying the
technical components and their relationships within an application. This
forms a solid foundation for capturing technical knowledge in the form of
concrete solutions. Additionally, components specified in a TOSCA topol-
ogy model can express requirements and capabilities similar to concrete
solutions as represented in this work. E.g., a virtual machine component
in a topology model may specify a requirement for deployment on a hyper-
visor, even if that hypervisor is not part of the topology model. In such
cases, the deployment system must fulfill the open requirement and inject a
hypervisor and associated management logic to provision virtual machine
instances. These concepts play a crucial role in developing aggregation
programs for aggregating topology models. To illustrate this concept, a
scenario is considered where a user interface requires hosting. In this case,
the User Interface Component pattern is combined with the Elastic Infra-

168

8.2 Validation

User Interface
Component

PHP

Apache

VM

Topology Model

Elastic
Infrastructure

AmazonEC2

Topology Model Topology Model

PHP

Apache

VM

AmazonEC2

Req
Hypervisor

Cap
Hypervisor

S1 S2

Ta Tb

Req: Hypervisor
Cap: Hypervisor

Figure 8.2: An aggregation operator aggregates topology models based on
open requirements and provided capabilities into a complete
topology model (adapted from [FBBL19]).

structure pattern [FLR+14]. The Elastic Infrastructure pattern describes
a scalable deployment solution based on virtual machines in an elastic
cloud.

Figure 8.2 illustrates two concrete solutions for these patterns. The User
Interface Component pattern is linked with a concrete solution in the form
of a TOSCA topology model. The topology consists of a user interface
implemented as a PHP component hosted on an Apache Web Server,
running on a Virtual Machine (VM). While this is a typical stack for hosting
user interfaces, the virtual machine requires a hypervisor for execution.
This can be represented as a requirement of the concrete solution. Thus,
this topology model cannot be deployed directly but requires the injection
of a hypervisor component.

In turn, the Elastic Infrastructure pattern defines a concrete solution in
the form of another topology model containing an AmazonEC2 compo-
nent, which represents Amazon Web Services’ elastic infrastructure cloud

169

8 Toolchain and Validation

offering. This concrete solution specifies its capability to provide a hy-
pervisor. By matching the requirements and capabilities specified by the
two concrete solutions and the detector graph of the aggregation program
on the right in Figure 8.2, both topology models can be combined into a
complete topology model by the aggregation program. The logic to vali-
date if different topology models can be aggregated based on requirements
and capabilities as well as the actual aggregation of the topology models
can be automated as demonstrated by Saatkamp et al. [SBK+18] and Wild
[Wil22].

8.2.2 Cloud Application Management

After deploying an application, the operations phase commences, during
which various management processes are executed. One essential task
is the scaling of application components [BBKL13]. Another prominent
management use case involves migrating a component from an overloaded
on-premise hosting environment to a scalable cloud provider. The primary
advantage of such migration lies in the cloud’s elasticity, where the number
of component instances automatically scales based on actual workloads.
Given the frequency of this scenario, the Cloud Computing Patterns de-
tailed by Fehling et al. [FLR+14] encompass Application Management
Patterns aimed at resolving such management challenges. Specifically, the
Forklift Migration pattern addresses migration, while the Elasticity Man-
agement Process pattern guides the scaling of application instances based
on workload. The combination of these two patterns offers a solution to
the previously mentioned problem of overloaded on-premise components.
However, it’s crucial to automate these actions since manual executions are
error-prone. Unfortunately, applying management patterns is challenging,
as transforming an abstract pattern solution into an executable process
demands extensive technical expertise in various technologies [FBB+14a].
Hence, having reusable, executable concrete solutions for these patterns
presents a significant advantage compared to manual execution or writing
complex, automatically executable scripts.

170

8.2 Validation

Management Planlet

Forklift
Migration

S1

Elasticity
Management

Process

S2

Management Planlet Management Planlet

Req
Elast. Scaling

Cap
Elast. Scaling

Ta Tb

Req: Elast. Scaling
Cap: Elast. Scaling

++

Figure 8.3: An aggregation program aggregates management planlets into
subprocesses of an overall management planlet (adapted from
[FBBL19]).

Falkenthal et al. [FBB+14a] demonstrated the use of management planlets
as concrete solutions for management patterns. A management planlet
is a generic building block for management tasks, structured as a Single-
Entry-Single-Exit workflow (SESE). These management planlets imple-
ment specific management functions, such as component migration or
scaling [BBKL13; Bre16]. Thereby, the concept of management planlets
can be used on different granularity levels: for example, a management
planlet could execute a simple task such as starting a virtual machine,
but also a complex task such as migrating a component from one cloud
provider to another as described by the higher-level management patterns
by Fehling et al. [FLR+14]. Since management planlets follow the SESE-
semantics, they can be easily aggregated into more complex workflows,
which makes them appropriate for the concept of concrete solutions and
their aggregation. Thus, management planlets can be used to implement
concrete solutions for management patterns. As illustrated in Figure 8.3,

171

8 Toolchain and Validation

management planlets can be linked as concrete solutions with the Forklift
Migration pattern or the Elasticity Management Process pattern, serving as
technical implementations for particular use cases [FBB+14a; FBB+14b].
For instance, migrating a PHP component from a local Apache Web Server
to Amazon EC2 can be realized using a management planlet implementing
the Forklift Migration pattern. Another management planlet can implement
the Elasticity Management Process pattern to scale the PHP application
on EC2. Thus, when migrating an application to an elastically scaling
infrastructure, these two management planlet can be aggregated. This
aggregation can be achieved by copying the corresponding workflows as
subprocesses into a new workflow model and connecting them with a con-
trol flow. The resulting workflow again is a SESE-workflow, as depicted in
Figure 8.3. The aggregation can be performed because the detector graph
of the aggregation program matches with the requirements and capabilities
of the concrete solutions. Further, in this case the aggregation program
can also provide an aggregatability analysis function ^ that checks if the
workflows to be aggregated provide SESE-semantics, which is omitted in
the figure for the sake of simplicity.

8.2.3 Costumes in Films

In the following, the concept of concrete solution aggregation is translated
to the domain of costumes in films. Since, designing costumes for films
is a creative process, it is not possible to fully automate the creation of
costumes based on patterns and concrete solutions. However, the concept
of concrete solutions and their aggregation can be applied to this domain
conceptually to give a baseline to support the creative process of costume
design. Besides that, costume patterns are still a relatively new concept and,
therefore, not yet widely used in the domain of costume design. Thus, the
following validation scenarios discuss the application of concrete solutions
and their aggregation in the domain of costumes in films on a conceptual
level by means of abstract aggregation operators.

172

8.2 Validation

Costumes in films play an important role in conveying specific charac-
ter attributes to the audience through visual clues. They offer a means
to communicate information about a character’s role in a film, including
their social status, their character traits, or even the mood of a character
in a specific film scene. This communication is, for example, achieved by
utilizing various materials of differing quality, such as using ragged cotton
for portraying a penniless character or shiny silk for a well-dressed bank
employee. Furthermore, moods and emotions of a character in different
scenes can be conveyed through the proper choice of colors and tones in
their attire. Additionally, typical stereotypes within a film genre, such
as a sheriff or an outlaw in a western movie, can be represented through
the clothing choices, which viewers anticipate due to their exposure to
multimedia conventions. Consequently, these conventions can be system-
atically abstracted and authored into costume patterns, preserving the core
principles of vestimentary communication [Bar18; BL15; SBLE12].

concrete solutions in the domain of film costumes can be captured in two
ways. Firstly, they can be embodied in the actual physical costumes worn
by characters during film production. Secondly, they can be systematically
documented by providing detailed descriptions in a solution repository as
outlined in Section 8.1 with the MUSE solution repository. In this approach,
individual clothing items, referred to as base elements are cataloged along
with their attributes, such as for example colors, material properties, or
functions relevant to costume design. This documentation aids costume
designers in exploring numerous concrete solutions related to costume
patterns when crafting character wardrobes for film productions. A costume
can be defined as a composition of base elements, with each base element
representing a specific garment type, like a shirt, trousers, skirt, t-shirt,
or jacket etc. Barzen [Bar18] gives a sophisticated ontology-based meta
model for the domain of costumes in films, which is reduced and simplified
for the discussions in this work as following.

Definition 8.2.1 (Set of Costumes, Base Elements, and Base Element
Types) Let C be the set of costumes, B the set of base elements, and)B
the set of base element types. Each costume 2 ∈ C is composed of a set

173

8 Toolchain and Validation

Super Hero Shy Guy

S2S1

Superman
“Superman” 1987

Clark Kent
“Superman” 1987

Double Identity: Clark and Superman
“Superman” 1987

U

Figure 8.4: An aggregation operator forms the Double Identity Costume
by combining the sets of base elements found in the two cos-
tumes of Superman and Clark Kent, both of which represent
specific solutions for the Super Hero and Shy Guy patterns,
respectively (adapted from [FBBL19]).

of base elements in B, such that ∀2 ∈ C : 2 ∈ ℘(B). Additionally, the
function k maps base elements in B to specific base element types in)B ,
s.t., k : B →)B , 18 ↦→ C 9 . �

For example, a costume designer can navigate from the Super Hero pattern
to Superman’s costume, as depicted on the left in Figure 8.4, to systemati-
cally analyze the clothing of a superhero. Superheroes often conceal their
true identities by assuming unassuming personas in their daily lives, illus-
trated in Figure 8.4 by Clark Kent’s costume, which serves as a concrete
solution for the Shy Guy pattern. While the creative process of costume de-
sign cannot be fully formalized and automated, costumes can be regarded
as collections of base elements. In this framework, the combination of
the Superman and Clark Kent costumes is essentially the union of their

174

8.2 Validation

American Civil
War Lieutenant Lakota Indian

S2

1st Lt. John
Dunbar

“Dances with
Wolves”1990

Lakota Man
“Dances with
Wolves”1990Semi-Indian: John as Lakota Man,

“Dances with Wolves”1990

.S1

Figure 8.5: An aggregation operator merges the costume of First Lt. John
Dunbar with that of the Lakota Man, resulting in an ensemble
that represents a character with a Semi-Indian identity (adapted
from [FBBL19]).

respective base element sets. The arrangement of these base elements, such
as wearing the superhero costume under the shy guy attire, is based on the
creativity of the costume designer and cannot be formalized exhaustively.
Therefore, the properties of this aggregation operator are assumed analo-
gous to the basic set union operation. This can be defined as follows.

Definition 8.2.2 (Aggregation Operator ⊕∪) The aggregation operator
⊕∪ : C × C → C, (21, 22) ↦→ 21 ∪ 22, aggregates two costumes by uniting
their sets of base elements. �

The operator is commutative and associative, satisfying 21⊕∪ 22 = 22⊕∪ 21
and (21 ⊕∪ 22) ⊕∪ 23 = 21 ⊕∪ (22 ⊕∪ 23).

175

8 Toolchain and Validation

In other scenarios, the combination of costumes can occur differently. As
shown in Figure 8.5, costumes can also be merged to highlight the transfor-
mation of a character from one stereotype to another. For example, First
Lt. John Dunbar, a soldier from the American Civil War era represented
by the costume on the left in Figure 8.5, undergoes a character and attitude
transformation during the movie Dances with Wolves (1990). He befriends
members of the Lakota tribe and expresses his connection with them by
adopting elements of their clothing. Specific costumes worn by Lakota
men can be regarded as concrete solutions of the Lakota Indian pattern,
depicting this common stereotype. Consequently, the aggregation of both
costumes represents a selection from their base element sets. This aggre-
gation operator requires ensuring that if base elements of the same type
exist in both costumes, only one instance of each type is included in the
aggregated costume. This operator can be defined as follows:

Definition 8.2.3 (Aggregation Operator ⊕•) The aggregation operator
⊕• : C × C → C, (21, 22) ↦→ 21 ∪ 22 with ∀1 9 ≠ 1: ∈ 21 ∪ 22 : (k(1 9) ≠
k(1:)) ∨ (1 9 ∈ 21 ∧ 1: ∈ 21) ∨ (1 9 ∈ 22 ∧ 1: ∈ 22) ensures the inclusion
of distinct types of base elements in the aggregated costume, unless a base
element type exists in both original costumes.

Based on these aggregation operators, a solution algebra can be defined
as ({{C} , {⊕∪, ⊕•}}). While ⊕∪ and ⊕• are not distributive, they can be
applied sequentially. Costume designers should carefully consider the
application order that aligns with their requirements.

8.2.4 Validation in other Works

The former subsections discussed validation scenarios that show the appli-
cation of the introduced concepts conceptually. To validate the prototypical
implementation of a modeling tool for design models and solutions models
as well as an aggregation engine, Graf [Gra20] shows the application of

176

8.2 Validation

Message
Endpoint

Elastic
Platform

Point-to-
Point

Channel
Normalizer

Point-to-
Point

Channel
Message-
oriented

Middleware

Message
Filter

Message
Endpoint

Message
Endpoint

Publish-
Subscribe-
Channel

hostedOn

sendTo

hostedOn

hostedOn

hostedOn

receiveFrom

publishTo

hostedOn

hostedOn

sendTo

receiveFrom

subscribeTo

subscribeTo

Cloud Computing Pattern

Enterprise Integration Pattern

hostedOn

Figure 8.6: Aggregation Scenario with Cloud Computing Patterns and
Enterprise Integration Patterns (adapted from [Gra20, p.54]).

the presented concepts in the domain of messaging-based application inte-
gration. He shows how the concepts can be applied to aggregate concrete
solutions of the Cloud Computing Patterns by Fehling et al. [FLR+14]
and the Messaging Patterns by Hohpe and Woolf [HW04]. Thereby, he
designed and implemented a comprehensive validation scenario [Gra20,
p.54] that is depicted in Figure 8.6.

Figure 8.6 shows the overall design model of the scenario. The integra-
tion of multiple applications is represented by patterns from the pattern
language by Hohpe and Woolf [HW04]. Thereby, messages of the upper
left Messaging Endpoint are passed through Point-to-Point Channel to a
Normalizer, which transforms the messages into a common format. Subse-
quently, the scenario shows that the messages are passed through another
Point-to-Point Channel to a Message Filter, which filters all messages

177

8 Toolchain and Validation

according to a specific business logic. Messages that pass the Message
Filter are published to a Publish-Subscribe Channel, from which the Mes-
saging Endpoints on the upper right consume new messages. All these
messaging components are hosted on a Message-oriented Middleware,
while the respective Messaging Endpoints are hosted on an Elastic Plat-
form, whereby both, Message-oriented Middleware and Elastic Platform
are patterns from the language by Fehling et al. [FLR+14]. This overall
interplay is specified by the respective domain-specific semantics on the
edges as depicted in the design model in Figure 8.6. Graf [Gra20] shows
how concrete solutions for these messaging patterns can be implemented
as string templates to generate configuration files for the message-oriented
middleware ActiveMQ [Apa23] or Java programs implementing the Mes-
sage Endpoints, respectively. Further, the concrete solutions for the Cloud
Computing Patterns are implemented as CloudFormation snippets. He
further, shows how aggregation programs can be implemented, which are
capable of aggregating the concrete solutions of the validation scenario.
Finally, he describes how the prototypically implemented aggregation en-
gine can execute the aggregation programs to aggregate concrete solutions
implementing the patterns of the design model. Thus, he validates the
feasibility of the presented concepts in the domain of messaging-based
application integration.

8.3 Chapter Conclusion

In this chapter, it was argued that the conceptually introduced blueprint
for a toolchain to support the EINSTEIN-Method can be implemented.
The different components and their interplay show the feasibility of the
concepts presented in this work. The toolchain is a prototypical starting
point to implement the concepts and the EINSTEIN-Method in further
domains beyond those discussed in this work. The applicability of the
presented concepts was further validated by different validation scenarios.
Beyond those presented in this section, further validation scenarios from

178

8.3 Chapter Conclusion

the domains of User Interaction Design and Object-oriented Software
Engineering are detailed in the works by Falkenthal et al. [FBB+14a;
FBB+14b] that were elaborated in the course of this thesis as well.

179

C
ha

pt
er 9

Conclusion and Outlook

The present work introduces an approach for the utilization of concrete
solutions and their aggregation. The central focus lies on the reuse of
concrete solutions, which correspond to implementations of patterns. This
is facilitated by the EINSTEIN-Method, which is formulated as a domain-
agnostic framework for applying the concepts presented in this work. To
enable domain-independent modeling of conceptual solutions, design mod-
els have been introduced. These models serve as a generalization of pattern
graphs, as they can represent multiple instances of a pattern to model com-
plex solutions where a pattern must be used more than once. To refine
patterns in a design model using patterns at different abstraction levels, the
concept of pattern refinement has been discussed. For the reuse of pattern
implementations, concrete solutions have been introduced as the key el-
ements of the presented approach. It was shown how concrete solution
descriptors can be defined and implemented as structures that support the
description of concrete solutions. They are a domain-independent concept
but can be refined to capture domain-specific properties of concrete solu-
tions to ensure the general applicability of this approach. Selection criteria

181

9 Conclusion and Outlook

were introduced as special extensions of the properties of concrete solu-
tion descriptors, thereby, enabling users to search for concrete solutions
selectively.

To support the manual aggregation and organization of concrete solutions,
the concept of pattern languages has been extended to the level of con-
crete solutions by means of solution languages. These languages, along
with concrete solution aggregation descriptors, enable the creation of a
knowledge base that assists in organizing and reusing concrete solutions
in combination. As a fundamental basis to formulate the aggregation of
concrete solutions, the concept of aggregation operators has been intro-
duced. Aggregation operators operate on the structures of concrete solution
descriptors, specifically the requirements and capabilities, to ensure the
compatibility of concrete solutions. They create a structure on the set
of concrete solutions, dividing concrete solutions into cohesive subsets
on which the aggregation operators can be applied. Such structures were
introduced as solution algebras.

To implement the patterns in a design models by reusing concrete solutions,
it has been demonstrated how design models can be iteratively transformed
into solution models, which represent a translation of design models into
graphs of concrete solutions. It was shown that solution algebras can be
applied to these graphs to check whether the selected concrete solutions
can be aggregated into an overarching solution. Additionally, solution
aggregation programs were introduced as the implementations of aggrega-
tion operators that enable the semi-automated and assisted aggregation of
concrete solutions in a solution model. To support Designers and Imple-
menters to establish the EINSTEIN-Method in their work, a conceptual
tool environment has been presented that can be grasped as a blueprint
for a toolchain supporting the EINSTEIN-Method. Thereby, an algorithm
for implementing the assisted aggregation of concrete solutions by an
Implementer utilizing aggregation programs was introduced.

182

To validate the presented concepts, an architecture for a tool environ-
ment implementing the conceptual tool environment has been presented.
Thereby, the feasibility of the presented concepts has been demonstrated
through prototypes of tools for pattern and concrete solution authoring as
well as the aggregation of concrete solutions. Finally, various validation
scenarios across different domains were discussed to illustrate the applica-
bility of the approach. Besides the many examples in the different chapters
to illustrate the presented concepts, these validation scenarios underpin
the applicability of the approach in different domains.

As a conclusion, this work presents a domain-independent approach for
the utilization of concrete solutions and their aggregation. However, the
applicability of the approach depends on its implementation in tools tailored
to specific domains, as each domain has unique requirements for handling
patterns and representing concrete solutions. Such tools often need to be
integrated into existing toolchains to be effectively used. Therefore, this
work can be grasped as a general framework for the utilization of concrete
solutions and their aggregation that can be incorporated into tools and
procedure models across various domains.

Several interesting directions for future work can be identified as following.
Since this work bases on structural patterns, it would be interesting to
also incorporate behavioral patterns into the approach, such as presented
by Harzenetter et al. [HBF+20] for pattern-based deployment models. Then
design models could be extended to not just allow to specify the structure
of a solution but also to add patterns that adapt or configure other patterns.
To do so, further semantics on edges have to be introduced in design mod-
els, which allow to distinguish between aggregating patterns and adapting
patterns. Further, the concept of aggregation operators then also needs
to be adjusted to support the adaption of concrete solutions, accordingly.
Since the applicability of the approach to the domain of costumes in films
was discussed by means of abstract aggregation operators it would be
interesting to investigate their implementation and application in real film
productions. The general actions required for aggregating costumes, for
example, could be implemented as Human Tasks in workflows. This idea,

183

9 Conclusion and Outlook

combined with the fact that many costumes from films are already digitized
in the MUSE solution repository could enable to extend the approach to
also support the automated aggregation of costumes. Based on this, it
can be possible to implement aggregation operators in this domain that
enable to materialize the aggregation of costumes into workflows. Further,
it would be interesting to investigate the automated aggregation of overall
solution models. However, to find a suitable approach for this, it is neces-
sary to investigate the aggregation of overall solution models in specific
domains by defining solution models and aggregation operators represen-
tative for the domain. In this context, it would also have to be investigated
how much semantics must be contained in the solution models to enable
their automated aggregation. A good balance must be found between the
representation of details in solution models and the analysis of the artifacts
of concrete solutions by the aggregation programs. The difficulty is that if
too much semantics has to be present in the solution models, mapping this
to a full representation of implementations in the solution model easily
renders the approach practically unusable. Finally, although some of the
tools developed in the coarse of this work are used on a daily basis beyond
this thesis, they are still in an early stage of development. So, especially to
investigate the applicability and usability of the presented approaches in
further domains, it would be beneficial to increase the maturity of these
tools and to integrate them into further existing toolchains.

184

Bibliography

[AEK+07] W. Arnold, T. Eilam, M. Kalantar, A. V. Konstantinou,
A. A. Totok. “Pattern Based SOA Deployment”. In: Pro-
ceedings of the Fifth International Conference on Service-
Oriented Computing (ICSOC 2007). Springer, Sept. 2007,
pp. 1–12 (cit. on p. 99).

[AFL12] V. Andrikopoulos, C. Fehling, F. Leymann. “Designing for
CAP - The Effect of Design Decisions on the CAP Prop-
erties of Cloud-native Applications”. In: Proceedings of
the 2nd International Conference on Cloud Computing and
Service Science (CLOSER 2012). SciTePress, Apr. 2012,
pp. 365–374 (cit. on p. 99).

[AIS77] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University
Press, Aug. 1977 (cit. on pp. 13–15, 35–38, 58, 60, 66, 72,
79–81, 83, 85, 87, 88, 99, 112, 116).

[Alb20] J. Albano. Design Patterns in the Spring Framework. 2020.
url: https://www.baeldung.com/spring-framework-
design-patterns (cit. on p. 46).

[Ale64] C. Alexander. Notes on the Synthesis of Form. Oxford Uni-
versity Press, 1964 (cit. on pp. 34, 36, 41).

185

https://www.baeldung.com/spring-framework-design-patterns
https://www.baeldung.com/spring-framework-design-patterns

Bibliography

[Ale79] C. Alexander. The Timeless Way of Building. Oxford Uni-
versity Press, 1979 (cit. on pp. 13–16, 36–38, 40, 41, 59,
60, 83, 85, 87, 98, 116).

[Ama13] Amazon Webservice. AWS Cloud Design Patterns. 2013.
url: http://en.clouddesignpattern.org/index.php/
Main_Page (cit. on pp. 18, 49, 51, 68, 92–95).

[Ama23a] Amazon. Amazon Machine Images. 2023. url: https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.

html (cit. on pp. 132, 138).
[Ama23b] Amazon. AWS CloudFormation. 2023. url: https://aws.

amazon.com/de/cloudformation/ (cit. on pp. 131, 137).
[Ant96] D. L. G. Anthony. “Patterns for Classroom Education”. In:

Pattern Languages of Program Design 2. Addison-Wesley,
1996, pp. 391–406 (cit. on p. 14).

[Apa23] Apache Software Foundation. Apache ActiveMQ. 2023.
url: https://activemq.apache.org (cit. on p. 178).

[App97] B. Appleton. “Patterns and Software: Essential Concepts
and Terminology”. In: Object Magazine Online 3.5 (1997)
(cit. on pp. 13, 18).

[AZ05] P. Avgeriou, U. Zdun. “Architectural Patterns Revisited –
A Pattern Language”. In: In 10th European Conference on
Pattern Languages of Programs (EuroPlop 2005). UVK -
Universitaetsverlag Konstanz, July 2005 (cit. on pp. 59, 60,
99).

[Bar18] J. Barzen. “Wenn Kostüme sprechen - Musterforschung in
den Digital Humanities am Beispiel vestimentärer Kommu-
nikation im Film (in English: When Costumes Speak - Pat-
tern Research in the Digital Humanities Using the Example
of Vestimentary Communication in Films)”. Dissertation.
University of Cologne, 2018, p. 280 (cit. on pp. 14, 71, 76,
96, 106, 109, 111, 165, 173).

186

http://en.clouddesignpattern.org/index.php/Main_Page
http://en.clouddesignpattern.org/index.php/Main_Page
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/de/cloudformation/
https://aws.amazon.com/de/cloudformation/
https://activemq.apache.org

Bibliography

[BBB+23] F. Bühler, J. Barzen, M. Beisel, D. Georg, F. Leymann,
K. Wild. “Patterns for Quantum Software Development”.
In: Proceedings of the 15th International Conference on
Pervasive Patterns and Applications (PATTERNS 2023).
Xpert Publishing Services (XPS), 2023, pp. 30–39 (cit. on
pp. 14, 38).

[BBE+17] J. Barzen, U. Breitenbücher, L. Eusterbrock, M. Falkenthal,
F. Hentschel, F. Leymann. “The vision for MUSE4Music
– Applying the MUSE method in musicology”. In: Com-
puter Science - Research and Development 32.3-4 (2017),
pp. 323–328 (cit. on pp. 23, 30, 76, 106, 112).

[BBK+13a] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, J. Wet-
tinger. “Integrated Cloud Application Provisioning: Inter-
connecting Service-Centric and Script-Centric Manage-
ment Technologies”. In: On the Move to Meaningful In-
ternet Systems: OTM 2013 Conferences (CoopIS 2013).
Springer, Sept. 2013, pp. 130–148 (cit. on p. 118).

[BBK+13b] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, M. Wieland.
“Policy-Aware Provisioning of Cloud Applications”. In:
Proceedings of the Seventh International Conference on
Emerging Security Information, Systems and Technologies
(SECURWARE 2013). Xpert Publishing Services, Aug.
2013, pp. 86–95 (cit. on p. 136).

[BBKL13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann. “Pattern-
based Runtime Management of Composite Cloud Applica-
tions”. In: Proceedings of the 3rd International Conference
on Cloud Computing and Services Science (CLOSER 2013).
SciTePress, May 2013, pp. 475–482 (cit. on pp. 44, 99, 118,
170, 171).

[BBKL14] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann. “Automat-
ing Cloud Application Management Using Management
Idioms”. In: Proceedings of the Sixth International Confer-

187

Bibliography

ences on Pervasive Patterns and Applications (PATTERNS
2014). Xpert Publishing Services, May 2014, pp. 60–69
(cit. on p. 44).

[BBL+22] M. Beisel, J. Barzen, F. Leymann, F. Truger, B. Weder,
V. Yussupov. “Patterns for Quantum Error Handling”. In:
Proceedings of the 14th International Conference on Perva-
sive Patterns and Applications (PATTERNS 2022). Xpert
Publishing Services, 2022, pp. 22–30 (cit. on pp. 14, 38).

[BBL22] J. Barzen, F. Bühler, F. Leymann. “Der MUSE Datensatz
(in English: The MUSE Dataset)”. In: ZfdG - Zeitschrift für
digitale Geisteswissenschaften. Fabrikation von Erkenntnis:
Experimente in den Digital Humanities (Sept. 2022) (cit. on
p. 111).

[BCK03] L. Bass, P. Clements, R. Kazman. Software Architecture in
Practice. Addison-Wesley, Apr. 2003 (cit. on p. 56).

[BDH05] A. Barros, M. Dumas, A. H. M. ter Hofstede. “Service In-
teraction Patterns”. In: Proceedings of the 3rd International
Conference on Business Process Management (BPM 2005).
Springer, Sept. 2005, pp. 302–318 (cit. on p. 99).

[BDR21] O. Bibartiu, F. Dürr, K. Rothermel. “Clams: A Cloud Ap-
plication Modeling Solution”. In: 2021 IEEE International
Conference on Services Computing. 2021, pp. 1–10 (cit. on
p. 44).

[Bec07] K. Beck. Implementation Patterns. 1st ed. Addison-Wesley,
Nov. 2007 (cit. on p. 99).

[Bec96] K. Beck. SmallTalk Best Practice Patterns. Prentice Hall,
Oct. 1996 (cit. on p. 99).

[Bei17] M. Beisel. “Concept and Implementation of a Solution
Language and a Solution Repository for Cloud Computing
Patterns”. Bachelor’s Thesis. University of Stuttgart, 2017,
p. 45 (cit. on pp. 128, 139, 149, 152, 164, 166).

188

Bibliography

[BFYV96] F. Budinsky, M. Finnie, P. Yu, J. Vlissides. “Automatic
Code Generation from Design Patterns”. In: IBM Systems
Journal 35.2 (1996), pp. 151–171 (cit. on pp. 41, 42).

[BGd10] P. Bottoni, E. Guerra, J. de Lara. “A language-independent
and formal approach to pattern-based modelling with sup-
port for composition and analysis”. In: Information and Soft-
ware Technology 52.8 (2010), pp. 821–844 (cit. on p. 39).

[BHS07a] F. Buschmann, K. Henney, D. C. Schmidt. Pattern-Oriented
Software Architecture: A Pattern Language for Distributed
Computing. Vol. 4. Wiley & Sons, 2007, p. 636 (cit. on
p. 41).

[BHS07b] F. Buschmann, K. Henney, D. C. Schmidt. Pattern-Oriented
Software Architecture: On Patterns and Pattern Languages.
Vol. 5. Wiley & Sons, 2007, p. 490 (cit. on p. 41).

[Bib23] O. Bibartiu. “Architecture-based availability prediction and
service recommendation for cloud computing”. Disserta-
tion. University of Stuttgart, Faculty of Computer Science,
Electrical Engineering and Information Technology, 2023
(cit. on p. 44).

[BL15] J. Barzen, F. Leymann. “Costume Languages as Pattern
Languages”. In: Pursuit of Pattern Languages for Societal
Change (PURPLSOC) - The Workshop 2014: Designing
Lively Scenarios With the Pattern Approach of Christopher
Alexander. 2015, pp. 88–117 (cit. on pp. 76, 96, 97, 173).

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal. Pattern-Oriented Software Architecture, Volume 1:
A System of Patterns. Wiley, Oct. 1996 (cit. on pp. 14, 37,
41, 59, 99).

[Bos96] J. Bosch. “Design Patterns as Language Constructs”. In:
Journal of Object-Oriented Programming 11.2 (1996) (cit.
on pp. 40–42).

189

Bibliography

[Bos98a] J. Bosch. “Design Patterns & Frameworks: On the Issue
of Language Support”. In: Object-Oriented Technologys.
Springer, 1998, pp. 133–136 (cit. on p. 47).

[Bos98b] J. Bosch. “Specifying Frameworks and Design Patterns as
Architectural Fragments”. In: Proceedings of Technology
of Object-Oriented Languages. IEEE, 1998, pp. 268–277
(cit. on p. 47).

[Bre16] U. Breitenbücher. “Eine musterbasierte Methode zur Au-
tomatisierung des Anwendungsmanagements (in English:
A Pattern-based Method for Application Management Au-
tomation)”. Dissertation. University of Stuttgart, Faculty of
Computer Science, Electrical Engineering and Information
Technology, 2016 (cit. on pp. 44, 99, 118, 134, 147, 171).

[Bul02] A. Bulka. “Design Pattern Automation”. In: Proceedings
of the 3rd Asia-Pacific Conference on Pattern Languages of
Programs. Vol. 13. 2002 (cit. on p. 47).

[BZ11] I. Bayley, H. Zhu. “A Formal Language for the Expression
of Pattern Compositions”. In: International Journal On
Advances in Software 4.3&4 (2011), pp. 342–353 (cit. on
p. 39).

[CFSV01] L. P. Cordella, P. Foggia, C. Sansone, M. Vento. “An Im-
proved Algorithm for Matching Large Graphs”. In: Proceed-
ings of the 3rd International Workshop on Graph-Based
Representations in Pattern Recognition (IAPR-TC15). Jan.
2001, pp. 149–159 (cit. on pp. 155, 159).

[CKK11] P. Clements, R. Kazman, M. Klein. Evaluating software
architectures : methods and case studies. Addison-Wesley,
2011, p. 323 (cit. on p. 56).

[CM13] W. Cunningham, M. Mehaffy. “Wiki as Pattern Language”.
In: Proceedings of the 20th Conference on Pattern Lan-
guages of Programs. ACM, 2013, Artivel No. 32 (cit. on
p. 50).

190

Bibliography

[Cop96] J. O. Coplien. Software Patterns. SIGS Books & Multime-
dia, 1996 (cit. on pp. 37, 40, 108).

[Cun] Cunningham, Ward. Portland Pattern Repository. url: htt
p://c2.com/ppr/ (cit. on p. 51).

[Dev23a] Developers of the MUSE Server. Project of the MUSE
Server. 2023. url: https://github.com/Muster-Suchen-
und-Erkennen/muse-server (cit. on p. 165).

[Dev23b] Developers of the MUSE Tool. Project of the MUSE Docker
Compose Setup. 2023. url: https://github.com/Muster-
Suchen-und-Erkennen/muse-docker (cit. on p. 165).

[Dev23c] Developers of the MUSE UI. Project of the MUSE UI.
2023. url: https://github.com/Muster-Suchen-und-
Erkennen/muse-ui (cit. on p. 165).

[Dev23d] Developers of the Pattern Atlas. Docker Compose Setup to
run the Pattern Atlas. 2023. url: https://github.com/
PatternAtlas/pattern-atlas-docker (cit. on p. 165).

[Dev23e] Developers of the Pattern Atlas. Pattern Atlas API and
Backend. 2023. url: https://github.com/PatternAtlas/
pattern-atlas-api (cit. on p. 165).

[Dev23f] Developers of the Pattern Atlas. Pattern Atlas UI. 2023. url:
https://github.com/PatternAtlas/pattern-atlas-ui

(cit. on pp. 165, 166).
[DF06] A. Dearden, J. Finlay. “Pattern languages in HCI : a criti-

cal review”. In: Human Computer Interaction 21.1 (2006),
pp. 49–102 (cit. on p. 36).

[DF23] J. T. Duarte Maia, F. Figueiredo Correia. “Service Mesh
Patterns”. In: Proceedings of the 27th European Conference
on Pattern Languages of Programs. ACM, 2023 (cit. on
p. 38).

191

http://c2.com/ppr/
http://c2.com/ppr/
https://github.com/Muster-Suchen-und-Erkennen/muse-server
https://github.com/Muster-Suchen-und-Erkennen/muse-server
https://github.com/Muster-Suchen-und-Erkennen/muse-docker
https://github.com/Muster-Suchen-und-Erkennen/muse-docker
https://github.com/Muster-Suchen-und-Erkennen/muse-ui
https://github.com/Muster-Suchen-und-Erkennen/muse-ui
https://github.com/PatternAtlas/pattern-atlas-docker
https://github.com/PatternAtlas/pattern-atlas-docker
https://github.com/PatternAtlas/pattern-atlas-api
https://github.com/PatternAtlas/pattern-atlas-api
https://github.com/PatternAtlas/pattern-atlas-ui

Bibliography

[DY03] J. Dong, S. Yang. “Visualizing design patterns with a UML
profile”. In: IEEE Computer Society, 2003, pp. 123–136
(cit. on p. 103).

[Ebe14] H. Eberle. “Prozessbausteine (in English: Process Building
Blocks)”. Dissertation. University of Stuttgart, 2014 (cit. on
p. 123).

[EBF+17] C. Endres, U. Breitenbücher, M. Falkenthal, O. Kopp,
F. Leymann, J. Wettinger. “Declarative vs. Imperative: Two
Modeling Patterns for the Automated Deployment of Ap-
plications”. In: Proceedings of the Ninth International Con-
ference on Pervasive Patterns and Applications. Xpert Pub-
lishing Services, Feb. 2017, pp. 22–27 (cit. on pp. 29, 99).

[Fal17a] G. Falazi. “A Concept for Describing Concrete Solutions to
Support their Automated Selection from Patterns”. Master’s
Thesis. University of Stuttgart, 2017, p. 103 (cit. on pp. 123,
149, 158, 166).

[Fal17b] G. Falazi. Solution Selection Prototype. 2017. url: https:
//github.com/PatternAtlas/solution-selection (cit. on
p. 166).

[Fau16] J. Fauser. “Pattern Refinement in the domain of Cloud Com-
puting”. Master’s Thesis. University of Applied Sciences
Reutlingen, 2016, p. 141 (cit. on p. 93).

[FBB+14a] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling,
F. Leymann. “Efficient Pattern Application: Validating
the Concept of Solution Implementations in Different Do-
mains”. In: International Journal On Advances in Software
7.3&4 (Dec. 2014). IARIA, pp. 710–726 (cit. on pp. 16, 23,
24, 28, 41, 105, 128, 170–172, 179).

[FBB+14b] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling,
F. Leymann. “From Pattern Languages to Solution Imple-
mentations”. In: Proceedings of the Sixth International Con-

192

https://github.com/PatternAtlas/solution-selection
https://github.com/PatternAtlas/solution-selection

Bibliography

ferences on Pervasive Patterns and Applications. Xpert Pub-
lishing Services, May 2014, pp. 12–21 (cit. on pp. 16, 23,
24, 28, 41, 105, 128, 172, 179).

[FBB+15] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling,
F. Leymann, A. Hadjakos, F. Hentschel, H. Schulze. “Lever-
aging Pattern Application via Pattern Refinement”. In: Pro-
ceedings of the International Conference on Pursuit of Pat-
tern Languages for Societal Change. epubli, June 2015,
pp. 38–61 (cit. on pp. 16, 22, 28, 69, 79, 80, 89, 95–97).

[FBB+17] M. Falkenthal, J. Barzen, U. Breitenbücher, S. Brügmann,
D. Joos, F. Leymann, M. Wurster. “Pattern research in the
digital humanities: how data mining techniques support
the identification of costume patterns”. In: SICS Software-
Intensive Cyber-Physical Systems 32.3-4 (2017). Springer,
pp. 311–321 (cit. on pp. 23, 28, 96, 106).

[FBBL14] C. Fehling, J. Barzen, U. Breitenbücher, F. Leymann. “A
Process for Pattern Identification, Authoring, and Applica-
tion”. In: Proceedings of the 19th European Conference on
Pattern Languages of Programs (EuroPLoP 2014). ACM,
Jan. 2014 (cit. on pp. 40, 88).

[FBBL17] M. Falkenthal, J. Barzen, U. Breitenbücher, F. Leymann.
“Solution Languages : Easing Pattern Composition in Dif-
ferent Domains”. In: International Journal On Advances
in Software 10.3&4 (2017). IARIA, pp. 263–274 (cit. on
pp. 24, 28, 128, 138).

[FBBL19] M. Falkenthal, U. Breitenbücher, J. Barzen, F. Leymann.
“On the Algebraic Properties of Concrete Solution Aggrega-
tion”. In: SICS Software-Intensive Cyber-Physical Systems
(2019). Springer (cit. on pp. 28, 128, 169, 171, 174, 175).

[FBD+15] M. Falkenthal, J. Barzen, S. Dörner, V. Elkind, J. Fauser,
F. Leymann, T. Strehl. “Datenanalyse in den Digital Human-
ities - Eine Annäherung an Kostümmuster mittels OLAP

193

Bibliography

Cubes (in English: Data Analysis in the Digital Humanities
- An Approach to Costume Patterns Using OLAP Cubes)”.
In: Datenbanksysteme für Business, Technologie und Web
(BTW), 16. Fachtagung des GI-Fachbereichs Datenbanken
und Informationssysteme (DBIS), 02. - 06.3.2015 in Ham-
burg, Germany.Proceedings. Lecture Notesin Informatics
(LNI). Gesellschaft für Informatik e.V. (GI), 2015, pp. 1–4
(cit. on pp. 106, 113).

[FBFL15] C. Fehling, J. Barzen, M. Falkenthal, F. Leymann. “Pattern-
Pedia – Collaborative Pattern Identification and Authoring”.
In: Proceedings of Pursuit of Pattern Languages for Societal
Change. The Workshop 2014. epubli, Aug. 2015, pp. 252–
284 (cit. on pp. 29, 50, 69, 70, 76, 107, 110, 113, 114, 164,
165).

[FBL18] M. Falkenthal, U. Breitenbücher, F. Leymann. “The Nature
of Pattern Languages”. In: Pursuit of Pattern Languages for
Societal Change. Edition Donau-Universität Krems, 2018,
pp. 130–151 (cit. on pp. 22, 29, 79, 80).

[Feh17] Fehling, Christoph. Cloud Computing Patterns. 2017. url:
http://www.cloudcomputingpatterns.org (cit. on p. 51).

[FEL+12] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin,
D. Schumm. “Capturing Cloud Computing Knowledge and
Experience in Patterns”. In: Proceedings of the 5th IEEE
International Conference on Cloud Computing (CLOUD
2012). IEEE, June 2012, pp. 726–733 (cit. on p. 58).

[FHM+15] H. Finidori, T. Henfrey, N. McLaren, K. Laitner, S. Borgh-
ini, V. Puig, T. Iba, M. Pruvostcbeaurain, H. Leitner,
R. Reiners, F. Leymann, M. Falkenthal. “The PLAST
Project – Pattern Languages for Systemic Transformations”.
In: International Journal of the Spanda Foundation VI.1
(2015). Spanda Foundation, pp. 205–218 (cit. on pp. 14,
29).

194

http://www.cloudcomputingpatterns.org

Bibliography

[FJZ+12] M. Falkenthal, D. Jugel, A. Zimmermann, R. Reiners,
W. Reimann, M. Pretz. “Maturity Assessments of Service-
oriented Enterprise Architectures with Iterative Pattern Re-
finement”. In: Lecture Notes in Informatics - Informatik
2012. 2012, pp. 1095–1101 (cit. on p. 107).

[FL17] M. Falkenthal, F. Leymann. “Easing Pattern Application
by Means of Solution Languages”. In: Proceedings of the
Ninth International Conferences on Pervasive Patterns and
Applications. Xpert Publishing Services, 2017, pp. 58–64
(cit. on pp. 24, 28, 128).

[FLR+13] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, S. Verclas.
“Service Migration Patterns - Decision Support and Best
Practices for the Migration of Existing Service-based Appli-
cations to Cloud Environments”. In: Proceedings of the 6th

IEEE International Conference on Service Oriented Com-
puting and Applications (SOCA 2013). IEEE, Dec. 2013,
pp. 9–16 (cit. on p. 44).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter.
Cloud Computing Patterns: Fundamentals to Design, Build,
and Manage Cloud Applications. Springer, Jan. 2014, p. 367
(cit. on pp. 14, 18, 38, 41, 49, 59, 66–68, 80, 87, 89, 92–95,
98, 99, 131, 137, 166–171, 177, 178).

[Fow03] M. Fowler. Catalog of Patterns of Enterprise Application
Architecture. 2003. url: https : / / martinfowler . com /

eaaCatalog/ (cit. on p. 51).
[FR21] P. Fettke, W. Reisig. “Modelling Service-Oriented Systems

and Cloud Services with Heraklit”. In: Advances in Service-
Oriented and Cloud Computing. Springer, 2021, pp. 77–89
(cit. on p. 134).

[FR23] P. Fettke, W. Reisig. Handbook of Heraklit. 2023. url:
https://heraklit.dfki.de/assets/documents/HERAKLIT_

Handbuch_Teil_I_EN.pdf (cit. on p. 134).

195

https://martinfowler.com/eaaCatalog/
https://martinfowler.com/eaaCatalog/
https://heraklit.dfki.de/assets/documents/HERAKLIT_Handbuch_Teil_I_EN.pdf
https://heraklit.dfki.de/assets/documents/HERAKLIT_Handbuch_Teil_I_EN.pdf

Bibliography

[FSS+13] T. Furukawazono, I. Studies, S. Seshimo, I. Studies, D. Mu-
ramatsu, T. Iba. “Survival Language : A Pattern Language
for Surviving Earthquakes”. In: Proceedings of the 20th

Conference on Pattern Languages of Programs. ACM, 2013,
Article No. 30 (cit. on p. 14).

[GBB+23] D. Georg, J. Barzen, M. Beisel, F. Leymann, J. Obst, D. Vi-
etz, B. Weder, V. Yussupov. “Execution Patterns for Quan-
tum Applications”. In: Proceedings of the 18th International
Conference on Software Technologies. SciTePress, 2023,
pp. 258–268 (cit. on p. 38).

[GHJV94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, Oct. 1994 (cit. on pp. 37, 40–43, 48, 80,
88, 89, 110).

[Goo23] Google. Angular Web Framework. 2023. url: https://
angular.io (cit. on p. 164).

[Gra20] M. Graf. “Automatisierte Aggregation von Musterimple-
mentierungen (in English: Automated Aggregation of Pat-
tern Implementations)”. Bachelor’s Thesis. University of
Stuttgart, 2020, p. 83 (cit. on pp. 166, 167, 176–178).

[Gri11] P. Grimm. “Metamodell und Plattform für Mustersprachen
und Musterkataloge (in English: Metamodel and Platform
for Pattern Languages and Pattern Catalogs)”. Diploma
Thesis. University of Stuttgart, 2011, p. 96 (cit. on p. 103).

[HBF+18a] L. Harzenetter, U. Breitenbücher, M. Falkenthal, J. Guth,
C. Krieger, F. Leymann. “Pattern-based Deployment Mod-
els and Their Automatic Execution”. In: 11th IEEE/ACM
International Conference on Utility and Cloud Computing.
IEEE, 2018, pp. 41–52 (cit. on pp. 30, 44, 45).

196

https://angular.io
https://angular.io

Bibliography

[HBF+18b] L. Harzenetter, U. Breitenbücher, M. Falkenthal, J. Guth,
C. Krieger, F. Leymann. “Pattern-based Deployment Mod-
els and Their Automatic Execution”. In: Proccedings of the
11th IEEE/ACM International Conference on Utility and
Cloud Computing (UCC 2018). IEEE Computer Society,
Dec. 2018, pp. 41–52 (cit. on pp. 103, 147).

[HBF+20] L. Harzenetter, U. Breitenbücher, M. Falkenthal, J. Guth,
F. Leymann. “Pattern-based Deployment Models Revisited:
Automated Pattern-driven Deployment Configuration”. In:
Proceedings of the Twelfth International Conference on
Pervasive Patterns and Applications (PATTERNS 2020).
Xpert Publishing Services, Oct. 2020, pp. 40–49 (cit. on
pp. 45, 102, 103, 147, 183).

[HBF+21] L. Harzenetter, U. Breitenbücher, G. Falazi, F. Leymann,
A. Wersching. “Automated Detection of Design Patterns in
Declarative Deployment Models”. In: Proceedings of the
14th IEEE/ACM International Conference on Utility Cloud
Computing (UCC 2021). ACM, 2021, pp. 36–45 (cit. on
p. 44).

[Hee14] U. van Heesch. Open Pattern Repository. May 2014. url:
https://code.google.com/p/openpatternrepository/

(cit. on p. 50).
[Hen01] K. Henney. “C ++ Patterns - Executing Around Sequences”.

In: Proceedings of the Fifth European Conference on Pat-
tern Languages of Programming. Universitätsverlag Kon-
stanz, 2001 (cit. on p. 41).

[Hoh17] Hohpe, Gregor and Woolf, Bobby. Enterprise Integration
Patterns. 2017. url: https://www.enterpriseintegration
patterns.com/patterns/messaging (cit. on p. 51).

197

https://code.google.com/p/openpatternrepository/
https://www.enterpriseintegrationpatterns.com/patterns/messaging
https://www.enterpriseintegrationpatterns.com/patterns/messaging

Bibliography

[HSB+14] A. Homer, J. Shar, L. Brader, M. Narumoto, T. Swanson.
Cloud Design Patterns: Prescriptive Architecture Guidance
For Cloud Applications. Microsoft, 2014, p. 232 (cit. on
pp. 18, 92).

[HW04] G. Hohpe, B. Woolf. Enterprise Integration Patterns: De-
signing, Building, and Deploying Messaging Solutions.
Addison-Wesley, 2004 (cit. on pp. 14, 41, 45–47, 49, 59,
66, 87, 90, 99, 109, 167, 177).

[IM10] T. Iba, T. Miyake. “Learning patterns: a pattern language
for creative learners II”. In: Proceedings of the 1st Asian
Conference on Pattern Languages of Programs (AsianPLoP
2010). ACM, 2010, pp. I-41–I-58 (cit. on p. 14).

[JM22] D. Jaschke, S. Montangero. Is quantum computing green?
An estimate for an energy-efficiency quantum advantage.
2022. url: https://arxiv.org/abs/2205.12092 (cit. on
p. 90).

[KF14] D. Krleža, K. Fertalj. “A method for situational and guided
information system design”. In: Proceedings of the Sixth
International Conferences on Pervasive Patterns and Appli-
cations. Xpert Publishing Services, 2014, pp. 70–78 (cit. on
p. 43).

[Koh10] C. Kohls. “The structure of patterns”. In: Proceedings of
the 17th Conference on Pattern Languages of Programs.
New York: ACM, 2010 (cit. on pp. 13, 88).

[Koh11] C. Kohls. “The Structure of Patterns: Part II - Qualities”. In:
Proceedings of the 18th Conference on Pattern Languages
of Programs. New York: ACM, 2011 (cit. on p. 88).

[Koh12] C. Kohls. “The path to patterns - introducing the path
metaphor”. In: Proceedings of the 17th European Confer-
ence on Pattern Languages of Programs. ACM, 2012 (cit.
on pp. 40, 88).

198

https://arxiv.org/abs/2205.12092

Bibliography

[Kri18a] C. Krieger. Repository of the Linked Open Patterns Client.
2018. url: https://github.com/PatternAtlas/linkedOpen
PatternClient (cit. on pp. 139, 166).

[Kri18b] C. Krieger. Repository of the SPARQL Service. 2018. url:
https://github.com/PatternAtlas/sparqlService (cit. on
p. 166).

[Kri18c] C. Krieger. “Semantic Querying of Distributed Pattern and
Solution”. Master’s Thesis. University of Stuttgart, 2018,
p. 75 (cit. on pp. 80, 105, 113, 114, 128, 149, 152, 164,
166).

[KU09] C. Kohls, J.-g. Uttecht. “Lessons learnt in mining and writ-
ing design patterns for educational interactive graphics”. In:
Computers in Human Behavior 25.5 (2009), pp. 1040–1055
(cit. on pp. 40, 108).

[LB21] F. Leymann, J. Barzen. “Pattern Atlas”. In: Next-Gen Dig-
ital Services. A Retrospective and Roadmap for Service
Computing of the Future. Ed. by M. Aiello, A. Bouguet-
taya, D. Tamburri, W.-J. van den Heuvel. Springer, 2021,
pp. 67–76 (cit. on pp. 50, 53, 150, 165).

[LBF+20] F. Leymann, J. Barzen, M. Falkenthal, D. Vietz, B. Weder,
K. Wild. “Quantum in the Cloud : Application Potentials
and Research Opportunities”. In: Proceedings of the 10th In-
ternational Conference on Cloud Computing and Services
Science. SciTePress, 2020, pp. 9–24 (cit. on p. 72).

[Ley19] F. Leymann. “Towards a Pattern Language for Quantum
Algorithms”. In: Quantum Technology and Optimization
Problems. Vol. 11413. Lecture Notes in Computer Science
(LNCS). Springer, 2019, pp. 218–230 (cit. on p. 164).

[Ma13] Z. Ma. “Process fragments: enhancing reuse of process
logic in BPEL process models”. Dissertation. University of
Stuttgart, 2013 (cit. on p. 123).

199

https://github.com/PatternAtlas/linkedOpenPatternClient
https://github.com/PatternAtlas/linkedOpenPatternClient
https://github.com/PatternAtlas/sparqlService

Bibliography

[MD97] G. Meszaros, J. Doble. “Pattern Languages of Program
Design 3”. In: Addison-Wesley, 1997. Chap. A Pattern Lan-
guage for Pattern Writing, pp. 529–574 (cit. on pp. 15, 40,
41, 58, 68, 88).

[MDM+18] H. Marouane, C. Duvallet, A. Makni, R. Bouaziz, B. Sadeg.
“An UML profile for representing real-time design patterns”.
In: Journal of King Saud University - Computer and Infor-
mation Sciences 30.4 (2018), pp. 478–497 (cit. on p. 103).

[Mic14] Microsoft. Cloud Design Patterns: Prescriptive Architec-
ture Guidance for Cloud Applications. 2014. url: https:
//msdn.microsoft.com/en-us/library/dn568099.aspx

(cit. on p. 92).
[MT14] A. G. Mirnig, M. Tscheligi. “Building a General Pattern

Framework via Set Theory : Towards a Universal Pat-
tern Approach”. In: Proceedings of the Sixth International
Conferences on Pervasive Patterns and Applications (PAT-
TERNS). Xpert Publishing Services, 2014, pp. 8–11 (cit. on
p. 39).

[NBL14] A. Nowak, U. Breitenbücher, F. Leymann. “Automating
Green Patterns to Compensate CO2 Emissions of Cloud-
based Business Processes”. In: Proceedings of the Eighth
International Conference on Advanced Engineering Com-
puting and Applications in Sciences (ADVCOMP 2014).
Xpert Publishing Services, Aug. 2014, pp. 132–139 (cit. on
p. 90).

[NL13] A. Nowak, F. Leymann. “Green Business Process Patterns
- Part II”. In: Proceedings of the 6th IEEE International
Conference on Service Oriented Computing & Applications
(SOCA 2013). IEEE, Dec. 2013, pp. 168–173 (cit. on p. 90).

200

https://msdn.microsoft.com/en-us/library/dn568099.aspx
https://msdn.microsoft.com/en-us/library/dn568099.aspx

Bibliography

[NLS+11] A. Nowak, F. Leymann, D. Schleicher, D. Schumm, S. Wag-
ner. “Green Business Process Patterns”. In: Proceedings
of the 18th Conference on Pattern Languages of Programs
(PLoP 2011). ACM, Oct. 2011 (cit. on pp. 90, 99).

[Now14] A. Nowak. “Green Business Process Management: Meth-
ode und Realisierung (in English: Green Business Process
Management: Method and Implementation)”. Dissertation.
University of Stuttgart, Faculty of Computer Science, Elec-
trical Engineering and Information Technology, 2014 (cit.
on p. 90).

[OAS13] OASIS. Topology and Orchestration Specification for Cloud
Applications (TOSCA) Version 1.0. Organization for the
Advancement of Structured Information Standards (OASIS).
2013 (cit. on pp. 102, 117, 168).

[Obj14] Object Management Group. Object Constraint Language
Specification 2.4. 2014. url: https://www.omg.org/spec/
OCL/2.4/PDF (cit. on p. 103).

[OMG07] OMG. OMG Unified Modeling Language (UML). Object
Management Group (OMG). 2007 (cit. on p. 103).

[Ope22] Open Group. ArchiMate 3.2 Specification. 2022. url: htt
ps://publications.opengroup.org/archimate-library/

archimate-standards/c226?_ga=2.138430195.1181970343.

1667419594-1657458596.1667419594 (cit. on p. 102).
[PHPR09] L. Pavlič, M. Heričko, V. Podgorelec, I. Rozman. “Im-

proving Design Pattern Adoption with an Ontology-Based
Repository”. In: Informatica 33 (2009), pp. 189–197 (cit.
on p. 50).

[Pla23a] PlanQK Project Consortium. PlanQK Pattern Repository.
2023. url: https://patterns.platform.planqk.de (cit. on
p. 164).

[Pla23b] PlanQK Project Consortium. PlanQK Platform. 2023. url:
https://platform.planqk.de (cit. on p. 164).

201

https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://publications.opengroup.org/archimate-library/archimate-standards/c226?_ga=2.138430195.1181970343.1667419594-1657458596.1667419594
https://publications.opengroup.org/archimate-library/archimate-standards/c226?_ga=2.138430195.1181970343.1667419594-1657458596.1667419594
https://publications.opengroup.org/archimate-library/archimate-standards/c226?_ga=2.138430195.1181970343.1667419594-1657458596.1667419594
https://publications.opengroup.org/archimate-library/archimate-standards/c226?_ga=2.138430195.1181970343.1667419594-1657458596.1667419594
https://patterns.platform.planqk.de
https://platform.planqk.de

Bibliography

[Pla23c] PlanQK Project Consortium. The PlanQK Research Project.
2023. url: https://planqk.de (cit. on p. 164).

[Pra09] D. R. Prasanna. Dependency Injection. Manning Publica-
tions, 2009, p. 330 (cit. on p. 46).

[RBF+16] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann,
A. Riegg. “Internet of Things Patterns”. In: Proceedings
of the 21th European Conference on Pattern Languages of
Programs. ACM, 2016 (cit. on pp. 14, 29, 38, 41, 49, 99).

[RBF+17a] L. Reinfurt, U. Breitenbücher, M. Falkenthal, P. Fremantle,
F. Leymann. “Internet of Things Security Patterns”. In:
Proceedings of the 24th Conference on Pattern Languages
of Programs. ACM, 2017 (cit. on pp. 14, 30).

[RBF+17b] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann,
A. Riegg. “Internet of Things Patterns for Device Boot-
strapping and Registration”. In: Proceedings of the 22nd

European Conference on Pattern Languages of Programs.
ACM, 2017 (cit. on pp. 14, 30).

[RBF+17c] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann,
A. Riegg. “Internet of Things Patterns for Devices”. In: Pro-
ceedings of the Ninth International Conferences on Perva-
sive Patterns and Applications. Xpert Publishing Services,
2017, pp. 117–126 (cit. on pp. 14, 29, 99).

[RBF+17d] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann,
A. Riegg. “Internet of Things Patterns for Devices: Power-
ing, Operating, and Sensing”. In: International Journal on
Advances in Internet Technology (2017). IARIA, pp. 106–
123 (cit. on p. 30).

[RBF+19] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann,
A. Riegg. “Internet of Things Patterns for Communication
and Management”. In: Transactions on Pattern Languages
of Programming IV (2019) (cit. on pp. 14, 30).

202

https://planqk.de

Bibliography

[Ree03] T. Reenskaug. The Model-View-Controller (MVC) Its Past
and Present. 2003. url: http://heim.ifi.uio.no/~trygve
r/2003/javazone-jaoo/HM1A93.html (cit. on p. 109).

[Rei12] R. Reiners. “A Pattern Evolution Process - From Ideas to
Patterns”. In: Informatiktage 2012. Vol. S-11. LNI. GI, Mar.
2012, pp. 115–118 (cit. on p. 106).

[Rei13] R. Reiners. “An Evolving Pattern Library for Collaborative
Project Documentation”. Dissertation. RWTH Aachen Uni-
versity, 2013 (cit. on pp. 40, 48, 50, 60, 69, 72, 80, 99, 106,
107).

[Rei17] Reinfurt, Lukas et al. Internet of Things Patterns. 2017.
url: http://www.internetofthingspatterns.com (cit. on
p. 51).

[Rei18] W. Reisig. “Associative composition of components with
double-sided interfaces”. In: Acta Informatica (56 Oct.
2018) (cit. on p. 118).

[RFBL17] L. Reinfurt, M. Falkenthal, U. Breitenbücher, F. Leymann.
“Applying IoT Patterns to Smart Factory Systems”. In: Pro-
ceedings of the 11th Advanced Summer School on Service
Oriented Computing. IBM Research Division, 2017, pp. 1–
10 (cit. on pp. 14, 30).

[RFJZ13] R. Reiners, M. Falkenthal, D. Jugel, A. Zimmermann. “Re-
quirements for a Collaborative Formulation Process of Evo-
lutionary Patterns”. In: Proceedings of the 18th European
Conference on Pattern Languages of Programs EuroPlop.
ACM, 2013, Article No. 16 (cit. on p. 29).

[RFL20] L. Reinfurt, M. Falkenthal, F. Leymann. “Where to Begin
- On Pattern Language Entry Points”. In: SICS Software-
Intensive Cyber-Physical Systems 35 (2020). Springer (cit.
on p. 30).

[Ric18] C. Richardson. Microservices Patterns. Manning Publica-
tions, 2018, p. 490 (cit. on pp. 38, 46, 49, 99).

203

http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/HM1A93.html
http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/HM1A93.html
http://www.internetofthingspatterns.com

Bibliography

[Ric20] C. Richardson. Design Patterns in the Spring Framework.
2020. url: https://microservices.io (cit. on pp. 51, 99).

[RJ07] E. Razina, D. Janzen. “Effects of dependency injection
on maintainability”. In: Proceedings of the 11th Interna-
tional Conference of Software Engineering and Applica-
tions. ACTA Press, 2007, pp. 7–12 (cit. on p. 46).

[RS09] I. Reinhartz-Berger, A. Sturm. “Utilizing domain models
for application design and validation”. In: Information and
Software Technology 51.8 (2009), pp. 1275–1289 (cit. on
p. 103).

[SBF+19] K. Saatkamp, U. Breitenbücher, M. Falkenthal, L. Harzenet-
ter, F. Leymann. “An Approach to Determine & Apply
Solutions to Solve Detected Problems in Restructured De-
ployment Models using First-order Logic”. In: Proceedings
of the 9th International Conference on Cloud Computing
and Services Science. SciTePress, 2019, pp. 495–506 (cit.
on p. 30).

[SBK+18] K. Saatkamp, U. Breitenbücher, K. Képes, F. Leymann,
M. Zimmermann. “OpenTOSCA Injector: Vertical and Hor-
izontal Topology Model Injection”. In: Service-Oriented
Computing – ICSOC 2017 Workshops. Vol. 10797. Lecture
Notes in Computer Science (LNCS). Springer International
Publishing, Jan. 2018, pp. 379–383 (cit. on p. 170).

[SBLE12] D. Schumm, J. Barzen, F. Leymann, L. Ellrich. “A Pat-
tern Language for Costumes in Films”. In: Proceedings
of the 17th European Conference on Pattern Languages of
Programs. Article no. 7. 2012 (cit. on pp. 66, 96, 99, 173).

[SC16] A. L. Santos, D. Coelho. “Java Extensions for Design Pat-
tern Instantiation”. In: Proceedings of the International
Conference on Software Reuse. IEEE, 2016, pp. 284–299
(cit. on p. 43).

204

https://microservices.io

Bibliography

[Sca] Scaled Agile. SAFe - Scaled Agile Framework. url: https:
//www.scaledagileframework.com (cit. on p. 77).

[Sch10] T. Scheibler. “Ausführbare Integrationsmuster (in English:
Executable Integration Patterns)”. Dissertation. University
of Stuttgart, Faculty of Computer Science, Electrical Engi-
neering and Information Technology, 2010 (cit. on p. 45).

[Sch97] K. Schwaber. “SCRUM Development Process”. In: Busi-
ness Object Design and Implementation. Springer London,
1997, pp. 117–134 (cit. on p. 77).

[Sko17] M. Skouradaki. “Workload mix definition for benchmarking
BPMN 2.0 Workflow Management Systems”. Dissertation.
University of Stuttgart, 2017 (cit. on p. 123).

[Sou95] J. Soukup. “Implementing Patterns”. In: Pattern Languages
of Program Design. ACM Press, 1995, pp. 395–412 (cit. on
p. 41).

[Str15] T. Strehl. “Identifikation von Musterindikatoren mit Metho-
den des visuellen Data Mining für multivariate kategoriale
Daten (in English: Identification of pattern indicators with
methods of visual data mining for multivariate categorical
data)”. Master’s Thesis. University of Applied Sciences
Reutlingen, 2015, p. 116 (cit. on pp. 106, 113).

[SU23] M. Syed, Z. Ul Abadin. “A Pattern for Proof of Stake Con-
sensus Algorithm in Blockchain”. In: Proceedings of the
27th European Conference on Pattern Languages of Pro-
grams. ACM, 2023 (cit. on p. 38).

[VMW23] VMWare. The Spring Boot Project. 2023. url: https :

//spring.io/projects/spring-boot (cit. on p. 164).
[W3C23] W3C. SPARQL 1.1 Overview. 2023. url: https://www.w3.

org/TR/sparql11-overview/ (cit. on p. 166).

205

https://www.scaledagileframework.com
https://www.scaledagileframework.com
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/

Bibliography

[WBB+20] M. Weigold, J. Barzen, U. Breitenbücher, M. Falkenthal,
F. Leymann, K. Wild. “Pattern Views: Concept and Tooling
for Interconnected Pattern Languages”. In: Communica-
tions in Computer and Information Science 1310 (2020),
pp. 86–103 (cit. on pp. 22, 31, 51, 150).

[WBFL17] J. Wettinger, U. Breitenbücher, M. Falkenthal, F. Leymann.
“Collaborative gathering and continuous delivery of De-
vOps solutions through repositories”. In: Computer Science
- Research and Development 32.3-4 (2017) (cit. on p. 76).

[WBLS20] M. Weigold, J. Barzen, F. Leymann, M. Salm. “Data Encod-
ing Patterns For Quantum Algorithms”. In: Proceedings
of the 27th Conference on Pattern Languages of Programs
(PLoP ’20). ACM, 2020, pp. 1–11 (cit. on pp. 14, 38).

[WBLS21] M. Weigold, J. Barzen, F. Leymann, M. Salm. “Encoding
patterns for quantum algorithms”. In: IET QuantumCom-
munication 2.4 (2021), pp. 141–152 (cit. on pp. 14, 38).

[WBLV21] M. Weigold, J. Barzen, F. Leymann, D. Vietz. “Patterns
For Hybrid Quantum Algorithms”. In: Proceedings of the
15th Symposium and Summer School on Service-Oriented
Computing (SummerSOC 2021). Springer, 2021, pp. 34–51
(cit. on pp. 38, 99).

[Wei19] M. Weigold. “Use of standards and technologies of the
Semantic Web for the representation of pattern languages”.
Master’s Thesis. University of Stuttgart, 2019, p. 67 (cit. on
p. 164).

[Wel94] D. S. Weld. “An Introduction to Least Commitment Plan-
ning”. In: AI Magazine 15.4 (1994), pp. 27–61 (cit. on
p. 117).

[Wet17] J. Wettinger. “Gathering Solutions and Providing APIs for
their Orchestration to Implement Continuous Software De-
livery”. Dissertation. University of Stuttgart, 2017, p. 239
(cit. on pp. 72, 76).

206

Bibliography

[WF12] T. Wellhausen, A. Fiesser. “How to Write a Pattern?: A
Rough Guide for First-time Pattern Authors”. In: Proceed-
ings of the 16th European Conference on Pattern Languages
of Programs (EuroPLoP 2011). ACM, July 2012 (cit. on
p. 68).

[Wil22] K. Wild. “Eine Methode zum Verteilen, Adaptieren und De-
ployment partnerübergreifender Anwendungen (in English:
A method for distributing, adapting and deploying cross-
partner applications)”. Dissertation. University of Stuttgart,
Faculty of Computer Science, Electrical Engineering and
Information Technology, 2022 (cit. on p. 170).

[WKWV20] S. Waseeb, W. S. Khail, H. G. Wahaj, V. Vranić. “Extracting
Relations Between Organizational Patterns Using Associa-
tion Mining”. In: Proceedings of the 25th European Con-
ference on Pattern Languages of Programs. ACM, 2020
(cit. on p. 39).

[WV03] M. V. Welie, G. C. V. D. Veer. “Pattern Languages in Inter-
action Design : Structure and Organization”. In: Human-
Computer Interaction (INTERACT) ’03: IFIP TC13 Inter-
national Conference on Human-Computer Interaction. IOS
Press, 2003, pp. 527–534 (cit. on p. 49).

[WV23] S. Waseeb, V. Vranić. “Toward Organizational Pattern On-
tology”. In: Proceedings of the 27th European Conference
on Pattern Languages of Programs. ACM, 2023 (cit. on
p. 40).

[YBB+22] V. Yussupov, U. Breitenbücher, A. Brogi, L. Harzenetter,
F. Leymann, J. Soldani. “Serverless or Serverful? A Pattern-
Based Approach for Exploring Hosting Alternatives”. In:
Service-Oriented Computing. Springer, 2022, pp. 45–67
(cit. on p. 38).

207

Bibliography

[ZAHD08] U. Zdun, P. Avgeriou, C. Hentrich, S. Dustdar. “Architect-
ing as Decision Making with Patterns and Primitives”. In:
Proceedings of the 3rd International Workshop on Shar-
ing and Reusing Architectural Knowledge (SHARK 2008).
ACM, May 2008, pp. 11–18 (cit. on p. 92).

[ZB15] H. Zhu, I. Bayley. “On the Composability of Design Pat-
terns”. In: IEEE Transactions on Software Engineering 41
(2015), pp. 1138–1152 (cit. on p. 39).

[Zdu07] U. Zdun. “Systematic Pattern Selection Using Pattern Lan-
guage Grammars and Design Space Analysis”. In: Software:
Practice & Experience 37.9 (July 2007), pp. 983–1016 (cit.
on pp. 16, 80, 120).

[ZHD07] U. Zdun, C. Hentrich, S. Dustdar. “Modeling process-driven
and service-oriented architectures using patterns and pat-
tern primitives”. In: ACM Transactions on the Web 1.3 (Sept.
2007), 14–es (cit. on p. 80).

[Zhu14] H. Zhu. “Towards a General Theory of Patterns”. In: Cy-
berpatterns: Unifying Design Patterns with Security and
Attack Patterns. Ed. by C. Blackwell, H. Zhu. Springer,
2014, pp. 57–69 (cit. on p. 39).

[Zim95] W. Zimmer. “Relationships between Design Patterns”. In:
Pattern Languages of Program Design. Addison-Wesley,
1995, pp. 345–364 (cit. on p. 80).

[ZKV04] U. Zdun, M. Kircher, M. Völter. “Remoting patterns: Design
reuse of distributed object middleware solutions”. In: IEEE
Internet Computing 8.6 (2004), pp. 60–66 (cit. on p. 84).

All links were last accessed on 2023-06-13.

208

List of Figures

1.1 Current state of the art of pattern application 15
1.2 Vision of pattern application 17
1.3 Overview of the research contributions 27

3.1 Conceptual overview of the EINSTEIN-Method 63
3.2 A selection of patterns is translated into a design model . 65

4.1 Excerpt of Remoting Patterns 84
4.2 The abstraction gap . 90
4.3 Closing the abstraction gap 91
4.4 Pattern refinement . 94
4.5 Refinement of the Cloud Computing Patterns 95
4.6 Refinement of Costume Patterns 97
4.7 Pattern languages and design models 100

5.1 Connecting patterns and concrete solutions 108
5.2 Essential invariants of concrete solutions 112
5.3 Selection criteria of concrete solutions 115
5.4 Filtering of concrete solutions with selection criteria . . 116
5.5 Requirements and capabilities of concrete solutions . . . 118

209

List of Figures

5.6 Compatibility of concrete solutions 119
5.7 Pattern graph with connected concrete solutions 120
5.8 Modeling of a solution model 122

6.1 Lack of guidance for aggregating concrete solutions . . . 129
6.2 Solution algebras . 132
6.3 Pattern graph with connected solution language 137
6.4 Example of a concrete solution aggregation descriptor . . 139
6.5 Concept of a concrete solution aggregation program . . . 141

7.1 Interplay of the concepts to support the EINSTEIN-
Method . 151

7.2 Assisted aggregation of concrete solutions 156

8.1 Architecture of a Toolchain 165
8.2 Aggregation program for topology models 169
8.3 Aggregation program for management planlets 171
8.4 Aggregation operator for Costumes in Films I 174
8.5 Aggregation operator for Costumes in Films II 175
8.6 Aggregation Scenario with Cloud Computing Patterns and

Enterprise Integration Patterns 177

210

List of Symbols

Symbol Description
D Set of all domains of types of edges (Defini-

tion 4.1.1)
G Pattern language graph (Definition 4.1.1)
P Set of patterns (Definition 4.1.1)
EP Set of edges among patterns in a pattern language

(Definition 4.1.1)
W Set of pattern language edge weights (Defini-

tion 4.1.1)
U Map that types pattern language edge weights

(Definition 4.1.1)
V Map that assigns type-specific descriptions to

pattern language edges (Definition 4.1.1)
G Set of all pattern language graphs (Defini-

tion 4.1.2)
� Pattern language aggregator (Definition 4.1.2)
E Pattern language subsetting operator (Defini-

tion 4.1.3)

211

List of Symbols

Symbol Description
E Set of new edges to connect pattern languages

(Definition 4.1.2)
%(G) Map that maps G to the set of patterns contained

in G (Definition 4.4.1)
G3< Design model (Definition 4.4.1)
P3< Set of patterns contained in a design model (Def-

inition 4.4.1)
E3< Set of edges among patterns in a design model

(Definition 4.4.1)
W3< Set of edge weights representing domain-specific

semantics of the interplay of patterns in a design
model (Definition 4.4.1)

U3< Map that types edge weights in a design model
(Definition 4.4.1)

V3< Map that assigns type-specific descriptions to
edges in a design model (Definition 4.4.1)

T Set of concrete solution types (Definition 5.2.1)
D%) Set of all domains of concrete solution property

types (Definition 5.2.1)
S Set of all concrete solutions (Definition 5.2.1)
ID Set of all concrete solution identifiers (Defini-

tion 5.2.1)
id Id of a concrete solution in a concrete solution

descriptor (Definition 5.2.1)
type Type of a concrete solution in a concrete solution

descriptor (Definition 5.2.1)
Props Set of concrete solution properties in a concrete

solution descriptor (Definition 5.2.1)
W Map that assigns schemas to properties of con-

crete solution descriptors (Definition 5.2.1)

212

List of Symbols

Symbol Description
X Map that assigns values to properties of concrete

solution descriptors (Definition 5.2.1)
GPS Pattern graph with connected concrete solutions

(Definition 5.5.1)
P Set of patterns contained in a pattern graph with

connected concrete solutions (Definition 5.5.1)
S Set of concrete solutions contained in a pattern

graph with connected concrete solutions (Defini-
tion 5.5.1)

EP Set of edges among patterns in a pattern
graph with connected concrete solutions (Defini-
tion 5.5.1)

EPS Set of edges among patterns and concrete solu-
tions in a pattern graph with connected concrete
solutions (Definition 5.5.1)

GB< Solution model (Definition 5.6.1)
SB< Set of concrete solutions contained in a solution

model (Definition 5.6.1)
EB< Set of edges among concrete solutions in a solu-

tion model (Definition 5.6.1)
WB< Set of edge weights representing domain-specific

semantics of the interplay of concrete solutions
in a solution model (Definition 5.6.1)

(�C)C ∈Θ Family of types of concrete solutions (Defini-
tion 6.1.1)

Θ Index set whose elements identify all types of
concrete solutions (Definition 6.1.1)

�C Type of concrete solutions (Definition 6.1.1)
(⊕ 9) 9∈� Family of aggregation operators (Defini-

tion 6.1.2)
((�C)C ∈Θ, (⊕ 9) 9∈�) Solution algebra (Definition 6.1.2)

213

List of Symbols

Symbol Description
DG Set of all detector graphs (Definition 6.3.1)
⊕ Aggregation operator (Definition 6.3.1)
DG Detector graph of a solution aggregation pro-

gram (Definition 6.3.1)
^ Aggregatability analysis function of a solution

aggregation program (Definition 6.3.1, Defini-
tion 6.3.5)

> Aggregation operation function of a solution
aggregation program (Definition 6.3.1, Defini-
tion 6.3.6)

f Solution model update function (Definition 6.3.1,
Definition 6.3.7)

ot Operation target of a detector graph (Defini-
tion 6.3.2)

' Set of requirements of an operation target (Defi-
nition 6.3.2)

� Set of capabilities of an operation target (Defini-
tion 6.3.2)

C Type of an operation target (Definition 6.3.2)
OT Set of all operation targets (Definition 6.3.3)
OT Set of operation targets of a detector graph (Def-

inition 6.3.3)
�OT Set of edges among operation targets of a detector

graph (Definition 6.3.3)
SM Set of all solution models (Definition 6.3.4)
AP Set of all aggregation programs (Definition 6.3.4)
ap Concrete aggregation program (Definition 6.3.4)
ac Concrete aggregation context (Definition 6.3.4)
Aℭ Set of all aggregation contexts (Definition 6.3.5)

214

List of Symbols

Symbol Description
(̂ Set of concrete solutions to be replaced by f

(Definition 6.3.7)
�̄ Set of edges between aggregated concrete solu-

tions (Definition 6.3.7)
�c1 Set of edges where the start of the edges has to

be replaced by the aggregate (Definition 6.3.7)
�c2 Set of edges where the target of the edges has to

be replaced by the aggregate (Definition 6.3.7)
ESM Set of edges of all solution models (Defini-

tion 6.3.7)
bc1 Function that replaces the start of an edge with

the concrete solution aggregate (Definition 6.3.7)
bc2 Function that replaces the start of an edge with

the concrete solution aggregate (Definition 6.3.7)
¤B Concrete solution aggregate (Definition 6.3.7)
¤Gsm Updated solution model (Definition 6.3.7)
C Set of all costumes (Definition 8.2.1)
B Set of all base elements of costumes (Defini-

tion 8.2.1)
)B Set of all base element types (Definition 8.2.1)
⊕∪ Aggregation operator for the union of costumes

(Definition 8.2.2)
⊕• Aggregation operator for the union of Costumes

based on selected base element types (Defini-
tion 8.2.3)

215

List of Algorithms

7.1 Aggregation Step . 154
7.2 Find Subgraph Mappings 155

217

List of Definitions

2.1.1 Pattern – informal . 36

2.1.2 Alexandrian Pattern Language – informal 37

3.3.1 Pattern-based Design Model – informal 67

3.3.2 Concrete Solution – informal 70

3.3.3 Selection Criteria – informal 71

3.3.4 Aggregation Operator – informal 73

4.1.1 Pattern Language . 81

4.1.2 Pattern Language Aggregator 86

4.1.3 Pattern Language Subsetting Operator 87

4.4.1 Pattern-based Design Model 101

5.2.1 Concrete Solution . 113

5.5.1 Pattern Graph with connected Concrete Solutions 119

5.6.1 Solution Model . 124

219

List of Definitions

6.1.1 Types of Concrete Solutions 130

6.1.2 Solution Algebra and Aggregation Operators 130

6.3.1 Concrete Solution Aggregation Program 140

6.3.2 Operation Target . 142

6.3.3 Detector Graph . 142

6.3.4 Aggregation Context . 143

6.3.5 Aggregatability Analysis Function 144

6.3.6 Aggregation Operation Function 145

6.3.7 Solution Model Update Function 145

8.2.1 Set of Costumes, Base Elements, and Base Element Types . 173

8.2.2 Aggregation Operator ⊕∪ 175

8.2.3 Aggregation Operator ⊕• 176

220

	1 Introduction and Motivation
	1.1 Research Challenges and Contributions
	1.2 Summary of the Contributions
	1.3 Scientific Publications
	1.4 Structure of the Thesis

	2 Fundamentals and Related Work
	2.1 Patterns, Pattern Languages, and Pattern Application
	2.2 Formalization of Pattern Languages and Pattern Aggregation
	2.3 Pattern Application and Reuse of Implementations
	2.4 Patterns and Frameworks
	2.5 Pattern Libraries and Pattern Repositories
	2.6 Limits in Pattern Application

	3 The EINSTEIN-Method
	3.1 Roles participating in the EINSTEIN-Method
	3.2 General Prerequisites and Requirements
	3.3 Steps of the EINSTEIN-Method
	3.4 Implementation of the EINSTEIN-Method
	3.5 Chapter Conclusion

	4 Pattern Languages and Pattern-based Design
	4.1 Pattern Languages as Graphs
	4.2 Pattern Refinement
	4.3 Pattern-based Designs
	4.4 Pattern-based Design Models
	4.5 Implementation of the Design Model Concept
	4.6 Chapter Conclusion

	5 Reuse of Pattern Implementations as Concrete Solutions
	5.1 Concrete Solutions
	5.2 Formalization of Concrete Solutions
	5.3 Accessing Concrete Solutions via Selection Criteria
	5.4 Requirements and Capabilities
	5.5 Pattern Graph with Connected Concrete Solutions
	5.6 Solution Models
	5.7 Chapter Conclusion

	6 Aggregation of Concrete Solutions
	6.1 Solution Algebras
	6.2 Solution Languages and Concrete Solution Aggregation Descriptors
	6.3 Concrete Solution Aggregation Programs
	6.4 Chapter Conclusion

	7 Semi-Automated Aggregation of Concrete Solutions
	7.1 Concept of a Toolchain to support the EINSTEIN-Method
	7.2 Algorithmic approach to implement the semi-automated Aggregation of Concrete Solutions
	7.3 Discussion
	7.4 Chapter Conclusion

	8 Toolchain and Validation
	8.1 Prototypes to support the EINSTEIN-Method
	8.2 Validation
	8.3 Chapter Conclusion

	9 Conclusion and Outlook
	Bibliography
	List of Figures
	List of Symbols
	List of Algorithms
	List of Definitions

