
S P E C I A L I S S U E P A P E R

Are you sure? Prediction revision in automated decision-
making

Nadia Burkart1 | Sebastian Robert1 | Marco F. Huber2,3

1Interactive Analysis and Diagnosis,

Fraunhofer IOSB, Karlsruhe, Germany

2Institute of Industrial Manufacturing and

Management IFF, University of Stuttgart,

Stuttgart, Germany

3Center for Cyber Cognitive Intelligence (CCI),

Fraunhofer IPA, Stuttgart, Germany

Correspondence

Nadia Burkart, Interactive Analysis and

Diagnosis, Fraunhofer IOSB, Karlsruhe,

Germany.

Email: nadia.burkart@iosb.fraunhofer.de

Abstract

With the rapid improvements in machine learning and deep learning, decisions made

by automated decision support systems (DSS) will increase. Besides the accuracy of

predictions, their explainability becomes more important. The algorithms can con-

struct complex mathematical prediction models. This causes insecurity to the predic-

tions. The insecurity rises the need for equipping the algorithms with explanations.

To examine how users trust automated DSS, an experiment was conducted. Our

research aim is to examine how participants supported by an DSS revise their initial

prediction by four varying approaches (treatments) in a between-subject design

study. The four treatments differ in the degree of explainability to understand the

predictions of the system. First we used an interpretable regression model, second a

Random Forest (considered to be a black box [BB]), third the BB with a local explana-

tion and last the BB with a global explanation. We noticed that all participants

improved their predictions after receiving an advice whether it was a complete BB or

an BB with an explanation. The major finding was that interpretable models were not

incorporated more in the decision process than BB models or BB models with

explanations.
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1 | INTRODUCTION

Many automated decision-making systems are used in practice with little human interference. With the advances in machine learning (ML), the

proportion of automated decision-making will further increase. The recent progress made in ML allows machines to take over various tasks that

were previously performed solely by human experts. Especially the domain of automated decision making benefits from these advances. New

algorithms and approaches such as deep learning, for example, deep artificial neural networks were discovered that are characterized by increased

accuracy. Furthermore, the number of domains in which the algorithms are applicable grows steadily. New use cases are constantly developed

that change the requirements to be met by the algorithms. In addition to the accuracy of the predictions, their explainability becomes essential.

The algorithms are based on mathematical models that can become highly complex. This causes insecurity to the predictions made by these algo-

rithms. The insecurity gives rise to the need for equipping the algorithms with explanations.

Received: 11 October 2019 Revised: 4 February 2020 Accepted: 18 April 2020

DOI: 10.1111/exsy.12577

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Expert Systems published by John Wiley & Sons Ltd.

Expert Systems. 2020;1–19. wileyonlinelibrary.com/journal/exsy 1

https://orcid.org/0000-0003-4700-057X
mailto:nadia.burkart@iosb.fraunhofer.de
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/exsy


In contrast to machines making decisions, humans can be asked to explain the decisions they make. Humans can answer the question by argu-

ing. They can give reasons for their decisions. In human decision-making, this is the major advantage over artificial systems. However, systems

outperform humans when it comes to the amount of data they can process in a short time period.

For instance, FICO1 developed the FICO Score to improve strategies and processes in the lending business of financial service providers in

the United States. Sesame Credit2 is a private credit scoring system, an affiliate of the Chinese Alibaba Group. The underlying algorithms use

thousands of user data points that include what the users' purchase, their social network affiliations, or their ability to honour an agreement to

determine a particular credit score between 350 (bad) and 900 (excellent). While it might seem obvious to claim for greater transparency, with the

use of ML and large data sets it is extremely difficult to locate a potential bias.

Systems, for example, based on ML algorithms can make more consistent decisions since their only source for making decisions is the given

data (Davenport & Harris, 2005). Nevertheless, if the data contains opinions that include bias in form of discrimination, the machines learn this

bias as well. Due to aforementioned advantages of ML over humans in automated decision making, approaching the challenge of explainability of

ML algorithms is of great interest. Accordingly in the context of ML, interpretability or explainability is the ability to explain or provide meaning in

understandable ways to a human for a certain prediction or a model (Doshi-Velez & Kim, 2017).

This work examines how prediction revision, for example, adjusting an initial prediction on the basis of new information, is affected by

explainability. In our user experiment we chose a task where participants need to predict the students' grades (regression problem). This type of

task has been chosen because it can be easily transferred to other domains like, for example, credit scoring. After the participants have submitted

their first prediction of the grade, they get support to predict the students' grade by means of an automated decision support systems (DSS). Our

research question is to examine how users adapt their initial predictions based on the type of support. The four treatments differ in the degree of

explainability to understand the prediction of the system. Section 2 gives an overview of the related work in explainable ML and human subject

studies in the field. Section 3 describes the methodology of the experiment and Section 4 illustrates the results. Section 5 discusses the results

and concludes.

2 | THEORETICAL BACKGROUND

In this section, we first give a short overview of what explainable ML means and describe the main concepts that are approached by our experi-

ment. Furthermore, we want to overview relevant human subject studies in the field of prediction revision. Our experiment is new, because it

addresses the problem of prediction revision in the context of explainable ML. To our knowledge this is the first kind of work that assesses this

topic in detail with different degrees of explainability.

2.1 | Explainable machine learning

Supervised ML approaches can produce interpretable models (white boxes) or complex opaque models (black boxes). For example, sparse linear

models are considered more interpretable than dense ones Tibshirani (1996). Explainability offers many approaches that addresses the problem of

explanation generation. The survey paper of Guidotti et al. (2018) gives a detailed overview. We further differentiate only between Interpretable

By Nature and Surrogate models because those are the used concepts within the experiment.

2.1.1 | Interpretable by nature

Prediction models being interpretable by nature can be understood in themselves and how they work can be grasped by humans. In Henelius,

Puolamäki, Boström, Asker, and Papapetrou (2014), small decision trees and decision lists are considered to belong this group of models. Singh

and Guestrin (2016) consider decision trees, rules, additive models, attention based networks and sparse linear models as interpretable models.

However, with increasing complexity, for example, measured in size or number of nodes of the tree, or number of rules or conditions in a rule,

these models loose interpretability. For instance, we train a sparse linear regression model directly on the data set. The weights a = (a1, …, an) � Rn

of a linear regression model

y = aTx+ b ð1Þ

can be interpreted as the importance of a feature, for a feature vector x � Rn. The bigger the absolute value of a component ai, the more does a

change in the input xi affect the output. For example does the so-called partial dependency plot show the effect of a single (or two) features on

the output, when marginalized over the other features. Through this plot, a user can get an idea of how this feature interacts with the output over
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the whole range of possible values. Model internals can sometimes also be used to convey insights about the model. Other examples could be for

instance the decision nodes in a small decision tree.

2.1.2 | Black boxes and surrogate models

A random forest is an ensemble technique that can perform regression and classification tasks using multiple decision trees and bootstrap aggre-

gation (bagging). Bagging involves training each decision tree on a different data sample. The idea behind is not to rely on individual decision trees

but to combine multiple decision trees to determine the final output with higher accuracy. The model and the decisions cannot be understood by

themselves. Therefore, surrogate models can be applied. A surrogate model translates the underlying prediction model into an approximate model

(Henelius et al., 2014). This technique is applied whenever the prediction model is not interpretable by itself. An interpretable surrogate model,

for example, a linear regression model, is built to complement the black box. Separating the black-box prediction model from its explanation intro-

duces flexibility, accuracy and usability (Singh & Guestrin, 2016).

A wide range of explanation techniques exists that extract rules from black boxes or build decision trees on top of the black boxes. Such tech-

niques use an interpretable model and apply it to the predictions returned by the black box (Hall, Phan, & Ambati, 2017). Currently many different

explanation approaches exist, for example, providing logical statements (Lakkaraju, Bach, & Leskovec, 2016; Su, Wei, Varshney, &

Malioutov, 2015; Wang et al., 2015; Wang & Rudin, 2014), local models (Rüping, 2005; Turner, 2016) or feature importance (Adler et al., 2018;

Datta, Sen, & Zick, 2016; Goldstein, Kapelner, Bleich, & Pitkin, 2015; Puolamäki & Ukkonen, 2017).

We are focusing on LIME that is a local explanation approach and sp-LIME, as a global explanation. Local explanations are concerned about

an individual's decision (Phillips, Chang, & Friedler, 2017) and provide the reason behind a specific decision (Doshi-Velez & Kim, 2017). This is

helpful for justifying a specific decision. According to (Robnik-Šikonja & Kononenko, 2008) the local scope of explanations can also be called

instance explanations. Global explanations are concerned about the system's actions overall (Phillips et al., 2017) and provide a pattern that the

prediction model discovered in general. The system can convey the behaviour of a classifier as a whole without regarding predictions of individual

instances (Lakkaraju, Kamar, Caruana, & Leskovec, 2017).

Local model agnostic explanations (LIME): From the original instance x � Rd we initially have to create an interpretable representation of a lower

dimensional binary form, that is, x
0
�{0, 1}d

0
(x

0
needs to be specified by the user). This is an essential step since one has to decide which represen-

tation x
0
to use in order to make it interpretable or understandable to the targeted user and rich enough to still allow meaningful deduction. The

goal is then to train a fairly simple model g � G of a potentially interpretable class of models G that acts on the interpretable representation x
0
and

is trying to resemble the decision of the black box model f : Rd ! R around the sample x. To optimize the interpretability and fidelity tradeoff the

model g is acquired through:

ξ xð Þ= argming�Gℒ f,g,πxð Þ+Ω gð Þ ð2Þ

where πx is a proximity measure to define locality around x and Ω is a measure of complexity of a model g.

Submodular-pick LIME (sp-LIME): Out of a set of instances X with their explanations, choose a subset of reasonable size (A ⊆ X, |A| < B, where

B is the Budget). Intuitively, we want to choose instances with features that are also globally important, as in they explain many different

instances. If we achieve an optimal pick the user can trust the model to perform well and faithful in most cases. In short, we can summarize sp-

LIME as follows: First, we select B instances for the user to be inspected. We then aim to obtain non-redundant explanations that represent how

the model behaves globally. Given a so-called explanation matrix of n explanations using d features, the features are ranked such that the feature

which explains more instances gets a higher score. When selecting instances, the algorithm avoids instances with similar explanation and tries to

increase the coverage.

In order to evaluate the performance of a regression model either white box or black box the metrics mean absolute error and root mean

squared error are important. The mean absolute error (MAE) measures the average scale of the errors in the test set of predictions. It is the aver-

age over the test set of the absolute differences between prediction and the true value. The lower the mean absolute error, the better the model

accuracy. The root mean squared error is the square-root of the average of squared differences between prediction and actual observation.

2.2 | Human subject studies in the context of prediction revision and explainable machine learning

In many organizations, decision makers rely more and more heavily on information provided by DSSs. In these cases, the usefulness of the infor-

mation a decision maker receives from the system will not only depend on the systems features to analyse and communicate the relevant infor-

mation needed by the decision maker, but also on the decision maker's trust in the information acquired (Miller, 2017). From a rational

perspective, processing information provided by DSSs can be characterized by a Bayesian belief revision process, that is, using the decision
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maker's prior prediction about relevant determinants of the decision to be made and about the relevance and reliability of the information from

the DSS (Fischhoff & Beyth-Marom, 1983). However, prior research has demonstrated that a decision maker's actual use of information may be

biased in various ways (Ashton & Ashton, 1988). A many times proven to be robust bias is egocentric advice discounting (Yaniv &

Kleinberger, 2000). Although decision makers benefit on average from the advice, they do not benefit fully due to the sub-optimally low level of

adjustment to the information. Even the reference to an expected higher quality of decision making with greater consideration of the information

leads to the fact that the decision maker does not approach the advice by more than 20–30% on average. (Goodwin & Fildes, 1999; Lim &

O'Connor, 1995). Further empirical studies have shown that inadequate adjustment to the information goes hand in hand with reduced decision

quality. For example, Diamantopoulos and Mathews show in (Diamantopoulos & Mathews, 1989) that the strength of the subjective adjustment

of the sales forecasts they examined is positively correlated with the forecast quality. Fildes et al. also report in a field study that strong adjust-

ments to demand forecasts significantly improve the quality of decisions more than weak adjustments (Fildes, Goodwin, Lawrence, &

Nikolopoulos, 2009). Various reasons are discussed in the literature for the inadequate processing of the information. On the one hand, easier

access to one's own arguments is discussed as a reason (Yaniv, 2004): decision makers can understand the basis on which they made their own

decision. However, they lack this basis in the decision of a consultant. The over-weighting of their own arguments in comparison to those of

others is referred to as egocentric bias (Kruger, 1999). On the other hand, the average insufficient consideration of advice can be explained on

the basis of the anchor heuristic (Tversky & Kahneman, 1974). Following this explanation, decision makers anchor on their own estimates and

thus take insufficient account of the advice given by the DSS in the decision-making process. The assumed anchor can result directly from the

problem or be the result of an incomplete calculation. To get closer to the desired value, individuals check the respective values successively in an

iterative process starting from the anchor until a plausible result is reached (Quattrone, 1982).

Poursabzi-Sangdeh, Goldstein, Hofman, Vaughan, and Wallach (2017) conducted a user study to measure trust. In their view, confidence can

be measured by determining the difference between the prediction of the prediction model and the prediction of the participant. In their investi-

gation they forecast real estate prices. The task of the prediction model is therefore a regression approach. Participants receive different informa-

tion about the underlying forecast model and are asked to make their own forecast of the property price. This estimate is compared with the

house price predicted by the forecast model. Their absolute deviation is a measure of confidence, while smaller values meaning higher confidence.

Lage et al. (2019) conducted a user study to find out what makes explanations interpretable for humans by systematic variation of the properties

of an explanation to measure their effect on the performance of several tasks. The tasks were to simulate the system's response, to verify a

suggested response, and counterfactual reasoning. One of their findings included that counterfactual questions had significant lower accuracies

across the experiments. Schmidt and Biessmann (2019) introduce a quantitative measure of confidence in ML decisions and conducted an experi-

ment. In their experiment they examined two methods, COVAR, a glass-box method and LIME. They noticed that COVAR yielded more interpret-

able explanations. Thereby, they highlighted the usefulness of simple methods. Yin et al. (Yin, Wortman Vaughan, & Wallach, 2019) conducted a

human-subject experiment to examine laypeople's trust in a model.

3 | METHODOLOGY

Our experiment was designed to measure how participants adapt their initial prediction if they will get support from an automated DSS. We

designed four kind of treatments. The four treatments (T1, T2, T3, T4) offer participants different approaches of an explanation, for example,

based on an interpretable “white box” model or “black box” models equipped with or without explanations (local or global). The goal is to gain

insights about which type of explanation participants trust and favour the most.

3.1 | Experimental design

The advice was either based on a linear regression model (T1) (see Figure 1) as white box, a random forest model (T2) as entire black box (see

Figure 2), a random forest model with local explanation (LIME) (T3) (see Figure 3) or a random forest model with global explanation (sp-LIME)

(T4) (see Figure 4). Participants in each treatment were told basic facts about their corresponding model and how each is used for producing a

response (e.g., predicting a student's grade) when presented with a set of predictor values (e.g., academic and personal characteristics). Please see

Appendix A (Figure A1 - Figure A13) for a detailed overview of the experimental setup in the online experiment system.

Moreover, in treatment 2–4 (T2-T4) participants were explained that random forests are sometimes treated as a black box, meaning their pre-

diction techniques are opaque and we cannot say with certainty how the prediction was derived from the model.

In the explanation treatments (T3, T4), participants were introduced to the basics of explainable models (surrogates) and how they could help

in the decision making process. Together with an example, they were shown that an interpretable model is used to explain individual predictions

of random forests (either globally or locally) and that they highlight those academic and personal characteristics that were most important for the

specific prediction.

4 BURKART ET AL.



We ran the experiment using Amazon Mechanical Turk using Sophie Labs, as a platform for designing online experiments. We recruited

80 participants and randomly assigned them to one of our four treatments. Before starting the experiment, they were given a short introduction

to the scenario and the task. They were told that their payment will be adapted according to how good their predictions on the student's grades

are (i.e., average absolute deviation from the true value). Participants could only participate in one of our four treatments (between subjects

design).

Participants received a show-up fee of $0.50. In the experiment they collected points with their estimates with 1 point = $ 0.01. The maxi-

mum number of points a participant could earn with an estimate was 200. It would be reduced by the absolute deviation of the predictions from

the true value. The payment model was chosen to ensure that participants are encouraged to give their best estimation effort.

3.2 | Task

The participants' task in this study was to predict the final grade of different students, an integer between 0 (worst score) and 20 points (best

score). We chose the well-known student performance data set from University of Minho,3 Portugal that gives insights into the student's achieve-

ments in secondary education of two Portuguese schools. It contains 649 instances (e.g., students) and includes student's grades as well as demo-

graphic, social and school related features. We only used a subset of 14 features. The attributes are easy to understand for the participants and

F IGURE 1 T1: Naturally interpretable model (global). Participants were explained that the linear regression found that the following
characteristics have a significant (positive: green or negative: red) impact on the student's grades. The other characteristics have—according to the
model—no significant impact (grey)

F IGURE 2 T2: Black box with prediction. Participant solely
received the prediction (grade) for a given student
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should not overwhelm them with a lot of information. This was ensured in a pre-study that was conducted at our institution. We chose the fol-

lowing subset: sex, age, parents status, reason to choose school, study time (weekly), failures, activities, romantic relationship, family relationship,

free time, go out, weekend, health, absence.

To make the predictions, participants were be given information such as academic and personal characteristics of the students. After the first

prediction, participants received advice from a DSS. For the white box model (T1) we stated that it has a MAE of 4.64. Further we explained it by

describing that the average advice from the DSS is 4.64 points away from the true grade of a given student. For the Random Forest (T2–T4) we

had a MAE of 2.90. Therefore, the Random Forest had a better accuracy for predicting the student grades than the linear regression model. Then

they had the chance to adjust their first prediction, for example, to give a second prediction that may or may not differ from their first prediction.

After the second prediction, the prediction round was over and a new round began that was exactly the same as the previous one with a new tar-

get student to predict. Overall, there were five prediction rounds for every participant.

F IGURE 3 T3: Black box with local explanation. Participants were explained that in order to gain an insight into the decision-making process
of the Random Forests, we have introduced an additional interpretable surrogate model which highlights (positive: green or negative: red) those
academic and personal characteristics that were most important solely for the specific instance (student)

F IGURE 4 T4: Black box with global explanation. Participants were explained that we selected three representative students. If they grasp
the concept on how the decision making is done for those three, this knowledge helps them to understand and probably give better predictions.
Note that also the characteristics of the three students were shown to the participants
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We designed the estimation task in this way, because our task is a true prediction task in the sense that participants are aware that, although

there is a true answer to the question, no one except the experimenters could possibly know this answer. Moreover, the questions are related to

a participant's personal world of experience, which we expected to ensure that the participant could easily understand the task, to enhance the

participant's perception of self-efficacy and thus making cognitive efforts invested by the participants improve the prediction.

3.3 | Metrics

For the analysis, we have a total of 400 observations from 80 participants over 5 rounds (20 participants per treatment). Estimation accuracies

are measured by the prediction errors, defined as the absolute deviation of the respective prediction from the actual answer (true value). Absolute

prediction errors are denoted by absErr(μ) for the first prediction μ and absErr bμð Þ for the second prediction bμ. Correspondingly, the relative predic-

tion error absErr bμð Þ=absErr μð Þ is denoted by relErr.

In order to quantify the trust in the treatment, the difference between the initial estimation of the participants and the respective adjustment

given by a corresponding advice was calculated. It was assumed that a higher adaptation rate for an advice signals more trust in the respective

DSS. Based on a first estimate μti, βti records the adjustment of the second estimate μ0ti to the information bμti:

βti =
μ0ti-μti
bμti-μti

, ð3Þ

with i being the participant and t the prediction round. βti is the weight of advice, that is, the weight the participant assigns to the advice he

receives, and 1 − βti is accordingly the weight he places on his own initial prediction. The more precise the participant expects the advice to be,

the more weight will bμti receive in his revised estimate μ0ti.

4 | RESULTS

In total 80 participants attended the experiment. No specific background or requirements were demanded. The average age of the participants

was 37 years, the youngest 21 and the oldest 64. In total more men than women—48 compared to 31—and 1 diverse were surveyed. Overall

46 white collar workers, 12 blue collar workers, 1 PhD, 13 self-employed and 8 unemployed participated in the experiment.

Figure 5 presents descriptive data on prediction errors and adjustments. It shows that absolute prediction errors absErr(μ) for the first predic-

tion are on comparable levels for all four treatments, but slightly higher for the white-box treatment (see Table 1 with 6.48, 6.32, 6.01 and 6.12,

respectively). All differences are statistically not significant (Mann–Whitney U and Bonferroni correction, all p-levels .33 or higher). Furthermore,

relative adjustment indicate a lower extent of information usage in T2 compared to T1, T3 and T4 (with T2 significantly lower than T1, T3 and T4,

all p-levels <.05).

Absolute errors in the second prediction (absErr bμð Þ ) are highest in the white-box treatment (T1), little lower in the black-box treatment

(T2) and are on a comparable level for the two treatments with explanation treatments (T3, T4) (5.12, 4.51, 3.7, 3.93, respectively). The prediction

error of the white-box model (T1) is significantly higher than the prediction error of all the black-box models (T2, T3 and T4; Mann–Whitney

U test with p-values .041, .000 and .000 one-sided, respectively). Moreover, the prediction error of the black-box model (T2) is significantly higher

than the prediction error of the black-box model with local explanation (T3 Mann–Whitney U test with p-values .038 one-sided) but not higher

TABLE 1 Absolute and relative
estimations errors

T1 T2 T3 T4

absErr(μ) est 1 6.48 6.32 6.01 6.12

absErr bμð Þ est 2 5.12 4.51 3.70 3.93

Difference scores 1.36 1.81 2.31 2.19

relErrðμ=bμ) 0.79 0.71 0.61 0.64

Rel adjustment 0.59 0.42 0.56 0.55

Note: Absolute errors indicate the average absolute deviation from the true value in the first (est 1) and

second prediction (est 2). Difference scores describe mean absolute change between first and second

error, for example, a positive value meaning a better second prediction. The relative adjustment indicates

the extent to which the information was used for the second estimate (i.e., 0 meaning not at all and 1

meaning 100%).
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than the prediction error of the black-box model with global explanation (T4; Mann–Whitney U tests with p-values .091 one-sided). All other dif-

ferences are statistically not significant (Mann–Whitney U tests, all p-levels .36 or higher).

As expected, participants improve their predictions after receiving advice in all four treatment conditions. The differences between the abso-

lute errors of the first and the second prediction are all highly significant (all p-levels below .001).

Additionally, we used Cohen's d as an appropriate effect size for the comparison between two means of the relative adjustments relErr μ=bμð Þ.
We found medium effects for the comparison of T1 versus T2 (d = 0.406) and small effects for T2 versus T3 (−0.365) and T2 versus T4 (−0.281),

whereas only marginal effects for T1 versus T3 (0.074), T1 versus T4 (0.083) and T3 versus T4 (0.022). Therefore, Cohen's d suggests a treatment

effect of all treatments compared with T2.

The participants were also asked to directly provide a ranking on how useful the given explanations were via a Likert scale. The scale was

from 1 (strongly disagree) to 7 (strongly agree). The box-plots for T1, T2, T3, T4 are shown in Figure 6 per treatment with the means of 5.35,

5.45, 5.55, 5.43 respectively, showing no significant difference. Although there are only slight differences between the treatments, T3 was rated

as the most useful.

Wang, Yang, Abdul, and Lim (2019) have described that different users have different needs for explanation. In this case lay users preferred

local explanations to understand each specific model prediction over the global explanations. For example, developers may find global explana-

tions more useful to get a high-level inspection of the model in order to debug it. Berry and Broadbent (1987) explored the effect of explanations

on the user's performance at a simulated decision task where participants received a global explanation and in one condition an additional local

explanation. Participants who received the additional local explanation performed better. Hohman, Head, Caruana, DeLine, and Drucker, (2019)

also mentioned in their work that global and local explanation paradigms are complementary.

Thereby, it might be an optimal solution to combine both types of explanations. First of all, a global explanation could be shown to each par-

ticipant and additionally a local explanation if required (or vice versa). This could be a solution for DSS designed for domain experts.

F IGURE 6 Box-plots for subjective usefulness per treatment
T1(5.35), T2(5.45), T3(5.55), T4(5.43)

F IGURE 5 Absolute errors per treatments
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5 | CONCLUSION

In this paper, we investigated whether the advice of an automated decision-making system affects participants' willingness to adapt their initial

prediction revision via a randomized, human between-subject design experiment. We noticed that as expected all participants improved their pre-

dictions after receiving an advice whether it was a complete black box or an black box with an explanation. The major findings were that naturally

interpretable models were not incorporated more heavily in the decision process than black box models and explanations from them. The black

box treatment (T2) had a little lower absolute error, which could be related to a smaller MAE. The black box model without an explanation was

used significantly less compared to a black box with local explanation. Participants used local explanations more than global explanations. Proba-

bly participants preferred this type of explanation more than the global one because they are tailored to the specific instance. Thereby, the partic-

ipants did not have to figure out the entire reasoning process and transfer the learnings to the specific instance. For global explanations like sp-

LIME it probably was hard for the participants to grasp the general decision-making process by just showing them three example explanations

with a high coverage. For interpretable models or explanations we want the possibility to reproduce the decision-making process. This gives us

more trust in the model, if we can predict how the model will behave beforehand. This is basically referred to global interpretability as in naturally

interpretable models or global surrogates (mimic learning).

Our future work will be to assess more explanation approaches with domain experts. Especially, we want to examine local against global

explanations in detail. Furthermore, the focus will be on procedures to generate a more human-like explanation (entire sentences) with decision

rules.
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ENDNOTES
1For more information on FICO see https://www.fico.com/en/products/fico-score
2For more information on Sesame Credit see https://www.creditsesame.com/
3http://archive.ics.uci.edu/ml/datasets/Student2BPerformance
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F IGURE A2 Advice explanation for Treatment 1
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F IGURE A3 First prediction for
Treatment 1

F IGURE A4 Second prediction
(revision) for Treatment 1
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F IGURE A5 Advice explanation for Treatment 2

F IGURE A6 Additional instructions for Treatment 3
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F IGURE A7 Second prediction for
Treatment 3
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F IGURE A8 Additional instruction for Treatment 4
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F IGURE A9 Advice explanation for Treatment 4 (Part 1)

F IGURE A10 Advice explanation for
Treatment 4 (Part 2)

BURKART ET AL. 17



F IGURE A11 Advice explanation for
Treatment 4 (Part 3)

F IGURE A12 Advice explanation for
Treatment 4 (Part 4)
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F IGURE A13 Second prediction for Treatment 4 (Part 4)
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