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ZUSAMMENFASSUNG

Biochemische Prozesse benötigen typischerweise eine konstante Energiezufuhr. Sie sind
daher nicht im thermodynamischen Gleichgewicht. Zumeist laufen solche Prozesse in einer
Umgebung ab, deren thermische Energie mit der des Systems vergleichbar ist, sodass
Fluktuationen eine wichtige Rolle spielen. Eine physikalische Theorie, welche derartige
Systeme beschreiben möchte, muss daher diese Aspekte berücksichtigen. Stochastische
Thermodynamik hat sich über die letzten Jahrzehnte zu einer umfassenden Theorie ent-
wickelt, fluktuierende Systeme unter Nichtgleichgewichtsbedingungen zu betrachten. Die
Identifikation thermodynamischer Größen wie Arbeit und Entropie entlang einer Trajekto-
rie ermöglicht die systematische Untersuchung sogenannter mesoskopischer Systeme, d.h.,
Systeme, in welchen Fluktuationen nicht ignoriert werden dürfen.

Bringt man ein System in endlicher Zeit von einem gegebenen Anfangs- in einen gege-
ben Endzustand, wird unweigerlich Entropie produziert. Das externe Protokoll, welches
diese Transformation mit minimalem entropischen Aufwand durchführt, heißt optimales
Protokoll. Für Systeme mit diskreten Zuständen konvergiert das optimale Protokoll im
Kontinuumslimes gegen jenes, welches im kontinuierlichen Zustandsraum die gesamte,
produzierte Entropie minimiert. Das optimale Treiben in derartigen Systemen ist konser-
vativ, d.h., es kann von einem Potential abgeleitet werden. Für Systeme mit diskretem
Zustandsraum steht eine derartige Charakterisierung des optimalen Treibens noch aus.
Wir schließen diese Lücke in dieser Arbeit. Wir beweisen, dass das optimale Protokoll für
eine Transformation über einem diskreten Zustandsraum nicht konservativ ist, d.h., es gibt
eine Affinität, welche nicht durch Differenzen der freien Energien der jeweiligen Zustände
dargestellt werden kann. Zudem zeigen wir, dass die optimale Affinität durch die Anzahl
der Zustände in einem Zyklus beschränkt ist.

Unser zweites Hauptaugenmerk liegt auf nichtlinearen Phänomenen im Grenzfall schwa-
chen Rauschens. Chemische Reaktionsnetzwerke (CRN) können in diesem Grenzfall verschie-
dene, nicht-triviale Effekte wie Bifurkationen und Grenzzyklen aufzeigen. Die Oszillationen
dieser Grenzzyklen sind verrauscht, weshalb sie nach einer gewissen Zeit ihre Präzision
verlieren. Dieser Verlust der Kohärenz wird durch die Güte eines Oszillators charakte-
risiert. Wir untersuchen diese Kenngröße für eine eindimensionale Bewegung auf einem
periodischen Ring und leiten einen analytischen Ausdruck für die Güte des Oszillators im
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Grenzfall schwachen Rauschens her. Mit diesem Ausdruck beweisen wir kontinuierliche
Versionen thermodynamischer Schranken an die Güte eines Oszillators, welche ursprünglich
für Markovnetzwerke vermutet wurden. Außerdem parametrisieren wir zweidimensionale,
stochastische Oszillatoren entlang deren Bogenlänge, sodass wir eine effektiv eindimensio-
nale Bewegung erhalten. Mit dem analytischen Ausdruck der Güte eines eindimensionalen
Oszillators leiten wir eine Formel für diese approximative Beschreibung her. Wir wenden
dieses Vorgehen auf zwei Beispielsysteme an, welche stochastische Grenzzyklen aufzeigen.

Neben dem Phänomen der Kohärenz eines Grenzzyklus beschäftigen wir uns mit dem Ent-
stehen eines solchen durch einen kontinuierlichen Phasenübergang. Als Musterbeispiel eines
univarianten Systems, welches einen kontinuierlichen Nichtgleichgewichtshasenübergang
aufweist, betrachten wir das Schlögl Modell. Wir zeigen numerisch und analytisch, dass sich
der Teilchenfluss, welcher in die Chemostaten hinein und heraus strömt, und dessen zuge-
ordneter Diffusionskoeffizient in der Umgebung des kritischen Punktes durch Skalenformen
darstellen lassen. Als weiteres Beispiel für einen kontinuierlichen Nichtgleichgewichtspha-
senübergangs untersuchen wir die Hopf-Bifurkation im thermodynamisch-konsistenten
Brüsselator. Wir finden numerisch und theoretisch, dass der Teilchenfluss aus und in die
chemischen Reservoire nicht differenzierbar vom Kontrollparameter abhängt. Die Fluktua-
tionen des Stroms, welche durch den Diffusionskoeffizienten charakterisiert werden, erfüllen
im Regime oberhalb der Bifurkation eine Skalenform. Nähert man sich der Bifurkation von
unten, ist der Diffusionskoeffizient eine unstetige Funktion des Kontrollparameters.

Diese Dissertation ist aufgebaut wie folgt. In Kapitel 1 motivieren wir das Thema und
geben eine kurze Einführung. In Kapitel 2 erläutern wir die theoretischen Grundlagen,
welche zum Verständnis der nachfolgenden Kapitel nötig sind. Wir diskutieren unsere ersten
Hauptergebnisse bezüglich optimaler Protokolle auf diskreten Zustandsräumen in Kapitel
3. Dieses Kapitel basiert auf Ref. [1]. Wir präsentieren unsere Resultate bezüglich der
Kohärenz von Oszillatoren in Kapitel 4, welches auf Ref. [2] basiert. In Kapitel 5, welches
auf Ref. [3] beruht, untersuchen wir den Nichtgleichgewichtsphasenübergang im Schlögl
Modell und in Kapitel 6 den thermodynamisch-konsistenten Brüsselator. Wir schließen in
Kapitel 7. Im Folgenden geben wir eine Zusammenfassung der Kapitel 2 bis 6.

kapitel 2: stochastische thermodynamik für systeme mit diskre-

ten zuständen

Wir führen die grundlegenden Prinzipien stochastischer Thermodynamik für Systeme
mit diskreten Zuständen ein und diskutieren Anwendungen, welche in dieser Dissertation
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untersucht werden. Wir betrachten ein geschlossenes System von Mikrozuständen, welches
in Kontakt mit einem Wärmebad ist, und wiederholen das kanonische Ensemble aus der
statistischen Mechanik. Wir wechseln in ein vergröbertes Bild von Mesozuständen und füh-
ren thermodynamische Potentiale ein. Unter der Annahme, dass Übergänge innerhalb eines
Mesozustands schneller stattfinden als zwischen verschiedenen Mesozuständen, erhalten wir
eine Markovsche Dynamik auf dem Level des vergröberten Systems. Wir diskutieren die
lokale, detaillierte Gleichgewichtsbedingung ("local detailed balance"), welche die Sprun-
graten mit freien Energiedifferenzen der verschiedenen Zustände in Verbindung bringt. Wir
öffnen das System und erlauben den Austausch von chemischer Energie oder Abfuhr von
Arbeit, indem wir es an Teilchen- und Arbeitsreservoire koppeln. In einer derartigen Nicht-
gleichgewichtssituation erreicht das System einen stationären Nichtgleichgewichtszustand,
in welchem konstant Entropie produziert wird. Anschließend definieren wir physikalische
Größen wie innere Energie, Arbeit und Entropie entlang dieser verrauschten Trajektorie auf
thermodynamisch konsistente Art und Weise. Zuletzt zeigen wir, dass diese Definitionen in
Einklang mit Gleichgewichtsthermodynamik sind, indem wir deren Ensemblemittelwert
bestimmen.

Weiterhin betrachten wir Transformationen eines System mit endlicher Übergangszeit von
einem gegebenen Anfangs- zu einem Endzustand. Wir erläutern die wichtigsten Ergebnisse
für Systeme mit kontinuierlichem Zustandsraum und zeigen, dass ein Treiben, welches
eine derartige Transformation mit minimalem entropischen Aufwand durchführt, von
einem Potential abgeleitet werden kann. Für Systeme mit diskreten Zuständen formulieren
wir das Optimierungsproblem, in welchem die totale Entropieproduktion während der
Transformation minimiert wird. Wir wiederholen den Kontinuumlimes und zeigen, dass
das optimale Protokoll in diesem Grenzfall gegen jenes mit kontinuierlichem Zustandsraum
konvergiert.

Koppeln wir ein System diskreter Zustände an mehrere Teilchenreservoire, bezeichnen wir
es als chemisches Reaktionsnetzwerk (CRN). Wir führen die grundlegenden Notationen und
thermodynamischen Größen für geschlossene und offene CRN ein. Wir fokussieren uns auf
Systeme mit Chemostaten. Ein Chemostat ist ein Teilchenreservoir, welches derart reguliert
ist, dass die Konzentration der zur Verfügung gestellten Teilchen im System konstant
gehalten wird. Der Teilchenstrom aus bzw. in den Chemostat ist daher unmittelbar mit
Entropieproduktion verbunden. Zuletzt diskutieren wir eine Methode, die Dynamik eines
CRN numerisch zu simulieren.

Im Allgemeinen kann die Bewegungsgleichung der Wahrscheinlichkeitsverteilung eines
CRN aufgrund von Nichtlinearitäten nicht analytisch gelöst werden, weshalb Näherungs-
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methoden nötig sind. Wir diskutieren die Entwicklung der Mastergleichung für große
Reaktionsvolumen nach van Kampen und Gillespies chemische Langevin-Gleichung. Diese
Methoden approximieren die Dynamik als Diffusionsprozess. Im Grenzfall großer Systeme
kann die Teilchenzahl durch deren Dichte ersetzt werden, was zu Fokker-Planck Gleichungen
führt, deren Lösungen durch eine WKB-Methode bestimmt werden können. Lässt man die
Systemgröße ins unendliche wachsen, wird das Rauschen unterdrückt und man erhält die
chemischen Ratengleichungen.

Im Limes großer Systeme zeigen chemische Reaktionsnetzwerke verschiedene nicht-triviale
Phänomene, wie z.B. Grenzzyklen oder Phasenübergänge. Wir wiederholen kritisches
Verhalten bei Gleichgewichtsphasenübergängen und diskutieren es im Kontext von Bi-
furkationstheorie. Wir illustrieren verschiedene Bifurkation durch ein eindimensionales,
dynamisches System und betrachten die kubische Normalform für eine Hopf-Bifurkation
als Musterbeispiel für ein zweidimensionales System, welches einen kontinuierlichen Nicht-
gleichgewichtsphasenübergang vorweist. Zuletzt erörtern wir die Güte eines verrauschten
Oszillators als Maß seiner Kohärenz. Diese Kenngröße ist definiert durch das Verhältnis
des Imaginär- und Realteils des ersten nicht-trivialen Eigenwerts der zugrundeliegenden
Dynamik. Abschließend gehen wir darauf ein, wie die Güte eines Oszillators mit physika-
lischen Größen, wie Entropieproduktion oder dem thermodynamischen Treiben entlang
eines periodischen Markovnetzwerkes, zusammenhängt.

kapitel 3: optimalität des nicht-konservativen treibens in endli-

cher zeit für prozesse mit diskreten zuständen

Wir betrachten ein Optimierungsproblem auf diskreten Zuständen. Ein optimaler Pro-
zess mit endlicher Übergangszeit transformiert eine gegebene Anfangsverteilung in eine
Endverteilung in einer vorgegeben Zeit und verursacht währenddessen minimale thermody-
namische Kosten, welche durch die totale Entropieproduktion gegeben sind. Wir beweisen,
dass das optimale Protokoll für ein System mit diskreten Zuständen nicht konservativ ist,
d.h., das optimale Treiben ist im Allgemeinen durch eine Affinität gegeben. Dieser Befund
steht im Kontrast zu Systemen mit kontinuierlichem Zustandsraum. Weiterhin zeigen wir,
dass die optimale Affinität durch die Anzahl der Zustände in einem Zyklus beschränkt ist.
Numerische Befunde legen nahe, dass diese Schranke durch kurze Übergangszeiten oder
Konfigurationen mit großen Differenzen zwischen Anfangs- und Endverteilung gesättigt
wird. Wir verallgemeinern unsere Resultate auf Transformationen, welche die Vorwärts-
und Rückrichtung eines Übergangs unterschiedlich beeinflussen. Zuletzt zeigen wir, dass
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wir im Grenzfall eines verschwindenden Gitterabstands das Ergebnis eines optimalen,
konservativen Treibens reproduzieren.

kapitel 4: kohärente oszillationen im limes verschwindenden rau-

schens

Die Kohärenz eines verrauschten Oszillators wird durch dessen Güte beschrieben. Wir
berechnen diese Kenngröße für eine Oszillation, welche durch eine getriebene Fokker-
Planck Dynamik entlang eines eindimensionalen, periodischen Potentials beschrieben
wird, im Grenzfall schwachen Rauschens mittels der WKB-Methode. Dieser analytische
Ausdruck erlaubtes es uns, eine kontinuierliche Version einer Schranke an die Güte der
Oszillation herzuleiten und zu beweisen, welche ursprünglich für Markovnetzwerke vermutet
wurde [4]. Im Limes verschwindenden Rauschens gleicht diese einer anderen vermuteten
Schranke, welche die totale Entropieproduktion während einer Periode beinhaltet [5].
Wir projizieren eine verrauschte, zweidimensionale Bewegung auf deren Bogenlänge und
erhalten einen approximativen Ausdruck für die Güte eines ebenen Oszillators. Diese
Approximationsmethode wenden wir auf den verrauschten Stuart-Landau Oszillator an.
Wir evaluieren die Gültigkeit unserer Methode numerisch, indem wir mit einem allgemeinen
Ausdruck vergleichen, welcher mit Techniken aus der Hamilton-Jacobi Theorie hergeleitet
wurde. Wir finden eine Diskrepanz für Systeme mit starker Kopplung zwischen dem
normalen und tangentialen Freiheitsgrad. Für dieses spezielle Modell finden wir eine
Variation unseres Approximationsschemas, welche numerisch mit dem Hamilton-Jacobi
Ausdruck übereinstimmt. Als zweite Fallstudie betrachten wir den thermodynamisch-
konsistenten Brüsselator, welcher ein Modell für eine chemische Uhr darstellt. Unsere
Arbeit trägt somit zum intuitiven Verständnis kohärenter Oszillation bei und ergänzt die
bisherigen, komplexen Resultate, welche auf Hamilton-Jacobi Theorie basieren.

kapitel 5: nichtgleichgewichtsfluktuationen kritischer reakti-

onsnetzwerke – das schlögl modell als musterbeispiel

Wir betrachten den kontinuierlichen Nichtgleichgewichtsphasenübergang im Schlögl Modell
und untersuchen den Teilchenfluss, welcher aus den Chemostaten heraus oder hinein strömt,
und dessen Fluktuationen. Dieser Teilchenfluss ist proportional zur Entropieproduktion. Nu-
merische Simulationen zeigen, dass der Diffusionskoeffizient, welcher die Fluktuationen des
Flusses beschreibt, am kritischen Punkt mit der Systemgröße divergiert. In der Umgebung
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des kritischen Punktes erfüllt er eine Skalenform. Im monostabilen Regime untersuchen
wir dieses Phänomen analytisch mittels der chemischen Langevin-Gleichung und der Ent-
wicklung nach van Kampen. Wir leiten die entsprechenden kritischen Exponenten her. Im
bistabilen Regime approximieren wir das System als Markovnetzwerk mit zwei Zuständen.
Nachdem vorherige Studien Fluktuationen während des Phasenübergangs erster Ordnung
im Schlögl Modell untersucht haben, vervollständigen wir somit das thermodynamische
Verständnis der Nichtgleichgewichtsfluktuationen in diesem Mustersystem.

kapitel 6: nichtgleichgewichtsfluktuationen kritischer reakti-

onsnetzwerke – der brüsselator als musterbeispiel

Der thermodynamisch-konsistente Brüsselator ist ein Musterbeispiel für eine chemische Uhr.
Wir untersuchen den Teilchenstrom aus und in die Chemostate und dessen Fluktuationen
während der Hopf-Bifurkation des Systems. Numerische Berechnungen zeigen, dass der
Teilchenfluss nicht differenzierbar vom Kontrollparameter abhängt. Wir erklären dieses
Verhalten mittels einer Abbildung auf die kubische Normalform für eine Hopf-Bifurkation.
Weitere numerische Simulationen zeigen, dass der Diffusionskoeffizient, welcher dem Fluss
zugeordnet ist, an der Bifurkation mit der Systemgröße divergiert. Oberhalb der Bifurkation
erfüllt er eine Skalenform und wir extrahieren kritische Exponent. Unterhalb der Bifurkation
zeigt der Diffusionskoeffizient ein unstetiges Verhalten als Funktion des Kontrollparameters.
Weitere numerische Untersuchungen mittels der chemischen Langevin-Gleichung und
van Kampens Entwicklung bestätigen diesen Befund. Wir leiten einen Ausdruck für
den Diffusionskoeffizienten her, welchen wir nicht weiter analytisch untersuchen können.
Daher bleibt die analytische Bestimmung der kritischen Exponenten und eine theoretische
Erklärung für das unstetige Verhalten als Frage offen.

ABSTRACT

Biochemical processes typically operate on energy-scales comparable with the thermal
energy of their environment. Additionally, these processes rely on the constant consumption
of energy, i.e., work under nonequilibrium conditions. Thus, any physical theory aiming
to describe those systems needs to incorporate fluctuations into a general nonequilibrium
setting. Over the last decades, stochastic thermodynamics has been developed as a com-
prehensive framework to study those fluctuating systems that are far from equilibrium.
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The identification of physical quantities like work and entropy along a single trajectory
allows a systematic thermodynamic treatment of mesoscopic systems where fluctuations
cannot be ignored.

The transformation of a system from a given initial to a final state within finite-time
comes with an inevitable thermodynamic cost. For a system with discrete state space, the
optimal protocol that performs this transformation with minimal entropic cost reduces to
the continuum one in the appropriate limit. For systems with continuous state space, the
optimal transformation is achieved by applying a gradient force, i.e., a conservative force.
However, for systems with discrete state space this characterization is still pending. In
this thesis, we close this gap and prove that for a system with discrete states the optimal
process involves non-conservative driving, i.e., a genuine driving affinity. Furthermore, in a
multicyclic network, the optimal driving affinity is bounded by the number of states within
each cycle.

The second main objective of this thesis is the treatment of nonlinear phenomena in
the weak-noise limit. In this limit, chemical reaction networks (CRNs) show a variety of
non-trivial behaviors like bifurcations and noisy limit cycles. Since those oscillators behave
stochastic, they lose their precision after some time. This loss is characterized by the
quality factor. We study this quantity for a one-dimensional motion along a periodic ring
and obtain an analytical expression for the quality factor in the weak-noise limit. Using
this expression, we derive and prove continuous versions of thermodynamic bounds on the
quality factor which have been conjectured for Markov networks. Furthermore, we describe
noisy planar oscillations as effective, one-dimensional motion along the arc-length and
apply our expression to two paradigmatic systems exhibiting limit cycle oscillations.

Besides the coherence of noisy limit cycle oscillations, we also focus on their emergence
through a continuous phase transition. We study the Schlögl model as a paradigmatic
univariate model undergoing a continuous nonequilibrium phase transition. We numerically
and analytically show that the particle flux in and out the chemostats and its associatied
diffusion coefficient obey a scaling form in the vicinity of the critical point. As second
paradigmatic example of a continuous nonequilibrium phase transition, we study the
thermodynamically consistent Brusselator model undergoing a Hopf bifurcation. We numer-
ically and theoretically find that the particle flux depends non-differentiable on the control
parameter. The fluctuations quantified through the associated diffusion coefficient follow a
scaling form above the bifurcation. However, approaching the bifurcation from below, the
diffusion coefficient develops a discontinuous dependence on the control parameter.
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This dissertation is structured as follows. In Chapter 1, we motivate and introduce the
topic. We present the theoretical basics for this thesis in Chapter 2. In Chapter 3, we
present the first main results regarding optimal protocols on discrete state space. This
chapter is based on Ref. [1]. We discuss our results about the coherence of noisy oscillations
in Chapter 4, which is based on Ref. [2]. In Chapter 5, which is based on Ref. [3], we
present our discussion about the continuous phase transition in the Schlögl model, and
in Chapter 6 about the thermodynamically consistent Brusselator model. We conclude in
Chapter 7. In the following, we give a summary of Chapters 2 to 6.

chapter 2: stochastic thermodynamics on discrete state space

We discuss the basic concepts and applications of stochastic thermodynamics on discrete
state space that are needed throughout this thesis. We recapitulate the canonical ensemble
of statistical mechanics considering a closed system of microstates in contact with a heat
reservoir. We coarse-grain those states into mesostates and introduce thermodynamic
potentials. Under the assumption that the time-scale of transitions within mesostates is
much faster than transitions between different mesostates, we obtain a Markovian dynamics
for the coarse-grained states. We briefly discuss the local detailed balance condition that
connects the transition rates between the states with their free energy. Coupling the system
to external particle and work reservoirs, we allow the exchange of chemical energy or
extraction of work, i.e., we obtain a genuine nonequilibrium situation. In this set-up, the
Markovian dynamics allows for a nonequilibrium steady-state (NESS), i.e., a stationary
state with constant rate of entropy production. Considering a single trajectory following
this Markovian dynamics, we define physical quantities like internal energy, work and
entropy in a thermodynamic consistent way. We further show that these definitions are
consistent with equilibrium thermodynamics by evaluating their ensemble average.

For a finite-time transformation of a system from a given initial to a final state, we
briefly discuss the essential results for continuous state space and show that the optimal
protocol that performs such a transformation with minimal entropic cost is given by a
potential force. Considering a system with discrete state space, we discuss the variational
problem for minimizing the total entropy production with dynamical constraints. We
further recapitulate the continuum limit. In that limit, the optimization problem converges
towards the continuum one.

If a system is coupled to a heat and several particle reservoirs, we denote it as chemical
reaction network (CRN). We introduce the basic notions for closed and open systems with
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focus on chemostatted networks. In those networks, the reservoirs are externally controlled
such that the concentration of their particle species in the system is kept constant. Thus,
the particle flux in and out of those reservoirs is directly linked to the entropy produced in
the system. Furthermore, we introduce the Gillespie algorithm to simulate the dynamics of
a CRN.

The dynamics of a CRN is in general not analytically solvable due to nonlinearities, thus,
approximate methods are needed. We discuss van Kampen’s system-size expansion and
the chemical Langevin equation (CLE) as diffusion approximations of the master equation.
These approaches have in common that they describe a CRN using the continuous particle
density which approximates a system well in the limit of increasing system-size, i.e., in the
weak-noise limit. In this limit, all approximation schemes lead to Fokker-Planck equations
that can be solved using the WKB-method. In the limit of infinite system-size, we recover
the chemical rate equations.

In the limit of increasing system-size, CRN exhibit various non-trivial phenomena like
noisy limit cycle oscillations and bifurcations respectively phase transition. We briefly
review critical behavior from equilibrium statistical mechanics and discuss it in the context
of bifurcation theory by considering an one-dimensional dynamical system. We further
introduce the normal form for a Hopf bifurcation as an example for a two-dimensional
system undergoing a nonequilibrium phase transition. Finally, we discuss the quality factor
of a noisy oscillator as a measure of its coherence, i.e., a qualitative measure for keeping
the precision. The quality factor is determined through the ratio of the imaginary and real
part of the first non-trivial eigenvalue of the underlying dynamics. Furthermore, we discuss
the relation of this measure to thermodynamic quantities as entropy production and the
driving affinity along a unicyclic network.

chapter 3: optimality of non-conservative driving for finite-time

processes with discrete states

We study an optimal control problem on discrete state space. An optimal finite-time process
drives a given initial distribution to a given final one in a given time at lowest cost as
quantified by total entropy production. We prove that the optimal protocol for a system
with discrete states involves a genuine driving affinity, i.e., is non-conservative. This finding
is in contrast to the case of a system with continuous states. We further show that the
optimal driving affinity is bounded by the number of states within a cycle. Numerical
simulations show that the derived bound tends to be saturated for short allocated times or
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configurations that need to transport large densities. We generalize our findings to drivings
that affect forward and backward rates nonsymmetrically. Finally, we recover the result for
continuous state space in the limit of vanishing lattice spacing.

chapter 4: coherence of oscillations in the weak-noise limit

The coherence of a noisy oscillator is measured by the quality factor. Using a WKB-ansatz,
we determine this quantity for oscillations arising from a driven Fokker-Planck dynamics
along a periodic one-dimensional potential analytically in the weak-noise limit. With this
expression, we derive and prove for this continuum model the analog of an upper bound
on the quality factor that has been conjectured for the coherence of oscillations in discrete
Markov networks [4]. Furthermore, in the weak-noise limit, we show that this bound
is equivalent to another conjectured bound which includes the total entropy produced
during one period [5]. We adapt this one-dimensional approach to motion along a noisy
two-dimensional oscillator by projecting it onto the arc-length, thus, by introducing an
effective one-dimensional parameterization of this planar motion. We apply our scheme to
the noisy Stuart-Landau oscillator and discuss its range of validity. Comparing numerically
with a general framework based on techniques from Hamilton-Jacobi theory, we find a
discrepancy for systems with a strong coupling between the radial and angular degree
of freedom. For this specific example, we adjust our projection method such that the
quality factor numerically agrees with the full theory. As second example, we study the
thermodynamically consistent Brusselator as a simple model for a chemical clock. Our
approach thus complements the fairly sophisticated extant general framework based on
techniques from Hamilton-Jacobi theory.

chapter 5: nonequilibrium fluctuations of chemical reaction

networks at criticality – the schlögl model as paradigmatic

case

We study the continuous nonequilibrium phase transition in the Schlögl model. We inves-
tigate the flux in the chemostats that is proportional to the entropy production and its
critical fluctuations. Numerical simulations show that the corresponding diffusion coefficient
diverges at the critical point as a function of system size. In the vicinity of the critical
point, the diffusion coefficient follows a scaling form. We develop an analytical approach
based on the chemical Langevin equation and van Kampen’s system size expansion that

xvi



yields the corresponding exponents in the monostable regime. In the bistable regime, we
rely on a two-state approximation in order to analytically describe the critical behavior.
Our work complements previous studies that considered the fluctuations of the particle flux
during the first order phase transition within the Schlögl model. Thus, we complete the
thermodynamic understanding of nonequilibrium fluctuations in this paradigmatic model.

chapter 6: nonequilibrium fluctuations of chemical reaction

networks at criticality – the brusselator model as paradigmatic

case

The thermodynamically consistent Brusselator model is a prime example for a chemical
clock. We study the flux in and out of the chemostats and its fluctuations while the system
undergoes a Hopf bifurcation. We numerically show that the particle flux depends non-
differentiable on the control parameter. This finding is rationalized using a mapping onto
the cubic normal form for a Hopf bifurcation. Furthermore, numerical simulations show
that the diffusion coefficient associated with this flux diverges with the system-size at the
bifurcation. Approaching the bifurcation from above, the diffusion coefficient obeys a scaling
form and we obtain critical exponents. However, approaching the bifurcation from below,
the fluctuations develop a discontinuous dependence on the control parameter. This finding
is supported through numerical simulations using van Kampen’s system-size expansion and
the chemical Langevin equation (CLE). We derive an expression for the diffusion coefficient
which we cannot further treat analytically. Thus, we leave the theoretical description of
the discontinuity and the extraction of scaling exponents as an open problem.
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1
INTRODUCTION

Life comes with a cost. As we experience this fact on a daily basis, the statement is not
less true regarding any physical model aiming to describe a genuine living system, for
instance, a cell or molecular motor. While we presumably think at first about money that
we need to pay our rent or food, from a physical point of view, the latter would be a more
reasonable choice. Through the consumption of food, we supply energy to our body, thus,
provide the possibility to perform work. In terms of physics, the budget that keeps track
of the cost of living is manifested in the first and second law of thermodynamics.

The very beginning of thermodynamics are the attempts to phenomenologically describe
steam engines and their efficiency [6]. The rigorous, statistical foundation of equilibrium
thermodynamics was later initiated by Boltzmann [7] and continued by Gibbs [8]. In order
to derive macroscopic, thermodynamic laws from an underlying microscopic description, a
key concept is the thermodynamic limit where the number of particles in a system grows to
infinity. While this is certainly a good assumption in order to describe the mean behavior
of a gas enclosed in a vessel, it fails when describing the energy budget of a single molecular
motor.

As the experimental capabilities to resolve distances on the scale of µm and beyond
grew over the last decades, it became possible to observe single molecules embedded in an
aqueous solution. The development of optical tweezers even allowed to trap single particles
and manipulate them [9, 10]. On these short length-scales, the motion of a molecule
becomes noisy as collisions with constituents of the surrounding liquid become important.
Thus, fluctuations need to be incorporated in order to successfully describe such an erratic
motion.

The probably most prominent example of a theoretical description of such an erratic
motion is due to Einstein. In his seminal work [11], Einstein examined the motion of a
Brownian particle immersed in a liquid. He derived the probability distribution for the
particle’s velocity in order to understand the noisy motion. Furthermore, he established a
relation between the diffusion coefficient of the particle and the temperature and viscosity
of the liquid. Thus, he successfully connected a dynamical quantity of the particle with
characteristic parameters of the surrounding medium.

1



2 introduction

In a more general setting, stochastic thermodynamics has been developed as a framework
to study small, fluctuating systems in contact with external reservoirs possibly driving
them out of equilibrium [12, 13]. It allows for a systematic thermodynamic treatment based
on a fluctuating trajectory and its underlying probability distribution [14, 15]. Early results
include various fluctuations theorems for the work [16] or entropy production [15, 17, 18],
thus, refining the second law of thermodynamics by incorporating its fluctuating nature.
Recent developments include the thermodynamic uncertainty relation (TUR) conjectured
by Barato & Seifert [19] and proven by Horowitz & Gingrich [20]. This relation bounds the
total entropy production of a Markov process through the mean value and fluctuations of
any time anti-symmetric flux in a nonequilibrium stationary state. Thus, the TUR provides
a further refinement of the second law for systems following a Markovian dynamics.

In this thesis, we use the framework of stochastic thermodynamics to study various
nonlinear phenomena. This dissertation is structured as follows. The basic concepts of
the theory are established in Chapter 2. We introduce the basic notions and provide
background of the applications that will be discussed in detail in the subsequent chapters.
As all examined phenomena are motivated by biological systems, we will briefly formulate
the core ideas by considering such as examples.

In order to perform different tasks, a cell needs to change its shape or constituents. Thus,
it needs to transform from the present state to a predetermined final one within finite-time.
In Chapter 3, we study such transformations regarding the minimization of its inevitable
thermodynamic cost in terms of optimal control theory. We prove that the transformation
of a system with discrete state space that minimizes the total entropy in general includes a
non-conservative force.

Inside a cell, there is a biochemical process that serves as an inner clock. The ability to
keep track of time of a noisy self-sustained oscillator is quantified by the quality factor. We
examine this quantity for various one- and two-dimensional stochastic clocks in Chapter 4.
We derive a novel, transparent formula for the quality factor of a one-dimensional motion
on a ring. Using this formula, we derive and prove continuous versions of thermodynamic
bounds on the the quality factor. Furthermore, we approximate a planar oscillator as
one-dimensional motion along the arc-length and obtain an expression for the quality factor
of a two-dimensional oscillator. We apply this result to the noisy Stuart-Landau oscillator
and Brusselator model and discuss the validity of our approximation.

While a cell changes its shape, it varies its mechanical properties, e.g., from being
rigid to visco-elastic, i.e., it undergoes a phase transition. In Chapter 5, we consider
the Schlögl model as a generic, univariate system that undergoes a continuous phase
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transition. We numerically and analytically show that the diffusion coefficient associated
with the thermodynamic flux diverges at the critical point and obtain scaling exponents.
We develop a theory that reproduces the numerically observed behavior based on the
chemical Langevin equation, van Kampen’s system-size expansion and a coarse-graining
into a two-state system. We summarize our results by deriving a scaling form for the
particle flux and the diffusion coefficient.

In Chapter 6, we study the thermodynamic flux of the Brusselator model while undergoing
a Hopf bifurcation. We numerically find that the derivative of the thermodynamic flux
develops a jump in the vicinity of the bifurcation. We analytically explain this behavior
using a mapping of the system to the normal form for a Hopf bifurcation. Furthermore,
at the transition, we find that the diffusion coefficient associated with this flux diverges
with system-size. Above the bifurcation, the diffusion coefficient follows a scaling-form.
Approaching the bifurcation from below, we numerically find a discontinuous jump in the
diffusion coefficient. We approximate the system through a chemical Langevin equation
and van Kampen’s system-size expansion and obtain an equation which we cannot further
simplify. Studying the corresponding equations numerically supports the finding of a
discontinuous behavior of the diffusion coefficient. We leave the analytical explanation as
open problem. We conclude in Chapter 7





2
STOCHAST IC THERMODYNAMICS ON DISCRETE STATE

SPACE

2.1 introductory remarks

Stochastic thermodynamics is a theory that applies to small systems in contact with
reservoirs driving them out of equilibrium. A prominent example is a molecular motor
that constantly consumes energy in order to perform work. As such a motor is constantly
subject to fluctuations, its motion will be noisy. In this chapter, we discuss the basic
concepts of thermodynamics in order to understand what a noisy motion is and how
physical observables like work or entropy can be identified along such a trajectory.

We start by briefly reviewing the basic notion of the canonical ensemble in statistical
mechanics, closely following Ref. [21, 22]. Afterwards, we formulate the first law along
a single trajectory, commonly referred to as stochastic energetics, before we introduce
entropy and discuss the second law.

Having established the basic thermodynamic notion, in Sec. 2.5, we briefly discuss
optimal control theory for continuous state space before we introduce the optimization
problem for Markov jump networks. As another broad class of systems with discrete state
space, chemical reaction networks and its thermodynamic description will be addressed in
Sec. 2.6. In Sec. 2.7, we discuss approximate methods for the dynamics of such reaction
networks focusing on the so called weak-noise limit. In this limit, non-trivial effects like
coherent oscillations and phase transitions can emerge which will be the topic of the last
section, Sec. 2.8.

2.2 equilibrium system in contact with a heat bath

We consider the canonical ensemble of statistical mechanics, i.e., a closed equilibrium
system consistent of microstates {ξ} in contact with a heat bath at inverse temperature β.
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6 stochastic thermodynamics on discrete state space

Figure 2.1: Sketch of the coarse-graining procedure. Microstates (blue dots) are combined into
mesostates i, j and k (black areas). Fast transitions between microstates are indicated
by thin gray arrows, slow transitions between mesostates by black ones with a line as
foot.

Furthermore, we assume that every microstate ξ has an energy H(ξ). The free energy of
the system is given by

F ≡ − 1

β
ln

(∑
ξ

e−βH(ξ)

)
. (2.1)

Through this thermodynamic potential, the internal energy and entropy are obtained as

U = ∂β(βF) (2.2)

S = β2∂βF = β(U −F) . (2.3)

The dynamics of each microstate is often not traceable, e.g., because the dynamics is too
fast or there are too many degrees of freedom. Thus, we group several microstates together
into one observable mesostate i, see Fig. 2.1. While coarse-graining the set of microstates
{ξ} into a set of mesostates {i}, we assume that each microstate ξ is uniquely assigned
to one and only one mesostate i. In equilibrium, the probability for the system to be in
mesostate i is

peqi =
∑
ξ∈i

exp[−β(H(ξ)−F)] ≡ exp[−β(Fi −F)] , (2.4)

where the free energy of state i is defined as

Fi ≡
∑
ξ∈i

exp[−βH(ξ)] . (2.5)
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Figure 2.2: Trajectory I(t) and time-versed one Ĩ(t) ≡ I(T − t) of length T over the states i, j
and k. For times ti < t < ti+1 the system rests in the corresponding state. For t = ti
a jump from one mesostate to another takes place.

The internal energy of mesostate i follows as

Ui = ∂β(βFi) =
∑
ξ∈i

p(ξ|i)H(ξ) (2.6)

with the conditional probability of microstate ξ given mesostate i,

p(ξ|i) ≡ exp{−β[H(ξ)−Fi]} . (2.7)

The intrinsic entropy of mesostate i is obtained through the Shannon entropy of the
conditional probabilities,

Si ≡ β2∂βFi = −
∑
ξ∈i

p(ξ|i) ln p(ξ|i) . (2.8)

This quantity is a measure for the number of microstates ξ that contribute to mesostate i.
We now consider a trajectory I(t) ≡ {It}0≤t≤T of length T that visits various mesostates

It ∈ {i} over the course of time, see Fig. 2.2. If we assume that the dynamics of the
microstates within a mesostate is much faster than the one between mesostates, the motion
of the mesostates becomes memoryless, i.e., a transition from present state i to j does not
depend on the history of the trajectory. Thus, given that the trajectory is in state i at
time t′, the probability to visit mesostate j after some time interval δt satisfies

p(j, t′ + δt|{It}0≤t≤t′) = p(j, t′ + δt|i, t′) , (2.9)
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which is denoted as the Markov property. In the limit of a vanishing time interval δt, we
get the rate for a transition from state i to j

kij ≡ lim
δt→0

1

δt
p(j, t′ + δt|i, t′). (2.10)

Due to time translational invariance in equilibrium, kij does not depend on t′.
In an equilibrium system, there is no arrow of time, thus, it is equally likely to observe

trajectory I(t) and its time reversed one Ĩ(t), i.e.,

p[I(t)] = p[Ĩ(t)] , (2.11)

where time-reversal on this coarse level is defined as Ĩ(t) ≡ I(T − t), see Fig. 2.2. This
leads to a balance condition for the transitions between two mesostates,

kijp
eq
j = kjip

eq
i , (2.12)

i.e., any jump from state i to j is on average balanced by a transition in the reversed
direction. Plugging the equilibrium distribution, Eq. (2.4), into Eq. (2.12), we obtain the
local detailed balance condition

kij
kji

= exp[−β(Fi −Fj)] = exp[−β(Ui − Uj) + (Si − Sj)] , (2.13)

which sets thermodynamic constraints onto the transition rates between arbitrary states
i and j. Furthermore, the Markovian dynamics of the mesostates {i} is governed by a
master equation

∂tpi(t) =
∑
j

[kijpj(t)− kjipi(t)] ≡ −
∑
j

jij(t) , (2.14)

where pi(t) denotes the probability to find the system in state i at time t and we introduced
the probability current jij(t) between state i and j. This dynamics leaves the equilibrium
distribution peqi , Eq. (2.4), invariant. Assuming that every mesostate j can be reached
from any other state i, any initial distribution p0i converges towards the equilibrium one in
the course of time. Furthermore, the local detailed balance condition, Eq. (2.13), leads to
vanishing net fluxes jij(t) between any states i and j.
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Figure 2.3: Schematic partition of the supersystem (black box) into work (green), heat (red) and
several particle (blue) reservoirs. In the core system (gray box) measurements, e.g.,
length or time, take place.

The assumption of timescale separation does not necessarily imply equilibrium. In the
next section, we consider a Markovian system coupled to external reservoirs, thus, breaking
detailed balance, Eq. (2.12), allowing energy and particle exchange.

2.3 open system in contact with heat bath, particle and work

reservoirs

So far, we considered closed systems in contact with a heat bath which will ultimately
reach thermal equilibrium. In this section, we partition the closed system into different
segments, i.e., we divide the closed supersystem into a core system and reservoirs providing
energy and particles, see Fig. 2.3. The core system is the system of interest where we can
perform measurements.

Following the coarse-graining procedure discussed in the previous section, we split the
free energy of the super system into those of the core system and the reservoirs. This leads
to the extended local detailed balance condition

kij
kji

= exp

[
− β

(
Fi −Fj −

∑
α

dαijµα + lijf

)]
≡ exp[−β(∆ijF + Aij)] . (2.15)

We identify three contributions. First, the change of free energy in the core system
∆ijF ≡ Fi − Fj. Second, the work done on the system by the particle reservoirs during
the transition i→ j of the core system,

Wchem
ij ≡

∑
α

dαijµα . (2.16)
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Their free energy changes by providing dαij > 0 or consuming dαij < 0 particles of species α
at chemical potential µα. Third, the mechanical work that can be extracted in a step of
length lij while working against an external force f ,

Wmech
ij ≡ lijf . (2.17)

Due to the coupling to the external reservoirs, the core system can be considered as a
driven open system. The nonequilibrium driving along a transition i→ j is given by the
free energy difference of the reservoirs,

Aij ≡ Wchem
ij −Wmech

ij = −Aji. (2.18)

This quantity is also called driving affinity for that respective transition.
The above considerations apply also for time-dependent driving, e.g., chemical potentials

which can change according to an externally applied protocol λt. Through the local detailed
balance condition, Eq. (2.15), this leads to time-dependent transition rates,

kij = kij(λt) . (2.19)

Thus, the time-evolution of the core-system, Eq. (2.14), generalizes to

∂tpi(t) =
∑
j

[kij(λt)pj(t)− kji(λt)pi(t)] ≡
∑
j

Lij(λt)pj(t) , (2.20)

where we introduced the generator Lij(λt) of the stochastic dynamics.
In the following, we focus on two special classes of processes with a constant protocol

λt = λ. The stationary solution of Eq. (2.20) is defined by

L(λ)ps(λ) = 0 , (2.21)

with the vector of probabilities ps(λ) ≡ {psi} and the generator matrix L(λ) with entries
Lij(λ). For vanishing affinities, i.e., Aij = 0, we recover the equilibrium situation of the
previous section. Thus, the stationary solution will be the equilibrium one,

peqi = exp[−β(Fi −F)] . (2.22)

In a genuine nonequilibrium situation with constant driving, Eq. (2.20) admits a stationary
solution with non-vanishing probability currents jsij(λ) ̸= 0, thus, breaking the detailed
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balance condition, Eq. (2.12). This solution is denoted as nonequilibrium steady-state
(NESS) with probability psi to find the core system in mesostate i.

The local detailed balance condition, Eq. (2.15), connects the dynamical picture of a
system evolving according to a master equation with thermodynamic quantities such as
entropy, internal energy and work. In the following sections, we explain how these physical
objects can be defined along a stochastic trajectory I(t).

2.4 stochastic energetics and entropy along a single trajectory

2.4.1 Stochastic energetics: the first law

We consider a stochastic trajectory I(t) of length T over the discrete set of mesostates,
compare Fig. 2.2. Stochastic thermodynamics sets the framework to identify physical
observables like internal energy, heat and work along such fluctuating paths. Thus, these
quantities become stochastic variables. The internal energy at time t along the trajectory
is given by

UIt(λt) ≡
∑
j

δIt,jUj(λt) , (2.23)

where Uj(λt) denotes the internal energy of mesostate j, It is the state of the trajectory at
time t and δi,j the Kronecker-delta. The rate of change of the internal energy is

d
dt
UIt(λt) =

∑
j

[
δ̇It,jUj(λt) + δIt,jλ̇t∂λUj(λ)|λ=λt

]
, (2.24)

where δ̇It,j denotes the time derivative of the Kronecker-delta and λ̇t the one of the protocol.
A formal definition of δ̇It,j is given below, Eq. (2.26). All in all, the change of internal
energy originates from a jump between mesostates and the external driving.

The change of the work along the trajectory also has two contributions,

d
dt
WIt(λt) ≡

∑
i,j

[ṅij(t)Aij(λt)] + λ̇t∂λFIt(λ)|λ=λt , (2.25)

one coming from the nonequilibrium driving along a transition, Eq. (2.18), and the other
due to the external protocol λt. Here, nij(t) denotes the number of transitions from state i
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to j along the trajectory I(t) up to time t. For the derivative of this quantity the following
relation holds

δ̇It,j = −
∑
j

[ṅij(t)− ṅji(t)] , (2.26)

essentially defining the derivative of the Kronecker-delta.
Imposing the first law of thermodynamics to hold along the trajectory,

d
dt
UIt(λt) =

d
dt
WIt(λt)−

d
dt
QIt(λt) , (2.27)

and using Eq. (2.26), we obtain the rate of dissipated heat as

d
dt
QIt(λt) ≡

∑
i,j

ṅij(t)[Aij(λt) + ∆ijF(λt)]−
1

β

d
dt
SIt(λt)

=
∑
i,j

ṅij(t) ln
kij(λt)

kji(λt)
− 1

β

d
dt
SIt(λt) ,

(2.28)

where we inserted the local detailed balance condition, Eq. (2.15), in the last step and
identified the change of intrinsic entropy using Eq. (2.3),

d
dt
SIt(λt) ≡

∑
j

[δ̇It,jSj(λt)] + λ̇t∂λSIt(λ)|λ=λt . (2.29)

Due to the dependence of the intrinsic entropy on the external protocol λt and Eq. (2.28),
we find that heat is even dissipated when the system stays in the same state and not only
through transitions between mesostates.

2.4.2 Entropy along a stochastic trajectory

Along a trajectory, the entropy of the system at time t is given by

S(λt) ≡ SIt(λt) + Ssto(λt) , (2.30)

where we introduced the stochastic entropy [15]

Ssto(λt) ≡ − ln pIt(t) = −
∑
j

δIt,j ln pj(t) , (2.31)
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with the solution pj(t) of the master equation (2.20). The entropy of the surrounding
medium is defined through the dissipated heat,

Smed(λt) ≡ βQIt(λt) . (2.32)

The total entropy production rate along the trajectory is given by

d
dt
Stot(λt) ≡

d
dt
Smed +

d
dt
S(λt) . (2.33)

The time derivative of the entropy of the system reads

d
dt
S(λt) =

d
dt
SIt(λt)−

∑
j

[
δIt,j

ṗj(t)

pj(t)
+ δ̇It,j ln pj(t)

]
=

d
dt
SIt(λt)−

∑
j

δIt,j
ṗj(t)

pj(t)
−
∑
i,j

ṅij(t) ln
pj(t)

pi(t)
,

(2.34)

where the last equality follows from Eq. (2.26). Using the derivative of the entropy of the
system and the definition of the dissipated heat, Eq. (2.28), the total entropy production
rate becomes

d
dt
Stot(λt) =

∑
i,j

ṅij(t) ln
pi(t)kij(λt)

pj(t)kji(λt)
−
∑
j

δIt,j
ṗj(t)

pj(t)
. (2.35)

The total entropy produced along a trajectory I(t) of length T is then given by

∆Stot[I(t)] ≡
T∫

0

dt
d
dt
Stot(λt) . (2.36)

In a NESS with constant external driving λ, time derivatives of the probabilities pi(t)
and the protocol vanish. Thus, Eq. (2.35) simplifies to

d
dt
Stot(λt) =

∑
i,j

ṅij(t) ln
kij(λ)

kji(λ)
. (2.37)

So far, we considered the definition of thermodynamic observables along a single trajectory.
In the next section, we consider the ensemble average of these objects.
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2.4.3 Ensemble averages

In laboratory situations, the motion of a tracer particle is in general noisy. Thus, it is
impossible to predict the future behavior of such an object. However, the motion is well
characterized by mean values with respect to the underlying probability distribution. These
mean values are the ensemble average which we denote by ⟨. . .⟩. The following identification
will be useful in the upcoming calculations,

⟨δIt,j⟩ = pj(t), (2.38)

⟨ṅij(t)⟩ = pi(t)kij(λt) . (2.39)

With this preliminary considerations, we start with the internal energy, Eq. (2.23).
The average value of internal energy simplifies to

⟨UIt(λt)⟩ =
∑
j

pj(t)Uj(λt) . (2.40)

The mean total change of internal energy along a trajectory I(t) of length T is then

⟨∆U [I(t)]⟩ =
∑
j

[pj(T )Uj(λT )− pj(0)Uj(λ0)] . (2.41)

Integration of Eq. (2.25) and taking the ensemble-average yields the mean work along the
trajectory

⟨W [I(t)]⟩ =
T∫

0

dt
(∑

i<j

jij(t)Aij(λt) +
∑
j

pj(t)λ̇t∂λFj(λ)|λ=λt

)
. (2.42)

Similar calculations using Eq.(2.28) lead to the mean dissipated heat

⟨Q[I(t)]⟩ =
T∫

0

dt
∑
i<j

jij(t) ln
kij(λt)

kji(λt)
− 1

β

∑
j

[pj(T )Sj(λT )− pj(0)Sj(λ0)] . (2.43)

Also on the ensemble level, we find the first law of thermodynamics

⟨UIt(λt)⟩ = ⟨W [I(t)]⟩ − ⟨Q[I(t)]⟩ , (2.44)

which we had implemented on the trajectory level.
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Concerning the entropy production rate, Eq.(2.35), the mean value is given by

σ(t) ≡
〈

d
dt
Stot(λt)

〉
=
∑
i<j

[pi(t)kij(λt)− pj(t)kji(λt)] ln
pi(t)kij(λt)

pj(t)kji(λt)
≥ 0 . (2.45)

The mean entropy production rate is non-negative which follows from the inequality
(x− y) ln(x/y) ≥ 0 for non-negative x and y. The total entropy production is

⟨∆Stot[I(t)]⟩ =
T∫

0

dtσ(t) ≥ 0. (2.46)

Thus, the definition of total entropy production rate, Eq. (2.35), is consistent with the
second law of thermodynamics.

The intrinsic Si(λt) and stochastic entropy Ssto(λt) are variables that are not extensive
in time. Thus, in a steady-state with constant external protocol λ, only the entropy rate
of the surrounding medium contributes to the total entropy production rate. Averaging
Eq.(2.28) and using the definition of the medium entropy, Eq.(2.32), the mean entropy
production rate becomes

σs =
∑
i<j

jsij(λ) ln
kij(λ)

kji(λ)
=
∑
i<j

jsij(λ)Aij(λ) . (2.47)

With a consistent thermodynamic theory at hand, we apply these concepts to several
applications. We start with finite-time transformations in the next section.

2.5 finite-time thermodynamics and optimal protocols

2.5.1 Finite-time protocols

We consider a transformation of a system during a finite time T from a given initial state
to a finale one, see Fig. 2.4. The requirement of finite time leads to an inevitable entropic
cost, hence, making the transformation nonequilibrium. An obvious question is how such a
transformation can be optimized regarding the thermodynamic cost. When dealing with
macroscopic systems, this field is denoted as finite-time thermodynamics [23].

The application of these optimization techniques to fluctuating systems is a recent
development. The first systematic study examined a moving harmonic trap in contact with
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Figure 2.4: Brownian particle (green dot) trapped in a harmonic potential. The external protocol
λt transforms the trap initially located at λ0 to λT within finite time T .

a heat reservoir [24], see Fig. 2.4. The authors have found that the optimal transformation
minimizing the work includes discontinuous jumps at the beginning and end of the process.
This behavior turned out to be generic.

From a more technical and applied point of view, the minimization of released heat during
a process is of particular interest as it leads to a refined second law of thermodynamics or
Landauer-principle [25–27]. This will be the setting for the rest of this section and Chapter
3.

Recent studies connect the optimization problem to geometric quantities like the Wasser-
stein distance [26, 28]. This link to information geometry ultimately led to the unification of
thermodynamic optimization for Markov jump processes, Langevin dynamics and quantum
systems [29, 30].

2.5.2 Minimizing entropy production in continuous state space

In this section, we introduce the optimization problem for Fokker-Planck systems and
highlight the most important results in relation to Chapter 3. For simplicity and clarity of
arguments, we discuss a one-dimensional motion. The generalization to more dimensions is
straight forward.

We consider a system with continuous state space following a Fokker-Planck dynamics.
The equation of motion for the systems probability distribution reads

∂tp(x, t) = −∂x[F (x, t, λt)p(x, t)−D∂xp(x, t)] ≡ −∂x[ν(x, t)p(x, t)] , (2.48)
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where ν(x, t) denotes the local mean velocity, D the diffusion constant and F (x, t, λt) the
force driving the system depending on an externally controlled protocol λt. Total entropy
production rate for the Fokker-Planck dynamics is given by [12]

σcont(t) =
1

D
⟨ν(x, t)2⟩ . (2.49)

This expression can for example be obtained by performing the continuum limit of the
discrete one, Eq. (2.45). The total entropy production for a process of duration T is then

∆Stot ≡
T∫

0

dtσcont(t) . (2.50)

Since the Fokker-Planck equation (2.48) and the total entropy production, Eq. (2.50),
depend only on the probability p(x, t) and local mean velocity ν(x, t), we treat them as
free parameters for the optimization.

Assuming that the system is initially prepared according to p0(x), we ask for the protocol
ν∗(x, t) to transform the system into a given final state pT (x) in finite time T . This
transformation should be done with minimal entropic cost. The requirement for a finite
time T is crucial since any quasi-static, i.e., infinitely slow transformation comes with
vanishing entropy production. The optimization problem is given by

min
{p(x,t),ν(x,t),η(x,t)}

∆S[p(x, t), ν(x, t), η(x, t)] (2.51)

with the functional

∆S[p(x, t), ν(x, t), η(x, t)] ≡ 1

D

T∫
0

dt

∫
dx

(
ν(x, t)2p(x, t)+η(x, t){∂tp(x, t)+∂x[ν(x, t)p(x, t)]}

)
,

(2.52)

where we introduced a Lagrangian multiplier η(x, t) to incorporate the constraint that the
dynamics should be governed by a Fokker-Planck equation. The protocol ν∗(x, t) which
solves the minimization problem is termed optimal protocol.

Variation of Eq. (2.52) with respect of η(x, t) reproduces the Fokker-Planck equation
(2.48). The remaining equations are equivalent to

ν∗(x, t) = −1

2
∂xη(x, t) . (2.53)
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and

∂tν
∗(x, t) = −ν∗(x, t)∂xν∗(x, t) . (2.54)

Thus, ν∗(x, t) satisfies the inviscid Burgers equation [31]. Furthermore, the optimal protocol
is a total differential, Eq. (2.53), hence, for a transformation of a system from initial state
p0(x) to pT (x) during a finite time T only conservative forces are necessary [25, 26]. A
further noteworthy property of the solution to the optimization problem, Eq. (2.51), is
that it is the shortest connection between p0(x) and pT (x) in the space of probability
distributions. Thus, the optimal protocol establishes a connection to information geometry
[28–30].

2.5.3 Optimal protocols on discrete state space

We consider a system with discrete but finite state space. The dynamics is governed by a
master equation,

∂tpi(t) = −
∑
j

[kji(λt)pi(t)− kij(λt)pj(t)] , (2.55)

where the rates kij(λt) can be externally controlled and pi(t) denotes the probability to
find the system at time t in state i.

The optimization problem is similar to the continuous case discussed above. We assume
that the system is initially prepared according to {p0i } and should be transformed into
{pTi } with minimal entropic cost. In order to formulate the minimization problem and
most important results, we closely follow Ref. [27] but use a slightly altered notation.

It is convenient to parameterize the probabilities as

ϕi(t) ≡
√
pi(t) . (2.56)

The transition rates can be written as

kij(λt) = κij(t)e
Aij(t)/2 , (2.57)

with symmetric κij(t) = κji(t) and anti-symmetric part Aij(t) = −Aji(t). As a simultaneous
variation of both parts would lead to a trivial problem, we keep κij constant, hence, setting
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a typical time-scale for the transition from state i to j. Thus, the {Aij(t)} remain as the
externally controlled protocols. We further introduce the driving between two states

φij(t) ≡ Aij(t) + 2 ln
ϕi(t)

ϕj(t)
. (2.58)

With these quantities the master equation becomes

∂tϕi(t) = −
∑
j ̸=i

κijϕj sinh
φij(t)

2
. (2.59)

The entropy production rate, Eq. (2.45), reads

σ(t) = 2
∑
i<j

κijϕi(t)ϕj(t)φij(t) sinh
φij(t)

2
. (2.60)

Since the dynamical equation and entropy production rate only depend on {ϕi(t), φij(t)},
we treat them as free parameters for the optimization. Introducing Lagrange multipliers
{ηi(t)} to enforce the master dynamics, the full functional is given by

∆S[{ϕi(t), φij(t), ηi(t)}] ≡
T∫

0

dt

{
2
∑
i<j

κijϕi(t)ϕj(t)φij(t) sinh
φij(t)

2

+
∑
i

ηi(t)

(
∂tϕi(t) +

∑
j ̸=i

κijϕj(t) sinh
φij(t)

2

)}
.

(2.61)

Variation leads to the Euler-Lagrange equations

0 = ηi(t)ϕj(t)− ηj(t)ϕi(t) + 4ϕi(t)ϕj(t)

[
tanh

φij(t)

2
+
φij(t)

2

]
, (2.62)

∂tϕi(t) = −
∑
j ̸=i

κijϕj(t) sinh
φij(t)

2
, (2.63)

∂tηi(t) =
∑
j ̸=i

κij[2ϕj(t)φij(t)− ηj(t)] sinh
φij(t)

2
. (2.64)



20 stochastic thermodynamics on discrete state space

Taking the time derivative of Eq. (2.62) and plugging in Eq. (2.63) and (2.64) results in
the equation of motion for the driving function,

∂tφij(t) =
1

1− 1
2
tanh2 φij(t)

2

×
∑
k

[
κik

ϕk(t)

ϕi(t)
sinh

φik(t)

2
tanh

φik(t)

2
− κjk

ϕk(t)

ϕj(t)
sinh

φjk(t)

2
tanh

φjk(t)

2

]
.

(2.65)

In order to perform a continuum-limit, we define

v(x, t)dx ≡ φx,x+dx(t) = −φx+dx,x(t) (2.66)

and introduce

v(x, t) ≡ φ′
x,x(t) , (2.67)

where a prime denotes the derivative with respect to the second index. Furthermore, we
assume a unicyclic network structure with overall constant symmetric parts, i.e., κij ≡ κ.
Moreover, we relabel the states as i→ x with i± 1 → x± dx to make the lattice spacing
explicit. We further introduce a time-scale

τ0 ≡
2

κdx2
, (2.68)

which is assumed to be finite in the limit of vanishing lattice-spacing, i.e., dx→ 0. In that
limit, Eq. (2.65) reduces in leading order to

∂tv(x, t)dx = −κ
2
v(x, t)∂xv(x, t)dx

3 +O(dx4) . (2.69)

Thus, we recover the inviscid Burgers equation in the continuum limit,

τ0∂tv(x, t) + v(x, t)∂xv(x, t) = 0 . (2.70)

In summary, the minimization problem over discrete state space reduces to the Fokker-
Planck one, see Sec. 2.5.2, in the limit of small lattice spacing. However, it is not clear
whether or not the optimal protocol is conservative. In Chapter 3, we will define what a
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Figure 2.5: Sketch of a tank filled with a reaction species (blue dots) surrounded by a dilute
solution. The temperature of the liquid is controlled through the immersion heater at
the bottom. Due to a constant motion of the rotor, we obtain a well-stirred mixture.

conservative protocol is for a system with discrete state space and address this question in
detail.

2.6 stochastic thermodynamics of chemical reaction networks

2.6.1 Introductory remarks

The basic thermodynamic notion of an open system in contact with a heat bath and several
particle reservoirs has already been introduced in Sec. 2.4. In this section, we focus on the
thermodynamics of chemical reaction networks (CRN). We start with a closed, equilibrium
system to establish the notation and discuss the dynamics. In the second part, we consider
open CRN supplied by chemostats, i.e., particle reservoirs that keep the concentration
of certain particle species constant. For such systems, non-vanishing particle fluxes are
possible that are ultimately related to entropy production. This section is based on Ref.
[32–34].

2.6.2 Closed systems and the chemical master equation

We consider a closed system of volume Ω containing molecules of s different species Xi,
i = 1, . . . , s. We assume that the molecules form a well-stirred mixture in a dilute solution,
i.e., all molecules are entirely surrounded by the solvent and homogeneously distributed over
the volume. We further assume that the system is contact with a heat bath at temperature
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β. A possible experimental setting would be a continuously stirred tank reactor, see Fig.
2.5.

We denote the number of molecules of species Xi with a non-negative integer ni ∈ N0.
The interactions of the species are described through a network of reactions

s∑
i=1

νi+ρXi

k+ρ
⇌
k−ρ

s∑
i=1

νi−ρXi , (2.71)

where ρ ∈ {1, 2, . . . , r} denotes the reaction channel. We assume that each reaction is
associated with a reversed one such that each reaction channel ρ consists of two processes
that could in principle balance each other. The change in the population of species Xi

during a transition through channel ρ is given through the stochiometric coefficients

νiρ ≡ νi−ρ − νi+ρ . (2.72)

We denote the vector of the number of molecules as

n ≡ {ni}si=1 . (2.73)

The vector of stochiometric coefficients for the forward (+) respectively backward (−)
reaction of channel ρ is defined as

ν±
ρ ≡ {±νiρ}si=1 . (2.74)

The change in the number of population of species during a forward respectively backward
reaction through channel ρ becomes

n → n′ ≡ n+ ν±
ρ . (2.75)

The dynamics of a CRN is determined through the transition rates of the different reactions,

W+
ρ (n) = Ωk+ρ

s∏
i=1

νi+ρ∏
m=1

ni −m+ 1

Ω
,

W−
ρ (n) = Ωk−ρ

s∏
i=1

νi−ρ∏
m=1

ni −m+ 1

Ω
.

(2.76)
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These are given through the molecular rate constant k±ρ and the probability for the necessary
number of particles to collide as specified in the reaction scheme. For example, in the
forward reaction of channel ρ, νi+ρ particles of species Xi have to collide in order for the
reaction to take place. This leads to the product expression in Eq.(2.76).

The dynamics of this reactive stochastic process is governed by the chemical master
equation

∂tp(n, t) =
s∑

ρ=1

∑
χ=±

[W χ
ρ (n− νχ

ρ )p(n− νχ
ρ , t)−W χ

ρ (n)p(n, t)] , (2.77)

where the probability is normalized over all possibles states,∑
n

p(n, t) = 1 . (2.78)

The connection to the master equation introduced in Eq. (2.14) becomes obvious when we
rewrite Eq.(2.77) as

∂tp(n, t) =
∑
n′

[w(n′|n)p(n′, t)− w(n|n′)p(n, t)] , (2.79)

with transition rates

w(n′|n) ≡
∑
ρ

∑
χ=±

W χ
ρ (n

′)δn′,n−νχ
ρ
. (2.80)

In analogy to the probability flux, the reaction flow is defined as

jρ(n, t) ≡ j+ρ (n, t)− j−ρ (n, t) , (2.81)

where

j±ρ (n, t) ≡ W±
ρ (n− ν±

ρ )p(n− ν±
ρ , t)−W±

ρ (n)p(n, t) . (2.82)

In an equilibrium stationary state, no net fluxes are present. Thus, the detailed balance
condition, Eq. (2.12), reduces to

j±ρ
s(n) ≡ 0 , (2.83)

for all ρ = 1, 2, . . . , r. Every closed CRN will eventually reach its equilibrium state.
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Figure 2.6: Reaction tank as described in Fig. 2.5. We allow a chemostatted species (green dots) to
be exchanged with a particle reservoir. Through the upper channel the chemostatted
species gets into the tank, whereas through the lower one, particles can be extracted.

If the system is open and in contact with chemostats, this flux balance can be broken
due to nonequilibrium boundary conditions. We consider this situation in the next section.

2.6.3 Open chemical reaction network and entropy

We bring the chemical reaction network in contact with external particle reservoirs, thus,
allowing exchange of matter, see Fig. 2.6. We assume the reservoirs regulate the system
such that the concentration of certain species are kept constant. These reservoirs are called
chemostats and the controlled species are said to be chemostatted. The reaction scheme
reads

s∑
i=1

νi+ρXi +
s̃∑

j=1

ν̃j+ρC
j

k+ρ
⇌
k−ρ

s∑
i=1

νi−ρXi +
s̃∑

j=1

ν̃j−ρC
j , (2.84)

with in total s̃ chemostatted species Cj. We denote the concentration of the externally
controlled species as cj.

The transition rates become

W±
ρ (n, c) = Ωk±ρ

s∏
i=1

νi±ρ∏
m=1

ni −m+ 1

Ω

s̃∏
j=1

c
ν̃±ρ

j . (2.85)

In order for the transition to happen, the probability of a collision with a chemostatted
species needs to be included. Here, c ≡ {cj}s̃j=1 denotes the vector of concentrations of the
regulated species. The dynamics is still governed by the chemical master equation (2.77)
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Figure 2.7: Closed pathways for the one-dimensional chemical reaction network with two reaction
channels, (1) A ⇌ X and (2) X ⇌ B. Starting in state n, the system can leave
through channel (1), consuming a molecule A, and return through channel (2) while
producing a B molecule. The opposite cycle is shown when starting in state n and
leaving through channel (2) while consuming a B molecule. Returning through channel
(1), i.e., producing an A molecule, leaves the X state invariant. The cycle affinity, Eq.
(2.87), compares the thermodynamic weight of both pathways.

but with rates that depend on the concentrations c. Due to the externally imposed particle
flux, the master equation (2.77) admits solutions that can break detailed balance. An
example would be the transport of a molecule from one chemostat to another. A stationary
solution with non-vanishing fluxes is again termed nonequilibrium steady-state (NESS).

In a NESS, a cycle flux jC between chemostats can emerge, i.e., a constant flux along
a closed reaction pathway C, see Fig. 2.7. Such a path goes back to the initial state of
internal species Xi, leaving their state unchanged. However, particles are exchanged with
the chemostats along the way. Thus, an exchange of energy occurs during a completed
cycle. By the local detailed balance condition, Eq. (2.15), the rates along the path C are
connected with the chemical potential of the reservoirs,

µj = µ0 +
1

β
ln
cj
c0
, (2.86)

where µ0 and c0 are reference values and β denotes the inverse temperature. For a cycle C
between the reservoirs of species Ci and Cj, thermodynamic consistency requires

β(µi − µj) =
∏
ρ∈C

ln
W+

ρ (n, c)

W−
ρ (n, c)

≡ AC , (2.87)

where we introduced the affinity AC along the cycle C. This quantity is a measure for the
thermodynamic driving along the cycle, i.e., the entropy produced when passing through
the cycle. Using Eq. (2.47), the mean steady-state entropy production rate reads

σs =
∑
C

jCAC . (2.88)
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Another way of expressing the steady-state entropy production rate of a chemostatted
CRN is given by [34]

σs =
s̃∑

j=1

jjµj , (2.89)

where jj denotes the mean particle flux provided by the reservoir associated with species
Cj.

For schemes involving potential nonlinear reactions, it is in general not even possible
to obtain an explicit, analytical expression for the stationary solution. Thus, in order to
examine such systems, numerical and approximate methods are needed. Before we discuss
diffusion approximations of the master equation, we introduce in the next section the
stochastic sampling algorithm [35], a numerical scheme to generate trajectories whose
statistics exactly satisfy the master equation.

2.6.4 Simulating the dynamics: Gillespie’s direct method

Thermodynamic consistency requires that every reaction can also occur in the reversed
direction. Thus, in the previous sections, we combined forward and backward transitions
into one reaction channel. For the purpose of this section, we treat every reaction separately,
i.e., we consider reaction ρ out of all possible reactions R where

R ≡ {+1,−1,+2,−2, . . . ,+r,−r} . (2.90)

The reaction scheme for reaction ρ reads

s∑
i=1

νi+ρXi +
s̃∑

j=1

ν̃j+ρC
j kρ→

s∑
i=1

νi−ρXi +
s̃∑

j=1

ν̃j−ρC
j , (2.91)

with reaction rates

Wρ(n) = Ωkρ

s∏
i=1

νi+ρ∏
m=1

ni −m+ 1

Ω

r∏
j=1

c
ν̃+ρ

j . (2.92)

The vector of stochiometric coefficients is

νρ ≡ ν−
ρ − ν+

ρ . (2.93)
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The stochastic sampling algorithm proposed by Gillespie [35] is a numerical scheme to
generate a trajectory I(t) that obeys the reaction scheme, Eq. (2.91). The probability
distribution of an ensemble of such trajectories, i.e., p(n, t) ≡ ⟨δI(t),n⟩, satisfies the master
equation, Eq. (2.77). Assuming the system is in state n, the core ingredient of Gillespie’s
scheme is the exact sampling of the waiting time τW for the next reaction to occur and to
decide which reaction ρ0 takes place.

In a Markov network, the waiting time for a reaction to take place is exponentially
distributed. This can be seen from the survival probability of a given state n. Assuming
the system is in state n, the probability sρ(t|n) to not leave that state through reaction ρ
satisfies the differential equation

d
dt
sρ(t|n) = −Wρ(n)sρ(t|n) , s(0|n) = 1 . (2.94)

Since the transition rates are time-independent, the solution reads

sρ(t|n) = e−Wρ(n)t . (2.95)

The overall survival probability of state n is then the product over all possible ways to
leave the state,

s(t|n) =
∏
ρ

sρ(t|n) = e−Wtot(n)t , (2.96)

with

Wtot(n) ≡
∑
ρ

Wρ(n) . (2.97)

The waiting time distribution follows as

w(t|n) ≡ d
dt
[1− s(t|n)] = Wtot(n)e

−Wtot(n)t . (2.98)

Assuming that some reaction takes place to leave state n, the probability for reaction ρ to
occur is

pρ(n) ≡
Wρ(n)

Wtot(n)
. (2.99)
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All in all, we can now formulate Gillespie’s direct method [35]. The reaction scheme is
summarized in the following steps.

1. At time t, the trajectory I(t) is in state n, i.e., I(t) = n.

2. Calculate the propensities Wρ(n) and Wtot(n), Eq. (2.97).

3. Draw a random number r1 from a uniform distribution over the interval [0, 1) and
calculate the waiting time τW for the next reaction to take place,

τW ≡ − 1

Wtot(n)
ln(1− r1) , (2.100)

satisfying Eq. (2.98).

4. Using Eq. (2.99) and another random number r2 drawn from a uniform distribution
over the interval [0, 1), determine which reaction takes place, i.e., find ρ0 such that

ρ0−1∑
ρ=0

pρ(n) < r2 ≤
ρ0∑
ρ=0

pρ(n) . (2.101)

5. Update the time and population,

t→ t+ τW , I(t+ τW ) = n+ νρ0 . (2.102)

6. Repeat step 1.-5. until the final time is reached.

Finally, we note that Gillespie’s direct method is not only applicable to CRN as it has
been discussed in this section. The stochastic simulation algorithm extends to any system
that is described by a master equation. For instance, a physical system evolving over a set
of discrete mesostates, compare Sec. 2.3.

2.7 approximate methods for markov jump processes – the weak-

noise limit

2.7.1 Approximating the master equation

The master equation is in general difficult to solve analytically. Furthermore, the exact
numerical scheme, see Sec. 2.6.4, becomes computationally inefficient for large system-sizes
Ω. Thus, approximate methods are needed.
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In this section, we discuss schemes to solve master equations by approximating them as
diffusion processes. These methods have in common that they change from the description
using the number of particles n towards the corresponding concentrations x. The basic
assumption for a description of the system by concentrations is that the volume Ω of
the system is sufficiently large. Thus, we consider the limit Ω → ∞ which is termed
the weak-noise limit or thermodynamic limit. In the limit of infinite system-size, the
system is described by the deterministic rate equation. The weak-noise limit considers the
leading-order stochastic corrections to that macroscopic motion.

We briefly discuss the most important approximation schemes. The resulting Fokker-
Planck equations admit stationary solutions which obey a large deviation principle [36].
The special case of WKB solutions are discussed in the last section. For simplicity and
clarity of arguments, we consider one-dimensional systems. More-dimensional systems are
a straightforward generalization. The starting point of this section is the following master
equation,

∂tp(n, t) =
∑
n′

[
w(n′|n)p(n′, t)− w(n|n′)p(n, t)

]
. (2.103)

2.7.2 Van Kampen’s system-size expansion

A first step towards a systematic expansion of the chemical master equation is the system-
size expansion due to van Kampen [37]. The main assumption is that the dynamics of the
system becomes deterministic with weak fluctuations in the limit of large system-size Ω.
This leads to the ansatz

n(t) = Ωx̂(t) +
√
Ωζ(t) , (2.104)

where x̂(t) denotes the deterministic variable and ζ(t) the fluctuations. An expansion of
the chemical master equation (2.103) for large Ω using van Kampen’s ansatz, Eq. (2.104),
yields the equation of motion for the deterministic x̂(t) and the dynamical equation for
the probability distribution of the fluctuations ζ.

Through the transformation rule of probability densities, the distribution of the fluctua-
tions is given by

π(ζ, t) ≡
√
Ωp

(
Ωx̂(t) +

√
Ωζ, t

)
. (2.105)
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The dynamics is obtained as

∂tπ(ζ, t) =
d
dt

[√
Ωp[Ωx̂(t) +

√
Ωζ, t]

]
=

√
Ω∂tp(n, t)︸ ︷︷ ︸

i

+
√
Ω∂ζπ(ζ, t)∂tx̂︸ ︷︷ ︸

ii

. (2.106)

Term i can be evaluated with the Kramers-Moyal expansion [38, 39] which yields

∂tp(n, t) =
∞∑
l=1

(−1)l

l!Ω(l−1)/2
∂lζ

[
α̃l

(
x̂(t) + ζ(t)/

√
Ω

)
π(ζ, t)

]
, (2.107)

with rescaled jump moments,

α̃l(x, t) ≡ lim
Ω→∞

αl(Ωx)/Ω , l = 1, 2, . . . , (2.108)

and

αl(n, t) ≡
∑
n′

(n′ − n)lw(n′|n) . (2.109)

The transition rates w(n′|n) are possibly time-dependent, e.g., through an external driving
protocol λt. A Taylor expansion of the rescaled jump-moments in Eq. (2.107) for Ω ≫ 1

gives

α̃l

(
x̂(t) + ξ(t)/

√
Ω

)
= α̃l(x̂(t)) +

1√
Ω
α′
l(x̂(t))ζ(t) +O(1/Ω) . (2.110)

Comparing orders of Ω in term i and ii of Eq. (2.106) together with Eq. (2.110) yields the
dynamical equations. In O(1),

d
dt
x̂(t) = α̃1(x̂(t)) , (2.111)

and in O(1/
√
Ω),

∂tπ(ζ, t) = −∂ζ [α̃′
1(x̂(t))ξπ(ζ, t)] +

1

2
α̃2(x̂(t))∂

2
ζ π̃(ζ, t) . (2.112)

This constitutes van Kampen’s system-size expansion.
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The deterministic equation (2.111) is in general a nonlinear ordinary differential equation.
It is often called macroscopic law for the mean or mean-field equation since it is also
obtained when simply ignoring all fluctuations in the system, i.e., when approximating

d
dt

⟨x(t)⟩ = ⟨α̃1(x(t))⟩ ≈ α̃1(⟨x(t)⟩) . (2.113)

Thus, x̂(t) is often interpreted as mean concentration ⟨x(t)⟩ and the Ω-expansion as
systematic tool in order to derive a mean-field law. However, this interpretation is sometimes
misleading and one should consider x̂(t) as the most probable value instead.

The above described system-size expansion needs to be slightly altered if the derivative
α̃′
1(x̂(t)) in Eq. (2.112) vanishes. We will encounter this situation in Chapter 5. Nevertheless,

the basic idea of the system-size expansion as presented in this section can still be applied.
Given that the derivative is non-vanishing, the above expansion is also termed linear-noise
approximation.

2.7.3 Chemical Langevin equation

Even though, van Kampen’s system-size expansion is a systematic expansion of the master
equation (2.103), its range of applicability relies on the validity of the interpretation of the
motion as a deterministic, mean-field description with weak fluctuations, Eq. (2.104). To
overcome this limitations, Gillespie proposed to describe a given reaction scheme through
a Langevin equation [40]. For the purpose of this section, we consider the setting of Sec.
2.6.4 and refer to that section for the necessary definitions. The reaction scheme involving
only one internal species X reads

ν+ρX +
s̃∑

j=1

ν̃j+ρC
j kρ→ ν−ρX +

s̃∑
j=1

ν̃j−ρC
j , (2.114)

where ρ ∈ R ≡ {−1,+1,−2,+2, . . . ,+s,−s} denotes the reaction that takes place. The
number of molecules of species X is denoted as n. Imposing two conditions on the transition
rates Wρ(n), the time-evolution of a trajectory can be approximated through a Langevin
equation which is denoted chemical Langevin equation (CLE). These constraints on the
propensity functions are termed leap conditions.
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The first leap condition requires the existence of a leap time τ that is small enough
such that the internal state of the system does not change during that time. Given that a
system is in state n at time t, this conditions constrains the propensity function to satisfy

Wρ(nt′) ≃ Wρ(n), ∀t′ ∈ [t, t+ τ ], ∀ρ , (2.115)

where nt′ denotes the state of the system at time t′. Since the reactions that occur during
time interval [t, t+ τ ] do not change the transition rates Wρ(n), all reaction events during
that time will be independent of each other. With the interpretation of the propensity
functions as [40]

Wρ(n)dt ≡ probability that one reaction through channel ρ will occur

somewhere in the volume Ω within the time interval [t, t+ dt)

given that at time t the number of the species is n , (2.116)

the first leap condition leads to the existence of independent Poisson variables Pρ(Wρ(nt), τ)

such that the dynamics of a trajectory can be approximated as

nt+τ = nt +
∑
ρ

νiρPρ(Wρ(nt), τ) , (2.117)

with τ ≪ 1. The mean values of these variables are given as〈
Pρ(Wρ(nt), τ)

〉
= Wρ(nt)τ , ρ = 1, 2, . . . . (2.118)

The second leap condition concerns this mean value. The leap time τ should be big
enough that the following holds,

⟨Pρ(Wρ(nt), τ)⟩ = Wρ(nt)τ ≫ 1 , ρ = 1, 2, . . . . (2.119)

Before we address the seeming contradiction to the first leap condition, Eq. (2.115), we
evaluate on the consequences. If Eq. (2.119) holds, the central limit theorem can be applied
to approximate the Poisson as Gaussian variables, i.e.,

Pρ(Wρ(nt), τ) ≈ Nρ(Wρ(nt)τ,Wρ(nt)τ) , (2.120)
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where Nρ(m, v) denotes a Gaussian variable with mean m and variance v. Thus, using
normal distributed variables, the approximate dynamics is given by

nt+τ = nt + τ
∑
ρ

νρWρ(nt) +
√
τ
∑
ρ

νρ[Wρ(nt)]
1/2Nρ(0, 1) . (2.121)

Assuming that τ satisfies both leap conditions, i.e., Eq. (2.115) and (2.119), and is
macroscopic infinitesimal compared to t, the chemical Langevin equation (CLE) is obtained
as

d
dt
n(t) =

∑
ρ

νρWρ(n(t)) +
∑
ρ

νρ[Wρ(n(t))]
1/2ξρ(t) , (2.122)

with Gaussian white-noise ⟨ξα(t)ξβ(t′)⟩ = δαβδ(t− t′). In terms of stochastic calculus, this
equation needs to be interpreted in the sense of Ito [38].

We need to address two points in the derivation of the CLE. First, the second leap
condition, Eq. (2.119), justifies the usage of the central limit theorem. By doing so, we
transition from a discrete state variable n ∈ N0 towards a continuous n ∈ R≥0. Thus, at
this stage of approximation, it is justified to use the concentration in order to describe the
system. The CLE for the concentration x ≡ n/Ω reads

d
dt
x(t) =

∑
ρ

νρwρ(x(t)) +
1√
Ω

∑
ρ

νρ[wρ(x(t))]
1/2ξρ(t) , (2.123)

where we introduced the rescaled transition rates,

wρ(x) ≡ lim
Ω→∞

Wρ(Ωx)/Ω . (2.124)

These are related to the rescaled jump moments of the previous section, Eq. (2.108), as

α̃1(x) =
∑
ρ

νρwρ(x(t)) and α̃2(x) =
∑
ρ

ν2ρwρ(x(t)) . (2.125)

The CLE (2.123) is equivalent to a Fokker-Planck equation, sometimes called chemical
Fokker-Planck equation,

∂tp(x, t) = −∂x
[(∑

ρ

νρwρ(x)

)
p(x, t)

]
+

1

2Ω
∂2x

[(∑
ρ

ν2ρwρ(x)

)
p(x, t)

]
. (2.126)
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The linear noise approximation is obtained by plugging van Kampen’s ansatz, Eq. (2.104),
into that Fokker-Planck equation and expanding for large system-size Ω. Identifying the
jump moments according to Eq. (2.125) yields Eq. (2.112).

The second point which we need to address is the seeming contradiction between the first
and second leap condition. This is closely related to the interpretation of τ as infinitesimally
in order to derive the white-noise CLE. The resolution of this conflict is the limit of large
system-sizes Ω or large numbers of molecules. In the limit of a large population, both
leap conditions can always be satisfied, especially, it holds that τ ≪ 1 [41]. Thus, in
the thermodynamic limit, i.e., Ω ≫ 1 with finite concentrations x, the chemical master
equation (2.103) is well approximated by the CLE (2.123).

2.7.4 Rate equation

In the limit of infinite system-size Ω, the stochasticity of the chemical master equation
(2.103) becomes less and less dominant leading to a deterministic motion. Setting the
Ω-dependent terms in Eq. (2.126) to zero yields

∂tp(x, t) = −∂x
[(∑

ρ

νρwρ(x)

)
p(x, t)

]
. (2.127)

The parameterized solution satisfies the following ordinary differential equation,

d
dt
x(t) =

∑
ρ

νρwρ(x(t)) , (2.128)

which is called the rate equation. The same equation is obtained by considering only
the Ω-independent terms in van Kampen’s system-size expansion, Eq. (2.112), using the
identification Eq. (2.125). In fact, the rate equation is exactly the mean-field law derived
in Eq. (2.111).
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2.7.5 WKB method

In the previous sections, we have derived diffusion approximations for the chemical master
equation (2.103). The resulting Fokker-Planck equations, Eq. (2.112) and (2.126), are both
of the type,

∂tp(x, t) = −∂x
[
F (x)p(x, t)− 1

Ω
∂x

(
Q(x)p(x, t)

)]
, (2.129)

with an amplitude 1/Ω in front of the highest derivative that becomes small in the limit
of large system-sizes. In the previous section, we have seen that neglecting the second
derivative leads to a deterministic motion. In this section, we discuss the WKB method –
a systematic way to examine Eq. (2.129) without neglecting the small term.

The main idea of the WKB method is to identify a small parameter and to develop a
perturbation theory in that smallness-parameter. This procedure is named after Gregor
Wentzel, Hendrik Anthony Kramers and Léon Brillouin. In the weak-noise limit, the small
parameter is the inverse system-size. Hence, the WKB ansatz is [39]

p(x, t) ∝ exp[−Ωϕ(x, t)] , (2.130)

i.e., the solution is assumed to satisfy a large deviation principle [36, 42–44]. Plugging Eq.
(2.130) into the Fokker-Planck equation (2.129) yields in leading order,

∂tϕ(x, t) = −F (x)∂xϕ(x, t)−Q(x)[∂xϕ(x, t)]
2 +O

(
1

Ω

)
≡ H

(
x, ∂xϕ(x, t)

)
.

(2.131)

This is a Hamilton-Jacobi equation for the quasi-potential ϕ(x, t) with the Hamiltonian

H(x, p) ≡ Q(x)p2 + F (x)p . (2.132)

Depending on the situation, Eq. (2.131) can be easier to analyze than the full Fokker-Planck
problem. The stationary solution of Eq. (2.131), i.e.,

0 = H

(
x, ∂xϕ

s(x)

)
, (2.133)
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is equivalent to the zero energy solution of the dynamical system

ẋ(t) =
∂H

∂p

(
x(t), p(t)

)
, (2.134)

ṗ(t) = −∂H
∂x

(
x(t), p(t)

)
. (2.135)

This equivalence is the main concept to understand the coherence of a noisy clock as
reported in Ref. [45, 46] and summarized in Appendix B. Furthermore, Eq. (2.131) will be
the starting point of Chapter 4.

2.8 characterization of nonequilibrium dynamical systems

2.8.1 Critical behavior and scaling form

We briefly recap the basic notion of a continuous equilibrium phase transition. As illustrative
example, we consider the one-dimensional Ising model for ferromagnetism. This section is
based on the textbook [47].

We consider a system of spins {σi = ±1} at each side i = 1, 2, . . . , N of a one-dimensional
lattice with periodic boundary conditions, i.e., we identify σN+1 = σ1. The energy is given
by the Hamiltonian

H({σi}) ≡ −J
2

N∑
i=1

σiσi+1 − h
N∑
i=1

σi , (2.136)

with free parameters J and h. In order to study the magnetic behavior of the system, we
introduce the mean magnetization per site

m ≡ 1

N

N∑
i=1

⟨σi⟩ = ⟨σ1⟩ , (2.137)

where we used the translational invariance of the system in the last step. If m = 0, there is
no magnetic order in the system, whereas for m ̸= 0, there is a preferred direction for the
spins to align. Thus, the mean magnetization serves as an order-parameter of the Ising
model, i.e., it indicates whether the system is in the ordered or disordered phase.
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If we consider a single site i, the spin sitting there experiences a field

hi ≡ h+
J

2
(σi−1 + σi+1) , (2.138)

with an average contribution

⟨hi⟩ = h+ Jm . (2.139)

Furthermore, ignoring higher-order fluctuations, we replace

σiσi+1 → m(σi + σi+1)−m2 . (2.140)

Everything together, we obtain the mean-field Hamiltonian for the Ising model

HMF({σi}) ≡
J

2
Nm2 −

N∑
i=1

(h+ Jm)σi . (2.141)

The free-energy is then given by

F ≡ − 1

β
ln
∑
{σi}

e−βHMF({σi}) = − 1

β
ln

[
e−

βJ
2
m2

2 cosh β(h+ Jm)

]N
, (2.142)

compare also Sec. 2.2. Differentiation with respect to the external field h leads to the state
equation for the mean magnetization

m = tanh β(Jm+ h) . (2.143)

Thus, we find that the mean magnetization is a function of the external parameters J
and h. Depending on the value of these parameters, the average magnetization per site
behaves differently. Hence, J and h are called control parameters of the Ising model. For
convenience we introduce the reduced and critical temperature

τ ≡ βc/β − 1 and βc = 1/J . (2.144)

In the limit of a small h and τ , a Taylor-expansion of Eq. (2.143) leads to the state of
equation of magnetism

βch = τm+
1

3
m3 . (2.145)
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For the special case of a vanishing external field, i.e., h = 0, we find the solution

m = 0 , (2.146)

for τ > 0 and

m = ±
√
3(−τ)1/2 , (2.147)

for τ < 0. Thus, βc is the temperature for which the system smoothly transitions from one
solution of the mean magnetization, Eq. (2.146), to the other, Eq. (2.147).

In the regime below τc, Eq. (2.146) is still a valid solution. However, the free energy
evaluated at the solution of Eq. (2.147) is lower than the one of vanishing magnetization.
Thus, Eq. (2.147) is the thermodynamically relevant solution for τ < τc.

We consider another special case for τ = τc ≡ 0. The solution of Eq. (2.145) satisfies

m ∝ h1/3 . (2.148)

Like in Eq. (2.147), we find a power-law dependence of the order-parameter on the control
parameter. This behavior is a trade-mark for continuous phase transitions.

In general, the solution of Eq. (2.145) satisfies the scaling form

m = m(τ, h) = |τ |1/2m±

(
h

|τ |3/2
)
, (2.149)

where m±(x) denotes the solution depending on the sign of τ . This scaling representation
is generic for a continuous phase transition, i.e., any order parameter m depending on the
control parameters τ and h satisfies in the vicinity of the critical point the scaling form

m(τ, h) = |τ |βm±

(
h

|τ |δβ
)
, (2.150)

with critical exponents β and δ and the m±(x) are denoted as scaling functions. For
the mean-field Ising model, the exponents are β = 1/2 and δ = 3, compare Eq. (2.149).
This power-law behavior also effects physical quantities that are derived from the order
parameter, thus, leading to further exponents and scaling relations between them. A set of
critical exponents characterizes a continuous phase transition and defines its universality
class. For example, any system undergoing a continuous phase transition exhibiting the
same critical exponents as the Ising model is said to belong to the Ising universality class.
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There are in general several more aspects regarding continuous phase transitions which
would be indispensable to consider in a comprehensive review. However, the above mentioned
concepts are the key ingredients for the discussions in Chapter 5 and Chapter 6. Thus, we
now turn to the dynamical point of view on phase transitions.

2.8.2 Bifurcation theory

In the context of dynamical systems, phase transitions are known as bifurcations [48].
As this dynamical picture is not restricted to equilibrium systems, bifurcation theory is
the natural framework to study nonequilibrium transitions. An intuitive picture for a
bifurcation is drawn by a particle moving in a potential. While externally varying the
energy landscape, the potential minimum can change its position or more minima can
emerge. Thus, depending on the external parameter, the particle could end up in a different
minimum in the long-time limit. This behavior is called bifurcation.

We consider a dynamical system,

ẋ(t) = −∂xV (x, ρ, h) , (2.151)

with potential

V (x, ρ, h) ≡ 1

4
x4 − ρ

2
x2 − hx , (2.152)

where h and ρ are externally controlled. For ρc = hc ≡ 0, this system exhibits a critical
point, i.e., the fixed point x∗ of the dynamics is not linearly stable. In the following, we
consider two special pathways in the ρ− h-plane through the critical point xc ≡ 0.

For ρ = 0 and varying h,

V (x, 0, h) ≡ 1

4
x4 − hx , (2.153)

there is always a unique minimum x∗, see Fig. 2.8,

x∗(h) = sign(h)|h|1/3 , (2.154)

that is linearly stable, i.e., ∂2xV (x∗) > 0 except for h = hc. At the critical point hc, the
stability stems from the higher order derivative, i.e., ∂4xV (x∗) > 0, whereas ∂xV (x∗) =
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(a) (b)

Figure 2.8: Characterization of the transition along the ρ = 0-line. (a) Potential landscape, Eq.
(2.153), for various h. (b) Parameterized minimum of the potential x∗(h) as a function
of the control parameter h.

∂2xV (x
∗) = ∂3xV (x

∗) = 0. In this example, we find power-law scaling, i.e., x∗ ∝ |h|1/3,
compare Eq. (2.148).

The second path is given through a vanishing parameter h, i.e., h = 0, while varying ρ
with potential

V (x, ρ, 0) ≡ 1

4
x4 − ρ

2
x2 , (2.155)

see Fig. 2.9. For negative ρ, there exists only one unique, stable minimum x∗ = x0 ≡ 0.
For ρ > 0, the potential exhibits two stable minima at x±(ρ) = ±ρ1/2 with an unstable
maximum at x0 = 0 in between, compare Eq. (2.147). Thus, the system is called bistable and
the transition is denoted as transition into bistability or supercritical pitchfork bifurcation.

The above discussed systems are called normal forms for the respective bifurcations.
This means any system that undergoes a certain bifurcation can be brought into the
corresponding normal form through a series of transformations. In that sense, the above
obtained scaling exponents define universality classes as discussed in the previous section.
In Chapter 5, we will discuss these two paths for a CRN and evaluate the thermodynamic
flux and its fluctuations in the vicinity of the critical point.

So far, we only considered systems with one degree of freedom. In the next section, we
discuss a two-dimensional system that undergoes a continuous phase transition.
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(a) (b)

Figure 2.9: Characteristics of a pitchfork bifurcation. (a) Potential landscape, Eq. (2.155), for
various value of the control parameter ρ. (b) Bifurcation diagram of the fixed points
of the dynamical system Eq. (2.151). A solid line denotes a stable, a dashed line an
unstable fixed point.

2.8.3 Supercritical Hopf bifurcation

We consider a system of two continuous degrees of freedom denoted as (x, y). We further
assume that the system shows exponentially damped oscillations towards a fixed point
(x∗, y∗) with a damping rate that is given by an external parameter ρ. Thus, any deviations
from the fixed point will be suppressed over the course of time, see Fig. 2.10a. If we decrease
the damping and switch sign of ρ, the fixed point loses stability and all deviations will
grow, hence, leading to oscillations around the fixed point, see Fig. 2.10c. This type of
transition is termed supercritical Hopf bifurcation [48].

The dynamical system,ẋ(t)
ẏ(t)

 =

ρ −ω
ω ρ

x(t)
y(t)

+ [x(t)2 + y(t)2]

a −b
b a

x(t)
y(t)

 ≡ FCNF [x(t), y(t)]

(2.156)

is denoted the cubic normal form for a Hopf bifurcation or Stuart-Landau oscillator. For
ρ < 0, the above dynamical systems converges to the fixed point (x∗, y∗) = (0, 0) in the
limit of t → ∞, see Fig. 2.10a and 2.10b. For positive ρ, the system admits a stable



42 stochastic thermodynamics on discrete state space

closed loop in phase space denoted as limit cycle, see Fig. 2.10d. The dynamics can be
parameterized in the long time limit asxLC(t)

yLC(t)

 =

√
ρ

a

cos[(ω + bρ
a
)t]

sin[(ω + bρ
a
)t]

 . (2.157)

For a general vector field F (x, y) with fixed point (x∗, y∗), this type of bifurcation is
characterized through the eigenvalues λ± of the Jacobian DF (x∗, y∗) evaluated at the fixed
point, i.e.,

λ± = ℜ[λ](ρ)± i ℑ[λ](ρ) . (2.158)

The bifurcation takes place for a control parameter value ρc that is determined by the
following conditions

ℜ[λ](ρc) = 0,
dℜ[λ]
dρ

(ρc) ̸= 0 , and ℑ[λ](ρc) ̸= 0 , (2.159)

i.e., crossing the imaginary axis away from the origin with non-vanishing velocity. For the
vector field of the cubic normal form, Eq. (2.156), the eigenvalue is

λ± = ρ± iω . (2.160)

Thus, the bifurcation takes place for ρ = ρc ≡ 0.
A self-sustained oscillator like a limit cycle is a prime nonequilibrium phenomenon and

often used to model chemical clocks [46, 49]. The oscillations are not externally driven but
need a non-potential force, thus, are out of equilibrium. The supercritical Hopf bifurcation
is therefore often denoted as continuous nonequilibrium phase transition.

The vector field, Eq. (2.156), is termed normal form since any system undergoing such a
bifurcation can be brought into that form through a series of transformations. In Chapter 6,
we will explain this transformation scheme and apply it to the rate equations of a nonlinear
CRN.

In the next section, we discuss oscillations that emerge in stochastic systems and how to
characterize them.
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(a) (b)

(c) (d)

Figure 2.10: Different scenarios for a Hopf bifurcation. (a) Dynamics of x(t), Eq. (2.156), in the
fixed point regime of the cubic normal form. (b) Vector field FCNF (x, y), Eq. (2.156),
for ρ = ω = a = b = −1 displaying a fixed point behavior. A dot denotes the fixed
point. (c) x(t) dynamics in the oscillatory regime of the cubic normal form starting
close to the fixed point. (d) FCNF (x, y) above the bifurcation exhibiting a stable
limit cycle (dashed line) around the fixed point (dot).
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2.8.4 Coherent oscillations

We consider noisy self-sustained oscillations, e.g., a CRN or a vector field perturbed by
weak noise exhibiting a limit cycle. Such oscillations are characterized through their quality
factor R. If the system does not oscillate, R vanishes. Thus, this quantity can serve as
order parameter for an oscillating system.

The quality factor is defined through the eigenvalues of the underlying dynamics,

Lxvn(x) = λnvn(x) , (2.161)

where Lx denotes the generator of the dynamics, e.g., a Fokker-Planck or master equation,
λn the eigenvalues and vn(x) the corresponding eigenfunctions.

The stationary solution corresponds to the vanishing eigenvalue, i.e.,

ps(x) = v0(x), λ0 = 0 . (2.162)

If we consider a system following a master equation, the Perron-Frobenius theorem implies
a hierarchy on the eigenvalues,

0 = λ0 > ℜλ1 ≥ ℜλ2 ≥ . . . . (2.163)

For a Fokker-Planck equation, a similar theorem only holds for equilibrium systems [39].
Thus, the general solution for the probability density is given by

p(t) =
∑
n

cne
λitvn(x) . (2.164)

In the long time limit, the slowest decay mode dominates the relaxation into the stationary
state. Hence, the dynamic of the system is characterized by

λ1 ≡ −1

τ
± i ω (2.165)

The ratio of real and imaginary part of this eigenvalue defines the quality factor,

R ≡ ωτ. (2.166)
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This quantity is closely related to the number of coherent oscillations

N ≡ 1

2π
R , (2.167)

i.e., the number of oscillations before the initial amplitude has decayed by a factor of 1/e.
Thus, the higher the quality factor, the more oscillations without loss of coherence occur.

From an experimental or numerical point of view, the quality factor can be obtained
through the correlation function of an observable O,

CO(t) ≡ ⟨O(t)O(0)⟩ =
∑
n

on exp(λnt) . (2.168)

In the long-time limit, the dynamics of the correlation function is dominated by the
slowest decay rate, i.e., CO(t) describes a damped oscillation with the real part of the first
non-trivial eigenvalue as decay rate and with frequency given by its imaginary part [46].

The quality factor is closely related to thermodynamic quantities. For a uni-cyclic network
the quality factor is bounded through the number of states N and driving along the cycle
A as

R ≤ cot
π

N
tanh

A
2N

. (2.169)

This relation has been conjectured by Barato and Seifert in a more general setting based
on strong numerical evidence [4] and proven by Ohga and co-workers [50].

Furthermore, Oberreiter and co-workers conjectured that the quality factor respectively
the number of coherent oscillations gives a lower bound on the total entropy production
per period that is needed to maintain the oscillations [5],

∆Stot ≥ 4π2N . (2.170)

In Chapter 4 we will derive and proof Eq. (2.169) and (2.170) for a periodic one-dimensional
system with continuous state space.





3
OPTIMAL ITY OF NON-CONSERVATIVE DRIV ING FOR

F IN ITE -T IME PROCESSES WITH DISCRETE STATES

3.1 introduction

In thermodynamics, a finite-time process transforms a given initial state into a given
final one in a given finite time. This process is optimal if it comes at the lowest cost,
i.e., at the lowest entropy production. The condition of a finite time is crucial, since
quasi-static processes, which require infinitely slow driving, do not generate entropy at
all. For macroscopic systems, such processes have been studied under the label of finite-
time thermodynamics [23]. For small systems in contact with a thermal environment
and thus following a stochastic dynamics, optimal finite-time processes were shown to
have an inevitable thermodynamic cost that scales asymptotically like the inverse of the
allocated time [24, 51]. This scaling was later shown to be the exact minimal entropy
production for any finite time for an underlying Langevin dynamics [26, 52], see also [53].
For system with discrete state space undergoing a master equation dynamics, this scaling
holds asymptotically as several case studies have shown [54–56]. In the linear response
regime, an appealing systematic theory for the optimal driving involves geometric concepts
like the thermodynamic length [57–62]; see [63] for a brief review. A complementary
aspect of this optimization concerns the derivation of speed limits for transformations
between an initial and final distribution [64]. For an effective two-state system, a prominent
experimental application of optimal protocols is the minimal cost of erasing a bit in a
finite-time extension of the Landauer bound [65–69].

A fundamental distinction for any non-equilibrium process is whether or not the driving
is conservative, i.e., whether or not it arises from a time-dependent potential. The former
case applies inter alia to single molecules manipulated with optical tweezers [70, 71], to
colloidal particles in time-dependent harmonic or anharmonic traps [10] and to stochastic
pumps for which the energy of each state (and potentially the barriers in between) are
driven [72–74]. Paradigms for non-conservative driving are colloidal particles driven along
static periodic potentials and colloidal particles in shear flow. Biophysical and biochemical
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processes that are driven by unbalanced chemical reactions like the hydrolysis of nucleic
acids fall in this class as well [75, 76].

Emphasizing this distinction leads to the question whether conservative or non-conservative
driving leads to a lower cost for a given initial and final state. In a more technical formula-
tion, the question is whether a time-dependent dynamics whose instantaneous stationary
state is Boltzmann-Gibbs-like achieves already minimal entropy production or whether an
additional non-conservative contribution, which at fixed control parameter would lead to a
genuine non-equilibrium steady-state, can further decrease the cost. For systems with a
continuous state space, i.e., for Langevin dynamics, it is known that the optimal protocol
involves only conservative forces [25, 26, 28, 77]. Coming back to the example of a colloidal
particle on a ring with periodic boundary conditions this result implies that there is nothing
gained by allowing a non-conservative force to act on top of a time-dependent potential.

In this chapter, we address this question for systems with discrete states, i.e., for a master
equation dynamics with time-dependent rates. We can build on the work of Muratore-
Ginanneschi et al. [27] who formulated this optimization problem in terms of control
theory without addressing the specific question we are interested in. Since they show that
the optimization reduces to the Langevin problem in the continuum limit, one might
even expect that the optimal protocol for a discrete state space can be achieved with
conservative driving as well. In contrast to the continuous case, however, we will prove that
the optimal driving is in fact non-conservative. Furthermore, we will show that for a broad
class of systems all cycle affinities, defined precisely below as a quantitative measure of the
"non-conservativeness" of the dynamics, remain bounded as a function of the number of
states in a cycle during the whole process independent of its duration.

3.2 optimal control of markov jump processes

3.2.1 Set-up

We consider a discrete set of states {i} of total number N . A transition between two states
(i, j) occurs at a rate kij(t), which is in general time-dependent. The probability pi(t) to
find the system at time t in state i evolves according to the master-equation

∂tpi(t) =
∑
j ̸=i

[kji(t)pj(t)− kij(t)pi(t)] ≡ −
∑
j ̸=i

jij(t) (3.1)
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with the net probability current jij(t) through link (i, j). We parameterize the transition
rates as [27]

kij(t) = κije
Aij(t)/2 (3.2)

with constant, symmetric part κij = κji, which sets the characteristic time-scale for
the transition from state i to j, and time-dependent, antisymmetric Aij(t) = −Aji(t).
Throughout this chapter, we measure energies in units of a thermal energy and entropy in
units of Boltzmann’s constant.

Conservative driving implies that the ratio of forward and backward rates is given by
the difference of time-dependent free energies Fi(t) leading to

Aij(t) = Fi(t)− Fj(t). (3.3)

In contrast, for non-conservative driving Aij(t) cannot be written as a difference of state
functions.

It will be convenient to transform the state densities as ϕi(t) ≡
√
pi(t) and to introduce

the non-equilibrium driving function [27]

φij(t) ≡ Aij(t) + 2[lnϕi(t)− lnϕj(t)] , (3.4)

which becomes for conservative driving

φij(t) = Bi(t)−Bj(t) with Bi(t) ≡ Fi(t) + 2 lnϕi(t). (3.5)

In this representation, the current along link (i, j) transforms to

jij(t) = 2κijϕi(t)ϕj(t) sinh
φij(t)

2
(3.6)

and the master equation (3.1) becomes

∂tϕi(t) = −
∑
j ̸=i

κijϕj(t) sinh
φij(t)

2
. (3.7)
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The process that transforms the given initial density {ϕi(0)} to a given final one {ϕi(T )}
in time T is optimal if it generates the least overall entropy production

∆Stot ≡
∫ T

0

dt σ(t) (3.8)

with the entropy production rate [12]

σ(t) =
∑
i ̸=j

pi(t)kij(t) ln
pi(t)kij(t)

pj(t)kji(t)
= 2

∑
i<j

κijϕi(t)ϕj(t)φij(t) sinh
φij(t)

2
. (3.9)

3.2.2 Optimality of non-conservative driving

We first show that conservative driving does not lead to minimal entropy production.
Assume that within this parameter space (3.5) we have found the optimal protocol F ∗

i (t)

leading to p∗i (t) with currents j∗ij(t). For a unicyclic system, it is then clear that adding a
time-dependent ∆(t) to the clockwise current will still satisfy the master equation (3.1)
and the boundary conditions of a fixed initial and final density. Under the transformation

jij(t) ≡ j∗ij(t) + ϵij∆(t) (3.10)

with ϵij = 1 = −ϵji for i < j the entropy production rates σ∗(t), respectively σ(t), become
by a Taylor-expansion

σ(t)− σ∗(t) = ∆(t) 2
∑
i<j

tanh
B∗

i (t)−B∗
j (t)

2
+O(∆(t)2) . (3.11)

Since in general, the linear term will not vanish, see Appendix A.1, we get that the
total entropy production found within conservative driving can be further decreased by
adding a non-conservative term accounting for such a ∆(t). Specifically, we can choose
∆(t) = const. ̸= 0 such that

2∆

∫ T

0

dt
∑
i<j

tanh
B∗

i (t)−B∗
j (t)

2
< 0 . (3.12)
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This constitutes our first main result: In contrast to the continuous case, optimal protocols
for Markov jump processes involve non-conservative driving, i.e., a genuine cycle affinity

Ac(t) ≡
∑

(i,j)∈C

Aij(t) =
∑

(i,j)∈C

φij(t) (3.13)

for each cycle C in the network. The above proof can indeed be extended trivially to
multicyclic networks since a corresponding ∆(t) can be added to an arbitrary cycle in
which case the summation in (3.11) is only over the directed links of this cycle.

3.2.3 Bound on the optimal cycle affinity

We next show that all cycle affinities Ac(t) are bounded by the number of states in
each cycle for all times. To do so, we have to derive the Euler-Lagrange equations for the
variational problem posed by minimizing the entropy production (3.8) under the constraints
(3.7) which we add with Langrangean multipliers {ηi(t)} that ensure that the densities
{ϕi(t)} satisfy the master equation. Thus, we minimize

∆S ≡
∫ T

0

dt L[{ϕ(t), φ(t), η(t)}] (3.14)

for given {ϕi(0)} and {ϕi(T )} with Lagrange function

L(t) ≡ σ(t) +
∑
i

ηi(t)[∂tϕi(t) +
∑
j ̸=i

κijϕj(t) sinh
φij(t)

2
] . (3.15)

From δL/δϕi(t) = 0, we get the equations of motion for the Lagrange multiplier

∂tηi(t) =
∑
j ̸=i

κij sinh
φij(t)

2
[2ϕj(t)φij(t)− ηj(t)] . (3.16)

Variation with respect to the protocol φij(t) leads to

ηi(t)ϕj(t)− ηj(t)ϕi(t) = −4ϕi(t)ϕj(t)[tanh
φij(t)

2
+
φij(t)

2
] . (3.17)
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By summing (3.17) over an arbitrary cycle with Nc states we get

0 =
Nc∑
i=1

[ηi(t)/ϕi(t)− ηi+1(t)/ϕi+1(t)] = −4
Nc∑
i=1

[tanh
φi,i+1(t)

2
+
φi,i+1(t)

2
] (3.18)

where we relabeled the neighboring links (i, j) ∈ C as (i, i+ 1). We now use this relation to
find for the affinity

Ac(t) =
Nc∑
i=1

φi,i+1(t) = −2
Nc∑
i=1

tanh
φi,i+1(t)

2
(3.19)

and finally use | tanh(x)| ≤ 1 to obtain

|Ac(t)| ≤ 2Nc . (3.20)

Thus for each cycle, the time-dependent affinity is bounded by the number of states within
that cycle.

In fact, we can sharpen this bound further to

|Ac(t)| ≤ 2(Nc − 2). (3.21)

which is our second main result. While the formal derivation of this improved bound
as shown in Appendix A.2 is somewhat technical, its origin can be understood by the
following consideration. Eqs. (3.19,3.20) require the affinity and hence the sum of the
driving functions to be finite, thus, not all {φij(t)} are allowed to tend to, e.g., positive
infinity at the same time which was the rational behind the weaker bound, Eq. (3.20).
At least one driving function has to compensate this putative divergence by approaching
negative infinity. The asymptotic behavior of the affinity is determined by Eq. (3.18),
thus, for all φij(t) → ±∞ except one that tends to φkl(t) → ∓∞, the affinity approaches
Ac(t) → ∓2(Nc − 2).

3.2.4 Configurations that tend to saturate the affinity bound

We now turn to numerics in order to explore how significant the improvement through non-
conservative driving is and to check how strong the improved bound (3.21) is. For a three
state system, i.e., Nc = 3, we sample arbitrary initial and final distributions and calculate for
each pair of them the optimal protocol first for conservative and then for non-conservative
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Figure 3.1: Influence of the allocated time T on the maximal affinity Amax for arbitrary sampled
initial and final distributions. The edges of the boxes represent the first Q1 (left) and
third quartile Q3 (right site). The whisker on the left represents the minimum value
and on the right the maximum of the data. The thick green line displays the median
of the data.

driving. We fix a basic time-scale by setting all symmetric prefactors κij = κji = 1. We
find that the non-conservative driving leads to an only minute improvement. For a process
transforming the state of the system within a time that is comparable to the intrinsic
timescale, i.e., for T = 1, the advantage of non-conservative driving is on average only of
the order of 10−5 with a maximal improvement of order 10−4. Even for processes that are
ten times faster, i.e., T = 0.1, on average this advantage raises only to 10−3, respectively
10−2 for the maximum value.

The faster the process is, the larger is the maximum affinity applied in the optimal
process as shown in Fig. (3.1). This reflects the fact that a non-equilibrium quantity like
the cycle affinity should vanish as the quasi-static limit is approached, i.e. T → ∞. While
Amax ≡ max0≤t≤T |A(t)| remains below the value of 2 as it should, there are combinations
of initial and final densities for which the optimal affinity seems to reach this bound within
about 2 percent. In Fig. (3.2), we show that the largest affinities are generated by those
initial and final distributions that require to transport either the largest density, i.e., for
which ∆pi = pi(0)− pi(T ) is approximately ±1 for one pair of states, or for which ∆pi ≃ 0

for one state.
Comparing the configurations displayed in Fig. (3.2), we find that it becomes more

difficult to obtain numerically convergent solutions the lower we set the allocated time T .
Particularly, we find configurations which tend to transport the largest densities, ∆pi → ±1,
to be numerically unstable (black crosses). At present, it is unclear whether this is due to
the numerical scheme, see Appendix A.3 and A.4, or whether there is a generic problem in
the mathematical formulation, e.g., due to diverging derivatives of the driving functions or
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(a) T = 1 (b) T = 0.1

(c) T = 0.01

Figure 3.2: Influence of the system-parameters on the maximal affinity Amax ≡ maxt∈[0,T ] |A(t)|
of arbitrary sampled configurations for different speeds T . ∆pi = pi(0)−pi(T ) displays
the change in the state densities. The colorbar represents Amax. The dashed line is
defined by ∆pi = ±1 for one i. The dotted line represents ∆pi = 0 for a i. Black
crosses stand for configurations that failed to converge with our algorithm.

vanishing probabilities. Another question that remains open is whether there always exist
a set of initial and final densities that saturate the bound of the affinity, Eq. (3.21), for a
given time T . From our numerical findings we expect that this is the case for configurations
that transport the maximal densities, i.e., for ∆pi ≃ ±1. The larger the allocated time T ,
the closer the transported densities need to be to ±1 in order to saturate the bound.



3.2 optimal control of markov jump processes 55

3.2.5 Generalization to rates including a structural parameter

So far, with the parametrization (3.2), we have focused on a symmetric splitting of the
driving over each forward and backward rate. In a more general setting, we now allow for
a splitting that may be different for each link. We can then parametrize the rates as

kij = κij exp(αijAij)

kji = κji exp[(1− αij)Aji]
(3.22)

with κij = κji and one structural parameter for each link given by 0 < αij = αji < 1.
Following the derivation in the symmetric case from above, it is straightforward to show
that the bound (3.20) becomes

−
Nc∑
i=1

1

αi,i+1

≤ Ac ≤
Nc∑
i=1

1

1− αi,i+1

, (3.23)

see Appendix A.5 for a derivation. If αi = 1/2 for all i, we reproduce Eq. (3.20).

3.2.6 Recovering the optimal protocol for Langevin systems in the continuum limit

The more states a cycle has, the larger become our bounds. Naively extrapolating to a
cycle with infinitely many states, one might conclude that in such a continuum limit the
affinity could diverge. Such an expectation would be in contrast with the established result
that for a Langevin dynamics conservative driving, i.e., zero affinity achieves optimality
[25, 26]. We finally show that our approach reproduces this continuum limit correctly. Let
dx denote a lattice spacing along a cycle. We relabel the driving function of adjacent states
in a cycle from φi,i+1 to φx,x+dx. For small lattice spacing, the affinity becomes

Ac(t) =
∑
x∈C

φx,x+dx(t) ≈
∑
x∈C

φ′
x,x(t)dx ≈

∮
C
φ′
x,x(t)dx (3.24)

where the prime denotes a derivative with respect to x. Here, we have used that φx,x(t) = 0

due to the antisymmetry of φij(t). Thus, the affinity approaches the contour integral over
the spatial derivative of the driving function φ′

x,x(t) along the cycle. We can calculate
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the limiting value of this integral by dividing Eq. (3.18) by −2 and a Taylor expansion,
according to

0 =
∑
x∈C

[φx,x+dx(t) + 2 tanh
φx,x+dx(t)

2
] ≈ 2

∑
x∈C

φ′
x,x(t)dx ≈ 2

∮
C
φ′
x,x(t)dx. (3.25)

Thus, the cycle affinity indeed has to vanish in the continuum limit. This finding also
generalizes to the non-symmetrical splitting of the rates, Eq. (3.22), see Appendix A.6.

3.3 conclusion

In conclusion, we have proven that for discrete systems, optimal finite-time processes require
non-conservative driving in marked contrast to the case of systems with continuous degrees
of freedom. This result implies that with an optimal protocol for the Langevin dynamics,
discretizing this solution will in general not guarantee optimality over the coarse-grained
state space. Furthermore, driving a process, e.g., with unbalanced biochemical reactions,
which necessarily imply non-vanishing affinity, can yield lower entropy production than by
pumping the system through time-dependent modulations of energies and barriers, wich
amounts to conservative driving. For each cycle in a multicyclic network, the maximum
affinity remains bounded throughout the process, even if the allocated time approaches zero.
For driving that affects forward and backward rates symmetrically, the bound depends only
on the number of states of a cycle. For a non-symmetric splitting, a structural parameter
enters the bound. Open theoretical problems include a proof of the tightness of the improved
bound, Eq. (3.21), for all T and a generalization of this improved bound to asymmetric
splitting. For experiments, it remains a challenge to set up a system for which both types
of driving, conservative and non-conservative one, can be implemented and quantitatively
be compared with another at the same time.



4
COHERENCE OF OSC ILLAT IONS IN THE WEAK-NOISE

L IM IT

4.1 introduction

Oscillations are ubiquitous in living systems. The cell cycle [78], circadian rhythms [79, 80],
glycolysis [81], and biochemical oscillations in general [82] represent a few examples for such
periodic behavior. These models describe generic processes that are able to keep track of
time, hence, to function as clocks. Typically, such biochemical clocks work in surroundings
with large fluctuations. Thus, the question arises how these oscillations emerge and how
they maintain their coherence.

On the macroscopic level, bifurcation theory is used to address these questions, i.e., to
rationalize the dynamical behavior of deterministic chemical rate equations [48, 83]. A
prominent example is Selkov’s model for the self-sustained oscillations in glycolysis [49].
For microscopic systems, chemical master equations and Markov networks [37, 84, 85]
are established tools to examine these oscillations [4, 45, 46, 86–90]. The latter lead to
the notion of "Brownian clocks" [91, 92] and to central results like the thermodynamic
uncertainty relation in stochastic thermodynamics [19, 93, 94], which links the precision
of such clocks with the ultimate cost, i.e., the entropy production, see also [95]. The first
correction of the macroscopic picture towards the microscopic scale can be determined
through the weak-noise limit [45, 46]. On this mesoscopic scale, the master equation
is approximated through a Kramers-Moyal expansion [37]. Thus, the behavior of the
oscillations can be studied in the limit where the volume of the system becomes infinite. A
recent approach uses large deviation theory to obtain the probability densities beyond the
Gaussian approximation [96]. An alternative route to examine these oscillations is provided
by the phase-reduction method [89, 97, 98].

The macroscopic theory is deterministic, hence, oscillations stay synchronized for all
times. For phase diffusion and, thus, loss of coherence, randomness in the systems is
needed. Cao and co-workers demonstrated for several stochastic models that the number
of coherent oscillations increases with increasing entropy production rate [99]. A recent
study conjectures a universal trade-off relation between this quantity and total entropy
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production per period of oscillation [5]. The number of coherent oscillations is closely
related to the quality factor which we will discuss in detail below. The latter has recently
also been used as order parameter to study non-equilibrium phase transitions [90].

While the mesoscopic theory [45, 46] is rather involved in its general form, we simplify it
by performing an explicit calculation for a one-dimensional Fokker-Planck dynamics. For
the motion along a periodic ring, we derive an original, simple, analytical expression for the
quality factor. Furthermore, we determine an upper bound on this quantity. This bound is
the continuous version of a relation that has been conjectured for Markov networks in [4]
and equal to the bound presented in [5] in the weak-noise limit. Moreover, we show that
the number of coherent oscillations of a noisy limit cycle in two dimensions is also given by
that of a one-dimensional Fokker-Planck system under the assumption that tangent and
normal motion decouple in the weak-noise limit.

We illustrate our results through three numerical case studies examining a one-dimensional
system subject to a periodic force, the noisy Stuart Landau oscillator also known as cubic
normal form of a Hopf bifurcation, and the noisy rate equations of the Brusselator in two
dimensions. The coherence resulting from the numerics agrees well with our analytical re-
sults both for the one-dimensional case and in two-dimensional systems with weak coupling
between tangent and normal motion. Based on these numerical studies, we conjecture that
the one-dimensional approximation is in general an upper bound for the two-dimensional
quality factor.

This chapter is organized as follows. In Sec. 4.2, we discuss the quality factor as a
quantitative measure for the coherence of noisy oscillations. Our central result, an explicit
expression for the quality factor in one-dimensional Fokker-Planck systems is derived in
Sec. 4.3.1. Using this form, we generalize the microscopic bound [4] to dynamics on a one-
dimensional ring in Sec. 4.3.2. In Sec. 4.3.3, we derive the conjectured bound on the entropy
production [5] for this one-dimensional system. We illustrate these results numerically
in Sec. 4.3.4. In Sec. 4.4, we show that oscillations arising from a two-dimensional limit
cycle can also be characterized by the one-dimensional expression for the quality factor
in the limit of weak noise. We examine the noisy Stuart-Landau oscillator in Sec. 4.5.1
and discuss in detail the validity of the one-dimensional approximation in Sec. 4.5.2. As a
generic example for a chemical reaction network, we numerically treat the Brusselator in
Sec. 4.6 and conclude in Sec. 4.7.
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4.2 coherence of oscillations

A standard measure to describe the coherence of stochastic oscillations is the quality factor
R [4, 45, 46, 90, 100]. This quantity is related to the correlation function of an observable
O(t),

CO(t) ≡ ⟨O(t)O(0)⟩ , (4.1)

which displays damped oscillations if O(t) performs a noisy periodic motion. The quality
factor,

R ≡
∣∣∣∣ImλReλ

∣∣∣∣ = ωτ , (4.2)

is determined by the dominant eigenvalue

λ = −1/τ + iω (4.3)

of the corresponding dynamical equation. The larger R is, the longer keeps the oscillator
the coherence.

For unicyclic Markov networks, it has recently been conjectured that the quality factor
is bounded by

R ≤ f(A, N) ≡ cot(π/N) tanh(A/2N) , (4.4)

where N is the number of states. The affinity

A ≡
N∑
i=1

ln
k+i
k−i

(4.5)

is a function of the rates k+i and k−i at which a transition from state i to i± 1 occurs and
a measure for the non-equilibrium driving in the network. Eq. (4.4) is based on strong
numerical evidence and covers in its most general form also multicyclic networks [4]. A
further result relates the quality factor of an oscillator with the entropic cost to maintain
the oscillation,

∆Stot ≥ 2πR . (4.6)
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This bound is based on strong numerical evidence and has been conjectured for general
Markov jump networks [5].

The quality factor for systems following a Fokker-Planck dynamics is obtained by a
spectral decomposition of the Fokker-Planck operator [45, 46]. Thus, the number of coherent
oscillations is also given by the dominant eigenvalue, Eq. (4.2). This expansion in the
eigenbasis leads to a Hamilton-Jacobi equation with the Freidlin-Wentzell Hamiltonian
respectively Onsagar-Machlup Lagrangian for the leading order term of the probability
density in the weak-noise limit [45, 46, 100]. The quality factor is then obtained using
techniques from Hamilton-Jacobi theory.

We next perform this eigenfunction expansion to find an analytical expression for the
quality factor of one-dimensional systems in the weak-noise limit without explicitly using
Hamilton-Jacobi theory.

4.3 one-dimensional fokker-planck systems in the weak-noise

limit

4.3.1 Quality factor

Consider a single continuous degree of freedom x(t), e.g., a particle or the concentration of
a species on a one-dimensional ring of length L > 0. It is driven by a spatially periodic
force F (x) = F (x + L) and subject to a space-dependent diffusion Q(x) = Q(x + L).
We implement the weak noise explicitly through an external parameter Ω > 0, which we
assume to be large compared to all other system scales, i.e., Ω ≫ 1. The dynamics of such
a system is then described by the following Fokker-Planck equation [45]

∂tp(x, t) = −{∂x[F (x)p(x, t)]−
1

Ω
∂2x[Q(x)p(x, t)]} ≡ Lxp(x, t) , (4.7)

where we assume that Q(x) > 0 for all x. Lx denotes the Fokker-Planck operator. Addi-
tionally, we require that the force has a unique sign. The latter assumptions ensures that
the dynamics has no rest position, which would destroy oscillations in the weak-noise limit.
Without loss of generality, we assume F (x) to be positive.

Following [45], we expand Eq. (4.7) to obtain the eigenvalues and thus, the quality factor.
With the splitting ansatz, p(x, t) = f(t)h(x), Eq. (4.7) becomes

df(t)/dt

f(t)
=

Lxh(x)

h(x)
≡ λ . (4.8)



4.3 one-dimensional fokker-planck systems in the weak-noise limit 61

The time dependence of the probability density is thus given by an exponential f(t) ∝
exp(λt).

In order to solve for the eigenvalues λ, we employ the ansatz h(x) = exp[−Ωϕ(x)] [45].
Plugging this form into Eq. (4.8), we obtain an equation for g(x) ≡ ϕ′(x),

F (x)g(x) +Q(x)g(x)2 +
1

Ω2
Q′′(x)− 1

Ω
[λ+ F ′(x) + 2Q′(x)g(x) +Q(x)g′(x)] = 0. (4.9)

We solve this relation by expanding g(x) in inverse powers of Ω, i.e.,

g(x) = g0(x) +
1

Ω
g1(x) +

1

Ω2
g2(x) +O

(
1

Ω3

)
, Ω → ∞ . (4.10)

Comparing the coefficients, we find the following conditions. In O(1),

F (x)g0(x) +Q(x)g0(x)
2 = 0 ; (4.11)

in O(1/Ω),

−λF (x)g1(x) + 2Q(x)g0(x)g1(x)− F ′(x)−Q(x)g′0(x)− 2g0(x)Q
′(x) = 0 ; (4.12)

and in O(1/Ω2),

F (x)g2(x) +Q(x)[g1(x)
2 + 2g0(x)g1(x)]−Q(x)g′1(x)− 2g1(x)Q

′(x) +Q′′(x) = 0 . (4.13)

There are two solutions for the O(1) constraint, i.e. g0(x) = 0 and g̃0(x) = −F (x)/Q(x).
We neglect the latter since this solution leads to a vanishing quality factor in the weak-noise
limit, see Appendix B.1.

Solving the system of equations above, Eq. (4.11)-(4.13), we obtain the leading order
terms for g(x),

g0(x) = 0 , (4.14)

g1(x) =
λ+ F ′(x)

F (x)
, (4.15)

and

g2(x) =
1

F (x)3
[−λ2Q(x)− 3λQ(x)F ′(x)− 2Q(x)F ′(x)2

+ 2λF (x)Q′(x) + 2F (x)F ′(x)Q′(x) + F (x)Q(x)F ′′(x)− F (x)2Q′′(x)] .

(4.16)
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The periodicity, p(x, t) = p(x+ L, t), implies that ϕ(x) =
∫ x

g(u)du must satisfy

i2πk = Ω

∫ L

0

dxg(x) = Ω[ϕ(L)− ϕ(0)] (4.17)

for an arbitrary k ∈ Z. Plugging the perturbative solution g(x), Eq. (4.10), into this
relation, we can solve the quadratic equation for the eigenvalues as

λ
(k)
± =

Ω

2
∫ L

0
Q(x)/F (x)3dx

{∫ L

0

1/F (x)dx− 1

Ω

∫ L

0

Q(x)F ′(x)/F (x)3dx

±
[(∫ L

0

1/F (x)dx− 1

Ω

∫ L

0

Q(x)F ′(x)/F (x)3dx

)2

− i8πk

∫ L

0

Q(x)/F (x)3dx/Ω

] 1
2
}
.

(4.18)

We find the well-behaved solution by a Taylor expansion for Ω ≫ 1 as

λ(k) ≡ λ
(k)
− = −(2πk)2

1

Ω

∫ L

0
Q(x)/F (x)3dx

[
∫ L

0
1/F (x)dx]3

+O
(

1

Ω2

)
+ i 2πk

1∫ L

0
1/F (x)dx

+ iO
(
1

Ω

)
.

(4.19)

The corresponding eigenfunctions are given by

p(k)(x, t) = N (k) exp[λ(k)t− Ω

∫ x

g(k)(u)du] ≡ exp[λ(k)t]h(k)(x) (4.20)

where g(k)(x) denotes the solution of Eq. (4.10) for the eigenvalue λ(k) and h(k)(x) the
corresponding eigenfunction of the Fokker-Planck operator, Eq. (4.8).

The second solution for the eigenvalues is

λ̃(k) ≡ λ
(k)
+

≈ Ω[

∫ L

0

1/F (x)dx]/[

∫ L

0

Q(x)/F (x)3dx] +O(1)− i2πk/

∫ L

0

1/F (x)dx+ iO
(
1

Ω

)
(4.21)

which we can neglect since the λ̃(k) would lead to a vanishing number of oscillations in the
weak-noise limit.
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Thus, for a single continuous degree of freedom following a Fokker-Planck dynamics, Eq.
(4.7), the quality factor is given by

Rcont ≡
∣∣∣∣ℑλ(1)ℜλ(1)

∣∣∣∣ = Ω

2π

(∫ L

0
1

F (x)
dx
)2

∫ L

0
Q(x)
F (x)3

dx
. (4.22)

This transparent expression is the first main result of this chapter. In the next section, we
discuss implications of this result for the microscopic bound, Eq. (4.4).

4.3.2 Bound on the quality factor

We first calculate a continuum limit of the bound on the quality factor, Eq. (4.4), and then
use our main result, Eq. (4.22), to derive and prove the continuous version of this bound
in the form

Rcont ≤ fcont ≡
Ω

2π

∫ L

0

F (x)

Q(x)
dx . (4.23)

We start by discretizing the Fokker-Planck equation (4.7) in space to obtain a master
equation for a unicyclic network,

∂tpi(t) = −(k+i + k−i )pi(t) + k−i+1pi+1 + k+i−1pi−1(t) , (4.24)

where pi(t) denotes the probability to be in state i after time t and k±i are the associated
transition rates. To this end, we use central differences to approximate the derivatives, i.e.,

f ′(x) ≈ [f(x+∆x)− f(x−∆x)]/(2∆x) and

f ′′(x) ≈ [f(x+∆x)− 2f(x) + f(x−∆x)]/∆x2 .
(4.25)

Comparing the result with Eq. (4.24), we get the rates

k+x−∆x =
Fx−∆x

2∆x
+
Qx−∆x

Ω∆x2
, and k−x+∆x = −Fx+∆x

2∆x
+
Qx+∆x

Ω∆x2
, (4.26)

with Fx ≡ F (x), ∆x ≡ L/N , and relabeling of the states i→ x = i∆x.
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The cycle affinity A, Eq. (4.5), becomes by a Taylor expansion

A =
N∑

x=1

ln
k+x
k−x

= Ω
N∑

x=1

Fx

Qx

∆x+O(∆x2) . (4.27)

Thus, we find for the bound on the quality factor, Eq. (4.4), in the continuum limit, i.e.,
N ≫ 1 respectively ∆x≪ 1,

f = cot
π

N
tanh

A
2N

≈ Ω

2π

N∑
x=1

Fx

Qx

∆x ≈ Ω

2π

∫ L

0

F (x)

Q(x)
dx ≡ fcont . (4.28)

The quality factor Rcont from Eq. (4.22) and fcont can be related through a Cauchy
Schwartz inequality,

(∫ L

0

1

F (x)
dx

)2

=

(∫ L

0

√
F (x)

Q(x)

√
Q(x)

F (x)3
dx

)2

≤
(∫ L

0

F (x)

Q(x)
dx

)(∫ L

0

Q(x)

F (x)3
dx

)
.

(4.29)

Dividing both sides by
∫ L

0
Q(x)/F (x)3dx leads to Eq. (4.23). Thus, we have proven the

continuum version of the bound, Eq. (4.4), which has been conjectured in [4] for discrete
unicyclic Markov networks. This is our second main result.

In the next section, we determine an expression for the entropy production in the
weak-noise limit. With an analytical expression at hand, we proof the bound conjectured
by Oberreiter and co-workers [5] for Ω ≫ 1.

4.3.3 Proof of entropic bound in the weak-noise limit

We derive an expression of the entropy production in the weak-noise limit, and then use
inequality (4.23) to obtain a continuum version of the bound conjectured by Oberreiter
and co-workers [5] in the form

∆Stot[T ] ≥ 2πRcont . (4.30)
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As first step, we calculate the steady state distribution. Solving Eq. (4.9) for λ = 0, we
obtain

ps(x) ≡ N

F (x)
exp

[
− 1

Ω

Q(x)

F (x)
∂x ln

F (x)

Q(x)
+O

(
1

Ω2

)]
(4.31)

with normalization constant

1

N
≡
∫
dx

1

F (x)
exp

[
− 1

Ω

Q(x)

F (x)
∂x ln

F (x)

Q(x)
+O

(
1

Ω2

)]
=

∫
dx

1

F (x)
+O

(
1

Ω

)
.

(4.32)

Thus, we obtain the stationary probability current as

js(x) ≡ F (x)ps(x)− 1

Ω
∂x

(
Q(x)ps(x)

)
= N +O

(
1

Ω

)
. (4.33)

In order to obtain the entropy production, we evaluate the following expression

Ω
js(x)2

Q(x)ps(x)
= NΩ

[
F (x)

Q(x)
− 1

Ω
∂x(ln

F (x)

Q(x)
− ln

Q(x)

F (x)
) +O

(
1

Ω2

)]
. (4.34)

This leads to

σ ≡ Ω

∫
dx

js(x)2

Q(x)ps(x)
= NΩ

∫
dx
F (x)

Q(x)
+O

(
1

Ω

)
=

(
Ω

∫
dx
F (x)

Q(x)
+O

(
1

Ω

))/(∫
dx

1

F (x)
+O

(
1

Ω

)) (4.35)

for Ω ≫ 1. In the first step we used Eq. (4.34) and Eq. (4.32) in the last step.
For the deterministic motion, the period of the oscillation is given by

T ≡
∫
dx

1

F (x)
. (4.36)

Using this definition, Eq. (4.28) and inequality Eq. (4.23), we obtain

Tσ +O
(
1

Ω

)
= fcont ≥ 2πRcont +O

(
1

Ω

)
. (4.37)

Identifying the total entropy production per oscillation, i.e.,

∆Stot[T ] ≡ Tσ , (4.38)
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we obtain Eq. (4.30). This constitutes our third main result.

4.3.4 A specific example

For an illustration, we consider a particle on a one-dimensional ring of length L = 2π. The
particle experiences a periodic force Fε(x) ≡ 1 + ε sinx with −1 < ε < 1. We keep the
diffusivity constant, i.e., Q(x) ≡ 1. The dynamics is governed by the Langevin equation

ẋ(t) = Fε(x(t)) +

√
2

Ω
ξ(t) (4.39)

with ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t− t′). This equation is equivalent to a Fokker-Planck
equation of the form of Eq. (4.7). Thus, we can apply the theory developed in the previous
sections.

We keep the initial value constant, x0 = −π, thus, the correlation function is proportional
to the mean value of x(t),

Cx(t) = ⟨x(t)|x(0) = x0⟩x0 . (4.40)

In the weak-noise limit, the deterministic solution for the mean value is given by

x∞(t) = −2 arctan

{
ε−

√
1− ε2 tan

[
1

2
t
√
1− ε2 + arctan

ε+ tan(x0/2)√
1− ε2

]}
. (4.41)

The quality factor for this system can be calculated analytically with Eq. (4.22) as

Rcont = Ω
2(1− ε2)3/2

2 + ε2
. (4.42)

The bound, Eq. (4.28), is simply fcont = Ω.
As shown in Fig. 4.1a, we observe a numerical convergence towards the deterministic

solution, Eq. (4.41) for increasing Ω, while the phase diffusion smears out the sharp
edges the stronger the noise becomes. In this regime, we observe exponentially damped
oscillations. From the numerically calculated correlation function, we obtain the frequency,
the decay rate, and the quality factor R as given by Eq. (4.2). The ratio R/Ω is shown in
Fig. 4.1b for various Ω as a function of ε. The numerical result for this one-dimensional
system agrees very well with our analytical prediction. For vanishing ε, the bound, Eq.
(4.28), is saturated as predicted by Eq. (4.42), while the quality factor tends to zero for
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Figure 4.1: (a) Correlation function Cx(t)/x0 for various Ω and ε = −1/2, x0 = −π for a particle
on a ring. (b) Ratio R/Ω as a function of ε. The continuous bound is the gray dashed
line. The solid line represents the theoretical prediction for the quality factor, Eq.
(4.42). We include error bars taking into account the fitting error.

ε→ ±1. This is due to the fact, that the force field, Fε(x) = 1 + ε sinx, establishes a root
for ε ≈ ±1, for which oscillations vanish.

In what follows, we turn to two-dimensional systems. We demonstrate analytically and
numerically that the one-dimensional quality factor, Eq. (4.22), is also applicable to planar
noisy oscillations for which a limit cycle emerging through a Hopf bifurcation is a prime
example.

4.4 planar oscillations in the weak-noise limit

Consider two continuous degrees of freedom x(t) and y(t). Their coupled dynamics is
governed by an autonomous Langevin equation,

d
dt

x(t)
y(t)

 =

Fx(x(t), y(t))

Fy(x(t), y(t))

+
1√
Ω
C(x(t), y(t))

ξ1(t)
ξ2(t)

 (4.43)
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where ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′). The weak-noise limit is again given
explicitly through the external parameter Ω ≫ 1. We denote the entries of the matrix
characterizing the multiplicative noise as

C(x(t), y(t)) =

cx,1(x(t), y(t)) cx,2(x(t), y(t))

cy,1(x(t), y(t)) cy,2(x(t), y(t))

 . (4.44)

We assume that the deterministic dynamics has a stable limit cycle, i.e., a closed curve
in phase space which we denote as {x̄, ȳ}. Along this curve, the vector-field F (x, y) ≡
(Fx(x, y), Fy(x, y)) has no root, thus, a non-vanishing norm

∥F (x̄, ȳ)∥ > 0 . (4.45)

The norm ∥v∥ of a vector v = (vx, vy) is induced by the standard scalar-product in R2,

∥v∥ ≡
√
v · v ≡

√
v2x + v2y . (4.46)

Continuity of the vector field assures that Eq. (4.45) holds in a neighborhood of the limit
cycle. Thus, we define the vector parallel to the force as

f̂∥(x, y) ≡

Fx(x, y)

Fy(x, y)

/∥∥∥∥∥∥
Fx(x, y)

Fy(x, y)

∥∥∥∥∥∥ (4.47)

and the perpendicular one as

f̂⊥(x, y) ≡

 Fy(x, y)

−Fx(x, y)

/∥∥∥∥∥∥
Fx(x, y)

Fy(x, y)

∥∥∥∥∥∥ . (4.48)

We denote the projections along these directions as

s ≡ f̂∥(x, y) ·

x
y

 and s⊥ ≡ f̂⊥(x, y) ·

x
y

 . (4.49)
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In order to obtain the dynamics along a noisy limit cycle, we concentrate in the following
on the parallel projection. The time-evolution is given by Ito’s formula [38] and Eq. (4.43)
as

d
dt
s(t) = ∥F (x(t), y(t))∥+ s⊥(t)DF (x(t), y(t))f̂∥(x(t), y(t)) · f̂⊥(x(t), y(t)) +O

(
1

Ω

)
+

1√
Ω
f̂∥(x(t), y(t)) · C(x(t), y(t))ξ(t) (4.50)

+
1√
Ω
s⊥(t)DF (x(t), y(t))f̂∥(x(t), y(t)) · f̂⊥(x(t), y(t)) · C(x(t), y(t))ξ(t) .

DF (x, y) denotes the Jacobian matrix of the vector field F (x, y). For briefness of notation,
we write x(t) or y(t) in the equation above where we mean x(t) and y(t) parameterized in
the new degrees of freedom, i.e., x(t) = x(s(t), s⊥(t)) and similarly for y(t).

In the vicinity of the limit cycle, the dominant direction is parallel to the force. Thus,
we neglect the perpendicular component and set s⊥(t) = 0 in Eq. (4.50) to obtain the
following Langevin equation as a zeroth order Taylor expansion

d
dt
s(t) ≃ F∥(s(t)) +

1√
Ω
C∥(s(t)) ·

ξ1(t)
ξ2(t)

 (4.51)

with the force

F∥(s) ≡ ∥F (x(s, 0), y(s, 0))∥ (4.52)

and the vector

C∥(s) ≡ CT (x(s, 0), y(s, 0)) · f̂∥(x(s, 0), y(s, 0)) ≡

C∥,1(s)

C∥,2(s)

 . (4.53)

Hence, the diffusivity is given by

Q∥(s) ≡
1

2
[C∥,1(s)

2 + C∥,2(s)
2] . (4.54)

The Ito-Langevin equation, Eq. (4.51), is equivalent to the Fokker-Planck equation

∂tp(s, t) = −∂s[F∥(s)p(s, t)] +
1

Ω
∂2s [Q∥(s)p(s, t)] . (4.55)



70 coherence of oscillations in the weak-noise limit

We can now use the solution p(s, t) to calculate the auto-correlation function of x(t),

Cx(t) ≡ ⟨x(t)x(0)⟩ , (4.56)

along the noisy trajectory as

Cx(t) =

∫
dx

∫
dy

∫
dx0

∫
dy0xx0p(x, y, t|x0, y0)p0(x0, y0)

≃
∫
ds

∫
ds⊥

∫
ds0

∫
ds⊥,0x(s, 0)x(s0, 0)p(s, s⊥, t|s0, s⊥,0)p0(s0, s⊥,0)

=

∫
ds

∫
ds0x(s, 0)x(s0, 0)p(s, t|s0)p0(s0)

=
∑
k∈Z

∫
ds

∫
ds0x(s)x(s0) exp(λ

(k)t)h(k)(s|s0)p0(s0)

= C(0) + C(1) cos(ℑλ(1)t) exp(ℜλ(1)t) +
∑
|k|≥2

C(k) exp(λ(k)t) .

(4.57)

In the second line, we neglect the s⊥(t) dependence of x(t) to obtain the behavior parallel to
the closed curve. The eigenvalues λ(k) and eigenfunctions hk(s|s0) are the ones corresponding
to the one-dimensional Fokker-Planck equation (4.55) and can be calculated as described
above for the one-dimensional system, Sec. 4.3.1. The constants are given as

C(k) ≡
∫
ds

∫
ds0x(s)x(s0)h

(k)(s|s0)p0(s0) . (4.58)

In the weak-noise limit, the coordinate s(t) effectively becomes the arc-length. Hence,
the integrals appearing in Eq. (4.19) can be evaluated according to∫ s(T )

s(0)

Q∥(s)

F∥(s)3
ds =

∫ T

0

Q∥(x̄(t), ȳ(t))

F∥(x̄(t), ȳ(t))3
ds

dt
dt =

∫ T

0

Q∥(x̄(t), ȳ(t))

F∥(x̄(t), ȳ(t))2
dt . (4.59)

The quality factor of a two-dimensional limit cycle oscillation is thus given by the one-
dimensional expression, Eq. (4.22), in the weak-noise limit with F∥(s) and Q∥(s) as defined
above, which is our fourth main result.

We note that the above argument is not restricted to planar oscillations. The basic
idea, i.e., focusing on the parallel direction does not depend on the number of directions
orthogonal to the trajectory. In a N -dimensional system, the degrees of freedom can
be parameterized with one parallel direction s(t) and N − 1 orthogonal directions, e.g.,
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x(t) = x(s(t), s
(1)
⊥ (t), . . . , s

(N−1)
⊥ (t)), and approximated through x(t) ≈ x(s(t), 0, . . . , 0).

Thus, the main result, Eq. (4.57), remains unchanged in this more general case.
The next two sections are devoted to applications. We first study the noisy Stuart-Landau

oscillator and discuss the validity of the approximations made above. Then, we examine
the thermodynamically consistent Brusselator as a generic model for a chemical clock.

4.5 cubic normal form for a hopf bifurcation

4.5.1 Stuart-Landau oscillator

The cubic normal form for a Hopf bifurcation [48, 100–105], often referred to as Stuart-
Landau oscillator, is characterized by the following vector field in polar coordinates

∂tr = µr − ar3 ≡ Fr(r)

∂tθ = ω + br2 ≡ Fθ(r, θ) .
(4.60)

When µ changes sign and a > 0, this field undergoes a Hopf bifurcation and a limit cycle
with constant radius r0 ≡

√
µ/a emerges. We assume the matrix characterizing the noise

to be constant,

C(x(t), y(t)) =
√
2D

1 0

0 1

 , (4.61)

with a free parameter D > 0.
The normal and tangent degrees of freedom for the closed curve in phase space are the

radial deviation ρ(t) ≡ r(t)− r0 and the angle θ(t), which compare to s⊥(t) and s(t) from
above, respectively. Following the procedure described in Sec. 4.4, we arrive at the Fokker
Planck equation for the angle

∂tp(θ, t) = −∂θ[ω0p(θ, t)] +
aD

µΩ
∂2θ [p(θ, t)] . (4.62)

Thus, θ follows a free diffusion with constant drift, i.e.,

Fθ(θ) ≡ Fθ(r0, θ) = ω + bµ/a ≡ ω0 and Qθ(θ) = aD/µ . (4.63)
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This definition originates from the zeroth order Taylor expansion of the angular force, Eq.
(4.60), and Eq. (4.54). The solution of Eq. (4.62) is a Gaussian

p(θ, t|θ0) =
1√

4πtDa/(Ωµ)
exp

[
− 1

2

(θ − ω0t− θ0)
2

2tDa/(Ωµ)

]
. (4.64)

For the initial condition p0(θ0) = δ(θ0 − θ(0)), we carry out the Gaussian integrals and
obtain

Cx(t) =
µ

a
cos θ(0)

∫
dθ cos θp(θ, t|θ0)

=
µ

a
cos θ(0)

∫
dθ

1

2
[exp(iθ) + exp(−iθ)]p(θ, t|θ0)

=
µ

a
cos θ(0) cos(ω0t+ θ(0)) exp[−(aD/Ωµ)t] .

(4.65)

Thus, we find for the quality factor

R2d =

∣∣∣∣ ω0

aD/(Ωµ)

∣∣∣∣ = ∣∣∣∣ΩD µ

a
(ω + bµ/a)

∣∣∣∣ = Rcont (4.66)

in agreement with what we get by putting Eq. (4.63) into the formula for a one-dimensional
system, Eq. (4.22). Thus, we have analytically shown that the two-dimensional quality
factor for the limit cycle oscillation is exactly given by the one-dimensional approximation.
Furthermore, since Fθ(θ) and Qθ(θ) are constant, fcont = Rcont.

In Fig. 4.2, we compare the quality factor obtained by a simulation of the Langevin
dynamics and the analytical result from above. The parameters are chosen such that
we obtain a decoupling of the angular and the radial motion, i.e., |b| ≪ 1. Within this
parameter range the numerically obtained quality factor agrees with the analytical one,
Eq. (4.66). For b = 1, we see deviations from the theoretical value. This is due to the
contribution of the radial motion to the diffusion of the angle [104] as we will show in the
next section.

4.5.2 Effective diffusion coefficient

We explain the deviations from the analytical result, Eq. (4.66), and show how to expand
the prediction into the regime where angular and radial motion are coupled. We start
with the solution for the radial deviations ρ(t) ≡ r(t)− r0 of the decoupled Stuart-Landau
oscillator.
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Figure 4.2: Quality factor for a two-dimensional limit cycle as a function of µ for different b with
ω = a = 1 and Ω = 103. Dashed lines represent the theoretical prediction, Eq. (4.66).

In leading order for Ω ≫ 1, the Ito-Langevin equation is given by

∂tρ(t) ≈
D

Ω

√
a

µ
− 2µρ(t) +

2D√
Ω
[cos θ(t)ξ1(t) + sin θ(t)ξ2(t)] (4.67)

with the corresponding Fokker-Planck equation

∂tp(ρ, t) = ∂ρ

[(
D

Ω

√
a

µ
− 2µρ

)
p(ρ, t)

]
+
D

Ω
∂2ρp(ρ, t) . (4.68)

Thus, the radial deviations follow an Ornstein-Uhlenbeck process with constant drift [104].
The mean is given by

⟨ρ(t)⟩ = ρ0 exp(−2µt) +
D

2Ω

√
a

µ3
[1− exp(−2µt)]

≈ ρ0 exp(−2µt), for Ω → ∞ ,

(4.69)

with variance

Var[ρ(t)] =
D

2Ωµ
[1− exp(−4µt)] ≈ 0, for Ω → ∞ . (4.70)

The fluctuations of ρ(t) are of order Ω−1/2 and hence, the coupling between ρ and θ needs
to be included if the coupling strength

∂rFθ(r0, θ) = 2b

√
µ

a
(4.71)
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Figure 4.3: Quality factor R/Ω of the cubic normal form as function of µ for various b. The
extensivity-parameter is set to Ω = 103 and ω = a = 1. Solid lines represent the one-
dimensional prediction, Eq. (4.66) and dashed lines the description with the effective
diffusion coefficient, Eq. (4.79). Crosses are calculated with the scheme presented in
[45].

is not negligible. Since this argument holds for any vector field that does not dependent
on θ in polar coordinates, the following holds beyond the cubic normal form of a Hopf
bifurcation.

The dynamics of the coupled degrees of freedom is effectively given by the Langevin
equations

d
dt

θ(t)
ρ(t)

 =

0 κ1

0 −κ2

θ(t)
ρ(t)

+

f1
f2

+

η1(t)
η2(t)

 (4.72)

with Gaussian white noise ⟨ηα(t)⟩ = 0 and ⟨ηα(t)ηβ(t′)⟩ =
√
2Dαδα,βδ(t− t′). The κα, fα

and Dα are constants. The "effectively" should be understood such that the equation above
leads to the same Fokker-Planck equation as the Langevin equation for ρ(t) and θ(t) if one
chooses the parameters correctly.

The equation for ρ(t) has the solution presented in the beginning of this section. Therefore,
we concentrate on θ(t) and calculate its variance in order to get the diffusion constant. A
formal solution is given by

θ(t) = θ0 +

(
f1 +

κ1
κ2
f2

)
t+

κ1
κ2

(
ρ0 −

f2
κ2

)(
1− e−κ2t

)
+

∫ t

0

dτη1(τ) +
κ1
κ2

∫ t

0

dτη2(τ)

(
1− e−κ2teκ2τ

) (4.73)
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where the integrals are interpreted in the Ito sense and θ(0) ≡ θ0 respectively ρ(0) ≡ ρ0.
The variance becomes

⟨θ(t)2⟩ − ⟨θ(t)⟩2 = 2D1

(
1 +

κ21
κ22

D2

D1

)
t+

κ21
κ32
D2

(
1− e−2κ2t − 4 + 4e−κ2t

)
. (4.74)

We obtain the diffusion coefficient as

Dθ ≡ lim
t→∞

⟨θ(t)2⟩ − ⟨θ(t)⟩2
2t

=

(
1 +

κ21
κ22

D2

D1

)
D1 . (4.75)

For the noisy Stuart-Landau oscillator, we identify the parameters as

D1 =
Da

Ωµ
,D2 =

D

Ω
, κ1 = 2b

√
µ

a
, κ2 = 2µ , f1 = ω + b

µ

a
≡ ω0 , f2 =

D

Ω

√
a

µ
. (4.76)

Thus, the diffusion coefficients becomes

Dθ = D1

(
1 +

b2

a2

)
(4.77)

and the mean angle is given by

⟨θ(t)⟩ ≈ θ0 +
b√
µa
ρ0 +

(
ω0 +

b

µ

D

Ω

)
t = θ0 +

b√
µa
ρ0 + ω0 t+O

(
1

Ω

)
(4.78)

in the limit of large times. Thus, for large t, the angular motion is effectively given by
a diffusion with constant Dθ and drift ω0. According to the calculations in the previous
section, the quality factor is then given in the weak-noise limit by

R̃2d =
ω0

Dθ

=
R2d

1 + b2/a2
. (4.79)

In Fig. 4.3, we show the quality factor obtained by integrating the Langevin equation,
the one-dimensional prediction from the previous section, the effective theory introduced
above and data calculated using the method presented in [45], see Appendix B.2 for a
brief explanation. In contrast to the previous section, we consider a parameter range with
non-negligible coupling between radial deviations and angular motion. As expected, the
naive one-dimensional approximation fails to reproduce the quality factor of the underlying
Langevin dynamics. Nevertheless, the effective description taking into account radial motion
predicts the quality factor correctly and is in agreement with the full theory [45].
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In conclusion, we have extended the validity of the approximations made in Sec. 4.4 to
a class of systems in which the normal and tangent motion do not necessarily decouple.
Moreover, the discussion presented above is not limited to the Stuart-Landau oscillator, it
rather holds true for any vector field that does not dependent on the angle. In the next
section, we discuss an example for which the latter assumptions does not remain true.

4.6 brusselator

A paradigmatic model for a chemical clock is the Brusselator [90, 106, 107],

A
k+1
⇌
k−1

X , 3X
k−2
⇌
k+2

2X + Y , Y
k−3
⇌
k+3

B . (4.80)

The concentrations cA and cB of the chemical species A and B in the external bath
are kept constant. Due to a difference in the chemical potential between A and B, i.e.,
∆µ ≡ µB − µA > 0, the system is out of equilibrium and the number of the intermediate
species X and Y can oscillate. Considering the reaction cycle which consumes a substrate
B and generates a product A, the thermodynamic force associated with this cycle is

A ≡ ∆µ = ln
cBk

+
3 k

+
2 k

−
1

cAk
+
1 k

−
2 k

−
3

(4.81)

where k±i are the corresponding reaction rates. This equation is commonly known as local
detailed balance condition [12].

Following [46], we obtain F (x, y) and the diffusion matrix Q(x, y) in the weak-noise limit
as

Fx(x, y) = cAk
+
1 − k−1 x+ k+2 x

2y − k−2 x
3 ,

Fy(x, y) = cBk
+
3 − k−3 y − k+2 x

2y + k−2 x
3 ,

Qx,x(x, y) =
1

2
(cAk

+
1 + k−1 x+ k+2 x

2y + k−2 x
3) ,

Qy,y(x, y) =
1

2
(cBk

+
3 + k−3 y + k+2 x

2y + k−2 x
3) ,

Qx,y(x, y) = Qy,x(x, y) = −1

2
(k+2 x

2y + k−2 x
3) ,

(4.82)

where x ≡ nX/Ω and y ≡ nY /Ω. Here, ni denotes the number of molecules of species X or
Y . The external parameter Ω represents the volume of the system.
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We choose the noise matrix C(x, y), Eq. (4.44), such that Q(x, y) = 1
2
C(x, y)C(x, y)T ,

e.g.,

C(x, y) ≡
√

2

Qx,x(x, y)

Qx,x(x, y) 0

Qx,y(x, y)
√

detQ(x, y)

 . (4.83)

Thus, the noisy rate equation for the Brusselator are of the form of Eq. (4.43) and we can
apply the theory developed in Sec. 4.4.

The deterministic vector field

F (x, y) ≡

Fx(x, y)

Fy(x, y)

 =

cAk+1 − k−1 x+ k+2 x
2y − k−2 x

3

cBk
+
3 − k−3 y − k+2 x

2y + k−2 x
3

 (4.84)

undergoes a Hopf bifurcation while increasing the chemical potential [90]. We obtain the
emerging limit cycle by numerically solving the deterministic equation,

d
dt

x(t)
y(t)

 =

Fx(x(t), y(t))

Fy(x(t), y(t))

 . (4.85)

Following the procedure from Sec. 4.4, we determine the force F∥(x, y) and diffusivity
Q∥(x, y) and numerically obtain our estimate for the quality factor Rcont.

In Fig. 4.4a, we compare our result with three sets of data; those from [90] as obtained
by a Gillespie simulation of the Brusselator, from the algorithm of the full theory [45],
see Appendix B.2, and from data obtained by a Langevin simulation with the force field
F (x, y) and matrix C(x, y) described above. We find for all methods that the quality factor
tends to zero in the vicinity of the bifurcation point ∆µc ≃ 3.9 [90] as expected. For ∆µ
significantly above ∆µc, the data obtained by a Langevin simulation and by the full theory
agree, but there are deviations to the the data obtained through the Gillespie algorithm
and our method. The variance in the Gillespie data is due to the fact that the number of
coherent oscillations, thus the quality factor, scales around the bifurcation-point and away
from the transition with an apparent exponent less than 1, i.e., R ∝ Ωα with α < 1 [90].
Re-scaling the data with such an exponent leads to a better agreement with the other data
sets, see Fig. 4.4b. While this procedure leads to consistency with the full theory, there is
still a significant discrepancy to the method presented in Sec. 4.4.

The one-dimensional approximation of the quality factor overestimates the full dynamics
of the Brusselator as shown in Fig. 4.4a. The bound, Eq. (4.23), is about a factor 2
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Figure 4.4: (a) Quality factor and (b) R/Ωα of the Brusselator as function of the thermodynamic
force ∆µ for various Ω. The rates are chosen as k+1 = k+3 = 0.1, k−1 = k+2 = k−2 = 1,
cA = 1, and cB = 3. The rate k−3 is computed with the thermodynamic force ∆µ and
relation, Eq. (4.81). α = 0.99 for the Ω = 100 Gillespie data and α = 0.95 for Ω = 103.
For all other methods, α = 1 by theory. In (b) the prediction by Eq. (4.22) is not
displayed in order to focus on the collapsed data.

to 3 times bigger than this continuous quality factor (data not shown). The significant
discrepancy between the data obtained through Eq. (4.22) and for example by the algorithm
[45] resembles the corresponding failure for the noisy Stuart-Landau oscillator, Sec. 4.5.2.
There, we have analytically shown that the perpendicular motion amplifies the diffusion
in the tangent direction. In particular, we have established an effective diffusion constant
which sets the decay time of the correlation function. While this analytical treatment is
not feasible anymore for the Brusselator due to an angular dependent limit cycle radius,
we numerically calculate the frequency ω, Fig. 4.5a, and the coherence time τ , Fig. 4.5b,
for all data sets except the one obtained by the Gillespie algorithm.

We find only small variations for the angular frequency. However, the decay time τ is
overestimated by the one-dimensional expression, Eq. (4.19), while the remaining methods
coincide. Thus, as in the strong coupling regime of the noisy Stuart-Landau oscillator, the
diffusion constant for the tangential motion is larger than predicted by the one-dimensional
approximation. In fact, this is a generic feature due to the stability of a limit cycle as we
have seen in Sec. 4.5.2.

In summary, we have also found for the Brusselator that a coupling between normal
and tangent motion leads to a reduced quality factor. Thus, the approximation we have
presented in Sec. 4.4 can be understood as an effective upper bound on the coherence. For
the generic model presented in Sec. 4.5.2, this upper bound is sharp.
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Figure 4.5: (a) Frequency ω and (b) decay time τ/Ω of the Brusselator as function of ∆µ for
various Ω. The rates are chosen as for Fig. 4.4.

4.7 discussion and conclusion

We have derived an analytical expression for the quality factor for an oscillator based on
a one-dimensional Fokker-Planck dynamics, Eq. (4.22). This expression is obtained by a
spectral decomposition of the Fokker-Planck operator as presented in [45, 46]. In contrast
to these studies, we did not use the rather involved techniques of Hamilton-Jacobi theory
but solved for the eigenvalues and eigenfunctions directly exploiting the weak-noise limit.

Furthermore, we have derived and proven a continuous version of the microscopic bound
on the quality factor of a stochastic oscillator which has been conjectured in [4]. Based on
numerical evidence, it has been suggested that the quality factor of a Markov network is
bounded by the network topology and the force driving the system out of equilibrium. This
continuous bound, Eq. (4.23), is tight, since it is derived through the Cauchy-Schwartz
inequality. It is simply given by the integral of driving force over state-dependent diffusion
coefficient. Furthermore, it turns out that this bound is in the weak-noise limit equivalent
to the bound onto the entropy production presented in [5].

The one-dimensional quality factor also captures the behavior of a two-dimensional noisy
oscillator. If the coupling of tangent and normal motion is negligible, this correspondence is
exact. Moreover, even if the directions do not decouple, the quality factor for a broad class
of oscillators can be obtained through an effective one-dimensional expression as we have
analytically shown for the Stuart-Landau model as a generic example. The theoretical result
is in agreement with data obtained by numerically integrating the corresponding Langevin
equation. It also matches the numerical data resulting from the method introduced in [45].
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This effective description breaks down for systems in which the two-dimensional motion
does not decouple. As an example, we examined the Brusselator numerically and observed
that the one-dimensional approximation leads to an overestimate in the decay time as
we have also found for the Stuart-Landau oscillator. The full, rather involved method
introduced in [45, 46] is in good agreement with data obtained by a Gillespie simulation
and by integrating the corresponding chemical Langevin equation. Thus, based on the
numerical and analytical findings, we suggest that the theory for the planar oscillations
presented in our work is an upper bound on the quality factor of a two-dimensional noisy
oscillator. Moreover, the calculations leading to a parametrization with the arc-length
of a limit cycle are not limited to two dimensions but can be generalized to arbitrary
dimensions.

In conclusion, we have presented a transparent formula for the quality factor of a noisy
oscillator. In one dimension this expression is exact. For a broad class of two-dimensional
systems, this expression can be adjusted to predict the correct coherence while for general
two-dimensional oscillators, it should yield an upper bound. The method presented in this
chapter provides an elementary approach to the coherence of a noisy clock. It is sufficient
to find the limit cycle numerically and then integrate a function along it which is simpler
than the numerically more challenging and sensitive techniques required for the full theory
[45].



5
NONEQUIL IBR IUM FLUCTUATIONS OF CHEMICAL

REACTION NETWORKS AT CRIT ICAL ITY – THE SCHLÖGL

MODEL AS PARADIGMATIC CASE

5.1 introduction

Chemical reaction networks constitute a major paradigm for nonequilibrium systems. Due
to their complexity, they offer a rich variety of non-trivial phenomena, thus, providing
the chance to study nonequilibrium effects. In the macroscopic limit, chemical reaction
networks can exhibit nonlinearities and bifurcations leading to phase transitions that occur
out of equilibrium [83, 108–110].

With the development of stochastic thermodynamics [12] over the last decades, chemical
reaction networks and their thermodynamic treatment gained significant interest [33, 34,
111–113]. Several case studies of thermodynamically consistent reaction networks have
shown that a phase transition has immediate impact on nonequilibrium quantities such
as the coherence of oscillations [90, 114] or the entropy production rate [115–127] and its
fluctuations [90, 128]. From a mathematical perspective, large deviation theory turned out
to be a useful tool to examine these phenomena [96, 127, 129–132]. As nonequilibrium
phase transitions are not restricted to chemical systems, they can also be found in various
biological [133–137] and active systems [138–145].

A common feature of chemical reaction networks exhibiting a phase transition is the
presence of auto-catalytic reactions and chemostats. The latter provide a constant source
of educt particles to the reaction channels, which, thus, are constantly consuming free
energy. The flux and difference in chemical potentials of the respective particles are thus
linked to the entropy production of the total system [12, 34].

So far, the focus has been on the mean behavior of physical observables like entropy
production. Only a few studies have examined their fluctuations [127, 128] for example
during a first order phase-transition [146, 147]. Fluctuations of the entropy production
rate at a continuous phase transition have only been considered numerically in the context
of biochemical oscillators [90]. Here, we examine nonequilibrium fluctuations during a
continuous phase transition numerically as well as analytically.

81



82 nonequilibrium fluctuations of the schlögl model at criticality

We study the flux of particles consumed and produced in the reservoirs for the Schlögl
model as a generic univariate system undergoing a continuous phase transition upon
variation of a control parameter. Fluctuations of the fluxes are characterized by the
associated diffusion coefficient. We numerically find that the particle flux is a continuous
function of the control parameter. The diffusion coefficient displays critical behavior while
varying a control parameter. We develop a theory that explains the continuous behavior of
the particle flux and predicts scaling exponents for the diffusion coefficient in agreement
with the numerically found ones.

This chapter is organized as follows. We introduce the model and discuss the different
regimes in Sec. 5.2. In Sec. 5.3.1, we numerically determine the particle flux and the
critical exponents for the scaling of the derivative of the flux in the monostable regime.
Furthermore, we show how the diffusion coefficient scales with the control parameter and
system size. The analytical prediction of scaling exponents for this pathway is presented
in Sec. 5.3.2 and 5.3.3. For the transition into bistability, we numerically show that the
flux depends continuously on the control parameters and that the associated diffusion
coefficient of the reservoir particles also exhibits critical behavior in Sec. 5.4.1. In Sec.
5.4.2 and 5.4.3, we analytically describe the behavior of the particle flux and derive the
critical exponents of the associated diffusion coefficient for the pitchfork bifurcation into
coexistence. In Sec. 5.5, we transform into adopted coordinates and derive scaling forms
for the particle flux and the diffusion coefficient. We conclude in Sec. 5.6.

5.2 schlögl model

The reaction scheme which was first proposed by Schlögl [108, 116] consists of an autocat-
alytic reaction and a linear one,

A+ 2X
k+1
⇌
k−1

3X , X
k−2
⇌
k+2

B , (5.1)

for species X in contact with an external reservoir of molecules A and B with fixed
concentrations cA, respectively cB. The reactions take place in a volume Ω. Due to a
difference in the chemical potential between A and B the system is out of equilibrium,
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i.e., ∆µ ≡ µA − µB > 0. Considering the cycle in which one A is transformed to a B, the
thermodynamic driving satisfies the local detailed balance condition [12]

eβ∆µ =
cAk

+
1 k

−
2

cBk
−
1 k

+
2

, (5.2)

with inverse temperature β and molecular reaction rates k±i . We set β = 1 throughout the
chapter, thus, measuring all energies in units of the thermal energy and entropy in the
units of the Boltzmann constant.

We examine the number of produced respectively consumed molecules A and B in the
reservoir by introducing random variables ZA(t) and ZB(t). Whenever a molecule A is
produced, ZA(t) is decreased by one, whereas when a molecule B is produced, ZB(t) is
increased by one leading to the following augmented reaction scheme

{A+ 2X,ZA − 1}
k+1
⇌
k−1

{3X,ZA} , {X,ZB}
k−2
⇌
k+2

{B,ZB + 1} . (5.3)

The mean flux entering and leaving the particle reservoirs is given by

JB ≡ lim
t→∞

⟨ZB(t)⟩
Ωt

= JA , (5.4)

with fluctuations quantified by the diffusion coefficient

DB ≡ lim
t→∞

Var[ZB(t)]

2Ωt
= DA , (5.5)

where Var[z] ≡ ⟨z2⟩ − ⟨z⟩2. The equality between DA and DB has been proven in Ref.
[128] using large deviation theory. Since the particle fluxes and their fluctuations are equal
in both reservoirs, we consider in the rest of the chapter only particles of species B. All
results are equally true for the particle flux of species A. Thus, we drop the index B for
the mean values in the following.

The entropy production

∆S(t) = ZA(t)µA − ZB(t)µB (5.6)

is proportional to the particle flux, thus, it exhibits the same fluctuations. The mean
entropy production rate in the steady state is determined as

σ ≡ lim
t→∞

1

t
⟨∆S(t)⟩ = ΩJ∆µ . (5.7)
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In the thermodynamic limit, i.e., for Ω → ∞, the reaction scheme, Eq. (5.1), is described
by the deterministic rate equation

∂tx̂(t) = −k−1 x̂(t)3 + cAk
+
1 x̂(t)

2 − k−2 x̂(t) + cBk
+
2 , (5.8)

where x̂(t) denotes the mean concentration of species X at time t. We set k±i = 1 throughout
the chapter which effectively corresponds to a rescaling of the parameters as

c̃A ≡ cAk
+
1 /(k

−
1 k

−
2 )

1
2 , c̃B ≡ cB(k

−
1 )

1
2k+2 /(k

−
2 )

3/2 ,

Ω̃ ≡ Ω(k−2 )
1
2/(k−1 )

1
2 , and t̃ ≡ tk−2 .

(5.9)

Thus, the rate equation (5.8) depends only on the rescaled concentrations c̃A and c̃B. We
drop the tilde in the following.

Depending on the choice of concentrations, Eq. (5.8) shows a different number of steady-
states, see Fig. 5.1. The system exhibits a monostable phase (M) with a unique, stable
fixed point of the dynamics, Eq. (5.8). The second phase is the cusp-like region with two
stable fixed points and an unstable one in between (B). See Appendix C.1 for a derivation
of the phase boundaries. Within the bistable region, there is a line denoted as coexistence
line (C) along which the two stable fixed points correspond to the global minimum of the
dynamics. Away from this line there exists only one global minimum. At the end of the
cusp-like region where the coexistence line ends, there is a critical point with coordinates

ccritA ≡
√
3 and ccritB ≡

√
3/9 . (5.10)

From a thermodynamic perspective, there occur different phase transitions depending
on the path chosen within the cA − cB-plane. Crossing the coexistence line, the system
undergoes a first order phase transition. While this transition has been the topic of several
studies [116, 128, 146], we here consider two pathways through the critical point, i.e., the
continuous phase transition. The first path corresponds to a constant thermodynamic
driving

∆µcrit ≡ ln 9 , (5.11)

to which we refer as the critical line.
As second path, we consider the line which enters the cusp-like region tangential to its

boundary and goes through the critical point, see the blue line in Fig. 5.1. Along that line,
the system undergoes a pitchfork bifurcation.
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Figure 5.1: Phase diagram for the Schlögl model, Eq. (5.1). The monostable regime is denoted
as (M). The colored area is the bistable regime, (B). (C) labels the coexistence line.
Where the phase boundaries of the bistable region meet, the system exhibits a critical
point (blue dot). The green line through the origin and this point is denoted critical
line. The blue line is the tangential line into the coexistence area. For the specific
areas, the typical shape of the steady-state probability distribution ps(x) is sketched.

5.3 along the critical line

We consider the line in the cA − cB-plane parameterized as

cB(cA) ≡ cA/9 , (5.12)

along which the concentration cA and system-size Ω remain as control parameters.

5.3.1 Numerical data

Using Gillespie’s direct method [35], we integrate the reaction scheme Eq. (5.1) numerically
for various values of the control parameters. We determine ZB(t) according to Eq. (5.3)
and calculate the mean flux J and diffusion coefficient D in the steady-state through Eq.
(5.4), respectively (5.5). The results are shown in Fig. 5.2 and 5.3.

At the critical point, the mean flux J has a vertical tangential, i.e., a diverging first
derivative with respect to the control parameter cA, see Fig. 5.2b. Small deviations of
the numerical derivative from the theoretical line are due to the non-uniform step-size
while performing the numerical derivative. Shifting the cA-axis in Fig. 5.2c, we extract a
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(a)

(b) (c)

Figure 5.2: Mean flux J of the Schlögl model along the critical line. (a) J as function of the control
parameter cA for various system sizes Ω. (b) Numerical derivative of J with respect to
the control parameter cA. (c) Derivative of J as function of ∆cA. The concentration
cB is determined according to the local detailed balance condition, Eq. (5.2). A solid
line represents the analytical prediction, Eq. (5.25), respectively Eq. (5.26).

power-law for the divergence in ∆cA ≡ cA − ccritA independent on the reaction volume Ω,
i.e.,

∂J

∂cA
∝ |∆cA|−χ , χ = 0.65± 0.05 . (5.13)

We attribute the scattering of the derivative for |∆cA| ≪ 1 in Fig. 5.2c to the noisy
numerical derivative on the logarithmic scale.

The diffusion coefficient D displays a pronounced peak around the critical value, see
Fig. 5.3a. The maximum depends on the reaction volume Ω. Off the critical point, i.e., for
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(a) (b)

Figure 5.3: Diffusion coefficient D of the Schlögl model along the critical line. (a) D as function
of the control parameter cA for various system sizes Ω. (b) Scaling of D according
to D(∆cA,Ω) = ΩϕD(|∆cA| Ωκ) with ccritA =

√
3, κ = 0.75 and ϕ = 1.00. The

concentration cB is determined according to the local detailed balance condition, Eq.
(5.2). The solid line represents the analytical prediction, Eq. (5.63).

∆cA ̸= 0, the value of D is independent of Ω. Furthermore, the data obey a scaling relation
of the form

D = D(∆cA,Ω) = ΩϕD(|∆cA| Ωκ) (5.14)

as the collapse onto a master curve shows, see Fig. 5.3b. We determine the exponents as

ϕ = 1.0± 0.1 and κ = 0.75± 0.05 , (5.15)

which results in a scaling function

D(x) ∝

1 , |x| ≪ 1

xε , |x| ≫ 1

(5.16)

with

ε = −ϕ/κ = −1.3± 0.2 . (5.17)

The plateau for small values of |∆cA|Ωκ indicates a scaling of the critical value asDmax ∝ Ωϕ

with ϕ given in Eq. (5.15). The power-law behavior with −ϕ/κ represents a scaling off the
critical point with D ∝ Ω0 consistent with the raw data, see Fig. 5.3a.
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In the next two sections, we approximate the reaction scheme (5.3) through the rate
equation and as a diffusion process to determine these exponents analytically.

5.3.2 Rate equation and mean flux

In the limit Ω → ∞, the mean concentration x̂(t) obeys the reaction rate equation

∂tx̂(t) = −[x̂(t)− 1/
√
3]3 +∆cA[x̂(t)

2 + 1/9] . (5.18)

The reaction scheme (5.1) has a unique fixed point x∗, thus, the rate equation approximates
the system well in the limit of large reaction volume. Above the critical point, i.e., for
∆cA > 0, the fixed point is

x∗(∆cA) = ∆cA/3 + [∆c2A(∆cA + 2
√
3)]1/3/3

+ [∆cA(∆c
2
A + 4

√
3∆cA + 12)]1/3/3 + 1/

√
3 .

(5.19)

For −
√
3 ≤ ∆cA < 0, we get

x∗(∆cA) = ∆cA/3 + [−∆cA(∆cA + 2
√
3)2]2/3/3(∆cA + 2

√
3)

− [−∆cA(∆cA + 2
√
3)2]1/3/3 + 1/

√
3 .

(5.20)

For |∆cA| ≪ 1, we find

x∗(∆cA) = 1/
√
3+ sign(∆cA)2

2/3|∆cA|1/3/32/3+21/3|∆cA|2/3/35/6+O(|∆cA|) . (5.21)

Thus, for ∆cA → 0, we get a continuous transition from one solution to the other, i.e.,

lim
∆cA↓0

x∗(∆cA) = lim
∆cA↑0

x∗(∆cA) = 1/
√
3 . (5.22)

The rate equation for the variable ZB reads

∂tẑB(t) = x̂(t)− cA/9 , (5.23)

where ẑB(t) ≡ ⟨ZB(t)⟩ /Ω denotes the mean density of produced particles B up to time t.
In the stationary state, we find

ẑB(t) = [x∗(∆cA)− (
√
3 + ∆cA)/9]t , (5.24)
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leading to a mean flux

J = J(∆cA) ≡ x∗(∆cA)− (
√
3 + ∆cA)/9 (5.25)

as a function of the control parameter. This expression together with Eqs. (5.19-5.20) gives
the theoretical prediction of the mean flux along the critical line shown in Fig. 5.2. For the
derivative of J we obtain the scaling law

∂J

∂cA
(∆cA) =

22/3

35/3
|∆cA|−2/3 (5.26)

as displayed in Fig. 5.2c. Thus, we obtain the scaling exponent

χ = 2/3 , (5.27)

in agreement with the numerically derived one, Eq. (5.13).

5.3.3 Diffusion approximation and diffusion coefficient

5.3.3.1 Set-up

We approximate the augmented reaction scheme, Eq. (5.3), by Gillespie’s chemical Langevin
equation [40, 148] and van Kampen’s system size expansion [37, 148]. The chemical Langevin
equation for the number of molecules of species B reads

∂tZB(t) = W+
2 [n(t)]−W−

2 [n(t)] +
√
W+

2 [n(t)] +W−
2 [n(t)]ξB(t) , (5.28)

with Gaussian white noise ξB(t), i.e., ⟨ξB(t)⟩ = 0 and ⟨ξB(t)ξB(t′)⟩ = δ(t−t′). The W±
i [n(t)]

are the propensity functions defined through Eq. (5.3) with the respective reaction direction,
i.e.,

W+
1 (n) ≡ cAn(n− 1)/Ω , W−

1 (n) ≡ n(n− 1)(n− 2)/Ω2 ,

W+
2 (n) ≡ ΩcB and W−

2 (n) ≡ n ,
(5.29)

where we set cB = cA/9. Here, n denotes the number of molecules of species X.
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In analogy to van Kampen’s system size expansion [37, 148], we make the ansatz n(t)

ZB(t)

 ≡ Ω

 x̂(t)

ẑB(t)

+ Ωµ

 x(t)

zB(t)

 (5.30)

with a scaling exponent 0 < µ < 1. The idea of this approximation is to calculate the
fluctuations of an observable around a macroscopic trajectory. Plugging the ansatz, Eq.
(5.30), into the chemical Langevin equation (5.28) and dividing by Ω, we obtain after a
Taylor expansion for Ω ≫ 1 in lowest order the mean field equation, i.e., the O(1) for
Ω → ∞ leads to the rate equation (5.23).

The higher order terms can be rearranged as

∂tzB(t) = {W+ ′
2 [x̂(t)]−W− ′

2 [x̂(t)]}x(t)

+ Ω1/2−µ
√
W+

2 [x̂(t)] +W−
2 [x̂(t)] +O(Ωµ−1)ξB(t) ,

(5.31)

where a prime denotes a derivative with respect to the argument. In order to obtain an
equation for the fluctuations which is independent on Ω, we set µ = 1/2. This exponent
is consistent with van Kampen’s linear noise approximation [37, 148]. Thus, with the
dynamical equation above and the definition of D, Eq. (5.5), we find

D =
1

2
lim
t→∞

1

t

t∫
0

dτ

t∫
0

ds{W+ ′
2 [x̂(τ)]−W− ′

2 [x̂(τ)]}{W+ ′
2 [x̂(s)]−W− ′

2 [x̂(s)]} ⟨x(τ)x(s)⟩

+
1

2
lim
t→∞

1

t

∫ t

0

ds{W+
2 [x̂(s)] +W−

2 [x̂(s)]}

− lim
t→∞

1

t

t∫
0

dτ

t∫
0

ds{W+ ′
2 [x̂(τ)]−W− ′

2 [x̂(τ)]}
√

1

2
{W+

2 [x̂(s)] +W−
2 [x̂(s)]} ⟨x(τ)ξB(s)⟩ .

(5.32)

In order to obtain the diffusion coefficient D, we need to examine the dynamics of
x̂(t) and x(t), which is independent on ZB(t). Let p(n, t) be the probability to have n
molecules of species X at time t. Using the ansatz, Eq. (5.30), and the transformation rule
for probability densities, we find for the density of the fluctuations

π(x, t) = Ω1/2p(Ωx̂+ Ω1/2x, t) . (5.33)
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Following van Kampen’s system-size expansion, we obtain the corresponding Fokker-Planck
equation

∂tπ(x, t) =
d

dt
Ω1/2p[Ωx̂(t) + Ω1/2x, t]

= Ω1/2∂x

[
{∂tx̂(t)− α1[x̂(t)]}π(x, t)

]
− ∂x

[
α′
1[x̂(t)]x π(x, t) +O(Ω−1/2)

]
+

1

2
∂2x

[
α2[x̂(t)]π(x, t) +O(Ω−1/2)

]
+O(Ω−1/2) .

(5.34)

The jump-moments are defined through

lim
Ω→∞

Ωα1(n/Ω) ≡
∫
dn′(n− n′)W (n|n′) (5.35)

and

lim
Ω→∞

Ωα2(n/Ω) ≡
∫
dn′(n− n′)2W (n|n′) (5.36)

The jump-rates W (n|n′) contain the propensity functions and are defined through Eq. (5.1)
as

W (n|n′) ≡ δn′,n−1[W
+
1 (n) +W+

2 (n)] + δn′,n+1[W
−
1 (n) +W−

2 (n)] . (5.37)

δi,j denotes the Kronecker-delta.
The condition for the curly bracket in the second line of Eq. (5.34) to vanish determines

the macroscopic law for the X species, i.e., the rate equation (5.18). As discussed above,
this equation has a stable fixed point x∗, i.e., x̂(t) → x∗ for t→ ∞. Thus, the motion of
zB(t) is in the long time limit equivalent to the following Langevin equation

∂tzB(t) = (W+ ′
2 [x∗]−W− ′

2 [x∗])x(t) +
√
W+

2 [x∗] +W−
2 [x∗]ξB(t) . (5.38)

The diffusion coefficient, Eq. (5.32), reduces to

D = (W+ ′
2 [x∗]−W− ′

2 [x∗])2
∞∫
0

dt ⟨x(t)x(0)⟩+ 1

2
(W+

2 [x∗] +W−
2 [x∗])

−
√

1

2
(W+

2 [x∗] +W−
2 [x∗])(W+ ′

2 [x∗]−W− ′
2 [x∗]) lim

t→∞

1

t

t∫
0

dτ

t∫
0

ds ⟨x(τ)ξB(s)⟩ .
(5.39)
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In the next paragraphs, we will examine the fluctuations x(t) around the fixed point x∗

both for cA = ccritA , and for cA ̸= ccritA in order to obtain an expression for the integral over
the correlation function ⟨x(t)x(0)⟩ and ⟨x(τ)ξB(s)⟩.

5.3.3.2 At the critical point

For cA = ccritA =
√
3, the mean-field equation, Eq. (5.18), reduces to

∂tx̂(t) = α1[x̂(t)] = −[x̂(t)− 1/
√
3]3 . (5.40)

We assume that the system has already relaxed into the stationary state of reaction scheme
(5.1). This state corresponds to the fixed point x∗ ≡ 1/

√
3. Thus, we can replace x̂(t) → x∗.

The first and second derivative of the first jump moment vanishes at the critical point,
compare Eq. (5.40). Following the strategy outlined above, we obtain for the probability
density of the fluctuations

∂tπ(x, t) = |α′′′
1 (x

∗)|∂x[x3π(x, t)]/6Ω + α2(x
∗)∂2xπ(x, t)/2. (5.41)

Thus, x(t) corresponds to diffusive motion in a quartic potential

V (x) ≡ |α′′′
1 (x

∗)|x4/24Ω (5.42)

with diffusion constant

D ≡ α2(x
∗)/2 . (5.43)

This system is equivalently described by a self-adjoint Schrödinger-like operator [39]

Lx = D∂2x − VS(x) (5.44)

with

VS(x) ≡ [V ′(x)]2/4D − V ′′(x)/2 = |α′′′
1 (x

∗)|2x6/72α2(x
∗)Ω2 − |α′′′

1 (x
∗)|x2/4Ω . (5.45)

The eigenvalues λn of this Schrödinger operator are real and nonnegative, i.e.,

Lxψn(x) = −λnψn(x) , λn ≥ 0. (5.46)
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Moreover, they are equal to the eigenvalues of the Fokker-Planck operator defined through
Eq. (5.41). The corresponding eigenfunctions ψn(x) determine the propagator of Eq. (5.41)
as

π(x, t|x′, t′) = e[V (x′)−V (x)]/2D
∑
n

ψn(x)ψn(x
′)e−λn(t−t′) . (5.47)

This results in

∞∫
0

dt ⟨x(t)x(0)⟩ =
∑
n

Cn/λn , (5.48)

with

Cn ≡
∫
dx

∫
dx0 xx0e

[V (x0)−V (x)]/2Dψn(x)ψn(x0)π
s(x0) , (5.49)

where πs(x0) denotes the stationary solution of Eq. (5.41). The Ω-scaling of the correlation
function, Eq. (5.48), is thus determined by the eigenvalues λn and Cn. We find their
dependencies on Ω in two steps. First, we examine the operator Lx. We rescale the x
variable according to

x̃ ≡ Ω−1/4x , (5.50)

where a tilde means that the variable does not depend on the reaction volume Ω. The
Schrödinger operator transforms in this rescaled variable to

Lx = L̃x̃/
√
Ω . (5.51)

The operator L̃x̃ is self-adjoint and independent of the system-size Ω. Thus, its eigenvalues
λ̃n and eigenfunctions Ψ̃n(x̃) are also independent of Ω. These eigenvalues are connected
to the ones of the Fokker-Planck operator as

λn = λ̃n/
√
Ω . (5.52)

Furthermore, from the completeness relation, i.e.,

δn,m =

∫
dx̃

∫
dx̃0Ψ̃n(x̃)Ψ̃m(x̃0) , (5.53)
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we obtain the eigenfunctions of the original Schrödinger operator, Eq. (5.44), as

ψn(x) ≡ Ω−1/8Ψ̃n(Ω
−1/4x) . (5.54)

In the second step, we use these eigenfunctions to extract the scaling behavior of Cn, Eq.
(5.49). Rescaling the integration variable according to Eq. (5.50), we obtain

Cn =
√
Ω

∫
dx̃

∫
dx̃0 x̃x̃0e

[Ṽ (x̃0)−Ṽ (x̃)]/2DΨ̃n(x̃)Ψ̃n(x̃0)P̃ (x̃0) ≡
√
Ω C̃n . (5.55)

With the scaling behavior of the eigenvalues, Eq. (5.52), and the constant Cn, Eq. (5.55),
we obtain

(W+ ′
2 [x∗]−W− ′

2 [x∗])2
∞∫
0

dt ⟨x(t)x(0)⟩ = Ω (W+ ′
2 [x∗]−W− ′

2 [x∗])2
∑
n

C̃n/λ̃n . (5.56)

Thus, we have derived that the first term of Eq. (5.39) diverges linearly with the system-size
Ω at the critical point.

We proceed by deriving a bound on the integral over ⟨x(τ)ξB(s)⟩. We consider

0 ≤ ⟨{
∫ t

0

dτ [cxx(τ)± cξξB(τ)]}2⟩ = c2x

∫ t

0

dτ

∫ t

0

ds ⟨x(τ)x(s)⟩+ c2ξ

∫ t

0

dτ

∫ t

0

ds ⟨ξB(τ)ξB(s)⟩

± 2cxcξ

∫ t

0

dτ

∫ t

0

ds ⟨x(τ)ξB(s)⟩ ,

(5.57)

with arbitrary constants cx and cξ. This leads to

±cxcξ
∫ t

0

dτ

∫ t

0

ds ⟨x(τ)ξB(s)⟩ ≤
1

2
{c2x
∫ t

0

dτ

∫ t

0

ds ⟨x(τ)x(s)⟩+c2ξ
∫ t

0

dτ

∫ t

0

ds ⟨ξB(τ)ξB(s)⟩} .

(5.58)

Dividing both sides by t and taking the limit t→ ∞, we obtain

±cxcξ lim
t→∞

1

t

∫ t

0

dτ

∫ t

0

ds ⟨x(τ)ξB(s)⟩ ≤
1

2
{c2x
∫ ∞

0

dτ ⟨x(τ)x(0)⟩+ c2ξ} . (5.59)
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Using Eq. (5.56), we find that the integral over the correlation function ⟨x(τ)ξB(s)⟩ grows
at most linearly in the system-size Ω. Taking Eq. (5.56) and (5.59) into account, we, thus,
have derived the divergence

Dcrit ∝ Ω (5.60)

for Ω ≫ 1.
We rationalize this result through the effect of critical slowing down [37, 38]. At the

critical point, the inverse of the eigenvalues, Eq. (5.52), and, hence, the time-scales for
relaxation of fluctuations grow with the system-size Ω which drives the divergence of the
diffusion coefficient D.

We now determine the scaling of the diffusion coefficient as the critical point is ap-
proached.

5.3.3.3 Off the critical point

Moving away from the critical point, the macroscopic equation for the mean becomes

∂tx̂(t) = α1[x̂(t)] = −[x̂(t)− 1/
√
3]3 +∆cA[x̂(t)

2 + 1/9] . (5.61)

This differential equation has a unique stable fixed point x∗ = x∗(∆cA) with α1(x
∗) = 0

and α′
1(x

∗) < 0, see Eq. (5.19) and (5.20). Thus, the linear noise approximation leads to
the following Langevin equations

∂tx(t) = −|α′
1(x

∗)|x(t) +
√
cAx∗2 + x∗3ξA(t) +

√
cA/9 + x∗ξB(t) ,

∂tzB(t) = −x(t) +
√
cA/9 + x∗ξB(t) .

(5.62)

For such a linear system, all integrals can be solved analytically, see Appendix C.2. We
thus obtain the diffusion coefficient

D = 21/3|∆cA|−4/3/35/6 = O(1), for Ω → ∞ , (5.63)

Comparing with the scaling ansatz, Eq. (5.16), we obtain ε = −4/3 and ϕ + κε = 0 .
Furthermore, Eq. (5.60) yields ϕ = 1. Thus, we conclude

ϕ = 1, κ = 3/4, and ε = −4/3 , (5.64)

which analytically explains the numerical findings shown in Fig. 5.3.
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(a) (b)

Figure 5.4: Mean flux J of the Schlögl model undergoing a pitchfork bifurcation for various system
sizes Ω as function of the control parameter cA (a) below and (b) above the critical
point. The concentration cB is determined according to Eq. (5.65). The solid line
represents Eq. (5.75) and the dashed dotted line Eq. (5.89).

5.4 along the pitchfork bifurcation

We turn to the pathway along the pitchfork bifurcation, i.e., the line which enters the
cusp-like region tangential to its boundary, see the blue line in Fig. 5.1. It is parameterized
as

cB(cA) ≡
√
3/9− (cA −

√
3)/3 =

√
3/9−∆cA/3 , (5.65)

see Appendix C.1 for a derivation of the slope. Thus, ∆cA and Ω remain as free parameters
of the reaction scheme Eq. (5.3).

5.4.1 Numerical data

We numerically integrate Eq. (5.3) using the stochastic sampling algorithm [35] while varying
the control parameters. The particle flux J and diffusion coefficient D are determined
according to Eqs. (5.4) and (5.5).

The diffusion coefficient increases with the concentration cA showing two distinct regimes,
Fig. 5.5a. Below the critical point, D does not depend on the system size Ω, whereas it
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develops a dependence on Ω in the vicinity of ccritA and above. Rescaling the data according
to

D = D(∆cA,Ω) = ΩϕD(|∆cA| Ωκ) (5.66)

leads to the collapse of the data onto a master curve, see Fig. 5.5b. We determine the
exponents as

ϕ = 1.0± 0.1 and κ = 0.50± 0.05 . (5.67)

This results in a scaling function

D<(x) ∝

1 , x≪ 1

xε , x≫ 1

(5.68)

with

ε = −ϕ/κ = −2.0± 0.2 , (5.69)

below the critical point. The plateau for small values of |∆cA|Ωκ indicates a scaling of the
critical value as Dmax ∝ Ωϕ with ϕ given in Eq. (5.67). The power-law behavior with −ϕ/κ
below the critical point represents a scaling with D ∝ Ω0 consistent with the raw data, see
Fig. 5.5a.

In the supercritical regime, Fig. 5.5c, we find

lnD>(x) ∝

1 , x≪ 1

xϵ̃ , x≫ 1

(5.70)

with

ε̃ = 1.5± 0.5 . (5.71)

We attribute the outliers above the critical point to the fact that we leave the coexistence
line in this regime, see Fig. 5.1. We only consider a tangential to the coexistence line
and not the fully, curved line. Furthermore, the linear dependence between (|∆cAΩκ|)ε̃
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(a) (b)

(c)

Figure 5.5: Diffusion coefficient D of the Schlögl model at the pitchfork bifurcation. (a) D as
function of the control parameter cA for various system sizes Ω. (b) Scaling of D
according to D(∆cA,Ω) = ΩϕD(|∆cA| Ωκ) with ccritA =

√
3, κ = 0.5 and ϕ = 1.00. (c)

Logarithm of the re-scaled D above the critical point as function of (|∆cAΩ
κ|)ε̃ with

ε̃ = 1.5. The concentration cB is chosen as function of cA, Eq. (5.65). The solid line
represents the analytical result Eq. (5.77) and the dashed-dotted one Eq. (5.91).

and lnD/Ωϕ observed in Fig. 5.5c leads to our numerically obtained scaling function, Eq.
(5.70).

In the next section, in order to obtain the scaling exponents analytically, we approximate
the reaction scheme (5.3) below the critical point as in Sec. 5.3.2 and 5.3.3. Above ccritA , we
can describe it as a two-state system.
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5.4.2 In the monostable regime and at the critical point

The rate equation reads

∂tx̂(t) = −x̂(t)3 + x̂(t)2(
√
3 + ∆cA)− x̂(t) +

√
3/9−∆cA/3 . (5.72)

For ∆cA < 0, the only stable fixed point of this equation is

x∗ ≡ x0 ≡ 1/
√
3 . (5.73)

Thus, we find for the mean growth rate of particles B

∂tẑB(t) = x0 − (
√
3/9−∆cA/3) = 2

√
3/9 + ∆cA/3 . (5.74)

The particle flux is hence given by

J< = J<(∆cA) = 2
√
3/9 + ∆cA/3 . (5.75)

In order to obtain the diffusion coefficient D, we employ the same technique as introduced
in Sec. 5.3.3. Below the critical point, the chemical Langevin equation (5.62) becomes

∂tx(t) = −2
√
3|∆cA|x(t)/3 +

√
4
√
3/9 + ∆cA/3ξA(t) +

√
4
√
3/9−∆cA/3ξB(t) ,

∂tzB(t) = −x(t) +
√

4
√
3/9−∆cA/3ξB(t) .

(5.76)

Solving all integrals (see Appendix C.2), we obtain the diffusion coefficient in the monostable
regime

D< = 2
√
3|∆cA|−2/3 . (5.77)

At the critical point, we have the same set-up as in Sec. 5.3.3. Thus, we obtain the
divergence

D<,crit ∝ Ω . (5.78)
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For the subcritical regime, we can summarize the scaling behavior of the diffusion
coefficient D in the scaling form

D< = ΩϕD<(|∆cA|Ωκ) (5.79)

with

ϕ = 1, and κ = 1/2 . (5.80)

The scaling form is

D<(x) ∝

1 , x≪ 1

xε , x≫ 1

(5.81)

with exponent

ε = −ϕ/κ = −2 . (5.82)

Thus, approaching the critical point from below, we analytically find the same scaling
exponents as obtained numerically.

5.4.3 Bistable regime and two-state approximation

We consider Eq. (5.65) for ∆cA > 0, i.e., in the bistable regime. Here, the steady state
dynamics is given by two stable fixed points,

x±(∆cA) ≡ (2
√
3 + 3∆cA ± [24

√
3∆cA + 9∆c2A]

1/2)/6 ≈ 1/
√
3±

√
2∆cA/3 , (5.83)

that are separated by an unstable fixed point x0, Eq. (5.73). The system randomly jumps
between these two steady states. In the following, we treat the system as a two-state system
in order to obtain an estimate for the particle flux J and diffusion coefficient D [116, 128,
149].

In the limit of large system-sizes, Ω ≫ 1, the steady state solution of reaction scheme
(5.1) is given by

ps(x) = N exp[−Ωϕ(x)] , (5.84)
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where we introduced the nonequilibrium potential

ϕ(x) ≡ −
∫ x

0

du ln
cAu

2 + cB
u3 + u

. (5.85)

The fixed points of Eq. (5.72) determine the extrema of this potential with a maximum at
x0 and minima at x±.

The transition rates r± from one minimum to the other are given by the potential barrier
between the minima and their curvature as [116, 149]

r± ≡ rx±→x∓ ≡ F (x±)
√

−ϕ′′(x0)ϕ′′(x±)

2πΩ
e−Ω[ϕ(x0)−ϕ(x±)] , (5.86)

where a prime denotes a derivative with respect to the argument. We have introduced
F (x) ≡ (

√
3 + ∆cA)x

2 +
√
3/9−∆cA/3 for briefness of notation. Furthermore, along the

coexistence line, the minima are equivalent, i.e.,

ϕ(x+) = ϕ(x−) and ϕ′′(x+) = ϕ′′(x−) . (5.87)

The probability p± for the system to be in either of the minima is

p± ≡ r∓/(r+ + r−) = 1/2 , (5.88)

due to the symmetry of the problem.
Following Ref. [128], the particle flux is in leading order determined by

J> ≡ p−J
− + p+J

+ ≈ 2/3
√
3 + 5∆cA/6 , (5.89)

where J± denotes the mean flux of species B caused through the respective minimum, i.e.,

J± ≡ x±(∆cA)− cB(∆cA) . (5.90)

The diffusion coefficient of the two-state model is given by

D> ≡ p+p−(J
+ − J−)2/(r+ + r−) +O(Ω)

= Ωπ exp(
√
3∆c2AΩ/4)/

√
2 +O(Ω) ≡ ΩD>(|∆cA|Ω

1
2 ) .

(5.91)
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In the limit ∆cA → 0, this expression leads to

D>,crit ≡ D|∆cA=0 = O(Ω) , (5.92)

which is consistent with the result derived in the previous section, i.e., we obtain the scaling
exponent

ϕ = 1 . (5.93)

Furthermore, D>/Ω is a function of |∆cA|Ω1/2, Eq. (5.91). Thus, we get the scaling exponent

κ = 1/2 , (5.94)

which agrees with the one below the critical point. However, in the supercritical regime,
we find an exponential behavior, Eq. (5.91), with exponent

ε̃ = 2 , (5.95)

which is consistent with the numerically obtained one, Eq. (5.70).
In summary, we have analytically derived the particle flux J>, Eq. (5.89), which con-

tinuously extends the one obtained in the monostable regime J<, Eq. (5.75), through the
continuous phase transition following the tangential line into the bistable region, Eq. (5.65).
Furthermore, approximating the system as a two-state one, we have obtained a theoretical
prediction for the scaling of D, Eq. (5.91).

5.5 scaling form

5.5.1 General monostable pathway

In order to obtain a general scaling form for the diffusion coefficient D, we consider a
genuine line in the cA− cB-plane through the critical point. For calculations it is convenient
to use the following parameterization

cB(∆cA) ≡
√
3/9− (1/3− δ)∆cA . (5.96)
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In the limit δ → 0, we recover the line along the pitchfork bifurcation, Eq. (5.65). ∆cA and
δ remain as control parameters.

The rate equation reads

∂tx̂(t) = −x̂(t)3 + x̂(t)2(
√
3 + ∆cA)− x̂(t) +

√
3/9− (1/3− δ)∆cA . (5.97)

For δ ̸= 0, in the limit of |∆cA| ≪ 1, the fixed point of this equation is given by

x∗(∆cA, δ) ≡ 1/
√
3 + sign(∆cAδ)|∆cAδ|1/3 . (5.98)

Following the techniques introduced in Sec. 5.3.2, we obtain

J(∆cA, δ) ≡ 2
√
3/9 + sign(∆cAδ)|∆cAδ|1/3 +O(∆cA) ∝ |∆cAδ|1/3 . (5.99)

Thus, we find a continuous particle flux as function of ∆cAδ.
Off the critical point, using the linear noise approximation introduced in Sec. 5.3.3, we

obtain for the diffusion coefficient

D(∆cA, δ) = 8
√
3|∆cAδ|−4/3/27 . (5.100)

Right at the critical point, the diffusion coefficient is given by Eq. (5.60).
In summary, for any δ ̸= 0, we obtain the same scaling behavior for the particle flux and

diffusion coefficient as along the critical line.

5.5.2 Change of coordinates

We change from the (cA, cB)-parameterization into a frame with the origin at the critical
point. Furthermore, we consider the basis with direction parallel to the line along the
pitchfork bifurcation and perpendicular to it, see Fig. 5.6.

We denote the deviations from the critical point along the cA-axis as ∆cA and along
the cB-axis as ∆cB ≡ cB − ccritB . In the direction along the pitchfork bifurcation, we label
the deviations τ and into the perpendicular direction h, see Fig. 5.6. The coordinate
transformation is given by∆cA

∆cB

 =

 3/
√
10 1/

√
10

−1/
√
10 3/

√
10

 τ
h

 . (5.101)
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Figure 5.6: Phase-diagram of the Schlögl model, Eq. (5.1), with the coordinate-frame for the new
variables (τ, h).

For the line along the pitchfork bifurcation, Eq. (5.65), we obtain the parameterization

τ =
√
10∆cA/3, and h = 0 . (5.102)

For any other line through the critical point, Eq. (5.96), we find

∆cA = (3τ + h)/
√
10 and ∆cB = 10h/(9τ + 3h) . (5.103)

Thus, we get

∆cAδ =
√
10h/3 , (5.104)

which is independent of τ .

5.5.3 Scaling form for the particle flux

With the parameterization introduced in the previous section, Eq. (5.102) and (5.103),
and the results for the particle fluxes, Eq. (5.75), (5.89) and (5.99), we find the following
scaling form for the particle flux in the vicinity of the critical point

J(τ, h)− J(0, 0) =


τ/

√
10 , τ < 0, h = 0

5
√
10τ/20 , τ > 0, h = 0

101/6sign(h)|h|1/3/31/3 , h ̸= 0

, (5.105)
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with J(0, 0) ≡ 2
√
3/9. For non-vanishing h, the derivative with respect to h scales as

∂J(τ, h)

∂h
∝ |h|−2/3 , (5.106)

which agrees with the result obtained along the critical line, i.e., we recover the scaling
exponent, Eq. (5.27).

5.5.4 Scaling form for the diffusion coefficient

Using the results of Sec. 5.5.2 and 5.4, we find the following scaling form for the diffusion
coefficient

D = D(Ω, τ, h) = ΩϕD(Ωκτ τ,Ωκhh) . (5.107)

In the special case of h = 0, we have

D(Ω, τ, 0) = ΩϕD(Ωκτ τ, 0) . (5.108)

The scaling function is

D(x, 0) ∝


1 , |x| ≪ 1

(−x)ϵ<τ , x≪ −1

exp(4xϵ
>
τ /3) , x≫ 1

, (5.109)

with scaling exponents

ϕ = 1, κτ = 1/2, and ϵ>τ = −ϵ<τ = 2 . (5.110)

For h ̸= 0 and any τ , we obtain

D(x, y) ∝

1 , 0 < |y| ≪ 1

|y|ϵh , |y| ≫ 1

, (5.111)

with critical exponents

κh = 3/4 and ϵh = −4/3 , (5.112)
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compare Sec. 5.3.3 and 5.5.1.
In summary, using the new coordinates (τ, h), we have derived a scaling form for the

diffusion coefficient D in the vicinity of the critical point, Eq. (5.107). The scaling functions
for the two different regimes are given in Eq. (5.109) and (5.111) and the critical exponents
in Eq. (5.110) and (5.112).

5.6 discussion and conclusion

We have numerically as well as analytically derived the scaling exponents of the ther-
modynamic flux and its associated diffusion coefficient for the univariate Schlögl model
undergoing a continuous phase transitions. As representative path in phase space, we have
considered the critical line, Eq. (5.12), along which the system exhibits critical scaling.
Based on the rate equation, we have obtained the mean behavior of the particle flux, Sec.
5.3.2, which is in good agreement with the numerical found behavior, Sec. 5.3.1. Using the
chemical Langevin equation and van Kampen’s system-size expansion, we have analytically
determined the critical exponents of the diffusion coefficient associated with the flux of the
species in the reservoir.

For the second path, we have numerically shown that the system undergoes a continuous
transition, Sec. 5.4.1. The fluctuations characterized through the associated diffusion
coefficient diverge linearly in the system-size at the critical point. Furthermore, the diffusion
coefficient obeys a scaling form, thus, indicating critical behavior. Using the techniques
introduced in Sec. 5.3.2 and 5.3.3, we have obtained the scaling exponents in the monostable,
subcritical regime, Sec. 5.4.2. Applying a two-state approximation, we have calculated
the mean behavior of the particle flux and its diffusion coefficient in Sec. 5.4.3. We have
obtained critical exponents that agree with the one of the subcritical regime. Furthermore,
we have derived an exponential scaling function above the critical point which is consistent
with previous results [128].

In Sec. 5.5, we have transformed to the variables parallel to the line along the pitchfork
bifurcation and the direction perpendicular to it. Parameterizing the (cA, cB)-plane in
those coordinates, we have derived a scaling form for the particle flux, Eq. (5.105), and the
diffusion coefficient, Eq. (5.107), that summarizes the results of the previous sections.

In conclusion, we have examined the thermodynamic flux and its fluctuations in the
vicinity of the critical point of the Schlögl model. We have analytically determined critical
exponents based on the chemical Langevin equation, van Kampen’s system size expansion
and a two-state approximation. Furthermore, this work complements previous studies that
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have considered the first order transition when crossing the coexistence line in Fig. 5.1 [128,
146]. Thus, our contribution completes the understanding of the thermodynamic treatment
of the reaction scheme (5.1).

The critical behavior as derived here for the Schlögl model should be universal for any
nonequilibrium reaction network with a critical point where a first-order transition between
two stable dynamical phases terminates. A different universality class can be expected
for more complex reaction schemes like the Brusselator [90, 106, 150–152] where a Hopf
bifurcation separates an oscillatory regime described by a limit cycle from a monostable
regime. We will apply the concepts derived here to this complementary paradigm of a
nonequilibrium phase transition in the next chapter.





6
NONEQUIL IBR IUM FLUCTUATIONS OF CHEMICAL

REACTION NETWORKS AT CRIT ICAL ITY – THE

BRUSSELATOR MODEL AS PARADIGMATIC CASE

6.1 introduction

In the previous chapter, we have examined a univariate reaction scheme that undergoes
a continuous phase transition. We have shown that the flux in a particle reservoir has a
non-analytical derivative with respect to a control parameter. Furthermore, the associated
diffusion coefficient diverges at the transition. A similar result has previously been reported
for another system. Such fluxes and their fluctuations have been examined in Ref. [90] for
a chemical reaction network undergoing a Hopf bifurcation. The authors have numerically
found an effective exponent for the system-size scaling of these fluctuations but could not
provide analytical insight. This lack of theoretical description is a primary motivation for
this chapter.

We study the flux of particles consumed and produced in the reservoirs for the thermo-
dynamically consistent Brusselator as paradigm for a Hopf bifurcation. Fluctuations of
the fluxes are characterized by the associated diffusion coefficient. We numerically find a
non-analytical behavior of the particle flux, i.e., we find a jump in the derivative of the
flux with respect to the control parameter. Furthermore, we provide theoretical insight for
the origin of this non-differentiable behavior using a mapping onto the cubic normal for
Hopf bifurcations.

The diffusion coefficient displays critical behavior while varying a control parameter.
We determine critical exponents and find that the diffusion coefficient discontinuously
depends on the control parameter. Approximating the system through a chemical Langevin
equation and van Kampen’s system-size expansion, we obtain an equation of motion for the
fluctuations which is not analytically treatable. Numerically integrating the CLE and the
equations derived by van Kampen’s system-size expansion, we determine which equation
correctly approximates the non-analytical behavior of the diffusion coefficient.

This chapter is organized as follows. We introduce the thermodynamically consistent
Brusselator model, particle flux and associated diffusion coefficient in Sec. 6.2. In Sec. 6.3,

109
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we present our numerical results for the mean particle flux and the corresponding diffusion
coefficient. The analytical understanding of the non-analytical particle flux is given in
Sec. 6.4. In Sec. 6.5, we analytically examine the diffusion coefficient. We show where the
techniques introduced in Chapter 5 fail to describe the system and which approximation
should be used to study the diffusion coefficient. We conclude in Sec. 6.6.

6.2 the thermodynamic consistent brusselator model

The reaction scheme of the thermodynamically consistent Brusselator model is given by

A
k+1
⇌
k−1

X , 3X
k−2
⇌
k+2

2X + Y , Y
k−3
⇌
k+3

B . (6.1)

The species A and B in the external reservoir are kept at constant concentration cA and
cB, respectively. Due to a difference in the chemical potential between A and B, i.e.,
∆µ ≡ µB − µA > 0, the system is out of equilibrium and the intermediate species X and
Y can oscillate. To ensure thermodynamic consistency, the nonequilibrium driving force
fulfills the local detailed balance condition [12]

β∆µ = ln
cBk

+
3 k

+
2 k

−
1

cAk
+
1 k

−
2 k

−
3

(6.2)

with reaction rates k±i and inverse temperature β. We set β = 1 throughout this chapter,
thus, measuring energies in units of the thermal energy and entropy in the units of the
Boltzmann constant.

We introduce counting variables ZA(t) and ZB(t) in order to investigate the particle flux
of the species in the reservoir and its fluctuations, compare Chapter 5 . This leads to the
following augmented reaction scheme,

{A,ZA − 1}
k+1
⇌
k−1

{X,ZA} , 3X
k−2
⇌
k+2

2X + Y , {Y, ZB}
k−3
⇌
k+3

{B,ZB + 1} . (6.3)

The mean flux from the particle reservoir is given by

JB ≡ lim
t→∞

⟨ZB(t)⟩
Ωt

= JA , (6.4)
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with fluctuations quantified by the diffusion coefficient

DB ≡ lim
t→∞

Var[ZB(t)]

2Ωt
= DA , (6.5)

DA and DB are equal with a similar proof as for the Schlögl model using large deviation
theory [128]. Thus, we discuss only particle species B. All results are equally true for
chemostatted species A. We drop the index for the mean values in what follows.

The mean entropy production rate in the steady state is given by the particle flux J
and the thermodynamic driving ∆µ,

σ ≡ ΩJ∆µ . (6.6)

In Ref. [90], the authors have found that the system undergoes a stochastic Hopf bifurcation
while varying ∆µ. Furthermore, they found a continuous dependence of the thermodynamic
flux J , hence, entropy production rate on the control parameter. Thus, the Hopf bifurcation
is classified as a continuous phase transition.

A Hopf bifurcation is determined by the rate equations as discussed in Sec. 2.8.3. For
the reaction scheme (6.1), the deterministic rate equations are given by

d
dt

x̂(t)
ŷ(t)

 =

cAk+1 + k+2 x̂(t)
2ŷ(t)− k−1 x̂(t)− k−2 x̂(t)

3

cBk
+
3 + k−2 x̂(t)

3 − k−3 ŷ(t)− k+2 x̂(t)
2ŷ(t)


≡

F1[x̂(t), ŷ(t)]

F2[x̂(t), ŷ(t)]

 ≡ F [x̂(t), ŷ(t)] ,

(6.7)

where x̂(t) and ŷ(t) denote the mean particle concentration of species X and Y , respec-
tively, at time t. We denote the stationary solution of the rate equations as (x∗, y∗) =

(x∗(∆µ), y∗(∆µ)). The bifurcation is determined through the eigenvalues of the Jacobian
matrix. We numerically find a vanishing real part of the eigenvalues for

∆µcrit ≃ 3.9303 , (6.8)

which defines the bifurcation for the parameter-set considered in Ref. [90], see Table 6.1.
Throughout this chapter, we keep all rates constant according to Ref. [90] except k−3 which
is determined by Eq. (6.2) as function of the control parameter ∆µ. Thus, the system-size
Ω and ∆µ remain as external parameters. We expect all results to hold for any other
parameter-set for which the system undergoes a Hopf bifurcation.
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k+1 k+3 k−1 k+2 k−2 cA cB

0.1 0.1 1 1 1 1 3

Table 6.1: Reaction rates of the Brusselator model, Eq. (6.1), as presented in Ref. [90]. The rate
k−3 is determined by the local detailed balance condition, Eq. (6.2), as function of the
control parameter ∆µ.

(a) (b)

Figure 6.1: Numerical results for the mean flux J of the Brusselator model. (a) J as function of
the control parameter ∆µ for various system sizes Ω. (b) Derivative of the mean flux
J with respect to the driving ∆µ.

In the next section, we examine the particle flux J and the associated diffusion coefficient
D numerically while varying the control parameters.

6.3 numerical data

We numerically integrate reaction scheme Eq. (6.1) using Gillespie’s direct method [35].
The particle flux J and D are determined according to Eq. (6.4) and (6.5). The results are
shown in Fig. 6.1 and 6.2.

The mean flux depends continuously on the control parameter ∆µ, see Fig. 6.1a. For
increasing Ω, we observe a convergence of J towards the result obtained when numerically
integrating the rate equations (6.7) (Ω → ∞ line). In the vicinity of ∆µcrit, the mean flux
develops a kink while transitioning towards a different regime for ∆µ > ∆µcrit. This kink
is more apparent in the numerical derivative of J , see Fig. 6.1b. The derivative develops a
jump around the bifurcation. The height of the jump saturates with increasing system-size
Ω.
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(a) (b)

(c)

Figure 6.2: Numerical results for the fluctuations of the entropic flux. (a) Diffusion coefficient D
as function of the control parameter ∆µ for various system sizes Ω. (b) Maximal D
as function of the system-size Ω. (c) Rescaled diffusion coefficient D = ΩϕD(|∆µ−
∆µcrit|Ωκ) for data above the bifurcation with ϕ = κ = 0.5.

The diffusion coefficient develops a pronounced peak around the bifurcation that depends
on the system size, see Fig. 6.2. We find a power-law behavior

Dmax ∝ Ωϕ, ϕ = 0.52± 0.10 . (6.9)

Above the bifurcation, D does not depend on the system-size. Furthermore, we find a
smooth transition towards the bifurcation. In this regime, the data obey a scaling form

D(∆µ,Ω) = ΩϕD(|∆µ−∆µcrit|Ωκ) (6.10)
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as the collapse onto a master curve shows, see Fig. 6.2c. The scaling exponent is determined
as

κ = 0.5± 0.1 . (6.11)

Below the bifurcation, the diffusion coefficient D does not depend on Ω. Approaching the
bifurcation from below, we find a discontinuous transition between the two regimes. With
increasing system-size, D develops a jump. In contrast to the derivative of J discussed
above, the height of the jump depends on the system-size, see Fig. 6.2b.

In summary, we have numerically found a continuous dependence of the particle flux J
on the control parameter ∆µ. The derivative of this flux shows a system-size independent
jump in the vicinity of the bifurcation. For the diffusion coefficient, we have found a
power-law dependence on the system-size at the bifurcation and determined a scaling form
while approaching the bifurcation from above. However, when coming from below, the
diffusion coefficient develops a discontinuity with increasing system-size. This constitutes
our first main result.

In the next section, we consider the rate equations in order to gain an analytical intuition
for the dependence of the mean flux J on the control parameter ∆µ.

6.4 rate equation, mean flux and normal form mapping

6.4.1 Rate equation

The rate equation for the number of produced reservoir particles B is given by

∂tẑB(t) = k−3 ŷ(t)− cBk
+
3 , (6.12)

where ẑB(t) ≡ ⟨ZB(t)⟩ /Ω and ŷ(t) obeys the rate equation (6.7). From Eq. (6.4), we obtain
the particle flux

J = k−3 lim
t→∞

1

t

t∫
0

dsŷ(s)− cBk
+
3 . (6.13)
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Below the bifurcation, the dynamics of the system is determined by the fixed point
(x∗, y∗) of Eq. (6.7). Thus, in the long-time limit, we can replace ŷ(t) → y∗. This leads to

J = k−3 y
∗ − cBk

+
3 ≡ J∗ (6.14)

with J∗ = J∗(∆µ). Above the bifurcation the system admits a stable limit cycle around
the fixed point. Thus, we can parameterize the mean concentration as

ŷ(t) = y∗ + δy(t) . (6.15)

This leads to

J = k−3 lim
t→∞

1

t

∫ t

0

dsδy(s) + J∗ . (6.16)

In summary, we find a mean flux

J − J∗ =

0 ,∆µ < ∆µcrit

k−3 lim
t→∞

1
t

∫ t

0
dsδy(s) ,∆µ > ∆µcrit

. (6.17)

Shifting the numerically obtained flux by J∗, Eq. (6.14), we find good agreement of the
data with relation (6.17), see Fig. 6.3. We observe a linear dependence on the control
parameter in the vicinity but above the bifurcation. Below ∆µcrit, however, we find a
vanishing difference J − J∗.

In the next section, we use a normal form mapping in order to understand the contribution
of δy(t) to the flux.

6.4.2 Normal form mapping

We consider the rate equations (6.7) for the thermodynamically consistent Brusselator. We
set the origin into the fixed point (x∗, y∗) of the rate equations,x̂(t)

ŷ(t)

 =

x∗ + δx(t)

y∗ + δy(t)

 . (6.18)
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(a) (b)

Figure 6.3: Mean flux shifted by the contribution due to the fixed point (a) as function of the
control parameter ∆µ and (b) its derivative with respect to ∆µ for various system-
sizes.

Thus, we get the following dynamical system

∂t

δx(t)
δy(t)

 = F [x∗ + δx(t), y∗ + δy(t)] ≡ F̃ [δx(t), δy(t)] . (6.19)

The fixed point of this vector-field is (δx∗, δy∗) ≡ (0, 0). Furthermore, F̃ [δx, δy] undergoes
a Hopf bifurcation upon variation of the control parameter ∆µ. Thus, we can map this
vector-field to the cubic normal form for a Hopf bifurcation [48, 101, 153, 154]

FCNF (δx, δy) ≡

ρ −ω
ω ρ

δx
δy

+ (δx2 + δy2)

a −b
b a

δx
δy

 , (6.20)

see also Eq. (2.156).
We briefly outline this normal form mapping following Ref. [153]. The first step is to

apply a linear transformation U such that the differential evaluated at the origin becomes

DF̃ ◦ U(δx, δy) =

ρ −ω
ω ρ

δx
δy

 , (6.21)

where the eigenvalues in the vicinity of the bifurcation are

λ± = ρ± iω . (6.22)
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We note that ρ = ρ(∆µ) and ω = ω(∆µ) are functions of the control parameter.
The next step is to apply a series of quasi-linear transformations, i.e., functions of the

form

fk(δx, δy) ≡

δx
δy

+

f (k)
1 (δx, δy)

f
(k)
2 (δx, δy)

 ≡

δx
δy

+ f (k)(δx, δy) , (6.23)

where f (k)(δx, δy) denotes a vector with component functions f (k)
i (δx, δy) that are homoge-

neous polynomials of order k, i.e., f (k)
i (0, 0) = 0. Assuming that |δx|, |δy| ≪ 1, the inverse

transformation is in leading order

f−1
k (δx, δy) =

δx
δy

− f (k)(δx, δy) . (6.24)

First, we apply a second order transformation of the form

f2(δx, δy) ≡

δx
δy

+

a2,0δx2 + a1,1δxδy + a0,2δy
2

b2,0δx
2 + b1,1δxδy + b0,2δy

2

 . (6.25)

This transformation leaves the linear part unchanged. We can chose the free coefficients
ai,j and bi,j such that the composition F̃ ◦ f2 ◦U(δx, δy) has no quadratic terms. Thus, the
remaining vector-field has a linear part as given in Eq. (6.21) and arbitrary higher-order
terms of at least order 3.

We further apply a third order transformation which leaves again the linear part
unchanged and produces no quadratic terms. The free coefficients of this map can be
chosen such that we obtain the cubic normal form after truncating all terms of order higher
than three, i.e.,

F̃ ◦ f3 ◦ f2 ◦ U(δx, δy) = FCNF (δx, δy) +O(4) . (6.26)

Thus, the change of coordinatesδx̃
δỹ

 ≡ f3 ◦ f2 ◦ U(δx, δy) (6.27)

transforms F̃ (δx, δy) into the cubic normal form FCNF (δx̃, δỹ).
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In the oscillatory regime, the cubic normal form exhibits a stable limit cycle. The
trajectory is parameterized asδx̃(t)

δỹ(t)

 = r0

cos(ω0t)

sin(ω0t)

 , (6.28)

with limit cycle radius

r0 ≡
√
ρ

a
(6.29)

and angular frequency on the limit cycle

ω0 = ω + br20 . (6.30)

The back transformation of the oscillatory solution, Eq. (6.28), leads to

δy(t) = δỹ(t) + c1δỹ(t)
2 + c2δx̃(t)δỹ(t) + c3δx̃(t)

2 +O(3) , (6.31)

with constants ci that are determined through the coefficients ai,j and bi,j of the transfor-
mation f2(δx, δy). Using this expression, we find for the particle flux J in the oscillatory
phase, Eq. (6.16),

J − J∗ = k−3 lim
t→∞

1

t

∫ t

0

dsδy(s) = k−3
ρ

a
C0 , (6.32)

where C0 contains all constants ci and does not depend on the control parameter.
As last step, we identify the remaining dependencies on ∆µ −∆µcrit. The rate k−3 is

determined through the local detailed balance condition, Eq. (6.2). We find

k−3 = k−3 (∆µ−∆µcrit) = O(1) (6.33)

for ∆µ−∆µcrit ≪ 1. As ρ is the real part of the eigenvalue that determines the bifurcation,
we necessarily have

ρ = O(∆µ−∆µcrit) (6.34)
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for ∆µ−∆µcrit ≪ 1. Furthermore, we get

a = O(1) (6.35)

in the limit of vanishing ∆µ−∆µcrit [154]. Thus, when approaching the bifurcation from
above, the mean flux J depends linearly on the control parameter, i.e.,

J − J∗ = C(∆µ−∆µcrit) , (6.36)

with constant of proportionality C.
In conclusion, we obtained the following behavior of the mean particle flux in the vicinity

of the bifurcation,

J − J∗ =

0 ,∆µ < ∆µcrit

C(∆µ−∆µcrit) ,∆µ > ∆µcrit

. (6.37)

Thus, we find a continuous but non-differentiable transition between the two regimes which
is in good agreement with the numerically found behavior, see Fig. 6.3. This manifests our
second main result.

6.5 discontinuous diffusion coefficient

6.5.1 System-size expansion

6.5.1.1 Set-up

We turn to the diffusion coefficient D. Following the techniques developed in Chapter 5,
we consider the ansatz

nX(t)

nY (t)

ZB(t)

 = Ω


x̂(t)

ŷ(t)

ẑB(t)

+
√
Ω


x(t)

y(t)

zB(t)

 , (6.38)

where nX(t) denotes the number of molecules of species X up to time t, and nY (t) of
species Y , respectively.
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Van Kampen’s expansion leads in lowest order to the rate equations (6.7) and (6.12).
The higher-order terms are equivalent to the following Langevin equations

∂tx(t) =
√
Ω

(
F1[x̂(t) + x(t)/

√
Ω, ŷ(t) + y(t)/

√
Ω]− F1[x̂(t), ŷ(t)]

)
+
√
cAk

+
1 + k−1 x̂(t)ξA(t) +

√
k+2 x̂(t)

2ŷ(t) + k−2 x̂(t)
3ξ(t) ,

∂ty(t) =
√
Ω

(
F2[x̂(t) + x(t)/

√
Ω, ŷ(t) + y(t)/

√
Ω]− F2[x̂(t), ŷ(t)]

)
+
√
k+2 x̂(t)

2ŷ(t) + k−2 x̂(t)
3ξ(t) +

√
cBk

+
3 + k−3 ŷ(t)ξB(t) ,

∂tzB(t) = −k−3 y(t) +
√
cBk

+
3 + k−3 ŷ(t)ξB(t) .

(6.39)

Using ansatz Eq. (6.38) and the definition of D, Eq. (6.5), we obtain

D = (k−3 )
2

∞∫
0

dt ⟨y(t)y(0)⟩+ lim
t→∞

1

t

∫ t

0

CB(ŷ(s))ds

− k−3 lim
t→∞

1

t

t∫
0

dτ

t∫
0

ds CB(ŷ(s)) ⟨y(τ)ξB(s)⟩ ,
(6.40)

with CB(ŷ) ≡ 1
2
(cBk

+
3 + k−3 ŷ).

In the next sections, we consider the above expression for D in the different regimes of
the Brusselator model.

6.5.1.2 Fixed point regime

We assume that the rate equation (6.7) has a stable fixed point denoted as (x∗, y∗). After
a Taylor-expansion for Ω ≫ 1, the Langevin equations (6.39) become in leading order

∂tx(t) = DF (x∗, y∗)1,1x(t) +DF (x∗, y∗)1,2y(t)

+
√
cAk

+
1 + k−1 x

∗ξA(t) +
√
k+2 x

∗2y∗ + k−2 x
∗3ξ(t) ,

∂ty(t) = DF (x∗, y∗)2,1x(t) +DF (x∗, y∗)2,2y(t)

+
√
k+2 x

∗2y∗ + k−2 x
∗3ξ(t) +

√
cBk

+
3 + k−3 y

∗ξB(t) ,

∂tzB(t) = −k−3 y(t) +
√
cBk

+
3 + k−3 y

∗ξB(t) ,

(6.41)
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where DF (x∗, y∗)i,j denote the entries of the Jacobian matrix of vector-field F (x, y) evalu-
ated at the fixed point (x∗, y∗). We obtain a linear system without any dependence on the
system-size Ω. Furthermore, x(t), y(t) and zB(t) describe an Ornstein-Uhlenbeck process
[38, 39], hence, are Gaussian variables.

For the diffusion coefficient, we find

D = (k−3 )
2

∞∫
0

dt ⟨y(t)y(0)⟩+ C3(y
∗)− k−3 C3(y

∗) lim
t→∞

1

t

t∫
0

dτ

t∫
0

ds ⟨y(τ)ξB(s)⟩ .

(6.42)

As the fluctuations are described by a linear system, all integrals are in principle analytically
solvable. However, since there is no analytical expression for the fixed point (x∗, y∗), this
leads only to a semi-analytically estimate of the diffusion coefficient, hence no analytical
understanding of the observed behavior. A further possible route to take is to consider
the ordinary differential equations for the moments. Using the fact that we consider
Gaussian variables and Wick’s theorem, we would obtain a closed system for the first and
second moments. This approach, however, leads also to a numerical solution and not to an
analytical understanding. Nevertheless, using Eq. (6.42), we find that D does not depend
on the system-size Ω. This is consistent with the numerical data, see Fig. 6.2.

6.5.1.3 Oscillating phase

Above the bifurcation, the system exhibits limit cycle oscillations, i.e., the stable solution
of the rate equations is time dependent. We denote this solution with (x0(t), y0(t)), i.e.,x0(t)

y0(t)

 ≡

x∗
y∗

+

δx(t)
δy(t)

 , (6.43)

as introduced in Eq. (6.15). Using Eq. (6.39), we find

∂tx(t) = DF [x0(t), y0(t)]1,1x(t) +DF [x0(t), y0(t)]1,2y(t)

+
√
cAk

+
1 + k−1 x0(t)ξA(t) +

√
k+2 x0(t)

2y0(t) + k−2 x0(t)
3ξ(t) ,

∂ty(t) = DF [x0(t), y0(t)]2,1x(t) +DF [x0(t), y0(t)]2,2y(t)

+
√
k+2 x0(t)

2y0(t) + k−2 x0(t)
3ξ(t) +

√
cBk

+
3 + k−3 y0(t)ξB(t) ,

∂tzB(t) = −k−3 y(t) +
√
cBk

+
3 + k−3 y0(t)ξB(t) .

(6.44)
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This is a linear system without any Ω dependence. As before, x(t), y(t) and zB(t) are
Gaussian variables. However, since there is no analytical expression for the limit cycle
(x0(t), y0(t)), we again only find that the diffusion coefficient does not depend on Ω. This
is consistent with the numerical data, see Fig. 6.2.

6.5.1.4 At the bifurcation

One of the conditions for a Hopf-bifurcation to take place is the constraint that the
eigenvalues of the Jacobian matrix have a vanishing real part. Thus, at the bifurcation,
the linear noise approximation as it has been used in the previous sections does not lead
to a stationary solution of the fluctuations. As a consequence, we need to consider higher
order terms in Ω.

At the bifurcation, the steady-state of the rate equations (6.7) is a fixed point. Thus,
the vector-field for the x(t) and y(t) motion, Eq. (6.39), has the following form

F̃ [x(t), y(t)] ≡
√
Ω

(
F [x∗ + x(t)/

√
Ω, y∗ + y(t)/

√
Ω]− F [x∗, y∗]

)
= DF [x(t), y(t)] +

1√
Ω
M [x(t), y(t)] +

1

Ω
N [x(t), y(t)]

(6.45)

with

DF [x, y] ≡

 −(k−1 + 3k−2 x
∗2 − 2k+2 x

∗y∗)x+ k+2 x
∗2y

(3k−2 2k
+
2 x

∗y∗ − 2k+2 x
∗y∗)x− (k−3 + k+2 x

∗2)y

 , (6.46)

M [x, y] ≡

−(3k−2 x
∗ − k+2 y

∗)x2 + 2k+2 x
∗xy

(3k−2 x
∗ − k+2 y

∗)x2 − 2k+2 x
∗xy

 , (6.47)

and

N [x, y] ≡

−k−2 x3 + k+2 x
2y

k−2 x
3 − k+2 x

2y

 . (6.48)

We have dropped the dependence on the fixed point (x∗, y∗) in the above definitions.
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The vector-field, Eq. (6.45), satisfies all requirements for a Hopf bifurcating field. Hence,
we apply the normal form mapping discussed in Sec. 6.4. At the bifurcation, this leads to
a normal form of the following form

F̃ (x, y) ≃
√
ΩFCNF (x/

√
Ω, y/

√
Ω) , (6.49)

i.e.,

F̃ (x, y) ≃

0 −ω
ω 0

x
y

+
1

Ω
(x2 + y2)

a −b
b a

x
y

 . (6.50)

Comparing with the Langevin equation (6.39), we find

∂t

u(t)
v(t)

 =
√
ΩFCNF [u(t)/

√
Ω, v(t)/

√
Ω]+

√
2D1

√
2D2 0

0
√
2D2

√
2D3



ζ1(t)

ζ2(t)

ζ3(t)

 (6.51)

where u(t) and v(t) are connected to x(t) and y(t) through the normal form mapping.
The Di are the diffusion constants of the Gaussian white noises with ⟨ζi(t)⟩ = 0 and
⟨ζi(t)ζj(t′)⟩ = δijδ(t − t′). Due to the lack of radial symmetry of Eq. (6.51), we rely on
numerical methods in order to investigate the properties of its solution.

6.5.2 Cubic normal form model

We consider Eq. (6.51) and

∂tz(t) = −v(t) +
√

2D3ζ3(t) . (6.52)

We keep all parameters of the cubic normal form for a Hopf-bifurcation constant except
for ρ which corresponds to the control parameter ∆µ. Thus, the external parameters are ρ,
Ω, D1, D2 and D3.

We numerically integrate Eq. (6.51) and (6.52) and determine the diffusion coefficient
according to

Dz ≡ Ω lim
t→∞

Var[z(t)]
2t

. (6.53)
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(a) (b)

Figure 6.4: Diffusion coefficient Dz of the noisy cubic normal form for a Hopf bifurcation as
a function of ρ for various D1, D2, D3 and system-sizes Ω. The parameters are
a = b = ω = 1. (a) D1 = 10−3, D2 = 10−2, D3 = 10−3. (b) D1 = 102, D2 = 103,
D3 = 10−2.

The results are shown in Fig. 6.4.
We find two characteristic scenarios depending on the set of diffusion constants D1, D2

and D3. In Fig. 6.4a, we observe a ρ dependent Dz but it does not depend on Ω. The
second scenario is characterized by a weak dependence on the system-size but none on
the control parameter ρ, see Fig. 6.4b. We conclude that the system is not well described
by Eq. (6.51) and (6.52) since it does not reproduce the key characteristics observed in
the full model, i.e., Ω dependent diffusion coefficient at the bifurcation and discontinuous
dependence on the control parameter ρ and correspondingly on ∆µ.

In order to understand this discrepancy, we numerically examine Eq. (6.39), i.e., the
system before applying the normal form mapping.

6.5.3 Integration of van Kampen’s approximation

We numerically integrate the rate equations, Eq. (6.7), in order to obtain a solution for
x̂(t) and ŷ(t). Using this solution, we integrate Eq. (6.39) and determine D according to
Eq. (6.5), see Fig. 6.5.
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(a) (b)

Figure 6.5: Fluctuations of the mean flux in the Brusselator model obtained by numerically solving
the mean-field equations, Eq. (6.7), and the Langevin equation for the fluctuations,
Eq. (6.39). (a) Diffusion coefficient D of the particle flux as function of the control
parameter ∆µ for various system sizes Ω. (b) Maximal D as function of the system-size
Ω.

The diffusion coefficient D depends discontinuously on the control parameter ∆µ with a
jump in the vicinity of the bifurcation, see Fig. 6.5a. The maximum value depends on the
system-size Ω, i.e.,

Dmax ∝ ΩϕV K with ϕV K = 0.78± 0.04 , (6.54)

where the exponent is obtained through a fit, see Fig. 6.5b.
Thus, using ansatz Eq. (6.38), we find a discontinuous D as function of ∆µ. However,

the scaling exponent of the maximum value is different than the one obtained through
Gillespie’s direct method, Eq. (6.9).

In the next section, we consider the full CLE in order to obtain D and compare with
the data presented in Sec. 6.3.
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6.5.4 Chemical Langevin equation

The chemical Langevin equation for the reaction scheme (6.3) reads

∂tx(t) = F1[x(t), y(t)] +
1√
Ω

(√
cAk

+
1 + k−1 x(t)ξA(t) +

√
k+2 x(t)

2y(t) + k−2 x(t)
3ξ0(t)

)
,

∂ty(t) = F2[x(t), y(t)] +
1√
Ω

(√
k+2 x(t)

2y(t) + k−2 x(t)
3ξ0(t) +

√
cBk

+
3 + k−3 y(t)ξB(t)

)
,

∂tzB(t) = k+3 cB − k−3 y(t) +
1√
Ω

√
cBk

+
3 + k−3 y(t)ξB(t) ,

(6.55)

where x(t) ≡ nX(t)/Ω denotes the density of particles of species X at time t, analogously
for y(t) and zB(t). Fi[x, y] is defined in Eq. (6.7) and ξi(t) denotes Gaussian-white noise,
i.e., ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′). We numerically integrate Eq. (6.55) and
determine the diffusion coefficient D according to Eq. (6.5), see Fig. 6.6.

We obtain a diffusion coefficient that displays a jump at the bifurcation ∆µcrit, see Fig.
6.6a. The maximal value of D scales as

Dmax ∝ ΩϕCLE , ϕCLE = 0.49± 0.01 . (6.56)

Thus, the data obtained by numerically solving the CLE (6.55) shows the same behavior
as the one obtained by using Gillespie’s direct method, compare Sec. 6.3.

6.5.5 Discussion of the different approximations

We have approximated the reaction scheme (6.3) using van Kampen’s system-size expansion
in order to obtain an analytical understanding of the diffusion coefficient D. This ansatz has
led to Eq. (6.39). Since there are no analytical expressions for the fixed point (x∗, y∗) nor
the limit cycle (x0(t), y0(t)), we have only extracted the Ω scaling of D for the regimes above
and below the bifurcation. However, at the bifurcation, we were not able to analytically
extract any scaling behavior due to the complexity of the vector-field, Eq. (6.45).

We have further approximated the vector-field, Eq. (6.45), using a normal form mapping,
see Sec. 6.5.2. We have numerically found that the resulting equations fail to reproduce the
non-analytical behavior of D. We attribute this to the non-systematic truncation during
the normal form mapping.
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(a) (b)

Figure 6.6: Fluctuations of the mean flux in the Brusselator model obtained by numerically
integrating the chemical Langevin equation (6.55). (a) D as function of the control
parameter ∆µ for various system sizes Ω. (b) Maximal D as function of the system-size
Ω.

Using the rate equations (6.7) and the Langevin equation for the fluctuations around
it, Eq. (6.39), we have numerically obtained a discontinuous diffusion coefficient D but
with a wrong scaling exponent for the maximal value. Nevertheless, we conclude that this
approach should be sufficient to understand the non-analytical behavior of D. However, we
were not able to extract this information from the corresponding equations, thus, leaving
it as an open question.

In the last step, we numerically solved the CLE (6.55) and recovered all characteristic
behaviors, i.e., a discontinuous D as function of ∆µ and a scaling exponent for the maximal
value of D that is consistent with Eq. (6.9). This is due to the fact that the chemical
Langevin equation approximates the reaction scheme (6.3) exactly in the limit of Ω ≫ 1.
In this limit, both leap conditions can always be satisfied, see Sec. 2.7.3. However, due
to the multiplicative noise of Eq. (6.55), we leave the analytical extraction of the scaling
exponents as an open problem.

In conclusion, the equations obtained when using van Kampen’s system-size expansion
are sufficient in order to understand the discontinuous dependence of the diffusion coefficient
on the thermodynamic driving ∆µ. However, in order to find the correct scaling exponents,
the CLE should be considered.
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6.6 conclusion

We have examined the thermodynamic consistent Brusselator model, Eq. (6.1), during a
Hopf bifurcation. Using the stochastic sampling algorithm, we have numerically shown
a continuous dependence of the mean particle flux of reservoir species on the control
parameter ∆µ, see Sec. 6.3. In the vicinity of the bifurcation, this flux develops a kink
which leads to a jump in the derivative. This non-differentiable behavior is also found in
the solution of the rate equations. Thus, the maximum value of the derivative saturates for
growing system-size. These findings are consistent with a previous study [90].

In Sec. 6.4, we have used bifurcation theory and the mapping onto normal forms to
theoretically explain this non-differentiable dependence. We have argued that the particle
flux consists of two contributions. One is due to the system being in the fixed point. In the
oscillatory phase, there is an additional term due to the periodic motion around the fixed
point that depends in leading order linear on the control parameter.

Furthermore, we have numerically shown that the diffusion coefficient displays critical
behavior when approaching the bifurcation from above, i.e., satisfies a scaling relation,
Eq. (6.10), and obtained critical exponents. In the vicinity of the bifurcation, the diffusion
coefficient develops a pronounced peak that depends on the system-size. We have obtained
a scaling exponent for the maximum value which does not agree with Ref. [90]. However,
we reproduce their result when considering system-sizes up to Ω = 104.5. Approaching
the bifurcation from below, the diffusion coefficient develops a discontinuous dependence
on ∆µ for increasing system-size. This discontinuous behavior is novel and has not been
reported before.

In order to understand the diffusion coefficient analytically, we applied the techniques
which we have developed in Chapter 5. We have confirmed the system-size independence
off the bifurcation. However, due to the lack of an analytical expression for the fixed point
and the limit cycle, we were not able to obtain scaling exponents with respect to the
thermodynamic driving.

In the vicinity of the bifurcation, we have derived an expression for the vector-field,
Eq. (6.45), that we could not further simplify. Using numerical integration, we have
shown that the naive application of a normal form mapping does not lead to an equation
that captures the complex behavior of the diffusion coefficient, see Sec. 6.5.2. Further
numerical integration has been performed using van Kampen’s ansatz, Eq. (6.38), and the
corresponding equations of motion in Sec. 6.5.3. We have shown that the vector-field, Eq.
(6.45), leads to a discontinuous diffusion coefficient with respect to the thermodynamic
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driving but to a system-size dependence with an exponent that is off. In Sec. 6.5.4, we
have numerically integrated the chemical Langevin equation corresponding to the reaction
scheme (6.1). We have found a discontinuous dependence on the thermodynamic driving
and on the system-size which is consistent with the one presented in Sec. 6.3.

In contrast to the Schlögl model discussed in Chapter 5, the Brusselator model exhibits
a fixed point and a dynamical, oscillatory phase. For the Schlögl model, we have considered
a continuous transition with a singular, critical point. However, the Jacobian matrix of
the Brusselator model does not become singular at the bifurcation. Furthermore, we have
noise terms that are not homogeneous in space. Due to these two facts, we were not able to
analytically derive scaling exponents for the Brusselator model or to explain the apparent
discontinuity in the diffusion coefficient. Nevertheless, numerical simulations have shown
that the vector-field, Eq. (6.45), leads to an discontinuous diffusion coefficient and that the
chemical Langevin equation (6.55) reproduces the correct system-size scaling.

In summary, we have numerically found a jump in the derivative of the thermodynamic
flux and have theoretically explained this behavior. Furthermore, we have numerically
found novel phenomena in the fluctuations of this flux, i.e., a discontinuous dependence of
the diffusion coefficient on the control parameter and a scaling exponent for the system-size
dependence of the maximum value. The analytical explanation of this behavior is left as
an open problem.





7
CONCLUDING REMARKS

Over the last decades, stochastic thermodynamics has emerged as a fruitful field of research.
The novel, dynamical approach towards statistical physics led to a reinterpretation of well
established results and concepts such as entropy and the second law. Furthermore, the
comprehensive framework of stochastic thermodynamics allows the treatment of systems in
thermal equilibrium as well as of those that are out of equilibrium, i.e., constantly producing
entropy. Thus, this approach is extending the overall applicability of thermodynamics to
living, active or biological systems.

In this thesis, we have examined several nonlinear phenomena in stochastic thermody-
namics. In Chapter 3, we have considered the optimization of a finite-time transformation of
a system from a given initial to a final state for a minimal entropic cost. This optimization
problem has been topic of several studies on continuous state space [24–26, 28, 77]. For
the analogous problem on discrete state space, the governing equations have been derived
and it has been shown that it reduces to the continuous one in the appropriate limit [27].
However, a characterization of the optimal protocol was still missing. We have proven
that the optimal protocols realizing a transformation at lowest entropic cost are in general
non-conservative, i.e., include an external driving which is not given by differences of state
variables. This is in contrast to systems with continuous state space where the optimal
transformation is given by conservative forces [25]. Subsequent studies have been working
towards a unification of the optimization problem regarding different underlying state
spaces and dynamics [29, 30], thus, putting our result into a broader perspective from an
information geometrical point of view.

In Chapter 4, we have turned to the phenomenon of coherent oscillations. We have
discussed the question of how "good" a stochastic oscillator can keep its period, hence, its
precision. For a one-dimensional motion along a ring, we have derived a novel, analytical
expression for the quality factor as a measure for an oscillator to maintain its coherence.
Using this expression, we have derived and proven a continuous version of the bound on
the quality factor for Markov jump processes conjectured in Ref. [4]. This bound has only
recently been proven by Ohga and co-workers [50]. For a particle on a ring, we have further
shown that this bound reduces to the one conjectured by Oberreiter and co-workers [5] in
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the limit of weak noise, i.e., that the quality factor of a noisy oscillator sets a lower bound
on the total entropy produced during one period. Thus, we provide the first and up to now
only analytical attempt towards proving this bound.

As biochemical oscillators include at least two different species, we have considered
planar oscillators in the subsequent sections. We have developed a theory that projects a
two-dimensional oscillator onto an effective one-dimensional motion along the arc-length,
thus, allowing the application of the quality factor obtained for a one-dimensional system.
We have further studied the validity of this projection method considering the noisy
Stuart-Landau oscillator and the Brusselator model. For both models, we have observed
a discrepancy when comparing to a theory based on Hamilton-Jacobi theory [45, 46].
However, for the noisy Stuart-Landau oscillator, we have extended our theory in order
to capture the full dynamics of the system. Thus, we derived an exact expression for the
quality factor of a broad class of planar oscillators. The derived formula only includes
quantities known from the equation of motion and does not rely on Hamilton-Jacobi-theory
in contrast to the full expression derived in Ref. [45]. Thus, we have provided simple,
intuitive insights into the coherence of a noisy oscillator.

A prime example for a noisy oscillator is a chemical reaction network undergoing a Hopf
bifurcation or, in terms of stochastic thermodynamics, a system undergoing a continuous
phase transition. Before we have examined a noisy Hopf bifurcation in Chapter 6, we have
considered the Schlögl model undergoing a continuous phase transitions in Chapter 5.
Upon variation of the concentration of a chemostatted species, this system exhibits various
transitions. A first order phase transition is characterized by a discontinuous entropy
production and thermodynamic flux, respectively, with respect to the control parameter.
While this transition and the fluctuations of the thermodynamic flux have been topic of
several studies [128, 146], we have focused on paths through the critical point. We have
numerically as well as analytically shown that the system undergoes a continuous phase
transition. Furthermore, we have numerically found that the associated diffusion coefficient
of the thermodynamic flux diverges at the critical point and have determined scaling
exponents. In both cases, we have observed critical power-law behavior. Using the chemical
Langevin equation and van Kampen’s system-size expansion, we have developed a theory
in order to analytically obtain the scaling exponents for the diffusion coefficient in the
monostable regime. In the bistable regime, we have used an approximation as two-state
system in order to analytically understand the crticial behavior. In all cases, we have found
good agreement between the numerical and analytical results. All in all, our discussion of
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the Schlögl model complements the studies that examined the first order transition. Thus,
we have completed the thermodynamic understanding of the univariate Schlögl model.

In Chapter 6, we have considered the thermodynamically consistent Brusselator model
as a paradigm for a system undergoing a Hopf bifurcation. We have numerically obtained
a continuous thermodynamic flux and its discontinuous derivative with respect to a control
parameter. Furthermore, at the bifurcation, we have found a diverging diffusion coefficient
characterizing the fluctuations of this flux. These results are consistent with a previous study
[90]. However, considering system-sizes bigger than in Ref. [90], we have numerically found
a discontinuous behavior of the diffusion coefficient with respect to the control parameter
below the bifurcation. Above the bifurcation, we have obtained scaling exponents for the
diffusion coefficient and found a collapse onto a master-curve. At the bifurcation, the
diffusion coefficient diverges with the system-size. However, we have obtained a different
scaling exponent than reported in Ref. [90] but recovered the previous result in the limit
of small system-sizes.

Using a mapping to the normal form for a Hopf bifurcation, we have analytically derived
the non-differentiable behavior of the thermodynamic flux. Applying the methods developed
for the Schlögl model, we have derived an expression for the diffusion coefficient that is
not analytically treatable. We have numerically shown that a further simplification would
not reproduce the observed behavior of the fluctuations. Numerically integrating the rate
equations for the mean concentrations and the Langevin equations for their fluctuations, we
have shown that the procedure based on van Kampen’s system-size expansion reproduces
the discontinuity correctly but leads to a different system-size exponent for the divergence
of the diffusion coefficient at the bifurcation. However, numerical simulation have shown
that the chemical Langevin equation reproduces the behavior of the diffusion coefficient in
the vicinity of the critical point. In conclusion, we have analytically derived the jump in the
derivative of the thermodynamic flux and numerically observed a discontinuous diffusion
coefficient with respect to a control parameter. Due to the theoretically non-treatable
expression for the diffusion coefficient, we have left the analytical determination of the
scaling exponents and derivation of the discontinuity as an open problem.

In summary, we have considered various nonequilibrium phenomena that arise due to
nonlinearities or are intrinsically nonlinear. Using optimal control theory, we have studied
the entropic cost of transforming a system from a given initial to a final state in finite
time. Furthermore, we have examined the change in the typical behavior of a system while
undergoing a phase transition upon variation of an external control parameter. The typical
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behavior is captured by an appropriate order parameter such as the thermodynamic flux
or for instance the quality factor.

Possible future work could incorporate recent developments regarding large deviation
theory for chemical reaction networks [130] or systems undergoing a phase transition [132]
in order to examine the fluctuations during a Hopf bifurcation. As the path along the Hopf
bifurcation in the Brusselator corresponds to the pathway into coexistence in the Schlögl
model, it would be interesting to study the fluctuations of the thermodynamic flux along
other pathways that, for instance, corresponds to the critical line of the Schlögl model.
Since the system would be monostable along that line, we expect our formalism based on
the CLE and van Kampen’s system-size expansion to be applicable. However, due to the
high dimensionality of the configuration space of the Brusselator, it will be challenging
to find an appropriate path. Nevertheless, since the critical behavior of an equilibrium
system depends on its dimension, it would be intriguing to study this question for the
corresponding nonequilibrium situation.



A
OPTIMAL ITY OF NON-CONSERVATIVE DRIV ING FOR

F IN ITE -T IME PROCESSES WITH DISCRETE STATES

a.1 comment on eq. (3.11) of the main text

In this section, we show that the linear term in Eq. (3.11) of the main text does not vanish,
i.e.,

N∑
i=1

tanh

[
Bi(t)−Bi+1(t)

2

]
̸= 0 , (A.1)

from which we can conclude that a non-zero affinity is optimal, in general. In order to
understand the implications of a vanishing right hand side of the above relation, it is
instructive to consider a network of three states. Requiring the sum in Eq. (A.1) to vanish
implies for such a set-up

tanh
B1(t)−B2(t)

2
+ tanh

B2(t)−B3(t)

2
+ tanh

B3(t)−B1(t)

2
= 0. (A.2)

This expression simplifies with tanh(α + β) = tanh(α)+tanh(β)
1+tanh(α) tanh(β)

to

(
tanh

B1(t)

2
−tanh

B2(t)

2

)(
tanh

B2(t)

2
−tanh

B3(t)

2

)(
tanh

B3(t)

2
−tanh

B1(t)

2

)
= 0

(A.3)

Thus, the solutions are characterized by

1. B1(t) = B2(t)

2. B1(t) = B3(t)

3. B2(t) = B3(t)

(A.4)

135
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We now consider the second case, i.e., B1(t) = B3(t). This equality implies that the current
j13(t) = 2κ13ϕ1(t)ϕ3(t) sinh{[B1(t) − B3(t)]/2} = 0 is zero for all times, hence, there is
effectively no link between state 1 and 3. Furthermore, this equality has consequences for
the master equation as well

∂tϕ1(t) = −κ12ϕ2(t) sinh
B1(t)−B2(t)

2

∂tϕ2(t) = . . .

∂tϕ3(t) = −κ23ϕ2(t) sinh
B1(t)−B2(t)

2
.

(A.5)

Combining the equations for ϕ1(t) and ϕ3(t), we obtain

∂t [ϕ1(t)/κ12 − ϕ3(t)/κ23] = 0 . (A.6)

This results in

ϕ1(t)/κ12 − ϕ3(t)/κ23 = const. (A.7)

for all times 0 ≤ t ≤ T . Since ϕ1(0/T ) =

√
p
0/T
1 and ϕ3(0/T ) =

√
p
0/T
3 are the boundary

values that we can choose arbitrarily and the densities {ϕi(t)} are continuous for 0 ≤ t ≤ T ,
the assumption of a vanishing right hand side in Eq. (A.1) is in general wrong.

a.2 improved bound for symmetric rates

We proof Eq. (3.21) of the main text, i.e.,

|A(t)| ≤ 2(N − 2), ∀t ∈ [0, T ] (A.8)

where here N ≥ 3 denotes the number of states of a cycle C in the network, A(t) the
associated affinity and T the total duration of the process. The key-idea of the proof is
to ask for which affinities a solution can exist. For convenience we relabel the driving
functions of adjacent states along a cycle as

xi ≡ φi,i−1(t) (A.9)
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for arbitrary but fixed 0 ≤ t ≤ T . Thus, Eq. (3.18) from the main text becomes

0 =
N∑
i=1

(
xi + 2 tanh

xi
2

)
(A.10)

and the affinity along the cycle reads

A =
N∑
i=1

xi . (A.11)

A possible solution to the variational problem has to satisfy both of these relations. We
can thus write the first relation as

A = −2
N∑
i=1

tanh
xi
2

≡ FN(x1, . . . , xN) . (A.12)

Let us now reparameterize the solution-space as

(x1, . . . , xk−1, xk, xk+1, . . . , xN) → (x1, . . . , xk−1,A−
∑
i ̸=k

xi, xk+1, . . . , xN) (A.13)

using Eq. (A.11). This reflects that we are only interested in solutions that are on the
A-hyperplane for a given affinity. We now look for the maximum respectively minimum
value of

fN−1(x1, . . . , xk−1, xk+1, . . . , xN ;A) ≡ FN(x1, . . . , xk−1,A−
∑
i ̸=k

xi, xk+1, . . . , xN) (A.14)

which has to be at least A for a solution to exist. Be L ≫ 1 arbitrary and x ≡
(x1, . . . , xk−1, xk+1, . . . , xN) ∈ (−L,L)N−1.

a.2.1 Local extrema

At first, we consider the local maxima and minima. Setting the derivative of fN−1 with
respect to xi (i ̸= k) to zero gives

1

cosh2 A−
∑

i ̸=k x∗
i

2

− 1

cosh2 x∗
i

2

= 0 . (A.15)
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Thus, we find for all local extrema x∗

cosh
x∗i
2

= cosh
A−∑i ̸=k x

∗
i

2
(A.16)

and the extreme-values are parameterized as

f ∗
N−1 ≡ fN−1(x

∗;A)

= − 2

cosh
A−

∑
i ̸=k x∗

i

2

[∑
i ̸=k

sinh
x∗i
2

+ sinh
A−∑i ̸=k x

∗
i

2

]
.

(A.17)

This expression simplifies with sinh(x) = σ(x)
√
cosh2(x)− 1 and Eq. (A.16) to

f ∗
N−1 = −2

∣∣∣∣ tanh x∗k2
∣∣∣∣ ∑

i

σ(x∗i ) = 2

∣∣∣∣ tanh x∗k2
∣∣∣∣{N− −N+} . (A.18)

Here, x∗k ≡ A −∑i ̸=k x
∗
i , N± is the number of positive respectively negative x∗i and σ

denotes the sign-function. We now distinguish between positive and negative affinities.

a.2.1.1 Positive affinity

Let us assume A > 0. We want to examine when a solution to Eq. (A.12) can exist for
positive affinity, hence we need to find an upper bound for f ∗

N−1. The local extrema are
elements of the A-hyperplane, therefore we find

0 < A =
∑
i

x∗i . (A.19)

Thus, at least one of the {x∗i } needs to positive, i.e. N+ ≥ 1. Since the number of states in
the cycle satisfies N = N+ +N−, the number of negative x∗i is bounded by N− ≤ N − 1.
We can now bound the extreme value from above as

f ∗
N−1 = 2

∣∣∣∣ tanh x∗k2
∣∣∣∣{N− −N+} ≤ 2 | tanh x

∗
k

2
|{N − 1− 1} ≤ 2(N − 2) (A.20)

where we used | tanh(x)| ≤ 1 in the last step. Thus, the affinity must necessarily satisfy

A ≤ 2(N − 2) (A.21)

for a possible solution inside (−L,L)N−1 and A > 0.
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a.2.1.2 Negative affinity

Let us assume A < 0. We now need to find a lower bound on f ∗
N−1 in order to make a

statement about existence of a solution to Eq. (A.12). A negative affinity implies∑
i

x∗i < 0 . (A.22)

Thus, the number of negative x∗i is now bounded from below N− ≥ 1 and therefore
N+ ≤ N − 1. The minimum value is hence

f ∗
N−1 ≥ −2(N − 2) . (A.23)

Therefore, the affinity needs to be bounded from below as

A ≥ −2(N − 2) (A.24)

by the same reasoning as in the previous section.

In total, we find that the affinity needs to satisfy

|A| ≤ 2(N − 2) (A.25)

to obtain a solution inside (−L,L)N−1. To make the proof complete, we examine the
behavior on the boundary ∂(−L,L)N−1.

a.2.2 Extrema on the boundary

We claim that Eq. (A.25) also holds on the boundary and prove it by induction.

a.2.2.1 Initial Step: N = 3

We calculate the bounds explicitly for N = 3. x3 is parameterized as x3 = A− x1 − x2 and
∂(−L,L)2 as 4 lines and 4 points, see Fig. A.1.

1. x1 = −L & x2 ∈ (−L,L):
We find a local extremum at

x−2 =
A+ L

2
(A.26)
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with value

f2(−L, x−2 ) = −2

[
2 tanh

L+A
2

− tanh
L

2

]
≥ −2 (A.27)

2. x1 = +L & x2 ∈ (−L,L):
We find a local extremum at

x+2 =
A− L

2
(A.28)

with value

f2(L, x
+
2 ) = 2

[
2 tanh

L−A
2

− tanh
L

2

]
≤ 2 (A.29)

3. x1 ∈ (−L,L) & x2 = −L:
We find a local extremum at

x−1 =
A+ L

2
(A.30)

with value

f2(x
−
1 ,−L) = −2

[
2 tanh

L+A
2

− tanh
L

2

]
≥ −2 (A.31)

4. x1 ∈ (−L,L) & x2 = +L:
We find a local extremum at

x+1 =
A− L

2
(A.32)

with value

f2(x
+
1 , L) = 2

[
2 tanh

L−A
2

− tanh
L

2

]
≤ 2 (A.33)

5. x1 = L & x2 = L:

f2(L,L) = −2

[
2 tanh

L

2
− tanh

2L−A
2

]
≥ −2 (A.34)



A.2 improved bound for symmetric rates 141

Figure A.1: Illustration of the explicit calculations for the 3 state system. The blue graph is
f2(x1, x2;A) and the red surface is A = x1 + x2 + x3. The thick red line represents f2
along the boundary ∂(−L,L)2. The red dots display the 8 boundary-points discussed
in the text. Blue dots represent the local extrema inside (−L,L)2. In this example
we set A = 2.5 and L = 8, thus, there’s no intersection between the A-plane and the
graph of f2.

6. x1 = −L & x2 = −L:

f2(−L,−L) = 2

[
2 tanh

L

2
− tanh

2L−A
2

]
≤ 2 (A.35)

7. x1 = −L & x2 = L:

f2(−L,L) = −2 tanh
A
2

|f2(−L,L)| ≤ 2
(A.36)

8. x1 = L & x2 = −L:

f2(L,−L) = −2 tanh
A
2

|f2(L,−L)| ≤ 2
(A.37)

Thus, we find on ∂(−L,L)2 that

|f2(x1, x2)| ≤ 2 = 2 (N − 2) (A.38)
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for N = 3.

a.2.2.2 Inductive step

Let us assume that for an arbitrary N ≥ 3

|FN(x1, . . . , xN)| ≤ 2(N − 2) . (A.39)

holds true. Let k ∈ {1, 2, . . . , N + 1} be arbitrary and set xk = ±L. Let us now write

FN+1(x1, . . . , xk−1,±L, xk+1, . . . , xN+1) = −2
∑
i ̸=k

tanh
xi
2
∓ 2 tanh

L

2

= FN(x1, . . . , xk−1, xk+1, . . . , xN+1)∓ 2 tanh
L

2
.

(A.40)

Thus, we find by assumptions and using | tanhx| ≤ 1∣∣∣∣FN+1(x1, . . . , xk−1,±L, xk+1, . . . , xN+1)

∣∣∣∣ ≤ ∣∣∣∣FN(x1, . . . , xk−1, xk+1, . . . , xN+1)

∣∣∣∣+ 2

∣∣∣∣ tanh L2
∣∣∣∣

≤ 2(N − 2) + 2 = 2(N − 1) .

(A.41)

This completes the proof by induction since k is arbitrary,

a.2.3 Concluding remark

We specified the length L of the N − 1-cube as arbitrary large. In fact, we need to be
more precise for all statements to be true. In order to include all local extrema, we need
L > maxi |x∗i |. We suppressed this conditions since we are interested in the limit L→ ∞
and by definition, setting the derivative zero will find only finite x∗i . Moreover, all arguments
in the explicit calculations for N = 3 are only true for L > |A| which again can be neglected
since we already know that |A| ≤ 2N <∞ and we examine L→ ∞. The important fact
is that all derived bounds are independent on L≫ 1.
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a.3 numerical scheme

In this section, we describe the numerical scheme that we implemented in Python to solve
the Euler-Lagrange equations, Eq. (3.7,3.16,3.17) in the main text. The imposed boundary
value problem is of the following form:

∂tϕi(t) = fi({ϕi(t)}, {ηi(t)}, {φij(t)})
∂tηi(t) = gi({ϕi(t)}, {ηi(t)}, {φij(t)})

0 = rij({ϕi(t)}, {ηi(t)}, {φij(t)})
(A.42)

with given boundary values {ϕi(0) =
√
p0i } and {ϕi(T ) =

√
pTi }. The relation above is a

system of ordinary differential equations coupled with a non-linear, algebraic constrain.
For the concrete set-up, the algebraic equation is given through the variation with respect
to {φij(t)}

rij(t) = ηi(t)ϕj(t)− ηj(t)ϕi(t) + 4ϕi(t)ϕj(t)

[
tanh

φij(t)

2
+
φij(t)

2

]
. (A.43)

We solve Eq. (A.42) using a shooting method [155, chapter 87] where we treat the {ηi(0)}
as free shooting-parameter. The numerical scheme can be summarized as follows:

1. Make an initial guess for {ηi(0)}

2. Solve Eq. (A.43) for {φij(0)} with given {ϕi(0)} and {ηi(0)}.

3. Calculate{ϕi(t+∆t)}
{ηi(t+∆t)}

 ≈ G-2({ϕi(t)}, {ηi(t)}, {φij(t)})

4. Update {φij(t+∆t)} by solving 0 = rij({ϕi(t+∆t)}, {ηi(t+∆t)}, {φij(t+∆t)}).

5. Repeat step 3 and 4 until T is reached.

6. Compare the numerically obtained values for {ϕi(T )} with the given ones {ϕT
i ≡√

pTi }:
• If ϕi(T ) ≈ ϕT

i within a tolerance of ∆t, accept the solution.

• If |ϕi(T )− ϕT
i | > ∆t for at least one i, start from 1 with another initial guess.
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We used the implicit 2-step Gauß-scheme (G-2) [155, chapter 78 ] to integrate the ODE-part
of Eq. (A.42) and the SciPy-root function to solve Eq. (A.43). For updating the initial
guess for {ηi(0)} we also used the root function of SciPy. We iterated this scheme up to 20
times to find convergent solutions. The step size was chosen as ∆t = T/n where we kept
n = 10000 constant.

a.4 randomly generated configurations

We now describe how we generated the random set of initial and final distributions. In
order to obtain uniformly distributed densities from the allowed parameter-ranges of the 3
states system, we used the following parametrization [156, Eq. (1)]

p1

p2

p3

 (u, v) = (1−√
u) e⃗1 +

√
u(1− v) e⃗2 + v

√
u e⃗3 (A.44)

with e⃗i the unit-vector in the i-th direction, see Fig. A.2. Choosing u, v uniformly distributed
between 0 and 1 results in the vector p⃗ = (p1, p2, p3)

T to be uniformly distributed over the
surface area of the triangle of allowed state densities.

We generated 999 configurations. We could not find a numerically stable solution for
13 configuration for an allocated time T = 1, not for 61 for T = 0.1 and not for 112 for
T = 0.01.

a.5 affinity bound for nonsymmetrical splitting

We determine the equivalent of the bound, Eq. (3.20), on the affinity for the case of a
nonsymmetrical splitting of the jump-rates, i.e., for

kij(t) = κij exp(αijAij(t))

kji(t) = κji exp[(1− αij)Aji(t)]
(A.45)

with κij = κji = const. and 0 < αij = αji < 1.
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Figure A.2: Random point (red dot) in the allowed region of the probabilities-phase space, which
is defined by the the constrains 0 < pi < 1 and

∑
i pi = 1 (blue area).

The Lagrange-function is given by

L(t) =
∑
i ̸=j

pi(t)κij exp[αijAij(t)] ln{
pi(t)

pj(t)
exp[Aij(t)]}

+
∑
i

ηi(t){∂tpi(t)−
∑
j ̸=i

[κji exp((1− αij)Aji(t))pj(t)− κij exp(αijAij(t))pi(t)]} .

(A.46)

To find an expression for a cycle affinity, we need to evaluate the variation with respect to
Aij(t). From δL/δAij(t) = 0 (i < j) we find

Aij(t) = − ln
pi(t)

pj(t)
− ηi(t) + ηj(t)−

pi(t) exp[Aij(t)]− pj(t)

αij exp[Aij(t)]pi(t) + (1− αij)pj(t)
. (A.47)

We sum this relation over an arbitrary cycle C in the network, to find for the corresponding
affinity

Ac(t) ≡
∑

(i,j)∈C

Aij(t) = −
∑

(i,j)∈C

pi(t) exp[Aij(t)]− pj(t)

αij exp[Aij(t)]pi(t) + (1− αij)pj(t)
. (A.48)
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This relation simplifies to

Ac(t) = −
∑

(i,j)∈C

1

αij + (1− αij) exp[−Aij(t)]pj(t)/pi(t)

+
∑

(i,j)∈C

1

αij exp[Aij(t)]pi(t)/pj(t) + (1− αij)
.

(A.49)

Since all terms in the denominator are positive, we use 1/(a + b) ≤ 1/a for a, b > 0 to
derive the bound, Eq. (3.23), on the cycle affinity

−
∑

(i,j)∈C

1

αij

≤ Ac(t) ≤
∑

(i,j)∈C

1

1− αij

. (A.50)

Alternatively, we can rewrite Eq. (A.49) as

Ac(t) = −2
∑

(i,j)∈C

tanh
φij(t)

2

1− (1− 2αij) tanh
φij(t)

2

(A.51)

with φij(t) = Aij(t) + ln pi(t)− ln pj(t), which is a direct generalization of the symmetric
case, Eq. (3.19), described in the main text. Eq. (A.50) follows from the monotonic behavior
in φij(t) of the summands for given αij.

a.6 continuum limit for nonsymmetrical splitting

We derive the continuum limit of a cycle affinity for rates parameterized as Eq. (A.45).
Relabeling adjacent states in a cycle from (i,j) to (x,x + dx) with a lattice spacing dx
leads to

Ac(t) =
∑
x∈C

Ax,x+dx(t) . (A.52)

In the limit dx→ 0 we find by a Taylor-expansion

Ac(t) ≈
∑
x∈C

A′
x,x(t)dx ≈

∮
C
A′

x,x(t)dx (A.53)
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where the prime denotes a spatial derivative. The limit value of this contour integral is
dictated by a Taylor-expansion of Eq. (A.48) for small dx

Ac(t) ≈
∑
x∈C

p′x(t)

px(t)
dx−

∑
x∈C

A′
x,x(t)dx ≈

∮
C
d log px(t)−

∮
C
A′

x,x(t)dx . (A.54)

We now combine this relation with Eq. (A.53) to obtain

Ac(t) ≈
1

2

∮
C
d log px(t) = 0 . (A.55)

In the last step, we have used that the closed contour integral over a total differential
vanishes.





B
COHERENCE OF OSC ILLAT IONS IN THE WEAK-NOISE

L IM IT

b.1 irrelevance of the second solution of the one-dimensional

fokker-planck system

We follow the calculations of Sec. 4.3.1 in the main text and calculate the eigenvalues for
the second solution of Eq. (4.11),

g̃(x) = −F (x)
Q(x)

+
1

Ω

(
− λ

F (x)
+
Q′(x)

Q(x)

)
+O

(
1

Ω2

)
. (B.1)

From Eq. (4.17), we obtain the eigenvalues

λ̃(k) ≈ −i 2πk 1∫ L

0
1/F (x)dx

− Ω

∫ L

0
F (x)/Q(x)dx∫ L

0
1/F (x)dx

. (B.2)

The resulting quality factor would be given as

R̃ =

∣∣∣∣ℑλ̃(1)ℜλ̃(1)

∣∣∣∣ = O
(
1

Ω

)
, for Ω → ∞ . (B.3)

Thus, this second solution, Eq. (B.1), does not contribute to oscillations in the weak-noise
limit.

b.2 method introduced in [45]

In this Appendix, we briefly discuss the numerical scheme to obtain the quality factor
according to [45]. For theoretical background we refer to the original publication [45], see
also [46, 86].
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As first step, one obtains the limit cycle by numerically integrating the deterministic
equation of motion, i.e.,

d
dt

x(t)
y(t)

 =

Fx(x(t), y(t))

Fy(x(t), y(t))

 . (B.4)

We label this periodic solution (x̄(t), ȳ(t)). The period T can be obtained from the numerical
data, for instance, by estimating the distance of adjacent maxima.

The next step is to calculate the eigenvectors of the fundamental matrix

M(T ) =

M11(T ) M12(T )

M21(T ) M22(T )

 (B.5)

at time T . In order to do so, one has to solve the following system of differential equations
for 0 ≤ t ≤ T ,

d
dtM(t) = DF (x̄(t), ȳ(t)) M(t)

M(0) = I
(B.6)

with the two-dimensional unity matrix I and the Jacobian matrix DF (x̄(t), ȳ(t)) evaluated
along the limit cycle. The solution M(T ) has an eigenvalue Λ1 = 1 with right eigenvector

e1 ≡ F (x̄(T ), ȳ(T )) , (B.7)

which reflects the stability of the periodic solution. The corresponding left eigenvector is
denoted by f1, i.e.,

M(T )T f1 = f1 . (B.8)

This eigenvector is chosen such that

f1 · e1 = 1 , (B.9)

where we used the standard scalar product as in the main text. The second eigenvalue Λ2

with |Λ2| < 1 and eigenvectors e2 respectively f2 can be ignored.
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Deviations from the limit cycle evolve during one period according to the following
system of differential equations,

d
dt

δx(t)
δy(t)

 =

∂xFx(x̄(t), ȳ(t)) ∂xFy(x̄(t), ȳ(t))

∂yFx(x̄(t), ȳ(t)) ∂yFy(x̄(t), ȳ(t))


δx(t)
δy(t)

 ,

δx(0)
δy(0)

 =

0

0


d
dt

δpx(t)
δpy(t)

 = −

∂xFx(x̄(t), ȳ(t)) ∂xFy(x̄(t), ȳ(t))

∂yFx(x̄(t), ȳ(t)) ∂yFy(x̄(t), ȳ(t))


T δpx(t)

δpy(t)

 ,

δpx(0)
δpy(0)

 =

f1,x
f1,y

 .

(B.10)

As a last step, the solution

δX(T ) ≡

δx(T )
δy(T )

 (B.11)

determines the quality factor as

R ≡ Ω
T 2

π |f1 · δX(T )| . (B.12)





C
NONEQUIL IBR IUM FLUCTUATIONS OF CHEMICAL

REACTION NETWORKS AT CRIT ICAL ITY – THE SCHLÖGL

MODEL AS PARADIGMATIC CASE

c.1 phase diagram in the cA − cB -plane

We derive the phase diagram, Fig. 5.1. The right hand side of the rate-equation (5.8) is
a cubic polynomial. The number of roots, i.e., fixed points, is determined by the cubic
discriminant

∆ ≡ −4 + c2A + 18cAcB − 4c3AcB − 27c2B . (C.1)

For ∆ > 0, the polynomial has three distinct real roots, whereas for ∆ < 0, there is only
one real root. The limiting case of ∆ = 0 gives the phase boundary where we find at least
one double root. Thus, setting ∆ = 0 and solving for cB, we obtain the boundary curves of
the cusp-like region

c±B(cA) ≡ [9cA − 2c3A ± (c2A − 3)3/2]/27 . (C.2)

At the critical point, both solution meet, i.e.,

c±B(cA → ccritA ) =
√
3/9 , (C.3)

with the same slope

∂c±B
∂cA

(ccritA ) = −1/3 . (C.4)

This is the slope of the blue line, Fig. 5.1, considered in Sec. 5.4.

153



154 nonequilibrium fluctuations of the schlögl model at criticality

In the regime with two stable fixed points, x±, see Sec. 5.4, there exists a line in phase
space which is denoted as coexistence line. This line is defined through the condition that
the nonequilibrium potential, Eq. (5.85), has two global minima, i.e.,

ϕ(x+) = ϕ(x−) . (C.5)

Since the potential and the two minima depend on the concentrations cA and cB, above
relation defines the coexistence line as a parametric curve in the cA − cB-plane.

c.2 diffusion coefficient in linear system

Consider a system that is described by the following Langevin equation

∂tx(t) = −Kx(t) +
√

2∆AξA(t) +
√
2∆BξB(t)

∂tz(t) = −x(t) +
√

2∆BξB(t) ,
(C.6)

with K,∆A,∆B > 0 and Gaussian white noise ξi(t), i.e., ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ =
δijδ(t− t′). The diffusion coefficient,

D ≡ lim
t→∞

Var[z(t)]
2t

, (C.7)

can be obtained explicitly as follows.
The x-fluctuations describe an Ornstein-Uhlenbeck process [38, 39] with solution

x(t) = exp(−Kt)
t∫

0

dτ exp(Kτ)
∑

ρ=A,B

√
2∆ρξρ(τ) . (C.8)

A solution for z(t) is given by

z(t) = −
t∫

0

dτx(τ) +
√

2∆B

t∫
0

dτξB(τ) . (C.9)

With

⟨x(τ)x(τ ′)⟩ = (∆A +∆B)(e
−K|τ−τ ′| − e−K(τ+τ ′))/K (C.10)
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and

⟨x(τ)ξB(τ ′)⟩ =
√

2∆B exp[−K(τ − τ ′)]θ(τ − τ ′) , (C.11)

where θ(x) = 1 for x > 0 and θ(x) = 0 elsewhere, we get

D = ∆B(1− 1/K)2 +∆A/K
2 . (C.12)

Identifying the coefficients as

K = |α′
1(x

∗)|, ∆A = (
√
3 + ∆cA)x

∗2 + x∗3 and ∆B = (
√
3 + ∆cA)/9 + x∗ , (C.13)

where x∗ = x∗(∆cA) is given in Eq. (5.21) and α1(x) in Eq. (5.61), we obtain Eq. (5.63)
after a Taylor-expansion for |∆cA| ≪ 1.

Respectively, identifying the coefficients as

K = |α′
1(x0)|, ∆A = (

√
3 + ∆cA)x

2
0 + x30 and ∆B = (

√
3/9−∆cA/3) + x0 , (C.14)

where x0 = 1/
√
3 is given in Eq. (5.73) and α1(x) through the right hand side of the

rate-equation (5.72), we obtain Eq. (5.77).
The following coefficients

K = |α′
1(x

∗)|, ∆A = (
√
3+∆cA)x

∗2+x∗3 and ∆B =
√
3/9−(1/3−δ)∆cA+x∗, (C.15)

where x∗ = x∗(∆cAδ) is given in Eq. (5.98) and α1(x) through the right hand side of Eq.
(5.97), lead to Eq. (5.100).
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