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Abstract

We consider word equations over a free monoid or group where every
variable occurs at most twice, also called quadratic equations. First, we
recount some previously established facts about quadratic equations. We
then present the classic solution algorithm for quadratic equations over
free monoids based on Nielsen transformations. Next, we prove a theo-
rem that is in some ways analogous to the Pumping Lemma for regular
languages: If a quadratic equation permits infinitely many solutions, this
already implies the existence of solutions with arbitrarily high exponent
of periodicity; this statement is proven both for free monoids and free
groups. Finally, we present an algorithm which computes the exponent of
periodicity for general equations over free monoids.

1 Introduction

Equations over free monoids and free groups have been studied extensively. The
most prominent results have been achieved by Makanin, who in 1977, showed
that the satisfiability problem for word equations over free monoids is decidable
[8]. He later generalized this to free groups [9] and Schulz [12] proved that
the result remains true when adding regular constraints. Makanin’s algorithm
is, in its essence, the construction of a finite search graph. The algorithm is
often considered to possess one of the most complicated termination proofs in
computer science literature. The best known upper bound for its complexity
is Expspace [3]. A modern description of the algorithm and its termination
proof can, for example, be found in Lothaire [6]. In 1999, using an entirely
different method, Plandowski [11] was able to construct a Pspace algorithm.
This brings the upper bound closer to the lower bound of NP-hardness, which
follows directly from the NP-hardness of integer linear programming.

This paper will focus on equations where every variable occurs at most twice,
also called quadratic equations. Even though the satisfiablity problem is known
to still be NP-hard for this subclass [2], solution algorithms are considerably
less complicated. A simple Pspace algorithm, orignally due to Matiyasevich
[10], is based on Nielsen transformations and presented in section 3. Diekert
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and Robson [2] were even able to construct an algorithm that, given the length
of each variable in binary, runs in linear time. However, the exact complexity
for the satisfiablity problem of quadratic equations over free monoids is still
unknown. Quadratic equations over free groups are intimately connected to the
classification of closed surfaces and have been a subject in combinatorial group
theory for a long time. In contrast to free monoids, the satisfiability problem
of quadratic equations over the free group is known to be NP-complete [4]. In
fact, the length of a minimal solution is at most polynomial in the length of the
equation [7].

The main goal of this paper is to show, that the set of solutions to a quadratic
word equation satisfies a property somewhat similar to the Pumping Lemma
for regular languages: If it contains infinitely many solutions, this necessarily
implies the existence of solutions with arbitrarily high exponent of periodicity.
This was first demonstrated by Bastien Laboureix but remained unpublished
[5]. Section 3 establishes the property for free monoids and section 4 deals with
the analogous statement in free groups.

Finally, section 5 provides an algorithm for computing the exponent of pe-
riodicity, and we show that this is not much harder than solving the respective
equation. The results in this section are originally due to Volker Diekert.

2 Notation

Let FΣ denote the free group and Σ∗ ⊆ FΣ the free monoid over a given alphabet
Σ; 1 ∈ Σ∗ is used to denote the empty word and Σ+ = Σ∗ \ {1}. For a word
w ∈ FΣ let |w|M ∈ N denote the number of occurrences of letters from M ⊆ Σ
in the reduced word corresponding to w and let |w| = |w|Σ be its length.

The exponent of periodicity exp(w) ∈ N of w ∈ Σ∗ is defined by

exp(w) = max{n ∈ N|∃u, v ∈ Σ∗, p ∈ Σ+ : w = upnv}

In order to define exp(w) for w ∈ FΣ, consider w as a freely reduced word in
(Σ ∪ Σ−1)∗, where Σ−1 is the alphabet of inverses to elements in Σ.

Let M be monoid and F ∈ {FΣ,Σ
∗} depending on context. Given x ∈ Σ

and w ∈M let ϕ = (x 7→ w) denote the homomorphism ϕ : F →M that fulfills
ϕ|Σ\{x} = id|Σ\{x} and ϕ(x) = w; it is uniquely defined due to the fundamental
property of free monoids and groups.

For the remainder of the paper, let Σ be a nonempty alphabet of constants
and Ω a nonempty set of variables.

3 Quadratic Equations in Free Monoids

We start by defining the concept of an equation over the free monoid and its
solution:

Definition 3.1. An equation L = R over the free monoid Σ∗ is a pair of words
(L,R) ∈ (Σ ∪ Ω)∗ × (Σ ∪ Ω)∗, such that L and R do not share any common
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prefix or suffix. It is called trivial, if L,R ∈ Σ∗. It is called quadratic, if
|L|x + |R|x ≤ 2 for each x ∈ Ω. Let |L=R| = |L| + |R| denote the length of
L = R and var (L=R) ⊆ Ω the set of variables occurring in L = R.

Definition 3.2. Let L = R be an equation over Σ∗. A homomorphism

σ : (Σ ∪ Ω)∗ → Σ∗

with σ|Σ = idΣ is called a solution of L = R, if σ(L) = σ(R). The length of σ
is defined as |σ| =

∑
x∈Ω |σ(x)|.

Remark. One may also allow equations where L and R share a common prefix
or suffix; they are then identified with the corresponding reduced equation.
Equations which differ by swapping L and R are also identified. This is well
defined, since identified equations obviously share the same set of solutions.

Also note that if var (L=R) ⊂ Ω and σ is a solution, then the values
σ|Ω\var (L=R) of variables absent in L = R can be changed arbitrarily to ob-
tain new solutions.

Example 3.1. Consider the equation au = bv with a, b ∈ Σ and u, v ∈ (Σ∪Ω)∗.
This equation has a solution, if and only if the equation u = v has a solution
and a = b. Indeed, if σ is a solution to u = v and a = b, then also σ(au) =
aσ(u) = bσ(v) = σ(bv). Conversely, σ being a solution to au = bv implies
aσ(u) = σ(av) = σ(bu) = bσ(v) and hence σ(u) = σ(v) and a = b. In particular,
if L = R is a solvable equation and not equivalent to the trivial equation 1 = 1,
then we can iteratively reduce any prefixes until at least one side begins with a
variable; the same holds for suffixes.

We want to solve equations by factoring them into Nielsen transformations.
It is, however, sufficient to only consider a subset of all possible Nielsen trans-
formations, so called related transformations:

Definition 3.3. Let L = R be an equation over Σ∗. An endomorphism

τ : (Σ ∪ Ω)∗ → (Σ ∪ Ω)∗

is called a transformation related to L = R, if

• τ = (x 7→ 1) and L = xw for some variable x ∈ Ω and w ∈ (Σ ∪ Ω)∗

• τ = (x 7→ αx) with L = xu and R = αv for some variable x ∈ Ω, some
α ∈ Σ ∪ Ω \ {x} and u, v ∈ (Σ ∪ Ω)∗

Remark. One may additionally allow permutations τ ∈ SymΩ of the variables
or substitutions where the variable occurs at the end of either L or R; they
arise when considering the reversed equation LR = RR. However, the two
transformations presented above are sufficient to establish lemma 3.1.

Lemma 3.1. Let L = R be a nontrivial equation over Σ∗ and σ be a corre-
sponding solution. Then there exists a transformation τ related to L = R such
that σ = σ′ ◦ τ and |var (τ(L)=τ(R))| < |var (L=R)| or |var (τ(L)=τ(R))| ≤
|var (L=R)| and |σ′| < |σ|.
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Proof. Since L = R is nontrivial and solvable, one may assume L = xu for
some x ∈ var (L=R) and u ∈ (Σ ∪ Ω)∗ (see example 3.1). If σ(x) = 1 choose
τ = (x 7→ 1) and σ′ = σ, and observe that σ = σ′ ◦ τ and

|var (τ(L)=τ(R))| ≤ |var (L=R) \ {x}| < |var (L=R)|

Next σ(x) ̸= 1 implies σ(R) = σ(L) = σ(x)σ(u) ̸= 1; hence R ̸= 1 and
R = αv for some α ∈ Σ ∪ Ω \ {x} and v ∈ (Σ ∪ Ω)∗. If σ(α) = 1, then α ∈ Ω
must be a variable and we reduce to the previous case. Therefore σ(α) ̸= 1 as
well, and by potentially swapping sides we get

0 < |σ(α)| ≤ |σ(x)|

Since σ is a solution, we have σ(x)σ(u) = σ(α)σ(v), and so σ(α) must be a
prefix of σ(x). We get σ(x) = σ(α)w for some w ∈ Σ∗ and choose

τ = (x 7→ αx) σ′ = (x 7→ w) ◦ σ|Ω\{x}

as the desired factorization with |var (τ(L)=τ(R))| ≤ |var (L=R)| and

|σ′| =
∑
y∈Ω

|σ′(y)| = |w| − |σ(x)|+
∑
y∈Ω

|σ(y)| = |σ| − |σ(α)| < |σ|

As long as the given equation is nontrivial, lemma 3.1 allows us to always
find a related transformation that can be factored out of the given solution.
Thus, repeated application of the lemma and induction over (|var (L=R)|, |σ|)
with lexicographic order immediately yields

Corollary 3.2. Let L = R be an equation over Σ∗ and σ be a corresponding
solution. Then there exists σ0 : (Σ ∪ Ω)∗ → Σ∗ and transformations (τi)1≤i≤n

such that

σ = σ0 ◦ ψ = σ0 ◦ τn ◦ · · · ◦ τ1

where each τi is related to the respective previous equation

(τi−1 ◦ · · · ◦ τ1)(L) = (τi−1 ◦ · · · ◦ τ1)(R)

and ψ(L) = ψ(R) is the trivial equation.

This allows us to factor solutions of any word equation in terms of related
transformations. The final homomorphism σ0 is necessary, since there might be
variables which do not occur in L = R, or which get cancelled somewhere along
the transformation process as seen in example 3.5.

Now this factorization implies, that every solution can be found on a graph,
where the vertices are equations L = R, and the outgoing edges are the trans-
formations τ related to L = R. Solving word equations can then be reduced to
finding paths on this graph.
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Definition 3.4. Let L = R be an equation over Σ∗. Let V0 = {L=R} and

Vn = {τ(U)=τ(V ) : (U=V ) ∈ Vn−1 and τ is related to U = V }

En = {U=V
τ→ τ(U)=τ(V ) : (U=V ) ∈ Vn−1 and τ is related to U = V }

The directed graph GL=R = (
⋃∞

n=0 Vn,
⋃∞

n=1En) is then called the solution
graph of the equation L = R.

Theorem 3.3. Let L = R be an equation over Σ∗ such that its solution graph
GL=R is finite. Then the satisfiability problem for L = R is decidable.

Proof. Starting at the node L = R perform a (nondeterministic) depth first
search for the trivial equation 1 = 1. This search terminates since GL=R is
finite. If it finds a path

L = R τ1(L) = τ1(R) · · · 1 = 1
τ1 τ2 τn

then we use σ0 = (x 7→ 1)x∈Ω and set σ = σ0◦τn◦· · ·◦τ1. This is a solution since
the equation σ(L) = σ(R) is equivalent to (τn ◦ · · · ◦ τ1)(L) = (τn ◦ · · · ◦ τ1)(R),
which is equivalent to the trivial equation 1 = 1.

Conversely, if L = R permits a solution σ, then it possesses a factorization

σ = σ0 ◦ ψ = σ0 ◦ τn ◦ · · · ◦ τ1

according to corollary 3.2. Since all the τi are related transformations and
ψ(L) = ψ(R) is the trivial equation 1 = 1, this again corresponds to a path
from L = R to 1 = 1 in GL=R, and hence a solution σ′ = (x 7→ 1)x∈Ω ◦ ψ that
will be discovered by the algorithm.

This algorithm is not restricted to quadratic equations (see example 3.6)
but it fails in general (see example 3.7). For quadratic equations, the finiteness
of GL=R follows because related transformations do not increase their length.
This is obvious for transformations of the form x 7→ 1 for x ∈ Ω. To see that
it also holds for transformations of the form τ = (x 7→ αx), consider L = xu
and R = αv for some α ∈ Σ ∪Ω and u, v ∈ (Σ ∪Ω)∗. Then τ(L) = αxτ(u) and
τ(R) = ατ(v) and |τ(u)|+ |τ(v)| ≤ |u|+ |v|+ 1, since x can occur at most one
more time in u or v. Since τ(L) and τ(R) share the common prefix α we get

|τ(L)=τ(R)| = |xτ(u)=τ(v)| = 1 + |τ(u)|+ |τ(v)| ≤ |u|+ |v|+ 2 = |L=R|

The nondeterministic algorithm presented in theorem 3.3 thus has linear space
complexity when applied to quadratic equations, which proves

Corollary 3.4. There is a Pspace algorithm for the satisfiability problem of
quadratic equations over the free monoid Σ∗.
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Example 3.2. Let Ω = {x,y} and consider the equation xbya = ybax for some
a, b ∈ Σ. Its solution graph looks like this:

xba = abx

xbya = aybx xba = bax 1 = 1

xbya = bayx xbya = ybax bxya = ybax

ya = ay by = yb xa = ax

1 = 1

x7→ax

x7→ax

x7→1

x7→bx

x 7→bx

x7→1

y7→xy
x7→yx

y 7→1

x 7→1

y7→by

y 7→1

y7→ay

y7→1

y7→by

y 7→1

x7→1

x 7→ax

Example 3.3. Let Ω = {x}. Consider a nontrivial quadratic equation of the
form xu = vx with u, v ∈ Σ∗. It is a fundamental theorem due to Lyndon and
Schützenberger, that this equation has a solution, if and only if u = sr and
v = rs for some r, s ∈ Σ∗; then x 7→ (rs)kr is a solution for any k ∈ N.

Instead of the conventional proof [1], we utilize the solution graph Gxu=vx

to reestablish this fact:

xu = v1v2 . . . vn−1vnx

xu = v2 . . . vn−1vnv1x xu = vnv1v2 . . . vn−1x

... u = vi+1 . . . vnv1 . . . vi
...

xu = vi+1 . . . vnv1 . . . vix

τ1=(x7→v1x)

τ2=(x7→v2x)

τn=(x7→vnx)

τi=(x7→vix)

τn−1=(x7→vn−1x)

τi+1=(x7→vi+1x)

x7→1

Now each path σ in Gxu=vx can be written in the form

σ = (x 7→ 1) ◦ τi ◦ · · · ◦ τ1 ◦ (τn ◦ · · · ◦ τ1)k
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for some 0 ≤ i < n and k ∈ N. It is a solution, if and only if it ends at the
vertex 1 = 1, which is the case, if and only if u = vi+1 . . . vnv1 . . . vi. We choose
r = v1 . . . vi and s = vi+1 . . . vn and since Gxu=vx contains all solutions, the
theorem follows.

Example 3.4. Let Ω = {x} and consider a nontrivial quadratic equation of
the form xux = v for some u, v ∈ Σ∗ and its solution graph Gxux=v:

xux = v1v2 . . . vn−1vn xuv1x = v2 . . . vn−1vn

...

uv1 . . . vi = vi+1 . . . vn xuv1 . . . vix = vi+1 . . . vn

...

xuv1v2 . . . vn−1vnx = 1 xuv1v2 . . . vn−1x = vn

x 7→v1x

x7→v2x

x7→vix

x7→vi+1x

x7→1

x7→vn−1x

x7→vnx

Therefore, the equation has the unique solution x 7→ v1 . . . vi for i ∈ N, if and
only if uv1 . . . vi = vi+1 . . . vn.

We also observe that if x ∈ Ω is a variable which appears twice on the same
side, then repeated application of transformations x 7→ αx with α ∈ Σ ∪ Ω
always ends in a vertex of the form L = 1, at which point x 7→ 1 is the only
available related transformation.

Example 3.5. Let Ω = {x,y}. We consider the quadratic equation xy = yx.
We will investigate its solutions using the graph Gxy=yx:

1 = 1 xy = yx 1 = 1

x7→yx

y7→xy

x7→1 y 7→1

The graph tells us, that every solution has the form

σ = σ0 ◦ ϵ ◦ ϕ where ϵ ∈ {x 7→ 1,y 7→ 1} and ϕ ∈ {x 7→ yx,y 7→ xy}∗

Now obviously ϕ(x), ϕ(y) ∈ {x,y}∗, and thus ϵ(ϕ(x)) = zn and ϵ(ϕ(y)) = zm

with z ∈ {x,y} being the remaining variable after the elimination ϵ. Finally,
some σ0(z) = w with w ∈ Σ∗ must be chosen to retrieve the full solution σ,
which then satisfies σ(x) = wn and σ(y) = wm. In particular, this shows that
if two words commute, they must both be powers of some common third word.
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Example 3.6. Let L = w be an equation with w ∈ Σ∗. Even if it is not
quadratic, its solution graph GL=w is still finite: The length of the right side
|w| or the number of variables reduces in each transformation step, implying a
linear bound on the length of paths in GL=w.

Example 3.7. Consider the equation x2 = uxv for some u, v ∈ Σ∗. This is the
minimal example for an equation, which does not have a finite solution graph:

x2 = uxv xux = uxv · · · xunx = uxv · · ·x 7→ux x7→ux x 7→ux x7→ux

This is true despite the fact that x2 = uxv can have at most one solution.

The exponent of periodicity is a useful tool when studying word equations
and plays a crucial role in the termination proof of Makanin’s algorithm. We
start with the definition of the exponent of periodicity of an equation, before
investigating its finiteness in the quadratic case.

Definition 3.5. Let L = R be an equation over Σ∗. The exponent of periodicity
of L = R is defined as

exp(L=R) = sup{exp(σ) : σ solves L = R} ∈ N ∪ {∞}

where exp(σ) = max{exp(x) : x ∈ Ω} ∈ N.
Now an infinite exponent of periodicity obviously implies the existence of

an infinite number of solutions. We show, that the reverse holds for quadratic
equations:

Theorem 3.5. A quadratic equation L = R over Σ∗ permits infinitely many
solutions, if and only if exp(L=R) = ∞.

Proof. Consider the solution graph GL=R of L = R. It is finite since L = R is
quadratic. By corollary 3.2, every solution can be factored through a path on
GL=R. Since L = R has infinitely many solutions and GL=R is finite, there must
either exist a cycle in GL=R, or there are infinitely many solutions corresponding
to the same path. The second case implies that the corresponding factorizations

σ = σ0 ◦ ψ = σ0 ◦ τk ◦ · · · ◦ τ1
differ in σ0 for at least one x ∈ Ω and are equal otherwise. For every n ∈ N and
some a ∈ Σ, we hence get the solution σn = (x 7→ an) ◦ ψ, which implies

exp(L=R) ≥ lim
n→∞

exp(σn) ≥ lim
n→∞

exp(σn(x)) ≥ lim
n→∞

exp(an) = ∞

Next we assume the existence of a cycle in GL=R; then the situation is
illustrated by the following diagram:

Li = Ri

...
...

L = R · · · Ls = Rs · · · 1 = 1

τiτi−1

τt

τ1 τs−1

τs

τt+1 τk
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We will examine, which transformations can occur in the cycle ϕ = τt ◦ · · · ◦ τs,
hence let s ≤ i < t.

First, notice that any transformation τi = (x 7→ 1) with x ∈ var (L=R)
obviously reduces the length of the equation. The same holds for any related
transformation τi = (x 7→ αx) where x ∈ Ω occurs only once in the equation. To
see this, consider Li = xu and Ri = αv for some α ∈ Σ∪Ω and u, v ∈ (Σ∪Ω)∗.
Then

τi(Li) = αxτi(u) = αxu τi(Ri) = ατi(v) = αv

since x does not occur in u nor v. Now τi(Li) and τi(Ri) share the common
prefix α and thus

|Li+1=Ri+1| = |xu=v| = |u|+ |v|+ 1 < |u|+ |v|+ 2 = |Li=Ri|

Since applying further related transformations can never increase the length of
a quadratic equation again, these two types cannot occur in our cycle ϕ.

Next, we partition the set of doubly occurring variables into two sets, based
on whether or not they occur on the same side of the equation Li = Ri:

Ω+
i = {x ∈ Ω : |Li|x = 1and |Ri|x = 1}

Ω−
i = {x ∈ Ω : |Li|x = 2 or |Ri|x = 2}

Due to our previous considerations, we know that each transformation τi is of
the form τi = (x 7→ αx) with Li = xu and Ri = αv for some x ∈ Ω+

i ∪ Ω−
i ,

some α ∈ Σ ∪ Ω and u, v ∈ (Ω ∪ Σ)∗.
If there is a τi with x ∈ Ω+

i or α ∈ Ω+
i , then by possibly swapping sides we

can assume x ∈ Ω+
i and Ri = v1xv2 for some v1 = αv′1, v2 ∈ (Σ ∪ Ω)∗. This

then allows us to insert a new cycle

· · · xu = v1xv2 · · ·τi−1

δ=(x7→v1x)

τi+1

starting and ending at Li = Ri. For each n ∈ N, we thus get the solution

σn = σ0 ◦ τk ◦ · · · ◦ τi ◦ δn ◦ τi−1 ◦ · · · ◦ τ1

Now δn(x) = vn1x since x does not occur in v1 and hence δ(v1) = v1. Since all
the transformations are related, we additionally get (τi−1 ◦ · · · ◦ τ1)(x) = wx for
some w ∈ (Σ ∪ Ω)∗. With φ = σ0 ◦ τk ◦ · · · ◦ τi we then obtain

σn(x) = φ(δn(wx)) = φ(δn(w)vn1x)) = φ(δn(w))φ(v1)
nφ(x)

and since exp(σn(x)) = exp(φ(δn(w))φ(v1)
nφ(x)) ≥ n we get

exp(L=R) ≥ lim
n→∞

exp(σn) ≥ lim
n→∞

exp(σn(x)) ≥ lim
n→∞

n = ∞
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Now assume by contradiction, that there is no τi with x ∈ Ω+
i or α ∈ Ω+

i .
Then x ∈ Ω−

i and α ∈ Σ∪Ω−
i for every τi. We can therefore write Li = xu1xu2

for some u1, u2 ∈ (Σ∪Ω)∗. Now consider how Ni = |Ω−
i | changes, after applying

τi to Li = Ri. Since x does not occur in u1, u2 or v, we get

τi(Li) = αxτ(u1)αxτ(u2) = αxu1αxu2 τi(Ri) = ατi(v) = αv

The preceding α cancels once again and we obtain Li+1 = xu1αxu2 and Ri+1 =
v; hence only α switches sides and we get

Ni+1 =

{
Ni if α ∈ Σ

Ni − 1 if α ∈ Ω−
i

Observe that Ni never increases as long as x ∈ Ω−
i and α ∈ Σ ∪ Ω−

i . Since ϕ is
a cycle, we conclude that it can never decrease either, and hence x ∈ Ω−

i and
α ∈ Σ for all τi; consulting example 3.4 shows that this is also impossible. This
contradiction concludes the proof.

The following examples are meant to clear up any misunderstandings about
the proof of theorem 3.5.

Example 3.8. One may mistakenly assume, that there cannot exist a cycle
ϕ = τ1 · · · ◦ . . . τn in GL=R that consist only of transformations of the form
τi = (x 7→ αx) with x ∈ Ω−

i . This is true for |Ω| < 7. However, for

Ω = {a,b, c,d, e, f,g}

we find the cycle ϕ of length 21 given by

abca = efcgdfdbge acga = ebgfdbdcfe

abcefcga = dfdbge fdbdcfacga = ebge

cefcga = dfabdbge fdfacga = bdcebge

cefdfacga = bdbge

a7→efcga
b7→f

f 7→g

g7→c

c7→b

ϱ

d7→abd

e7→fdbdcfe

c7→dfac

f 7→bdcf

b7→ceb

If one wants to avoid edges ϱ ∈ SymΩ, the cycle ϕ4 of length 80 can be chosen
alternatively. Since ord ϱ = 4, this cycle can be represented using only related
transformations defined in the strict sense.

In fact, for |L=R| = 7 there already exist strictly different cycles, meaning
that they are not the same up to a permutation of variables or choosing a
different starting point.
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Now the crucial observation is, that even though all x are in Ω−
i not all α

are: For instance, the third substitution after ϱ is a 7→ ca where a ∈ Ω−
i but

c ∈ Ω+
i . However, it is unclear whether or not ϕ itself still induces solutions

with infinite exponent of periodicity.

Example 3.9. An involution on some monoid M is a function M → M that
satisfies uv = v̄ū for all u, v ∈M . One can generalize the notion of an equation
over Σ∗ by considering L,R ∈ (Σ∪Ω∪Ω)∗. A solution σ must then additionally
satisfy σ(x̄) = σ(x). The definition of related transformations and the proof of
corollary 3.2 also generalize in a straightforward manner.

Now let Ω = {x,y, z,w} and consider the cycle ϕ of length 4 given by

x̄xyz̄ = zww̄ȳ yz̄zx = ww̄x̄ȳ

xyz̄x = zww̄ȳ xyz̄zx = ww̄ȳ

z 7→x̄z

x 7→ȳ

y7→z

z7→w̄

w 7→x̄

ϱ

x 7→xz

w 7→xw

Again since ord ϱ = 8, one can alternatively use the cycle ϕ8 of length 24.
Looking closely, we see that at no point in ϕ a variable occurs on both sides and
with the same involution state. Therefore, we cannot insert the desired simple
cycle of infinite exponent into ϕ. This demonstrates, that the proof of theorem
3.5 cannot be generalized to include involutions.

However, it is unclear if ϕ itself induces solutions with infinite exponent of
periodicity. If it does not, it may be possible to construct a counterexample to
theorem 3.5 for equations with involutions by inserting constants at the correct
positions in the equation.

Example 3.10. Let Ω = {x,y} and w0, . . . , w4 ∈ (Ω ∪ Σ)∗. When considering
quadratic systems of equations one finds the cycle

w0xw1 = yw2

yw3 = xw4

xw1 = yw2

w0yw3 = xw4

y7→w0y

x7→w0x

Again this shows that the proof of theorem 3.5 does not work for systems of
equations. However, in this case it is obvious that the above cycle induces an
infinite exponent of periodicity in the solutions of x and y.

11



4 Quadratic Equations in Free Groups

We again start by defining the concept of equations and their solutions, this
time over free groups:

Definition 4.1. An equation E over the free group FΣ is a cyclically reduced
word E ∈ FΣ∪Ω. It is called trivial, if E ∈ FΣ. It is called quadratic, if |E|x ≤ 2
for each x ∈ Ω. Let varE ⊆ Ω denote the set of variables occurring in E.

Definition 4.2. Let E be an equation over FΣ. A homomorphism

σ : FΣ∪Ω → FΣ

with σ|Σ = idΣ is called a solution of E, if σ(E) = 1.

Remark. Let E be an equation over FΣ and w ∈ FΣ∪Ω. Now every solution σ of
E is also a solution of E−1 and of wEw−1. Therefore, equations which can be
transformed into each other by inversion or cyclic permutation will be identified;
one may thus also allow equations even though they are not cyclically reduced.
This identification coincides with the identification for equations L = R over Σ∗

by setting E = LR−1 to be the corresponding equation over FΣ.
Again note, that if varE ⊂ Ω, then the values σ|Ω\varE of a given solution

σ can be changed arbitrarily since they do not occur in E.

Example 4.1. Let E = xw for some w ∈ FΣ∪Ω\{x} and x ∈ Ω. If w ∈ FΣ and
Ω = {x} then, by the properties of the free group, we get the unique solution
x 7→ w−1. Otherwise, we can construct arbitrary solutions as follows: For every
y ∈ Ω \ {x} choose some wy ∈ FΣ. Now set σ(y) = wy and σ(x) = σ(w)−1.
This is possible, since w ∈ FΣ∪Ω\{x} and a solution, since σ(E) = σ(x)σ(w) = 1.

Example 4.2. Let Ω = {x} and E = xux−1v for some u, v ∈ FΣ. Since
xux−1v = 1, if and only if xux−1 = v−1, this equation has a solution, if and
only if u and v−1 are conjugate. If that is the case, then for every h ∈ FΣ with
v−1 = huh−1 and every k ∈ Z the homomorphism x 7→ huk is a solution.

Example 4.3. Let Ω = {x} and E = xuxv for some u, v ∈ FΣ. This equation
has a solution, if and only if v−1u is a square:

xuxv = 1 xxu−1v = 1 x2 = v−1ux7→xu−1

If that is the case, then v−1u = s2 for exactly one s ∈ FΣ, and x 7→ su−1 is
the unique solution to E. In particular, the number of solutions of E is always
finite.

Example 4.4. Let Ω = {x,y} and E = xyx−1y−1. Now E = [x,y] is the
commutator of x and y; hence σ is a solution, if and only if σ(x) and σ(y)
commute. Since FΣ is free, this is the case if and only if both of them are powers
of some common w ∈ FΣ. One then gets solutions σ = (x 7→ wn) ◦ (y 7→ wm)
for all choices of n,m ∈ Z.
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We now turn to the exponent of periodicity again. The additional structure
of free groups lets us prove an even stronger statement than for free monoids.

Definition 4.3. Let E be an equation over FΣ and σ be a corresponding solu-
tion. The exponent of periodicity of σ is defined as

exp(E) = sup{exp(σ) : σ solves E} ∈ N ∪ {∞}

where exp(σ) = max{exp(x) : x ∈ Ω} ∈ N.

Theorem 4.1. Let E be a solvable quadratic equation over FΣ. Then the fol-
lowing three statements are equivalent:

(i) Ω = {x} and E ∈ F = {xw,xuxv : u, v, w ∈ FΣ}.

(ii) E permits only finitely many solutions.

(iii) exp(E) <∞.

Proof. For the implication (i) ⇒ (ii) see example 4.1 and 4.3. The implication
(ii) ⇒ (iii) is trivial.

To prove (iii) ⇒ (i) consider the contraposition: Let E be a quadratic
equation and σ be a corresponding solution. Since E /∈ F, several cases must
be distinguished. For every case solutions (σn)n∈N are constructed, such that
exp(E) ≥ limn→∞ exp(σn) = ∞.

We might first assume that varE = Ω, since varE ⊂ Ω implies that
σn|Ω\varE can be chosen arbitrarily. Moreover, if some variable x ∈ Ω occurs
only once in E, then Ω ̸= {x} since E /∈ F; again we can choose σn|Ω\{x} as we
wish (see example 4.1). In both cases, we can for example choose σn(y) = an

for the respective variables, where a ∈ Σ. This obviously satisfies

lim
n→∞

exp(σn) ≥ lim
n→∞

exp(σn(y)) = lim
n→∞

exp(an) = ∞

For the remainder of the proof, we can now assume that all variables occur twice
in E and that varE = Ω.

In case some x ∈ Ω occurs in E twice with different exponents, we get
E = xux−1v for some u, v ∈ FΣ∪Ω. If σ(u) = 1, then also

σ(v) = σ(x)σ(u)σ(x)−1σ(v) = σ(E) = 1

Similarly, σ(v) = 1 implies σ(u) = 1. Since x /∈ varσ|Ω\{x}(E) its solution can
be chosen arbitrarily; take for example σn = (x 7→ an) ◦ σ|Ω\{x} for some a ∈ Σ
again.

Now proceed with σ(u) ̸= 1 and set σn = σ ◦ (x 7→ xun). This is a solution
since

E = xux−1v xux−1v σ(xux−1v) = σ(E) = 1x 7→xun σ

13



Now some cancellation may occur in σn(x) = σ(x)σ(u)n reducing its exponent
of periodicity. Then σ(x) = vp−1σ(u)−k for some k ∈ N, v ∈ FΣ and some
factorization σ(u) = pq with p, q ∈ FΣ; hence σn(x) = vqσ(u)n−k−1 and again

lim
n→∞

exp(σn) ≥ lim
n→∞

exp(σn(x)) ≥ lim
n→∞

(n− k − 1) = ∞

Finally, if every variable occurs in E twice with the same exponent, then E
must contain at least two variables since E /∈ F. Up to equivalence of equations
and permutation of variables and their inverses, there are exactly two ways an
equation can be arranged in this case:

E = xw1yw2xw3yw4 xw2xy
−1w−1

1 w3yw4 = E′

E = xw1xw2yw3yw4 xy−1w−1
2 w1xw3yw4 = E′

τ=(x7→xy−1w−1
1 )

τ=(x7→xy−1w−1
2 )

for some w1, . . . .w4 ∈ FΣ∪Ω and x,y ∈ Ω. Now E′ is also solvable, since
σ′ = σ ◦ τ−1 is a solution. In both cases, E′ contains y with two different
exponents; hence we reduce to the previous case and find solutions σ′

n of E′

with limn→∞ exp(σ′
n(y)) = ∞. At last, this yields solutions σn = σ′

n ◦ τ of E
with limn→∞ exp(σn) ≥ limn→∞ exp(σn(y)) = limn→∞(σ′

n(y)) = ∞.

Theorem 4.1 basically classifies all quadratic equations over FΣ based on
the finiteness of their exponent of periodicity: Solvable equations in F with
|Ω| = 1 are the only ones for which 0 < exp(E) < ∞. Every other equation is
either unsolvable with exp(E) = 0 or it has an infinite number of solutions with
exp(E) = ∞. In particular, this characterization implies

Corollary 4.2. A quadratic equation E over FΣ permits infinitely many solu-
tions, if and only if exp(E) = ∞.

5 Computing the Exponent of Periodicity

This final section is concerned with computing the exponent of periodicity for
general word equations over free monoids. At first glance this seems much harder
than solving the respective equation. However, the following lemma will show
that these two problems can, in fact, be reduced to each other.

Lemma 5.1. Let L = R be an equation over Σ∗ and k ∈ N encoded in binary.
Then the problem of deciding whether exp(L=R) ≥ k can be reduced to the
satisfiability problem of some word equation in polynomial time.

Proof. We start by guessing a variable x ∈ Ω and some constant a ∈ Σ. Next
we consider the binary expansion

k =

l∑
i=0

bi2
i

of k and the following system of equations:
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L = R q1 = q2
0

x = uqb0
0 · · ·qbl

l v
...

q0 = ap ql = q2
l−1

where u,v,p,q0, . . . ,ql ∈ Ω̂ are new variables and Ω ⊂ Ω̂. We can solve this
system using Makanin’s algorithm or some other algorithm of our choice; we can
even transform it into a single equation [6]. Note that the size of this system is
linear in the size of the original equation and the length of the binary encoding
of k. It is not hard to show that exp(L=R) ≥ k, if and only if the above system
has a solution:

First, let σ be a solution of the system; then σ must also be a solution of
L = R by construction, and one easily proves by induction that σ(qi) = σ(q0)

2i .
We therefore find

σ(x) = σ(u)σ(q0)
b0 · · ·σ(ql)

blσ(v) = σ(u)σ(q0)
kσ(v)

and exp(L=R) ≥ exp(σ(x)) ≥ k since σ(q0) = aσ(p) is nonempty.
Conversely, if exp(L=R) ≥ k, then there must be some variable x ∈ Ω and

a solution σ such that exp(σ(x)) ≥ k. We can thus find a nonempty word
q = ap ∈ Σ+ for some a ∈ Σ and words u, v ∈ Σ∗ such that σ(x) = uqkv. This
obviously yields a solution σ̂ of the above system by choosing

σ̂|Ω = σ, σ̂(u) = u, σ̂(v) = v, σ̂(p) = p and σ̂(qi) = q2
i

Remark. We can also perform a trivial reduction in the opposite direction: A
word equation L = R has a solution, if and only if exp(L=R) ≥ 1. This shows
that the two problems are in fact equivalent, and in particular, computing the
exponent of periodicity must be NP-hard too.

With this lemma in hand, we are almost ready to compute the exponent of
periodicity. However, we would also like to ascertain whenever the exponent
of periodicity is infinite. Here a central lemma in the termination proof of
Makanin’s algorithm proves useful.

Lemma 5.2. Let L = R be an equation over Σ∗ with |L=R| = n and let σ
be a corresponding solution. By considering the p-stable normal form of σ we
can find a linear system of equations, where each of its nonnegative diophantine
solutions induces another solution of L = R.

In particular, there is a function e(n) ∈ 2Θ(n) and a minimal solution σ0 with
exp(σ0) < e(n); if exp(σ) ≥ e(n), then there must be infinitely many solutions
with exp(L=R) = ∞.

For the details of this construction and the proof of the lemma we refer
to Lothaire’s chapter on Makanin’s algorithm [6]. We also remark that in the
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special case of quadratic equations, the exponent of periodicity can be further
bounded by a linear function, as shown by Diekert and Robson [2]. After these
preparations, we can easily prove the final theorem of this section:

Theorem 5.3. Let L = R be an equation of length |L=R| = n over Σ∗. There
is a Pspace algorithm which computes exp(L=R).

Proof. Perform a binary search over the range k = 1, . . . , e(n); for each k use
lemma 5.1 to determine whether or not exp(L=R) ≥ k and use the result to
continue the search. If the search terminates with k = e(n) then we know
exp(L=R) ≥ e(n) and hence exp(L=R) = ∞ by lemma 5.2. Otherwise, we
find 1 ≤ k < e(n) such that exp(L=R) ≥ k but exp(L=R) < k + 1; hence
exp(L=R) = k.

The complexity of this binary search is at most linear, since e(n) ∈ 2Θ(n) by
lemma 5.2. The cost of each invokation of lemma 5.1 depends on the algorithm
used to solve the system of word equations; using Plandowski’s Pspace algo-
rithm [11], the entire search can be done in Pspace as well. Also note, that any
upper bound on e(n) suffices and that we do not actually have to compute the
exact value of e(n).

6 Conclusion

We were able to prove, that a quadratic equation over some free group or monoid
has infinitely many solutions, if and only if its exponent of periodicity is in-
finte. Future work in this area may generalize this result in several different
directions. It may be interesting to consider quadratic systems of equations
or quadratic equations with involution. Alternatively, one may also consider
regular constraints. Finally, the case of general equations remains open. Since
their solution graph is in general infinte, it seems likely that entirely different
methods need to be utilized here.

Additionally, we demonstrated how to compute the exponent of periodicity.
This algorithm yields an upper bound of containment in Pspace for the prob-
lem, which is essentially optimal unless NP-completeness for the satisfiability
problem of word equations is established.
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Nicholas WM Touikan. Quadratic equations over free groups are np-
complete. arXiv preprint arXiv:0802.3839, 2008.

[5] Bastien Laboureix. Rapport de stage. On word equations over free monoids
and free groups (french, unpublished).

[6] M. Lothaire. Algebraic combinatorics on words, volume 90. Cambridge
university press, 2002.

[7] Igor G Lysenok and Alexei G Myasnikov. A polynomial bound on solutions
of quadratic equations in free groups. Proceedings of the Steklov Institute
of Mathematics, 274:136–173, 2011.

[8] Gennadiy Semenovich Makanin. The problem of solvability of equations in
a free semigroup. Matematicheskii Sbornik, 145(2):147–236, 1977.

[9] Gennadiy Semenovich Makanin. Equations in a free group. Izvestiya Rossi-
iskoi Akademii Nauk. Seriya Matematicheskaya, 46(6):1199–1273, 1982.

[10] Yuri Matiyasevitch. A connection between systems of word and length
equations and hilbert’s tenth problem. Seminar in Mathematics, V.A.
Steklov Mathematic Institute, 8, pages 61–67, 1970.

[11] Wojciech Plandowski. Satisfiability of word equations with constants is in
pspace. In 40th Annual Symposium on Foundations of Computer Science
(Cat. No. 99CB37039), pages 495–500. IEEE, 1999.

[12] Klaus U Schulz. Makanin’s algorithm for word equations-two improvements
and a generalization. In International Workshop on Word Equations and
Related Topics, pages 85–150. Springer, 1990.

17



Erklärung
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