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Abstract

Visual Question Answering (VQA) has drawn substantial interest in both academic
and industrial research fields in recent years. Driven by Vision Transformers (ViT)
and the vision-text co-attention mechanism, these models have shown notable perfor-
mance improvement. Yet, the black-box nature of neural attention impedes people
from understanding its functionality and establishing their trustworthiness. Drawing
inspiration from various scholars and their contributions, this thesis demystifies these
mechanisms. We aim to 1) extract the neural attention weights of VQA models, 2) remap
the weights to machine attention maps, 3) compare machine attention with human
gazing heatmaps, and 4) compute the related metrics to provide deeper insights into the
attention patterns.

First, the attempts to reproduce the MCAN model implementation and machine atten-
tion extraction on the VQA-MHUG dataset are performed on the MULAN framework.
Through a comparison with official implementations, the accuracy and correctness of
the re-implementation have been verified. Then, utilizing the toolkit of the MULAN
framework, the 1D attention weights are remapped to 2D neural attention maps. Next,
these attention maps are compared to human-gazing heatmaps of VQA-MHUG using
explainable AI (XAI) metrics.

Following the above pipeline, another experiment on the AiR-D dataset is conducted
and reports the Area Under ROC Curve (AUC), Spearman’s rank correlation coefficient
(ρ), and Jensen-Shannon Divergence (jsd) metrics to compare the neural attention with
the human gazing heatmaps.

Finally, the discussion of the differences between the official and re-produced implemen-
tations is presented alongside insights on the interpretability of neural attention in VQA
models.
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1 Introduction

In recent years, the field of Question Answering (QA) has significantly evolved, driven
by the advances in transformer technologies, Dosovitskiy et al., 2021, Vaswani et al.,
2017, and attention mechanisms, Hochreiter et al., 1997, Pennington et al., 2014. Chart
Question Answering (CQA) and Visual Question Answering (VQA), as distinct subfields,
have become increasingly over-performance. These areas blend Natural Language
Processing (NLP) and Computer Vision (CV) to address queries based on charts, graphs,
and images, exemplifying the convergence of human-centered computing, visualization,
and computational methodologies. With text-based questions and visual data inputs
such as charts or images, these models implement a generative learning-to-answer
mechanism. This integration of textual and visual data presents unique AI challenges,
particularly in devising models that can effectively interpret and reason about visual
content.

When humans answer questions about images, they naturally focus on the most pertinent
parts of those images. This tendency can be reflected in human gazing maps, where
the areas of highest focus often correspond to the most relevant aspects of the image
in relation to the question. This selective attention in visual perception highlights
how people prioritize certain elements in an image for understanding and responding,
underscoring its importance in various applications like visual analytics. We present
more detailed research and arguments on this topic in Chapter 5.

However, exploring how neural networks direct attention to images, particularly in
the context of question-answering models, remains relatively under-researched. Con-
currently, with the advancements in model performance, there’s a growing emphasis
on the interpretability and explainability of these systems. As VQA and CQA models
increasingly contribute to decision-making in critical sectors like healthcare, finance,
and automation, their transparency is both a technical requirement and an ethical
and practical necessity. Traditional methods, such as GradCam, Selvaraju et al., 2019,
are proving insufficient to meet these complex needs, indicating a demand for more
advanced solutions in model interpretability.

Attention heatmaps in neural networks effectively reveal how the machine focuses its
attention, offering a visual representation of the areas within an image that the model
deems most significant for making a decision or prediction. These maps are a crucial
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1 Introduction

tool in understanding and interpreting the behavior of neural networks, as they provide
insight into what the model ’sees’ and ’considers important’ in a given input. By analyzing
these attention maps, we gain a better understanding of the model’s decision-making
process, identify potential biases, and improve the model’s accuracy and reliability.

The Deep Modular Co-Attention Networks (MCAN) model, Yu et al., 2019b, a notable
development in Visual Question Answering (VQA) research, leverages co-attention
mechanisms for both text and images to generate answers, achieving state-of-the-art
performance. It processes the inputs by first extracting features from images via a Faster
R-CNN model, Ren et al., 2016, and tokenizing textual queries via 300-D GloVe word
embeddings, Pennington et al., 2014. These extracted image features and tokenized
questions are then fed into Modular Co-Attention (MCA) layers. This process facilitates
an effective integration of visual and textual information. Following multimodal fusion
and output classifier, the model can generate the final answer based on the cohesively
processed visual and textual data.

The Multimodal Integration of Human-Like Attention (MULAN) framework is the first
method to increase the training features for multimodal VQA models, Sood et al., 2021a.
With the integration of human-like attention on image and text, MULAN allows the
neural network to be supervised by human-like attention patterns, leading the model to
concurrently process and analyze both visual and textual data, and closely mimicking
human cognitive attention mechanisms. MULAN framework uniquely provides efficient
tools for extracting attention maps from both images and texts, greatly facilitating
research and development processes. Although initially trained on the VQAv2 dataset,
Goyal et al., 2017, MULAN’s versatile design is compatible with various other VQA mod-
els and datasets, showcasing its potential for widespread application and adaptability in
diverse research contexts.

In this thesis, our initial approach involved following the MULAN framework, Sood et al.,
2021a, to train MCAN models, Yu et al., 2019b, on the VQAv2 dataset, Goyal et al., 2017.
Next, the MULAN framework provides tools to generate and output machine attention
weights. We then engaged to remap the weight to machine attention heatmaps, so
that they can be easily compared to human gazing heatmaps, which are provided by
the VQA-MHUG dataset, Sood et al., 2021b. Consequently, we calculate the statistical
metrics similar to the MCAN model and VQA-MHUG to validate our re-implementation.
Following the aforementioned, we outlined and proposed a systematic pipeline for the
analysis of human and neural attention. To demonstrate the effectiveness of this pipeline,
we implemented it on the GQA dataset, Hudson et al., 2019, facilitating comparative
analysis of attention heatmaps with the AiR-D dataset, Chen et al., 2022.

The task of analyzing human and neural attention is complex and multi-faceted. Fortu-
nately, Explainable AI (XAI) methods provide essential tools for justifying, enhancing,
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and unveiling the transparency of neural network models, Krajna et al., 2022. Tech-
niques such as attention flow and attention roll-out, Abnar et al., 2020, offer post hoc
methods for examining self-attention in Transformer models. Additionally, metrics like
AUC, JSD, and the Spearman’s rank correlation ρ offer a more numerical and statistical
evaluation, enabling a thorough assessment of the model performance and analyzing
results.

In summary, the main contributions of this thesis are the following five-folds:

1. Successfully reproduced the MULAN framework, Sood et al., 2021a, for the MCAN
model, Yu et al., 2019b, on the VQAv2 dataset, Goyal et al., 2017, and validated
the compatibility and consistency of the models.

2. Summarized and proposed a pipeline for analyzing human and neural attention
mechanisms.

3. Effectively trained and validated the MCAN model on the GQA dataset, Hudson et
al., 2019, extracted neural attention maps, and conducted a comparative analysis
with AiR-D human gazing heatmaps, Chen et al., 2022.

4. Performed a detailed comparison between human and neural attention heatmaps,
yielding comprehensive results and insights.

5. Identified and rectified various errors and bugs in the MULAN implementation,
enhancing its functionality and reliability.

3





2 Related Works

In this chapter, we begin by introducing the intricacies of neural attention mechanisms
in question-answering models, highlighting how they discern and prioritize relevant
information in response to queries. Subsequently, we explore a range of models and
datasets pertinent to Chart Question Answering (CQA) and Visual Question Answering
(VQA) tasks, providing an overview of their architectures and performances. Lastly,
we turn our attention to Explainable AI (XAI) methods, which are instrumental in
demystifying machine attention processes, offering a clearer understanding of how AI
models arrive at their conclusions and enhancing the transparency of the advanced
neural network models.

2.1 Neural Attention Mechanism

Attention mechanisms in neural networks, inspired by the human cognitive process of
selective attention, are first introduced in the context of Neural Machine Translation
(NMT) by Bahdanau et al., 2016. This research aims to address the challenge of
encoding long variable-length inputs into a fixed-length context vector while preserving
information from earlier tokens. The method tries to generate output apred by projecting
each source embedding es

i and target embedding et
j using the ªalignment scoreº α.

apred =
N∑

i=1

αes
i (2.1)

α = softmax(scoring(et
j, es

i )) (2.2)

Where N is the source embedding length and the scoring function can be variant
depending on the model task: cosine similarity (Graves et al., 2014), additive/concat
attention (Bahdanau et al., 2016), general/bilinear attention (Xu et al., 2016), scaled
dot-product attention (Vaswani et al., 2017), sparse softmax (Peters et al., 2019), etc.
Nowadays, the "alignment score" α is often called "attention weight".
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In the work of Bahdanau et al., 2016, the source and target embeddings are the hidden
states of recurrent networks, but more and more tasks and neural network models
introduce the task-specific attention mechanism and co-attention mechanism, like Chart
Question Answering (CQA) Masry et al., 2022 and Visual Question Answering (VQA) Yu
et al., 2019b.

Vaswani et al., 2017 introduced a groundbreaking development in neural networks
with their proposal of the Transformer architecture. This innovation enhanced the
performance and design of natural language processing (NLP) tasks, offering a more
extensive range of capabilities. Concurrently, there is a notable rise in the prominence of
attention-based neural networks. These networks, leveraging the Transformer’s efficient
handling of sequences, revolutionize various aspects of NLP, from understanding context
to generating more coherent and contextually relevant text, thereby marking a significant
milestone in the evolution of machine learning and AI technologies.

Vision Transformer (ViT) architecture, Dosovitskiy et al., 2021, introduces the Trans-
former in NLP tasks to computer vision (CV) tasks. This method, deviating from
conventional CNN-based strategies, processes images as a sequence of patches and
applies a self-attention mechanism to capture global dependencies within the image.

To apply a standard Transformer to computer vision tasks, images, as 3D dimension
input image3D ∈ R

H×W ×C , are first flattened to 2D patches image2D ∈ R
N×(P 2·C), where

H and W stands for the height and width of the image, C for image color channels,
N = HW

P 2 for number of patches, and P 2 for patch size. N is also the input sequence
length of the Transformer, which is typically 512 or 1024. Since Transformer layers
maintain a constant latent vector size D, all image patches are mapped to this D

dimensional space, ensuring compatibility with the Transformer architecture.

Dosovitskiy et al., 2021 proposes the Multihead Self-Attention (MSA), which is the core
unit of the ViT implementation, as an alternative qkv self-attention. Similar to Vaswani
et al., 2017, for each element in an input sequence z ∈ R

N×D, a weighted sum over all
values v is first calculated. Then the attention weights Aij are based on the pairwise
similarity between two elements of the sequence and their respective query qi and key
kj representations. MSA extends the qkv self-attention with h self-attention operations,
called ªheadsº, in parallel, and projects their concatenated outputs:

A = softmax(qk⊤/
√

Dh), A ∈ R
N×N (2.3)

SA(z) = Av (2.4)

MSA(z) = [SA1(z); SA2(z); . . . ; SAh(z)]Umsa, (2.5)
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Supplementary position information is also required to embed the flattened image
patches to make sure that each patch can match the correct position. Similar to BERT,
Devlin et al., 2019, the first embedding patch is pended as class tokens z0

0 = xclass. The
output of this token z0

L serves as the image representation y.

2.2 Visual Question Answering

In the task of Visual Question Answering (VQA), machines are endowed with the
capability to interpret and respond to queries about images by synergizing visual and
textual data. This process essentially equips machines with the skills to perceive and
cognize visual content. The efficacy of VQA hinges on three pivotal components. Initially,
image processing empowers the machine to scrutinize the image, distilling essential
visual features. Subsequent to this is question comprehension, wherein the system
parses and grasps the semantics and intent of the query posed. The culmination of this
process is the answer generation phase, where the machine amalgamates the insights
gleaned from both image analysis and question interpretation to formulate coherent and
accurate answers.

The crux of emulating human-like cognition in Visual Question Answering (VQA)
models lies in the adept construction of multimodal representations. These intricate
representations serve as the linchpin for amalgamating the visual and textual realms,
granting machines the prowess to harmonize imagery with language. By establishing
a cohesive understanding of the image-question duo, these representations pave the
way for responses that are not only accurate but also imbued with significance. In
the intricate tapestry of VQA, multimodal representations are indispensable for they
encapsulate the depth and subtleties inherent in both visual cues and linguistic elements.
This dual comprehension empowers the system to perceive the finer details of the image
while discerning the question with precision. Ultimately, multimodal representations
are paramount in engendering responses that are both user-friendly and contextually
astute.

Since the year of 2015, there has been an exponential surge in research aimed at en-
hancing the performance architecture performance of visual question answering (VQA)
systems, underscoring the critical role of multimodal frameworks. The literature on VQA
was sparse until 2015, with minimal publications each year. This data, curated from
Google Scholar using the query "visual question answering" , reveals a stark inflection
point post-2015. The annual output of research papers has escalated precipitously, rising
from a modest count of 76 to an impressive tally nearing 6, 000 papers per year. This
dramatic uptick reflects the burgeoning interest and significant advancements within
the field of VQA.
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In the following segments of this section, we provide a concise overview of various
multi-modal VQA methodologies, alongside an introduction to some of the most widely
utilized datasets in the field of Visual Question Answering.

2.2.1 Visual Question Answering Models

Researchers frequently reference Agrawal et al., 2016 for pioneering the concept of
VQA, which integrates computer vision and natural language processing to address
open-ended questions about images. This research melds multi-modal AI and spans
various disciplines, focusing on goal-driven tasks like aiding visually impaired individuals
or security monitoring. Unlike structured text, open-ended text lacks specific formatting,
and invites unrestricted answers, contrasting with multiple-choice formats. The study
also contrasts image captioning with image question answering. Stacked Attention
Networks (SANs) Yang et al., 2016 uses question semantics to locate relevant image
regions. Its multi-layered approach iteratively refines focus on key image areas, cumula-
tively leading to the answer in a layer-by-layer manner. Multi-Modal Factorized Bilinear
Pooling (MFB) Yu et al., 2017 combines detailed image and question features using
MFB pooling and a co-attention mechanism, creating a unified model that enhances
VQA effectiveness. Feature Embedding for Visual Question Answering Lu et al., 2017,
combines the visual attention of free-form regions with detection-based methods, inte-
grating features from image regions, detection boxes, and question representations. This
approach, using multi-modal multiplicative feature embedding, simultaneously focuses
on relevant image areas and detection boxes, enhancing question-answering accuracy.
Learning Cross-Modality Encoder Representations from Transformers (LXMERT) Tan
et al., 2019 introduces a Transformer-based model to analyze vision-language interac-
tions. It features three encoders for image relationships, language, and cross-modality.
Pre-trained on extensive image-sentence pairs, it excels in linking visual and linguistic
content. The study Jiang et al., 2020 revisited grid-based convolution features in VQA,
discovering they perform comparably or better than bounding box and region-based fea-
tures, with improved running times. Grid features also showed superior generalization
in tasks like image captioning and enabled strong end-to-end VQA performance without
pre-training region annotations. Deep Modular Co-Attention Networks for VQA Yu et al.,
2019b presents a deep co-attention model, MCAN, which adeptly correlates keywords
in questions with key objects in images. The model is built upon a series of Modular
Co-Attention (MCA) layers, each designed to simultaneously manage self-attention for
questions and images and guide the attention of images based on the questions. This
is achieved through a composite of two fundamental attention units within each layer,
allowing the model to intricately align and interpret visual and textual information. The
layered structure of MCAN facilitates progressively refined understanding, making it a
robust framework for complex VQA tasks.
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In the paper Multimodal Human-like Attention Network (MULAN), Sood et al.,
2021a, the authors developed a novel approach for training VQA models by leveraging
human-like attention on both image and text as a guiding signal for neural attention.
This method demonstrated notable advancements in VQA tasks. It involves integrating
attention predictions derived from cutting-edge text and image saliency models into the
self-attention layers of contemporary transformer-based VQA models. MULAN stands
out for its efficiency, requiring fewer trainable parameters and less runtime, while still
outperforming previous models in terms of accuracy.

2.2.2 Visual Question Answering Datasets

DAtaset for QUestion Answering on Real-world image (DAQUAR) Malinowski et al.,
2015, is foundational in VQA research. Based on NYU-Depth V2, Nathan Silberman
et al., 2012, it comprises real-world images with 6, 794 training and 5, 674 test question-
answer pairs, including both synthetic and human-generated content, offering a broad
spectrum for VQA study. Visual Genome (VG) Krishna et al., 2016 was the largest
dataset at its release, consisting of over 100, 000 images from MS-COCO, Lin et al.,
2015, and YFCC100M, Thomee et al., 2016. VG’s unique feature is its structured
questioning format, starting each question with a ’W’ word (What, Where, When, etc.),
totaling around 1.7 million question-answer pairs. This design provides a substantial
resource for visual understanding and question answering studies. VQAv2 Goyal et al.,
2017, is developed to address biases and imbalance in answer distribution found in
the earlier VQAv1 dataset (Agrawal et al., 2016). Recognizing that biases in language
and inherent structures in the real world can often overshadow visual cues in learning,
leading to an overestimated performance of models, VQAv2 aims to mitigate this issue.
It achieves a more balanced dataset by pairing each question with two similar images
that yield different answers. This approach effectively doubles the number of image-
question pairs compared to its predecessor. The expanded VQAv2 dataset comprises
82, 783 training images, 40, 504 validation images, and 81, 434 test images, along with
443, 757 training questions, 214, 354 validation questions, and 447, 793 test questions,
creating a more robust and challenging dataset for VQA research1. GQA dataset Hudson
et al., 2019 stands as a significant resource for VQA tasks. The dataset’s creation
involved an innovative question engine that utilizes the scene graph structures from
Visual Genome, Krishna et al., 2016, to generate a wide array of reasoning questions.
Each question is accompanied by a functional program that defines its semantics. This
approach allows for precise control over the answer distribution and effectively mitigates
biases. The GQA dataset comprises a total of 113, 000 images and an impressive 22

1https://visualqa.org/
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million questions. Additionally, the dataset includes pre-extracted image features for
both grid and region-based analyses, further enriching its utility for VQA research2.
The datasets highlighted above primarily concentrate on Visual Question Answering
(VQA) tasks, offering tuples of (I, Q, A), where I represents the image, Q denotes the
question, and A is the ground-truth answer. In this thesis, we focused on training models
using the VQAv2 and GQA datasets. This approach was instrumental in validating
the transferability of the MULAN model and the effectiveness of our implementation.
However, to delve deeper into machine attention mechanisms and to compare human
and neural attention patterns, the incorporation of human eye-tracking data is equally
crucial. This additional data provides valuable insights into how human attention
navigates and processes visual information, thereby offering a more comprehensive
understanding of attention dynamics in VQA systems.

2.2.3 Eye-Tracking Dataset

Compositional Language and Elementary Visual Reasoning diagnostics dataset

(CLEVR), Johnson et al., 2016, aims to evaluate the reasoning abilities of VQA models.
Noting biases in existing datasets, CLEVR offers 100k rendered images and around one
million questions, with 853k unique, to isolate and analyze VQA reasoning capabilities.

Attention in Reasoning (AiR) framework, Chen et al., 2022, is one of the initial at-
tempts to scrutinize the progression and rationality of attention in VQA tasks. AiR
employs neural attention to enhance understanding and improve task outcomes. It intro-
duces an evaluation metric (AiR-E) grounded in a series of atomic reasoning operations,
facilitating a quantitative attention assessment that incorporates the reasoning process.
The AiR-D dataset, part of this framework, includes human eye-tracking data and answer
correctness, focusing on the GQA dataset’s validation split with 1, 454 image-question
pairs3. AiR-D’s unique inclusion of human gazing maps serves as one of the ground
truths in this thesis.

VQA Multimodal Human Gaze dataset (VQA-MHUG), Sood et al., 2021b, is a novel
dataset comprising human gaze data on images and questions collected during VQA
tasks using a high-speed eye tracker. It aims to compare human and neural attention
strategies, revealing that a stronger correlation with human textual attention is indicative
of better VQA performance. The VQA-MHUG dataset, based on the VQAv2 dataset’s
validation split, consists of 3, 990 image-question pairs, each answered by 3 participants,
and includes human gazing heatmaps4. The study trained and tested five advanced VQA

2https://cs.stanford.edu/people/dorarad/gqa/index.html
3https://github.com/szzexpoi/AiR
4https://perceptualui.org/publications/sood21_conll/
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models on this dataset to examine neural attention patterns. Our research replicates the
findings as an initial step in our engineering tasks, validating our methodologies against
this novel dataset.

2.3 Chart Question Answering

Chart Question Answering (CQA) is a specialized subset of Visual Question Answering
(VQA) that concentrates on interpreting and responding to queries about charts, graphs,
and various data visualizations. In CQA, machine learning models are specifically
trained to identify chart-related elements and analyze data points, relationships, and
trends depicted in these visual representations. The primary aim of a CQA system is
to automatically provide answers to natural language questions about charts, thereby
enhancing the process of visual data analysis.

The advent of robust VQA models has catalyzed focused research in the area of CQA.
As researchers began tailoring VQA inputs to accommodate chart images, the unique
capabilities and potential applications of CQA started to emerge more prominently. Given
the absence of a universally recognized CQA dataset, our discussion will include an
overview of some notable CQA models, as well as the datasets that have been developed
and validated in conjunction with these models. This exploration offers insights into the
evolution and current state of CQA tasks within the broader context of visual question
answering.

Data Visualization Question Answering (DVQA), Kafle et al., 2018, addresses the
challenge of interpreting bar charts in VQA. The DVQA dataset shows the difficulties ad-
vanced VQA algorithms face with bar charts. To tackle this, two models were developed:
Multi-Output Model (MOM), which combines Chart-OCR for data extraction and an
LSTM for questions, and SAN with DYnamic Encoding Mode (SANDY), an enhanced
version of SAN that dynamically processes chart-specific question words. These models
mark progress in automated bar chart analysis.

FigureQA, Kahou et al., 2018, offers an extensive visual reasoning corpus with over
a million question-answer pairs based on 100, 000+ chart images, including various
scientific-style figures. The dataset uses 15 templates to explore plot relationships and
characteristics. The FigureNet model, developed to assess FigureQA, combines color
probabilities, LSTM-generated question vectors, and one-hot vectors for color descriptors
in a novel approach to graphical data interpretation.

ChartQA, Masry et al., 2022, stands as a significant benchmark in the research field of
CQA tasks. The authors observed that people typically pose a range of complex reasoning
questions about charts, often involving intricate logical and arithmetic operations tied
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to the chart’s visual features. To mirror this real-world complexity, they introduced a
substantial benchmark encompassing 9.6K human-generated questions and an additional
23.1K questions derived from human-written chart summaries.

Addressing the intricate challenges of visual and logical reasoning in chart analysis,
ChartQA introduces two transformer-based models: VisionTAPAS and VL-T5. These
models innovatively integrate visual features with the chart’s data table, presenting a
cohesive approach to answering questions. This unified methodology enables the models
to effectively process and interpret both the visual and data-driven aspects of charts,
showcasing a significant advancement in the field of CQA.

To conclude this section, we consolidate the key information about the discussed VQA
and CQA models in ??. This table presents the backbone architectures and the funda-
mental approaches of each model, offering a comprehensive overview and facilitating
easy comparison between the various methodologies employed in the field of Visual and
Chart Question Answering.

2.4 Explainable AI

Explainable AI (XAI) methods offer valuable tools to justify, improve, and explore
the transparency of neural network models Krajna et al., 2022. In our thesis, XAI
is particularly valuable for gaining deeper insights into how neural network models
function. One aspect of XAI is feature-based or global model explainability, which focuses
on understanding the contribution of input features to the model’s output. The Shapley

value, Rozemberczki et al., 2022, offers both local and global interpretations, although
it is computationally intensive. As an alternative, the kernel SHAP method, Chau et al.,
2022, provides a more efficient kernel-based approximation of the Shapley value.

Another notable method is Local Interpretable Model-Agnostic Explanations (LIME),
which perturbs input data samples to observe changes in predictions, offering insights
into the model’s decision-making process, as detailed in Ribeiro et al., 2016.

Additionally, example-based or local techniques delve into specific explanations for each
decision a model makes. One such technique, Anchors, has shown promise in identifying
the sufficient conditions under which a model makes high-precision predictions. It
supports model-agnostic approaches across different data types, including text, images,
and tabular data, making it a versatile tool in the XAI toolkit.

In this thesis, XAI holds promise as we aim to gain deeper insights into the neural
network models. Feature-based / Global model explainability describes how input
features contribute to the model output. Shapley value provides local and global
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2.4 Explainable AI

interpretation, but the computational expansiveness is its drawback, Rozemberczki
et al., 2022. The kernel SHAP method can be a faster kernel approximation of it, Chau
et al., 2022. Local Interpretable Model-Agnostic Explanations (LIME) perturbs the
input of data samples and comprehends how the predictions change, which is also a
promising method to explain the model processing flow, Ribeiro et al., 2016.

Besides, example-based / local techniques focus more on detailed explanations for
every decision made. Anchors show its great potential to capture sufficient conditions
of features at which the model gives a high-precision prediction and supports model-
agnostic approaches for classification models of text, image, or tabular data.
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The Visual Question Answering (VQA) task is a compelling area in AI that focuses on
automatically generating answers from input images in response to associated questions.
It requires a sophisticated interplay of image understanding and language processing.
Recent advancements in this field, particularly noted in Sood et al., 2021b, involve the
extraction of attention maps from neural networks and their comparison with human
attention patterns. These studies have been instrumental in highlighting the profound
impact that both neural and human attention mechanisms have on the performance
of VQA models. Inspired by these findings, our research aims to delve into extracting
similar attention maps from VQA models. We seek to dissect and comprehend the
variances between neural attention mechanisms and human attention processes. This
exploration is expected to shed light on how neural models process visual and textual
information and how their approaches differ from human cognitive processes, thereby
contributing valuable insights to the field of VQA.

3.1 Basic framework

This section is dedicated to examining the foundational framework for our study. We fo-
cus on two advanced VQA architectures: the Modular Co-Attention Network (MCAN)

model and the Multimodal Human-like Attention Network (MULAN) framework.
These architectures represent the forefront of VQA technology, combining sophisticated
attention mechanisms and deep learning strategies to process and interpret complex
visual and textual data. Our exploration into these models involves dissecting their
structural components, understanding their operational dynamics, and assessing their
potential for adaptation and application in various VQA scenarios. By analyzing these
state-of-the-art models, we aim to uncover new pathways for enhancing the accuracy
and efficiency of VQA systems, thereby contributing to the broader field of artificial
intelligence and machine learning.
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3 Experiment on VQA Models

Figure 3.1: The MCAN architecture features the Modular Co-Attention (MCA) layer,
based on Self-Attention (SA) and Guided-Attention (GA) units. Stacking these MCA
layers in parallel forms the deep co-attention learning core. The graph is taken from the
original Yu et al., 2019b.

3.1.1 MCAN model

The Modular Co-Attention (MCA) layer forms the foundational unit of the MCAN model,
Yu et al., 2019b. This layer is ingeniously designed as a modular combination of two
fundamental attention units: the self-attention (SA) unit and the guided-attention (GA)
unit. This design is inspired by the scaled dot-product attention mechanism, as proposed
in Vaswani et al., 2017.

In the scaled dot-product attention mechanism, the input comprises queries q and keys
K, both of which share the same dimensionality, denoted as d. The attention weights
A that act upon the values V are derived through a process where each query q is
dot-multiplied with all the keys K. This dot product is then scaled down by the factor
of

√
d to normalize the results. Subsequently, a softmax() function is applied to these

scaled values, enabling the model to effectively determine the relative importance of
each value V based on the corresponding attention weights (Equation (3.1)). This
attention mechanism is crucial in the MCA layer, as it allows the model to focus on
specific elements in the input data, enhancing its ability to interpret and respond to
complex visual and textual queries.
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3.1 Basic framework

A(q, K, V ) = softmax(qK⊤/
√

d)V (3.1)

To enhance the representation capabilities of the attended features, Vaswani et al., 2017
introduced the concept of multi-head attention, a pivotal innovation in attention mecha-
nisms. This approach involves parallelizing h independent ’heads’, each representing a
distinct scaled dot-product attention function.

In this multi-head attention framework, the attended output features f are computed
by first processing the input through each of these individual attention heads (Equa-
tion (3.2)). Each head captures different aspects of the input data, allowing the model
to attend to various features from multiple perspectives simultaneously. After the input
passes through all the heads, the outputs of these heads are then concatenated and lin-
early transformed to produce the final attended feature set f . This process significantly
enriches the model’s ability to interpret complex data by enabling it to consider and
integrate a diverse range of features and relationships within the input. As a result,
multi-head attention provides a more comprehensive and nuanced understanding of the
input data, contributing to the effectiveness of MCAN model, Yu et al., 2019b:

f = MA(q, K, V ) = [head1, head2, . . . , headh]W o (3.2)

headj = A(qW Q
j , KW K

j , V W V
j ) (3.3)

where W Q
j , W K

j , W V
j ∈ R

d×dh are the projection matrices for the j-th head to transform
the queries, keys, and values respectively, and W o ∈ R

h∗dh×d. dh = d/h is the output
feature dimension from each head. The dimension dh = d/h represents the dimension-
ality of the output features from each individual head. This division ensures that the
computational cost of multi-head attention is similar to that of single-head attention,
while still benefiting from the diverse perspectives of multiple heads.

Given a set of question queries Q = [q1; q2; ...; qm] ∈ R
m×d as input, the multi-head

attention (MA) weights can be calculated for each head. These weights are then
used to generate a weighted sum of the values, which are processed through each
head’s attention mechanism. The outputs from all the heads are then concatenated and
projected using W o, resulting in the final output feature f .

MCAN leverages multi-head attention (MA) to develop two key attention units for
handling multimodal VQA inputs: self-attention (SA) and guided-attention (GA), Yu
et al., 2019b. SA processes a single set of features X = [x1; ...; xm] ∈ R

m×dx, producing
attended outputs by considering the interactions within X. GA, in contrast, operates
on two sets of features, X and Y , generating attended features for X guided by the
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context of Y . Then MCAN effectively combines these units to create Modular Co-
Attention (MCA) layers. For example, the SA(Y ) − GA(X, Y ) layer models intra-modal
interactions among question word pairs in Y , while the SA(Y ) − SGA(X, Y ) layer adds
another dimension by considering image region pairs in X. This approach ensures
comprehensive processing of multimodal data, crucial for accurately interpreting and
answering VQA tasks, as shown in Figure 3.1.

In the MCAN model, images are not processed in their original pixel format. Instead,
as described in Anderson et al., 2018, they are represented through a set of regional
visual features extracted in a bottom-up approach. These features are derived from
a pre-trained Faster R-CNN model, Ren et al., 2016, trained on the Visual Genome
dataset, Krishna et al., 2016. The model applies a dynamic confidence threshold to
the number of detected objects, ranging from m ∈ [10, 100]. Each object, denoted as
xi ∈ R

dx, is represented by mean-pooling the convolutional features from its detected
region, resulting in an image feature matrix X ∈ R

m×dx.

Questions are tokenized into words and embedded into a dimension of n ∈ [1, 14]. To
accommodate the variable lengths of m and n, zero-padding is employed to standardize
X and the question embeddings Y to their maximum dimensions (mmax = 100 and
nmax = 14, respectively).

Therefore, MCAN processes the image features X and question features Y through deep
co-attention learning, utilizing a series of L Modular Co-Attention (MCA) layers stacked
sequentially (denoted as MCA(1), MCA(2), . . . , MCA(L)), Yu et al., 2019b. Each layer
MCA(l) takes the output features X(l − 1) and Y (l − 1) from the previous layer as
input, producing output features X(l) and Y (l). These outputs are then recursively fed
into the subsequent MCA(l + 1) layer (Equation (3.4)). This cascading structure allows
the MCAN to progressively refine its attention and understanding of the multimodal
inputs.

[X(l), Y (l)] = MCA(l)([X(l − 1), Y (l − 1)]) (3.4)

For the first Modular Co-Attention (MCA) layer in the MCAN model, denoted as MCA(1),
the initial input features are set as X(0) = X and Y (0) = Y . In our specific imple-
mentation of the MCAN model, we employ SA(Y ) − SGA(X, Y ) layers, structuring the
network in an encoder-decoder format inspired by the Transformer architecture, as
discussed in Vaswani et al., 2017.

Following the deep co-attention learning phase, the output image features X(L) =

[x1(L); . . . ; xm(L)] ∈ R
m×d and question features Y (L) = [y1(L); . . . ; yn(L)] ∈ R

n×d are
enriched with detailed information about the attention weights over both question
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3.1 Basic framework

words and image regions, Yu et al., 2019b. To further process these features, a two-
layer Multilayer Perceptron (MLP) is utilized in the MCAN model, consisting of a fully
connected layer FC(d), a ReLU activation, a dropout layer with a dropout rate of 0.1,
and another fully connected layer FC(1). This MLP is applied to either Y (L) or X(L)

to derive the attended features ỹ or x̃. The attention weights α = [α1, α2, . . . , αm] ∈ R
m

are learned during this process, allowing the calculation of the attended features as
follows:

α = softmax(MLP (X(L))) (3.5)

x̃ =
m∑

i=1

αixi(L) (3.6)

ỹ =
n∑

i=1

αiyi(L) (3.7)

These equations represent the computation of the final attended features, where x̃

and ỹ are weighted sums of the output features, modulated by the learned attention
weights. This approach ensures that the most relevant features in the context of the
given question and image are emphasized in the final model output.

In the MCAN model, the attended features ỹ and x̃ are stabilized and fused using a
LayerNorm() function into a unified feature vector z. This feature z is then projected
into a vector s ∈ R

N and passed through a sigmoid() function, where N is the number of
most frequent answers in the training set. The model uses binary cross-entropy (BCE) as
the loss function for training an N -way classifier based on z. The fusion of the features
is mathematically represented as in Equation (3.8).

z = LayerNorm(W T
x x̃ + W T

y ỹ) (3.8)

where Wx and Wy ∈ R
d×dz are linear projection matrices that help in transforming the

attended features into a common dimensionality dz.

3.1.2 MCAN with Grid image feature

The original MCAN model, as detailed in Yu et al., 2019b, relies on region image features
extracted using the Faster R-CNN method, Ren et al., 2016. This approach utilizes
a detector trained on a curated version of the Visual Genome dataset Krishna et al.,
2016, encompassing numerous object categories and attributes annotated with bounding
boxes. The extraction process involves a 14 × 14RoIPool layer, followed by an AvgPool
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3 Experiment on VQA Models

operation for each region, resulting in a set of region features, denoted as N , for each
image.

However, a study by Jiang et al., 2020 revisited the use of both region and grid image
features for VQA models, suggesting that grid features, extracted directly from the C5

layer of a variant of Faster R-CNN, Ren et al., 2016, do not underperform compared to
region features. This finding indicates that grid features might be equally effective for
VQA tasks.

Thus, in this thesis, we explore the use of both region and grid features within the MCAN
model to assess their respective impacts. The grid features, as provided by Jiang et al.,
2020, are directly extracted from the C5 layer and represented as featgrid ∈ R

H×W ,
where H and W correspond to the height and width of the image. Simultaneously, the
region features and bounding box information, as delineated in Yu et al., 2019b, are also
incorporated. By employing both types of features, we aim to comprehensively evaluate
their effectiveness and potential synergies in enhancing the performance of the MCAN
model in VQA tasks.

3.1.3 MULAN framework

Sood et al., 2021a introduced the Multimodal Human-like Attention Network (MULAN),
a groundbreaking approach for integrating human-like attention across both image
and text modalities during the training of Visual Question Answering (VQA) models.
MULAN’s notable achievement lies in its ability to merge text and image attention within
the neural self-attention layers of VQA models, thus enriching the multimodal learning
process. Figure 3.2 shows the overview of the MULAN model.

Figure 3.2: Overview of the Multimodal Human-like Attention Network (MULAN). This
method is a multimodal integration of human-like attention on questions and images
during the training of VQA models. The graph is taken from Sood et al., 2021a
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3.2 Machine Attention on VQA-MHUG dataset

The implementation of MULAN1 is grounded in the OpenVQA platform2, a versatile
framework for VQA research. OpenVQA facilitates the implementation of various state-
of-the-art VQA methodologies, such as BUTD, MFH, BAN, MCAN, and MMNasNet, across
different benchmark datasets, including VQAv2, GQA, and CLEVR.

MULAN extends the capabilities of OpenVQA by allowing for the input of additional
human-like attention data (MSA for image and TSM for text) and the extraction of
neural attention information (with extra parameters during the validation step). This
enhancement is particularly crucial for our thesis, as it enables more in-depth analysis
and comparison of human and machine attention mechanisms in VQA tasks. By leverag-
ing the extended functionality of MULAN, our implementation can delve deeper into
understanding how neural networks mimic or differ from human cognitive processes in
interpreting and responding to visual and textual stimuli.

3.2 Machine Attention on VQA-MHUG dataset

In our thesis, we have utilized the MCAN model, Yu et al., 2019b, within the framework
of MULAN, Sood et al., 2021a. Our approach diverges slightly in that we did not
employ additional human-like attention as a guidance signal in the MULAN framework.
However, we place significant emphasis on the output of the neural attention mechanism,
considering it a crucial aspect of our analysis.

This section focuses on reproducing the results and machine attention maps using region
and grid features on the VQAv2 dataset, as outlined in Goyal et al., 2017. By conducting
this reproduction, we aim to not only replicate the original findings but also to generate
attention maps that are instrumental in our analysis. These results are then compared
with those from the VQA-MHUG dataset, Sood et al., 2021b. The successful comparison
and validation of our re-implementation against the VQA-MHUG results are pivotal.
They not only confirm the correctness and reliability of our re-implementation but also
establish a solid foundation for progressing to the subsequent phases of our research.
This step is essential in ensuring that our approach and findings are grounded in robust
and accurate methodologies, paving the way for further exploration and analysis.

As previously mentioned in Chapter 2, the VQA Multimodal Human Gaze dataset (VQA-
MHUG), Sood et al., 2021b, is constructed using the validation split of the VQAv2
dataset, Goyal et al., 2017. Therefore, in the upcoming subsections of this thesis, our
approach involves training and validating our model specifically on the VQAv2 dataset.

1https://git.hcics.simtech.uni-stuttgart.de/code/mulan
2https://github.com/MILVLG/openvqa
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This strategy ensures that our model is aligned with the datasets and methodologies
used in the VQA-MHUG study, facilitating a direct and relevant comparison of results
and insights. By focusing on this dataset, we aim to comprehensively assess and validate
the performance of our model in the context of established benchmarks.

3.2.1 Experiment on MCAN-Region model

The MULAN framework, Sood et al., 2021a, offers several variations of VQA mod-
els, including the MCAN_small and MCAN_large versions. The key difference be-
tween these two models lies in their configuration: MCAN_small is designed with a
Hidden_Size = 512, while MCAN_large features a larger Hidden_Size = 1024. How-
ever, Yu et al., 2019b reports that the performance improvement of the MCAN_large
model over the MCAN_small model is not substantial Thus, I have opted to use the
MCAN_small model for all the implementations in this thesis. This choice is driven by
considerations of efficiency and resource optimization, without significantly compro-
mising the performance. By choosing a model that balances size and computational
requirements against performance, I aim to achieve accurate and reliable results in the
tasks, ensuring that the findings and analyses are both robust and practical.

Figure 3.3: MCAN_small train loss and accuracy per epoch using VQAv2 Region features.

In the first experiment, the Region image features are obtained using the bottom-up-
attention approach, Ren et al., 2016, where each image is represented by a variable
number of features, ranging from 10 to 100, each with a dimensionality of 2048. These
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3.2 Machine Attention on VQA-MHUG dataset

Implemented by Overall (%) Yes/No (%) Number (%) Other (%)

Yu et al., 2019b 67.17 84.82 49.31 58.48

This thesis 67.16 84.82 49.52 58.39

Table 3.1: Per-question-type accuracy of region feature input for Yu et al., 2019b and
our implementation.

features are conveniently stored in .npz files3, which are readily compatible with the
MCAN implementation, Yu et al., 2019b.

The training is conducted on a single Nvidia Tesla V100-SXM2 GPUs with 32GB RAM,
taking approximately 7 hours over a span of 13 epochs. This process culminated in
achieving an overall accuracy of 67.16%. The training loss and the detailed accuracy per
epoch are illustrated in Figure 3.3. In the meantime, the official MCAN implementation
reaches the overall accuracy of 67.17, Yu et al., 2019b, on the train-to-val split.

Continuing the experiment, I execute the validation mode (--RUN = val) of the MCAN
model using the checkpoint from the best-performing epoch (i.e., epoch 13). During this
process, I enable the parameter --SAVE_ATTMAPS = True to save the attention weights
for each image-question pair evaluated during validation. In addition to the attention
weights, the predicted answers for each image-question pair are also saved in one .json

file. Each row of the saved attention weights text file corresponds to a predicted answer
in the result file, maintaining a consistent order for easy correlation.

To create attention maps that align with the dimensions of the original images, it’s
crucial to have information about the image region features, specifically the bounding
boxes. Fortunately, the region image features extracted from the Faster R-CNN model,
Ren et al., 2016, include these necessary bounding box details4. By leveraging this
information, the region attention maps based on Region image features are constructed.
These maps visually represent how the model focuses on different regions of the image
when answering a question. Figure 3.4 illustrates some examples of these region
attention maps, showcasing the model’s attention distribution across various image
object regions.

In the approach to constructing attention maps, the region attention weights, derived
from the region features, are mapped onto corresponding regions/bounding boxes in the
image, reflecting a region-centric machine attention pattern. To enhance these maps and
align them more closely with human-like attention patterns, I apply a Gaussian kernel to

3https://github.com/peteanderson80/bottom-up-attention
4The bounding box information is saved in a format of [x_min, y_min, w, h]
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Figure 3.4: Some examples of human and machine Region attention on VQA-MHUG.
From left to right: original image, VQA-MHUG human gazing heatmap, machine Region
attention heatmap, machine Region attention masked image.

each region. This technique helps in smoothing the attention weights, providing a more
natural and continuous distribution of attention across the image. The Gaussian kernel
is defined by Equation (3.9), where αg represents the Gaussianized attention weight,
α is the original attention weight extracted from the model, x and y denote the center
positions of the bounding box, and (sigx, sigy) = (40, 40) specifies the variance of the
Gaussian distribution, which determines the extent of the smoothing effect.

αg = α + e
√

x/
√

sigx+
√

y/
√

sigy (3.9)

Applying the Gaussian kernel to attention maps is designed to mirror human visual
attention, focusing on and distributing across an image. This method yields attention
maps that are informative about the model’s image processing and interpretable from a
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human viewpoint, offering insights into the parallels and distinctions between machine
and human visual attention mechanisms.

Figure 3.5: Some examples of human and Gaussianized Region attention on VQA-
MHUG. From left to right: original image, VQA-MHUG human gazing heatmap, machine
Region attention heatmap, Gaussianized machine Region attention masked image.

In refining my attention maps to more closely resemble human-like attention, we
introduced a thresholding step in the Gaussianization process. By setting a threshold of
0.001, we filtered out attention weights below this value, effectively disregarding them
as valid focus points. This step was crucial to avoid an excessive number of focus points
in the attention map, ensuring that only the most relevant regions are emphasized. As a
result, the final attention maps, showcasing the cleaned Gaussianized attention, provide
a more focused and interpretable visualization of the model’s attention distribution.
These maps highlight key areas of interest in the image, as would be expected from
human attention, offering a clearer understanding of the model’s decision-making
process. Figure 3.5 illustrates some examples of these attention maps from the VQA-
mhug dataset, Sood et al., 2021b, demonstrating the effectiveness of this approach in
generating human-like attention visualizations.
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Figure 3.6: MCAN_small train loss and accuracy per epoch using VQAv2 Grid features.

3.2.2 Experiment on MCAN-Grid model

For the implementation of the MCAN model utilizing grid image features, we leverage the
extracted grid features as provided in Sood et al., 2021b. Adhering to a similar training
regimen as with the region features, we train the MCAN_small model on the VQAv2
dataset, Goyal et al., 2017, over 13 epochs. Upon completion of the training, we run the
validation mode (--RUN = val) using the model checkpoint from the best performance
epoch (epoch 13), with the parameter --SAVE_ATTMAPS = True enabled. This setting
allows the model to save the attention weights generated during the validation process.

The MCAN model with employing grid features demonstrated performance with an
overall accuracy of 70.19% on the train-val split. The achieved accuracy of 70.19%

with the MCAN model using grid features is commendable, especially when contrasted
with the 72.59% accuracy reported by Jiang et al., 2020 on the VQAv2 test-dev split.
Considering that the test-dev split accuracy is typically about 2% higher than that
of the val split, Jiang et al., 2020, our results are in line with expected performance
benchmarks. The training loss reduction to 1.85143 by the final epoch underscores the
model’s efficiency and robustness in handling grid features.

Figure 3.6 provides a more granular view of the model’s performance, detailing the
accuracy metrics and illustrating the trend of training loss reduction across epochs. This
graphical representation offers a clear insight into the model’s learning trajectory and
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Figure 3.7: Some examples of human and machine Grid attention on VQA-MHUG.
From left to right: original image, VQA-MHUG human gazing heatmap, machine Grid
attention heatmap, machine Grid attention masked image.

effectiveness, further validating the use of grid features in the MCAN model for Visual
Question Answering.

The neural attention weights from the MCAN model with grid features are saved in
a plain text file, while the predicted answers for each image-question pair are stored
in a .json file. The order of the attention weights matches the predicted answers,
facilitating easy pairing of attention weights with (I, Q, Apred) tuples. Unlike region
features, the grid features’ approach means the attention maps are inherently more
human-like and don’t require Gaussianization. Figure 3.7 showcases some of these
attention map results.

The steps of training, validating, and constructing attention maps affirm the validity of
our implementation against the official Jiang et al., 2020 models. The detailed compari-
son and analysis of human and neural attention, using the VQA-MHUG dataset Sood
et al., 2021b and the AiR-D dataset Chen et al., 2022, will be discussed in Chapter 4. The
methodology will mirror the approach detailed in this section, starting with reproducing
VQA-MHUG results before extending the analysis to the AiR-D dataset.
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3.3 Machine Attention on AiR-D dataset

In our research, we expanded the approaches mentioned above to the GQA dataset,
Hudson et al., 2019, recognizing its foundational role in the AiR-D dataset’s, Chen et al.,
2022, construction. Our approach was comprehensive, involving not only the separate
utilization of region and grid features as inputs to the MCAN model, Yu et al., 2019b,
but also an innovative experiment combining both types of features within a single
model. This allowed us to examine the potential synergies between different feature
representations.

From Section 3.2, we can see that the model accuracy and train loss show not significant
decrease during the training process. Thus, given the intensive computational demands
of training and the constraints imposed by the thesis timeline, we pragmatically limited
our training efforts on the GQA dataset, Hudson et al., 2019, to 3 epochs, carefully
balancing the need for demonstrable model performance against the practicalities of
time and resource availability.

3.3.1 Experiment on MCAN-Region model

In our study, we utilized the MCAN model, Yu et al., 2019b, as has been established
within the MULAN, Sood et al., 2021a, and OpenVQA5 frameworks, specifically tailored
for the GQA dataset, Hudson et al., 2019. This approach allowed us to maintain a
consistent methodology, facilitating a direct comparison with results obtained from the
previous research. By keeping the model configuration unchanged and focusing on
training and testing within the GQA dataset’s context, we aimed to extend our analysis
and validate the model’s effectiveness across different VQA benchmarks.

The GQA dataset, Hudson et al., 2019, offers object-based/region features extracted via
Faster-RCNN, Ren et al., 2016, with each image characterized by up to 100 objects/fea-
tures bounded by pixel dimensions. It includes additional metadata like the number
of regions per image (up to 1024), along with the original image’s width and height.
This comprehensive data supports model training and attention map construction in our
study.

The GQA dataset’s object-based/region features, provided in .h5 format6, necessitated a
conversion for compatibility with the MULAN framework and MCAN model. OpenVQA
offers a conversion script to transform these .h5 files into .npz files, with each file

5https://openvqa.readthedocs.io/en/latest/
6https://docs.h5py.org/en/stable/index.html
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representing a single image’s features. Additionally, OpenVQA shares checkpoints and
performance metrics of pre-trained models, including an MCAN model using region
features, which achieved an accuracy of 53.41%. This pre-processing step and available
resources facilitate the use of GQA dataset features in our experiments.

In our study, we independently trained the MCAN model using region features formatted
as .npz files within the MULAN framework. By epoch 3, we observed a promising
accuracy of 58.59% and a training loss of 1.27436. Given the satisfactory alignment of
this performance with the benchmarks set by OpenVQA’s implementation, and con-
sidering the sufficiently low training loss, we decided to conclude the training phase
at this juncture. Subsequently, we utilized the trained model checkpoint to generate
attention weights during the validation phase, employing the MULAN framework’s
functionality to save these weights as plain text files. We then undertook the process
of remapping the 1D attention weights to 2D for both region-specific and Gaussian
smoothed attention maps, applying the same Gaussian kernel used in previous analyses.
The outcomes of this process, including illustrative examples of the attention maps,
are showcased in Figure 3.8 and Figure 3.9, providing visual insights into the model’s
attention mechanisms.

Figure 3.8: Some examples of human and machine Region attention on AiR-D.
From left to right: original image, AiR-D human gazing heatmap, machine region
attention heatmap, machine region attention masked image.
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Figure 3.9: Some examples of human and Gaussianized machine Region attention on
VQA-MHUG.
From left to right: original image, AiR-D human gazing heatmap, machine region
attention heatmap, Gaussianized machine region attention masked image.

3.3.2 Experiment on MCAN-Grid model

The spatial/grid features on the GQA dataset, Hudson et al., 2019, are also provided
simultaneously within the dataset. And same as the region features, the grid features are
also in .h5 format and structured into a (7, 7) grid for each image. We applied the same
script to transform .h5 feature files into multiple .npz files, each one corresponding to
one image. The training process is also stopped at epoch 3. Here we reached the train
loss of 1.1639 and an overall accuracy of 55.10%, whereas the same implementation of
OpenVQA reports the overall accuracy of 54.28%, Yu et al., 2019a. Table 3.2 shows more
detailed accuracy of the training information.

Using the trained checkpoint of epoch 3 and enabling --SAVE_ATTMAPS = True, we saved
1D attention weights in .txt format, subsequently remapping them to 2D to match

30



3.3 Machine Attention on AiR-D dataset

the original image sizes. Figure 3.10 presents a comparison between these machine-
generated attention maps and human attention data from the AiR-D dataset, Chen et al.,
2022.

Figure 3.10: Some examples of human and machine Grid attention on AiR-D.
From left to right: original image, AiR-D human gazing heatmap, machine grid attention
heatmap, machine grid attention masked image.

3.3.3 Experiment on MCAN Region+Grid model

Drawing on the insights from Lu et al., 2017 and Yu et al., 2019a, we explore a hybrid
approach by training a model that utilizes both region and grid features on the GQA
dataset Hudson et al., 2019. This approach aims to capitalize on the complementary
strengths of both feature types. After training for 3 epochs, we achieve an overall
accuracy of 59.62% and a training loss of 1.2609, slightly outperforming the OpenVQA
benchmarks. Consequently, we decide to halt further training and proceed to the
--RUN = val model, ensuring the --SAVE_ATTMAPS = True parameter is set to capture
the attention weights for subsequent analysis.

Since the region feature map is adopted in this experiment, the initial attention maps
are region-like, similar to the ones using region features as input. We thus apply the
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3 Experiment on VQA Models

Gaussianized kernel to smooth the attention. And then after converting the 1D attention
weights to 2D to match the original image dimensions, we can directly compare machine
and human attention areas. Figure 3.11 illustrates several examples.

Figure 3.11: Some examples of human and machine Region + Grid attention on AiR-D.
From left to right: original image, AiR-D human gazing heatmap, machine attention
heatmap, machine attention masked image.
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3.3 Machine Attention on AiR-D dataset

Imple. Feat. Overall (%) ↑ Binary (%) ↑ Open (%) ↑ Validity (%) ↑

R 58.20 75.87 42.66 97.01

OpenVQA G 54.28 71.68 38.97 96.79

R + G 58.38 76.49 42.45 96.98

R 58.59 72.83 45.24 94.77

This thesis G 55.70 69.01 43.22 94.95

R + G 59.62 74.75 45.44 94.89

Table 3.2: Accuracy of MCAN_small model on GQA. The upper part is the published
accuracy by OpenVQA, Yu et al., 2019a; the lower part is my implementation.
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4 Evaluation and Results

4.1 Evaluation Metrics

The primary goal of this thesis is to delve into attention mechanisms within VQA models,
focusing on understanding and comparing machine and human attention, rather than
surpassing state-of-the-art (SOTA) model performance. Accordingly, the evaluation lies in
twofold: first, assessing model performance through conventional metrics, and second,
examining the learned attention patterns to discern correlations between machine and
human attention processes.

4.1.1 Model performance evaluation metrics

To assess VQA model performance, we employ standard metrics prevalent in deep learn-
ing and VQA research, ensuring a comprehensive evaluation of the model’s effectiveness
in interpreting and responding to visual questions.

Overall accuracy provides a high-level performance score for deep neural network
models, calculated as detailed in Equation (4.1), using the validation set of the dataset
for evaluation.

Acc(pred_ans) = min(
pred_ans = gt_ans

3
, 1) (4.1)

Individual accuracy. For the VQAv2 dataset, Goyal et al., 2017, the evaluation script
not only provides an overall accuracy score but also breaks down the performance into
three specific question types: "number", "yes/no", and "other". This detailed scoring
allows for a more granular assessment of the model’s capabilities in handling different
types of questions.

In the case of the GQA dataset, Hudson et al., 2019, the evaluation script offers an even
more comprehensive analysis. It categorizes questions into three main types: "structural
type", "semantic type", and "steps number". Each of these categories is further subdivided:
"structural type" includes "choose", "compare", "logical", "query", and "verify"; "semantic
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4 Evaluation and Results

type" encompasses "attribute", "categorization", "global", "objective", and "relevance";
and "steps number" ranges from 1 to 9 steps. This extensive categorization provides more
insights into the model’s performance across a diverse array of question complexities
and types.

Training loss The training loss is a metric used to assess how a deep learning model
fits the training data. That is to say, it assesses the error of the model on the training
set. Note that, the training set is a portion of a dataset used to initially train the model.
Computationally, the training loss is calculated by taking the sum of errors for each
example in the training set. It is also important to note that the training loss is measured
after each batch. In our training, the Binary Cross-Entropy (BCE) loss function (as
Equation (4.2)) is used and computed for the VQAv2 dataset, and Cross-Entropy (CE)
(as Equation (4.3)) is used for the GQA dataset, Hudson et al., 2019.

BCE = − 1

N

N∑

i=1

[yi · log(ŷi) + (1 − yi) · log(1 − ŷi)] (4.2)

where N is the total number of observations, yi is the actual label for observation i,
which can be either 0 or 1, and ŷi is the predicted probability that observation i is of
class 1.

CE = −
N∑

i=1

C∑

c=1

yi,c log(ŷi,c) (4.3)

where N is the total number of observations in the dataset, C is the number of classes,
yi,c is a binary indicator of whether class c is the correct classification for observation i,
and ŷi,c is the predicted probability that observation i is of class c.

4.1.2 Attention maps evaluation metrics

Area Under the Curve (AUC) score is a widely used metric for evaluating the perfor-
mance of the salience maps. The AUC score is computed from the Receiver Operating
Characteristic (ROC) curve, which plots the True Positive Rate (TPR) against the False
Positive Rate (FPR) at various threshold settings.

To compute AUC, a saliency map is first treated as a binary classifier of fixations at
various threshold values (THRESH). Then the TPR and FPR, representing True Positive
Rate and False Positive Rate, are calculated:
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4.1 Evaluation Metrics

TPR =
TP

TP + FN
(4.4)

FPR =
FP

FP + TN
(4.5)

where TP , FN , FP , and TN stand for True Positive, False Negative, False Positive, and
True Negative respectively. For each threshold, the ROC curve can be plotted using the
FPR as the x-coordinate and the TPR as the y-coordinate.

In signal detection theory, the Receiver Operating Characteristic (ROC) measures the
tradeoff between true and false positives at various discrimination thresholds. And the
AUC score is the area under the ROC curve. This can be approximated by summing up
the area of trapezoids formed between successive points on the curve.

Spearman’s rank correlation (ρ) is used to retrieve the pairwise monotonic relationship
between human and machine attention, which is computed as Equation (4.6).

ρ = 1 − 6
∑

d2
i

n(n2 − 1)
(4.6)

where di is the difference between the two ranks of each observation and n is the number
of observations.

In alignment with the approach outlined in Sood et al., 2021b, we process both machine-
generated attention maps and human gazing heatmaps, resizing them to a uniform
14 × 14 size. This standardization facilitates a direct comparison, where each machine-
generated heatmap is assessed against the corresponding human gazing heatmap,
serving as the ground truth. This evaluation covers 3990 samples from the VQA-MHUG
dataset, Sood et al., 2021b, and 1454 samples from the AiR-D dataset, Chen et al., 2022,
ensuring a comprehensive analysis. Subsequently, we calculate the average of these
individual metrics for each dataset, providing a holistic view of the overall performance
across the entire dataset of both.

Jensen–Shannon Divergence (jsd) is a method of measuring the similarity between
two probability distributions. Here, it provides information about the distances of
neural and human attention heatmap distributions. jsd is based on the Kullback±Leibler
divergence, and calculated as the Equation (4.7):

jsd(P, Q) = (D(P, M) + D(Q, M))/2 (4.7)

D(P, Q) =
∑

i

Pi log(Pi/Qi) (4.8)
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4 Evaluation and Results

where D(P, Q) is the Kullback±Leibler divergence between distribution P and Q and
M = (P + Q)/2 is the mixture distribution of P and Q.

Similar to Spearman’s rank correlation ρ, we first down-sample the attention maps and
human gazing heatmaps to 14 × 14 and compute the jsd individually on each sample.
For each dataset, we also average the individual jsd to get the overall jsd value on the
entire dataset.

Attention visualization. In our qualitative analysis, we visualize attention maps to
identify highly focused areas. Unlike the approach for MULAN, Sood et al., 2021a, we
average raw attention from the model’s last encoder and decoder layers across heads.
For a better visualized comparison, we also include attention visualizations from the
attention reduction module. Raw attention vectors are normalized akin to human-
like attention, allowing direct neural attention heatmap visualization. After removing
padding, image attention weight vectors are reshaped to the original image’s aspect
ratio for visualization.

Sood et al., 2021b identified a strong link between model performance enhancement
and a higher correlation with human attention. Their analysis used raw neural attention,
which lacks a direct input mapping. We aim to extend this by analyzing remapped
attention maps, offering a more accurate comparison. Our approach will consider both
Spearman’s rank correlation (ρ) and Jensen±Shannon divergence (jsd) between model
and human-like attention, building on the foundational insights provided by Sood et al.,
2021b.

4.2 Results on VQA-MHUG dataset

In this section, we first present the overall results of the VQA-MHUG dataset from the
implementation of both ours and Sood et al., 2021b reported. This shows an intuitive
view of how our approach for attention map extraction performs. Table 4.1 shows the
AUC score (auc), Spearman’s rank correlation (ρ), and Jensen±Shannon divergence
(jsd) results.

The AUC scores (auc) in our study, which were not reported by Sood et al., 2021b,
revealed interesting insights. The Gaussianized region features show lower AUC scores
compared to the intuitive region features, and the grid features score the lowest. This
pattern suggests that the detailed information provided by region features, such as object
positions and bounding boxes, enhances the model’s ability to focus attention effectively,
reflected in higher AUC scores. The grid features, lacking such detailed object-specific
information, may not capture the nuanced aspects of visual attention as effectively,
resulting in lower AUC scores. These findings underscore the importance of detailed
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4.2 Results on VQA-MHUG dataset

Feature type auc ↑ ρ ↑ jsd ↓

Region − 0.602 0.467

VQA-MHUG Grid − 0.509 0.537

Region 0.781 0.684 0.320

ours Guassianized Region 0.772 0.683 0.342

Grid 0.712 0.648 0.346

Table 4.1: Overall metrics on VQA-MHUG dataset, Sood et al., 2021b; VQA model:
MCAN_small, Yu et al., 2019b; total number of samples: 3990.

object information in achieving effective attention alignment. Nevertheless, these values
of auc still proved a high relationship between the neural and human attention patterns.
This is to say that the MCAN model, Yu et al., 2019b, owns a potentially good attending
mechanism compared to humans.

Spearman’s rank correlation (ρ) in our implementation, aligning with Sood et al., 2021b,
indicates that intuitive region features without Gaussianization correlate better with
human gazing patterns than other features. This correlation suggests a shared object-
centric approach in image processing by both humans and AI models, where identifying
and understanding object attributes and locations take precedence over detailed pixel
analysis. This aligns with human cognitive processes where rapid visual assessments
typically focus on object recognition rather than scrutinizing every pixel. This object-
focused approach in neural networks highlights their potential in mimicking human-like
perception, crucial in applications not only the VQA tasks. The values above 0.65 indicate
that the neural attention patterns have a strong correlation with human gazing patterns,
Akoglu, 2018, on the VQA-MHUG dataset.

The Jensen-Shannon Divergence (jsd) measures the similarity between two probability
distributions. In our thesis, human gazing heatmaps serve as the ground truth, compared
against the extracted machine attention maps. Our jsd values are lower than those
reported by VQA-MHUG Sood et al., 2021b, for reasons not fully understood. However,
the trend remains consistent, with lower jsd for region features suggesting neural
attention aligns more closely with human patterns when better pre-training methods are
employed. This insight could guide future efforts to enhance VQA model performance
through more refined approaches.
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4 Evaluation and Results

4.3 Results on AiR-D dataset

In this section, we delve into an overview of our implementation outcomes on the
AiR-D dataset, Chen et al., 2022. These numeric values aim to shed light on the
efficacy of our methodology for extracting attention maps. The comparative analysis
is succinctly encapsulated in Table 4.2, which enumerates the metrics of AUC score
(auc), Spearman’s rank correlation (ρ), and Jensen±Shannon divergence (jsd), offering
a nuanced perspective on the performance and alignment of our approach with human
attention patterns.

In our implementation, the AUC scores on the AiR-D dataset, Chen et al., 2022, revealed
intriguing patterns. Particularly, the MCAN model, Yu et al., 2019b, with grid features
outperformed the combined region and grid features, possibly due to the unique nature
of the AiR-D dataset’s human gazing heatmaps. These heatmaps, unlike those in the
VQA-MHUG dataset, Sood et al., 2021b, are grayscale and lack a focus point threshold,
contrasting with our RGB neural attention maps which use a 0.001 threshold. This
disparity might explain the lower AUC scores for region features, as attention weights
are more evenly distributed across object regions. Despite these findings, the overall
strong AUC scores suggest that neural networks are adept at focusing on object regions
in a manner akin to human attention, reinforcing the potential of these models in tasks
requiring visual attention.

Spearman’s rank correlation (ρ) on the AiR-D dataset, Chen et al., 2022, suggests
a better correlation between neural attention using grid features and human gazing
patterns compared to other feature types. With values exceeding 0.65, there’s a strong
indication of significant alignment between neural attention mechanisms and human
visual behavior, supporting the findings in Akoglu, 2018 regarding the strength of such
correlations.

The Jensen-Shannon Divergence (jsd) values on the AiR-D dataset, Chen et al., 2022, are
notably higher than those observed on the VQA-MHUG dataset, Sood et al., 2021b, with
values exceeding 0.5 suggesting a lesser degree of similarity between neural attention
and human gazing patterns than anticipated. The specific cause of this discrepancy
remains unclear to us yet.
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4.3 Results on AiR-D dataset

Feature type auc ↑ ρ ↑ jsd ↓

Region 0.710 0.639 0.558

Guassianized Region 0.789 0.694 0.512

Grid 0.792 0.682 0.511

Region + Grid 0.680 0.656 0.567

Table 4.2: Overall metrics on AiR-D dataset, Chen et al., 2022; VQA model:
MCAN_small, Yu et al., 2019b; total number of samples: 1, 454. The best results
are shown in bold.

41





5 Discussion

5.1 Human vs. neural attention in VQA

The comparison of metrics (Chapter 4) and visualized attention maps (Chapter 3)
supports Sood et al., 2021b’s assertion of a statistically significant correlation between
human and machine attention in terms of Spearman’s correlation and jsd. This suggests
that while neural attention patterns bear similarities to human attention, they are still
not identical.

The study of human attention spans multiple disciplines, including computer science,
biology, psychology, and cognitive sciences. Despite advances, many aspects of human
vision remain elusive, lacking a unified theoretical framework for human visual atten-
tion mechanisms. As noted by Yang, 2020, deepening the understanding of human
attention through research and modeling is crucial for enhancing computer information
processing, suggesting a need for interdisciplinary efforts to bridge gaps between human
cognitive processes and computational models.

The exploration in this thesis of neural visual attention through Vision Transformer
architecture and Human-Like attention mechanisms underscores the nuanced ways
in which AI models can interpret visual information. By comparing these models
with human attention patterns, we gain valuable insights into their similarities and
differences, enhancing our understanding of AI in visual and language co-processing
tasks. The choice of appropriate weighting methods is crucial for aligning AI models
more closely with human observation patterns. Additionally, the integration of diverse
image features into AI models is a significant step towards better simulating human-like
performance and attention mechanisms, presenting expansive opportunities for research
and development in the field of machine vision.

5.1.1 More discussion based on the metric results

In Table 4.1, the superior correlation (ρ) and Jensen-Shannon Divergence (jsd) scores
observed with region-based features can be attributed to the pre-trained model’s inherent
knowledge of image details like region positions, objects, and bounding boxes. Despite
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5 Discussion

employing the same scientific methods as VQA-MHUG Sood et al., 2021b, variations
in metrics could result from differences in the number of training epochs and other
subtle implementation parameters. To validate this hypothesis and gain a clearer
understanding, a comprehensive analysis comparing the metrics of neural attention maps
across various epochs in both implementations could be insightful. Such a comparative
study could reveal how model training intricacies influence the alignment of neural
attention with human attention.

In Table 4.2, the observation that neural attention maps with grid features outperform
those with region-based or combined features in terms of correlation (ρ) and Jensen-
Shannon Divergence (jsd) resonates with the findings of Jiang et al., 2020. Although
these high values suggest a significant correlation between neural and human atten-
tion, the underlying reasons remain intriguing and not entirely explained by existing
research.

Upon reviewing the visualized neural attention maps, it appears that maps with region
and grid features exhibit a sparser distribution of focus points compared to those
using solely grid features. This sparser distribution could potentially enhance model
performance while paradoxically yielding lower scores in conventional neural attention
map metrics. If this observation is accurate, it suggests the need for more nuanced
metrics that better align with actual model performance, surpassing the capabilities of
traditional Spearman’s rank correlation and Jensen-Shannon Divergence in analyzing
neural attention maps. Such new metrics would be instrumental in providing a more
accurate assessment of how closely AI models’ attention patterns align with human
attention, especially in complex visual question answering tasks.

The close alignment of metric values in the implementations of this thesis on both
VQA-MHUG, Sood et al., 2021b, and AiR-D, Chen et al., 2022, datasets suggests a high
correlation between them. This consistency indicates that both datasets are robust and
reliable for further analysis in studying the parallels and differences between human and
neural attention mechanisms. The similar outcomes across these two distinct datasets
reinforce their validity as tools for in-depth attention analysis in VQA research.

5.2 Experiments on CQA

The effort of extending the analysis pipeline to Chart Question Answering (CQA) models,
inspired by Masry et al., 2022, which introduces a benchmark along with a dedicated
dataset and two CQA models utilizing attention mechanisms for feature encoding-
decoding and answer generation, is also conducted. The intuitive attention flow ex-
traction method is used in for ChartQA models,Masry et al., 2022 focusing on the
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attention weights from the last layer. The unique aspect of CQA models, where image
features are extracted via a ChartOCR model and converted into tabular data, posed
challenges for attention extraction and reconstruction, complicating the analysis pro-
cess. Re-implementing the ChartQA models presents its own set of challenges as well,
complicating the efforts to replicate and analyze the models effectively.

Beyond the ChartQA benchmark, Masry et al., 2022, I also explore the MatCha-ChartQA
model1, which is an adaptation of the broader MatCha framework, Liu et al., 2022,
tailored for CQA tasks. Although time constraints hindered a thorough examination of
the MatCha framework and its specific mechanisms for attention extraction, I recognize
its potential. The MatCha framework, with its capacity for fine-tuning and application
across diverse vision-language tasks, presents a valuable avenue for future research,
warranting deeper investigation into its capabilities and methodologies.

The exploration into attention mechanisms and model explainability within Chart Ques-
tion Answering (CQA) tasks has been limited, highlighting a potentially underdeveloped
area in CQA research. This gap presents an opportunity for significant advancements
in understanding and improving CQA models through deeper investigation into their
interpretability and decision-making processes.

5.3 Future Work

This thesis is constrained by time, limiting the attention analysis to the VQA-MHUG,
Sood et al., 2021b, and AiR-D datasets, Chen et al., 2022 using the MCAN_small model,
Yu et al., 2019b. This methodology could extend to other models within the MULAN
framework, Sood et al., 2021a, and even to additional VQA models like LXMERT, Tan
et al., 2019, offering broader insights into neural network attention mechanisms and
enhancing model trust and explainability.

In addition to the focus on VQA models, the attention mechanisms and model explain-
ability within Chart Question Answering (CQA) remain underdeveloped. Advancing
research in this area is crucial for a deeper understanding of how machines process
and interpret both images and text in CQA tasks. Exploring these mechanisms can
provide valuable insights into the cognitive processes that AI models emulate when
analyzing data representations like charts, thereby broadening the comprehension of
AI’s capabilities in interpreting complex visual and textual information. This line of
research could lead to more sophisticated and interpretable CQA models, enhancing
their utility in various applications.

1https://huggingface.co/google/matcha-chartqa
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6 Conclusion

This thesis replicates the MCAN model implementation, Yu et al., 2019b, within the
MULAN framework, Sood et al., 2021a, on the VQA-MHUG dataset, Goyal et al.,
2017, as a starting point. The accuracy and correctness of the re-implementation are
verified against official versions. Using the MULAN toolkit, 1D attention weights are
transformed into 2D neural attention maps. These maps are then compared with VQA-
MHUG’s human-gazing heatmaps using Area Under ROC Curve auc, Spearman’s Rank
Correlation ρ, and Jensen-Shannon Divergence jsd metrics.

The approach is then extended to the AiR-D dataset, Chen et al., 2022, involving training
on the GQA dataset, Hudson et al., 2019, extracting neural attention maps, and applying
the same metrics to compare with human gazing heatmaps.

The thesis concludes with a discussion on the differences between the official and
re-produced implementations, along with insights into the interpretability of neural
attention in VQA models.
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A Appendix

A.1 Region and Gaussianized Region attention maps

This section provides some examples of the region and Gaussianized region machine
attention maps on the VQA-MHUG, Sood et al., 2021b, and AiR-D dataset, Chen et al.,
2022. From left to right, each figure shows the original image, human gazing heatmap,
region masked image, and Gaussianized region masked image.

Figure A.1: Region and Gaussianized Region attention maps on VQA-MHUG dataset.
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Figure A.2: Region and Gaussianized Region attention maps on VQA-MHUG dataset.
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A.1 Region and Gaussianized Region attention maps

Figure A.3: Region and Gaussianized Region attention maps on AiR-D dataset.

55



A.2 More examples of machine attention maps

This section provides more examples of the human and neural attention maps on the
VQA-MHUG dataset, Sood et al., 2021b, and AiR-D dataset, Chen et al., 2022. From left
to right, each figure has the original image, human gazing heatmap, neural attention
map, and masked image.

Figure A.4: More example of Region attention maps on VQA-MHUG.



Figure A.5: More example of Region attention maps on VQA-MHUG.



Figure A.6: More example of Gaussianized Region attention maps on VQA-MHUG.



Figure A.7: More example of Gaussianized Region attention maps on VQA-MHUG.



Figure A.8: More example of Grid attention maps on VQA-MHUG.



Figure A.9: More example of Grid attention maps on VQA-MHUG.



Figure A.10: More example of Region attention maps on AiR-D.



Figure A.11: More example of Region attention maps on AiR-D.



Figure A.12: More example of Gaussianized Region attention maps on AiR-D.



Figure A.13: More example of Gaussianized Region attention maps on AiR-D.



Figure A.14: More example of Grid attention maps on AiR-D.



Figure A.15: More example of Grid attention maps on AiR-D.



Figure A.16: More example of Region + Grid attention maps on AiR-D.



Figure A.17: More example of Region + Grid attention maps on AiR-D.
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