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Abstract

Escherichia coli exposed to industrial‐scale heterogeneous mixing conditions respond

to external stress by initiating short‐term metabolic and long‐term strategic tran-

scriptional programs. In native habitats, long‐term strategies allow survival in severe

stress but are of limited use in large bioreactors, where microenvironmental con-

ditions may change right after said programs are started. Related on/off switching of

genes causes additional ATP burden that may reduce the cellular capacity for pro-

ducing the desired product. Here, we present an agent‐based data‐driven model

linked to computational fluid dynamics, finally allowing to predict additional ATP

needs of Escherichia coli K12 W3110 exposed to realistic large‐scale bioreactor

conditions. The complex model describes transcriptional up‐ and downregulation

dynamics of about 600 genes starting from subminute range covering 28 h. The

data‐based approach was extracted from comprehensive scale‐down experiments.

Simulating mixing and mass transfer conditions in a 54m3 stirred bioreactor,

120,000 E. coli cells were tracked while fluctuating between different zones of

glucose availability. It was found that cellular ATP demands rise between 30% and

45% of growth decoupled maintenance needs, which may limit the production of

ATP‐intensive product formation accordingly. Furthermore, spatial analysis of in-

dividual cell transcriptional patterns reveal very heterogeneous gene amplifications

with hot spots of 50%–80% messenger RNA upregulation in the upper region of the

bioreactor. The phenomenon reflects the time‐delayed regulatory response of the
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cells that propagate through the stirred tank. After 4.2 h, cells adapt to environ-

mental changes but still have to bear an additional 6% ATP demand.
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agent‐based modeling, ATP maintenance, computational fluid dynamics (CFD), Escherichia coli,

glucose gradient, heterogeneities

1 | INTRODUCTION

To reduce the human CO2 footprint in the atmosphere, sustainable

bioprocesses replacing fossil resources by sugar may play a crucial

role. Microbial production offers the potential to provide products

for agricultural, biopharmaceutical, and chemical markets (Delvigne

et al., 2017). As a prerequisite, such approaches need to be trans-

ferred successfully from laboratory to large‐scale without loss of

economic attraction, that is, without reduction of the sensitive TRY

values (titer, rates, and yields) that served as constraints for eco-

nomic evaluation. However, performance losses may occur, com-

prising increased by‐product formation, reduced substrate‐to‐
product conversion, reduced productivities, and so forth (Lara

et al., 2006). They mirror cellular responses to large‐scale hetero-

geneities that are induced by limited mass transfer and by insufficient

mixing capacities (Noorman & Heijnen, 2017). Accordingly, research

activities aimed to mimic large‐scale conditions already in early‐stage
lab tests. One of the first examples is given by Oosterhuis and Kossen

(1983), who repeatedly exposed cells to oxygen saturated and lim-

iting conditions in a setting of two linked, stirred bioreactors. Mul-

tiple tests with alternate experimental scale‐up simulators followed

(overviews provided in Garcia‐Ochoa & Gomez, 2009; Neubauer &

Junne, 2010, 2016; Noorman, 2011; Takors, 2012; Zieringer &

Takors, 2018) mimicking not only fluctuations of dissolved oxygen

(DO) levels, but also nutrient availability and pH variations. Today,

such approaches received key consideration to design robust mi-

crobial processes (Noorman & Heijnen, 2017). Still, the valid a priori

prediction of large‐scale heterogeneities' impact on cellular perfor-

mance is of crucial importance for developing novel bioprocesses.

Even further, findings of large‐scale stress exposure may guide strain

engineering to create particularly robust hosts. To reach this goal,

Löffler et al. (2016) applied the so‐called STR/PFR setup comprising a

stirred tank reactor (STR) linked with a plug‐flow reactor (PFR).

Steady‐state nutrient‐limited, continuous cultivations were per-

formed in STR before PFR was connected, frequently exposing cells

to glucose‐limiting conditions. Accordingly, cells repeatedly experi-

enced temporal feast/famine conditions that were characterized by

the residence time in the PFR. Comprehensive sampling in STR and

PFR created a highly valuable data set of short‐ and long‐term me-

tabolic and transcriptional responses on repeated starvation stimuli

(Löffler et al., 2016). The data set revealed that Escherichia coli not

only react on extracellular stress by instantaneous metabolic shifts.

Observations also revealed massive transcription of genes organized

in operons (Nieß et al., 2017) and in fundamental regulons of

strategic importance. For instance, the stringent response was re-

peatedly initiated by fast‐rising intracellular (p)ppGpp levels in PFR,

which were downregulated in STR. Löffler et al. (2016) reported an

additional rise of growth‐decoupled maintenance of up to 50%. So

far, these findings were not yet used to predict the response of E. coli

exposed to large‐scale heterogeneities. First, a data‐driven model is

needed that describes the complex transcriptional response of E. coli

to said stress conditions. Next, such a transcriptional model should be

coupled with computational fluid dynamics (CFD) of a large‐scale
bioreactor to identify zones of different nutrient availability and to

predict the cellular response of cells passing through those zones

(Zieringer & Takors, 2018). Our study exactly tackles this two‐step
problem: Mixing heterogeneities and zones of different substrate

availability of a 54m3 stirred bioreactor are predicted using CFD and

assuming common operating conditions. The tracking of 120,000 E.

coli cells finally yielded the prediction of additional ATP demands.

Furthermore, spatially resolved transcriptional patterns of individual

E. coli cells were predicted, unraveling the population heterogeneity

in the industrial‐scale bioreactor.

2 | MATERIALS AND METHODS

2.1 | Experimental setup

A glucose gradient was simulated in a stirred tank reactor (STR)

coupled to a plug flow reactor (PFR), as depicted in Figure 1.

The experimental setup consists of an STR operated in con-

tinuous mode (dilution rate, D = 0.2 h−1) and connected with a plug

flow reactor. Cells were grown under glucose‐limited conditions in

the STR (mean residence time of the cells in STR: 6.2 min) and ex-

perience starvation in the PFR (mean residence time of the cells in

PFR: 125 s). The cells are circulating through the reactor system for

28 h process time, which equals, on average, around 200 passages of

the starvation zone for each cell. In this way, the setup permits the

analysis of transcriptional response for ongoing starvation passages

through the PFR. Thereby, the tactical response is monitored via the

PFR sample ports (P1–P5), while the strategic changes were tracked

via the STR sample port (S). The cultivation was performed as bio-

logical triplicates under identical experimental conditions. For tran-

scriptomic analysis, the samples were grouped by replicates, and

sample time and location (STR or PFR) was chosen as a combined

experimental design. Significantly expressed genes were determined

using the described design and a generalized linear model within the
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egdeR R‐package (v.3.8.6) (Robinson et al., 2010). The detailed ex-

perimental implementation and RNA sequencing results used in this

publication were published in the paper of Löffler et al. (2016).

2.2 | RNA‐sequencing data cluster analysis

RNA‐sequencing data contain time courses of messenger RNA

(mRNA) abundance of 3908 genes. Thereof, three measurement sets

sampled after 25min, 2 h, and 28 h were chosen for further in-

vestigations. Significantly up‐ und downregulated genes of samples

P1–P5 in PFR passing the threshold of log2 fold change (log2FC) > |

0.58| and false discovery rate (FDR)‐corrected p value < .05 were

identified. Cluster analysis was performed using the R‐package flex-

clust v. 1.4‐0 (Leisch, 2006) applying RStudio v. 1.2.1335 (RStudio,

Inc.) RNA‐sequencing data contain time courses of mRNA abundance

of 3908 genes. Thereof, three measurement sets sampled after

25min, 2 h, and 28 h were chosen for further investigations. Sig-

nificantly up‐ und downregulated genes of samples P1–P5 in PFR

passing the threshold of log2 fold change (log2FC) > |0.58| and FDR‐
corrected p value < .05 were identified. Cluster analysis was per-

formed using the R‐package flexclust v. 1.4‐0 (Leisch, 2006), applying

RStudio v. 1.2.1335 to significantly reduce simulation efforts while

including basic features of gene dynamics. The function qtclust (in-

cluded in flexclust package) was used to perform stochastic quality‐
based clustering (SQBC) and k‐means‐clustering. Parameters of

SQBC were set as follows (Table 1).

Ntry indicates the number of trials per iteration, while rmax is the

maximum radius as a proxy for correlation. Min size defines the

minimum number of observations per cluster. Data points not clus-

tered by the algorithm are omitted. The setting of parameters en-

sured maximum comparability and five as the maximum number of

clusters. Cluster properties are listed in the Supporting Information

Appendix Tables D5–D8, and resulting clusters are displayed in

Supporting Information C in the Appendix. The k‐means algorithm

was initialized with the centroids of the SQCB method.

2.3 | ATP calculation for single molecules

ATP requirements for the formation of amino acids and nucleotides

were calculated using the results of Kaleta et al. (2013). The trans-

lational costs for protein formation and polymerization add up to 4

ATP per amino acid, including activation of the amino acid (1 ATP to

1 AMP) and peptide bond formation at the ribosome (2 GTP)

(Stouthamer, 1973). Since there is a net production of 0.1 ATP per

amino acid (for detailed calculation, see Löffler et al., 2016), the

overall cost of amino acid synthesis and polymerization was esti-

mated as four ATPs consumed per residue. The absolute numbers of

synthesized and degraded nucleotides (nts) were estimated from

experimental data. To recycle mono phosphorylated nucleotides

(NMPs) to triphosphorylated nucleotides (NTPs), costs of 2 ATP were

assumed. Assuming a P/O‐ratio of 1.49 (ATP formation via NADH

oxidation in respiration), the following ATP requirements were as-

sumed for the bases (Table 2).

The growth‐independent maintenance was used as 0.0027mol

(gDWh)−1, according to Taymaz‐Nikerel et al. (2010).

2.3.1 | Calculation of mRNA abundance

Only additional ATP needs for transcription and translation were

estimated considering the basic demands under nonperturbed con-

ditions. Accordingly, total mRNA content was estimated following

studies of Bremer and Dennis (2008) as 61.7 µg per 109 cells for a

growth rate of 0.2 h−1. 20% of the total dry weight was assumed to

be RNA (Neidhardt et al., 1990), including 5% mRNA, a value which is

F IGURE 1 Scheme of a two‐compartment system as used in the
experimental setup (Löffler et al., 2016). The two‐compartment
device consists of a stirred tank reactor (STR) connected to a plug‐
flow reactor (PFR). Derived from non‐ideally mixed large‐scale
industrial fermenters (Lapin et al., 2006), the setup mimics periodic
substrate availability experienced by cells in large‐scale bioreactors.

The well‐mixed STR is operated in glucose‐limited continuous mode
(dilution rate, D = 0.2 h−1). As soon as cells enter the PFR
compartment, the residual substrate is consumed within seconds

leading to starvation. The steady state before PFR onset at time zero
was used as the reference state (S0). Samples were taken at eleven
distinct time points over 28 h. The system is equipped with five PFR

sample ports (P1–P5) at defined residence times τ(s), as well as an
STR sample port S. The total mean PFR residence time is τPFR = 125 s
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in line with conclusions from Stouthamer (1973). This results in total

mRNA content of 6.17 g per 1016 mRNA per cell. The relative dis-

tribution of specific mRNAs is taken from the measured normalized

counts as transcripts per million. The relative fraction multiplied with

the total mRNA content gives the total mass of all mRNA encoded by

a single gene. Dividing this number with the corresponding molecular

weight yields the absolute number of molecules. Molecular weights

of mRNAs were calculated with Equation 1 (Kibbe, 2007). Results are

listed in Supporting Information Table A3. As the phosphate groups

of two nucleotides are bound together, an OH‐group is cleaved. This

leads to reduced molecular weights of nucleotides in the polymer

chain. Accordingly, an additional term was added to account for the

5'‐triphosphate cleavage (159 gmol−1).

= × + × + ×

+ × + ( )−

MW n n n

n

345.2 305.2 329.2

306.2 159 gmol .

mRNA Guanine Cytosine Adenine

Uracil
1 (1)

nnucleotide codes for the number of nucleotide monophosphates which

is multiplied by their corresponding molecular weight.

2.4 | The biological model

The model was implemented using MATLAB v. 2019b, considering

the four processes: transcription, translation, mRNA degradation, and

protein degradation. The first three are implemented as agent‐based
approaches, while the last considers protein degradation as a de-

composition in the continuum. The governing variable that controls

the expression is the number of active RNA polymerases (RNAPs) per

each cluster.

2.4.1 | Estimating the number of active RNAP

We assumed that gene expression levels follow sigmoidal courses.

Hence, an equilibrium between synthesis and degradation may be

achieved. Produced nts are given by

∫⋅ ( ) =v t dt NtRNAP

t

RNAP prod

0

σ (2)

with σRNAP(t) coding for the number of active RNAPs at time t.

The shape of the sigmoidal function is defined as

( ) =
+

+
{ ⋅( + )}

t
a

e
d

1
.

b t c
σ (3)

The parameters a, b, c, and d were fitted to the nucleotide

synthesis, which was derived from experimental data by calculating

the number of synthesized copies and by considering individual gene

lengths. Consequently, steadily rising functions were obtained that

allowed to estimate the number of active RNAPs per cluster. For the

latter, a constant RNAP transcription velocity of 21 nucleotides per

second was assumed (Chen et al., 2015).

2.4.2 | Transcription

After initiation, the continuous one‐stranded movement of RNAP

creates the mRNA transcripts measured. However, individual gene

expression profiles were observed that could be grouped in clusters

of similar transcription dynamics. Accordingly, only expression dy-

namics of representative, average genes per cluster are described in

the model (Supporting Information Appendix Tables D5–D7). The

minimum distance of 100 nts (ΔxRNAP) was considered between two

subsequent RNAPs. Furthermore, all genes of one cluster were

supposed to be randomly initiated with the functional

( ) =
⎧

⎨

⎪

⎩
⎪

|gene t
1 if free RNAP is avaliable and gene

is randomly chosen,

0 else.

i on off

i

,
(4)

Gene transcription is modeled as one‐dimensional nucleotide

extension with the relative movement of RNAP as

= ⎧
⎨⎩

 dx
dt

v if initiated,

0 else.
RNAP RNAP (5)

The constant transcriptional elongation rate, vRNAP, is set to

21 nts−1, which equals the average value found in E. coli during

starvation (Chen et al., 2015). The variable xRNAP indicates the re-

lative position of RNAP on the DNA grid. The length of the resulting

mRNA strand is equivalent as

=x L .i RNAP i mRNA, ,
(6)

When the last nucleotide is reached, the mRNA is released. All

fragments of mRNA are summed to get total mRNA amounts. While

fractions of operons were found to be fully transcribed after initia-

tion (Nieß et al., 2017), other scenarios coincided, too. For instance,

only subsets of operons may be transcribed, or even opposing tran-

scription reads in a single operon occurred (Mao et al., 2015). Ac-

cordingly, we assumed that only 10% of the initiated operons are

transcribed completely. In other words, 10% of experimentally ob-

served initiated operons were anticipated to finish full operon tran-

scription even outside of PFR. The majority (90%) of other gene

transcriptions was assumed to stop immediately after RNAPs have

reached individual gene ends. For the sake of comparability, only

relative mRNA enrichments are depicted in Figure 7c, referring to

the mRNA level of individual cells after they have fluctuated through

the bioreactor for 180 s. This time point was chosen to visualize the

spatial distribution of already adapted cells and the ones which are

still influenced by regime changes (Figure 7).

2.4.3 | Translation

The translational process is modeled by describing the movement of

ribosomes (RIB) on the mRNA strand. The process is assumed to take

place in cotranscriptional manner (Proshkin et al., 2010): After
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synthesized mRNA reached a minimum length of 80 nts (ΔxRIB)

(Bremer & Dennis, 2008), the first ribosome attaches to the free

5'‐cap end. Further ribosomes may bind too, provided that minimum

distance between two subsequent ribosomes and the maximum

number of translations per mRNA (maxTL) are fulfilled. Released ri-

bosomes may be reused following the same scenario. The initiation

trigger TLi,j for a translation j on mRNA i can be described as

( ) = ⎧
⎨⎩

> <
|

−TL t
RIB j max1 if position of is 80 and ,

0 else.
i j on off

i j TL
, ,

, 1

(7)

The movement of ribosomes is analogous to the movement of

RNAP as

= ⎧
⎨⎩

 dx
dt

v if initiated,

0 else.
RIB RIB (8)

With the translational elongation rate vRIB = vRNAP (Nieß

et al., 2017; Proshkin et al., 2010) and the number of maximum

translations maxTL = 11 (Bremer & Dennis, 2008). Because one clus-

ter of genes revealed rapid degradation after 50 s in PFR at 28 h, only

one translation per transcript was assumed for this group of genes.

As soon as the ribosomes pass the last nucleotide, the protein is

released and is assigned to the group of bulk proteins.

2.4.4 | Degradation

Degradation of transcripts is initiated as soon as ribosomal protec-

tion of the 5'‐cap vanishes, which is a co‐translational process. The
velocity of the RNASE was adapted to the gene length LmRNA,i, that is,

individual vRNASE,i was estimated considering the experimentally ob-

served mRNA median lifetime tdeg;med of 2.8 min in nutrient‐rich and

of 4.6 min in starvation zones (Chen et al., 2015). Degradation was

initiated for mRNA i as

( ) = ⎧
⎨⎩

>
|Deg t

RIB1 if position of is 80,

0 else.
i j on off

i TL
, ,

, max (9)

with the movement of RNASE.

= ⎧
⎨⎩

 dx
dt

v if initiated,

0 else.
RNASE RNASE (10)

=
−

⁎∆
v

L

t
RNASE i

mRNA i

deg med
TL x

v

,
,

,
max RIB

RIB

(11)

For transcripts longer than ≈ 1000 nts, degradation is initiated

already when transcription is not finished yet. Chen et al. (2015)

found that 88 of 263 mRNAs showed lifetimes of the 5'‐cap shorter

than the synthesis time of the transcript. Accordingly, co‐
transcriptional degradation was considered for long transcripts.

Protein degradation is described using a constant rate de-

gradation rate kdeg for the bulk proteins (Maurizi, 1992). First‐order

degradation kinetics were assumed depending on the nutrient con-

dition, as

= ⎧
⎨⎩

−

−
k 0.01h innutrientrichzones,

0.08h instarvationzones.
deg

1

1

(12)

Consequently, bulk protein of a subsequent time step t + 1 equals

( + ) = ( ) × ( − )protein t protein t k1 1 .deg
(13)

2.5 | Geometry and reactor setup

To consider a relevant industrial fed batch fermentation scenario, a

54‐m3 stirred tank bioreactor was chosen. The main geometry was

derived from Haringa et al. (2016) with precise dimensions and in-

formation about the inner geometry from Kuschel et al. (2017). The

reactor setup included four baffles and a stirrer with two Rushton

stirrers equipped with eight blades at the bottom and six blades at the

top. With a stirring rate of 100 rpm the tip speed of 6.75m s−1 was

reached. The impeller Reynolds number was 2.77 × 106 and the re-

quired power was 225.69 kW, equaling a power number of 13.64. The

feeding rate was set to 3.68 kgm−3 s−1 for an average growth rate of

0.2 h−1. Aeration, gas transfer, and oxygen uptake were neglected in

the study. The simplifying focus on the mono‐phase conditions mirrors

the basic strategy to showcase the propagation of transcript dynamics

and the occurrence of additional large‐scale ATP demands. Note-

worthy, experimental data of Löffler et al. (2016) were measured

particularly excluding any impacts of oxygen limitation. Furthermore,

said power inputs and cultivation conditions were chosen such that

oxygen limitation is unlikely in the large‐scale scenario. Cell con-

centration of 31.8 kgCDW·m−3 was assumed and a simple Monod‐like
kinetic was used to simulate the substrate uptake qs:

= ⋅
+

q q
c

K c
,S S max

S

S S
,

(14)

where qs,max is the maximum uptake rate, cs is the glucose con-

centration, and the approximated substrate‐specific uptake constant

Ks with 4mg L−1. The maximum uptake rate was calculated with the

biomass substrate yield YXS = 0.25 gs·g
−1

CDW and the maximum

growth rate μ = 0.2 h−1 (Villadsen et al., 2011). Based on the experi-

mental observations in Löffler et al. (2016) we concluded that

stringent response is the predominant regulatory scheme initiated by

repeated starvation. As a key characteristic stringent response re-

duces ATP consuming procedures trying to keep carbon supply on

the maximum level achievable under stress conditions. Accordingly,

we consider glucose uptake as a Monod‐type function not being af-

fected by the stringent response observed.

2.6 | Simulation setup

For the numerical simulation, the commercial calculation tool ANSYS

Fluent version 19.1 was used. With 872,232 hexahedral numerical
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cells resulting in an aspect ratio of 12.6 and a minimal orthogonal

quality of 0.34, high mesh quality was achieved. Schmidt (Sc) number

tuning with Sc = 0.2 leads to the same circulation time as achieved by

Haringa et al. (2016). The flow field was approximated by solving the

Reynolds‐averaged Navier‐Stokes (RANS) equations in combination

with the realizable k‐ɛ model for turbulence. All surfaces were set as

no‐slip boundaries except for the no‐shear top area, which equaled

the reactor filling height. Baffles and impellers were modeled as 0‐
thickness walls. Both impeller units were set to sliding mesh motion

to generate a more realistic flow field. For glucose feed, a separate

volume at the top of the reactor was defined, and a constant mass

flow was set. The flow field and uptake kinetics were calculated every

10ms until the glucose concentration was constant and a pseudo

stationary gradient was reached, showing constant metabolic activ-

ity. The conditions were “frozen” for 180 s to track bacterial move-

ments. These lifelines were simulated as massless Lagrangian particles

with a discrete random walk (DRW) model passing through the flow

field. Every 30ms, the position and glucose concentration of each

bacterium were recorded. In total, 120,000 bacterial cells were

tracked over around 180 s (residence time distribution: Supporting

Information Appendix Figure E14). According to the ergodic theorem,

the same average values are obtained by tracking 1,080,000 bacteria

for 20 s (for more information, see Appendix: Supporting information F).

However, due to the limitation of simulation time and capacity, the

simulation results were extended by repeating the single lifelines

(Figure 2b) every 180 s while preserving the lifeline cluster groups.

RNAP activities, mRNA levels, ribosomal activities, and protein forma-

tion were calculated as described in Section 2.4 considering each lifeline

cluster (RNAP and mRNA profile of one lifeline group: Figure 2c; mRNA

content of individual cells after 180 s: Figure 7c). Finally, additional ATP

demands were estimated (Figure 2d).

3 | RESULTS

3.1 | Simulation results biological model

To identify data‐driven parameters for the model of E. coli K12 W3110,

clusters of mean mRNA levels were identified (Supporting information

Appendix Section C). Figures 3–5 show the simulations (blue lines) and

mean experimental values (red dots) for mRNA levels, active RNAPs,

and the number of translated proteins per cell during PFR passage. The

F IGURE 2 Impact of frequent exposure to feast and famine conditions in a large‐scale bioreactor (a). White areas reflect nutrient excess,
while gray areas indicate starvation. The size of the areas reflects the corresponding residence time indicated with tS for starvation and tE for
excess residence time (c: Bar plot for one cluster of particle trajectories). The starvation‐induced regulatory responses are propagated into the

glucose excess zone, causing a maximum growth‐independent ATP‐maintenance in the glucose excess regime (d) based on additional active RNA
polymerase(RNAP) for transcription (TC) (c) and ribosomes for translation (TL) [Color figure can be viewed at wileyonlinelibrary.com]
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synthesis rate accelerates over time as more RNAP molecules are in-

volved in the transcriptional response to the starvation stimulus. After a

transcript is completely synthesized and the RNAP is released the

number of active RNAP shortly drops before it rises again. Synthesized

proteins appear with a delay that corresponds to the required transla-

tion time. Activities for transcription and translation result in additional

ATP demands which are indicated as add‐ons to nongrowth‐dependent
maintenance (NAM), shown in Supporting information Appendix Figure

B9. For transcription, costs are derived from nucleotide balancing, in-

cluding the release of nucleotides by mRNA degradation and the need

for mRNA synthesis. Cost for translation mirrors the amino acid needs

and integration according to ribosomal activity. As indicated, translation

costs are more than 2.5‐fold higher than those of transcription. At

maximum, cells have to bear 36.8% additional NAM, 10.4% coding for

transcription, 26.4% for translation. This happens during the early phase

of frequent starvation exposure, that is, after three starvation passages

(25min process time). After 2 h process time, the ATP demand still

increases. More than 45% NAM increase is observed, illustrating the

remaining high number of active RNAP. Later, after 28 h, NAM add‐ons
reduce more than fivefold compared with maximum needs. Then,

transcription accounts for about 1% NAM rise only. The total NAM

increase only mirrors 9.5%.

3.2 | Linking cluster kinetics

Cellular adaptations to frequent environmental stimuli are mirrored

in the cluster dynamics of differentially expressed genes (DEGs) that

were measured after 25min, 2 h, and 28 h. Only 81 of 521 DEGs are

conserved over the entire process time. This reflects the replacement

of the initial sigma factor 70 dominated response by σ38 mediated

regulatory programs (Löffler et al., 2016). To simulate the transition,

so‐called “damping” and “amplification” factors were identified using

mean gene expressions as a reference based on the simulated log2FC

mRNA dynamics in Figures 3–5. Clusters were subdivided in “per-

sisting,” “subsiding,” and “non‐active” fractions. The first collected

genes with continuing high expression levels, while the second

comprised genes with declining expression levels. The last summed

those genes that were either not yet or no more expressed between

subsequent time points (Figure 6). The damping factor is the ratio of

the mean log2FC of subsiding and persisting genes for each cluster

between two time points. The amplification factor is the ratio of the

mean log2FC of genes at 25min, which are active at time point 2 h

divided by the mean log2FC ratio of genes activated after 2 h (see

exemplary calculation Figure 6). The factors are used to calculate the

amount of active RNAP:

F IGURE 3 Simulated, cell‐specific number of additional messenger RNA (mRNA) levels (red dots: experiments; blue line: simulation), active
RNA polymerase (RNAP) and translated proteins of clusters 1–4 (C1–C4) along starvation passage (t = 0–110 s, Figure 1) at 25min. The

logarithmic fold change (log2‐FC) relates to stirred tank reactor values at the same process time [Color figure can be viewed at
wileyonlinelibrary.com]
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⎜ ⎟( ) = ( )*⎛

⎝
−

( − )
*( ( ) − )⎞
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x s t x t

Damping factor
S S

S t S, 1RNAP RNAP
crit min

min
(15)

⎜ ⎟( ) = ( )*⎛

⎝ ( − )
*( ( ) − )⎞

⎠
x s t x t

Amplification factor
S S

S t S,RNAP RNAP
crit min

min
(16)

The entire transition process is guided by the number of starvation

passages S(t) per time. Smin encodes the minimum and Scrit the critical

number of passages. Whereas the first is a regression parameter, the

later reflects experimental observations of Löffler et al. (2016) as follows:

25min equal 3 PFR (starvation) passages, 2 h equal 14, and 28 h equal

176. Noteworthy, the 28h benchmark is chosen as a new steady state

was observed already then (Löffler et al., 2016). The modeling approach

allows transferring of the STR/PFR observations to other conditions using

the frequency of feast/famine exposure S(t) as a key criterion.

3.3 | Numerical simulation

3.3.1 | Glucose gradient

Applying the criterion of converged turbulent dissipation rate/power

input, the pseudo‐stationary glucose gradient of Figure 7 was

obtained (Figure 7). Accordingly, no further changes in glucose con-

centrations simulated at five locations occurred. The average con-

centration in the bioreactor was 23.74mg L−1. For comparison, the

average glucose level observed by the Lagrangian particles (“cells”)

was 22.79mg L−1. Consequently, only 4% deviation was found, which

is qualified as a small difference indicating good homogeneous dis-

tribution and reflecting impacts of the turbulence model and of

particle lifeline filtering. The volumetric distribution between star-

vation and excess zone is 73%–27%, respectively. Again, similar

percentages were calculated by integrating mean residence times of

all lifelines. The mean residence time of the cells in the starvation

regime is 9.46 s (Supporting Information Appendix Figure E14), which

is in the same range as published by Haringa et al. (2016).

Ideally, large‐scale simulations should have been compared with

real in situ measurements to challenge the predictions. However,

such data are missing, which represents a common problem often

faced by academic groups. Nevertheless, applying CFD simulations

still offers the best chances for getting highly accurate large‐scale
predictions as complex hydrodynamics, even including overlapping

flow fields between stirrers, are well predictable. Notably, the latter

may hamper the application of simplifying compartment‐based esti-

mations, which basically assume separated flow fields between stir-

rers (see Supporting Information Appendix H).

F IGURE 4 Simulated, cell‐specific number of additional messenger RNA (mRNA) levels (red dots: experiments; blue line: simulation), active
RNA polymerase (RNAP) and translated proteins of clusters 1–4 (C1–C4) along starvation passage (t = 0–110 s, Figure 1) at 2 h. The logarithmic
fold change (log2‐FC) relates to stirred tank reactor values at the same process time [Color figure can be viewed at wileyonlinelibrary.com]
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For simplicity, Eulerian simulations only considered the liquid

phase, thereby assuming sufficient oxygen supply in the bioreactor

without calculating DO concentrations explicitly. Furthermore, ad-

ditional turbulence due to bubble interaction was neglected, too.

Substrate consumption followed Monod‐type kinetics taking place in

each numerical cell. This implied that bacterial cells were homo-

geneously distributed at each time step.

3.3.2 | Statistical evaluation

Lifeline statistics reflect the imprint of changing micro‐environmental

conditions on cells fluctuating through the bioreactor. To be precise,

cellular residence times in different concentration zones and shifts

between proximal regimes were studied. At the start, cells were

“inserted” into the bioreactor along a straight line reaching from top

to bottom. After a few simulation steps, cells were distributed

homogeneously before individual cell tracking started for 180 s.

Lifeline records were cured by percolating only those with residence

times longer than 0.13 s. The latter represent unrealistically turbu-

lent fluctuations. The following threshold was defined for regime

analysis: If cells experience lower or higher glucose levels than KS for

at least one second, the period is labeled as starvation or saturation

time, respectively. Noteworthy, the minimum residence time of 1 s

equals the average metabolite turnover time in E. coli (Shamir

et al., 2016; Taymaz‐Nikerel et al.,2011). The implementation of the

harsh regime boundary KS finally leads to rapid and somewhat arti-

ficial regime shifts. They were excluded from analysis by ignoring the

upper and lower 1% of regime changes. Alternately, the considera-

tion of alarmones such as (p)ppGpp serving as intracellular triggers to

initiate transcriptional regulation may yield continuous models. Un-

fortunately, understanding of alarmone formulation, degradation,

and alarmone induced regulation is still too fragmented to build dy-

namic transcriptional models. In total, measures for residence time

percolation and shift filtering only reduced the data set by 3%

(Supporting Information Appendix Figure E14).

At maximum, 41 regime shifts were observed during the

180 seconds observation period. Most frequently, 20 regime changes

occurred and cells rested in a single zone no longer than 30 seconds.

As a key characteristic, cells once exposed to glucose starvation reset

their regulation signal. But RNAP and ribosomes remain active,

propagating the starvation response into the glucose excess regime

(Figure 2c,d). According to their starvation pattern the cell lifelines

were assigned to 70 different clusters. Thereby each cluster re-

presents a specific fluctuation pattern, reflecting the amount and

duration of changes between starvation and excess zone (Figure 2b).

F IGURE 5 Simulated, cell‐specific number of additional messenger RNA (mRNA) levels (red dots: experiments; blue line: simulation), active
RNA polymerase (RNAP) and translated proteins of clusters 1–3 (C1–C3) along starvation passage (t = 0–110 s, Figure 1) at 28 h. The
logarithmic fold change (log2‐FC) relates to stirred tank reactor values at the same process time [Color figure can be viewed at

wileyonlinelibrary.com]
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F IGURE 6 Scheme illustrating how “damping” and “amplification” factors are derived from experimental cluster data (C1–C4) measured at
25min, 2 h, and 28 h after plug‐flow reactor passage. In general, active genes of individual clusters may continue amplification (persisting, p),

reduce expression (fading, f), or even be activated from the group of non‐active genes. To bridge the gene expression dynamics from 25min to
2 h and from 2 to 28 h, so‐called damping and amplification factors are calculated as illustrated in the example. They use mean logFC values of
the relevant time points. The damping factor correlates the ratios of fading‐to‐persisting genes of the two subsequent measurements. By

analogy, the amplification factor calculates ratios of mean numbers of gene expression versus “first time” amplified genes for each time point
and correlates the same for two subsequent events [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Simulation results of the 54m3 stirred tank reactor. (a, left) Log‐contours of cs/Ks gradients. (b, middle) Assignment to regimes

(limitation, green: cs < Ks; saturation, red: cs > Ks). (c, right) Normalized messenger RNA (mRNA) content analyzed after cells fluctuated 180 s
through the bioreactor [Color figure can be viewed at wileyonlinelibrary.com]
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3.3.3 | Coupling the biological model with lifelines

To minimize the computational efforts, particle lifelines were

exported from ANSYS Fluent. Starvation patterns of lifelines

(Figure 2b) served as input for the biological model. A workflow

scheme is provided in the Supporting Information Appendix Figure

H16. It was assumed that each entry of the starvation zone activated

the expression of distinct gene clusters as experimentally observed.

Accordingly, individual expression patterns were estimated for each

cell, mirroring their particular tracking history.

As indicated in Figure 7c, the basic expression level of the cel-

lular population is increased by 37.7% compared with the reference.

This reflects the additional cellular needs to adapt to the hetero-

geneous mixing conditions in the reactor. Noteworthy, high mRNA

levels, induced by preceding starvation, are propagated into glucose‐
rich zones (Figure 7c). Expression patterns reflecting starving con-

ditions occur in saturating glucose zones and vice versa. The phe-

nomenon mirrors the delayed transcriptional response that is slower

than convective movements of cells in the bioreactor. Consequently,

a high transcriptional heterogeneity occurred in the tank. A maybe

surprising pattern is disclosed: In the lower part of the reactor, cells

envisage low glucose concentrations but show reduced mRNA levels

(norm. mean mRNA level: 0.33). On the contrary, cells facing high

glucose levels in the upper part reveal high mRNA levels (norm. mean

mRNA level: 0.42).

About 25% of the cells permanently stay in the starvation zone.

This fraction even adapts to the limiting conditions, which reduce the

transcriptional response gradually. Cells located close to zones of

glucose excess highly fluctuate between starving and saturating

conditions. Consequently, strong gene expression responses are

observed.

The average ATP‐demand of a newborn, not preconditioned

population of 120,000 cells exposed to the 54m3 bioreactor is shown

in Figure 8. Basically, plot 8 illustrates the cyclic passing of 180 s

lasting lifelines. To filter related peaks, only average values are

indicated using a moving median filter over 700 data points. Fur-

thermore, a moving standard deviation with a window size of 400

data points is added as a shadow. Synchronization‐like patterns re-

flect the clustering of particles in groups. 70 bins were used with

passable computational effort. The maximum of 45% additional

maintenance is predicted shortly (0.03 h) after cells were exposed to

the bioreactor condition. After about 0.5 h most of the population

has adapted to the heterogeneous environment reducing the addi-

tional ATP demand to 6.5%. After 4.22 h the last cell fraction is in the

adaption state.

4 | DISCUSSION

To disclose spatial heterogeneities of regulation patterns and addi-

tional ATP demands of E. coli K12 W3110 exposed to a 54m3 STR

CFD based lifeline analysis was coupled with agent‐based modeling

for transcription and translation.

As a prerequisite, a proper model describing stress‐induced dy-

namics of transcription and translation is needed. Applying a clus-

tering approach, it was possible to properly describe the

experimentally observed transcription dynamics (Löffler et al., 2016)

of 821 genes using 16 parameters. Under steady‐state conditions,

newly synthesized and recycled nts equilibrate in cells before they

enter PFR. However, ATP demands transcription rise inside PFR as

mRNA synthesis exceeds the recycling rate. The introduction of

‘amplification' and ‘damping' factors managed to model the transition

from fast response to long‐term adaptation, as visible in the experi-

mental data. Accordingly, modeling succeeded to mirror the cellular

F IGURE 8 Additional ATP demands of a population of 120,000

“newborn,” not preconditioned cells in a 54m3 reactor over 4.5 h
process time. Courses for mean transcription (blue: TC), translation,
(green: TL) and the sum of both are depicted (red: TC + TL). The

shaded areas display the standard deviation [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 1 Parameters and omitted genes of the SQBC algorithm

Time point 25min 2 h 28 h

ntry 1000 1000 1000

rmax 0.5 0.5 0.9

Min size 3 3 5

Genes omitted 0 1 6

Abbreviations: Ntry, number of trials per iteration; rmax, maximum radius

as a proxy for correlation; Min size, minimum number of observations per

clusters.

TABLE 2 ATP costs for de novo nucleotide synthesis, based on
Löffler et al. (2016)

Base ATP NADH NADPH Overall ATP

Guanin 11 −3 1 8.53

Cytosin 13 −3 0 9

Adenin 9 0 1 6.53

Uracil 7 0 1 7

Average 10 −1.5 0.75 7.7
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efforts shifting control from σ70 to σ38, more and more (Löffler et al.,

2016). Given that E. coli cells with doubling times of 3.3 h contain

about 120 active RNAPs (Bremer & Dennis, 2008), approximately

one‐fifth of the available RNAPs at 25min is used in the transcrip-

tional response (Figure 3).

The number of involved RNAPs slowed down after 28 h for two

reasons. First, the absolute number of initiated transcripts is reduced,

which mirrors cellular adaptation. Second, transcription even stopped

after 50 s for a large group of genes (Figure 5). Accordingly, reduced

synthesis costs occur. This is amplified by the prolonged lifetime of

transcripts during starvation, which further reduces the amount of

synthesis to obtain a certain level of mRNA abundance as described

in Section 2.4.4 mRNA lifetime is proportional to their distance from

the 5′ end of the transcript according to Chen et al. (2015), which is

in line with the observation that the 5′ end contains important de-

terminants that regulate RNA lifetime (Arnold et al., 1998).

Supporting Information Appendix Figure B9 shows that protein

synthesis accounts for the major part of ATP consumption. Peak

values reach about 45% NAM at 2 h process time. Later on, the

demand steadily reduces as less mRNA transcripts are synthesized

and less proteins are translated. At 25min, the number of active

ribosomes involved in the stress response rises steadily during

starvation, reaching 10% of all available ribosomes (Reference: 103

ribosomes/cell; Bremer & Dennis, 2008). The fraction decreases to

5% after 28 h reflecting the adaptation process.

Linking the transcription and translation model to large‐scale
lifelines reveals the impact of delayed cellular response to fast ex-

ternal changes. In essence, cellular responses of transcription and

translation are slower than convective zone shifts. Consequently,

they are transported from one location to another, basically de-

coupled from external changes. Spatial analysis of all cells after 180 s

(Figure 7c) reveals the highest transcript levels close to or even in-

side the glucose excess regime (50%–80% mRNA upregulation),

while the lowest are found at the bottom. Once initiated, the star-

vation response propagated into the glucose excess zone. There,

additional needs for transcription, translation, and ATP may limit the

targeted formation of industrial products in microbial cells.

Noteworthy, it is exactly this feature that distinguishes the

current model from previous lifeline studies (Haringa et al., 2016,

2017; Kuschel et al., 2017). There, metabolic and cell cycle responses

were considered as an instantaneous cellular responses. Fast external

changes are immediately translated into cellular replies. Later, Har-

inga et al. (2018) implemented metabolically buffered responses by

considering variable enzyme pools (Tang et al., 2017). In this context,

the current study proceeds by additionally integrating downstream

transcriptional responses incorporating another level of cellular

control. Our approach introduces the non‐instantaneous, delayed re-

sponse by considering intracellular programs of longer time scales

than external changes. Accordingly, responses may propagate in

different zones of the reactor, causing nonexpected transcriptional

regulation programs there.

The approach was exploited further by estimating the entire add‐
on ATP demand for 120,000 newborn cells monitoring 4.5 h process

time (Figure 8). As shown, the adaptation of the population is finished

after 4.2 h disclosing a remaining ATP add‐on of about 6% NAM

compared to the 45% max NAM at the beginning. In terms of mi-

crobial productivity, these ATP needs simply reduce the amount of

available ATP for product formation; that is, they limit biomass‐
specific productivities. The phenomenon has often be described in

large‐scale fermentation (Lara et al., 2006). Noteworthy, it is likely to

be pronounced in hyper‐producing cells with ATP intensive product

formation. Often enough, such production processes run in fed‐batch
mode, installing reduced, limiting metabolic activity to stay within the

technical limits of aeration and cooling. Consequently, those addi-

tional ATP needs hit cells with limited ATP forming capacities.

To evaluate the impact of particle simulation time, an additional

simulation was conducted using a high‐performance computation

cluster studying 60,000 particles for about 460 s. Similar results were

obtained for the key readouts, that is, time courses of ATP main-

tenance demands and residence time distributions remained. The

simulated adaptation time reduced from 4.2 to 3.7 h, mirroring the

lowered amount of particles staying in the starvation zone for the

entire process time (around 5%) (see Supporting Information J).

However, modelers need to consider that long simulation times are

likely to violate the intrinsic constraint of one‐way coupling, ne-

glecting particle‐environment interactions for the sake of simplicity.

In this dilemma, we decided for the analysis of 180 s to capture key

dynamics while still fulfilling the one‐way coupling constraint.

As pointed out by Löffler et al. (2016), the majority of tran-

scription dynamics are caused by the frequent on/off switching of

stringent response, mediated by rising intracellular (p)ppGpp levels.

Hence, creating stringent response deficient strains (Michalowski

et al., 2017) opens the door to prevent non‐wanted NAM increase.

Besides, other cellular stress programs may be targeted as well

(Supporting Information Appendix Table D4).

5 | CONCLUSION

The current modeling approach marries computational lifeline ana-

lysis with cellular regulation models, thereby introducing the non-

instantaneous cellular response to changing extracellular conditions.

Consequently, the spot of stress induction and the location of cellular

phenotype do not need to be the same. Accordingly, heterogeneities

in large‐scale bioreactors comprise the physical levels linking local

conditions tightly with metabolic responses and the cellular regula-

tion level encompassing delayed responses such as transcriptional or

translational effects.

To detect the latter and to describe them properly in data‐driven
models, experimental scale‐up simulators are necessary that mirror

transcriptional and translational cellular replies as performed by

Kuschel and Takors (2020). The setting of such devices may differ

from “conventional” scale‐up simulators that typically mimic circula-

tion times. Because the entire transcriptional responses should be

clearly detectable, rather long stress exposure periods should be

installed and read.
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