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Abstract
We present our approach for the dense visualization and temporal exploration of moving and deforming shapes from scientific
experiments and simulations. Our image space representation is created by convolving a noise texture along shape contours (akin
to LIC). Beyond indicating spatial structure via luminosity, we additionally use colour to depict time or classes of shapes via
automatically customized maps. This representation summarizes temporal evolution, and provides the basis for interactive user
navigation in the spatial and temporal domain in combination with traditional renderings. Our efficient implementation supports
the quick and progressive generation of our representation in parallel as well as adaptive temporal splits to reduce overlap. We
discuss and demonstrate the utility of our approach using 2D and 3D scalar fields from experiments and simulations.
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1. Introduction

Increasingly fast computing systems for simulations and high-
accuracy measurement techniques enable the generation of time-
dependent data sets with high spatial and temporal resolution. In this
work, we introduce a visualization approach providing a summary
and supporting the exploration of moving and transforming shapes
in 2D (e.g. Figure 1b) and 3D scalar field data (e.g. Figure 1a). These
occur in various scientific analysis scenarios (e.g. in this work, we
will consider moving droplets, laser pulses, waves and areas of high
temperature or velocity magnitude). Navigating time via animations
has been shown to be ineffective for the analysis as only a limited
number of frames can be memorized by the observer (e.g. [JR05]).
The typical indirect temporal exploration approach via a time slider
is tedious as well, and aspects of interest can easily be missed.

To address this, we present our novel approach for the visual-
ization and navigation of time-dependent field data in image space.
Its central component is a new representation that spatially conveys
shape information in a temporally dense way (i.e. no temporal se-
lection is required but all time steps in a series are depicted). For
this, we employ texture-based visualization that convolves a noise
texture along shape contours in a way that is conceptually similar
to LIC [CL93]. An important usage scenario besides providing a
comprehensive overview of temporal evolution is that this repre-
sentation can be used in combination with conventional renderings
of field data to directly browse time steps with interesting shapes,

abrupt changes or collisions. In addition to indicating shapes via
luminosity, colour further depicts either time or classes of shapes.
Here, unsupervised learning on the basis of the extracted shapes is
employed to achieve shape-based colour mapping. Significant tem-
poral overlap can be induced by some complex data sets that make it
hard to depict a meaningful overview with one view. Although this
cannot be avoided completely in general, our approach introduces
different built-in measures to address and mitigate this issue. Our
implementation further allows for the quick and progressive gener-
ation of our representation in parallel.

In the following, after reviewing related work in Section 2,
we present our contributions of this work (cf. Figure 2 for an
overview).

• Our temporally dense representation of shape evolution (Sec-
tion 3):
… the convolution of a noise texture along contours depicts

shapes via luminosity (Section 3.1),
… adaptive shape colour maps emphasize variations (Sec-

tion 3.2),
… and temporal compositing enhances clarity (Section 3.3).

• Interactive temporal navigation and exploration for efficiently se-
lecting time steps based on our dense representation (Section 4).

• A massively parallel and progressive implementation, and an
evaluation with 2D and 3D data sets from different domains
(Section 5).
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Figure 1: Temporal exploration with a pointer (circle) using our dense image-space representation, exemplified via a wave induced by five
jets moving from top to bottom (a) and a laser pulse travelling through a bottle from left to right (b). Luminosity indicates contours while
colour maps to time (a) or shapes (b). A rendering of the time step selected via pointer is shown as dark grey overlay (contour front coloured
in pink).

Figure 2: Overview on the different components of our approach. First, we walk along shape contours individually for each cell (consist-
ing of four adjacent pixels) of our image-space input data, convolving a noise texture to generate a luminosity-based shape map (Shape
Walk, Section 3.1). Second, colour is either mapped to time or to classified shapes with an automatically generated table (Shape Mapping,
Section 3.2). Shape Walk and Shape Mapping operate on individual time steps. Finally, the results are composited over time to yield our
shape representation, also taking different means to address spatio-temporal overlap (Shape Compositing, Section 3.3). The representation
provides the basis for interactive temporal exploration (Spatio-Temporal Navigation, Section 4). The whole process supports progressive
computation (Section 5.6).

We finally conclude our work in Section 6.

2. Related Work

Time-varying field data visualization. A variety of different ap-
proaches has been proposed for the visualization of time-dependent
scientific 3D data. One line of work treats the data as a space-
time hypercube, and applies extended classic visualization oper-
ations like slicing and projection [WWS03] or temporal transfer
functions [BVMG08] (cf. Bach et al. [BDA*16] for an overview
of techniques in this area). Alternatively, Tong et al. [TLS12] use
different metrics to compute the distance between data sets, and em-
ploy dynamic programming to select the most interesting time steps
on this basis. Frey and Ertl [FE16] presented an approach to adap-
tively choose time steps from time-dependent volume data sets for
an integrated visualization, with the selection being based on the
principle of optimizing the coverage of the complete data. To sup-
port such time step selection techniques with an expressive and fast-
to-compute distance measure, they further introduced a technique

to generate transformations between arbitrary volumes [FE17b,
FE17a]. In contrast to these techniques, we do not require tempo-
ral selection and avoid the inherent hazard of missing crucial time
steps or transitions. In another work, a representation has been pre-
sented that visualizes bounds of spatio-temporal processes to indi-
cate where and when non-continuous changes occur [Fre18]. Al-
though this approach is also temporally dense, shape information
of involved objects is almost completely neglected. A comparison
against these alternatives by example is provided in Section 5.5.

Another general approach to time-dependent volume visualiza-
tion is based on feature extraction. Lee et al. [LS09a] extract
trend relationships across variables in multi-field data. The con-
cept of Time Activity Curves that contain each voxel’s time series
has been used as the basis for various techniques (e.g. [FMHC07,
LS09b]). Wang et al. [WYM08] extract a feature histogram per
volume block, characterize the local temporal behaviour and clas-
sify via k-means clustering. Isolating and tracking features has
also been explored extensively (e.g. [SW97, JS06]). In this line of
work, Widanagamaachchi et al. [WCBP12] propose a framework
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Figure 3: Illustration of Shape Walk (cf. Section 3.1). (a) For each cell c (yellow), we walk along an isoline (purple) passing through it,
visiting cells c̄ on the way. (b) The isoline is defined by the average of the corresponding cell values. (c) When visiting the cells along the
isoline, we convolve a noise texture to eventually yield a luminance value cnoise, and collect samples S along the line as the basis for generating
shape descriptors (cf. Figure 4a). We determine the next cell to visit by identifying which outgoing edge eout to pass — considering that the
current cell c̄ has been entered through ein — and accordingly select the adjacent cell �= c̄ (i.e. c̄← AdjacentCell(c̄, ein)).

for the interactive exploration of dynamically constructed fea-
ture tracking graphs. Scale-space based methods and topological
techniques have also been used in this context (e.g. [WDC*07,
NTN15]). Schneider et al. [SWC*08] compare scalar fields on the
basis of the largest shapes. Post et al. [PVH*03] and McLoughlin
et al. [MLP*10] provide overviews of respective techniques for flow
visualization.

Illustration-based techniques for time-varying data. Bram-
billa et al. [BCP*12] give an overview on illustrative techniques
for flow visualization. In their classification scheme, the technique
proposed in this work falls in the low-level category as we di-
rectly depict structures. High-level techniques implicitly consider
semantics instead (e.g. cutaways or close-ups). In contrast to our
technique, the vast majority of illustration-based visualization tech-
niques for time-varying data are based on higher level data analysis
(like tracking), increasing descriptiveness but requiring the speci-
fication of features. For instance, Joshi and Rheingans [JR05] ap-
ply different illustration techniques to time-varying data sets, in-
cluding speed lines, flow ribbons and strobe silhouettes. Lu and
Shen [LS08] generate interactive storyboards composed of individ-
ual volume renderings, enriched with descriptive geometric primi-
tives. Meyer-Spradow et al. [MSRVH06] extract motion dynamics
via block matching, and visualize the result via glyphs and speed
lines. Eden et al. [EBG*07] employ cartoon style for rendering ani-
mations. Application-specific approaches have also been proposed,
for example, showing the evolution of hurricanes [JCRS09] or ocean
eddies [LSB*17].

Video Visualization. Our approach works in image-space and
considers time-dependent data, and with this exhibits some rela-
tion to video visualization. According to the state-of-the-art report
of Borgo et al. [BCD*], our proposed technique is low level (i.e. it
operates on the pixel level), automatic and presents a single compos-
ite image providing background or context. In contrast, the major-
ity of covered papers strongly rely on (high-level) object segmenta-
tion and tracking, essentially requiring the specification of features
(similar to illustration-based techniques, cf. discussion above). Typ-
ical goals in classic video visualization include enabling of smart
fast-forward capabilities (e.g. cf. Höferlin et al. [HKH*12]) and

generating of (static) summaries (e.g. an overview on moving ac-
tors [CM10]). Most closely related to our approach are direct ob-
ject manipulation techniques (e.g. [KDG*07, GKV*07, DRB*08,
GGC*08, KWLB08, NNL14]). These methods extract objects and
enable users to select them in the video and drag them along their
respective motion trajectories. Akin to our approach, this allows for
an image-space navigation in time. However, in contrast, we achieve
this based on (low-level) shape contours without requiring explicit
object or feature extraction.

3. Shape-based Spatio-Temporal Visualization

The typical approach for selecting time steps is to interact with a
time slider. In this work, we aim to investigate an alternative for sci-
entific visualization: based on a dense representation of the whole
time series, we enable the selection of time steps directly in image
space. Such a dense representation can also be useful for providing
on overview on temporal processes. To achieve temporal density,
some kind of (visual) abstraction needs to be performed to prevent
significant overlap. Our approach does not require the extraction
of complex features — in contrast to typical illustration-based and
video analysis approaches — but employs image-space contours
as low-level features. This enables a direct, pointer-based selection
of time steps that depict, for instance, interesting shapes, abrupt
changes of shapes or collisions. As a prerequisite for determining
contours in image space, (3D) data sets are rendered using standard
volumetric raycasting for user-defined camera positions and transfer
functions. This then produces the time-varying image-space input
data, which provides the basis to create our dense representation.
Below, we discuss the individual steps of the approach to accom-
plish this.

3.1. Shape Walk

We first generate a luminance map depicting shapes in aggregated
form. For this, we consider four adjacent pixels of an input image
as cells c (pixels in the input images are also denoted as vertices of
the cell in the discussion below, cf. Figure 3a). For each cell c, we
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Algorithm 1. Shape Walk (Section 3.1) follows the contours
passing through each cell, convolving a noise texture on the way.
This determines the luminance value cnoise in our dense
representation. Contour strength cω and gradient cgradient are used
later in Shape Compositing (Section 3.3) for combining results
over different time steps and enhancing contrast, respectively. The
histogram of pairwise distances chist between samples S collected
along the contour is later used to create a shape descriptor in Shape
Mapping (Section 3.2)

compute one luminance value that results from convolving a noise
texture along an isoline passing through the cell. In addition, fur-
ther information required for later analysis is collected on the way.
This procedure is discussed in detail below, supported by illustra-
tions in Figure 3 and an outline of the procedure as pseudo-code in
Algorithm 1.

We run Shape Walk for each cell c ∈ Ct and each time step
t ∈ T of our input images. First, we assess the strength of a con-
tour through c via the difference cω in its four associated node
values c0, c1, c2 and c3 (Algorithm 1, Line 2). This will later de-
termine the visual impact of the cell when aggregating over time
(Section 3.3). Homogeneous cells (i.e. cω = 0) are skipped (Lines 3
and 4). Also, to reduce temporal overlap when depicting evolv-
ing shapes, we only consider cells c featuring at least one vertex
that has increased in value with respect to the previous time step
(i.e. max(�t c0...3 ∈ c) > 0). This is a simple heuristic to identify the
parts of a shape that are oriented towards the movement direction,
under the assumption that the background exhibits a lower value
than a moving object (this holds true for the examples given in this
paper, in other cases adaptations or more elaborate heuristics can be
required). The contour that we follow from cell c is defined by the
isoline with the average value cisovalue across all four vertex values
c0...3 (Line 5, Figure 3b).

Then, starting from cell c (Line 6), this isoline is followed until
c is reached again (Lines 8–12, Figure 3a). For this, we exploit that
isolines are closed by definition. To identify the next visited cell
in every iteration, we identify the edge intersections with the iso-
line akin to the Marching Squares procedure (Line 8, Figure 3c). By
definition, there are either two or four intersections. We determine
the outgoing edge by identifying which intersected edge is topo-
logically connected to the incoming edge e. We then accordingly
proceed to the neighbouring cell with which this outgoing edge is

Figure 4: Generation of a histogram-based descriptor for shapes.
(a) First, a set of samples S is collected for cells c during Shape
Walk. With these, we compute the D2 shape descriptor by storing the
distribution of distances between sample pairs in a histogram. (b)
The histogram (orange) depicts distances in the range [0, d̂c], with
d̂c being the largest occurring distance per shape. To make them
directly comparable, we then resample the histograms with respect
to d̂ (the largest distance occurring across all histograms (blue)).

Figure 5: For shape colour mapping, a (normalized) 1D colour
map coordinate is assigned to each self-organizing map (SOM) unit
(example given for the 5Jets data set). Here, the main idea is that
the distance between shape descriptors of adjacent units ψ i−1 and
ψ i is relative to their distance in colour map coordinates ψ i−1

k and
ψ i
k.

shared. In the first iteration, there is no incoming edge (i.e. e = null),
and the edge intersection to start the walk with is selected randomly.

For each cell c̄ that we visit along the way, we look up a value
from our noise texture and update cnoise via convolution (akin to
LIC, Line 10, Figure 3c). We weight the impact of this value by
the length of the shape line within the cell. We also collect a set S
of 64 random samples from the incoming stream of points along
the contour via reservoir sampling (Line 11). With this, the his-
togram chist of pairwise distances between samples ∈ S is com-
puted (Line 13). chist later serves as a basis to compute shape descrip-
tors for Shape Mapping (cf. Figure 4, Section 3.2). Finally, we com-
pute the gradient cgradient by considering the isoline with c (Line 14,
Figure 3b). cgradient is used when compositing the final representation
(cf. Section 3.3).
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Figure 6: SOM shape visualization at the example of the Bot-
tle (Figure 1b). In the top row, from left to right, a representative
shape for each unit is shown. In the row below, we indicate where
classes of shapes occur in image space, and further down we depict
the respective shape descriptor. In the bottom-most row, it is plotted
how often a category of shapes appears over time along a vertical
temporal axes (horizontal swings depict frequency at a certain point
in time). Units are coloured according to the shape colour map.

3.2. Shape Mapping

We now integrate shape information in-place in the dense shape rep-
resentation via colour and provide an additional overview on occur-
ring shapes (e.g. cf. Figure 1b). For this, we generate a shape rep-
resentation ψc from the sets of samples S collected during Shape
Walk (a), and then use ψc to map shapes to colour and provide a
shape overview representation (b).

(a) Shape Descriptor. We use the D2 shape descriptor to serve
as a basis for quantifying the similarity between shapes. This choice
is based on a study of Osada et al. [OFCD02] which found that this
descriptor can be evaluated quickly and results in the best object
classification results among five tested candidates, yielding distinc-
tive and stable results in the context of translations, rotations, scales,
mirroring, degeneracies, etc. The D2 shape descriptor requires a set
of samples S from the contour, which we collect for each cell and
time step during Shape Walk (Figure 4a). With these samples, we
then compute the distribution of Euclidean distances d(·, ·) between
all

(|S|
2

)
point pairs in S and store them as a histogram chist with 16

bins in our implementation (Figure 4a). In case there are less than
|S| = 64 points in S, we continue to extend our signature with ran-
dom pairs of points until

(|S|
2

)
combinations are considered. This is

important to yield histograms with the same total number of en-
tries. The width of histogram bins is individually determined via
the largest occurring distance d̂c = max{d(sa, sb)|sa, sb ∈ S} in the
respective shape. This means that the (uniform) width of the bins
is chosen such that the last bin only just contains the largest de-
termined distance d̂c. We carry out this procedure right after S has
been determined during Shape Walk (Algorithm 1, Line 13). This
means that we do not actually have to store S, but instead can save
the significantly smaller histogram representation chist.

We further need to make the different chist directly comparable.
For this, we resample the histogram representations (which have
been stored with respect to to the local maximum distance d̂c) to
a shape descriptor ψc with 16 bins and the maximum distance
d̂ = max{d̂c|c ∈ Ct} across all shapes as a reference (b). This is done
by splatting the value of each bin of chist to ψc using a Gaussian ker-
nel. Although first determining d̂ and then computing the histograms
would avoid histogram resampling, this crucially would require a
second pass of the Shape Walk procedure. According to our exper-

Figure 7: Temporal split example of our overview representation
at the example of the Bottle data set. Here, the split into three parts
mitigates temporal overlap stemming from the laser pulse covering
the same area within and around the bottle in different stages of
its evolution (cf. annotations in (b), discussion in Section 5.4, and
representation covering whole time series in Figure 9a).

iments, the differences due to resampling are negligible. We now
have a set of shape descriptors ψc ∈ ϒ (one for each shape). With
this, shapes can easily be compared by via the Euclidean distances
between their descriptors.

(b) Shape Colour Map and Visualization. Using the set of all
shape descriptors ψc ∈ ϒ , we create (1) an overview representation
of encountered shapes as well as (2) a colour map that assigns sim-
ilar shapes to similar colours in our dense shape representation. Es-
sentially, this encompasses two problems: (1) the projection of the
shape descriptor into colour space, and (2) the clustering of shape
descriptors. To address them, projection-based techniques (like t-
SNE or UMAP) could be used to map shapes into the colour space
(but the identification of clusters would need an extra step), or clus-
tering techniques could be employed (but a meaningful ordering be-
tween clusters is required to yield a 1D colour map, cf. Figure 5).
Instead, we employ (1D) SOMs [Koh98], which inherently features
several useful properties for our application context: a neighbour-
hood function preserves similarity relationships across clusters (or
units), the mapping to a 1D colour map is straightforward and rep-
resentations of the respective clusters (units) are computed as an
integral part of the technique.

In our SOM with a 1D topology of units ψ i ∈ ϒSOM, each ψ i is
a weighted sum of the shape descriptors ψc ∈ ϒ computed for each
cell (cf. Figure 5 (top)). We follow a typical procedure for training
SOMs. We first initialize each unitψ i ∈ ϒSOM with a random shape
descriptor ψc ∈ ϒ . In each of several training passes, we then loop
over all shapes ψc ∈ ϒ in random order, and for each identify the
unitψ i it is closest to. We then update the histogram representations
of ψ i and the units in its vicinity by pushing them towards ψc. The
considered neighbourhood decreases with an increasing number of
passes, as does the impact on the respective histograms. Similarly,
the impact of the update decreases the further the distance to the
closest unit is. We use 16 units (ψ0 . . . ψ15), and run 256 training
passes with an initial neighbourhood radius of eight as well as a
unit update rate of 5%, decreasing both by ×0.98 after each pass.
The impact of different numbers of units is evaluated in Section 5.3.

Finally, we map the resulting units ψ i ∈ ϒSOM to colour (cf. Fig-
ure 5). For this, we assign (normalized) 1D colour map coordinates
ψ i
k to each unit ψ

i such that the distance between shape descriptors
of adjacent units corresponds to distances in colour map coordinates
ψ i
k:

ψ i
k =

∑i
j=1�(ψ j−1, ψ j )∑15
j=1�(ψ j−1, ψ j )

. (1)
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Figure 8: Illustration of split at the example of the Bottle (refers
to first split at T 120

0 Figure 7a). (a) First, we assess the weighted
standard deviation of noise values σ (cnoise, cω ) and (b) the contour
strength max(cω ). (c) We then create masks depicting cells with (d)
significant overlap (> θσ ) and (e) strength (> max(cω )). (e) Their
combined mask is then checked for a region B containing numerous
active cells (> θB). If this is the case, the time series is split at e.

With this, we obtain the colour of shapeψc by identifying its closest
unit ψ i

i and accessing the colour map via ψ i
k.

Besides colour mapping, shape information is also presented in a
dedicated view (Figure 6). In the top row, for each unit ψ i, we de-
pict the shape ψc with the smallest distance to ψ i as representative.
In the row below, we indicate where these shapes occur in image
space, and further down we show the respective shape descriptor
(in the form of a histogram). In the bottom-most row, we illustrate
the changing frequency of occurring shapes over time.

3.3. Shape Compositing

We now composite the final image. (a) Optionally, we first partition
the time series to reduce temporal overlap in our combined dense
representation. In our representation, we use two channels to convey
information: (b) colour (hue) to depict time or classes of shapes and
(c) texture (luminosity) to represent shape contours.

(a) Detecting Shape Overdraw and Split. Our approach aims
to generate a comprehensive overview of shape evolution across a
time series. Especially for complex processes, there can be substan-
tial overdraw in image space which can lead to loss of detail and
visual clutter. To address this, we provide the option to adaptively
split our representation into individual representations of time sub-
sequences whenever significant overdraw is detected. For example,
in Figure 7, the split prevents temporal overlap stemming from the
laser pulse covering the same area within and around the bottle in
different stages of its evolution (cf. Section 5.4 for a detailed dis-
cussion).

We check for every time window Te
b (t ∈ [b, e] with incremen-

tally increasing e) whether there is an area in image space with sub-
stantial overlap, and then split accordingly (Figure 8). First, we as-
sess the variation of luminance values cnoise of each cell over time to
quantify overdraw. For this, we use the weighted standard deviation
σ (cnoise, cω ) over the time window t ∈ Te

b with weights cω:

σ (cnoise, cω ) =
√√√√

∑
t∈Teb c

t
ω(ct noise − cnoise )2

M−1
M

∑
t∈Teb c

t
ω

. (2)

Here, cnoise =
∑

t∈Teb
ctωct noise∑

t∈Teb
ctω

represents the weighted mean and M =∑
t∈Teb [c

t
ω > 0] denotes the number of non-zero weights. The stan-

dard deviation σ (cnoise, cω ) is then used as a main part of our cri-
terion to identify temporal overlap in the time window Te

b (Fig-
ure 8 (a)). We further consider the maximum strength max(cω ) oc-
curring over time with the intention to only consider overdraw pro-
duced by pronounced contours (Figure 8 (b)). Finally, we split if
there exists an image region of size B featuring at least θB cells
with significant variation in luminance (exceeding threshold θσ ,
Figure 8 (c)) and pronounced contours (i.e. cω is larger than thresh-
old θω, Figure 8 (d)):

∃B(
∑
c∈B

[σ (cnoise, cω ) > θσ ∧max(cω ) > θω] > θB). (3)

We used parameter settings θσ = 0.02, θω = 0.5,B = 642 and θB =
0.1B. The computation of σ (cnoise, cω ) and max(cω ) can be com-
puted iteratively at interactive rates, they only need to be updated
when incrementing e. Likewise, Equation (3) can be implemented
efficiently using summed-area tables (cf. timings in Section 5). Note
that ShapeMapping is always computed across thewhole time range
T , and is therefore not affected by the splitting.

(b) Colour (Hue). Time or shape can be encoded via colour. For
both, we use isoluminant colour maps, that is, the luminosity is con-
stant across all members of themap [Kov15]. This allows to separate
clearly between hue and luminance. For time, we use a colour map
directly while for shape we employ the result from Section 3.2 (Fig-
ure 5).With both encodings, colour is assigned to every cell and time
step through which a contour passes (i.e. whenever the skip criterion
in Algorithm 1, Line 3 is not fulfilled).

We compute the aggregate colour of each cell ccolour as follows.
First of all, for each cell and time step t with non-zero weight
ctω > 0, we determine the normalized colour map coordinates kt ,
depending on the colour mode:

kt =
{
t/|T |, if time→ colour
ψ i
k with ψc ∈ ψ i, if shape→ colour (cf.Figure5)

)
. (4)

For time, this is simply the respective normalized point in time t.
For shape colouring, we identify the closest SOM unit ψ i to shape
descriptor ψc of the respective cell, and use the corresponding coor-
dinates ψ i

k (cf. Section 3.2, Figure 5). For each cell, we compute the
weighted standard deviation σ (k, cω ) indicating uncertainty, with
values kt and weights ctω over time t ∈ T (akin to Equation (2)).

For every time step t at each cell, we convert the colour obtained
from the map to the HSV colour space. We then adjust the colour
saturation via the deviation of values σ (k, cω ). For this, we multiply
the saturation channel by max(1.− σ (k, cω ) · m, 0), with m being
a parameter indicating how fast the saturation should decrease (we
use m = 5 throughout this paper). Next, the modified colour is con-
verted back to RGB space, yielding ct colour. Finally, we composite a
weighted sum of the colours over time, resulting in the final ccolour
for a cell:

ccolour =
∑

t∈T (c
t
ωct colour )∑

t∈T ctω
. (5)
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Figure 9: Exploration sequence at the example a laser pulse travelling through a bottle captured via Femto photography [VWJ*13].

(c) Luminosity. We use a three-step approach to yield clearly
distinguishable shapes with high contrast between neighbouring
cells. First of all, similar to Equation (5), we compute a weighted
sum of the noise cnoise and the gradient magnitude |cgradient|. Sec-
ond, we determine the difference in value �cnoise in the direc-
tion of gradient cgradient from cell position c: �cnoise = cnoise − (c+
cgradient/|cgradient|)noise. Directly using the noise value cnoise also yields
decent results, but we found that the difference based on the gradi-
ent yields clearer, higher contrast images. Third, we compute lumi-
nosity cluminosity by applying a sigmoid function to�cnoise for further
contrast enhancement:

cluminosity = 1

1+ exp(�cnoise )
. (6)

The final output for a cell is then simply determined via the multi-
plication of cluminosity and ccolour from (b).

4. Interactive Temporal Navigation and Exploration

We now introduce modalities for interactive exploration based on
our dense representation. The image-based selection of time steps
directly allows for temporal navigation by hovering with a mouse
pointer over the location of interest (e.g. Figure 9a–c). For a cell c
selected by a pointer, we obtain the respective sequence of weights
ctω over time t. Peaks in the sequence of ctω-values indicate points in
time with a distinct shape boundary. Accordingly, we extract max-
ima to capture when this occurs, smoothing the signal beforehand
using a box filter for the sake of stability. We present this sequence
of values ctω in a semi-transparent overlay (horizontal axis: time,
vertical axis: weights, cf. Figure 9a–f). Depending on the mode, the
shown line is coloured either with respect to time or shape. Max-
ima are indicated via filled circles, and a vertical line depicts the
currently selected point in time.

Several maxima indicate spatio-temporal overlap, that is, a cell
is covered by distinct shapes at different points in time. During ex-

Figure 10: A cold plate on top and a hot plate on the bottom induce
colliding flow of cold and hot air.

ploration, we automatically choose the maximum whose respective
time step is closest to the current one. A user may iterate through
different selections of maxima by pressing a button (e.g. Figure 9c
and d, and Figure 9e and f). Finally, we render the selected time step
(dark grey), and composite the selected time step in-place over our
dense contour representation. As discussed above in Section 3.1,
only contour parts with increasing cells are considered (indicated in
pink).

In the bottom, we show information depending on the current
colour mapping mode (cf. Section 3.3), that is, either with respect to
time (Figure 9a–d) or shape (Figure 9e–h). A user can interactively
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Figure 11: Drop forming on top and falling down, with two smaller
droplets following afterwards.

switch between the two modes. For time, we depict the time trans-
fer function that can further be used as an interface to only select a
temporal subrange of the video (e.g. in Figure 9, the first two-thirds
of the whole time series are considered). In the shape mode inter-
face (introduced above in Section 3.2), we can filter for a specific
category of shapes by selecting it directly via the pointer. Then only
the shapes belonging to this category are shown, allowing a user to
explore where (and when) different types of shapes occur (Figure 9g
and h).

5. Results

We evaluate our approach with 2D and 3D time-dependent scalar
fields (volume raycasting generates images in the case of 3D volu-
metric data, cf. Section 3). These are the used data sets:

• 5Jets (resolution: 1283, source: CFD simulation, Figure 1a),
• Bottle (900× 430, Femto photography [VWJ*13], Figure 1b),
• Hot Room (181× 912, CFD simulation, Figure 10),
• Droplet Measurement (182× 878, experiment, Figure 11),
• Droplet Simulation (2563, multiphase flow sim. [EEG*16], Fig-
ure 12),

• von Kármán (101× 301, 2D CFD simulation, Figure 13),
• λ2 (5293, λ2 criterion for vortex extraction [JH95], Figure 15).

The number of time steps and performancemeasurements of indi-
vidual steps are provided in Table 1. We utilize an image resolution
of 1024× 1024 throughout this paper for the sake of comparability.
Below, we first discuss the expressiveness of our dense shape repre-
sentation (Section 5.1), before demonstrating the utility of our ap-
proach for interactive data exploration (Section 5.2).We then look at
the impact of the number of SOM units (Section 5.3), evaluate the
results of our temporal splitting approach (Section 5.4) and com-
pare against other techniques creating spatio-temporal overviews
Section 5.5. We then present the implementation of our progressive
system and timings (Section 5.6), before finally discussing current
limitations and directions for future work (Section 5.7).

5.1. Dense Shape Representation

First, we discuss the proficiency of our dense shape representation
in providing an overview on spatio-temporal behaviour.

5Jets (Figure 1a). This data result from a simulation of five jets
entering a region. Temporal colouring and texture depict the move-
ment of the main wave going from the bottom to the top, with its
extent decreasing in the process (the volume rendering in dark grey
shows this wave). The lighter grey areas in our dense representation
are due to temporal overlap. They indicate individual parts that split
off the main wave, and travel onward with lower velocity.

Bottle (Figure 1b and Figure 9). The data set captures a laser
pulse travelling through a bottle (obtained via Femto Photogra-
phy [VWJ*13]). On its way from left to right, the laser gets reflected
and scattered in different ways, inducing different phases. Early on,
the pulse forms a structure with a sharp tip, as can be seen nicely
from the texture of our visualization. Later, it smoothly transitions
into a wave with a large vertical extent. Finally, a small laser pulse
reappears that initially moves left-to-right and eventually fills the
top of the bottle with a much larger shape. This change in shape is
clearly indicated via shape colouring. In both colour modes, the grey
areas indicate overlap. However, with shape colouring the colour has
been pushed significantly more towards grey in comparison to time
colouring (cf. top and bottom row in Figure 9, respectively). This
is due to the fact that, as indicated above, the shape changes rather
quickly in a small temporal window (i.e. lower variance) while the
change in shape is quite significant in a short time frame (i.e. higher
variance). Note that we also exemplify our temporal splitting ap-
proach by means of this data (cf. Figure 7, discussion below in Sec-
tion 5.4).

Hot Room (Figure 10). The data set depicts colliding flow of
cold and hot air, induced by a cold and hot plate on the top and
the bottom, respectively. The representation shows that the width
of the two volumes of air which develop initially approximately
equals the area of the plates. The shapes slowly transform while
moving towards each other (cold air going down, hot air moving up-
ward). The shape HUD accordingly depicts both classes of shapes
and when they occur. Once the two masses of air collide, their
shape transforms significantly. It becomes thinner closer to their
respective plates, but broader in the centre where they meet. Time
colouring indicates the symmetric bottom-up and top-down move-
ment of the respective air masses, whereas shape colouring empha-
sizes the smooth changes in shape (as also indicated by the shape
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Figure 12: Two asymmetrically colliding drops form a disk that extends outward and eventually decomposes into individual droplets again.

Figure 13: 2D CFD simulation of a von Kármán vortex street. Texture and colouring depict a smooth change of shapes from top to bottom
overall. However, there are different shapes occurring in the same region of this recurrent process (grey areas). We investigate this by switching
between shapes and find that in later time steps shapes are slightly different, for example, exhibiting earlier separation.

visualization in the bottom). With both colour mappings, the grey
areas depict overlap in similar areas, indicating that significant
changes in shape and temporal overlap with a larger time distance
coincide. Most prominently, this shows in the overlap between the
broad shape that initially moves upward and the more narrow shape
that develops after the collision.

Droplet Experiment (Figure 11). The data capture an experi-
ment of a drop forming at the top, and eventually falling to the bot-
tom. In the process, also two smaller droplets form and fall down
later. In both time and shape colouring, these later droplets are in-
dicated in grey as they produce temporal overlap and exhibit a sig-
nificantly smaller shape. The representation also indicates that the
large droplet changes shape in a recurrent fashion (changing colour
from blue to green and back). This can be investigated in more
detail when directly selecting individual shape classes belonging
to different SOM units ψ i(Figure 11, right). This separates differ-
ent droplet phases (i = 4, i = 8, and i = 12), and also depicts the
smaller droplets belonging to the same category (i = 15).

5.2. Exploration

We introduced the user interaction modalities of our approach
in Section 4, and exemplified them by analyzing the path and trans-
formation of the laser pulse in the Bottle data (Figure 9). Below, we
provide additional examples of temporal exploration.

Droplet Simulation (Figure 12). The data set depicts a simula-
tion of two droplets colliding asymmetrically. There are many dif-
ferent processes in the centre where the droplet collision occurs,
and accordingly the data exhibit significant temporal overlap (as in-
dicated by the grey areas in the representation). At the example of
this data set, we primarily exemplify the temporal exploration with
the pointer. First, the two initial dropletsmerge and form a disk in the
centre (Figure 12a). We then follow the disk outward as it extends in
size and increasingly separates into individual droplets (Figure 12b
and c). We further track an individual droplet with the pointer as it
moves outward along a finger-like structure (Figure 12d). With this,
we can also study how other droplets progress simultaneously. This
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Figure 14: (a–f) Study of the impact of different numbers of units
and (g–h) random number initialization at the example of the von
Kármán vortex street (cf. Figure 13). The depicted shapes and their
frequency are stable across all numbers of units, showing only small
differences due to different resolutions. The most prominent devia-
tion is due to inverted left-to-right orderings.

demonstrates the direct and precise temporal navigation by selecting
processes of interest in image space (e.g. droplets moving outward).
Despite temporal overlap, we smoothly progress in time starting
from the currently selected time step (cf. accompanying video).

Beyond supporting navigation, our dense shape representation di-
rectly gives an overview on the amount of droplets ejected from the
centre via the amount of finger-like structures. These structures also
depict the trajectories of the droplets and indicate velocity. The fin-
ger widths further provide information on the size of the droplets.
Furthermore, the texture in the larger fingers indicates droplet oscil-
lations (e.g. [KBE*17]).

vonKármán (Figure 13). In this analysis of a CFD simulation of
a flow around a cylinder, the focus of interest is on regions of high
velocity magnitude. In the visualization, the cylinder is located at
the top, and aforementioned regions move from the top to the bot-
tom in two lanes. From the texture of the representation and the
shape colouring in Figure 13(a), it can be seen that the shape of
the high-velocity regions changes during the course of downward
movement. The peaks shown in the mouse selection overlay (de-
picted via filled grey circles in Figure 13b–d) illustrate that shapes
repeatedly pass through at constant frequency of approximately ev-
ery 30 time steps. The fact that large parts of the representation ap-
pear in a shape colour (instead of grey) indicates that the respective
shapes do not change significantly in different iterations of the pro-
cess.

Nevertheless, there are also some grey areas depicting overlap
of different shapes. To investigate this in more detail, we move the

pointer to such a region and toggle between selected time steps
(Figure 13b–d). First of all, while switching between respective
time steps, we can see from the time step renderings depicted in
dark grey that quite similar states are repeated over and over again.
However, there are slight differences in shape which cause our ap-
proach to detect shape overlap. Essentially, there are smaller vari-
ations in the time series that lead to individual shapes separating
earlier or later on their way down. Although in the first occurrence
the shapes on the top are still connected (as indicated by the blue
colour and the selection in the shape HUD, Figure 13b), they are
further apart in later cases resulting in disconnected shapes (Fig-
ure 13c and d). Identifying and pointing out these small variations
can be useful for analysis. In particular, this can point out small vari-
ations in recurrent behaviour that otherwise appears almost identi-
cal. In this case, further simulations would be required to exclude or
confirm whether detected variations are a result of small differences
in physical processes or due to insufficient spatio-temporal data
resolution.

5.3. Number of Units for Colour Mapping

We now investigate the sensitivity of the results regarding the num-
ber of units of the SOM by means of the von Kármán data set. Fig-
ure 14 (a–f) shows that across all numbers of units similar shapes
and descriptors have been identified (i.e. the results are stable, and
largely independent of the exact number of chosen units). The sole
significant difference are reversed orderings, which has practically
no impact for the evaluation. In cases in which persistence is cru-
cial, that is, when a user aims to explore colour maps created with
different numbers of units, the orderings could automatically be re-
versed to account for this. Finally, the training procedure of the
SOMs includes some randomness (e.g. in the initialization of the
units, cf. Section 3.2 (b)). However, choosing different seeds only
has negligible impact on the result. We empirically confirmed this
for all number of units in this study and exemplify this here in Fig-
ure 14(g) and (h).

5.4. Temporal Split

We evaluate the results of our temporal splitting approach by
means of two cases: the Bottle (Figure 7) and the λ2 (Figure 15)
data set. The main goal of this technique is to address temporal
overdraw.

With the Bottle data set, the technique results in a representa-
tion temporally split into three partitions (Figure 7). This addresses
overlap issues that can be seen in Figures 1(b) and 9. The first split
(between Figure 7a and b) deals with overlap induced by a change
of phases in the evolution of the laser pulse, most prominently a
large reflection spot occurring slightly left and below of the cen-
tre. The second split (between Figure 7b and c) addresses overlap
of the initial thin pulse travelling to the head of the bottle and the
subsequent illumination of the whole upper part of the bottle by
the pulse.

The λ2 data set initially features a clear cross-like structure,
that increasingly decomposes over time, resulting in complex and
heavily overlapping small objects towards the end (Figure 15).
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Figure 15: Temporal splitting for the λ2 data set featuring complex, fine-granular spatio-temporal processes. (a) Without splits, the represen-
tation of the complex processes exhibits significant temporal overlap. (b–e) Splitting addresses this issue (using the same parameter settings
as for the Bottle in Figure 7, (config A)). The first phase of the time series in which the initial structure collapses exhibits comparably little
overlap and the representation in (b) depicts a long sequence covering almost half the series. Afterwards the behaviour gets more chaotic and
splits occur every 10 to 15 time steps. (f–m) A stricter parameter setting (reducing θω from 0.5 to 0.3, (cfg. B)) yields finer splits with a higher
frequency (with the first split at time step 20 (f), later subdividing every four to eight time steps (g–m)).

Figure 16: Comparison to other techniques generating spatio-
temporal overviews (selection and spatio-temporal contours) by
means of the Droplet Simulation and the Bottle data set.

Accordingly, while an overview representation of the whole time
series allows to gain some insights into temporal progression, there
are large areas of significant overlap, hindering the analysis of shape
outlines (Figure 15a). Splitting the time series (with the same set-
tings as for the Bottle discussed above) yields a temporal partition-
ing reflecting the temporal progression (b–e). The first representa-
tion depicts a longer temporal sequence that shows the initial de-
composition and the curved shapes that are forming (b). The next
splits occur after 15 time steps, and successively after 10, respec-
tively, due to significant overlap (c–e). Decreasing θω from 0.5 to
0.3 yields a qualitatively similar, yet finer decomposition with less
overlap (f–m).

In general, while splitting helps to deal with temporal overlap,
it comes at the cost of multiple representations, and making sense
of processes with small, complex shapes and heavy overlap still re-
mains challenging (cf. discussion in Section 5.7).

5.5. Comparison to Alternatives

We compare the results of our approach to other techniques creating
spatio-temporal overviews, namely temporal selection [FE16] and
spatio-temporal contours [Fre18] (cf. Section 2). Time is mapped
to colour in both techniques. We use the Droplet Simulation and
the Bottle data set with the same camera configuration and transfer
function as in the rest the paper.

Temporal selection maintains the full spatial information for cho-
sen time steps, and generally provides an intuitive overview (Fig-
ure 16a and c). However, only a small subset of time steps are
presented. This means that interesting processes or events may be
missed, and transitions between selected time steps are not rep-
resented. For instance, in the Droplet Simulation, the temporal
changes in shape along the paths of the droplets splashing out and
the decomposition of the disk are not represented (Figure 16a). The
spatial coverage of processes also cannot be assessed to their full
extent, for example, how far the disk and the droplets splash out. In
the Bottle, different stages of the laser pulse in its evolution through
the bottle are missing, for example, from the wide pulse depicted in
green to the filled bottle head in light brown (Figure 16a). In contrast
to this temporally sparse technique, our approach is able to present
shape information in a temporally dense way. However, this requires
a more abstract representation (based on shape outlines). Neverthe-
less, our approach also supports the analysis of spatial aspects in
full detail via the direct exploration of renderings (as demonstrated
in Figure 16c).
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Table 1: Performance measurements on GPU (CUDA) and CPU
(OpenMP). Our Mapping implementation only runs on the CPU.

Data set Shape walk Mapping Rendering #shapes

(Name, time steps) (Section 3.1, in s) (Section 3.2, in s) (Section 3.3, in s) (in thousands)

GPU CPU CPU GPU CPU

5Jets, 340 42.7 283.4 152.1 0.1 1.4 3114

Bottle, 300 8.2 132.2 86.2 0.1 1.2 1828

Drop. Meas., 315 3.4 40.2 14.7 0.1 1.3 294

Drop. Sim., 500 35.8 313.1 551.4 0.1 2.1 10 281

Hotroom, 50 9.1 127.9 57.0 0.0 0.2 1268

von Kármán, 300 64.5 239.9 302.2 0.1 1.3 5559

λ2, 60 59.7 623.7 104.7 0.0 0.3 1891

Spatio-temporal contours largely neglect shape information, but
present data in a temporally dense way (Figure 16b and d). For
instance, contours indicate the paths of individual droplets (Fig-
ure 16b). They further outline boundaries in spatio-temporal pro-
cesses, for example, the sharp tip formed by the pulse early on in
blue, and in green the endpoint of the wave with a large vertical ex-
tent through the centre of the bottle (Figure 16d). However, this rep-
resentation does not directly capture spatial structure, and neglects
(non-abrupt) shape changes that occur smoothly and continuously.
For example, in the Droplet Simulation data, the lanes going out-
ward from the splash only represent droplet paths, but not the shape
of individual droplets (Figure 16b).

In contrast to both techniques, our approach presented in this pa-
per is able to depict shape information in a temporally dense fashion.
It maintains both structural information (like the temporal selection
technique) and depicts all time steps outlining the bounds of spatio-
temporal processes (like the contour approach). For instance, for
the Droplet Simulation, we present both the path of splashing out
droplets as well as their changes in shape (Figure 12), and for the
Bottle we show the outlines of the laser pulse and provide informa-
tion regarding its spatial form (Figure 1b and Figure 9). In addition,
our representation directly supports smooth image-based temporal
browsing. Finally, spatio-temporal overlap is an issue not only for
the approach presented in this paper, but also for both the selection-
based and spatio-temporal contour technique. We address this issue
via splitting (cf. Section 3.3 (a)). Potentially, the general approach
to detect and prevent spatio-temporal overlap could also be imple-
mented for the other techniques in an adjusted form in future work.

5.6. Timings and Progressive System Implementation

We evaluate the implementation of our approach on a machine
equipped with an Intel Core i7-6700 CPU, 64 GB of memory, and
two NVIDIA GPUs. We use a GeForce GTX 1070 (with 8 GB of
memory) for the interactive display via OpenGL. For generating our
dense representation, we utilize a TITAN Xwith 12 GB of memory.
Each individual step for computing our shape-based spatio-temporal
visualization was designed to efficiently utilize parallel devices. We
present the computation timings of our dense representation for our
CUDA and our OpenMP implementation in Table 1. They can be
regarded as pre-processing steps for the interactive navigation. Our
CUDA implementation maximally requires around a minute for a
whole time series while our CPU implementation is approximately

Figure 17: Progressive computation of our shape representation.

one order of magnitude slower (in our prototype, we only have a
CPU implementation for the Mapping). With this, our approach is
fast enough to only induce short delays when changing parameters
that require recomputation (e.g. the camera position for 3D data or
the transfer function). To further support this usage scenario, results
are shown progressively after triggering such a recomputation (this
is described below in more detail). From the table, it can be seen that
the timings for Mapping are linearly dependent on the number of
shapes that we need to process, which ranges between 300 000 and
10 million. Note that apart from cases in which updates to the dense
representations are required, navigation itself imposes no significant
computational cost and is highly interactive. Timings regarding the
detection of overdraw for splitting only depend on the image size
and introduce negligible computational overhead, taking 0.001 s on
the GPU and 0.03 s on the CPU per check.

The primary interaction possibilities considered in this work
exclusively use the pre-computed shape information. However,
our implementation also supports progressive computation to ad-
equately handle streaming data or changes to the camera position.
For this, the operations discussed in Sections 3 and 4 are imple-
mented in different CPU threads to yield a responsive system at
any time (denoted below as representation thread and interaction
thread, respectively). The interaction thread is the master thread,
taking care of user interaction and checking whether there are new
(progressive) computation results available from the representation
thread. When available, the representation thread and the interac-
tion thread make use of different GPUs. The representation thread
processes each time step separately and progressively combines the
results to an updated version of our representation. This is facilitated
by the fact that no particular ordering is required when combining
the results of different time steps (cf. Section 3.3). In our imple-
mentation, we iteratively integrate new time steps with a batch size
of five. We use double buffering, that is, updates to the dense rep-
resentation are written to alternating buffers. Progressive updates
throughout the time series are exemplified in Figure 17 by means of
the 5Jets data set.

5.7. Discussion, Limitations and Future Work

The goals of our approach are to provide an overview and sup-
port the exploration of moving and transforming shapes. In par-
ticular, it is designed for the analysis of spatially sparse data, that
is, depicted events do not fully cover the complete image at once
over a large number of time steps. As demonstrated earlier in this
work, our approach is well suited for analyzing moving droplets,
laser pulses, waves and areas of high temperature or velocity
magnitude. Still, despite our shape abstraction via forward-facing
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contours (cf. Section 3.1), temporal overlap still cannot be avoided
completely in general. It occurs to a varying degree in all of the
examples considered in this work, especially when dealing with data
sets with many small and complex overlapping shapes — like the
λ2 data set (Figure 15).

We employ various means in our work to address temporal over-
lap. First, we indicate overdraw in our representation via reduced
colour saturation. During user exploration, temporal persistence of
the selected time step in the course of pointer movement allows for
smooth, continuous navigation in time. Overlap regions can further
be investigated interactively by switching between involved time
steps (e.g. Figure 9c and d). For time step selection when hover-
ing over a cell c, we extract maxima in the sequence of weights ctω
over time (cf. Section 4). Note that in our implementation, we use
a comparably simple approach for determining extrema that nev-
ertheless proved to work well in our experiments. However, more
elaborate and robust approaches for determining extrema could be
used as a drop-in replacement (e.g. [VMB13]).

Although these measures work well for dealing with limited
spatio-temporal overdraw, they may be insufficient in more chal-
lenging scenarios (e.g. as demonstrated at the example of the λ2
data set in Figure 15a). In such cases, temporal splitting of repre-
sentations can be effective in preventing overlap in the representa-
tion in the first place as discussed in Section 5.4 (e.g. Figure 7).
However, there are also potential shortcomings. First of all, this ap-
proach introduces parameters with which a user defines the extent of
overdraw that is still acceptable. Nonetheless, this downside of pa-
rameter dependence is mitigated by the fact that the involved com-
putations for temporal split and rendering are comparably cheap,
and therefore parameter adjustments can quickly be reflected in the
representations (the computationally expensive Shape Walk is not
affected by the split, and accordingly no recomputation is required
in this regard when parameters are changed). However, there is a
trade-off between limiting overdraw on the hand — potentially re-
sulting in heavily partitioned individual representations, for exam-
ple, Figure 15m-f — and yielding a concise aggregated overview
with few representations on the other.

Although we concentrate on cases exhibiting clear shape bound-
aries in this work, note that our approach is generic in that it con-
ceptually works directly with smooth and less distinct boundaries
as well. Technically speaking, there are no restrictions concern-
ing contours regarding strength cω (cf. Algorithm 1), length, their
total number or mutual similarities in terms of shape or location.
However, the presence of softer boundary areas eventually results
in more shapes being extracted. This not only increases computa-
tion time, but potentially also adds to the issue of temporal over-
lap. In addition, this might also impede a meaningful selection of
contours during temporal navigation. A detailed analysis of sce-
narios involving less distinct boundaries will be required in future
work to closely investigate respective characteristics. Potentially,
dedicated extensions could be developed to further improve the ex-
pressiveness of the results in these scenarios, for example, by lo-
cally clustering and condensing contours. Overall, temporal over-
lap is not only challenging for our approach discussed in this paper,
but generally techniques aiming towards expressive spatio-temporal
overviews need to cope with respective visual clutter and occlusion
(e.g. [KH13]).

Besides simulation data and experiments that are directly gener-
ated in 2D, we also project data that are originally in 3D into the
2D image space. Adjusting the projection parameters (e.g. cam-
era position) can be done fairly quickly due to our efficient im-
plementation, exploiting the significant parallelism involved and
supporting progressive updates (Section 5.6). However, we do not
preserve depth-related semantics for 3D data in our implementa-
tion. As a result, disconnected objects that overlap in the projection
are detected as a single shape. In particular, this has an impact on
shape classification. In future work, this could be mitigated by fur-
ther taking depth information into account during Shape Walk. We
also consider a fairly simply shape descriptor in our implementa-
tion. Although it proved to be quite effective in our experiments,
we also plan to study the impact of using other variants in future
work.

Our prototype implementation of progressive computation starts
from scratch once any parameter is altered that has an impact on the
dense shape visualization. To save compute time, we could distin-
guish between different types of changes and only recompute what
is strictly necessary. Finally, we further plan to provide a CUDA-
based implementation of Shape Mapping.

6. Conclusion

In this paper, we introduce an approach for the dense visualization
and exploration of moving and deforming shapes from scientific ex-
periments and simulations. We create an image space representation
by convolving a noise texture along shape contours, in a process that
is conceptually similar to LIC. We not only indicate spatial struc-
ture via texture, but additionally use colour to depict time or classes
of shapes. For shapes, a customized colour map is generated auto-
matically for the provided input data. Our temporally dense repre-
sentation fully summarizes the evolution of shapes, and with this
serves as a basis for interactive user navigation in combination with
traditional renderings. We further provide means to adaptively split
the representation in time to deal with spatio-temporal overlap. Our
efficient implementation quickly generates our representation, and
further supports progressive computation. We demonstrate the per-
formance and utility of our approach using 2D and 3D scalar fields
from experiments and simulations, analyzing moving droplets, laser
pulses, waves and areas of high temperature or velocity magnitude.

In future work, we aim to further investigate different directions
to handle extensive spatio-temporal overlap in general, and look into
scenarios involving less distinct shape boundaries in particular. Be-
yond this, we plan to integrate automatic analysis approaches to
indicate interesting events to the user, additionally consider depth
information when analyzing 3D data, and further improve the effi-
ciency of our implementation.
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