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Summary

Precipitation extremes are a space-time phenomenon that influences many engineering de-
sign decisions. The occurrence of precipitation extremes is, however, rare and with values
that can deviate notably from ”normal” observations. For design purposes, an estimate of
areal rainfall depth for a corresponding return period is needed. Traditionally, point rain-
fall extreme value statistics are transferred to areal statistics using the concept of the area-
reduction factor. The latter varies between 0 and 1 and is used to partition the area by point
rainfall depth for the corresponding duration and return period. In this research, the use of
this factor is investigated using high-resolution precipitation data.

The first section uses space-time statistical methods to evaluate the quality of recorded
intense observations. To cope with the highly non-normally skewed rainfall distribution, a
non-linear transformation is applied to normalize the data distribution. In the newly trans-
formed space, the maximum values for each observation location and event duration are
estimated using the surrounding stations and the computed spatial variogram. If the differ-
ence between the observed and estimated values exceeds the test’s critical value, the value
is marked as a possible outlier. To avoid singularities caused by convection, the same pro-
cedure is repeated for different aggregations. A major challenge is distinguishing outliers
between single events and false measurements. Therefore, all flagged outliers are compared
to the corresponding weather radar and discharge observations, and implausible data are
removed. Using the corrected data the space-time dynamics of selected intense events is
investigated. The aim is to visualize and estimate the dependence structure within a rain-
fall event, identify spatially occurring unusual events using the depth function, and clusters
of variograms and step-functions. Different types of rainfall events were identified and ac-
cordingly classified.

Rain gauge networks, however, frequently lack the network density required to accurately
capture the temporal and spatial extent of extreme events. An alternative is to use weather
radar data, which provides spatially distributed rainfall fields. However, these observations
are prone to errors. A copula-based conditional merging procedure is applied to minimize
errors and artifacts in the weather radar observations. The aim is to combine in the rank
space radar and station observations with high temporal resolution. Aspects such as ge-
ometrical anisotropy, horizontal wind displacement, advection, and External Drift Kriging
are included. The quality of the final product is verified using a cross-validation procedure
for several station data sets from two variant radar locations.

Area Depth Duration Frequency (ADDF) curves are a mathematical function relating the
area of a location to the depth and frequency of a rainfall event for a certain temporal du-
ration and return period. The calculation of the ADDF curves is not straightforward, as in
contrast to point precipitation areal precipitation is not measured but must be estimated.
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Although these curves could be directly calculated from the weather radar data, they were
not yet fully investigated. Hence, for several locations, the ADDF curves are derived for
small to large areas and for short to long durations. The result indicates the ability to de-
rive these curves; however, crossings occur between the curves of the small and large areas.
For long durations, the estimated rainfall depth for the same return period and duration is
larger for the larger area than for the smaller one. This contradicts previous assumptions
(and knowledge) regarding the behaviour of areal statistics. An investigation is conducted
to understand why these crossings are occurring. Several reasons were identified such as
the role of the sample size, the event type, and the choice of the area center. From the ADDF
curves, the area reduction factors (ARF) are derived and their spatial-temporal behaviour
is inspected. The derived values are compared to reference values showcasing that the lat-
ter underestimate areal extremes for short durations. Moreover, the ARF is seen to vary
largely in space and might exceed the value of 1. The ARF exceeding the value of 1 can be
attributed to the event type and sample size. For instance, the maximum within an area can
occur anywhere independently of its location, with varying spatial frequency of occurrence.

Utilizing the information from the extracted blocks, the occurrence of rainfall extremes
was analysed. Several research questions were considered: (1) How many extremes occur
in a given area, independent of their location? (2) To what extent is their occurrence in
space random, and to what extent is it a structured process? (3) How are the connected
volumes behaving in space and time? (4) How does the areal extent relate to event duration,
rainfall volume, and discharge volume? The first two research questions were examined
for all of Germany, and the last two by analysing rainfall and run-off data in several small
and medium size headwater catchments in southern and Western Germany. The results
show that the occurrence of events in space is related to their spatial extent; regions exist
where the frequency of occurrence of large spatially distributed events is greater than that
of smaller ones. Also, interesting relationships between the spatial extent of an event, the
event duration, and the event rainfall volumes are identified. For high discharge values, not
only does the rainfall intensity matter but also the event duration and spatial distribution
of rainfall within a catchment. Many discharge peaks are not necessarily caused by high-
intensity events (hourly or daily maxima) but by the accumulation of rainfall cells in space
and time.

To assess the impact of climate change, areal extreme value statistics from projected cli-
mate scenarios are derived. The EURO-CORDEX 11 data within the radar region of Han-
nover for historical and future periods are used. A recorrelation procedure of upscaled
reference data enables correcting the model spatial dependence structure, which largely in-
fluences areal precipitation values. To account for any bias present in the marginal distribu-
tion function of future period data, a double quantile-quantile mapping approach is applied.
This preserves the signal in future model projections while reducing the data discrepancy.
Once the data are corrected a downscaling of the model to a point scale is performed. In
a stochastic conditional simulation approach, random mixing is used. For each temporal
duration, simulations conditioned on the corrected data and a scaled spatial model are gen-
erated. ADDF curves are then derived for future scenarios in a probabilistic manner and are
associated with an uncertainty interval.



Zusammenfassung

Niederschlagsextreme sind eine raum-zeitliche Variante, die viele ingenieurtechnische Pla-
nungsentscheidungen beeinflusst. Das Auftreten von Niederschlagsextremen ist jedoch sel-
ten und mit Werten, die deutlich von normalen Beobachtungen abweichen können. Für
Planungszwecke wird eine Schätzung der flächenbezogenen Niederschlagshöhe für eine
entsprechende Dauer und Wiederkehrperiode benötigt. Traditionell werden Extremwert-
statistiken für Punktniederschläge mit Hilfe des Konzepts des Flächenreduktionsfaktors in
Flächenstatistiken übertragen. Letzterer variiert zwischen 0 und 1 und wird verwendet, um
die punktuelle Niederschlagshöhe über das Gebiet für die entsprechende Dauer und Wie-
derkehrperiode zu verteilen. In dieser Studie wird die Verwendung dieses Faktors anhand
von hochauflösenden Niederschlagsdaten untersucht.

Im ersten Teil dieser Forschungsarbeit werden statistische Raum-Zeit-Methoden verwen-
det, um die Qualität der aufgezeichneten intensiven Beobachtungen zu bewerten. Um der
sehr ungleichmäßigen Niederschlagsverteilung gerecht zu werden, wird eine nicht lineare
Transformation zur Normalisierung der Datenverteilung angewandt. Der optimale Trans-
formationsparameter wird durch ein Optimierungsschema ermittelt, das stochastische Si-
mulationen der gestutzten Standardnormalverteilung verwendet. In dem neu transformier-
ten Raum werden die Maximalwerte für jeden Beobachtungsort und Ereignisdauer anhand
der umliegenden Stationen und des berechneten räumlichen Variogramms geschätzt. Der
geschätzte Wert am Zielort wird mit dem beobachteten Wert verglichen und, wenn die Dif-
ferenz den kritischen Wert des Tests überschreitet, wird der Wert als möglicher Ausreißer
markiert. Um durch Konvektion verursachte Singularitäten zu vermeiden, wird das gleiche
Verfahren für verschiedene Aggregationen wiederholt. Eine große Herausforderung bei der
Interpretation von Ausreißern ist die Unterscheidung zwischen Einzelereignissen und Fehl-
messungen. Daher werden alle markierten Ausreißer mit den entsprechenden Wetterradar-
und Abflussbeobachtungen verglichen und unplausible Daten entfernt.

In einem zweiten Schritt werden die korrigierten Daten verwendet, um die
Raum-Zeit-Dynamik ausgewählter intensiver Ereignisse zu verstehen. Ziel ist es, die
Abhängigkeitsstruktur innerhalb eines Niederschlagsereignisses zu visualisieren und ab-
zuschätzen, räumlich auftretende ungewöhnliche Ereignisse anhand der Tiefenfunktion zu
identifizieren und Variogramme und Stufenfunktionen zu clustern. Dies ermöglicht eine
bessere Charakterisierung des zugrunde liegenden räumlichen und zeitlichen Verhaltens. Es
wurden verschiedene Arten von Niederschlagsereignissen identifiziert und entsprechend
klassifiziert.

Regenmessernetzen fehlt es jedoch häufig an der erforderlichen Netzdichte, um das zeit-
liche und räumliche Ausmaß von Extremereignissen genau zu erfassen. Eine Alternative
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ist die Verwendung von Wetterradardaten, die räumlich verteilte Niederschlagsfelder lie-
fern. Diese Beobachtungen sind jedoch anfällig für Fehler. Um Fehler und Artefakte in
den Wetterradarbeobachtungen zu minimieren, wird ein Copula-basiertes Verfahren zur
bedingten Zusammenführung angewendet. Ziel ist es, Radar- und Stationsbeobachtungen
mit hoher zeitlicher Auflösung im Rangraum zu kombinieren. Aspekte wie geometrische
Anisotropie, horizontale Windverschiebung, Advektion und External Drift Kriging wer-
den berücksichtigt. Die Qualität des Endprodukts wird anhand eines Kreuzvalidierungs-
verfahrens für mehrere Stationsdatensätze von zwei unterschiedlichen Radarstandorten
überprüft. Der Schwerpunkt liegt dabei auf der Fähigkeit, die jährlich beobachteten Maxi-
ma über die verschiedenen Aggregationen zu reproduzieren. Die fusionierten Daten dienen
zusammen mit dem offiziellen deutschen Wetterradarprodukt als Grundlage für weitere
Analysen.

Area Depth Duration Frequency (ADDF)-Kurven sind eine mathematische Funktion, die
die Fläche eines Ortes mit der Tiefe und Häufigkeit eines Niederschlagsereignisses für ei-
ne bestimmte Dauer und Wiederkehrperiode in Beziehung setzt. Obwohl diese Kurven
direkt aus den Wetterradardaten abgeleitet werden können, wurden sie bisher noch nicht
vollständig untersucht. Daher werden die ADDF-Kurven für mehrere Standorte für klei-
ne bis große Flächen und von kurzer bis langer Dauer abgeleitet. Das Ergebnis zeigt, dass
diese Kurven abgeleitet werden können, allerdings gibt es Überschneidungen zwischen
den Kurven der kleinen und großen Gebiete. Für lange Zeiträume ist die geschätzte Nie-
derschlagshöhe für denselben Wiederkehrzeitraum und dieselbe Dauer für das größere
Gebiet größer als für das kleinere. Dies steht im Widerspruch zu früheren Annahmen
(und Erkenntnissen) über das Verhalten von Flächenstatistiken. Es wurde untersucht,
warum es zu diesen Überschneidungen kommt. Es wurden mehrere Gründe identifiziert,
wie z. B. die Rolle des Stichprobenumfangs, der Ereignistyp und die Wahl des Gebiets-
zentrums. Bei einigen wenigen Ereignissen lagen die flächenbezogenen Niederschlags-
mengen und die flächenbezogenen Höchstwerte nicht über dem Gebietszentrum, son-
dern konzentrierten sich auf eine bestimmte Region. Aus den ADDF-Kurven werden die
Flächenreduktionsfaktoren (ARF) abgeleitet und ihr räumlich-zeitliches Verhalten unter-
sucht. Die abgeleiteten Werte werden mit Referenzwerten verglichen, wobei sich zeigt, dass
letztere die Flächenextreme für kurze Zeiträume unterschätzen. Außerdem zeigt sich, dass
der ARF räumlich stark variiert und den Wert 1 überschreiten kann. Um dies zu verstehen,
wurden aus den Wetterradarfeldern mehrere zusammenhängende Niederschlagsblöcke ex-
trahiert, die einen Schwellenwert überschreiten. Für jedes zusammenhängende Gebiet wer-
den die Verhältnisse zwischen dem Gebietsmittelwert, dem Gebietsmaximum und dem
Gebietsmittelpunkt der Niederschlagsmenge berechnet. Diese zeigen, dass das Verhältnis
zwischen dem Gebietsmittelwert und dem Gebietsmittelwert größer als 1 sein kann, das
Verhältnis zwischen dem Gebietsmittelwert und dem Gebietsmaximum jedoch immer un-
ter 1 liegt. Dies deutet darauf hin, dass ein ARF, der den Wert 1 überschreitet, auf den Er-
eignistyp und die Stichprobengröße zurückzuführen ist. Beispielsweise kann das Maximum
innerhalb eines Gebiets unabhängig von seiner Lage überall auftreten, wobei die räumliche
Häufigkeit des Auftretens variiert.

Anhand der Informationen aus den extrahierten Blöcken wurde das Auftreten von Nie-
derschlagsextremen analysiert. Dabei wurden mehrere Forschungsfragen berücksichtigt: (1)
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Wie viele Extreme treten in einem bestimmten Gebiet unabhängig von ihrem Standort auf?
(2) Inwieweit ist ihr Auftreten im Raum zufällig und inwieweit ist es ein strukturierter Pro-
zess? (3) Wie verhalten sich die zusammenhängenden Volumina in Raum und Zeit? (4) Wie
verhält sich die flächenmäßige Ausdehnung zur Ereignisdauer, Niederschlagsmenge und
Abflussmenge? Die ersten beiden Forschungsfragen wurden für ganz Deutschland unter-
sucht, die letzten beiden durch die Analyse von Niederschlags- und Abflussdaten in meh-
reren kleinen und mittelgroßen Oberwassereinzugsgebieten in Süd- und Westdeutschland.
Die Ergebnisse zeigen, dass das Auftreten von Ereignissen im Raum mit ihrer räumlichen
Ausdehnung zusammenhängt; es gibt Regionen, in denen die Häufigkeit des Auftretens von
großen räumlich verteilten Ereignissen größer ist als die von kleineren. Auch lassen sich in-
teressante Zusammenhänge zwischen der räumlichen Ausdehnung eines Ereignisses, der
Ereignisdauer und den Ereignisabflussmengen feststellen. Bei hohen Abflusswerten spielt
nicht nur die Niederschlagsintensität eine Rolle, sondern auch die Ereignisdauer und die
räumliche Verteilung der Niederschläge innerhalb eines Einzugsgebiets. Viele Abflussspit-
zen werden nicht unbedingt durch Ereignisse mit hoher Intensität (stündliche oder tägliche
Maxima) verursacht, sondern durch die räumliche und zeitliche Akkumulation von Nieder-
schlagszellen.

Um die Auswirkungen des Klimawandels zu bewerten, werden flächenhafte Extremwert-
statistiken aus projizierten Klimaszenarien abgeleitet. Dazu werden die EURO-CORDEX
11-Daten in der Radarregion Hannover für den historischen und zukünftigen Zeitraum
verwendet. Ein Rekorrelationsverfahren von hochskalierten Referenzdaten ermöglicht die
Korrektur der räumlichen Abhängigkeitsstrukturen des Modells, die die flächenhaften Nie-
derschlagswerte maßgeblich beeinflussen. Um etwaige Verzerrungen in der Randvertei-
lungsfunktion zukünftiger Perioden zu berücksichtigen, wird ein Doppel-Quantil-Quantil-
Mapping-Ansatz verwendet. Dadurch bleibt das Signal in den zukünftigen Modellprojek-
tionen erhalten, während die Diskrepanz zwischen den Daten verringert wird. Sobald die
Daten korrigiert sind, wird ein Downscaling des Modells auf die Punktskala durchgeführt.
Für jede Dauer werden stochastische und bedingte Simulationen auf der Grundlage der kor-
rigierten Daten und eines skalierten räumlichen Modells unter Verwendung von Random
Mixing erstellt. Die ADDF-Kurven werden dann für zukünftige Szenarien auf probabilisti-
sche Weise abgeleitet und mit einem Unsicherheitsbereich versehen.
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1.1 The general problem

One of the main differences between handling floods and extreme rainfall events is the dif-
ference in their spatial occurrence. Generally speaking, flood events occur around river
banks with a certain time delay after the occurrence of a rainfall event or snowmelt. Rain-
fall extremes, however, are not spatially bound and can be associated with varying spatial
and temporal extents. For instance, a convective or frontal rainfall event with a short or
long duration might lead to similar discharge values. Moreover, among the various climatic
variables, rainfall presents a highly spatially and temporally variable process.

General practice in hydrology is to use local observations to estimate the spatial extent of
rainfall events using different interpolation and simulation techniques. This often leads to
an underestimation of the true maxima that could have occurred between the spatially dis-
tributed observations (Teegavarapu and Chandramouli, 2005). For example, the whole country
of Germany is covered by almost 1000 rain gauges with a high temporal resolution. Such
gauges usually have a catchment area of 200cm2 and the combination of the 1000 stations
has a measuring area of 20m2. An observation area that is insignificant compared to the
area of Germany of 357, 386km2. The spatial distribution and density of daily and sub-daily
stations can be seen in Fig. 1.1. For many locations, no available observations exist, and
the values between the stations need to be estimated, leading to large uncertainty while re-
constructing the ’true’ values. The station spatial distribution also displays a heterogeneous
pattern, with some areas having a denser network density than others. Note that in many
other countries, the available rain gauge network has an even smaller spatial density. Often,
intense events occurred that were not correctly captured and were sometimes completely
missed. This signifies the problem of trying to derive the correct temporal and spatial extent
of extremes, especially using only point observations. Moreover, the high number of zeros
in high-resolution rainfall data leads to several challenges. These occur when estimating
and simulating the spatial and temporal dependence structures. In other words, an anal-
ysis of the hourly values shows that more than 80% of the positive observations occur in
shorter than 5% of the considered period and, at the 5 minute temporal aggregation, around
95% or the values are equal to 0 millimeters. Hence, precipitation data are associated with a
positively skewed distribution and belong to the zero-inflated variables (Klemeš, 2000).

Figure 1.2 shows an example of the high spatial variability within an intense rainfall event.
Within a distance of 10 km, one station observed 60 mm, a second one observed 10 mm and
a third one observed 0 mm. If only one of the stations was available, the observed rainfall
depth would have been notably underestimated or overestimated. Estimating this location
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Figure 1.1: Spatial distribution and density of daily and sub-daily stations in Germany.

using the neighbouring observations gave a value of 6 mm, which is ten times smaller than
the observed one. Another challenge is marked here: how reliable are the observations
themselves? Additionally, the showcased event is associated with a directional dependent
correlation, where rainfall is concentrated over a small portion of the region. Such events
can be associated with convective rainfall and are even more challenging to model. If the
intense precipitation observations were underestimated or missed, the later effects on urban
hydrology could be of large magnitude.

Unusual events are non-traditional extremes that occur at a single location or simultane-
ously at several locations. An interesting aspect is the correct identification and description
of unusual events not only in time or space but in a space-time aspect. Some tools are
available to investigate this aspect. One of the methods is the data-depth function, such
as Tukey’s depth (Tukey, 1975). This measure is a non-parametric tool to identify unusual
events within a dataset. In hydrology, data depth was used for identifying unusual events at
single or several locations and for analyzing a single time series. Still, not enough research
was undertaken concerning spatially distributed unusual events.

For understanding the spatial extent of extremes in hydrology, especially rainfall ex-
tremes, a combination of local information and other observation sources such as weather
radar (or satellites) and numerical climate models is needed. Point observations are advan-
tageous since they offer a ground truth, but they present drawbacks since they only cover
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Figure 1.2: Example of spatial variability within an intense daily precipitation event. All
gauges in blue recorded zero precipitation values and those in green had posi-
tive observations.

a small area and are sparsely distributed. Observations from weather radar, satellites, and
numerical climate models might be inaccurate but offer valuable spatial information about
the extent of rainfall events. Recently, precipitation estimates derived from weather radar,
satellite data, and numerical weather models have become more available and reliable. De-
spite having their respective drawbacks, the derived rainfall field can be used to improve
the estimation of precipitation and, of interest here, the spatial extent of extremes. Still, such
data sources suffer from disadvantages and cannot replace gauge observations. For exam-
ple, weather radar does not directly measure rainfall but rather the reflectivity of the radar
signal. This does not depend on the rainfall intensity but on the size of the raindrops. The
latter vary from event to event and vary within the event itself. Moreover, the radar antenna
is usually measuring at high elevations and not on the ground. On the ground, rainfall is
measured between time intervals, while with radar, rainfall (or reflectivity) is measured at
a certain time point. Additional sources of errors are possible due to attenuation, clutter
existence, variant Z-R relations, and many more. Satellites have a similar concept as radar,
but at a coarser time interval. They provide a high spatial resolution image, but only for a
single temporal instance, namely a snapshot. What happened in between the two images is
’unknown’. Numerical weather models are based on several physical equations that aim to
describe the atmosphere and the interaction between its different parts. They usually pro-
vide possible values of several variables (temperature, pressure, wind, rainfall, etc.) over a
certain region. Such models often cannot correctly capture the complex phenomena leading
to rainfall occurrence over a certain small-scale area, especially for short periods. Despite
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being usually correct in the mean, they underestimate and overestimate the spatial and tem-
poral variability of rainfall. Therefore, data from weather radars, satellites and numerical
weather models need to be corrected and merged (or combined) with ground observations
that give a ’true’ representation of the measured rainfall at the corresponding locations.

The ’correct’ estimation of areal precipitation volumes is still a challenging and much-
needed task in hydrology. Deriving correct areal precipitation values depends on the accu-
racy of the available data and the corresponding spatial density and temporal resolution.
Traditional methods were based on point observations derived from a rain gauge network.
An underlying assumption was made, namely that the point observations registered the
extreme events and their statistical distribution correctly. This assumption is often not ful-
filled, as rainfall can differ greatly within nearby locations. To transfer the point observation
and associated extreme value statistics to a catchment or area scale, an (Area Reduction Fac-
tor (ARF)) is used. Here another assumption is usually made: the extreme rainfall value is
maximum at the point of observation and decreases with increasing area size. The ARF is
a ratio that lies between zero and one and defines the partition of point design values into
areal design values. For a given return period and duration, the statistical rainfall depth is
transferred to the catchment or areal scale. Bárdossy and Pegram (2018) showed that even for a
small area the ARF estimates can be inappropriate and lead to an underestimation of rainfall
extremes. Most recently, a combination of point observations with weather radar and satel-
lite data has been used to estimate areal precipitation volumes. The potential of weather
radar data in contributing to directly deriving areal statistics is not yet fully investigated.
These might offer an alternative to traditional ARF values, and their spatial and temporal
variability can be inspected. Important aspects related to the variability of rainfall in space
and time and the corresponding spatial distribution of local extremes and sub-regional de-
viations can now be investigated. This requires moving away from traditional approaches
to analyzing extremes to alternative methods and data.

Spatially distributed rainfall fields such as those derived from weather radar data offer
another possibility to look at rainfall events from a different perspective, specifically as con-
nected 2D and 3D blocks. From each field, connected blocks exceeding a minimum thresh-
old are identified, analysed, and classified in space and time. New insights, regarding the
evolution of a rainfall event in terms of its area, duration, intensity, volume, and speed are
investigated. Additionally, the later reaction in the catchments and questions such as how
fast does a catchment react (?) which factors are relevant (?) and what is the relation between
rainfall and discharge volumes (?) can be tackled. Moreover, areal statistics are space-time
dependent, the shape of an object, its location, and the time of occurrence influence the un-
derlying statistics. Comparing point to areal statistics reveals alternative insights into the
frequency of occurrence and variability of areal extremes.

Climate change is defined as a change in the statistical properties of a climatic system. Re-
gional climate models Regional Climate Models (RCM) use a change in the physical system
(an increase in emissions) to derive possible scenarios for several climatic variables, such as
precipitation. Despite having a finer resolution than global climate models (General Circu-
lation Model (GCM)), RCM data need correction and adaptability to the region of interest.
Several researchers noted the problems with directly using RCM data for hydrological in-
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vestigations and offered possible correction methods. Not only are the values themselves
important, but so is their spatial dependence. This affects the areal precipitation values and
subsequent statistics. Downscaling is usually used to transfer the information from a coarse
to a finer scale. To have many possible outcomes, the downscaling can be coupled with
a simulation algorithm. One of them is Random Mixing, a stochastic conditional simula-
tion method that preserves the information in spatial observations and results in several
possible realizations. Hence, the downscaled fields are associated with the corresponding
uncertainty and can be used for further analysis.

1.2 Objectives of the study

The focus of this study is to present the current results regarding investigating and under-
standing the spatial and temporal extent of intense rainfall events. The analysis is done
using high-temporal resolution data such as point observation (station data) and spatial
data (weather radar and numerical weather climate models). The main questions to answer
are: (1) How can we move from point statistics to a space-time description of extremes? (2)
How many extremes occur in a given area, independent of their location? (3) Is their oc-
currence in space and time: a random or structured process? (4) How does the area size of
connected rainfall blocks relate to the volume they bring? (5) How do catchments react to
rainfall events with large volumes? (6) How to estimate the spatial extent of extremes for
past, present, and future times? For this, adaptive methods need to be established to help
with understanding and characterizing the spatial extent of extremes in hydrology. The first
step involves a thorough quality check of point observations. The data-depth function tool
was tested in a space-time aspect to find the depth of unusual spatially distributed events
and the simultaneous occurrence of extreme. From point observations, the spatial extent
of extremes was evaluated using clustering of variogram and step functions. Afterward,
to achieve a reliable spatially distributed data set, a method for merging station and radar
data is developed. From the latter, Depth Duration Frequency curve (DDF) and Area Depth
Duration Frequency curve (ADDF) curves along ARF ratios were derived. Their space-time
variability and uncertainty were investigated. A new insight into rainfall as 2D and 3D
connected blocks will be presented. The aim is to understand how areal extremes behave
in space and time through a data-driven analysis. As for regional climate model data, a
probabilistic upscaling and downscaling method will be implemented to upscale point ob-
servations to model scales and downscale them later to the finer scale. The main outcome
of this analysis is the area-intensity-duration-frequency curves that will be calculated for
present and future times.
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1.3 Sections of this thesis

Figure 1.3: Overview of the thesis.

After the introduction, Chapter 2: Introduces several statistical measures to describe pair-
wise dependence. The Kolmogorov-Smirnov test, the K-mean clustering algorithm, and the
definition of zero-inflated problems are briefly presented. These concepts and measures are
used throughout the thesis.
Chapter 3: Involves a statistical space-time outlier detection method for intense rainfall
gauge observations. To cope with the skewed rainfall distribution, a suitable transformation
is implemented. For each observation set, a cross-validation scheme with a verification pro-
cedure to differentiate outliers between false measurements and single events is developed.
The results are presented for the DWD rain gauge network in Germany for all available tem-
poral aggregations. The validated data set serves as a foundation for further analysis.
Chapter 4: The filtered station data were used to inspect the spatial extent of extremes.
Several approaches are presented, but the challenges of using point observations are also
discussed. The focus was on analyzing event spatial dependence measures, variograms,
and step-function clustering, detecting spatially distributed unusual events, and calculating
the probability of missing the in-event rainfall maxima. The chapter ends with a discussion
regarding the limits of using only point observations.
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Chapter 5: A copula-based conditional merging algorithm to incorporate weather radar and
station data with high temporal resolution is developed. The effects of anisotropy and the
zeros on the variogram are investigated. The conditional merging is coupled with an al-
gorithm to incorporate the horizontal wind displacement vector and anisotropy to derive
the final merged product. The latter is cross-validated within two radar regions for several
stations with a focus on rainfall extremes. The final resulting data were used along with the
official German weather radar data to explore the spatial extent of extremes.
Chapter 6: Dives into design rainfall values by introducing depth duration frequency curves
DDF and deriving area-DDF from the weather radar data. From the latter, traditional area
reduction factors (ARF) are calculated and compared to reference values for the same dura-
tion and area size. The crossing between the ADDF curves is inspected and discussed. The
chapter shows that the traditional use of ARF can be inappropriate for some durations and
event types.
Chapter 7: The concept of connected rainfall blocks in 2D and 3D is used to compare point
and areal statistics and relations between different area sizes. This offers an original ap-
proach to looking at areal extremes. The size of the 2D blocks, their location, frequency of
occurrence, and areal mean are extracted from the RadKlim data. The movement of the 2D
connected areas and their development in time are calculated, and the event volume is de-
rived. The latter is related to the event duration, spatial extent, the amount falling in several
headwater catchments, and the subsequent discharge reaction.
Chapter 8: Data from regional climate models are extracted for the region of Germany and
used for calculating ADDF curves for future periods. Several data correction approaches
were undertaken on the model scale using an upscaling of the reference data. The down-
scaling of the corrected data is done using a stochastic simulation approach (random mix-
ing), leading to an ensemble of equally possible realizations of ADDF curves. These are then
associated with an uncertainty band and are compared to the ADDF curves from the radar
data.
Conclusion: A summary of the main findings in each chapter and the main outcomes of this
research work are presented.



2 General statistical concepts

Several statistical approaches to describe the dependence and relationship between pairs of
data or a cloud of data are discussed and presented in the following section. These measures
are used throughout this work; hence, some theoretical background is given beforehand.
The second part introduces the Kolmogorov-Smirnov (KS) test for comparing empirical
distribution functions, the K-mean clustering algorithm, and the definition of zero-inflated
problems.

2.1 Pearson correlation

The Pearson correlation coefficient was initially introduced in the thesis of August Bravais
(Bravais, 1846) and was later established by Karl Pearson as a robust method to calculate
the correlation between quantitatively measured variables (Pearson, 1901). Still today, it is
one of the most widely used measures to identify the presence (or absence) and direction
of a linear relationship between pairs of variables (A and B). Both pairs of data must have
a similar size and no missing values. The range of the correlation coefficient is between
-1 and 1, where -1 or 1 denotes the presence of a perfect linear relationship with either a
downward or an upward slope, respectively. A value of -1 means that as A increases, B
decreases. If the Pearson correlation coefficient has a value of 0, then no linear relationship
between A and B exists. Though a nonlinear relationship can still be present. A downside
of this correlation measure is, on the one hand, its sensitivity to outliers (or extreme values)
and on the other hand, the assumption of the normality of the variables. Mathematically
speaking, the Pearson correlation coefficient is the normalization of the covariance between
the two variables by the product of their standard deviations (defined by equation 2.1). This
eliminates the scale dependence problem of the covariance and indicates the presence or
absence of a linear relationship.

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
=

cov(X,Y )

σXσY
(2.1)

2.2 Spearman correlation

The Spearman correlation coefficient refers to the Pearson correlation calculated between the
ranks of the values instead of the values themselves. It was first introduced by Charles Ed-
ward Spearman in his work ’The proof and measurement of association between two things’
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(Spearman, Charles Edward, 1863-1945). Through this coefficient, the monotonic relationship
between the two variables is examined. The value of the Spearman correlation coefficient is
also between -1 and 1. The value of -1 means that the ranks of both variables are behaving
oppositely. The value that has the highest rank in variable A corresponds to the one with the
lowest rank in variable B. If the Spearman correlation coefficient has a value of 0 the absence
of a monotonic relationship between the data can be established. One advantage of the rank
correlation is its smaller sensitivity towards outliers. Moreover, it is not affected by linearly
transforming the data, and no underlying assumption of the normality of the data exists
and is, thus, a non-parametric coefficient. Equation 2.2 defines the Spearman correlation
coefficient.

rs = 1− 6
∑

d2i
n(n2 − 1)

(2.2)

Where:

rs = Spearman’s rank correlation coefficient
di = difference between the two ranks of each observation
n = number of observations

2.3 Indicator correlation

In the work of Pearson (1901) the correlation value between two Boolean vectors (0 and 1)
was introduced as the phi (ϕ) coefficient. In this case, the Pearson and Spearman correlation
estimated between two binary vectors will return the ϕ coefficient. The indicator correla-
tion offers the possibility of calculating the ϕ coefficient for different quantiles or threshold
values. Considering a quantile or a threshold value (α), the original values of A and B are
transformed to binary values (0 and 1) by comparing them to the value of α (as in equation
2.3). The calculated correlation between the indicator series is called the indicator correla-
tion. The latter can be calculated for classified non-quantitative data (Řezanková and Everitt,
2009). The indicator series is derived as follows:

It,α =

{
1 if A(t) ≥ α

0 otherwise
(2.3)

The practical use of such a measure in hydrology is, for example, to compare the spatial
dependence structure between one location and other locations. An example of using the
indicator correlation to compare the spatial dependence structure between weather radar
observation at gauge locations and gauge observation is seen in Brommundt and Bárdossy
(2007). In the study done by Bárdossy et al. (2021), the indicator correlation was used as a
measure of dependence to identify Personal Weather Station (PWS) with reliable observa-
tions. For this, the indicator correlation of the PWS was compared to a reference network
with trustworthy data.
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2.4 Cross-correlation

Cross-correlation is used to identify the degree of correlation over the whole distribution
of two variables (two time series). The normality of the data is also assumed. The cross-
correlation values range between -1 and 1, with a value of 1 indicating that the two data sets
are identical. Equation 2.4 defines the cross-correlation coefficient.

rx,y =

∑n
i=1(hx(t)− h̄x)(hy(t)− h̄y)√∑n

i=1(hx(t)− h̄x)2
√∑n

i=1(hy(t)− h̄y)2
(2.4)

Where:

rx,y = cross-correlation between two locations (x, y)
hx(t) = time series at location x
hy(t) = time series at location y
n = number of observations

The cross-correlation can be calculated for indicator series and different thresholds (or
quantiles), as in Brommundt and Bárdossy (2007). Additionally, the cross-correlation coeffi-
cient has been used to evaluate the spatial variability of rainfall between different locations
and to derive a spatial correlation function (Berndtsson, 1987).

2.5 Coefficient of determination

Linear regression models are used to reproduce observed values using a simple function,
whose parameters are derived from the data. To assess the agreement between the esti-
mated and observed data, the coefficient of determination (R2) can be used as a measure
to quantify the quality of the applied model (defined by equation 2.5). It reflects the vari-
ation between the model input and output data and enables identifying the fraction of the
observed variance that is explained (or not explained) by the simulated data (Wright, 1921).
Usually it varies between 0 and 1, where 1 reflects a perfect match. Though R2 can have
negative values in worst-case scenarios.

R2 = 1−
∑

i(yi − ȳ)2∑
i(yi − y∗i )

2
= 1−

SSref

SStot
(2.5)

Where:

R2 = coefficient of determination
yi = observation dataset
y∗i = simulated dataset
SSref = is the sum of squares of the residual errors
SStot = total sum of errors
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2.6 Kolmogorov-Smirnov test

The goodness-of-fit test for a sample was initially introduced by Kolmogorov (1933). The
Kolmogorov-Smirnov (KS) test for two samples was presented by Smirnov (1939). KS is
a non-parametric test used to examine the relationship between two functions. It allows
comparing the similarity of two distribution functions by measuring the separating distance
between the two curves for every observation. The null hypothesis (H0) states that the two
data originate from the same distribution function. The opposite hypothesis (H1) states that
both distributions have different distribution functions. Usually, a maximum p-value of
5% is used to accept H0 or reject it. The KS test values lie between 0 and 1. Considering
two cumulative distribution functions, F (x) and G(x), one can mathematically express the
dominance of one distribution over the other by the first-order stochastic dominance test.
If F (x) lies completely to the right of G(x), then F (x) has first-order stochastic dominance
over G(x) (Tanaka et al., 2012).∫

u(x)dF (x) ≥
∫

u(x)dG(x)∀u ∈ ℜ (2.6)

The two-sided KS statistic is used to test the hypothesis that F (x) and G(x) are identical,
and the null and alternative hypotheses H0 and H1, are formulated as follows:

H0 : F (x)−G(x) = 0∀x ∈ ℜ (2.7)

H1 : F (x)−G(x) ̸= 0∀x ∈ ℜ (2.8)

As for the one-sided KS test, the stochastic dominance of one distribution over the other
is tested:

H0 : F (x)−G(x) ≤ 0∀x ∈ ℜ (2.9)

H1 : F (x)−G(x) ≥ 0 for some x ∈ ℜ (2.10)

The two-sided KS test KS2 and the one-sided KS test KS1 are expressed as:

KS2 =

√
nm

N
max |F1,n(Xi)−G2,m(Xj)| for 0 ≤ i ≤ N (2.11)

KS1 =

√
nm

N
max(F1,n(Xi)−G2,m(Xj)) for 0 ≤ i ≤ N (2.12)

Where:
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n = sample size of F (x)

m = sample size of G(x)

N = n+m

Gnedenko and Korolyuk (1951) found a simpler combinatorial proof of the KS equations,
a proof that was further elaborated by Hodges Jr (1958) and is implemented in the Python
library Scipy (Virtanen et al., 2020). The latter was used in this thesis.

2.7 K-Mean clustering

Diday and Simon (1976) defined clustering as a pattern recognition technique to identify ob-
jects with similarities or dissimilarities. One of the most common clustering approaches is
the K-Mean algorithm. The aim of K-Mean clustering is to group data based on the separat-
ing distance between a centroid and the data points. The number of centroids is equal to the
number of chosen clusters, and the optimal location of the centroid (cluster center) is found
by an iteration procedure. The goal is to start with random locations for the centroids, cal-
culate the distance between each point and centroid, assign each point to the group with the
nearest distance, recalculate the centroid location as a mean of all points within the group,
and repeat the procedure until the points belonging to each group do not change anymore.
At the end of this process, points belonging to the correspondent group are identified and,
hence, clustered. The idea was developed by Steinhaus et al. (1956). Different distance mea-
sures can be used; the most common one is the Euclidean distance.

2.8 Zero-inflated problems

Several environmental variables that have many zero observations cannot be well repre-
sented by standard distributions (for example, normal) and need special handling (Heilbron,
1994). The zero values could be due to correct observations, instrument malfunction, or a
detection limit. A variable is considered zero-inflated if the number of available zero values
is excessively large, which is the case for rainfall data. For the latter, the number of zeros is
scale dependent and predominates the observations on the sub-hourly scale (see Table 2.1).
For a 5-minute temporal resolution, the probability of having a zero value is around 94. The
high number of zeros affects, for example, the variogram estimation, namely deriving the
spatial correlation structure of the rainfall field and hence the interpolation results.

Temporal aggregation 5min 30min 60min 360min 720min 1440min
P0 (probability Pcp=0) 0.94 0.89 0.87 0.72 0.63 0.49

Table 2.1: Average P0 values derived from DWD stations for several temporal aggregations.



3 Space-time quality control of intense point
observations

The following sections are based on a publication published as ”Technical Note: Space–time
statistical quality control of extreme precipitation observations” (El Hachem et al., 2022).

3.1 Literature review

Defining an outlier might be intuitive to many, but it has been stated alternatively done by
several researchers. For instance, for Barnett and Lewis (1994) an observation is defined as
an outlier if it represents an inconsistent behavior with regard to other data values. In the
work of Hawkins (1980), an observation is seen as an outlier if it diverts substantially from
other values. In other words, it might have been produced by an alternating mechanism.
For Iglewicz and Hoaglin (1993) an outlier is defined as an observation that arouses suspicion
to the analyst and as it might belong to a different data distribution. Generally speaking,
there are two types of outliers: those associated with an error and those with a real observa-
tion. Several reasons can affect the measurement quality. For example, instrumental errors
(e.g., use of the wrong instrument, equipment failure, inappropriate equipment operation)
or/and human-related errors (false reading or documenting, or even derivation of observa-
tions). Errors can also happen if the measuring site is falsely chosen. For example, placing a
rain gauge in the valley of a mountain or beneath a tree. Such measurements provide false
representativeness of the underlying process.

Special care is needed for Hydroclimatological data, especially for precipitation data with
unique occurrences in space and time. For instance, if an observation was not correctly cap-
tured, reconstructing it is hardly possible, especially for single (localized) rainfall events.
However, information about precipitation extremes with reliable quality is predominant for
many design purposes, such as flood prediction, extreme value statistics, and stationarity
analysis, to name just a few. In order to provide reliable data, many Quality Control (QC)
algorithms have been implemented by weather service agencies. As an example, a compre-
hensive QC algorithm for daily surface meteorological observations (temperature, precipita-
tion, snowfall, and snow depth) was presented by (Durre et al., 2010). The applied method
for detecting false precipitation observations consisted of several steps. At first, a clima-
tological outlier check is used to flag values exceeding a certain temperature-dependent
threshold. Secondly, a spatial consistency check is used to compare the target value to
neighboring ones. An observation is defined as an outlier if the difference compared to
neighboring values exceeds a certain climatological percent rank threshold. Similarly, in the
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work done by Hubbard et al. (2005) for daily temperature and precipitation values, quality
was checked by a four-step procedure. Using the long-term mean at a reference location, a
value is flagged if it does not belong to the interval mean ± 3 standard deviation. A further
step was to check how large the difference was between the observed and estimated values
using a spatial regression technique. The method was tested for six stations, and the au-
thor concluded that the method had a success rate of 40%. A more recent study to identify
erroneous hourly rain gauge observations was done using radar Quantative Precipitation
Estimates (QPE) as support information Qi et al. (2016). Many QC algorithms use an in-
terpolation method to estimate the reliability of a target observation using the surrounding
locations. Ingleby and Lorenc (1993) defined this mathematically as the probability of an ob-
servation being suspicious. Other QC methods are available, but mainly for time series
analysis and overlook the challenge of rainfall events’ space-time dimension.

Rainfall measurements from rain gauges are typically taken at specific spatially dis-
tributed locations with defined time intervals, such as every minute, hour, or day. How-
ever, precipitation events are actually continuous processes in space and time. Furthermore,
many precipitation observations have zero values, which can significantly impact the data
distribution. For example, at the hourly scale, around 90% of observations may have zero
values, and this percentage can be even higher, around 95%, for data with 5-minute tem-
poral resolution. This can result in highly non-normally skewed distributions with heavy
tails, which can affect the statistical analysis of the data. To address the issue of zero values,
measures such as Box-Cox transformation with appropriate parameters can be applied to
alleviate the effect of zeros, as suggested by (Box and Cox, 1964).

In the following section, a statistical space-time methodology is used to detect outliers
in intense precipitation observations. Outliers are identified as observations that exhibit
significant disagreement with their neighboring locations. To differentiate between correct
and false observations, the detected outliers are validated using supporting information,
such as discharge and radar measurements.

3.2 Data description

The investigation utilized the German-wide precipitation dataset from the Deutscher Wet-
ter Dienst (DWD), which provides data on average annual rainfall in Germany, ranging
from around 800 mm to up to 2100 mm in higher elevations of the Alps in the south. The
DWD operates a network of approximately 1000 rain gauges across Germany, with vary-
ing temporal resolutions, including minute, hourly, sub-hourly, and daily data. Hourly and
sub-hourly data have been available from the 1990s onwards, and the number of stations
providing such data has been continuously increasing over time. However, the number of
stations with daily observations has been decreasing as they are being replaced by auto-
matic rain gauges. It’s important to note that rain gauges located near the border, within a
30-kilometer inland buffer, were not included in the analysis. The use of the DWD precipita-
tion dataset provides a comprehensive and reliable source of precipitation data for Germany,
allowing for a detailed investigation of areal extremes and their spatial extent in the region.



3.2 Data description 15

In the 1990s, most DWD rain gauges were tipping buckets or drop counters. From 2000
onwards, these were replaced by weighing gauges (OTT Pluvio), and since 2017, these have
been replaced by combined tipping buckets and weighing rain gauges (Lambrecht rain [e]).
The precipitation data from the recent DWD (German Meteorological Service) observation
network undergo multiple quality control steps to ensure data accuracy and reliability. The
first step involves a quality control process at the automatic weather stations, where rel-
atively wide thresholds are applied for tests such as completeness, thresholds, temporal
consistency, and internal consistency. Based on these tests, a quality flag is assigned to the
data, and it is then submitted to a database. Next, a tighter quality check is performed using
the QualiMet software, which applies more stringent thresholds for tests related to com-
pleteness, climatological consistency, temporal consistency, spatial consistency, and internal
consistency. Questionable values are manually checked and corrected, and the quality label
is adjusted accordingly. A final quality check is conducted after all the data for a month are
available, with a focus on aggregate values. DWD also has procedures in place for identify-
ing and correcting or describing errors in historical data. Although the quality of historical
data is generally considered to be reasonably good, there may still be some doubtful val-
ues, particularly for pre-1979 data, on the order of about 0.1-1%. It’s important to note that
the data may be influenced by non-climatic effects, such as changes in instrumentation or
observation time. In most cases, the data are reported ”as observed,” meaning no homoge-
nization procedure was applied. Overall, DWD implements quality assurance measures to
ensure the accuracy and reliability of precipitation data, but users should be aware of po-
tential limitations and uncertainties associated with historical data and non-climatic effects.

As independent data for verification, radar-derived rainfall QPE and discharge observa-
tions from the state of Bavaria were used. The radar data used is the product RADOLAN-
RW that is provided by the DWD in hourly and daily resolutions starting in 2005 (DWD
Climate Data Center (CDC), 2021b). These products have been gauge-adjusted with the ob-
served hourly station data. The occurrence (or absence) of precipitation observations in the
radar data over the target location is an indication of the quality of the observation. The
discharge data were quality checked and provided by the environmental agency of Bavaria
with hourly and daily resolutions for approximately 400 gauges within the region of Bavaria
(Bayerisches Landesamt für Umwelt, 2022). Different headwater catchments were derived and
selected to validate the results. A reaction (within a few hours) in the headwater catchment
discharge is expected after the event occurs in the case of correct rainfall observations.

In Fig. 1.1 a map of the locations of daily and sub-daily rain gauges along their spatial
density is shown. The map shows that the stations have a heterogeneous spatial distribu-
tion, where some areas have a higher observation density than others. The spatial density
was calculated using a Kernel Density Estimate (KDE) with a Quartic shape and a radius of
influence of 30 kilometres. Further information regarding KDE estimation can be found in
Yu et al. (2015).

A quick analysis of the data shows unusual and unrealistic observations, especially in the
1-minute data. Fig. 3.1a shows an example of comparing minute to hourly data for a ran-
domly selected station. One can see in Fig. 3.1b that in the hourly aggregated minutely data,
physically unrealistic extreme values (above 400 mm) are present. When looking closely into
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the 1-minute data, a value of 9.6 [mm] was recorded for 86 continuous time steps, leading
to such outliers in the data. The reason for such values is not specified but could be due to a
technical error.

(a) Observed time series (b) False observation values

Figure 3.1: Example of minutely and hourly data for the same station with an evident outlier
in the minute data.

3.3 Method

3.3.1 Data transformation

As an initial step, a Box-Cox transformation as described by equation 3.13 was applied for
every variable X and temporal aggregation t to reduce the effect of the skewed precipitation
distribution (Box and Cox, 1964).

X∗
t =

{
(Xλ

t −1)
λ if λ ̸= 0

log (Xt) if λ = 0
(3.13)

Where:

X∗ = transformed precipitation data at location u and temporal aggregation t

X = original precipitation data at location u and temporal aggregation t

λ = transformation factor for temporal aggregation t

To find which transformation factor λ is most suitable, several simulated lower truncated
standard normal distribution functions (sampling space bounded by [−∞ < a = p0, b =

+∞]) were fitted to the original data (Burkardt, 2014). The probability of having a value
above or below p0 is then derived (p0 probability of having 0 mm precipitation value).

From this probability (denoted pnorm) a new standard normal distribution is generated
where (x < pnorm = 0, x >= pnorm = x). From this distribution, the skewness γnorm is
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calculated. The goal now is to find which transformation factor minimizes the difference
between γnorm and the original data skewness. This was done for each station separately
and for all aggregations (minutely to daily). Eventually, an average transformation factor
from all stations (denoted hereafter as λ) was derived for each temporal aggregation. The
results of this procedure can be seen in Table 3.1 and Figure 3.2.

Table 3.1: Average Box-Cox transformation factor (λ) per temporal aggregation.
Temporal duration [min] 60 120 180 240 360 720 1440
Transformation factor λ 0.097 0.155 0.219 0.262 0.318 0.427 0.499

(a) Skewness values (b) Transformation factor

Figure 3.2: Left panel shows the skewness values along the mean and the median of all sta-
tions before and after transformation. The right panel shows the average transfor-
mation factor (λ) derived from all stations and for each temporal aggregation.

Once λ was calculated, the original precipitation data were transformed as in equation
3.13, and in the newly truncated normalized space, the following approach was imple-
mented to find outliers in the precipitation data over several temporal resolutions.

3.3.2 Ordinary Kriging

Kriging was first introduced by the French mathematician Georges Matheron in his book ’Le
Krigage universel’ (Matheron, 1969). Ordinary Kriging (OK) is part of Geostatistics, which
refers to multivariate statistics for neighboring values in space (Cressie, 1988). The main
concept behind Geostatistics is the consideration of the data as spatially dependent random
numbers with a variance that increases with increasing separation distance. As with other
variance-dependent interpolation methods, OK aims to minimize the estimated variance at
the unobserved location, providing the best linearly unbiased estimate.

The observed data at the corresponding locations are seen as a realization of the regional-
ized variable of the random space function. Since for every location u in the domain D there
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are many (infinite) random realizations Z(u) describing each Z(u) using its own distribu-
tion function FZ(u) is practically impossible. To simplify the problem, different hypotheses
are considered. The first hypothesis, which is a central one in Geostatistics is stationarity.
Simply put, the whole domain D is represented by a single distribution function regardless
of the location of the points u in D. A further simplification is introduced with the second-
order stationarity. For this, the expected value of the random function E(Z(u)) is constant
over the domain, and the covariance of two random variables corresponding to two loca-
tions ui and uj depends only on the separating vector h = ui − uj between the two points.
This means that the covariance depends on the spatial configuration of points and not their
exact values. The second-order stationarity hypothesis requires that a covariance function
exists.

The previously mentioned hypotheses are followed by the following: a constant mean, a
constant variance, and a spatial correlation that depends only on the distance lag vector h.

For any u in D:

E[Z(u)] = mE[(Z(u+ h)−m)(Z(u)−m)] = C(h)C(h = 0) = V ar[Z(u)] = const (3.14)

The covariance function is a product between two terms, where each term is a devia-
tion from the mean. The two variables are Z(u) and Z(u+h). In second-order stationarity,
the correlation depends only on h and the covariance is a function of h, C(h). The covari-
ance function describes the dependence within the random space as a function of distance.
Hence, the spatial correlation structure can be described by C(h). Since for a separation dis-
tance of h = 0, the covariance is the same as the variance, the existence of a finite variance
for D is required.

σZ
2 = C(h = 0) is finite.

This is often not the case in many natural processes (such as rainfall), where the variance
increases with the distance. To solve this problem, the final hypothesis, known as the intrin-
sic hypothesis, was introduced. Same as the second-order stationarity, the expected value
is constant all over the domain D, and the increment of the variance between two locations
depends only on the separating vector h. The intrinsic hypothesis is a simplification of the
second-order stationarity that is not constrained by the variance but by the variance of the
increments.

The intrinsic random function is a simplification of second-order stationarity that does
not need the variance. The assumption is that the variance of the increments Z(u+h)-Z(u) is
constant.

For any u in D:

E[Z(u)] = m
1

2
V ar[Z(u+ h)− Z(h)] =

1

2
E[(Z(u+ h)− Z(u))2] = γ(h) (3.15)

where: Z(u+h)-Z(h) is called the increment and γ(h) the (semi-) variogram.

Since the mean is constant, the increments must have a mean of 0. The variance of the
increment is denoted by the square root of the increments by taking the expected value.
This is called the (semi-) variogram γ(h).
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The (semi-) variogram is defined by:

2γ(h) = E[Z(u+ h)− Z(u)]2 (3.16)

Where:

Z(u+ h) = observation value at location u+ h

Z(u) = observation value at location u

h = separation distance

The relation between the covariance function and the variogram is:

γ(h) = C(0)− C(h) (3.17)

C(0) is the variance; in the intrinsic case, the variance does not exist; the variogram and
the covariance are fully equivalent for second-order stationarity; however, for intrinsic, only
the variogram is valid. That is why we focus on the variogram. The variogram reflects how
the variance between the data increase with the separation distance between the data. C(h)
starts at the variance of the points C(0), the covariance reflects the decrease of correlation
with distance, and the variogram shows the increase of variability with distance.

Properties of the Variogram

For a given separating distance h between pairs of data, the variogram needs to have the
following properties:

1. γ(h = 0) = 0 (always 0)

2. γ(h) ≥ 0 (because it is a square, a variance)

3. γ(h) = γ(−h) (symmetrical, because it is a squared difference)

4. Variance of the increment is a function of h

5. Asymptotic behavior: there is a kind of limit of continuity

6. Nugget effect: for very small distances, there are differences

7. Anisotropy: γ(h) may differ from one direction to the other

The experimental variogram is derived from the observed values and their spatial distri-
bution. For each case, 30 observations were used. A theoretical variogram model was then
fitted to the experimental one. Once the variogram was estimated, OK could be performed.

OK is a regionalization method to estimate an unknown value at a target location by
solving a linear equation system by minimizing the estimation variance and maximizing
the accuracy (no systematic error).

The estimation of the target location Z∗ using the surrounding observations Zi at the
measurement locations n is defined by a linear estimation equation:
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Z∗ =
n∑

i=1

λiZi (3.18)

The Kriging estimation variance at the target location is formulated as:

σ2(u) = −
n∑

i=1

n∑
j=1

λiλjγ(ui− uj) + 2
n∑

i=1

λiγ(ui− u) (3.19)

The weights λi are solved by guaranteeing the unbiased property of OK. Namely, the
expected value of the estimation value should be equal to the expected value of the field Z.
For this, the Lagrange multiplier µ is introduced, and the following linear system is solved:

n∑
j=1

λjγ(ui − uj) + µ = γ(ui− u) ∀i = 1, .., n (3.20)

n∑
i=1

λi = 1 (3.21)

Note that γ refers to the (semi-) variogram which can also be replaced by the covariance
function with the respected modifications. These two functions reflect the change in correla-
tion as a function of the separating distance between the spatially distributed values. Note
that for estimating the variogram, the cross-validated location is not used.

3.3.3 Outlier detection

Initially, a method was proposed for identifying outliers in groundwater quality data
(Bárdossy and Kundzewicz, 1990). In this work, a similar approach was implemented for
intense precipitation data and is extended by a verification of the results using additional
data such as radar or discharge observations. For detecting suspicious values, the concept of
jackknifing is used, a concept initially developed by Quenouille (1949, 1956). The concept is
based on removing one (or each) value from the data and estimating it again. As the focus is
on intense observations, the four largest annual values for every station are inspected. Each
cross-validated value is estimated using the nearest 30 neighboring locations with valid ob-
servations. This is the minimal number of points needed for a reliable variogram estimation.
The estimated value is only affected by the nearest points and their configuration. This is
known as the shading effect in Kriging, i.e., the stations further away have smaller weights.

Since many possible faulty observations can only be detected at lower temporal resolu-
tions, the procedure was applied over several temporal aggregations. For example, when
looking at sub-daily and sub-hourly values, a single observation might not be unusual, but
the accumulation of many values reveals suspicious sums. Furthermore, single events might
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occur on high temporal scales (e.g., hourly) and are not detected on lower aggregations (e.g.,
daily).

Each cross-validated value is estimated using the nearest 30 neighboring locations with
valid observations. The spatial correlation structure is reflected by the variogram, which
is derived in the rank-space domain and rescaled to the variance of the data. This allows
for variogram calculation in a more robust manner (Lebrenz and Bárdossy, 2019). The target
location is calculated by solving the Kriging equation, and the estimation variance is noted.
For identifying unusual observations the ratio between the absolute value of the difference
between The observed and estimated values and the estimation variance are calculated. This
Criteria Ratio (CR) describes the relative agreement or disagreement between the observed
value and the spatial surroundings for the corresponding time step. Larger CR values reflect
high spatial-temporal disagreement, and low values denote greater agreement. Based on
the CR value, different types of events can be identified, namely those occurring on a local
scale with high CR values, and others on a regional scale with low CR values. Following
Bárdossy and Kundzewicz (1990) a CR value of three is initially used to identify suspicious
observations. The CR value is derived for every cross-validated event. Eventually, the
CR value is related to all of the observed (interpolated) data, establishing the possibility of
finding a suitable CR value for the identification of precipitation outliers.

CRi(u) =
|Z∗

i (u)− Zi(u)|
σi(u)

(3.22)

Where:

Z∗
i (u) = estimated value at location u and timestep i

Zi(u) = observed value at location u and timestep i

σi = kriging standard deviation at location u and timestep i

Since precipitation events occurring on a local scale might represent an actual small-scale
event to validate the first or second case, the suspicious events are compared to the observed
radar QPE or discharge values in the corresponding catchment. Despite having their own
drawbacks, radar and discharge observations are used here as a qualitative decision-support
tool.

The flowchart in Fig. 3.3 describes the implemented space-time precipitation outlier de-
tection scheme.

3.3.4 Method testing using data corruption

For further testing of the reliability of the method, 20 stations without any detected outliers
were selected, and their values (same events as before) were ’artificially’ manipulated. The
transformed observations of each target location were decreased and increased by several
percentages (from 25 to 100 %) and the outlier detection method was tested. The results are
presented in table 3.2. By decreasing the observed value until reaching a false zero observa-
tion, the method was able to identify on the hourly scale around 60 % and on the daily scale
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Figure 3.3: Flowchart summarizing the described method, starting with the data download
procedure and ending with the identification of suspicious observations.

94 % of the cases as being outliers. On the other hand, by increasing the error value to up
to 100 %, almost all values were detected on all temporal aggregations. This emphasizes the
validity of the method, especially regarding identifying false high observations.

Table 3.2: Number of newly detected outliers after modifying by different percentages the
cross-validated observations of 20 randomly selected stations.

Temporal aggregation [min] 60 120 180 240 360 720 1440

Number of events 150 150 150 150 150 150 150

Minimum of the minima [mm] 5.12 5.16 5.17 5.13 5.26 5.6 5.17
Average of all averages [mm] 11.05 12.67 14.41 14.41 16.85 19.8 24.03
Maximum of the maxima [mm] 51.2 50.1 53.47 63.93 71.92 73.6 76.37

Pe
rc

en
ta

ge
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ro

r -100 [%] (false zero) 88 115 102 125 100 124 141
-50 [%] 10 29 38 41 33 46 65
-25 [%] 2 3 13 9 8 8 4
0 [%] 0 0 0 0 0 0 0
+25 [%] 23 45 48 52 65 46 55
+50 [%] 74 88 118 121 119 113 116
+100 [%] 149 150 150 148 150 149 149
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3.4 Results

3.4.1 Outliers vs. Single Events

The left and right panels of Fig. 3.4 represent the CR value versus the ratio between the
interpolated and observed values. All values denoted in red have a CR value above 3. This
Fig. allows for identifying the events that are of interest and relating the CR value to the
interpolated and observed data. Note that the observed and interpolated values are in the
original non-transformed space; only the CR values are calculated from the interpolation of
the transformed values. The values in the plot having a ratio of interpolated to observed of
5 are values obtained when a neighboring station (or stations) simultaneously recorded an
outlier (in this case, a false high observation). This leads to detecting a false outlier. This can
be accounted for by running the method again after all neighbours have been checked.

Figure 3.4: The left and right panels show for the minutely aggregated data and the daily data
the CR values versus the ratio of interpolated and observed values, respectively.

In the left and right panels of Fig. 3.5 the Cumulative Distribution Function (CDF) from all
investigated observations was calculated, and the location of the detected outliers is marked.
These spread along the CDF, signifying that the approach is not focused only on high values
but is also beneficial for identifying small values that highly differ from their neighboring
observations. The left panel of Fig. 3.5 shows the results for the original hourly observations.
The right panel shows those for the aggregated minute observations. By comparing the two,
the quality control procedure of the DWD can be investigated. Spatial consistency is checked
more intensively by the DWD for higher aggregated precipitation data ( ≥ 1 h) than for high
temporal resolution data (e.g., 1 min). For example, in the hourly data, none of the largest
sums (> 60 mm h) are detected as outliers, and only one observation is larger than > 80
mm h. In the hourly data based on the aggregated minute data, many values above 80 mm
h exist and are mostly all detected as being suspicious. There are even unrealistic values
with accumulated sums above 200 mm h, which can be caused by several faulty ’small’
measurements or a few single large spikes in the data.
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Figure 3.5: The left panel shows the CDF of all investigated hourly events, with the detected
outliers marked in red. The right panel shows the CDF of all investigated hourly
events, with the detected outliers marked in red. Note that an upper limit of 200
mm h−1 was set.

3.4.2 Selected case studies

The example in Fig. 3.6 shows the presence of unusual values in the minute data of the
cross-validated station (> 8 mm min−1). In the right panel, the radar data for that hour do
not show such a high-intensity event above the investigated location. Hence, the detected
outlier is categorized as a false observation. In Fig. 3.7, the example shows a similar case in
the minute data, but the radar image confirms the occurrence of the event. This observation
is then marked as a single event.

Figure 3.6: The left panel shows the time series of the target (in red) and neighboring obser-
vations (in blue). The right panel depicts the values at the neighboring stations
(in blue), the observed value (in red), the estimated value (in orange), and the
Radolan-RW QPE data for that hour.
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Figure 3.7: The left panel shows the time series of the target (in red) and neighboring obser-
vations (in blue). The right panel depicts the values at the neighboring stations
(in blue), the observed value (in red), the estimated value (in orange), and the
Radolan-RW QPE data for that hour.

Discharge data from small headwater catchments in the federal state of Bavaria with one
(or many) rain gauge stations within the catchment were analysed. If a rain gauge observa-
tion was identified as suspicious, the discharge values for the next few hours following the
event were checked. An example of this is shown for the upper Pegnitz catchment, which is
located in the northern part of Bavaria. Panel (a) in Fig. 3.8 shows an hourly outlier obser-
vation that resulted in a reaction in the corresponding headwater catchment. On the other
hand, panel (b) in Fig. 3.8 shows the opposite case, i.e., an hourly outlier that did not cause
any reaction in the Pegnitz catchment.

Figure 3.8: Two examples are shown for the observed discharge and precipitation data (+/-
1 day) for detected outliers with (a) a discharge increment and (b) without a dis-
charge increase.
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3.4.3 Results over all stations and aggregations

The method was applied over several temporal aggregations (hourly to daily), and events
that were suspicious over single or several aggregations were identified. The result of this
can be seen in Table 3.3. The diagonals show events that are common over the correspond-
ing test and reference temporal aggregation. Some observations are only suspicious until a
temporal aggregation is reached or exceeded, beyond which they are not detected anymore.
The result of this can be seen in the values above and below the diagonals in Table 3.3.
Another factor that affects the number of outliers is the number of active stations and the
corresponding device quality. To investigate this, the number of active stations versus the
number of detected outliers for the corresponding hour is visualized in Figure 3.9. The red
curve in Fig. 3.9 represents the ratio of detected outliers to the number of active stations (for
every hour), which is shown by the blue curve. As the number of active stations increases,
the number of detected outliers decreases which is an indication that the quality of the ob-
servations is improving with time. In the right panel of Fig. 3.9 the effect of seasonality
was inspected. The detected outliers were grouped by the month in which they occurred.
The results show that in the summer period, the number of detected outliers is much larger
than in the winter period. The most convectional rainfall processes occur in the summer
period, leading to more small-scale single events. Finally, the percentage of outliers in the
investigated events of every station for the hourly aggregated data is presented in the right
panel of Fig. 3.10. The map does not present any clear structure related to elevation and
topography. Moreover, the map shows that outliers can happen everywhere, meaning this
is not a systematic problem.

Table 3.3: The diagonals show the number of unique days with identified outliers. The values
above the diagonals reflect the number of different days between the reference and
test aggregations. For example, according to the test, there are 358 days in the
reference 60-minute aggregation that are not in the 120-minute test aggregation.

Test aggregation
60 min 120 min 180 min 240 min 360 min 720 min 1440 min

R
ef

er
en

ce
ag

gr
eg

at
io

n 60 min 1581 358 392 414 498 762 898
120 min 218 1441 210 237 354 646 787
180 min 344 302 1533 240 341 657 825
240 min 437 400 311 1604 329 657 837
360 min 539 535 430 347 1622 559 762
720 min 771 795 714 643 527 1590 439
1440 min 889 918 864 805 712 421 1572
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Figure 3.9: Left figure shows the number of hours with outliers within the investigated
hourly events (aggregated from 1 minute) of all stations per year. The right figure
shows the number of detected outliers within the investigated events for every
month within the hourly data using a CR value of 3.

Figure 3.10: The left panel shows the percentage of outliers in the investigated events of every
station on an hourly scale. The right panel shows the average percentile of the
detected outliers.
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3.5 Summary

The presence of outliers in the data affects the results of any analysis dramatically. In the
event that these outliers are false observations, an incorrect evaluation and, consequently,
design values are derived. On the other hand, if the outliers present a correct observation,
disregarding them may lead to many losses and an underestimation of critical structures.
Therefore, the previously presented method is essential to finding reliable outliers in intense
point observation.

One key aspect when working with precipitation is the high spatial-temporal variabil-
ity and the zero-inflated nature of the variable. To handle the first aspect, the procedure
was applied over several temporal aggregations, which helps in handling convective-driven
events. Such events are often correct but represent an outlier, in this case, a single event. To
cope with the presence of the many zeros, a Box-Cox transformation with a suitable param-
eter was implemented. The procedure was applied to intense observations and revealed
many outliers that are false measurements.

Furthermore, a verification step was undertaken, in which data were artificially corrupted
in both directions and inspected. The method revealed success in detecting much of the cor-
rupted data, especially as the value of the added error increased. Many events are detected
as outliers, often because they are single events occurring in the warm season. Their occur-
rence or falsehood was validated by weather radar and/or discharge observations. Finally,
the flagged data are gathered and kept aside for further inspections.

Still, there are some possible modifications. For example, on the sub-hourly scale, the
effects of advection and correlation between subsequent time steps are more predominant
and should be incorporated in the Kriging procedure. Another aspect is the directional
dependency that can be seen in some events, where rainfall is occurring on a local scale or
within a certain frontal system. This leads to detecting a false outlier due to the high level
of disagreement between the target and neighboring locations. These cases could be further
handled by including anisotropy in the interpolation method.



4 Spatial extent from point observations

The goal of this chapter is to present several methods that were developed to understand
the spatial extent of extremes using point observations. The focus was laid on the behaviour
of neighbouring locations within an intense event.

The following questions are related to capturing the spatial extent of extremes using point
observations:

1. How well can the spatial extent of extremes be captured and described?

2. What are the limitations of using point observations?

4.1 Literature review

Investigating the spatial extent of rainfall extremes was traditionally done using point obser-
vations. Different statistical measures describing the correlation structure between spatially
distributed data were used. One of the most straightforward approaches is to calculate the
correlation values (Pearson, Spearman, or Indicator correlations) between pair-wise data
and plot them against the separating distance. A typical behaviour shows a decreasing cor-
relation with increasing distance. When done for event-based data, the procedure was seen
to be reliable on daily and larger temporal aggregations, where a clear dependence between
correlation and separating distance values was present (Gunst, 1995). However, for sub-
daily and sub-hourly data, this dependence measure showed a more chaotic behaviour and
was only relevant for small-scale regions (Serinaldi, 2008). One of the reasons for this is the
time lag factor (advection) that plays a major role in sub-hourly scales. To cope with this
challenge, Burauskaite-Harju et al. (2012) used the cosine similarity measure within a moving
temporal window approach. By doing so, it was possible to inspect the spatial dependence
of sub-daily events while accounting for the time lag of precipitation occurrence at subse-
quent stations (movement of the front). The presented method was seen as more successful
for low-intensity events, but as the latter increased, the uncertainty of the results became
larger, and the similarity measure dropped quickly with separating distance.

In the work done by Touma et al. (2018) the spatial extent of daily extreme precipitation
events over the United States was investigated using daily station data with long records.
The methodology was based on indicator semi-variograms that were derived from intense
daily observations. The semi-variogram was used to model the dependence structure be-
tween neighbouring observations, from which the extent of the extreme events (defined
as length scale) was derived. The analysis showed a clear relationship between the length
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scale and the corresponding region or season. A similar approach was presented by Tan et al.
(2021) using information from semi-variogram models derived from extreme daily events on
a global scale. In the work done by Marzban and Sandgathe (2009) the variogram is applied to
assess the quality of gridded forecasts produced by numerical weather models. The aim was
to identify if the models could reproduce the spatial structure of the observed fields derived
from weather radar reflectivity fields. For simplicity, only isotropic variograms and one var-
iogram per field were considered. These were derived by randomly sampling 40 samples
from each gridded dataset. Their results showed the possibility of employing variograms
as a tool to compare spatial fields, but with limitations. For instance, anisotropy was men-
tioned but not implemented, and by using all values (zeros as well), the variograms and sub-
sequent results changed. Moreover, a single variogram was assumed to represent the entire
field, reducing the spatial variation and leading to smoothing effects. Rainfall fields present
high spatial heterogeneity, and describing them by the variogram is often not enough. As
mentioned by Diggle et al. (2003), spatial fields derived from interpolation techniques such
as kriging, where the spatial correlation structure is represented by the variogram, are only
reliable if the focus is only on the mean and variance. Aspects such as asymmetry are not
accounted for. In addition, in the work done by Teegavarapu and Chandramouli (2005) differ-
ent advantages and disadvantages of several spatial interpolation methods used to estimate
missing data at an observed location were discussed. They point out two scenarios where
such interpolation techniques fail. The first case is where precipitation did not occur at the
target location but occurred at all (or some) of the surrounding stations. In this case, the
estimated value will be positive, whereas the observation was zero precipitation. The sec-
ond case is the opposite, namely, precipitation only occurred at the target location and all
surrounding stations recorded zero precipitation. For this situation, the estimated value will
be zero.
Based on rank statistics, copulas were previously used to describe the dependence between
spatially distributed data. An advantage of using copulas is the possibility of investigat-
ing the dependence by separating the distance between values of similar magnitudes, for
example, between the high values. To account for the relationship between high and low
values, the asymmetry function developed by Bárdossy (2006) could be used. Spatial copu-
las were implemented in several previous studies for geostatistical problems, for example,
in Bárdossy and Li (2008) and Guthke and Bárdossy (2017). They are advantageous compared
to kriging approaches, especially regarding the estimated error maps.

Still, one of the challenges is that at high temporal resolution, for example, on hourly and
sub-hourly scales, the variability within a rainfall field can be substantial. On one hand, it
cannot be correctly captured by sparse rain gauges, and on the other hand, it cannot be well
replicated. Moreover, all interpolation schemes aim at minimizing the error term by solving
a linear equation system. This leads to a smoothing effect and an underestimation of the
true maxima and true variability.

In the following chapter, using the rain gauge observation, several events were selected
across different temporal aggregations. For every event, the correlation between neighbour-
ing observations was investigated, and the probability of a rainfall maxima within an event
not occurring at the centre location was calculated. This was in accordance with analysing
point maxima and the relation between point and areal maxima.
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4.2 Correlation of neighbouring data vectors

The first step of the analysis was to derive a set of events to be investigated across several
temporal aggregations. This was done by selecting for every temporal aggregation (5 min-
utes to daily) observations above a minimal threshold (as in Table 4.1) that occurred at a
single or several locations simultaneously. Eventually, all selected events were reduced to a
5-minute resolution and analysed further on (also in chapter 5). These time intervals were
referred to as significant time steps.

Table 4.1: Minimal threshold for every temporal aggregation.
T [min] 5 15 30 60 90 120 180 240 360 720 1440
P [mm] 1 2 3 6 9 12 15 20 25 35 50

To investigate how rainfall events behave in space, the spatial correlation between neigh-
bouring stations was calculated. Different events were selected on a daily scale using aggre-
gated sub-daily data based on significant time steps. For a certain location, all neighbouring
locations with simultaneous observations were identified. The Pearson and Spearman cor-
relation measures were calculated between the data vector (in this case, 24 observations) of
the target and each neighbouring location. This was repeated for each location and several
events. By applying this simple procedure, the spatial correlation between neighbouring
locations for an intense event could be visualized. The result indicated that for some events,
all neighbouring locations had a high correlation with the target (centre) location. However,
for other events, only a few neighbouring locations had a high correlation. This was an indi-
cation of the presence of anisotropy in rainfall events. A simple definition of anisotropy can
be stated as: direction-dependent correlation. Hence, if an interpolation technique were to
be applied, anisotropy should be accounted for. Moreover, two types of events were identi-
fied: those that occur on a local scale (known as convective precipitation events, with short
spatial continuity) and those that occur over a larger spatial domain (known as stratiform
precipitation events, with long spatial continuity). The examples in Fig. 4.1 show the corre-
lation values for two events. Panel (a) represents an event where there was high dependence
between the data vector of the central location and most of the neighbouring locations. In
this case, no anisotropy was noticed. Panel (b) is another event and reveals the presence of
anisotropy (direction-dependent correlation). The high dependence between neighbouring
and centre values is only limited to a few stations and follows a certain orientation. Similar
results were acquired for the Spearman correlation.
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Figure 4.1: Pearson correlation values for two different events between the centre location
and each neighbouring data vectors (24 hourly values). The gauges displayed
in red are those with a correlation value above 0.5 with the centre location. The
gauges in gray have a correlation below 0.5 with the centre location.

4.3 Correlation clouds

The spatial dependence structure between point gauges was investigated by deriving sev-
eral correlation clouds. These were related to the separating distance and were derived by
calculating the correlation between the time series at each location and all other locations.
For example, in Fig. 4.2 the Spearman and Indicator correlations were calculated from the
hourly rain gauge data in the radar area of Hannover for the period April-September. As
the separating distance increases, the correlation values drop. The Spearman correlation in
panel (a) shows the largest spatial continuity and the smallest scatter.

As described in Chapter 2 the latter was calculated between the ranks of the data and has
a small sensitivity towards outliers. In panel (b), the Indicator correlation shows that after
the separation distance of 50 km, the correlation value was negligible. Hence, on the hourly
scale, the spatial extent between the high rainfall values (above the 99 percentile) is less
than 50 kilometers. Such analysis of the correlation clouds offered insight into the spatial
dependence structure between spatially distributed observation time series.
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Figure 4.2: Spearman (panel a) and Indicator (panel b) correlation clouds calculated from
pair-wise correlation between each and all other DWD rain gauges in the region
of Hannover for the period April-September.

4.4 Local occurrence of intense events

After detecting the different types of rainfall events, the DWD sub-hourly station data set
was divided into two equally spatially homogeneously distributed data sets. This was done
by selecting for every station its nearest second neighbour. These datasets were denoted as
Group A and Group B. For every station in Group A and for each event within the significant
time steps, the neighbouring observations from Group B were identified. The following
question arose: how often does it occur that a neighbouring station in group B has a higher
observation than the centre location in group A? Answering this question was useful to
quantify how often did the centre location A had the most intense value. An example of
this procedure for one event and station can be seen in Fig. 1.1. The left panel shows that
none of the neighbouring stations had a value larger than the centre one. In the right panel,
3 neighbouring stations had larger values than the centre one. In Fig. 4.4 the results for
temporal aggregations from hourly to daily are shown.

Only the nearest neighbours (within 20 km distance) were considered, and the probability
that one of the neighbours had a larger value than the centre one was calculated. For the
hourly scale, the probability is around 14 % and for the daily scale, it is 39 %. This reflected
the fact that intense observation occurring at a single location might not be the largest within
the area of interest (in this case, around 1256 km2).
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Figure 4.3: Left panel shows an hourly intense event observed at the center location, where
most of the nearest neighbors recorded much lower values. The right panel shows
for the same location a different hourly event where several nearest neighbours
had a larger value.

Figure 4.4: Average number of intense events where at least one of the nearest neighbours
had a value higher than the center location. Each panel corresponds to a duration
starting from hourly to daily. The x-axis represent the DWD stations and the y-
axis is the average percentage. Note that the mean over all stations is displayed
by the red-dashed line.
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4.5 Clustering of step functions and variograms

Another aspect was to investigate how a rainfall event over a certain location evolved in
space. To that end, for every event at a certain location, different circles (areas) with an in-
creasing radius were constructed. For every area, the neighbouring observations enclosed
by the circle were identified, and their mean value was calculated. The ratio between the
mean of the neighbours and the central location was then calculated and assigned for this
area. The procedure was repeated until reaching a radius of up to, for example, 200 kilome-
ters. Eventually, this spatial step function was visualized, showing how the ratio between
areal and centre rainfall within an intense event evolved in space. This was done for several
events at a certain location, all other locations, and several temporal aggregations. For the
event in Fig. 4.5 the calculated step-function shows an increase in the precipitation mean
with increasing radius before starting to decrease as the radius (area) increases. By calcu-
lating these step functions, the assumption behind area-reduction factors, namely that with
increasing area, the areal rainfall decreases, could be investigated. Indeed, for many events,
the step function showed an increase with increasing area size. Moreover, from the cloud
of all step functions, either for a certain location, a certain aggregation, or for all locations,
several shapes of step functions were identified. A K-mean clustering algorithm was used
to cluster the step functions into four groups. The number of representative clusters was de-
rived using the elbow method (Robert, 1953). The implemented algorithm for step-function
calculation was as follows:

1. For a given time resolution:

a) For every station

i. Construct the empirical distribution function.

ii. Select all data above a certain percentile (ex: 99.9).

iii. For a set of radius (for example, 50 km with a 2km increase).

iv. Calculate for each event the normalized mean of the neighbours in the circle.

v. Create a step function that describes the ratio of the areal mean to the centre
location with an increase in the radius.

vi. Cluster all Step functions for this station.

The same was done by calculating the empirical spatial variogram for each location and all
selected events. The variogram is a function showing how dependence changes with dis-
tance. Depending on the spatial extent of the events, the variograms were different. Once
repeated for all locations and aggregations, K-mean clustering was applied to the variogram
clouds. Four types of variogram shapes were identified and used within the interpolation
scheme for further analysis. The step functions and variograms were derived for all loca-
tions and several events and temporal aggregations. A K-mean clustering algorithm was
used to cluster the derived functions. For example, for the daily aggregation, the results can
be seen in the left and right panels of Fig. 4.6, respectively. To find the most suitable number
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of clusters, the elbow method was used. A clustering number of four was identified as being
the most suitable. The clustered functions (step functions, variograms) were back-analyzed
to find the corresponding type of event and spatial extent. To visualize the events, a spatial
interpolation method, namely ordinary kriging, was applied to generate gridded rainfall
values.

Figure 4.5: Panel (a) shows the interpolation map of the observed data over a 1 km grid. Panel
(b) shows the derived normalized step function.

(a) Clustered step functions (b) Clustered empirical variograms

Figure 4.6: Clustering of step functions and variograms for characterizing the spatial extent
of intense daily events, derived from all stations.
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4.6 Depth functions

In this paragraph, depth functions are briefly explained. A short theoretical background and
some practical examples for deriving the depth of a data value are presented. This approach
was used to identify unusual events in the precipitation station data set.

4.6.1 Statistical data-depth

Statistical data depth emerged around the year 1970. The main idea is to derive quantiles in a
multivariate space for a multivariate observation defined by a random vector X distributed
according to a probability distribution function P . In traditional univariate statistics, quan-
tiles are derived via a total ordering of the data. A quantile of a certain point is calculated
by finding which observations are located on its left or right. The central location is referred
to as the median in a univariate space. The data depth concept attempts to generalize this
in a multidimensional space. Namely, for any point x in d-dimensional space and any dis-
tribution P , assign a depth value for this point x with respect to the distribution P , where
the depth value characterizes how centrally x is positioned with respect to the mass P (Nagy
et al., 2019).

D : ℜd × P (ℜd) → [0, 1] : (x, P ) → D(x, P ) (4.23)

The example in panel (a) of Fig. 4.7 shows the calculated depth for a random sample
corresponding to a normal distribution function. The points denoted in orange correspond
to 10 percent of the data and are geometrically located in the center of the data space. A
generalization of the median for this data set is done by considering the single observation
that has the highest depth value with respect to this sample. The median is defined as the
deepest point with respect to the given random sample. By starting from the center of the
distribution and by moving outwardly in any direction, the depth decreases until the points
on the boundaries are reached (points in red on Fig. 4.7). These points have the least depth
(d = 1) with respect to this sample. The statistical data-depth calculation can be seen as a
data- (or a distribution)-dependent ordering of points in a d-dimensional sample space; it
is a non-parametric multivariate tool that requires no assumption on the distribution of the
data.

To transfer the data depth calculation to space, the depth was calculated using common
observations between neighboring locations. For every combination of locations, the depth
of values for every time step with respect to other values was calculated. An example of the
spatial locations can be seen in panel (b) of Fig.4.7. An example of the results is presented in
the coming sections.
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Figure 4.7: Example of depth calculation in a 2D space is seen in panel (a). Panel (b) shows a
configuration of spatially clustered stations.

4.6.2 Data depth calculation

There are several functions to calculate the data depth, but the fundamental approach was
introduced by Tukey in 1975 (Tukey, 1975). All methods aim to find the depth (or centrality)
of a given point x with respect to the data space.

The data-depth function should fulfill the following properties:

1. Affine invariance: The depth value is independent of the coordinate system (or the
choice of axes).

2. Maximality at the Centre: The maximum of the depth function is always centrally
located.

3. Monotonicity is relative to the deepest point; the depth follows a monotonic decrease
while moving in any direction away from the center point.

4. Vanishing at Infinity: If a point x reaches infinity, its corresponding depth value should
reach zero.

In the following work, the Tukey data-depth function known as half-space depth was
used. A depth of a point x with respect to a measure P is defined as the smallest probability
of a closed half-space that contains x on the boundary. Mathematically defined in equation
4.24. Hence, the depth of a point x is defined by the minimum number of points lying on one
side of a hyperplane passing through x. This is eventually calculated over all hyperplanes.
Points located outside the convex hull have a depth of 0, and the depth increases as one
moves towards the center.
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D(x;P ) = inf P (H) : H is a closed halfspace with x ∈ H (4.24)

Statistical data-depth was used, for example, by Yulizar and Bárdossy (2020) to find un-
usual events occurring at a single location or several locations simultaneously. Bárdossy and
Singh (2011) used the data-depth method to find regional parameter estimations for several
catchments. In the work of Bárdossy and Singh (2008), data-depth was introduced as a tool
to find robust parameter sets for hydrological modeling. Still, the data-depth function was
not used for the spatial extent of rainfall. The problem of many dimensions often leads to
difficulties in correctly estimating the depth. A possibility is to use a dimension reduction
method such as principal component analysis.

The first analysis was conducted on neighboring pair-wise locations. The station data
were divided into two data sets with equal length, either as past and present data or as an
example for hourly data, the first half-hour and the second half-hour. The cross-depth of the
first time series in the second and the second in the first were calculated. Fig. 4.8 shows the
cross-depth of two neighboring stations. The highlighted points are those with low depth
(d < 10) and are referred to as unusual events. The focus is on the simultaneous occurrence
of unusual events, for example, the event in orange with a depth of 7. The right-hand side
of Fig. 4.8 shows the time series of the investigated pair-wise stations (curves in red and
blue) and neighboring stations. The event shown here is seen as unusual at both stations
simultaneously.

Figure 4.8: Panel (a) shows the cross-depth of two neighboring stations. The highlighted
points are those with low depth (1 < d < 10) and are referred as unusual events.
The time series for the point in red with a depth of 7 can be seen in panel (b).
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4.6.3 Simultaneous or single occurrence of unusual events

In order to apply the depth function to find unusual observations over several locations, the
following procedure was implemented:

1. Start by station A.

2. Select its nearest 8 neighbours.

3. Find common time steps and create a 9-dimensional data set.

4. Replace all zero values with a small random number.

5. Select all time steps where the maximum (the sum or the average) was above a mini-
mal threshold (for example, 30 mm/day).

6. Calculate the cross-depth of the previous values.

7. Find events that have a low depth (for example equal to 2), namely unusual events.

8. Move to the first neighbor of A and repeat the procedure.

9. Save again all identified unusual events.

10. Repeat the procedure until all stations were mapped (namely all 8 neighbors of each
neighbor).

11. Final result: a data frame with the time steps of the unusual events and values over all
selected stations.

12. Test the procedure for a headwater catchment and check the discharge observations.

The method was tested for daily and hourly observations. The aim was to identify simul-
taneously occurring spatially unusual events. Unusual events over a cluster of neighbouring
stations were first identified. An example can be seen in Table 4.2. One can distinguish two
types of events, namely one over a portion of the stations (example, the first row) and one
over all locations simultaneously (example, the third row).

Table 4.2: Identified unusual events within a cluster of 9 stations.
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

05/06/2011 14:00 0 0 0 0 0 0 4.5 36 38.7 5
30/05/2008 17:00 34.6 38.7 15.8 9.1 15.6 0.1 0 0 0.1 0
30/05/2008 18:00 13.1 3.6 2.7 3 6.3 7.7 23.2 23.4 12.4 25.3
30/06/2012 21:00 16.2 18.2 17.5 21 38.7 0 0 0 10 0
27/08/2010 00:00 20.9 6.1 6.3 14.9 17.4 25.8 16 23.6 19.3 13.8

Once the process was repeated for all configurations, a time series of unusual events was
constructed and sorted by the sum over the stations of each time step. In Fig. 4.9 two daily
events are showcased with very large daily sums. The first event in panel (a) presents a
frontal-driven case, spreading continuously from the north-east to southwest of Germany
with the highest values in the center of the front. The second event is a convective one, with
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rainfall cells scattered from north to south with dry spots and varying precipitation depths.
Both events were detected as being unusual with low depth. The event in panel (a) occurred
on the 6th of June, 1981, the latter was seen as the rainiest year in Germany and the event in
panel (b) was part of the Elbe flood, which was seen as a century flood.

Figure 4.9: Panel (a) and (b) show two identified unusual events within the daily stations,
showcasing a frontal and a convective event, respectively. The frontal precipita-
tion event occurred on the 03-06-1981 and the convective event on 11-08-2002.

To be able to differentiate between the detected unusual events, discharge observations
for three headwater catchments were used. Following the concept that the catchment serves
the role of a rain gauge. The stations falling within and around the catchments were se-
lected, and the previously described procedure was implemented for hourly and daily val-
ues. Fig. 4.10 shows a detected unusual event using the gauges available in the three head-
water catchments. The precipitation values are presented in panel (a), and the reaction in
the discharge of the three catchments is seen in panel (b). The event is seen as unusual
because only two catchments were hit by a strong rainfall event, while the third one (Enz
catchment) was not. Hence, from a spatial point of view, two neighbouring regions were
hit asynchronously by a strong rainfall event. Note that in panel (b), the precipitation and
discharge values are displayed for the event hour (at 18 p.m.) and the following 20 hours.

The advantage of applying such a procedure is in detecting spatially distributed unusual
events that differ from traditional extremes. Although traditionally applied in the field of
mathematics, the data-depth function is a useful tool for investigating and detecting unusual
events that lie between the center and outer bounds of a data space.
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Figure 4.10: Panel (a) shows the recorded DWD values in three headwater catchments. Panel
(b) displays the discharge values in the three catchments.

4.7 Limitations of using point observations

4.7.1 Detecting extremes in a given area, independent of their location

To highlight the challenge of catching extremes using only point observations, the following
analysis was conducted: The area in question will be the whole country of Germany, and the
DWD warning levels (presented in Table 4.3) defining heavy and severe rainfall thresholds
were used as target values. For every station, the number of observations for every dura-
tion exceeding the three different warning levels was calculated. Eventually, the number
of observed values was averaged over the number of stations with similar record periods.
The first 3 rows of Table 4.4 show the results. One can see that, independently of the event
location, with an increase in the number of available years, the probability that an event oc-
curred increased. This indicates that, with longer time periods, the probability of an intense
event occurring increases. However, the number of recorded values is relatively small, indi-
cating that several events were missed by the gauges. Similarly, the procedure was repeated,
but by randomly sampling a smaller number of stations. For example, from the total num-
ber of 1100 stations with hourly data, 300, 600, and 900 gauges were randomly selected and
analyzed. The results are shown only for the stations with 15 years of data and presented
in the lower 3 rows of Table 4.4. Not only does the availability of data in time matter, but
so does their spatial distribution. One would expect that as the network density increases,
the number of detected events increases. This is true when the network density changes
from 300 to 600 stations, but as the number increases to 900, the average number of de-
tected events decreases. This is because many locations do not capture any of the occurring
events, which leads to a reduction in the average number of detected events. Though the
total number of detected events is dependent on the network density and increases with the
latter. The procedure was repeated using the weather radar data for the period 2000–2020.
All pixels exceeding the three threshold levels were extracted and divided based on their
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time of occurrence (at least a 24-hour difference) in a way to capture independent events in
time. The results show that within the weather radar data, many more events were detected,
despite not being necessarily all correct (due to errors in the radar data). They indicate that
relying only on point observations is not enough for the temporal-spatial analysis of rainfall
extremes. A thorough description of missed extremes by the rain gauge networks can be
seen in Lengfeld et al. (2020).

Table 4.3: Definition of warning levels based on the DWD.

Warning level

Duration [h] 1 2 3

1
Precipitation [mm]

15-25 25-40 > 40

6 20-35 35-60 > 60

Table 4.4: Average number of events exceeding the DWD warning levels derived from the
rain gauges network depending on available years of observations.

> 15 > 25 > 40 - > 20 > 35 > 60

N years with data

5 3 0.5 0 - 4.2 0.3 0.15
15 15 3 0.45 - 25 3 0.2
25 25 6.5 1.5 - 37 5 0.3

N stations (15 years)

300 12.7 2.8 0.34 - 21.01 2.65 0.17
600 15.7 3.4 0.5 - 29.1 3.63 0.22
900 15.3 2.8 0.44 - 27 3.2 0.18

4.7.2 Deriving the spatial dependence structure

The assumptions behind describing the spatial dependence structure using the variogram
are second-order stationary, a constant mean, and a variance that depends on the incre-
ments of separating distance. These assumptions lead to limits on the extent to which the
variogram can be used as a tool to describe the spatial extent of extremes. For example,
the presence of trends in the data should be removed beforehand; otherwise, the correct
variogram calculation will be even more challenging.

Calculating the variogram from highly skewed data presents issues, and therefore, the
asymmetry in the dependence structure cannot be represented. Moreover, the sparse obser-
vation network limits the possibility of correctly investigating and describing the anisotropy,
whether geometrical or zonal, leading to the assumption of an isotropic variogram, which
is rarely the case. Most, if not all, interpolation techniques lead to smoothing behavior and,
hence, an underestimation of the true variability and maxima of the field. Moreover, as
mentioned in chapter 2, precipitation belongs to the zero-inflated problems, making the
variogram calculation extremely sensitive to the number of zero observations.
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Another challenge is in the time domain. Precipitation is highly variable not only in space
but also in time; therefore, the calculation of the variogram or the step functions for a single
time step (for example, a certain hour) does not include the correlation between subsequent
time steps, which is referred to as advection. It was shown in Fig. 4.1 that some events
present a directional dependent correlation in time and space, an aspect that cannot be well
described by the variogram or step functions.

To illustrate some of the problems previously mentioned, Fig. 4.11 shows some issues
with calculating the covariance function C(h) (or the variogram function (γ(h) = 1−C(h)))
for describing the spatial dependence structure from a rainfall field. The latter was gen-
erated using a spectral simulation algorithm conditioned on a predefined spatial model
defined by the covariance function (Guthke, 2013). Note that at high temporal resolution,
rainfall fields are not Gaussian but have high asymmetric behaviour. Below were noted
some remarks regarding Fig. 4.11.

Figure 4.11: Panels (a) and (c) show the generated random fields using the same exponential
covariance function shown in black in panel (b). The field in (c) has more zero
values. In panels (b) and (d), the estimated covariance functions using the differ-
ent sampled points from the two fields are shown.
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Below some remarks regarding Fig. 4.11 are listed:

• Small sample size (50 points) leads to high uncertainty in the estimated model.
• Increasing the sample size (500, 1000 points) improves the model estimation.
• Including only one small outlier (2 larger than the maxima) in the data deteriorates the

estimation despite a large sample size of 1000 points.
• Larger number of zero values leads to a bad covariance estimate and a smaller depen-

dence range, regardless of the sample size.

One of the main challenges is that at high temporal resolution, precipitation fields present
large space-time variability. The role of zero observations becomes predominant and hin-
ders a ’correct’ variogram estimation. Moreover, the assumptions behind Geostatitics such
as stationarity and constant mean, are not well justified. The high spatial and temporal vari-
ability cannot be well captured by scarcely distributed point observations. Another aspect
is the high asymmetry within a rainfall field; for example, there is a different dependence
structure between the high and the low values. This variability within a rainfall cell, espe-
cially with a high gradient between the low and high values (a front), cannot be correctly
represented by the measurement of rain gauges. In addition, interpolation cannot exceed
the observed maxima, which leads to an underestimation of the true maxima that might
have occurred between the values. An example of this is seen in Fig. 4.5, the center value of
63 mm is underestimated by the interpolation scheme by more than 50 %.

4.8 Summary

In the previous analysis, the station data were used to investigate the spatial extent of several
rainfall events across different temporal aggregations. The first part showed that for many
intense observations, the true maxima was located at a neighboring location. On average,
over all aggregation and stations, for 20% of the events, neighboring values had higher ob-
servations than the center location. An indication that within a given area, the maxima and
its location might be underestimated or misplaced. Moreover, a directional-dependent cor-
relation structure present within rainfall events, especially on a local scale, was identified.
Traditional approaches such as variogram calculations were seen as reliable, especially for
low temporal aggregations, but had less reliability for sub-hourly and convective events.
The use of step-functions helped in showing that as one goes further away from the center
location (where the original intense value was), the average areal rainfall might exceed the
center value. Hence, areal rainfall reduction in the traditional sense does not apply. Clus-
tering of step functions and variograms was used to categorize events based on their spatial
extent, especially for lower temporal aggregations and frontal-driven events. Another as-
pect was the use of the depth function to find simultaneously spatially occurring unusual
events. The method showed success in identifying events on the local scale (a cluster of a
few neighboring locations) and on the regional scale (over all neighboring positions). The
results in this chapter support further understanding of the spatial dynamics of precipitation
events and show some challenges with only using point observations.



5 Copula-based conditional merging of
weather radar and point observations

In the following chapter, a copula-based conditional merging procedure is introduced to
combine weather radar and rain gauge observations with high temporal resolution. The
term copula is used here because the method is implemented in the rank space. A copula is
a mathematical function used to derive and model the dependence between variables inde-
pendent of their distribution functions. The first section describes the weather radar data,
and then the theory behind external drift kriging and anisotropy is presented. A procedure
previously developed by Yan and Bárdossy (2018) to incorporate the wind-displacement ef-
fect is used and complimented by a conditional merging algorithm of spatial and point
observations (Sinclair and Pegram, 2005). The merging was applied for the data period
2001–2020 for the radar regions of Hannover and Türkheim. The final product was cross-
validated with a focus on the extremes. Eventually, the final results showed the reliability of
the derived product by being unbiased and applicable for further analysis.

5.1 Description of weather radar data

The radar data have great potential for looking at the spatial extent of rainfall events. They
offer the possibility to investigate what was measured between point observations, as these
might not correctly sample the rainfall minima and maxima and the event spatial distribu-
tion. In Germany, the DWD operates a weather radar network with 17 radars equipped
with dual-polarization Doppler technology, covering the whole region with a high temporal
resolution of 5 minutes. Doppler radars work by sending waves in both the vertical and
horizontal directions, which are used to identify the reflecting object based on its shape.

Before using the radar data, the radar-derived QPE can have several errors. Several rea-
sons are possible since the radar does not measure rainfall directly but rather measures the
reflectivity of the radar signal. Large reflectivity values indicate that the beam is blocked
and that most likely rainfall is failing. This does not depend only on the amount but
also on the size of the raindrops. The latter, however, varies significantly between rain-
fall events. Depending on the end goal, different radar wavelengths might be used. Longer
wavelengths are essential for qualitative information in convective and severe events, while
shorter wavelengths are beneficial for a uniform representation of largely distributed precip-
itation events. The returned reflectivity values are used to calculate a reflectivity factor (Z),
which is used to calculate the rainfall rate via the so-called Z-R relationships. These have a
power function shape and vary based on the meteorological processes, the location, and the
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type of hydrometeors (rain, snow, hail, etc.). Several Z-R relationships were derived, and
further research is pending. In reality, the Z-R function changes with every rainfall event
and within the rainfall event itself. A common assumption is to consider the Z-R relation as
an average value and apply it to the entire radar field.

Some of the most common error sources in the weather radar observations are, for ex-
ample, overshooting, which happens when radar signals measure above the clouds (or rain
cells). This happens at long distances from the radar location and leads to completely or
partly missing the observed event. A common problem is attenuation. The radar signal is
highly attenuated due to strong reflectivity (as in intense rainfall events). Everything behind
the rainfall cell is then not measured since the signal is not strong enough. Also, since the
upper atmosphere layers are colder than the lower ones, precipitation falling as snow can
melt before reaching the ground. If the radar is measuring at the exact elevation where the
water phase transformation is happening, a phenomenon known as the bright-band effect
occurs. In other words, the radar signal is detecting the signal of the melting layer, leading
to errors in the observations. Another common source of errors is the presence of static ob-
jects (buildings, windmills) or mobile objects (airplanes, birds) obstructing the radar signal.
This phenomenon is known as the clutter effect and should be accounted for when deriving
rainfall observations from radar reflectivity measures.

Besides these error sources, further aspects are to be considered. One of them is that the
radar is measuring at a high altitude and at a certain time step. While on the ground the
measurements are between time intervals, the radar rather gives an image for a certain time
step showing the number of raindrops. The size of the raindrop is usually unknown and
varies along the path before reaching the ground. Moreover, a displacement of the image
exists; when the radar is measuring at high altitudes, the raindrop may be displaced by the
wind and fall in a different location than indicated in the radar image. Another type of
displacement is temporal displacement, in which the observed raindrops fall at a slightly
different time than the observed ones, depending on the fall velocity.

The radar locations of Feldberg and Türkheim cover simultaneously the city of Reutlingen
in southwest Germany. The city operates a network of rain gauges with high temporal
(1 min) and spatial (6 km) resolution. A comparison between the two images of the two
radars for a certain time step showed a similar spatial pattern but with different precipitation
values. An example of this case can be found in Yan and Bárdossy (2018). To cope with such
situations, weather services generally use the information sampled from the lowest level,
but in some conditions, one can use the average, the maximum, the minimum, or a weighted
combination of the overlapping data.

Finally, using several radar locations and rain gauges, a mosaic of gridded QPE values is
produced. The end product is quality-checked by applying a bias correction using ground
observations that are continuously updated. Correction factors are acquired from point ob-
servations and are applied to increase (or decrease) hourly or daily accumulations either on
a local or field scale.

In this thesis, two datasets were used: the raw radar data for the locations of Hannover
and Türkheim and the radar-based precipitation climatology-adjusted data (RadKlim) (Win-
terrath et al., 2018a). Both have a temporal resolution of 5 minutes and cover the period
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2000–2021. The RadKlim data were used as they are, and to reduce the errors in the raw
data, several procedures were undertaken. These are based on several algorithms in the
Python library wradlib (Heistermann et al., 2013). First, the raw data are converted from po-
lar to cartesian coordinate systems, and then dynamic and static clutter removal filters are
applied (Gabella and Notarpietro, 2002). To account for the wetting of the Radome and the
subsequent effect on the radar beam, the attenuation correction introduced by Merceret and
Ward (2000) was applied. Finally, the enhanced three-part Z-R relation developed by the
DWD was used to transfer reflectivity values to rainfall rates.

Still, when combining radar with ground observations, other effects such as wind dis-
placement between the radar and ground observations, the spatial correlation structure of
the precipitation field, and the advection vector should be considered. For this, an alterna-
tive conditional merging approach was developed based on the work of Sinclair and Pegram
(2005) and Yan and Bárdossy (2018).

5.2 Methodology

The following sections describe the interpolation techniques used to estimate values at un-
known locations. The first part briefly describes External Drift Kriging (EDK), which is
an interpolation technique using external information as auxiliary data. In part two, con-
ditional merging is introduced. Conditional merging grants the possibility of combining
precipitation station data and weather radar observations into a combined product. To test
the quality of the interpolation methods, cross-validation was used. This is described in the
final part of this section.

5.2.1 External drift kriging

It is often the case that spatially distributed data are related to other variables. For example,
precipitation processes have a direct relationship to topography. Such information can be
included within the estimation method in the form of auxiliary information. Hence, a new
family of kriging possibilities was derived that belongs to non-stationary kriging forms.
Among them is External Drift Kriging (Ahmed and De Marsily, 1987). For non-stationary
kriging methods, the intrinsic hypotheses are changed. The expected value is not a constant
but a function of the location. Using an additional variable that is available at all grid nodes
and is linearly correlated with the target variable, a slightly changed equation system as
compared to Ordinary Kriging (presented in chapter 3) is used to estimate the values at
unknown locations.

E[Z(u)|Y (u)] = a+ bY (u) (5.25)

where a and b are unknown constants. As for OK, for any a and b, the linear estimator
should be unbiased:
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Z∗ =
n∑

i=1

λiZi (5.26)

The external drift kriging equation system is summarized by these three equations, given
that µ1 and µ2 refer to the Lagrange multipliers. Same as in OK, γ refers to the variogram
model. This remains similar.

∑
i

λjγ(ui − uj) + µ1 + µ2Y (ui) = γ(ui − u) (5.27)

∑
λj = 1 (5.28)

∑
j

λjY (uj) = Y (u) (5.29)

Here, weather radar rainfall values are used as drift values while performing the condi-
tional merging of radar and station data. The radar data are available at the station locations
and are distributed over a homogeneous grid with a 1 km spatial resolution.

5.2.2 Geometrical anisotropy

A simplification while working with the random function Z(u) is the assumption of isotropy.
The spatial variability is independent of the direction and only depends on the separating
distance h. This is often not the case since nature depicts anisotropic behavior. The spatial
structure differs from one direction (angle) to another. Some examples of anisotropic pro-
cesses in nature are groundwater or contaminants flowing in the subsurface, where the flow
direction is influenced by the characteristics of the subsurface, and rainfall events where
wind or elevation alter the spatial structure.

Anisotropy can be incorporated into the variogram calculation. The first option is to cal-
culate the variogram not only for different separating distances but also for different di-
rections. Hence, the directions of the major and minor axes are derived, and by a linear
transformation (stretching, rotation) the anisotropic field is transformed into an isotropic
one.

This type of anisotropy is known as geometric anisotropy and has, in a general form, two
parameters: the stretching coefficient λ and the rotation angle ϕ.

x∗ = λ(x cosϕ+ y sinϕ)

y∗ = −x sinϕ+ y cosϕ

If for each direction, the still value is different or if the ranges do not fall on the ellipse,
then the second type of anisotropy, known as zonal anisotropy, is present. One possibility to



50 Copula-based conditional merging of weather radar and point observations

cope with this would be to divide the space into different zones based on intervals of angles.
Each zone will have its own variogram that will be used for interpolating each zone. An-
other possibility is to fit a complex variogram model where individual terms represent dif-
ferent geometric anisotropies, which can be direction-dependent or not. An example of the
derived variograms for different directions can be seen in Fig. 5.1. For every direction, the
values falling within this orientation were selected, and the empirical variogram was calcu-
lated. The sill and range values of the variogram change with each selected direction. In an
isotropic case, only the variogram in blue (an angle of 0 degrees) would have been derived.
Moreover, an example of applying the conditional merging with and without the account
of geometrical anisotropy can be seen in Fig. 5.2. From the radar field, the variogram in 2D
was derived, and the direction of the main axis and minor axis along the scaling coefficient
were derived. Panel (a) shows an isotropic case; panel (b) after accounting for anisotropy;
and panel (c) is the difference map. The difference exceeds the values of 3 mm/5 min in
both directions. Such differences influence the final result and the areal rainfall.

Figure 5.1: Example of geometrical and zonal anisotropy (where the empirical variogram and
sill value change with direction).

To derive a suitable variogram describing the spatial dependence structure, the variogram
was calculated from the combined radar and station observations. For this, the variogram
was calculated for different directions (angles), and the directions of the main and minor
axes along the stretching factor were calculated. Since precipitation is a variable that falls
within the zero-inflated problem, the influence of the zeros on the variogram needed to be
investigated. The following section covers that part.

5.2.3 Influence of the zeros on the variogram

On a 5-minute temporal resolution, around 95% of the precipitation values are zeros. The
zeros have a large influence on the variogram: they lead to a larger sill, and larger range and
affect the anisotropy direction and scaling factor. The large number of zeros influences the
spatial dependence structure and can lead to a misrepresentation of the dependence of the
extreme precipitations.
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Figure 5.2: Example of a merged rainfall field using isotropic variogram (left figure) and
anisotropic variogram (center figure). The right plot depicts the difference map
in mm per 5 minutes.

To investigate this effect, four different approaches to derive the variogram were consid-
ered, and the effect on the Kriging Error Term (KET) defined in equation 5.30 was calculated.

KET (u, t) =
Z∗(u, t)− Z(u, t)

σu,t
(5.30)

Where:

Z∗(u) = estimated value at location u and time step t

Z(u) = observation value at location u and time step t

σu = kriging standard deviation at location u and time step t

The error term values were calculated from the cross-validation results of 300 hourly
events for 16 different DWD stations. To derive and fit a variogram to the empirical var-
iogram map (variogram in 2D), the Fast Fourier Transformation (Fast Fourier Transforma-
tion (FFT)) was applied (Marcotte, 1996). Four different approaches for variogram calcula-
tion were considered; for each case, the variogram range, the sill, and the anisotropy (direc-
tion, scaling) were noted.

1. Original field: variogram derived from radar field with zeros

2. No zero field: variogram derived from radar field without zeros

3. Reduced field: variogram derived from the radar field with a layer of zeros

4. Indicator field: variogram derived from indicator radar field

Fig. 5.3 demonstrates an example of one hourly event. The lower panels show the esti-
mated variogram map for each case. For each aforementioned case, the variogram param-
eters were calculated. For each case, the values of the range, direction of anisotropy and
scaling fac tor changed. The results for this 5 minutes time step are displayed in Table 5.1.
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Figure 5.3: Example of calculated variogram from the original, the no zero, the reduced, and
the indicator fields for a 5-minute time step. Each with correspondent fitted geo-
metrical anisotropy parameters.

Table 5.1: Estimated geometrical anisotropy parameters from the fields in Fig. 5.3. Note that
depending on the portion of zero values the parameters of the fitted dependence
model varies.

Original field No Zero field Reduced field Indicator field [0.1 mm]

Variogram range [km] 27 13 14 29

Major axis direction ϕ [ deg ] 146.25 -11.25 146.25 -11.25

Scaling factor λ 2.20 1.60 1.80 1.00

A summary of the cross-validation results can be seen in Fig. 5.4. The result shows that us-
ing the variogram with the zero layer has the least error compared to using the whole radar
field, only the positive part of it, or an indicator field. The previous analysis showed that the
reduced field, meaning the field containing the positive values enclosed by a small buffer of
zero values, gave optimal results. Hence, when applying the merging, a suitable theoretical
variogram without a nugget value was fitted to the empirical one, and the resulting model
was used in the conditional merging.

5.2.4 Copula-based conditional merging

To combine the radar observations with the ground-point data, an adapted conditional
merging approach was implemented. The main idea behind conditional merging is to have
a final field that respects the point observations and incorporates the spatial distribution of
the radar field (Sinclair and Pegram, 2005).

The different parts of the traditional conditional merging procedure are described below:

1. (a): The rainfall field is observed at discrete points by rain gauges.
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(a) CDF of the KET (one location) (b) Mean error term (per location)

Figure 5.4: Kriging error term depending on variogram calculations. Four rainfall fields are
used: (1) with zeros, (2) without zeros, (3) only a layer of zeros and (4) with an
indicator field.

2. (b): The rainfall field is also observed by radar on a regular, volume-integrated grid.

3. (c): Kriging of the rain gauge observations is used to obtain the best linear unbiased
estimate of rainfall on the radar grid.

4. (d): The radar pixel values at the rain gauge locations are interpolated onto the radar
grid using Kriging.

5. (e): At each grid point, the deviation C between the observed and interpolated radar
values is computed.

6. (f): The field of deviations obtained from (e) is applied to the interpolated rainfall field
obtained from Kriging the rain gauge observations.

7. (g) A rainfall field that follows the mean field of the rain gauge interpolation while
preserving the mean field deviations and the spatial structure of the radar field is ob-
tained.

Fig. 7.1 shows the radar area of Hannover along the location of the available DWD stations
with sub-hourly resolution. The aim was to combine the radar observations with the ground
data in order to gain the most from both observational data sets.

Despite correcting the radar observations for different possible errors (e.g., attenuation,
beam blockage, clutter removal, etc.), the displacement due to the wind movement needs
to be considered. The incorporation of the horizontal wind displacement vector was done
similarly to the work of Yan and Bárdossy (2018). The reader is referred to the previous
manuscript for a full description of the method. Below, a summary is provided.

To incorporate the effect of the horizontal wind displacement between the radar and
ground observation, the radar field was shifted homogeneously for different horizontal and
vertical displacement vectors. For each of the shifts, the rank correlation between the radar
and ground observations was calculated and compared to the reference correlation (shift=0).
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Figure 5.5: Digital elevation model of the radar coverage area of Hannover along the location
of the DWD stations with sub-hourly resolutions.

From this, a rank correlation matrix that was later transformed into a rank probability ma-
trix using a transformation function was calculated. Each shift that brought an increase in
the rank correlation was then associated with the corresponding probability. A modification
of the original work was done by incorporating the advection vector between subsequent
observations. The procedure was applied for each 5-minute time step by considering one
step before and one step afterwards. This granted greater continuity in time and space. The
so-called expected field was then derived as a weighted product of the different fields that
were transformed using the marginal distribution function. The latter was derived from the
shifted radar observations at the ground locations. The expected field was used to derive
the variogram map and the anisotropy parameters. These were incorporated in conditional
merging. Hereby, EDK was applied as an interpolation technique, with the expected field as
the drift term. This enabled the merging of the radar spatial structure and the station point
observations and provided better results than using ordinary kriging.

A complete description of the copula-based merging workflow is given below and in Fig.
5.6. Note that the final product is a two-dimensional field incorporating the ground observa-
tions, the advection vector, the wind displacement information, the geometrical anisotropy,
and the spatial distribution of the original radar field.

1. Preprocess the radar reflectivity observations (cutter removal, attenuation correction,
etc.) and transform them to rainfall values using the Z-R relationship.

2. Read the station observations in the radar field with a temporal resolution of 5 min-
utes.
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3. For a timestep i, consider the timesteps i − 1 and i + 1 to account for the advection
vector.

4. Apply a Gaussian kernel smoothing of the radar field dependent on the variance of
the field to reduce the ’noise’ in the data (optional step).

5. Calculate the rank correlation between the radar observations at the station locations
and the corresponding station values c0.

6. Start to shift the radar field homogeneously horizontally i or vertically j or in both
directions ij and transform the field to the rank space Uij .

7. For every shift, calculate the rank correlation between the station data and the corre-
sponding radar values.

8. Find all the shifts with a rank correlation greater than c0.

9. Repeat this for timesteps i − 1, i, and i + 1 and construct an average rank correlation
matrix.

10. If there is a shift in the average rank-correlation matrix that increases the correlation,
consider that; otherwise, consider only the shifts for timestep i.

11. Construct the marginal distribution function of the shifted field using the radar ob-
servations at the station locations as defined in equation 5.31. Extend the maximum
value using an exponential distribution.

Fij(z) =
uk − uk−1

zk − zk−1
(zk − zk−1) + uk−1 (5.31)

Where:

z = ground observation
zk, zk−1= nearest neighbors of zk−1 < z < zk
uk, uk−1= quantiles corresponding to zk, zk−1

12. Transform the ranks of the radar field into precipitation observations using the corre-
sponding marginal distribution function.

13. Assign for every transformed field a probability value Pij dependent on the increase
of correlation as compared to c0, with emphasis on the shifts with a higher increase.

14. Construct the final radar field (the expected field Z), which is a weighted combination
of the previously calculated fields using equation 5.32.

Z =
∑
i

∑
j

PijF
−1
ij (Uij) (5.32)

Where:

Uij = shifted radar field in the rank space
F−1
ij = inverse of the marginal distribution function from equation 5.31

Pij = value in the probability matrix for shift ij
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15. Use a fast Fourier transformation to calculate the empirical variogram (variogram
map) from the expected field and the station observations.

16. To account for geometrical anisotropy, find the direction and scaling factor of the major
and minor axes and apply the corresponding coordinate transformation.

17. Use the station observations to interpolate the target grid using external drift kriging
EDKstations.

18. Use the expected field observations at the station location to interpolate the target grid
using external drift kriging EDKradar.

19. Calculate the difference between the expected field and EDKradar.

20. Add to the EDKstations the calculated difference.

21. Back-transform everything to the original coordinate space.

22. This is the final merged radar-station field for this time step.

23. Repeat the procedure for the next time step.

Figure 5.6: Flowchart summarizing the applied copula merging procedure.
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5.2.5 Optical flow procedure

The weather radar observations are a snapshot of the observed time. This is not a represen-
tation of the continuous rainfall process happening continuously between the different time
steps. If one tries to aggregate the images without considering the continuous flow in time
and space of rainfall, the final result will present discontinuities. One might compare this
with the scales of a fish, where each scale represents an image. The effect becomes more pre-
dominant with increasing temporal aggregations. Therefore, to account for the movement
of rainfall, the optical flow method was used (Ayzel et al., 2019).

The underlying assumption for solving the optical flow problem using the Lucas-Kanade
method is that neighboring positions have similar movement behavior (Lucas and Kanade,
1981). The optical flow vector (u, v) is constant within a small neighborhood of the space
window ω. This is described by equation 5.33 defined for each point (a, b) in the domain.

∂I(a, b)

∂x
.u+

∂I(a, b)

∂y
.v +

∂I(a, b)

∂t
= 0 (5.33)

Where:

(a, b) = location of point in domain ω

(u, v) = optical flow vector
I(u, v) = intensity (function of directions x, y and time t)

This is the same for all points in ω leading to an equality system with a similar number of
equations as the number of points. The advantage of this equation system is that all equa-
tions are linearly independent of each other. Since the derivative in the x and y directions
is different for each point. The goal is to find the motion vector (u, v) for the window ω by
solving the linear equation system. Two cases exist where the calculation is less reliable:
the first is when neighbouring windows have high similarities (very small texture, namely
all zero observations), and the second is when there is an edge between the neighbouring
windows (high texture to low texture, a gradient between high and low values). However,
when the texture is very rich (for example, within the rainfall field), the optical flow method
is reliable.

In the case of aggregating sub-hourly radar images to higher aggregations, the advec-
tion vector (motion field) between consecutive images was accounted for using the motion
field and interpolation method available in the Python radar now-casting library pysteps

(Pulkkinen et al., 2019b). An example of the results for an hourly aggregated field (sum of
twelve 5-minute images) with and without the optical flow method can be seen in Fig. 5.7.
Note that the corrected image shows a better representation of the continuous rainfall pro-
cess with fewer discontinuities (dry patches). The spatial continuity is important for areal
rainfall analysis, which otherwise might be underestimated.
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(a) Without and with correction (b) Difference map

Figure 5.7: Example of an aggregated hourly image before (left panel) and after (right panel)
applying the optical flow method. Panel (b) shows the difference map (without-
with correction).

5.2.6 Cross-validation

Cross-validation is used to test if the assumptions made and the consequently estimated
statistics are reliable. Observation values at certain locations (or all of them) are estimated
using all neighboring data, disregarding the data at the target location. The estimated value
is then compared to the observed one at the same location. The procedure is repeated for
several observations at a certain location or/and different locations. To judge the results of
the cross-validation procedure, the term in equation 5.34 was calculated. This normalized
Criteria Ratio (CR) should theoretically have an average value of zero and a standard devi-
ation of one. This indicates that the estimation is unbiased and has an appropriate variance
value (assumption about the errors and variogram model).

CRi(u) =
|Z∗

i (u)− Zi(u)|
σi(u)

(5.34)

Where:

Z∗
i (u) = estimated value at location u and timestep i

Zi(u) = observed value at location u and timestep i

σi = kriging standard deviation at location u and timestep i

When doing a cross-validation procedure, one can decide to leave one station out and
re-estimate all of its observations or to leave several stations out simultaneously. The latter
is known as split-sampling and generally refers to splitting the observation data set into
two parts one used for the data estimation and one for the validation (Refaeilzadeh et al.,
2009). Cross-validation was applied in this work to test the quality of the final merging
product. The focus was on intense precipitation observations. Fifteen stations with the
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longest observation records were individually removed from the data set, and their 5-minute
values were re-estimated using the previously described merging procedure. Eventually,
the estimated and observed values were compared, and the data were used to derive depth-
duration-frequency curves.

5.3 Results

5.3.1 The expected field

To derive the expected field, the method introduced by Yan and Bárdossy (2018) was used.
The main idea behind calculating the expected field is to reduce the disagreement that might
have occurred due to wind displacement. Therefore, the original radar field was shifted in
the rank space by several kilometers (up to 4 km) in the horizontal and vertical directions.
Shifts that increase the agreement in the rank space between the radar and ground observa-
tions were identified. Based on the difference between the original rank correlation and the
shifted rank correlation, a probability value was assigned to the corresponding field. The
procedure was repeated until all shift combinations had been tested, and only shifts with
positive increases were considered. The resulting rank correlation matrix can be seen in the
middle panel of Fig. 5.8. The shifts with a red value are those with a correlation above the
reference correlation (in this case, 0.6). The maximal correlation of 0.7 is noted for the shift
i = −4 and j = −4. The rank correlation matrix was transformed to a probability matrix
using a transformation function denoted as g(x), where x represents the rank correlation
value. Here, the transformation function g(x) = x3 was used, where x = r0 − rij with r0
and rij being the reference and shifted field rank correlations. Although several other func-
tions are possible, this one was chosen as it enables assigning the largest probability to the
fields with the largest improvement in the rank correlation. Shifted fields with minor im-
provements in rank correlation were associated with low probabilities. Hence, fields with
greater improvement were prioritized. Note that all probability values in the probability
matrix must sum to one. Using equation 5.32 the expected field was derived as a weighted
combination of all fields with positive probabilities.

5.3.2 The final field

Fig. 5.9 shows an example of a merged rainfall field incorporating the expected field and
the station observations using EDK while accounting for the anisotropy direction and scal-
ing factor. The left panel shows the original QPE field with a rank correlation of 0.57. The
latter was calculated between the values of the rain gauges and the overlapping radar pix-
els. In the center panel, the derived expected field is shown with a correlation value of 0.66
with the ground observations. For this time step, the expected field has larger rainfall max-
ima, but compared to the original field, the proportion of small rainfall values decreased.
The final field presented in the right figure incorporates the expected field and the ground
observations.
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Figure 5.8: Original radar field with corresponding rain gauge values in the left plot. The
associated rank correlation matrix and probability matrix are shown in the center
and right plots, respectively.

Figure 5.9: Left figure shows the original field with a rank correlation value of 0.57 with the
ground observations. The center figure displays the expected field with a rank
correlation of 0.66 with the ground observations. The right figure represents the
final field incorporating the information from the expected field and the ground
observations.

5.3.3 Cross-validation: DDF curves

To test the validity of the method, a cross-validation procedure was implemented. The 15
stations within each radar area of Hannover and Tuerkheim with the longest records, mainly
from 2000 until 2019, were selected, and their data were re-estimated using the merged
product via a leave-one-out procedure. This means that cross-validation was done thirty
times. The results are compared to the observed values, and the focus was on the extreme
values. To that end, the DDF curves were calculated, and different statistical measures such
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as the mean bias and the RMSE were calculated. In Fig. 5.10 the derived DDF curves for a
5-year return period for two locations are shown. The observed DDF curves were compared
to the processed raw radar data, the station data, the RadKlim pixel data, and the cross-
validated values. The processed raw radar DDF curve (in blue) shows an overestimation,
while the Radklim data (curve in lilac) shows an underestimation of the DDF curves and
hence the design rainfall values. The DDF from the merged product (in green) shows the
largest agreement with the observed data (in red).

(a) DDF of cross-validated location 1 (b) DDF of cross-validated location 2

Figure 5.10: Calculated DDF curves for two cross-validation stations using the observed sta-
tion data (red curve), the processed raw weather radar data (blue curve), the
merged estimated point value (green curve), and RadKlim data (purple curve).

Moreover, the quality of the merged product was further investigated by inspecting the
error between the quantiles of the DDF curves for the cross-validated and reference rain
gauge data. The bias value was calculated between the gauge DDF and the DDF curves
derived from each other product. The results are presented for the fifteen locations in Han-
nover in Fig. 5.11 for every duration. Panel (a) uses the processed raw radar data showing
the largest bias and panel (b) depicts the copula-based merging with the smallest bias. Note
that in RadKlim information from the cross-validated station were incorporated into the
data, hence the comparison might not be fair. Still, the copula-based merging outperformed
the RadKlim results (not shown here). Similar results were seen for other metrics, such as
root mean square error, where the merged products outperformed all other products. The
cross-validation results reveal that the error term for large durations (e.g., daily data) is still
high, and the merged data show an increase in the general error term and bias across all
durations. The DDF curves obtained from the processed raw radar data also showed an
overestimation for the long durations. This overestimation may be attributed to remaining
errors in the processed radar fields. Additionally, the error terms were found to be pro-
portional to the return period, which could be attributed to the relatively short observation
period used in the analysis. To mitigate the errors, a maximum return period of 5-10 years
were used in this study.
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Figure 5.11: Panel (a) shows the results from the raw processed radar data and panel (b) from
the copula merging data. Panel (c) the bias from the Radklim data. The bias is
calculated between the quantiles of the DDF curves compared to the observed
data over the different durations and locations.

5.4 Summary

The presented method has been successful in deriving an unbiased and statistically val-
idated combined spatial product by integrating information from radar fields and gauge
observations. The procedure was applied directly to high-temporal resolution data using
processed raw radar reflectivity observations spanning over 20 years. The quality of the
final product was validated using a cross-validation procedure, focusing on extremes, with
data sets from two different radar locations. Modifications to this method could include
using the original reflectivity field instead of quantitative precipitation estimates to derive
the expected field, which may further reduce uncertainties. Moreover, two assumptions
were made that may not always hold. First, the gauge observations are representative of
the entire field. This might not be adequate in cases where a rainfall event was partly or
completely missed by the gauges. The second assumption is that the field is being homoge-
neously shifted. In cases of a heterogeneous wind field over the domain, the results might
not be accurate. Also, the final product may still have deficiencies due to persistent beam
blockages in certain regions (such as in the southwest region of Hannover and Feldberg),
as inherited from the processed raw radar observations. These have also been observed in
the official DWD weather radar products. Despite these limitations, the merged product
was used for investigating the spatial extent of extremes and for deriving design values.
Acknowledging these limitations and uncertainties in the data is important when using the
merged product for applications such as extreme value analysis and design purposes. Fur-
ther research and improvements in data processing techniques may be necessary to mitigate
errors and uncertainties associated with longer durations and larger return periods and to
address persistent issues such as beam blockages. However, advantages of using RadKlim
is the country wide availability and the use of overlapping several radar coverage areas.
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6.1 Theoretical background regarding DDF, ADDF curves, and
ARF values

6.1.1 DDF curves - Ombrian relationship

To estimate rainfall depth for design values, a statistical analysis of rainfall maxima derived
from long records is required. In general, design values are associated with the correspond-
ing duration and return period. The latter varies between 1 and 100 years, depending on
the intended application. The rainfall depth (or height) depends on the duration, and for
the same duration, it must increase with a larger return period. The previous concept forms
the basis of the statistical analysis of heavy rainfall. Since rainfall observations are gener-
ally more abundant and easier to acquire than discharge values (especially for flood events),
the calculated data are used to derive the hydrograph for the corresponding duration and
return period. The relation between rainfall depth, duration, and return period is com-
monly known as the Depth-Duration-Frequency (DDF) or Intensity-Duration-Frequency
(IDF) curve or Ombrian curve (Koutsoyiannis et al., 1998).

The idea behind the DDF curve is to derive a mathematical expression relating the av-
erage rainfall intensity (i) occurring over a timescale (d) for a predefined return period (T)
(Koutsoyiannis and Papalexiou, 2017). DDF curves are used to estimate the probability of non-
exceedance of a certain rainfall amount for a certain duration. These can be derived from a
frequency analysis of the observed station data for different durations. For acquiring reli-
able values, a minimal 30-year observation period is recommended. However, for a 10-year
return period, an observation record of 20 years is seen as suitable. Otherwise, high un-
certainty in the design values exists. Rainfall depth for a short duration can be adequately
derived only from the summer observation period. This is because high-intensity precipi-
tation occurs mostly in the warm months and is generally driven by convective events. For
longer durations, however, the winter records must be included. Rainfall maxima are ex-
tracted from the observation time series for the different durations either by considering the
yearly maxima (annual series) or the values exceeding a minimal threshold (partial series)
(DWA-A, 2012). Standard practice is to fit to the empirically calculated DDF curve a theoret-
ical extreme value distribution function (e.g., Gumbel Type 1), from which one can derive
the possible rainfall depth (or intensity) for a certain return period and timescale.

The estimation of the DDF curves is done using the following steps:
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1. For each station, aggregate the data to the required durations.

2. Consider the values for each year separately.

3. Rank the observed data while assigning equal ranks to equal values.

4. Calculate for each observation its probability of exceeding p.

5. Compute the corresponding return period T = 1
p .

6. Transform the observed value into intensities by dividing by the considered duration.

7. Find the average values from all years for each return period and duration.

8. This is the empirical DDF curve.

9. Fit a Generalized Extreme Value distribution to empirical DDF.

10. Use the fitted function for design purposes.

After calculating the empirical values, the traditional procedure consists of fitting a Gen-
eralized Extreme Value (GEV) distribution (e.g., Gumbel Type I) to the annual maxima or an
exponential distribution to the partial series. The parameters of the distribution function are
estimated by the mean of the method of moments, the maximum likelihood estimate, or the
L-moments method for each duration separately. The reasoning behind fitting a distribution
function to the sampled annual or partial maxima is that these represent only one realization
of the possible rainfall values for the corresponding duration. The theoretical distribution is
then used to derive design values for the desired duration and return period. The CDF of
the GEV distribution is defined in equation 6.35:

F (x, µ, σ, θ) = e−[1+θ x−µ
σ

]
−1
θ (6.35)

Where:

µ = location parameter (location of distribution peak)
σ = scale parameter (distribution spread)
θ = shape parameter

The location parameter µ corresponds to the precipitation amount that is exceeded on
average once per year. The scale parameter σ determines how strongly the precipitation
amount increases with the return period (i.e. corresponds with the slope of the GEV distri-
bution in a Gumbel probability plot). Finally, the shape parameter θ determines the degree
of deflection (upward or downward) in a Gumbel probability plot. The GEV distributions
are divided into three families (types), the Gumbel, Fréchet and Weibull distributions. The
first two are of interest in hydrological design and have been widely used for modelling ex-
tremes. However, the last type is more adequate for variables with a light-tailed distribution
and not for heavy-tailed distributions, such as rainfall extremes. The Gumbel distribution
function is applied in the following form:

hN (Tn) = uj + wj(−ln ln
Tn

Tn − 1
) (6.36)

Where:
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hN = rainfall depth in [mm]
Tn = return period of the annual maxima in years [a]
uj , wj = parameters of the distribution function

An example of the derived theoretical DDF curve can be seen in Fig. 6.1. The curve
represents the DDF for DWD rain gauge data for a return period of 5 years. The x-axis refers
to the duration (on the log scale) and the y-axis to the rainfall depth in millimeters. The table
below the figure shows the values for selected durations and return periods. Depending on
the hydraulic structure to be designed, different rainfall values for the corresponding return
period and duration are required.

For example, urban drainage networks are designed to account for high-intensity and
short-duration rainfall events with a relatively small return period between 2 and 5 years.
However, large drainage areas, such as river bridges, are designed to account for events
with long duration (long concentration time) and large return periods (between 50 and 100
years).

Figure 6.1: Example of calculated fitted theoretical DDF curve from one station data.

According to Koutsoyiannis (2004) the GEV type two (also known as the Fréchet distribu-
tion) represents the distribution of the annual maxima better than the Gumbel distribution.
The Gumbel distribution has been widely used in practical applications, for example, by the
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German Association for Water, Wastewater, and Waste (DWA) recommendations for calcu-
lating design storm values (DWA (2006), DWA-A (2012)). However, the problem lies in the
small sample of extremes that disguise the true behavior of the maxima. Typically, samples
of maxima with 30 to 50 years of observations tend to follow the GEV Type I distribution.
Recent work by Koutsoyiannis and Iliopoulou (2022) advanced further the concept of Ombrian
curves to theoretically founded Ombrian models. This allows a stochastic generation of
Ombrian curves while accounting for the properties of the parent process. These are, for ex-
ample, the first and second moments (mean and variance), the intermittency of the rainfall
process (wet and dry behavior) and conserving the properties of the maxima. In this thesis,
however, the DWA-A (2012) approach was used to estimate the DDF curves from an annual
series of 20 years (2000–2020).

DDF curves are derived from point observations and represent a single location. For hy-
drological modeling and catchment scale analysis, areal precipitation values are required.
For this, the same procedure for calculating DDF curves should be done using areal rain-
fall products over the catchment area. Unfortunately, this information is still not correctly
available for long observation periods (unless the catchment is completely covered by rain
gauges). Common practice is to use ARF to transfer the point data to the area of the catch-
ment, resulting in spatially distributed rainfall extreme values. By which the design values
for the corresponding area, return period, and duration are derived.

6.1.2 Area reduction factor - Literature review

Design rainfall values are necessary for several applications. Often, the concept of Area-
Reduction-Factor (ARF) is used to transfer the point-derived design values to an area or
catchment scale. Initially, ARF was introduced to calculate area-depth rainfall within a study
conducted by the US Weather Bureau in the year 1957 (Bureau, 1957). Many studies have
investigated several methods and properties to derive ARF values for a target region. A
comprehensive methodological review can be found in Svensson and Jones (2010). The main
assumption behind ARF is that the maximum areal rainfall average value is smaller than
the point maximum value for the same duration and return period. In other terms, the ARF
is used to relate point to areal rainfall values. In principle, the ARF for a basin with an area
A for a duration D and return period T is calculated as the ratio between the area-average
rainfall intensity and the point rainfall intensity for the same duration and return period
(Langousis, 2005).
Several factors influence the ARF calculation. Since the spatial structure of rainfall depends
on the season, it has an influence on the resulting ARF values. For example, convective
events occurring in the summer periods (April to September) have smaller spatial depen-
dencies compared to frontal events happening in the winter (October to March). The rapid
decay in the spatial correlation within convective events results in a smaller ARF. Hence,
the seasonal effect is that in the summer period, the ARF is smaller than in the winter pe-
riod (Allen and DeGaetano, 2005). Other factors affecting precipitation formation and hence
the derived ARF values are topographic variables such as elevation, slope, orientation, and
exposure. These were found to be linearly related to precipitation sums (Basist et al., 1994).
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ARF was shown to present spatial heterogeneity depending on the target region and alti-
tude (topography), but is less influenced by the catchment characteristics. In addition, the
ARF values are expected to decrease with increasing catchment area and increase with the
storm duration (Veneziano and Langousis, 2005).
Traditionally, areal rainfall values were calculated from point observations by using, for ex-
ample, the Thiessen polygon method, the arithmetic mean, or the inverse distance-weighted
approach. A common disadvantage of these methods is the lack of consideration of the spa-
tial dependence structure between the point data. Moreover, many extremes might not have
been correctly captured by the rain gauges, especially at high elevations, where the network
density is usually smaller. For reliable ARF calculation, a long time series is required; this
increases the probability of capturing the extremes values over that location.

In the work of Asquith and Famiglietti (2000) three different rain gauge networks at the
same locations were used and yielded different ARF results due to different measurement
instruments. This points out the fact that combining several data sources will influence the
derived ARF values. Moreover, different ARF calculation methods yield different results.
Two main methods predominate in the ARF calculation. The first requires long data sets,
empirical models (probabilistic approach), and a fixed area. While the second is analytically
based. The first is bound to the area but is advantageous because it leads to statistically valid
ARF values. The second method is independent of the area but delivers only empirically
calculated ARF. In this context, both methods were applied. The ARF for scaling areal-to-
point rainfall and vice-versa is defined as follows:

ARF (A, d, T ) =
Ra(A, d, T )

Rp(d, T )
(6.37)

Where:

ARF (A, d, T ) = ARF for area size A and duration d and return period T

Ra(A, d, T ) = areal rainfall depth (or intensity) for duration d and return period T

Rp(d, T ) = point rainfall depth (or intensity) for duration d and return period T

Traditional use of ARF:

Given a certain catchment with an example size of 1000 km2 and assuming a DWD rain
gauge exists within the catchment, the following steps are needed to transfer the point to
catchment scale statistics:

1. Calculate from the DWD rain gauge the DDF curve for different return periods.

2. Calculate the catchment concentration time (for example, 10 hours) (time needed for
the farthest drop of water to reach the outlet, function of catchment shape).

3. Depending on the design structure, a return period (T) is selected (for example, T = 5
years).

4. If the catchment has a 10-hour concentration time, find for this duration the estimated
rainfall depth (P) using the DDF curve (for example, P = 35 mm).
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5. Find the corresponding ARF value depending on catchment size, duration, and return
period (for example, ARF = 0.8).

6. Calculate the catchment scale rainfall depth (Pc) by multiplying the estimated DWD
rainfall depth by the ARF (Pc = 35 ∗ 0.8 = 28mm).

7. Pc is then the design rainfall value to use.

Recently, weather radar data were used to investigate the validity and reliability of ARF
values. Thorndahl et al. (2019) used a 15-year weather radar data set covering the region of
Denmark to derive storm-centered ARF values for short durations and small-scale areas for
the design of urban hydrological systems. The radar-based ARF values were compared to
several rain gauge area-fixed derived ARF values. It was stated that the radar-derived and
storm-centered ARF are smaller than the area-fixed and rain gauge based values.

In Kim et al. (2019) radar data were used to extract different storms over the region of South
Korea that were used to estimate the ARF from a storm-centered approach. The authors
show that the ARF estimates are not only dependent on the area and duration but also
on the storm’s inner variability. The latter was expressed by the coefficient of variation
(CV) and was seen to be strongly related to the derived ARF. As the coefficient of variation
increased (hence, more variability), the ARF of the corresponding storm decreased. The
authors point to the fact that traditional methods for estimating ARF should be coupled with
rainfall spatial variability, made more visible with the use of weather radar data. Moreover,
the authors noted a difference between the ARF for circular and elliptical-shaped objects.
The ARF for a circular object was seen on average to be 20% smaller than that of an elliptical
storm object for the same area size and duration.

6.1.3 Area-Depth-Duration-Frequency curves

Traditional DDF curves are derived from point observations. As seen in chapter 4 these
cannot always correctly represent the spatial extent of rainfall. Area-DDF curves are derived
similarly to DDF curves, but instead of using point observations, an areal rainfall field is
used. For a given area, rainfall observations are used to derive the DDF curve. This is
the DDF curve for that specific area, known as the Area-DDF curve. This can be done for
different area sizes.

Bennett et al. (2016) first suggested the use of interpolated rainfall data for the direct
estimation of the statistics of areal extremes by introducing the IDFA (intensity-duration-
frequency-area) curves. The need for ARF to convert point to spatial rainfall could then be
eliminated. Radar-derived precipitation data can be used to calculate the ADDF (or AIDF)
curves. However, the quality of the radar QPE data and the relatively short observation time
period highly influence the results (Haberlandt and Berndt, 2016). Marra and Morin (2015) used
radar QPE to derive IDF curves for the region of Israel and compared the results to nearby
rain gauges. Despite efforts to reduce errors in the radar QPE, the final results showed an
overestimation of radar-derived IDF curves. An effect that increased with larger durations.
Another study done by Ghebreyesus and Sharif (2021) used the radar QPE data over the state
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of Texas to derive state-wide IDF curves. The latter, showed mostly an underestimation of
short-duration maxima. The goal of using the radar QPE data is to be able to derive spa-
tially and temporally reliable IDF curves, eliminating the need for area reduction factors
(Ghebreyesus and Sharif , 2021). In Bárdossy and Pegram (2018) the radar data for selected ex-
treme events were used to investigate the cumulative distribution function of point, areal
and within an area precipitation extremes. It was shown that the areal precipitation value
can exceed the point extreme value and that within an area, the local occurrence of extremes
can be problematic. This already shows that the use of the area reduction factor might not
always be applicable.

The raw processed radar data, the merged processed radar, and the RadKlim data were
used to derive ADDF curves for the radar areas of Hannover and Türkheim for different
area sizes. The ADDF curves are used to find the estimated rainfall depth for a given
duration over a given area. One would expect that as the area increases, the maximum
average rainfall depth is expected to decrease. This is to be tested.

6.2 Results

6.2.1 ADDF from station data

Note: The crossings of the ADDF curves were first identified by Golbarg Goshtasbpour
Goshtsasbpour et al. (2022) during collaborative work within the ClimXtreme project.

The DWD point observations were used as an initial step to go from point DDF to areal
DDF curves. For this purpose, several circular areas around a center station were con-
structed; as the area size increased, stations within the new area were identified, and the
average of all included stations per time step was calculated. From the averaged time se-
ries, the DDF was calculated and assigned to the corresponding area. The procedure was
repeated for several area sizes and center locations. The point DDF was then compared to
the area DDF. An example is shown in Fig. 6.2. The curves show unusual behavior; with in-
creasing area size and temporal duration, the ADDF curve of area size 11689 km2 crosses the
one from smaller areas but not the DDF curve. This indicates that larger areas have a higher
probability of capturing the event maxima failing within that area. Smaller areas and point
data can miss the event maxima, and hence the yearly maxima could be underestimated.

6.2.2 ADDF from merged and Radklim data

The merged weather radar and station data developed in Chapter 5 were used to derive
ADDF curves for the radar regions of Hannover and Türkheim. Several randomly selected
points were chosen as center of the areas. These were constructed as squares and circles
with sizes ranging from 4 km2 to 1024 km2. For every area size, the pixels falling within
the area were identified, and for every time step, the precipitation average over all pixels
was calculated. From this new time series, the DDF was calculated for different durations
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(a) Spatial locations (b) ADDF for T=10 years

Figure 6.2: Panel (a) shows the location of the created areas around the center point. Panel
(b) is an example of the calculated DDF and ADDF curves for the denoted areas
in (a). The DDF curve was calculated from the station data. The different curves
represent the ADDF values for the corresponding areas.

(5 minutes to daily) and assigned to the corresponding area size. This approach is beneficial
and allows statistical evaluation of the areal precipitation time series as a point-time series.
The ARF was then calculated as the ratio between the point-DDF and the area-DDF values
for the corresponding duration and return period.

In Fig. 6.3 the results for one areal configuration are presented. The black curve refers
to the point DDF derived from the area center. The different colored curves represent the
ADDF curves for the corresponding area sizes. For a short duration, the point DDF exceeds
all areal DDF curves. The ADDF curves follow a decreasing gradient with increasing area
size. However, starting from a duration of around 18 hours, the ADDF curve crosses with
the point DDF curve. Beyond this duration, the ADDF exceeds the DDF values. This is an
interesting result, contradicting the ARF concept. Larger areas have higher rainfall depth
values than point rainfall values. This behavior was observed in almost all considered loca-
tions. Note that the south-west region of the radar coverage area was not considered due to
the presence of a beam blockage that hindered the correct sampling of QPE values.

After repeating the previous procedure for several randomly selected locations within
the radar area of Hannover, the average ARF for every duration and area size could be
calculated. The results are displayed in Fig. 6.4. Panel (a) shows for each duration, the
relation between the area size (x-axis) and the ARF values (y-axis). For example, for the
5-minute duration, the reduction increases with increasing area size. In other words, for the
same duration, as the area size increases, the areal extreme decreases as compared to the
point extreme. For small areas (4 km2), the areal mean is quasi-equal to the point value,
however, for large areas (1024 km2) the reduction is the largest, with an average ARF value
of 0.45 for the 5 minute duration. For the daily duration, the ARF is rather independent of
the area size, with an average value of 0.95.
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(a) Spatial locations A=1024km2 (b) ADDF for T=10 years

Figure 6.3: Panel (a) shows the location of the selected largest areas within the radar area of
Hannover along their center point (denoted by the point in red). Panel (b) is an
example of the calculated DDF and ADDF curves for the denoted areas in (a).

In the right panel of Fig. 6.4, the relation between the duration (x-axis) and the ARF
(y-axis) is presented. For a constant duration, for example, 15 minutes, the reduction is
proportional to the area size. Specifically, the larger the area, the larger the reduction. For
the duration of 18 hours (1080minutes), a crossing between the curves of the larger areas
(1024 km2) and the curve of the smaller areas (100 km2) was noted. This contradicts the
traditional assumptions behind the ARF, namely that larger areas have smaller ARF values.
A discussion about this is presented later in the discussion section.

(a) ARF with area (b) ARF with duration

Figure 6.4: Example of average ARF derived from several randomly selected locations within
the radar area of Hannover. Panel (a) shows the ARF values (y-axis) as a function
of the area size (x-axis) for different durations. The different curves represent the
ARF for the specific duration as a function of the area. In panel (b) the ARF is
displayed as a function of the duration (x-axis). The different curves represent the
ARF for selected area sizes.
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6.2.3 ARF from ADDF curves and connected areas

ARF shows high uncertainty even for neighboring locations; a regional average ARF value
leads to an underestimation or overestimation of the areal extremes for design values. This
can be seen in the left panel of Fig. 6.5. From 51 ADDF locations, the ARF value was cal-
culated and is presented for the area size of 1024 km2. The average ARF value is presented
in red, while each gray curve presents the estimated ARF for that specific location. One can
see that the spatial variation is not included using a single ARF value, and the ARF is not
stationary in space but presents larger variations over all durations. Moreover, there are re-
gions and durations with ARF values exceeding the value of 1. This indicates that the point
sampling underestimates the true maxima, especially for long durations. Depending on the
spatial extent of rainfall events, the areal average can exceed the point value. Other (but few)
studies have already noted an ARF value exceeding the pre-assumed upper bound of 1. For
example, Catchlove and Ball (2003) and Bennett et al. (2016) identified ARF values exceeding
1 in their works. Especially when deriving regionalized IDF or ARF values, the underly-
ing regionalization scheme underestimates the rainfall extremes and spatial variability (as
mentioned in chapter 4).

Figure 6.5: Panel (a) depicts the ARF for several areal locations using the ADDF curves. Panel
(b) shows empirically calculated ARF values for a duration of 5 minutes.

ARF from storm-centered approach:

Another aspect was to investigate the storm-based ARF values. For this, connected rain-
fall blocks were extracted from the radar fields (see chapter 7). The ARF was calculated
as the ratio between the mean and maximal within-area precipitation value and was as-
signed to the corresponding area size. This is an event-based approach with varying results
depending on convective and stratiform rain formations and is not suitable for statistical
analysis. However, the derived values were used as a case study to determine the reliabil-
ity of the statistically derived ARF values. The results show large variation; for a similar
area size, several ARF values were obtained. In practice, however, only the average of these
values is considered, which can lead to an underestimation in many cases. The right panel
of Fig. 6.5 shows average empirically calculated ARF values from connected rainfall blocks
exceeding a size of 4 km2 within the Neckar catchment for a duration of 5 minutes. The
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values show the variation in the ARF values. For similar area sizes, the values vary and
spread greatly around the mean and show a clear distinction between the summer (values
in red) and winter (values in black) seasons. The average ARF value (0.42) in panel (a) for
a duration of 5 minutes and area size of 1024 km2 is larger than the estimated one in panel
(b) (winter 0.35 and summer 0.25). In other terms, the statically derived ARF delivers larger
areal rainfall values than the empirically derived values. A similar result was noticed by
Thorndahl et al. (2019), where the radar storm-centered ARF were smaller than the fixed area
ARF values. However, these are average values in both cases.

6.2.4 Comparing derived ARF to ARF used in practice

In the work done by Verworn (2008) areal reduction factors for area sizes ranging between
25 km2 and 1000 km2 were determined using a rain gauge network with high spatial and
temporal resolution. The large number of rain gauges covering several regions meant that
the obtained ARF values were adequate to be transferred to other locations. In this work,
these values were considered as reference values and compared to the derived ones using
the ADDF curves. The result is displayed in Table. 6.1, the columns show the area size and
the rows the ARF values. For every duration, the results were compared. For lower tempo-
ral aggregations (hourly to daily), the difference between the calculated and reference ARF
values was in the same range. The noticeable difference was, however, that for sub-hourly
aggregations (first row) and large areas, the reference values show lower ARF values. This
leads to an underestimation of the areal extremes. For the area of 1024 km2 the reference
value shows an ARF value of around 0.36, while the calculated average ARF is 0.5. If the
point extreme value for the same duration was, for example, 50 mm, the resulting areal val-
ues will be 18 mm and 25 mm, respectively. Hence, an underestimation of the areal extreme.
The reason for the difference is mostly due to the presence of convective-driven events that
are mostly better detected with the weather radar than with the station data. Though the
true ARF value cannot be exactly pointed out, this analysis showed the uncertainty in the
derived and used ARF values, especially for the sub-hourly durations.

Table 6.1: The reference and calculated ARF values for different durations and area sizes are
shown in the red-titled and black-titled columns, respectively.

Area size [km2]

10 16 50 100 200 256 1000 1024

D
ur

.[
m
in
] 15 0.91 0.91 0.74 0.76 0.56 0.65 0.36 0.50

60 0.95 0.94 0.84 0.82 0.70 0.73 0.56 0.61
360 0.98 0.97 0.95 0.90 0.88 0.85 0.80 0.78
1440 0.99 0.99 0.98 0.97 0.94 0.96 0.90 0.96
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6.3 ARF with catchment size, form, and orientation

Change of ARF with catchment size and form:

Gravelius (1914) introduced the Gravelius Compactness Coefficient (GC) to describe the
catchment shape defined in equation 6.38 (Sassolas-Serrayet et al., 2018).Several catchments
in the Germany were selected and their GC value calculated. Panel (a) of Fig. 6.6 shows the
different catchments along their shape parameter. Higher GC values indicate a more longi-
tudinal (and non-uniform) form (catchments in orange and red). Smaller GC values refer to
more homogeneously spatially formed catchments (locations in blue). Using the RadKlim
data, for each catchment and for the period 2001–2020, the precipitation time series for the
catchment centroid pixel and for the areal average precipitation value were extracted. For
the centroid pixel, the DDF curve was constructed, and from the areal average, the ADDF
curve was derived. The ARF was then calculated as the ratio between the DDF and ADDF
curves. The aim was to identify if there is a relationship between the catchment size and
form and the ARF value. Panel (b) in Fig. 6.6 depicts the hourly and daily duration of the
ARF value as a function of the catchment area size for a 10-year return period. For the hourly
duration (dots in blue), the ARF decreases with increasing area size and shows variability
for small-scale catchments. However, as seen in panel (b) of Fig. 6.7 neighboring catchments
show similar ARF values. On a daily scale, some catchments have ARF exceeding the value
of 1. This is most likely due to undersampling of the extremes at the centroid location. An-
other possibility would have been to derive the DDF from the pixel with the largest mean.
For the daily duration, the ARF seems to be less influenced by the area size.

In panel (c) of Fig. 6.7, neighboring catchments tend to have similar ARF values with
minor exceptions. For instance, in the Neckar catchment, the Jagst (in blue) and the Enz (in
orange) sub-catchments show different behavior than the other sub-catchments. However,
the difference is the largest for the Jagst catchment, with a much smaller ARF on a daily
scale. The subplot in panel (c) of Fig. 6.6 shows the effect of the form (or shape) param-
eter on the ARF. The catchments with an area size exceeding 1000 km2 were selected, and
the relationship between the ARF and GC was plotted. The size and color of the dots are
proportional to the area. This explains the different behavior of the Jagst catchment with
the largest GC value of 3.1, associated with a small ARF. Moreover, catchments with similar
sizes and smaller GC values have larger ARF values. Hence, as mentioned by Veneziano and
Langousis (2005) the shape of a catchment affects the ARF, and longitudinal catchments are
expected to have a smaller ARF value compared to regularly shaped catchments of similar
size. Additional factors such as topography and elevation affect the areal rainfall statistics
and the derived ARF values (Basist et al., 1994).

GC =
P

2
√
πA

(6.38)

Where:

GC = Gravelius compactness coefficient
A = Area of catchment
P = Perimeter of catchment
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Change of ARF with catchment orientation:

To determine if the ARF is constant or dependent on the underlying shape and its orien-
tation, the following analysis was conducted: Several object forms with the same area size
(around 1024 km2) were created around the same centre point. For each form, the ADDF
curve was calculated and the ARF was derived as the ratio between the ADDF and centre
pixel DDF curves. The created forms were the circle used previously for deriving the ADDF
curve and a horizontal rectangle (width = 20 km and length = 51.2 km). The horizontal
rectangle (east-west) was then rotated vertically (south-north) and in the directions ± 45 ◦.
Eventually, five forms were created with equal size and centre point.

The ARF values for the different shapes and durations corresponding to the return pe-
riod of 10 years can be seen in Table. 6.2. The columns to the right display the average,
minimal, and maximal ARF values for each duration. Since the DDF curve was constant,
the difference in the ARF values was related to the average areal rainfall within each form.
The minimum and maximum columns show the range of possible ARF values with a 20 %

deviation. Moreover, the maximum ARF was associated with the shape of a circle, while the
minimal was associated with the rotated rectangles. This indicates that, for the same area
size, different ARF values resulted from different geometrical forms, with the maximum
associated with a circular form and the minimum with a longitudinal shape.

Figure 6.6: Panel (a) shows several selected catchments with the GC coefficient. Panel (b)
shows the ARF values for the hourly and daily durations as a function of area size.
Panel (c) shows for the daily duration the GC coefficient for the large catchments
as a function of the ARF.
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Figure 6.7: Panel (a) shows several selected catchments with their area size. Panels (b) and
(c) show the ARF values for the hourly and daily durations, respectively.

Table 6.2: ARF values for several durations and for the same area size but for different shapes
(seen in panel (a) of Fig. 6.8). The average, minimal and maximal ARF values were
calculated for every duration over the different shapes.

Area Reduction Factor (ARF) - Area sizes of 1 and 1024 km2

Circle Horizontal Vertical Shifted +45° Shifted -45° Average Min Max

D
ur

at
io

n
[m

in
]

5 0.197 0.175 0.174 0.156 0.182 0.176 0.156 0.197

15 0.278 0.249 0.247 0.233 0.255 0.252 0.233 0.278

30 0.353 0.32 0.315 0.306 0.32 0.323 0.306 0.353

60 0.437 0.4 0.392 0.393 0.388 0.402 0.388 0.437

120 0.53 0.489 0.49 0.489 0.479 0.495 0.479 0.53

360 0.723 0.68 0.698 0.695 0.672 0.693 0.672 0.723

720 0.881 0.84 0.875 0.869 0.834 0.859 0.834 0.881

1080 0.99 0.953 0.998 0.991 0.947 0.975 0.947 0.998

1440 1.076 1.043 1.096 1.088 1.037 1.068 1.037 1.096

Considering the vertical and the ± 45 ◦ rotated rectangles, the ARF was the largest for
the vertical orientation. For a short duration (below 60 minutes), the +45 ◦ rotated rectangle
has a larger ARF than the -45 ◦ rotated rectangle. Beyond the hourly duration, the ARF be-
comes larger for the -45 ◦ rotated rectangle. This indicates that, depending on the duration,
orientation plays an important role.
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Panel (a) of Fig. 6.8 shows the accumulated sum of a 4-hour event that moved from South-
East to North-East in July 2019. For every 5-minute time step, the ratio between the accu-
mulated areal rainfall in every shape (the black polygons in panel (a)) and the accumulated
centre pixel rainfall value was calculated. The results are seen in panel (b) of Fig. 6.8. As the
event spread, the ratio (namely, the ARF) neared the value of 1. However, the development
of each curve was different depending on the shape and orientation. The vertical shape
reaches the ARF of 1 very quickly and then fluctuates around that value. This is because the
vertical shape was oriented in the same direction in which the rainfall field started and de-
veloped. Hence the order of the curves: after the vertical shape, the - 45◦ rotated rectangle,
then the circle, then the horizontal shape, and finally the +45 ◦ rotated rectangle. The rainfall
field reached the latter towards the end of the event. This analysis indicated that the ARF
depended on the storm orientation (or anisotropy) compared to the catchment orientation.
If the moving storm was perfectly oriented with the catchment orientation, the ARF would
reach a value of 1 very quickly. However, if the storm orientation was perpendicular to the
catchment, the ARF would gradually increase along the spatial-temporal development of
the event.

In Veneziano and Langousis (2005) the effect of advection on ARF values was investigated.
The authors stated that depending on the catchment shape the effect of advection differed.
For instance, for highly elongated catchments, not only does the magnitude of advection
matter but also the direction. Whereas in more circularly shaped basins, only the magnitude
of advection and not the direction were relevant. This supports the results displayed in Table
6.2, where for the same area size and centre DDF curve, the ADDF varied depending on the
object form (geometry) and orientation. The largest ADDF (or ARF ratio) was seen for the
circle shape, while the smallest was seen for the elongated and oriented shapes (associated
with large GC values).

Figure 6.8: Panel (a) shows the accumulated values for a single 4-hour event. Panel (b) dis-
plays the ratio between the areal average and centre pixel rainfall values for each
shape and time step for the event in Panel (a).
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6.4 Discussion

Uncertainty in DDF curves: To illustrate the degree of uncertainty present in the estimation
of the DDF curves, point-time series from Radklim were used. The DDF curves were de-
rived for all pixels within an area size of 16 km2. Assuming that the centre pixel represented
the location of a rain gauge, the DDF of all other pixels was compared accordingly. Fig. 6.9
shows the result and hence the degree of uncertainty in representing the correct extremes
even for such a small area. The DDF curves show a high degree of variability and, hence,
uncertainty. This has the following consequences: if the rain gauge was placed at the loca-
tion of the minimum or maximum DDF curves, the subsequent design values would vary
substantially. Even calculating the ARF value for such an area showed a large deviation
depending on the choice of the ’point’ or pixel DDF curve. In the left side of Fig. 6.9 the
red curve represents the center point DDF curve, while the blue shows the ADDF for the
corresponding area. The plot on the right side shows the location of the selected pixels in
the orange square within the radar area of Hannover (pixels in blue).

Figure 6.9: Example of calculated DDF curves for all 25 pixels within an area of 16 km2.

Uncertainty in ADDF curves: One of the main findings with ADDF curves was the pres-
ence of crossings between the curves. Large areas have values exceeding the point values
for higher aggregations. Hence, the ARF value is not relevant in this case. As seen in the re-
sults, crossing the ADDF curves, first between the point and area curves, and then between
the ADDF of different area sizes, limits the current usability of the ADDF curves.
For the crossings between point DDF and the ADDF curve, the reason is an underestimation
of the maxima by the point value, especially for a large duration. One example of this is an
event from the year 2003, which can be seen in Fig. 6.10. The left panel shows the event time
series, and the right panel shows the event spatial distribution. The event maxima (curve
in blue) was missed by the center value (curve in red). The accumulated sum of the areal
average (black curve) exceeds the point value, which results in crossings of the DDF and
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ADDF curves. The spatial distribution of the event shows a concentration of the values on
the left and right sides of the area centre (represented by the x pixel). The event was seen to
be associated with anisotropy and uneven spatial distribution.

In addition, depending on the length of the available data sample, crossings might not oc-
cur. For example, if the event in 2003 did not exist, the crossings would not exist. Moreover,
in the left panel of Fig. 6.9 the choice of the center point and the subsequent effect on the
derived DDF curve can be seen. Usually, the center point is considered the point represen-
tative of the area or catchment, however, choosing a different point than the center will lead
in some cases to a better sampling of the extremes within the area and hence no crossings
between the DDF and ADDF curves.

Figure 6.10: Panel (a) depicts the time series of the event in 2003. Panel (b) shows the spatial
distribution of the precipitation sum over the event. The centre pixel is marked
by X.

Where is the maxima within the area (?): Fig. 6.11 shows the location of the maximum
pixel value within the area of the ADDF curve. The center point is shown in red. For every
time step between the years 2001 and 2021 with data exceeding the minimal threshold of 5
mm per 5 minutes and 10 mm per 18 hours, the location of the maximum was marked. Both
panels demonstrate that the occurrence of the maxima is independent of its location. This
explains why sampling the DDF from any point value might lead to missing or catching the
event maxima. For example, the maxima occurred over some pixels more frequently than
over others, but interestingly, some locations never recorded any maxima (grid points in
gray).

Uncertainty in ARF values: The assumption that a single ARF value can represent a re-
gion was not confirmed. ARF was seen to be highly variable in space and time. Even within
a single radar area with similar duration and area size, the ARF values vary significantly.
Moreover, a test case study was done using the derived ARF values. From the connected
areas, the values of the areal maximum, areal mean, and area size are known. Hence, the
empirical ARF value for that area could be calculated. Using the values derived from all
connected areas with similar sizes and for a similar duration, an average ARF was obtained.
When using the average ARF value (which is the case in practice), the uncertainty space was



80 From point to areal precipitation with the area reduction factor.

(a) Location of maximum (d=5 minutes) (b) Location of maximum (d=18 hours)

Figure 6.11: Panel (a) and (b) depict the location of the maximum values (> 5 mm per 5 min;
> 10 mm per 1080 min) within the area of 1024 km2 independent of their time of
occurrence for the durations of 5 minutes and 18 hours respectively.

quite high. For example, a connected area with a size of 500 km2 was considered, for which
the mean ARF was around 0.35 for the 5-minute duration. As seen in the right panel of Fig.
6.5 the calculated ARF varies between 0.1 and 0.6.

A further investigation was done to showcase that, independently of the location of the
maximum, the in-area maxima exceed the areal mean. However, if the location of the repre-
sentative point was confined to a certain fixed location, for example, the center of the area,
the areal average might exceed the point value. Fig. 6.12 presents the previous two cases,
respectively. Panel (a) depicts the ARF calculated as the ratio of areal average to maximum
precipitation values from 2D connected areas exceeding the > 30 mm per 1080 min threshold
for the year 2021 within the Neckar catchment. Panel (b) shows the ratio between the areal
mean and area maximal value, for the same period and location. Panel (a) shows that the
area maximum is always larger than the mean. Panel (b) shows that the areal mean might
exceed the area center rainfall values in some cases. Hence, the assumption that the areal
average is always smaller than the in-area maximum was confirmed by panel (a). How-
ever, the assumption that the center point (or any other single point) is representative of the
in-area maximum precipitation value is wrong, as seen in panel (b).

Dependence of ARF on return period: for several selected catchments (in total 37) with
various area sizes and geographical locations (in the North and South of Germany) the ARF
was derived as the ratio between the catchment specific ADDF curve and the DDF curve of
the centroid pixel. For that purpose, the RadKlim data for the period 2005–2020 were used.
The hourly and daily durations were selected as test cases. The ARF values for the return
period of 10 years were chosen as reference values. The ARF for the return periods of 30, 50,
and 100 years were compared against the reference values. The results show that the ARF
is quasi-independent of the return period. Between the different return periods, the values
vary slightly, with differences of 5 %. As the return period increases, the ARF decreases.
Similar conclusions were found in the literature review, for example, in Svensson and Jones
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(a) Ratio areal to maximum values (b) Ratio areal to center values

Figure 6.12: Panel (a) depicts the ARF calculated as the ratio of areal average to maximum
precipitation values from 2D connected (> 30 mm per 1080 min). Panel (b) shows
the ratio between the areal mean and area maximal value.

(2010). The larger decrease in the hourly ARF values was associated with the greater role
convection plays in hourly heavy rainfall values. For catchments where the ARF is larger
than one, namely where the centroid is not representative of the point maxima, the ARF
increases with the return period. This behavior, however, was associated with sampling
problems of the point DDF curve (as seen in previous sections). Moreover, the decrease in
the ARF was noted to be larger for the hourly duration (panel (a) of Fig. 6.13) compared to
the daily duration (panel (b) of Fig. 6.13). Note that the bias in the RadKlim data was largely
canceled out as all results were derived from the same database.

(a) ARF with return period - D=60 min (b) ARF with return period - D=1440 min

Figure 6.13: Panel (a) and (b) depict the ARF values for 37 catchments and for 4 different
return periods for the hourly and daily durations, respectively.
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6.5 Summary

Extreme precipitation values associated with a given duration and return period are essen-
tial for the design of different engineering systems. In this chapter, traditional point gauges
were used to calculate the DDF curves, and from the radar data, the ADDF curves were
derived. The ADDF curves refer to design curves that can be used directly for the respec-
tive area size. These would have been traditionally acquired using the area reduction factor.
From the ADDF curves, area reduction values were derived and compared to reference val-
ues. The result highlighted that the ADDF-based ARF values are larger for short durations,
which implies higher areal precipitation depth. Moreover, the ARF was derived from differ-
ent storms extracted from the radar data. The average ARF for every area size and duration
was calculated. If the average ARF value is used, large uncertainty exists in estimating
the true storm maxima. Large uncertainty was also identified in the DDF curves within a
small proximity. Neighboring locations could have varying DDF curves, depending on the
sampled extremes. Thus, a long sampling period is essential to ensure that a location has
observed the maximum of the maxima for each duration. The analysis undertaken showed
that applying the ARF might not always be reliable and can lead to an underestimation of
the areal precipitation values. In addition, the shape, orientation and geometry of a catch-
ment or area affects the ARF value. A factor with important aspects for urban areas.



7 Areal extremes from a different
perspective: rainfall as connected 2D and
3D blocks

In the following chapter, the spatial extent of precipitation events was inspected using the
weather radar data made available for the last 20 years with 5 min temporal and 1 km spatial
resolutions. Connected rainfall areas were extracted from every radar field. Corresponding
statistics regarding area size and areal mean rainfall, area size and areal max rainfall, and
spatial density distribution were calculated. For selected events, the relationship between
rainfall volume and discharge volume was established. The study region was Germany,
with headwater catchments in the Neckar catchment.

7.1 Literature review

Precipitation extremes are traditionally assessed using single-point observations. Corre-
sponding extreme value statistics are applied to these point observations and aggregated for
different duration levels. However, the consequences of heavy precipitation, such as flood-
ing, are related to water volume. Hence, the spatial aspect should not be disregarded. How-
ever, most studies with observed series neglect the spatial extent of precipitation events.
The focus is on viewing precipitation as a spatial phenomenon without using purely point
statistics.

Weather radar data have advantageous aspects when looking at the spatial extent of rain-
fall events. They offer the possibility to investigate what was measured between point ob-
servations and offer greater variability than using interpolation methods. In Lengfeld et al.
(2019) the spatial extent of hourly and daily data was derived for the period 2001–2016 from
the German weather radar data (Radklim). The goal of the study was to find regions with
highly correlated behaviour of rainfall extremes. This was done by calculating the rank cor-
relation between the positive values of each grid cell (smoothed to 5km grid size) and all
other cells with simultaneously positive values. The distance from which the correlation
drops was used to reflect the spatial extent between the reference and neighbouring loca-
tions. As in Touma et al. (2018), the spatial extent of the daily data was seen to be strongly
dependent on topography, and for the hourly data, the extent was on average four times
smaller than for the daily data and affected local regions. In Lengfeld et al. (2018) rainfall
events exceeding a certain threshold or return period were extracted from the radar data for
the region of Germany. The events were extracted as contiguous rainfall objects over several
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durations. The events were looked at in time to ensure that no event was repeated for differ-
ent durations. The events were then classified based on their time of occurrence, size, and
location. Eventually, the authors provided a catalog of extreme rainfall events in Germany.
In Matte et al. (2022) the spatial extent of extremes was derived from EURO-CORDEX cli-
mate model data with an 11 km spatial and a daily temporal resolution. One of the research
questions was if the spatial extent of extremes, especially in terms of size, was changing
with climate change. The authors investigated and showed that the intensity of larger areal
events was getting bigger with the increase in area size.

Based on the concept of trading space for time, the probability of the occurrence of
an event with a 5-year return period over a certain location was proportional to the area
size. Bárdossy and Pegram (2018) demonstrated this by using a high-density network of rain
gauges associated with weather radar data. This shows that the occurrence of an extreme
event is not only a time-dependent problem but a spatial one as well. A previous study
done by Doneaud et al. (1984) established a power-law relation between the storm area, du-
ration, and corresponding volume. Atlas et al. (1990) analysed the behaviour of convective
storms and expressed it in terms of their duration (or lifetime), their areal extent and their
volume. Ayat et al. (2022) used sub-hourly radar data within an object detection and track-
ing approach to investigate the presence of a trend in the intensification and occurrence
of sub-hourly extremes. Traditionally, investigating the relationship between rainfall and
runoff was done using interpolated gauge observations. More recently, weather radar data
were used as input for runoff simulations. In both cases, however, the focus was on high-
intensity events. An aspect not often considered is that the accumulation of low-intensity
rainfall over a certain catchment for a duration long enough could lead to a flood situa-
tion. By accumulation, not only are temporal aggregations meant, for example, as hourly or
daily maxima, but the accumulation of events individually, defined by the start and end of
an event. This differs for each event and offers the possibility of investigating events with
varying durations, intensities, and spatial distributions. The focus was usually on hourly
or daily maxima; however, a data-based analysis might lead to identifying events with low
intensity and long duration, leading to high discharge values.

Why connected areas or volume? Point observations offer a perspective on surface pre-
cipitation. Namely, what reached the ground at the gauge location. Numerical climate mod-
els offer spatially distributed fields but are the output of meteorological products. They
provide precipitation from an atmospheric perspective. The weather radar data offers the
opportunity to look at spatially distributed rainfall fields with high resolution in space and
time. This is advantageous as it allows for covering the gap between rain gauges, satellites,
and climate model data. More specifically, the high spatial and temporal resolution can be
used to track the rainfall objects in space and time and apply an object-oriented analysis.
Interestingly, the location of the maximum rainfall value within an event can be tracked,
and the total event volume can be evaluated. This approach is not feasible using any other
observation data. In Langousis (2005) the effect of advection velocity and rainfall intensity on
subsequent discharge was underlined. The largest effect was associated with slow-moving
objects with a velocity of around 10 km/h. Such information can be derived from the con-
nected volumes and related further to the areal extent of extremes and discharge statistics.
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In the following chapter, an approach to investigating the spatial extent of extremes by
considering rainfall as spatially (2D) and temporally (3D) connected blocks is presented.
The focus was not only on singular rainfall blocks but also on the statistical relation be-
tween different area sizes (and corresponding areal mean and areal maxima) and their spa-
tial density (frequency of occurrence). Moreover, from the connected areas, the ratio be-
tween the areal mean and areal maxima values was derived. This is related to storm-based
area-reduction factors (see chapter 6). After introducing the data and the used method, the
results were mapped and discussed for the study area. An example of 3D rainfall blocks for
sub-catchments in the Neckar catchments is shown, and a relation between spatial extent,
rainfall volume, and event duration is presented.

7.2 Method

7.2.1 Data and study area

In this study, the RadKlim data set made available by the DWD (Winterrath et al., 2018b) were
used. The data have been climatically and gauge adjusted. The product is derived from the
combination of all the weather radar data operated by the DWD. A complete description of
the RadKlim data quality can be found in (Kreklow et al., 2020). For processing the data from
binary into yearly netCDF files, the software package radolan to netcdf was used (Chwala and
Polz, 2021). The data have a 5 minutes temporal resolution and are gridded on a Cartesian
grid with the dimensions of 900*1100 kilometers.

The catchments Enz, Jagst, and Kocher are part of the Neckar catchment, located in the
southwest of Germany. They have a drainage area of 1.655, 1.820, and 1.943 km2, respec-
tively. The upper right panel of Fig. 7.1 shows the location of the three catchments along
their gauging stations. The catchments are located near two mountainous regions, namely
the Black Forest on the west side and the Swabian Alps on the east side. The elevation ranges
from approximately 200 to 1000 meters above sea level. The three headwater catchments are
used to compare the precipitation volume to the discharge volume. The discharge data were
made available by the state environmental agency (LUBW) for the period 2010–2018 with
an hourly resolution (LUBW Landesanstalt für Umwelt, 2019). The Ahr catchment, shown in
the lower right panel of Fig. 7.1 was hit in July 2021 by a severe flooding event that caused
large-scale damages. This event was taken as an example case study.

7.2.2 Definition of connected areas and volumes

A connected area was defined by neighboring connected pixels with values exceeding a
predefined minimal threshold.

1. For time step t, identify all pixels U in the rainfall field exceeding the minimal thresh-
old Pmin.

2. Find which pixels in U are connected with one another.
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Figure 7.1: Study region with the locations of weather radar coverage areas.

3. Given a pixel Z(x0, y0) at locations x0, y0 with a precipitation value Z >= Pmin

Z(x0, y0) connects Z(x0+i, y0+j) if

Z(x0+i, y0+j) >= Pmin

for i, j in [-1, 0, 1]

(7.39)

4. Repeat the procedure for the next pixel Z(x1, y1) until Z(xu, yu) is not connected to
any other pixels

5. This is a single 2D connected area defined as Z(x, y) with the number of pixels i =

1, . . . , u and the coordinate vectors x and y

6. Repeat the procedure until all spatially connected blocks in U are identified.

7. Save for every block the coordinates of the pixels, the area size, the average, and the
maximum precipitation values.

8. Move to next time step t+ 1

9. Extract all connected blocks in t+ 1

10. Find which connected blocks in t+ 1 are connected to the blocks in t
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11. For a block Z(t, x, y) find if Z(t+ 1, x1, y1) connects Z(t, x, y):

for K(t, xi, yi) in Z(t, x, y)

for T (t+ 1, x1,j , y1,j) in Z(t+ 1, x1, y1)

if x1,j , y1,j == xi, yi

end iteration

(7.40)

12. The two blocks Z(t, x, y) and Z(t+ 1, x1, y1) form a connected block in 3D, namely a
connected volume

13. Continue the procedure using the newly formed block and find all connections in other
time steps.

14. Extract parameters such as locations, duration, volume, and speed of travel for each
connected volume.

The method aims at extracting and investigating spatially and temporally connected pre-
cipitation areas from weather radar data. It is classified as an object-oriented approach. The
gridded data are available with 5 minutes temporal resolution and 1 km spatial resolution.
Along with using the 5-minute data, the fields were also aggregated to hourly and daily
resolutions. The radar observations are a snapshot of the observed time. This is not a repre-
sentation of the continuous rainfall process happening between successive time steps. If one
tries to aggregate the images without considering the continuous flow in time and space of
rainfall the final result will present discontinuities. The effect becomes more predominant
with increasing aggregations. To account for this, the advection correction presented by
Anagnostou and Krajewski (1999) was applied. To find the advection vector between succes-
sive fields, the Lukas-Kanade optical flow method (described in chapter 5 was used (Lucas
et al., 1981)). The procedure was adapted from the pysteps Python framework (Pulkkinen
et al., 2019a).

7.2.3 Extracting connected areas

Connected rainfall areas were derived from every radar field. Depending on the temporal
aggregation, a different threshold was used. The chosen thresholds can be found in Table
7.1. To extract the pixels that are connected within a certain time step, the radar field was
scanned, and all pixels with precipitation values above the given threshold were marked.
Then an iteration through each marked pixel and its 8 nearest neighbours was done. If any
other neighbour was previously marked, the two pixels were now connected. The procedure
was repeated until each object with connected pixels was extracted. For every connected
object, the following information was gathered:

• Time of occurrence.

• The area size (km2).
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• The average areal precipitation value (mm).

• The maximum precipitation value (mm).

• The location of the pixels (longitude, latitude).

An illustration of the principle of extracting one connected area from part of a radar field
can be seen in Fig. 7.2. In this example, a single 2D-connected area was identified. Infor-
mation regarding the time of occurrence, area size, areal mean and maximum precipitation,
and the grid coordinates were stored. Note that for a larger threshold (for example, 0.6 mm),
two connected areas would have been identified.

Figure 7.2: Example of connected area extraction. Using the radar QPE values and minimal
precipitation threshold (in this case, 0.3 mm/5 min), all cells above and below the
threshold are identified. The cells that exceed the threshold (shown in red) are
checked for spatial continuity (or connectivity).

Table 7.1: Minimal precipitation threshold per temporal aggregation for identifying con-
nected blocks.

Duration [min] 5 5 60 120 360 1440

Pmin Germany [mm] 0 5 5 10 15 20

To focus on the extremes, a minimal threshold of 5 mm was chosen for the whole study
area. While for the Neckar sub-catchments (Jagst, Kocher, and Enz) and the Ahr catchment,
a threshold of 0.1 mm was chosen, namely, rain or no rain. This is needed for investigating
the connected areas in 3D.

7.2.4 Extracting connected volumes

Many extreme precipitation events are not necessarily driven by high intensities (hourly or
daily maxima) but are caused by the accumulation of rainfall cells in space and time. For
example, if a connected block remained relatively constant over a certain region, even if
with a small intensity, the accumulated volume might cause certain damage. On the other
hand, if an event with a strong intensity had a large speed (not concentrated over a certain
location) and/or was spatially spread, the subsequent volumes might not be problematic.
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Therefore, the connected areas were inspected in a 3-dimensional context, namely space
and time. The procedure was simple: once the connected areas in the 5-minute data were
identified in space, if intersecting pixels between consecutive 2D blocks (in subsequent time
steps) existed, the connected areas would form a 3D connected rainfall block (until no more
intersections were present). With this new approach, connected blocks were inspected. as
the accumulation of individual areas, defined by start and end times. This differed for each
event and offered the possibility to investigate cases with varying durations, intensities, and
spatial distributions. The following information describing each block could be extracted:

1. The temporal duration between the first occurrence and spatial separation (min).

2. The accumulated area, the union of all connected areas (km2).

3. The corresponding volume (each pixel rainfall multiplied by pixel area) (km3).

4. The average extent, the average distance between the centre point of the first block
and the nodes of the convex hull (km).

5. The average speed, calculated between centre points of consecutive blocks (km/h).

6. The spatial density, calculated as the spatial frequency of the locations of the pixels.

7. The form of the blocks defined as the ratio between the convex hull perimeter and the
square root of the area.

The accumulated volume over a 3D block could be derived as in equation 7.41.

V =

∫
T

∫
A
Rda dt (7.41)

Where:

V = accumulated precipitation volume km3

R = precipitation estimate at each pixel u in area A for time step t

T = Block duration

An example of this can be seen in Fig. 7.3. In panel (a), a connected 2D area is extracted
from the radar image for time step T1. In panel (b), two connected areas are identified for
T2 (the red and yellow blocks), and if any of them intersects with the area in panel (a), the
union is considered a new connected block (the two red areas in panel (b)). The same is seen
in panel (c), where new objects intersect with those in panel (b). The procedure is continued
until no more blocks intersect. In panel (d), two connected blocks are identified along the
trajectory of the centroids (V1, V2, and V3). The one in yellow has a duration of 10 minutes,
while the red one is for 15 minutes. Note that for each block, all information from 2D areas
was extracted and expanded with time as a third dimension.

The approach was done for the volumes occurring within and around several headwater
catchments in the southwest of Germany during the period between 2010 and 2018. The
period was chosen accordingly with the availability of the high-resolution discharge data.
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Figure 7.3: Example of 3D connected area extraction within a 2-dimensional field. Panel (a)
shows one extracted connected 2D area for time step t = 1. Panel (b) shows for
time step t = 2 newly identified 2 connected areas from which one is connected
with the area in panel (a). Panel (c) shows the results for time step t = 3 and panel
(d) for time step t = 4. In panel (d) 2 connected volumes (or 3D blocks) were
extracted along their spatial and temporal characteristics.

These were used for event verification. A sort of rainfall-runoff scheme was established by
using statistics of the connected 3D blocks and discharge measurements. The main questions
to answer are listed below:

1. When do high rainfall volumes correspond to high discharge values?

2. What is the relation between the 3D blocks and the subsequent discharge behaviour,
represented by the hydrograph?

3. How fast does the catchment react, defined by the slope of the rising limb?

4. When does the peak occur?

5. How is the spatial and temporal distribution of rainfall influencing the catchment re-
action?

6. Which part of the 3D block is failing above the catchment, and what is the ratio be-
tween the volumes above the catchment and the total event volume?

7. How much is the discharge volume compared to the 3D rainfall volume?

8. Can and when is the discharge volume exceeding the rainfall volume?

To distinguish between snow and liquid precipitation events, the temperature hourly data
for the surrounding gauges were used as additional information. If the average temperature
was below the freezing value during the duration of the 3D block, the event was attributed
to a snow-driven event.
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7.3 Results

7.3.1 Connected areas in 2D

The results of categorizing 2D connected areas based on their size and corresponding areal
mean precipitation are shown in Fig. 7.5. The data have been acquired using data from
Germany at a 5-minute resolution with a minimum threshold of 5 mm. Panel (a) presents
a scatter plot depicting the relationship between area size and areal mean precipitation.
Generally, as the area size increases, the areal mean precipitation tends to increase. However,
the maximum value was observed for an area with an approximate size of 30 km2. This
might be due to a convective-driven event with high small-scale intensities. However, there
is significant variability in the values, with multiple averages possible for the same area size.

In panel (b) of Fig. 7.5, the 2D objects are categorized based on their size into five cate-
gories: 4-10 km2, 10-30 km2, 30-50 km2, 50-100 km2, and 100-200 km2. The CDF for each
category was constructed. As the area size increases, the corresponding areal mean precip-
itation also increases. The reasoning behind this is the following: since each area contains
only pixels exceeding the threshold, larger area sizes tend to have a higher frequency of
pixels with larger precipitation values, leading to higher areal precipitation. Namely, the
connected area size and the probability of having larger values are proportionally increas-
ing. This indicates that the occurrence of areal extremes in space and time is not a complete
random process but rather a structured one.

(a) Area size vs area mean (b) CDF per area size

Figure 7.4: Panel (a) shows a scatter plot between the area size and the area mean. Panel
(b) shows the CDF of the area mean dependent on area size. The threshold used
for extracting the connected areas was 5 mm for the duration of 5 minutes. The
sample size is shown in both panels.

In panel (a) of Fig. 7.5, the timeline of occurrence of 2D connected areas is presented.
The area size in km2 is shown on the y-axis. The green values represent the summer period
(April to September), while the blue ones represent the winter period (October to March).
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The result shows that the largest 2D areas on the 5-minute scale occur during the summer
period, with the maximum area size being below 800 km2. In winter, the size of the 2D
areas is generally smaller compared to summer, with some exceptions, such as in January
2018. The red dashed lines represent the end of each calendar year. However, the figure will
vary depending on the temporal aggregation and minimum threshold used for analysis. For
example, on the hourly or daily scale, the largest areas occur most predominantly in winter
and not in summer.

To visualize the extracted areas in space, the coordinates of the 2D objects were stacked
and binned in a 2-dimensional histogram. The spatial density of the occurrence of a certain
area size (and intensity) over a region was calculated and is shown in panel (b) of Fig. 7.5.
The south of Germany appears to have a higher spatial density compared to the north. The
frequency of the occurrence of events seems to be partly related to topography, but not
completely. Some artifacts within the radar data that were not correctly handled are also
visible, such as beam blockage in the southeast and southwest radar locations of Feldberg
and Hannover, respectively. Moreover, the density tends to increase towards the outward
edges, which may be caused by oversampling at the edges and errors during the conversion
of the data from the Polar to the Cartesian system.

Figure 7.5: Panel (a) shows the area size with time for 5 min data, threshold of 5 mm for the
winter and summer seasons. Panel (b) shows their spatial density calculated as a
2-dimensional histogram.

Fig. 7.6 displays the changes in the frequency of occurrence of a 2D block with a given
areal extent in the two different seasons. Here, hourly data and a minimum threshold of 5
mm were considered. Panel (a) shows the spatial density for 2D blocks with a size between
30-300 km2 during the summer period, while panel (b) shows the spatial density for the
same area size during the winter season. In winter, the frequency of occurrence is highly
dependent on the topography, with higher frequencies for larger elevations. On the other
hand, in summer, the results are less dependent on topography and are driven by a north-
to-south gradient. Note that the results will change depending on the temporal aggregation,
areal extent, and minimal threshold used for extracting the 2D areas.

The extracted areas from the data were further divided based on their size, and the prob-
ability of their occurrence at a certain location was calculated. Fig. 7.7 shows a comparison
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Figure 7.6: Spatial density for hourly 2D areas for size between 30 and 300 km2 exceeding a
threshold of 5 mm for the years 2001-2021 depending on the season. Left panel
for the winter months and the right panel for the summer months.

between the spatial density of hourly 2D data. Panel (a) for an area size of 4-50 km2 and for
30-300 km2 in panel (b). The ratio of the two maps can be calculated by dividing the spatial
density map of larger areas by that of smaller areas. The results show that in most regions,
the ratio is greater than one, indicating that larger areas are more frequent than smaller ones.
The non-general and space-time-dependent behavior regarding the frequency of occurrence
of larger areas compared to smaller ones can be seen in panels (a) and (b) of Fig. 7.7 and
panel (b) of Fig. 7.4.

7.3.2 Connected volumes confined to the catchments

The extracted areas from the data can be used to calculate the accumulated volume over a
given event with a 5-minute temporal resolution. The total volume of precipitation within
a 3D block (an event) was calculated by summing the rainfall values corresponding to each
pixel in the 2D block. This provided an idea of the total amount of precipitation that can
fall over a given area during the duration of the block. The travel speed of successive 2D
areas was calculated as the ratio between the distance between block centers and travel
time. The final travel speed of the 3D block was averaged from individual travel speeds.
This indicated the average travel speed of the 3D block. Note here the difference between
speed and velocity: speed is directionless, while velocity is associated with a direction (a
vector quantity). The final block area was derived as the difference between the area of the
accumulated 2D blocks and the area of the successive block (as seen in Fig. 7.3). The event
volume was compared to the event area, duration, and travel speed, providing insights into
the spatial characteristics of precipitation events.

In the first step of the analysis, the identification of 3D blocks was done only within each
headwater catchment (Jagst, Kocher, Enz and Ahr). For this, a mask was applied over the
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Figure 7.7: Panels (a) and (b) show the spatial density for hourly 2D areas for size between
4-50 km2 and 30 and 300 km2 exceeding a threshold of 5 mm, respectively. The
spatial density was calculated as an accumulation of all extracted 2D areas for the
years 2005-2020.

catchment area, and all 2D connected areas and subsequently 3D blocks for the period
2008–2019 were extracted. An example of a 3D block from the Jagst catchment is shown
in Fig. 7.8. Various information were extracted, including the total area of 2034 km2 (which
covers the entire catchment), the duration of 29 hours, the volume of 0,0104 km3, and the
average travel speed of 3,5 km/h. Note that the event started at around 1 p.m. and ended
at 6 p.m. the next day. Panel (a) of Fig. 7.8 displays the calculated spatial density as a 2-
dimensional histogram of the accumulated locations. The latter can be weighted by precipi-
tation values, allowing for the identification of areas with the highest precipitation intensity.
In the case of the Jagst catchment, the spatial density is observed to be highest around the
downstream region and diminishes upstream. The upper right panel displays the reaction
in the discharge, showing a fast-reacting catchment. The vertical red lines correspond to the
start and end of the event, and the vertical bars display the average catchment areal rainfall.
The discharge values are displayed by the blue dotted curve and show a quick increase in
the discharge values. The purple curve refers to the discharge values after subtracting the
base flow and was used to calculate the discharge volume, noted as Qv=0,043 km3. This
accounts for 40 % of the rainfall block volume. The lower panel showcases the discharge
time series from 2008 to 2019, with the blue bar corresponding to the event in question. No-
ticeably, the event corresponds to the maximum observed discharge for the Jagst catchment.

Fig. 7.9 displays all results for the Jagst catchment for the period 2008–2019. The x-axis
represents the block volumes, and each sub-figure (panels a–c) shows a different variable
on the y-axis. Panel (a) shows the duration. There appears to be a quasi-linear relationship
between event duration and volume. Higher volumes are associated with longer event du-
rations. However, events with different durations can result in similar volumes, indicating
that intensity (associated with the 2D connected areas) plays an important role in the overall



7.3 Results 95

volume of an event. Panel (b) displays the event area on the y-axis, with the largest area be-
ing for the catchment itself, which is around 2000 km2. Interestingly, for the same area size,
different volumes are possible, ranging from low to high values. Besides the spatial areal ex-
tent, intensity and duration influence the overall volume of precipitation. Panel (c) depicts
the volume as a function of the mean travel speed. Clearly, larger volumes are associated
with smaller speeds. Overall, the analysis revealed that there are interesting relationships
between event volume, duration, area, speed, and spatial density of the events in the Jagst
and other catchments.

Figure 7.8: Example of a 3D extracted block within the Jagst catchment with the correspond-
ing discharge reaction and timeline values.

Figure 7.9: Example of the relationships between the precipitation volume delimited to the
Jagst catchment with the area (a), the duration (b) and the travel speed (c). The
extracted volumes are presented for the whole period.

In the lower panel of 7.10 the relation between the in-catchment precipitation volume and
resulting discharge volume in the Jagst catchment is shown. Note that the size of the values
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in the scatter plot is proportional to the precipitation volume. Moreover, the points shown
in black refer to events where the discharge volume exceeded the precipitation volume.
Some of these events are associated with below-zero temperatures and might be due to
snowfall. In the upper two figures, the location of these events in comparison to the average
surrounding temperature is displayed. For those events, the radar data were most likely
erroneous, which led to an underestimation of the precipitation volume. In the upper left
and right panels, the average catchment temperature corresponding to event rainfall volume
and discharge volume are shown, respectively. The temperature ranges between -5 and 25
degrees Celsius. The largest rainfall volumes occur at a temperature of 15 deg C except
for some events with an average temperature of 5 ◦C. The largest discharge volumes are
associated with temperatures between 10 and 15 deg C.

Figure 7.10: Example of the relationships between the top 500 volumes of the 3D blocks in the
Jagst catchment against the discharge volume. The upper left and right panels
show the relation between rainfall and discharge volume to temperature, respec-
tively.

In Fig. 7.11 the time to the discharge peak is shown as a function of the event duration.
The time to the Q peak is calculated in hours. For example, in Fig. 7.8, the discharge peak
is reached after one hour. This indicates that this was a very fast-reacting case with a large
volume, leading to a high discharge value. Most likely, a flash-flood type of event. To
calculate the time to the peak, the start and end times of the rainfall event are identified,
the time corresponding to half of the time is considered, and the duration to the maximum
discharge value is determined. The value corresponding to this event can be seen in Fig.
7.11, the light green circle with a duration of 29 hours and a time to the peak of 1 hour. In
general, the time to the peak discharge is spread around the 24-hour mark. Such information
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is beneficial for rainfall-runoff modeling. Note that the size of the circles and the colours
refer to the in-catchment precipitation volume.

Figure 7.11: Scatter plot showing the relation between event duration and time of discharge
peak for the largest 500 precipitation volumes.

On July 14 and 15, 2021, a severe flooding event occurred within the Ahr catchment. The
2D blocks and subsequent event volume were extracted and analysed using RadKlim data.
Fig. 7.12 shows the spatial density, weighted by the precipitation depth at each pixel and
corresponding time step. The figure shows that the event had a large spatial concentration
over the catchment, especially the upper part. In Table. 7.2 the statistics regarding the
event duration, area size, in-catchment event volume, and travel speed are presented. The
blocks moving over the catchments had a very small traveling speed but a long duration,
hence the large volume and subsequent flooding. Although the radar data were seen to be
underestimated due to attenuation, these results are insightful for event investigation.

Figure 7.12: Pcp weighted spatial density.

Total duration [hours] 16.5
Total area [km2] 989
Total volume [km3] 0.0896
Travel speed [km/h] 3.5

Table 7.2: Event volume characteristics.
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7.3.3 Connected volumes from total event tracking

In the second part, a total event-based approach was used to extract connected volumes
from the space-time-connected 2D blocks. An example of a 3D block with a total duration
of 72 hours is shown in Fig. 7.13. The 3D block consists of 3572 separate but connected 2D
areas, with a total area of around 2 million km2. The block properties, including the average
speed of 10 km/h and the integrated volume of 4.563 km3, are noted in the upper left part
of Fig. 7.13.

The event spatial density was calculated and shows the accumulation of the 2D blocks in
space. The maximum density is observed over the north part of the Neckar catchment, par-
ticularly over the headwater catchments of Jagst and Kocher, as depicted in the left panel of
Fig. 7.13. The right panel displays the observed discharge series, with the green bar showing
the Kocher discharge values. In the lower panel, the reaction in the three headwater catch-
ments (Jagst, Kocher, and Enz) is shown. The red dashed lines indicate the start and end
of the rainfall event. The blue bar presents the average areal rainfall over the catchments,
with corresponding units shown on the second y-axis. For each discharge gauge, the corre-
sponding base flow was subtracted, and the resulting discharge hydrograph is displayed for
each catchment separately. The largest peak is observed for the Kocher catchment in green,
followed by the Jagst catchment in orange, and eventually the Enz catchment in blue. To cal-
culate the discharge volume, the integral of each hydrograph over time was calculated, and
the information regarding the discharge volume in each catchment is shown in the text box
in the upper right part of the lower figure. For example, the volume in the Jagst catchment
(denoted as QJagst) is 0,048 km3. Furthermore, the volume of the 3D block that fell in each
catchment separately was identified and shown in the right part of the same figure. The
ratio of the discharge volume to the rainfall volume was calculated. It is noted that for this
event, the average temperature was below zero degrees, which means that the ”observed”
rainfall volume might be underestimated. This serves as an example of one extracted 3D
block.

Table 7.3: Information associated with the connected volume in Fig. 7.13.

Event information Catchment precipitation Catchment discharge
Area [km2] 205295 Volume in Enz [km3] 0.034 Volume in Enz [km3] 0.025
Volume [km3] 4.56 Volume in Jagst [km3] 0.069 Volume in Jagst [km3] 0.045
Duration [hours] 72 Volume in Kocher [km3] 0.067 Volume in Kocher [km3] 0.068
Speed [km/h] 9.5
Number of 2D blocks 3572

Fig. 7.14 displays the relationship between connected 3D blocks’ properties. Panel (a)
shows the relationship between event volume and areal extent. As event volume increases,
the areal extent also tends to increase proportionally. However, for the same areal extent,
the event volume can vary widely, ranging from 2 to 8 km3, indicating variability in rainfall
intensity within individual blocks. Panel (b) presents the relationship between event volume
and total duration. It suggests that event duration may not always be associated with large
volumes. Many events with shorter durations can have larger volumes, and for the same
duration (e.g., 50 hours), the volume can vary significantly.
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Figure 7.13: Example of a connected volume with a duration of 72 hours causing simulta-
neous high discharge in the 3 headwater catchments. Upper left panel displays
the spatial extent along the spatial density. The upper right panel displays the
discharge time series for the year 2010 with the green curve corresponding to
the Kocher catchment. In the lower panel the time series of precipitation and
discharge volumes for the selected event are shown.

Panel (c) illustrates the relationship between event volume and average travel speed. It
shows that larger volumes are generally associated with slower-moving events, with an
average travel speed of approximately 10 km/h. However, smaller volumes, including those
up to around 0.01 km3, can occur at different travel speeds, ranging from 10 to 40 km/h.
The results provide insights into the areal extent of precipitation extremes and highlight the
variability in rainfall volumes within connected 3D blocks, showing that rainfall intensity
can vary even within individual blocks. The results also indicate that event duration may
not always be a reliable indicator of event volume, and that travel speed play an important
role in determining the volume of extreme precipitation events over a certain area or region.
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Figure 7.14: The relation of event volume with areal extent, event duration, and average
travel speed are presented in panels (a), (b), and (c), respectively. Panel (d) shows
the CDF of the volumes of the 3D block.

The distribution of 3D block volumes can be seen in panel (d) of Fig. 7.14, using a log-
scale to display the volumes, with dashed vertical lines indicating volumes in the original
data space. The CDF shows that most event volumes are spread along the curve, with only
a few values exceeding 1 km3. In addition, the portion of event rainfall volume that falls
exclusively in each catchment was determined and related to the total event volume and
corresponding travel speed.

Panels (a) and (b) of Fig. 7.15 depict this relationship. Panel (a) shows that although only
a portion of the total event volume falls in each catchment, high discharge volumes occur.
Panel (b) illustrates that 3D blocks with low travel speeds (around 10 km/h) are associated
with the highest discharge volumes. Highlighting the importance of travel speed in deter-
mining the magnitude of extreme precipitation events. This suggests that the relationship
between event volume, in-catchment volume, and travel speed plays a direct role in deter-
mining the discharge volumes of extreme precipitation events.
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Figure 7.15: Scatter plots of the event to in-catchment volume in panel (a) and event travel
speed to in-volume catchment in panel (b). The three headwater catchments Enz,
Jagst and Kocher are represented by the red, orange and blue dots, respectively.

7.4 Summary

The previous chapter introduced a new approach to analyzing areal extremes and their spa-
tial extent. Two important aspects were considered: the frequency of occurrence of a certain
areal event with a given size and mean areal precipitation over a target region, and the
influence of factors such as topography and seasonality on the occurrence and extent of
spatial extremes. The results can be valuable when choosing a new observation location or
inspecting the areal extremes behavior in a certain region or city. The analysis involved com-
paring the frequency of occurrence of larger area sizes to smaller ones instead of traditional
point-to-areal statistics. The behavior of connected areas with the same size and areal mean
differed significantly between summer and winter, as well as across different geographical
locations. The comparison between different categories of areal extent, duration, and areal
mean revealed that, for a certain areal extent and duration, the probability of a larger area
occurring was greater than that of a smaller area. Which can play a role in the use of area
reduction factors. The analysis of 3D connected areas provided information on block vol-
umes, the footprint of a block, event travel speed, and event duration. Other aspects were
also investigated, such as the change of intensity with advection, the change of the CDF of
each 2D block, and the distribution of the final 3D block. Moreover, the ratio of each 2D area
to the total block area was calculated. If a large volume occurred over a persistent location,
the resulting discharge would likely be high. However, if the same volume occurred over
a larger spatial extent with a higher travel speed, the resulting discharge would likely be
smaller. This highlights the importance of considering not only the volume of rainfall but
also its spatial extent, duration, and travel speed in understanding the resulting discharge
and potential impacts of extreme precipitation events.



8 Spatial extent from regional climate model
data

The final section of this thesis investigated the changing statistical properties of areal ex-
tremes with climate change. Data from regional climate models for the European continent
were used with historical and future projections of increasing emission levels. Before being
able to use the climate data, the data had to be inspected and any underestimation or over-
estimation of the dependence structure and/or bias corrected. Once done, the values had
to be downscaled from the model spatial scale to a finer one. The aim here was to use a
stochastic downscaling method with many (infinitely) equally probable outcomes. Hence,
associating the results with the corresponding uncertainty interval.

8.1 Literature review

The output of climate models can be used to investigate the change in specific statistical
properties (namely the mean and variance but also extreme value analysis) of different at-
mospheric quantities over a long period of time. A significant deviation over an extended
period of these statistical properties is attributed to climate change. Such deviations can be
induced by natural activities (internal climate variability) or human-related activities (such
as emissions of greenhouse gases and urbanization). Climate change is different from cli-
mate variability and is pronounced by a series of continuous anomalies (the frequent occur-
rence of low-frequency attributed events). Performing suitable statistical tests is required
to distinguish the first from the latter (Benestad, 2008). Climate scenarios offer projections
about possible changes in the climate system by changing the boundary conditions (for ex-
ample, greenhouse emissions). Altering the emission scenario and, hence, the model forcing
data affects the physical reactions within the climate system. In the case of EURO-CORDEX
data, the governing general circulation model (GCM) is driven by a set of emission scenar-
ios known as RCP (Representative Concentration Pathways). Several climate projections
defined as an ensemble of projections can be derived and further evaluated by slightly vary-
ing the experimental setup (change of initial conditions or model).

In general, GCMs are applied to model the past (forced by observations) and project the
future (forced by emissions scenarios) changes in climate systems over global scales. They
are based on numerically solving mathematical representations of the physical processes
and their interactions (such as conservation of energy, mass, and momentum, the thermody-
namic equations such as the Gas law, and relating processes on the land to the atmosphere,
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and vice versa) (Hennemuth et al., 2017). These calculations are very computationally de-
manding, especially the discretization of the partial differential equation systems on a con-
tinuous temporal scale with a suitable spatial resolution. GCM provides output variables at
a relatively coarse space-time resolution, usually between 100 and 500 km2 and for 6-hour
intervals. However, transferring and employing the global results to local and regional cli-
mate analysis requires a finer space-time resolution, which downscaling can achieve. The
latter can be divided into two categories, empirical-statistical downscaling (ESD) and dy-
namical downscaling via regional climate models (RCM). ESD exploits the statistical non-
linear relations between small and large-scale information on climate variables. RCM uti-
lizes the GCM output as lateral boundary conditions and, coupled with parameterization
schemes to account for local aspects (such as topography), higher-resolution climate data
are acquired.

The EURO-CORDEX data are derived from an RCM-based downscaling approach. Sev-
eral RCM ensembles are available, depending on the driving GCM model and applied pa-
rameterization schemes. Differences in the parameterization of the models arise, for exam-
ple, when representing convective processes, the chosen microphysics and land use schemes
(Kotlarski et al., 2014). Despite providing practical information regarding climate systems,
GMC and RCM data cannot completely and correctly simulate all relevant spatial and tem-
poral processes. Their outputs should be well interpreted and suitable studies applied (Ford
et al., 2016).

Representative concentration pathways (RCP) provide information about possible future
climate scenarios. Different RCP outcomes are available depending on the amount of green-
house gas released. The change in the emission concentration is integrated within the
GCM calculations and converted to carbon dioxide (CO2) equivalents. Two main scenarios
present the best (RCP2.5) and worst (RCP8.5) situations. RCP2.5 presents a fast reduction
of the produced emissions after the years 2020-2025 while RCP8.5 represents a passive case
(zero reduction, a continuous rate of emissions) as compared to historical situations. In be-
tween exist two scenarios, RCP4.5 and RCP6.0, which are likely to occur and display less of
a catastrophic scenario. An increase in the amount of greenhouse gases implies an increase
in the global temperature and hence an alteration of the climatic system (temperature, pre-
cipitation, and sea water level) (Pachauri et al., 2014).

A common challenge in creating realizations with climate models is correctly represent-
ing the spatial variability of the underlying variable. An evaluation of several RCM hourly
data done by Kotlarski et al. (2014) showed that, even on the seasonal and regional scales,
precipitation values present a bias of ± 40 % with a tendency to be overestimated. Berg
et al. (2019) investigated deriving summer depth-duration-frequency (DDF) statistics from
hourly EURO-CORDEX 0.11 deg data for several European countries (including Germany).
Reference national DDF curves were used for comparison. Several RCMs were chosen, and
for the long duration, the quality was seen as reasonable, but for the short duration, the
models had a bad representation of the hourly extremes. The rainfall depth corresponding
to a 10-year return period was severely underestimated by the RCMs output. In the work
of Meredith et al. (2021), the precipitation diurnal cycle for present and future periods from
the EURO-CORDEX 0.11 deg was examined. Most models have timing errors regarding the
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occurrence of the maximum hourly precipitation intensities. All models have a peak occur-
ring several hours before the one in the observations. The timing errors were aggravated by
increasing precipitation thresholds.

Essential questions to be investigated in this work are:

1. Knowing that extremes look different depending on scales, to what extent can the
climate model produce extremes correctly?

2. How can the spatial and temporal dependence structures of climate models be suc-
cessfully corrected?

3. How will the statistics of extremes change with the climate projections?

To answer these questions, the following scheme was proposed: The first step consisted
of upscaling the point to the model scale data. This enabled the derivation of a reference for
temporal and spatial dependence structures. A recorrealtion procedure was implemented
to correct the model spatial dependence structure to match the reference one. In the sec-
ond step, the bias in the magnitudes of future projections and any subsequent bias in the
marginal distribution function were corrected using a double-QQ transformation. The cor-
rected data on the model scale were then employed within random mixing, a conditional
simulation-based method to derive spatial fields and areal statistics for future temporal pro-
jections on a finer spatial scale. The downscaling and analysis of extreme value statistics
were showcased in the third section of this manuscript. The results were discussed, and a
conclusion involving key messages finalized this section.

8.1.1 Reference data

The German Weather Service (DWD) operates a rain gauge network of around 1000 rain
gauges across Germany, with varying temporal resolutions (minutely to daily). In the
weather radar region of Hannover, 127 DWD stations exist with hourly data (DWD Cli-
mate Data Center (CDC), 2021a). The data for these stations were acquired between 2000
and 2020. The second data set consisted of the hourly weather radar data (RADOLAN) for
the period 2005-2020 also made available by the DWD (DWD Climate Data Center (CDC),
2021b). The third data set was the EURO-CORDEX data. These have been provided within
the Coordinated Regional Downscaling Experiment (CORDEX) for the European continent
with two horizontal simulation domains of 50 km (EUR-44) and 12,5 km (EUR-11). The
simulation output consists of several data sets with hourly resolution representing different
atmospheric and surface-near variables (from which is precipitation) (Jacob et al., 2014). Al-
though several RCM outputs are available, the REMO model is especially advantageous for
precipitation analysis on the hourly scale since it accounts for advection on the local scale
(Jacob, 2001). In this work, the MPI-M-MPI-ESM-LR-GERICS-REMO2015-v1 was used. It
was developed by Max-Planck-Institute für Meteorologie (MPI-M) and the Climate Service
Center Germany (GERICS). The data were made available by the ClimXtreme Central Eval-
uation System framework (Kadow et al., 2021). Although other RCM models or an ensemble
of RCMs could have been used, the methodology remains the same.



8.1 Literature review 105

Fig. 8.1 presents the location of the EURO-CORDEX 11 ◦ center grid points in Germany
and in the radar area of Hannover (black circle). To avoid edge effects in the interpolated and
simulated fields only model points falling within a 10-kilometer inward buffer (red circle) of
the radar coverage boundary were selected. The DWD rain gauges are visualized as orange
triangles. The red points in the lower red map represent the center of the radar pixels. The
weather radar grid with a spatial resolution of 1 kilometer constitutes the interpolation and
simulation grid. The orange box is a 12.5*12.5 km polygon presenting one EURO-CORDEX
block. In total, 273 blocks were available within the selected area.

Figure 8.1: Map of Germany with the EURO-CODEX 11 ◦ grid center locations. The study
area is defined by the weather radar area of Hannover along the DWD rain gauge
data and the radar grid.

The goal was to find the reliability/usability of the RCM model data for areal precipitation
analysis, with a special focus on extremes. Since the model data consist of block averages, it
is not suitable to compare them to rain gauge (point) data. Hence, the first reference data is
based on interpolated fields using the DWD station hourly data. The interpolated fields on
the 1 km radar grid were aggregated spatially to match the EURO-CORDEX 11◦ grid. This
reference data set will be denoted hereafter as DWDinterp. The second data set is the spatially
averaged radar data for the period 2005-2020. The aggregated data match the model grid
and are denoted hereafter as Radaravg. Note that in all cases, the arithmetic mean of the 1
km pixels falling within each model cell was calculated and assigned to the corresponding
model pixel.
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8.2 Methodology

The procedure for analysing, correcting, and downscaling the RCM data was divided into
three parts and is presented in flowchart 8.2.

Figure 8.2: Flowchart describing the methodology for correcting spatial and temporal struc-
tures of EURO-CORDEX 11 ◦ data.

First, the spatial dependence structure of the model needed to be corrected according to
a reference-based structure. The latter was derived from calculating pixel-wise correlations
(cross-correlation or rank correlation) from the reference data (for example, DWDinterp). The
correction was based on a recorrelation procedure that is described in the coming section.
The dependence structure greatly affects the areal extremes (Bárdossy and Pegram, 2012). This
part refers to the yellow section of the flowchart. Once the dependence structure was recti-
fied, any remaining bias in the marginal distribution function of future climate projections
was to be handled. For this, a double-QQ transformation involving information from the
reference data and the model historical data was applied (Bárdossy and Pegram, 2011). This
section represents the red part of the flowchart. Afterwards, the final corrected data were
downscaled using a stochastic simulation algorithm (random mixing, (Hörning et al., 2015))
to a finer spatial resolution of 1 km. The final fields were eventually used for the analysis of
the spatial extent of extremes via calculating the extreme value (EV) statistics such as DDF
and ADDF curves. The DDF curves were calculated pixel-wise (1 km scale) and area-wise
(up to 1024 km2). The possible impact of climate change on the statistics of areal extremes
was to be investigated.
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8.2.1 Correction of dependence structure

The spatial dependence of precipitation plays a major role in the distribution of areal rain-
fall and the corresponding extremes. An often neglected problem is the capability of the
climate model data to replicate the observed dependence structure. Previous researchers
have already discussed and presented solutions to the problem. An example of this can be
found in (Bárdossy and Pegram, 2012). A similar procedure was here implemented, however,
for hourly data and 12.5 km spatial resolution. The reference and model data were divided
between the summer (April-September) and winter (October-March) seasons, and for each
period, the dependence structure was derived. To cope with the zero values, a mixed-type
distribution was used, defined by a censored Gaussian copula. All values greater than zero
were transformed into the Gaussian space using a standard normal distribution. Values
equal to zero were replaced by P (0)/2. The transformation was applied for each block sep-
arately and is defined by equation 8.44.

Fi(z) = P (Zi(t) < z|Zi(t) > 0) (8.42)

Pi0 = P (Zi(t) = 0) (8.43)

Wj(t) =

{
ϕ−1
1 (Fj(Z(t)(1− Pi0) + Pi0)) if Zi(t) > 0

ϕ−1
1 (Pi0

2 ) if Zi(t) = 0
(8.44)

Where:

Fi(z) = distribution function at block (i) for positive precipitation
Pi0 = p0 for block (i)
ϕ1 = standard normal distribution function N(0,1)

The reasoning behind using the rank correlation was that the ranks were later involved in
the double-QQ transformation. In Fig.8.3 and Fig.8.4 the pair-wise rank correlation values
for each data set individually plotted against the separating distance between each and all
other blocks. For the EURO-CORDEX data, the historical and future periods presented sim-
ilar behavior and only the historical data are displayed. Note that each correlation matrix
has a shape of (273, 273).

Fig.8.3 shows the correlation structure derived from the DWD rain gauges located within
the study area and DWDinterp. The correlation of the point data shows less spatial continuity
and would have been inappropriate for correcting and comparing to the correlation of the
blocks.
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Figure 8.3: The rank correlation values between the time series of the DWD rain gauges
against the separating distance are shown in black dots. The red dots display
the rank correlation between the time series of the DWD averaged block values.
Both are shown for the winter period.

The DWDpoint correlation values are lower than those of the DWDinterp data. This differ-
ence can be justified theoretically - assuming stationarity of the spatial dependence - as the
interblock variability leads to the reduction of the variance. In fact, the covariance between
two grid cells Vi and Vj can be written as a function of the covariance function of the point
values C(x, y):

Cov(Vi, Vj) =
1

|Vi|
1

|Vj |

∫
Vi

∫
Vj

C(x, y) dx dy (8.45)

While for the variance of the grid cell V :

Var(V ) = Cov(V, V ) =
1

|V ||V |

∫
V

∫
V
C(x, y) dx dy (8.46)

Both the covariance and the variance decrease. The decrease of the covariance is less
than or equal to that of the variance, thus the correlation increases. Thus due to scale dif-
ference, using the DWDpoint correlation structure as a reference for the correction of the
EURO-CORDEX spatial structure would be incorrect.

In panels (a) and (b) of Fig.8.4, the red dots represent the DWDinterp, the blue dots the
Radaravg and the orange dots the Euro-Cordex data. Panel (a) for the winter period and
panel (b) for the summer period. The results for DWDinterp show a typical behavior of de-
creasing correlation with increasing separating distance associated with a large scatter. In
both cases, the correlation structures of Radaravg present a smaller scatter and fall below
those of DWDinterp and Euro-Cordex. In other words, Radaravg shows less spatial conti-
nuity (a quick drop of correlation) and larger variability between the blocks. Compared to
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DWDinterp the EURO-CORDEX results show an underestimation of the dependence struc-
ture, especially in the summer period. The aim of the method was to adjust the model
dependence structure to match the reference one over all temporal aggregations.

(a) Period: October-March (b) Period: April-September

Figure 8.4: Panels (a) and (b) show the calculated block pair-wise rank correlation values from
interpolated fields (red points), radar fields (blue points), and EURO-CORDEX
fields (orange dots). The x-axis refers to the separating distance between the
blocks.

The recorrelation scheme was based on linear methods applied to the Gaussian-
transformed data. Following the same notation as in Bárdossy and Pegram (2012), the ref-
erence transformed data were denoted by W and their correlation matrix by C. The trans-
formed EURO-CORDEX data were denoted by Y. The aim was to recorrelate Y to new data
V with the same correlation as W. The values in V were then back-transformed to the orig-
inal data space at each location individually. The main assumption behind this technique
was that the pair-wise correlation matrix was independent of the areal mean values. An as-
sumption that was found to be valid by the researchers. The matrix C was transformed into
the matrix S by calculating the square root of applying single value decomposition (SVD)
to C. The correlation matrix R of Y was transformed to T by calculating the inverse square
root of applying SVD to R. The final matrix for decorrelating and recorrelating Y to V was
defined by F=TS and V=YF.

The recorrelation matrix F derived from the historical observations could be used for the
projected RCP scenarios. The method was in-depth described in Bárdossy and Pegram (2012)
with main modifications in this work regarding the temporal and spatial resolution of the
RCM data.
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Figure 8.5: Recorrelation of the EURO-CORDEX data using the interpolated fields derived
dependence structure for the summer season. Left panel before recorrelation and
right panel after recorrelation.

Fig.8.5 shows the recorrelation procedure using the DWDinterp as reference data. Panel
(a) displays the cross-correlation of DWDinterp and EURO-CORDEX data. In panel (b), the
final results of the recorrelation are displayed and show a complete success in relocating
the RCM data for the historical period. The same recorrelation matrix was applied to the
projected RCP data. Eventually, using the inverse of equation 8.44 the recorrelated data in
matrix V were back-transformed to the original data space. The recorrelation matrix F could
be applied directly to correct the RCP data because the correlation structure was assumed
to be constant. That means that the spatial dependence structure from the historical period
and the reference data were considered stable despite climate change.

Fig. 8.6 shows the pair-wise block rank correlation values for the EURO-CORDEX his-
torical and future data. Panel (a) shows the results for the winter period, and panel (b) for
the summer period. For the latter, the correlation values seem to be highly similar, with few
differences. However, for the winter period, the historical data show a quicker drop in the
correlation values than the future data. For instance, for a separation distance of 150 kilome-
ters, the future data indicate a minimal correlation of 0.42, while the historical data indicate
a correlation of 0.38. In addition, both datasets appear to have an unusual drop in corre-
lation for short separation distances (around 50 km) and an unusual increase in correlation
for longer separation distances (between 100 and 120 km). This behavior might be caused
by erroneous data at one single block location.
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(a) Correlation period October-March. (b) Correlation period April-September.

Figure 8.6: Rank correlation dependence structure for historical and future EURO-CORDEX
data for winter (a) and summer (b) periods.

To demonstrate the effect of the recorrelation on the model data, the results for one loca-
tion are shown in Fig.8.7. Panel (a) shows how recorrelated values scatter around the x=y
axis (shown in red), indicating no clear under- or over-correction of the data. Note that
the size of the dots is proportional to the precipitation values before correction. The up-
per tail of the distribution function before and after recorrelation can be seen in panel (c)
of Fig.8.7. The effect of the recorrelation on the values is minimal; however, the spatial de-
pendence structure has been adjusted to fit the reference one. Other measures, such as the
indicator correlation (p99) and Cross correlation measures (described in chapter 2) were also
tested. The recorelation procedure was successful in improving the dependence structure,
but a complete match was not possible. Moreover, if the correction was done based on any
of the correlation measures (for example, Pearson correlation), other dependence measures
(such as Indicator and Spearman correlation) showed an improvement. Hence, although
the correction was applied to one measure, the procedure improved other properties simul-
taneously.

The recorrelated data on the hourly scale were aggregated into higher temporal aggrega-
tions (such as 2, 6, 18, and 24 hours). The correlation structure was calculated before and
after the recorrelation and was compared to the reference data. Although the correction
was done on an hourly scale, the procedure was found to be successful in improving the
spatial dependence structure over other temporal aggregations. An example of the daily
aggregation can be seen in Fig. 8.8. The correction was the most successful on the hourly
scale and the least successful on the daily scale. Though the corrected daily data (panel (b))
show much better agreement than the non-corrected data (panel (a)), which largely under-
estimates the dependence structure. Although a slight bias was still present, it was not seen
as necessary to apply the recorrelation procedure for each temporal aggregation separately.
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Figure 8.7: Panel (a) shows a scatter plot of hourly rainfall values at a single block from
RCP8.5. Panel (b) shows the upper 1% tail of the CDF before and after the recor-
relation procedure.

(a) Before correction (b) After correction

Figure 8.8: Rank correlation dependence structure for daily historical EURO-CORDEX data
before (a) and after (b) the recorrelation procedure. Both panels showcase the data
for the period April-September.

Note that this complete part refers to the yellow block in the flowchart 8.2. After cor-
recting the dependence structure, the next step was to proceed with correcting the marginal
distribution function of the model data.
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8.2.2 Double quantile-quantile mapping

In statistics, quantile-quantile plots (QQ plots) are used to compare two distributions and
find if they both belong to the same distribution function. Often, a test distribution is com-
pared to a theoretical one. The comparison is based on the quantiles. Namely, a scatter plot
between the quantiles of both data values is constructed. If the data have the same distri-
bution function, the QQ plot will be defined by a linear function (y=x). To derive the QQ
plot, the data of the two distribution functions are sorted and their quantiles are calculated.
In this section, a QQ transformation was used to correct the distribution of the projected
EURO-CORDEX data.

For this, the CDF of the observed data at location X (for example, DWDinterp) and the
distribution function of the model results for the present and future periods for location X
were used. A Q-Q transformation was applied to correct the bias in the projected model
data while preserving the ranks of the values. An example of this was shown by Bárdossy
and Pegram (2011) where the distribution function of regional climate models (RCM) was
corrected using a double QQ transformation as defined by equation 8.47.

Z(x, t) = F−1
o (FR(ZR(x, t), x), x) (8.47)

Where:

x = target location
t = time step (hour)
Z(x, t) = corrected precipitation value
F−1
o = inverse of the fitted CDF to the reference data

FR= CDF of the RCM data
ZR(x, t) = precipitation simulated by the RCM

A similar approach to Bárdossy and Pegram (2011) was used to correct the distribution
function and temporal structure of climate model future projections. Using the CDF of the
spatially aggregated observations, the CDF of the recorrelated historical data, and the CDF
of the future time periods were corrected. For the observation and historical data, a Weibull
distribution function with suitable parameters was fitted using the maximum likelihood
method (Singh, 1987). Note that in this case, the maximum of the fitted function was not
limited to the observed maxima. This allows for correcting the RCP future data while al-
lowing for extreme values slightly exceeding the current observed one. These might be
underestimated due to observation errors or under-sampling of the spatial block maxima.
In panel (a) of Fig.8.9 the x-axis refers to precipitation in millimeters and the y-axis to the cu-
mulative probabilities. The red curve is the distribution function of the reference data. The
green curve is the RCM distribution for the present period, and the curve in blue is the RCM
curve for a future scenario. For a precipitation value in the future curve, the correspond-
ing present value was found, and for the same quantile level, the observed value from the
observation curve was found and re-assigned to the future value. This QQ transformation
reduced the bias in the model data while preserving the signal in the RCP data.
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An example of this is presented in panels (a) and (b) of Fig.8.9 for one location. The light
blue curve refers to the RCP CDF before the recorrelation procedure, the Lilac curve for the
recorrelated RCP data, and the red curve for the reference data for the observation period.
The black curve shows the QQ corrected RCP distribution function using the previously
described procedure. For every precipitation value in the future data, the corresponding
value in the historical data was found, and for that, the corresponding value for the same
quantile level in the observation data was assigned as the future value. To incorporate the
uncertainty in the CDF of the blocks, simulated fields were used. Hence, an ensemble of
corrected data can be acquired. The correction using any of the reference data seemed to not
strongly influence the final results. The simulation of DWDrdm indicates that the maxima of
a 12.5*12.5 km block could exceed those aggregated from DWDinterp and Radaravg; hence,
the fitted Weibull distribution was not bound to the observed DWDinterp or Radaravg max-
ima for the corresponding location. The procedure was repeated for all values and for both
data sets, namely RCP2.5 and RCP8.5. Note that this section refers to the orange block in the
flowchart 8.2.

(a) Upper 1% tail of the CDF before after QQ (b) Values before and after correction.

Figure 8.9: CDF and scatter values for the recorrelated historical and RCP data before and
after the QQ correction for one example location.

8.2.3 Random mixing theory

Most interpolation techniques can only deliver smoothed fields. For example, in all Kriging
applications, the equation system is solved by minimizing the estimation variance. Hence,
the interpolated fields have less variability than the original ones. This can be demonstrated
by calculating the variogram from the original and interpolated values. For a similar sepa-
rating distance, the variance of observed data is greater than that of the interpolated values.
In hydrology, many processes (for example, rainfall and catchment reactions) are driven
by the variability of the variable in question. To incorporate variability in the estimation
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method, a simulation could be undertaken. Two major types of simulations exist, condi-
tional and unconditional simulations. Random mixing is a conditional simulation method
that allows stochastic generation of realizations fulfilling several conditions (Hörning et al.,
2015). The method is extended from the work of Hu (2000) regarding the gradual deforma-
tion of Gaussian fields.

For achieving the goal of having realistic realizations, the following criteria must be ful-
filled:

1. Match the measured data (conditioned on observations).

2. Have the same spatial dependence structure (represented by a variogram or spatial
copula function).

3. The realizations should have a similar range as the observed values (no extreme val-
ues).

Traditional kriging methods are constrained by the mean and variance of the observa-
tions. The random mixing methods allow capturing the spatial dependence structure by
a spatial copula function. A copula is a mathematical function used to derive and model
the dependence between variables independent of their distribution functions. If a spatial
copula function is used, the asymmetry of the spatial field can be better accounted for (asym-
metry can be seen as the skewness measure of univariate data). Another advantage of using
random mixing is the possibility to incorporate several conditional observations, which can
be integrated as a linear or a non-linear equation. Simulation methods offer the possibility of
generating several possible realistic realizations of a certain event. Through this, the mean
uncertainty field can be derived. This method offers a probabilistic simulation technique,
which is advantageous compared to the traditional interpolation method.

In this section, random mixing was used to upscale and downscale the station observa-
tions to the climate model scale and vice versa. Based on the DWD station hourly data for
the period 2005-2020 several conditional fields were simulated for every hour with positive
precipitation. The simulated fields were conditioned on the DWD point observations, the
corresponding marginal distribution, and the fitted Gaussian copula model representing the
spatial dependence structure. The fields were then spatially aggregated to the model scale.
Hence the upscaling part.

Note that in this step, the fitted spatial model was saved and used later for the down-
scaling part. Once the model data were corrected using the recorrelation and double-QQ
procedures, simulations conditioned on the model areal averages were generated on the
finer spatial grid of 1 km. Hence, the downscaling part. An example of a randomly selected
realization can be seen in Fig. 8.10. The realization in panel (c) is compared to the results
of ordinary kriging (panel (a)) and the observed weather radar image (panel(b)). The ad-
vantage of this method as compared to normal interpolation techniques is that it allows a
probabilistic upscaling or downscaling of the point data to the model scale. The associated
uncertainty field from the 20 simulations can be seen in panel (e). Note that the average
simulated field in panel (d) is highly similar to the interpolated field in panel (a).
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(a) Interpolated field (b) Radar field (c) Simulated field

(d) Average of 20 simulations (e) Uncertainty field

Figure 8.10: Example of a randomly selected hourly rainfall field using the DWD rain gauges
for interpolation (panel (a)), simulation (panel (c)), and the radar observed field
(panel (b)). Panel (d) shows the average simulated field along with the associated
uncertainty field in Panel (e).

A limitation of using random mixing is that it generates spatial fields that are not tem-
porally correlated. In other words, the simulated fields for successive time steps were not
temporally correlated, and effects such as advection were not considered. For example, the
correlation structure shown in Fig. ?? could not be correctly calculated from the upscaled
fields. The correlation values were calculated between pair-wise time series; hence, the au-
tocorrelation of the data played a major role. The latter was destroyed by random mixing,
as the focus is on the spatial aspect. This would require a modification to the algorithm to
include advection and conserve the autocorrelation within a time series.

8.2.4 Downscaling model to point scale

After correcting the spatial dependence structure and the bias in the CDF of the future RCP
data, conditional realizations at a finer spatial scale of 1 km were generated using random
mixing. Note that this section corresponds to the green block in the flowchart shown in
Fig. 8.2. This process incorporated the climate signal from the projections and provided a
dataset that could be used to derive future DDF curves for the study area. To account for the
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uncertainty acquired by the simulation approach, 50 realizations for every time step were
performed. Namely, 50 downscaled and equally probable time series for every pixel in the
simulation domain were generated. While performing the downscaling, the spatial model
calculated on the larger scale needed to be adjusted for the lower scale. To adjust the spatial
correlation models from the climate model data to the 1 km scale, the variance and range
of the block variogram needed to be rescaled to the point variogram. An example of this is
shown in panel (b) of Fig.8.11. The block variogram derived from the average radar data
(Radar12km) shows a smaller variance and is smoother compared to the empirical pixel-
based variogram (Radar1km).

A re-scaling of the variogram parameters was performed. From the upscaled fields, the
variograms were saved and clustered using a K-mean clustering approach, similar to the
procedure in chapter 4. Depending on the day of the year, the fitted variogram from the
upscaled fields was used to rescale the calculated variogram from the EURO-CORDEX data.
This was essential; otherwise, the downscaled fields will be smoother than the actual 1 km
data. The step-by-step procedure for downscaling the climate data for a given Area-DDF
location using random mixing is described below:

1. Create a buffer enclosing the ADDF largest area (1024 km2).

2. Find all EURO-CORDEX blocks falling within the buffer (conditional values).

3. Find all radar pixels falling within the buffer (simulation domain).

4. For every hour in the projected RCP8.5 data, read the corrected values.

5. Fit a non-parametric marginal distribution using KDE with a Gaussian kernel.

6. Optimize the kernel width and build CDF and INVCDF.

7. Transform the observations to standard normal space using the fitted CDF.

8. Fit a Gaussian copula model for spatial dependence.

9. Fit an exponential or spherical covariance model.

10. Select the model with the largest likelihood.

11. Correct the model to match the reference point model.

12. Run Random Mixing for conditional simulations (50 simulations).

13. Back-transform to original data space using INVCDF.

14. Repeat for next time steps with positive Pcp.

An example of the simulation domain for one ADDF location is shown in panel (a) of
Fig.8.11. The domain shown in red has a total area of 1024 km2. Within this domain, the
areas of 16 and 576 km2 were considered for deriving the ADDF curves. These were derived
as DDF curves, but by using a time series of the average of all pixels within each area instead
of a pixel time series. For example, for the area size of 1024 km2, for every time step, the
average of the pixels in red was calculated. Afterwards, using the same procedure for DDF
curves (described in chapter 6), the ADDF curve for this area was derived.
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(a) Simulation domain (b) VG scaling (c) Simulated field

(d) Average for one time step (e) Average pixel wise

Figure 8.11: Panel (a) simulation domain for one ADDF area (shown in red) and panel (b)
example of one simulated hourly field. Panel (c) shows one simulation for one
time step. Panel (d) depicts the average field of 50 simulations for the same time
step, and panel (e) depicts the average for one pixel over the simulation period.

In panel (a) of Fig.8.11, the gray pixel represents the complete simulation domain, and the
blue dots are the center of the EURO-CORDEX blocks. These served as conditional values
for the downscaling. In panel (b), an example of the calculated variogram using the block
(12 km) and pixel (1km) values. Note the difference in the range and sill of the variograms.

For downscaling, the block variogram was rescaled to the pixel-based one. In panel (c),
a single realization based on the recorrelated and double-QQ-corrected RCP8.5 data for the
simulation domain is presented. Panel (d) of Fig.8.11 displays the average simulated field
derived from 50 realizations for a one-time step. The average field is highly similar to the
interpolated one (not shown here), with a maximum precipitation value of 12.32 mm per
hour. Panel (e) depicts the simulated hourly time series for one pixel over the whole period.
In the ensemble of the simulations for one pixel, the variability of the values can be better
visualized.
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8.3 Results

8.3.1 DDF curves for future scenarios

The downscaled fields were used to calculate the ADDF and DDF curves for the selected
region or pixel in the study area. The aim was to derive areal extremes for future peri-
ods, especially from the RCP8.5 data. For every time step, 50 simulations were generated
over the simulation domain for each duration separately. The selected durations range from
hourly to daily resolutions. This is essential; otherwise, the fields will not be space-time
continuous. Random mixing generates realizations that are all equally possible but are lim-
ited to spatial constraints and are not temporally connected (advection is not included). For
example, on the hourly scale, each realization for each time step will most likely differ from
the realization of the next time step, despite being equally probable and statistically correct.
Aggregating these fields will result in a false representation of areal rainfall. A simple but
computationally intensive solution was to aggregate the hourly corrected data for each re-
quired duration and run the simulations again. A different possible solution would have
been to use the generated fields for time step i as unconditional fields (instead of random
fields) for time step i + 1. This would have required modifying the simulation algorithm
to incorporate time as a third dimension. However, since the focus is on areal statistics,
especially yearly maxima, and not on event reconstruction, the first solution was seen as
adequate enough for this scope. Moreover, an alternative stochastic simulation approach
could have been tested. For example, Papalexiou et al. (2021) presents a framework for sim-
ulating space-time rainfall fields with characteristics such as velocity field, advection and
anisotropy.

Once the simulations were terminated, the DDF and subsequent ADDF curves were calcu-
lated from the generated time series. For comparison purposes, the simulations were done
using the raw and corrected RCP8.5 data. Fig.8.12 shows an example of the DDF values for
the centre pixel in the ADDF location for the return period of 5 years and 2 different periods.
Panel (a) for the period 2005-2005 and panel (b) for the period 2065-2099. Each box plot for
every duration consists of 50 simulations. The DDF values for the different durations from
the raw and corrected RCP8.5 data are displayed in the blue and green boxes, respectively.
The blue crosses and the green dots present the outliers in the raw and corrected RCP8.5
data, respectively. As reference data, the DDF curve from RADOLAN data for the period
2005-2020 is displayed in the red dashed line (and crosses). These fall within the bounds of
the simulations. Compared to the RADOLAN data, the raw RCP8.5 values for both periods
show an overestimation of the maxima over all durations. The corrected values, however,
fall within the range of the RADOLAN data and show a slight underestimation for the pe-
riod 2005-2025. Additionally, the box plots of the raw data indicate a larger range compared
to the corrected data. For example, for the duration of 720 minutes (12 hours), the estimated
rainfall depth from raw data varies between 40 and 100 mm with a mean value of 60 mm. In
the corrected data, however, the range is between 25 and 40 mm. This indicates that the raw
data have a larger spread and variability, limiting the use of a reliable uncertainty interval.

An increase in the expected rainfall depth from the first to the second period was clearly
noticeable in both data sets. Though with different magnitudes. The raw data showed
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for the hourly duration almost a doubling of the values (from 24 to 39 mm per hour). In
the corrected data, however, the increase was from 13 to 19 mm per hour. Both data sets
indicated that the RCP8.5 projected scenario is associated with a larger rainfall depth over
all durations.

Figure 8.12: Derived ADDF curves (A=1 km2) from RCP8.5 data before and after data cor-
rection for the ADDF center pixel for two different periods and a return period
of 5 years. In panel (a) for the period 2005-2025 and panel (b) for the period
2065-2099. For every duration (x-axis), 50 simulations were generated and sum-
marized in the boxplots. In both panels, the blue boxes refer to the raw RCP8.5
data, the yellow boxes to the double-QQ corrected data (without recorrelation),
and the green boxes to the recorrelated and double-QQ corrected RCP8.5 data.
The rainfall depth values derived from the RADOLAN data for the period 2005-
2020 are displayed by the red crosses (or red curve).

8.3.2 ADDF curves for future scenarios

To investigate the effect of the recorrelation on the areal extremes, the ADDF curves were
derived from the double-QQ corrected data only. In other words, the CDF of RCP8.5 data
was corrected using the double-QQ procedure and used for downscaling to the finer spatial
scale. From the downscaled fields, the ADDF curves were derived and compared to those
derived with the recorrelated and double-QQ-corrected fields. The results of this approach
are shown in the orange boxes in panels (a) and (b) of Fig. 8.13. Although the bounds (the
scatter) of the simulations are reduced by the double-QQ correction, an overestimation of
the ADDF curves was persistent over all area sizes, durations, and temporal periods. This
supports the need for the recorrelation procedure to ensure a better representation of the
spatial dependence correction and subsequent areal extremes.
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Figure 8.13: Estimated rainfall depth and ADDF curve from RCP8.5 data before and after
data correction for the ADDF area of 1024 km2 for a return period of 5 years. For
every duration (x-axis), 50 simulations were generated and summarized in the
boxplots. Panel (a) shows the results for the period 2005-2025. In panel (b), the
ADDF curve for the period 2065-2099 is displayed. In both panels, the blue boxes
refer to the raw RCP8.5 data, the yellow boxes to the double-QQ corrected data
(without recorrelation), and the green boxes to the recorrelated and double-QQ
corrected RCP8.5 data. The rainfall depth values derived from the RADOLAN
data for the period 2005-2020 are displayed by the red crosses (or red curve).

Panel (a) shows the hourly values for the ADDF curve for an area size of A=1024 km2 and
a return period of 5 years divided by the chosen climatic periods. The results for the areal
statistics are similar to those for pixel-based analysis. Firstly, compared to the RadKlim-
derived values, raw RCP8.5 data show a large increase in the areal maxima. From the first
period (2005-2025) to the second period (2025-2045) the average hourly areal rainfall depth
increased from 18 mm to 32 mm. Almost a doubling of the values. The period 2045-2065
shows a slight increase in the mean and the period 2065-2099 a slight decrease. The down-
scaled and corrected data indicate an increase in the rainfall maxima, but with a smaller
magnitude. Between the first and last periods, the hourly rainfall depth increases on aver-
age from 10 to 15 mm. The values for the areal statistics are in compliance with the radar-
derived results. For the raw data, the uncertainty interval (minimum and maximum) of the
box plots is quite large; the corrected data show, however, a smaller uncertainty interval
over all durations.

Panel (b) of Fig.8.13 shows the Area-DDF (ADDF) curves for the area size of 1024 km2 for
the period 2065-2099 and a return period of 5 years. The radar ADDF curve values are added
to the plot (red curve) for comparison purposes. The raw RCP8.5 data are displayed in blue,
and the corrected one is in green. Similarly to Fig.8.12, each box represents 50 simulations.
The purpose of this analysis is to showcase if the pixel (point) and areal extremes behave in
a similar manner. First, looking at the values derived from the raw data, an overestimation
of the reference radar values is noted. The RCP8.5 corrected data presents a similar range as
the weather radar data. For durations below 12 hours, the RCP8.5 values are larger than the
radar values, however, the opposite case occurs for durations beyond 12 hours (720 min).
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A possible explanation for this is that in the period 2065-2099, the probability of the oc-
currence of a rainfall event exceeding the radar values is minimal. To test this, the ADDF
curves for the period 2045-2065 were calculated and show that for the same duration of 18
hours (1080 min), the corrected RCP8.5 data exceeds the radar values. Namely, within this
period, the areal maxima for this duration were larger than in the later period. Interestingly,
the uncertainty interval for larger areas is less than for smaller areas. In other words, the
pixel DDF curve shows the largest variations, while the ADDF curve for A=1024 km2 shows
the smallest. Note that the point DDF are all derived from the same pixel located in the
centre of the corresponding area. This indicates the risk associated with these values.

8.3.3 ARF values for future scenarios

A final point to mention was that the area reduction factor (ARF) values could be calculated
as the ratio of pixel to area DDF (or the ratio between large and smaller ADDF curves).
An example of this can be seen in panels (a) and (b) of Fig.8.14. Panel (a) shows the ARF
calculated as the ratio between the estimated rainfall depth of 1024 km2 and 1 km2 area
sizes. The x-axis denotes the duration (from hourly to daily) and the y-axis the ARF (usually
between 0 and 1). As the duration increases, the ARF increases. In other words, for large
durations, the areal maxima for small and large areas are in a similar range. However,
for the hourly duration, the RadKlim values show an ARF of 0.62 (areal maxima is 62%
of pixel maxima). Interestingly, the raw and corrected values are almost identical in the
mean and have comparable ranges. The ARF on the hourly duration has a mean value of
0.75 (75 %) and indicates an increase in the areal precipitation of 20 % for the period 2065-
2099. An increase in the areal mean was also seen for the 2-hour duration. The raw RCP8.5
shows a simulation with an hourly ARF value greater than one. For the other durations
(between hourly and daily), the corrected data show a larger ARF (similar to RaKlim data)
as compared to the raw data. In panel (b) of Fig.8.14, the duration is kept constant (hourly
values), but the area size is changing. The x-axis shows three area sizes (16, 576, and 1024
km2) and on the y-axis, the ARF is calculated as the ratio between each areal rainfall and
centre pixel values. For example, the first RadKlim value of 0,96 for the area size of 16
km2 indicates that the areal rainfall depth is 96% of the pixel (1 km2) estimated value. As
expected, for larger areas the ratio decreases. Between the raw and corrected RCP8.5 data,
the difference is minimal. However, between the RADOLAN ARF and RCP8.5 ARF, the
difference is notable, especially for larger areas, for which the RCP data show larger ARF
values. The correction of the RCP data seems to keep the relationship between point and
areal extremes preserved. Note that these results are for the period of 2065-2099 with a
return period of 5 years. The results for other periods are similar.
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(a) ARF for the period 2065-2099 (b) ARF function of area size

Figure 8.14: Derived ARF value for RCP8.5 before and after correction. The results are for the
area sizes of 1 and 1024 km2. The ARF values derived from the RADOLAN data
for the period 2005-2020 are displayed by the red dots in both panels. Panel (a)
depicts the ARF for different durations and panel (b) shows the ARF for different
area sizes

8.4 Summary

Investigating the changes in the statistical properties of climatic variables, such as rainfall,
due to a changing climate is essential for coping and preparing for future periods. Regional
climate models provide useful information about climatic data for historical and future sce-
narios. These have been generated based on increasing emission levels, thereby changing
the physical, energetic, and thermodynamic balance between the atmospheric components.
The outcome of RCM data is in general too coarse for local analysis, and often spatial or
temporal downscaling is applied. For reasonably downscaled values, the original RCM
data should be inspected and eventually corrected. Here, two major aspects were crucial.
The first is related to the spatial dependence structure. This influenced the distribution
of areal rainfall and, as a false structure, altered any subsequent results. The second was
related to the presence of a bias in the data for future scenarios. A bias in any direction
(overestimation or underestimation) of the marginal distribution function affected the tem-
poral structure and the quality of the data. If the model distribution differed largely from
the observed one, it would be as if it were not a realization of the same process. Hence, the
first and second parts of this work were related to correcting the spatial dependence struc-
ture and marginal function, respectively. Both of these steps were undertaken on the same
spatial and temporal scale as the model data. This required upscaling the reference data to
the model scale. The corrected data could be further integrated into a downscaling scheme.
In this part, a probabilistic scheme involving conditional simulations using random mixing
was applied. For each time step and duration, several realizations on the 1-km scale were
generated and used for analyzing areal extremes. The final results show realistic DDF and
ADDF curves that can be used for design purposes.
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In this thesis, the spatial extent of precipitation extremes in Hydrology was investigated.
The main goal of this work was to derive new methods for characterizing areal extremes
and gain additional insights into their statistical properties. New aspects regarding ADDF
curves, copula merging of weather and gauge data, statistics of event volumes, and stochas-
tic downscaling of climate weather data were introduced. Eventually, this work showed that
transferring points to areal statistics must involve a space-time approach using spatially dis-
tributed data.

After the introduction (first chapter), several statistical measures were described in the
second chapter. Typical dependence measures and notions used throughout the work were
presented. An outlier detection method was developed and implemented for the largest
yearly observations from the rain gauge data. The detected outliers were verified by addi-
tional information, and false observations were disregarded further on. The procedure was
presented in the third chapter. This was an essential step in acquiring reliable observation
data for evaluating the rainfall maxima. The corrected rain gauge data were used to derive
the spatial extent of yearly maxima over different temporal aggregations.

Several approaches, such as variogram and step-function clustering, event-based corre-
lation values, and detection of unusual events by the depth-function tool, were elaborated
on in the fourth chapter. The focus was on simultaneously occurring unusual events. The
results revealed that effects such as anisotropy and advection can play an important role
in a rainfall event. Moreover, the probability of neighbouring observations having larger
values than local maxima was calculated. Showcasing that on the hourly scale, for around
25% of the events, the maxima was at one of the nearest neighbours. This indicated that the
point observations missed a large number of intense values. Moreover, the observed point
values might have underestimated the rainfall maxima within an event, depending on their
location. This was especially noted on the hourly and sub-hourly scales.

To that end, the fifth chapter introduced a new copula-based merging of point and radar
data. Several aspects, such as high-temporal analysis, anisotropy, advection and the wind
displacement vector were incorporated. The method was tested for two radar regions and
validated with a cross-validation of the DDF for 30 rain gauges. The result showed an un-
biased and reliable product suitable for further use. Despite many efforts to obtain an error
’free’ product, automating the process showed that, in some cases, the fields were not re-
liable. For example, if no careful care is taken when deriving the variogram model, false
parameters will introduce errors in the final field, especially for low-intensity rainfall fields.
However, the overall performance of the merged data, especially with regard to extreme
value statistics, was acceptable. The merged product as well as RadKlim were used to in-
vestigate space-time statistics for areal extremes.
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Chapter six introduced the derivation of ADDF curves and associated area reduction fac-
tors for several locations within the radar area of Hannover. The derived ADDF curves can
be theoretically used for deriving design values and replacing the traditional use of ARF.
In that way, for a given area size (or catchment size), the rainfall depth associated with the
corresponding duration and return period can be derived. The derived ARF values were
compared to reference ones, showcasing that the latter underestimate the average ARF for
a short duration. The variability in the ARF values was found to be very large. Using an
average ARF value for a duration or area size can lead to a large underestimation or over-
estimation. In addition, the analysis of the ADDF curves showed the presence of crossings
of the curves between point and area DDF curves and small to large areas. An investigation
of the crossings revealed that for long durations, events can occur where the areal mean
exceeds the centre areal value. Such cases lead to crossings of the curves. However, if a
longer observation period were present, the sampled areal values would change and the
crossingswouldl disappear. The crossings are also influenced by the fact that, given an area,
the location of the maximum can occur anywhere. Hence, considering the centre point for
the point DDF might lead to an underestimation of the ’true’ point extremes. The ARF val-
ues were linked to the catchment size, form, and orientation, and a spatial mapping of ARF
values for several catchments was undertaken.

The weather radar data were further exploited, and a new way to look at extremes was
developed: rainfall as 2-dimensional and 3-dimensional connected blocks. This was the
content of chapter seven. A large data set of connected 2D areas was acquired from the 20-
year RadKlim data. The connected areas were classified, and the frequency of occurrence
of the corresponding area size with an areal mean over a region was derived. Interestingly,
there are regions that experience larger blocks than smaller ones for the same area size and
season. A strong dependence in winter on topography was found, and in summer, a north-
to-south gradient for frequency of occurrence was found. Moreover, the largest areal mean
and areal maxima were found to be associated with small-scale events. The analysis was
continued into 3D blocks with a focus on three headwater catchments in the southwest of
Germany. The event volume, areal extent, duration, in-catchment volume, and correspond-
ing discharge reaction were statistically related. Not only are strong events relevant, but
slow-moving rainfall cells could lead to a high discharge peak.

The final chapter used the EURO-CORDEX 11 hourly data for historical and future pe-
riods to derive the ADDF curves. An upscaling of the 1-km reference data (interpolation
based on DWD gauges, aggregated radar data, and simulation based on the DWD gauges)
to the model scale (12.5 km) served as the basis of model data quality analysis. First, the
spatial dependence structure of the model was compared to the reference one, and a recor-
relation procedure was implemented. This ensured that the model has a similar spatial
dependence structure essential for areal extremes. Secondly, the double-QQ transformation
of the marginal distribution function allowed conserving the signal in the model projections
while reducing the bias. Both procedures were implemented for every season separately
and showed success in improving the model data quality. The final step was a downscaling
of the corrected model data using a stochastic conditional simulation method to derive the
ADDF curves for future periods. To ensure that advection and correct spatial and temporal
aggregation of the spatial field were achieved, the simulation was done for each duration
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separately. The final derived curves showed better agreement than those using the original
data and fell within the range of the weather radar curves. Moreover, for future climatic
periods, the ADDF curves showed an increase in the estimated rainfall depth.

In conclusion, this work presented new methods and results concerning the space-time
statistics of rainfall maxima. The focus was laid on the spatial extent of areal extremes and
on transferring points to areal statistics. Below are important remarks:

1. Analysing the spatial extent of extremes only with rain gauges was beneficial but not
sufficient to observe the space-time dynamics of rainfall events.

2. Merging weather radar and rain gauge data in the rank space enhanced the perfor-
mance of the results.

3. ADDF curves can be derived from weather radar data; however, longer records are
needed to avoid problems with small samples.

4. ARF was found to be larger than one for events with long durations, a strong advection
vector, or/and under sampling of the pixel (point) extremes.

5. For several catchments, the ARF was derived, and the values were linked to the catch-
ment size, form, and orientation.

6. Areal extremes were not only space-time-dependent but also changed with the object
size, duration, time of occurrence, and geographical location.

7. High discharge peaks were not necessarily caused by hourly or daily rainfall maxima
but by an accumulation of slow-moving rainfall cells.

8. Correcting the dependence structure and marginal distribution function of regional
climate model data provided a foundation for reliable further analysis.

9. Deriving ADDF for future (and present) periods was associated with an uncertainty
measure to showcase the possible error term.

Future work can build on the methods developed and provided in this thesis. The results
are transferable to other locations and can be applied to other data sets. The developed
methods could be used to update state-of-the-art information regarding area reduction fac-
tors and transferring point to areal extremes. Moreover, investigating the volume of rainfall
blocks along their space-time development and spatial characteristics could be further im-
proved and incorporated into a rainfall-runoff model.
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