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Abstract: Analyzing the cutting process characteristics opens up significant opportunities to improve
various material machining processes. Numerical modeling is a well-established, powerful technique
for determining various characteristics of cutting processes. The developed spatial finite element
model of short hole drilling is used to determine the kinetic characteristics of the machining process,
in particular, the components of cutting force and cutting power. To determine the component
model parameters for the numerical model of drilling, the constitutive equation parameters, and the
parameters of the contact interaction between the drill and the machined material on the example of
AISI 1045 steel machining, the orthogonal cutting process was used. These parameters are determined
using the inverse method. The DOE (Design of Experiment) sensitivity analysis was applied as
a procedure for determining the component models parameters, which is realized by multiple
simulations using the developed spatial FEM model of orthogonal cutting and the subsequent
determination of generalized values of the required parameters by finding the intersection of the
individual value sets of these parameters. The target values for the DOE analysis were experimentally
determined kinetic characteristics of the orthogonal cutting process. The constitutive equation and
contact interaction parameters were used to simulate the short hole drilling process. The comparison
of experimentally determined and simulated values of the kinetic characteristics of the drilling
process for a significant range of cutting speed and drill feed changes has established their satisfactory
coincidence. The simulated value deviation from the corresponding measured characteristics in the
whole range of cutting speed and drill feed variation did not exceed 23%.

Keywords: machining; short hole drilling; finite element method; simulation; orthogonal cutting;
cutting force; cutting power

1. Introduction

In comparison with measuring methods used in practice, machining process modeling
enables a deeper and more accurate assessment of the cutting process conditions and the
phenomena accompanying this process in different cutting zones [1]. Based on numerical
simulations of various machining processes, complex physical and mechanical interactions
between the tool and the machined material as well as with the chip are identified, which
subsequently serve as a basis for optimizing existing machining processes and developing
new ones. Among the most significant advantages of numerical modeling in the cutting
processes is the possibility to reduce the cost of prototyping and the number of experimental
tests [2]. Finite element models have gained wide popularity as a powerful instrument
for simulating various characteristics of cutting processes in adequate combination with
analytical and empirical approaches [3].

Recently, considerable attention has been paid to the numerical modeling of spatial
cutting processes in material removal. This applies substantially to machining processes
with end tools, such as drilling and milling. The possibility to model spatial machining
processes ensures a significant reduction in experimental costs. This is especially relevant
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when newly profiled surfaces [4,5] need to be machined. Such machining processes make up
40–60% of the total number of cutting processes and are therefore among the most common
in modern manufacturing [1,3]. Machining processes with end tools are characterized by
constantly changing conditions of contact between the tool and the machined material [6–8].
This significantly complicates the modeling method and necessitates the development of
ways to carefully tune the modeling parameters as well as numerical implications and
resulting effects. In addition, the numerical modeling of machining processes with end
tools, in particular the modeling of drilling processes, is associated with a significant
computing time and difficulty in generating reference points for model building.

One of the further research trends is certainly the development of numerical mod-
eling techniques, in particular the modeling of short hole drilling processes by means of
improving the methodology for determining the parameters of component models for the
numerical cutting model. This is the focus of the present study.

2. Methods for the Determination of Kinetic Characteristics in Short Hole Drilling

The drilling process is one of the oldest material removal processes [9]. Drilling is one
of the most important machining processes in metal cutting and accounts for approximately
30–50% of the total material removal processes [10]. A characteristic feature of this process
is the presence of a hidden chip-forming zone so that the chip-forming process remains
hidden from the observer [11]. In this regard, the determination of kinetic characteristics
accompanying the drilling process is particularly difficult compared with other cutting pro-
cesses. In this paper, kinetic characteristics are understood as characteristics that determine
the regularities of physical bodies motion and their stress–strain state. The components
of cutting forces and cutting power were selected as the studied kinetic characteristics.
Methods for determining the kinetic characteristics of the drilling process as well as other
machining processes are divided into experimental (see, e.g., [12]), analytical (see, e.g., [13]),
and numerical modeling methods. Analytical and numerical modeling methods contribute
to a deeper investigation of the drilling process and enable a better understanding of it. In
comparison with experimental and analytical methods, the numerical modeling of drilling
processes provides a detailed analysis of thermomechanical processes in the cutting zones
hidden from the researcher. The building of commercial numerical simulation software
products during the last decades has provided a robust tool for simulating various cutting
processes.

Numerical models of drilling processes with different types of drills, such as spiral
(helical) drills (see for example [14–16]), single-lip drills for deep hole drilling (see for ex-
ample [17,18]), drills with indexable inserts for short hole drilling (see for example [19–22]),
and other types of drills have been the subject of numerous studies. It takes considerable
time (from several days to several weeks) to simulate the drilling process of different
materials because numerical models of drilling are usually spatial models. Neugebauer
et al. evaluated the simulation time of a 3D drilling model, which was found to be quite
significant [6]. However, the cost of the time to simulate the drilling process characteris-
tics has to be taken into account since the conditions of contact between the tool and the
machined material during the drilling process change significantly from the periphery
of the drill to its center. In this regard, it is not possible to simplify numerical models
of the drilling process by switching to two-dimensional finite element models [23]. The
long simulation time of the drilling process is caused by a significant and, in some cases,
a very large finite element number of the modeling objects (usually the workpiece). This
is due to the need to use a very fine mesh in the cutting zones and adjacent areas of the
machined material where significant stresses occur. The smallest number of finite elements
of the workpiece mesh that provides a given accuracy in modeling the drilling process
ranges from about 16,000 elements [24] to 30,000 elements [25] and higher. Gardner and
Dornfeld believe that the number of workpiece elements should not exceed 50,000 to ensure
sufficient accuracy in modeling kinetic characteristics [26]. Nevertheless, a much larger and
sometimes enormous number of finite elements is often used. Klocke et al. performed a
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simulation of a deep drilling process with a single-lip drill by means of a workpiece model
meshed into 100,000 elements [17]. Gyliene et al. used a workpiece model composed of
200,000 SPH particles to simulate the drilling process with a mesh-free numerical method
called smoothed particle hydrodynamics (SPH) [27]. When modeling the machining pro-
cess of Inconel 718 nickel alloy with spiral drills by using a combination of computational
fluid dynamics (CFD) and the finite element method, Oezkaya et al. applied 6 million
elements in the fluid model [28].

A significant amount of research on the numerical modeling of drilling processes
consists of machining studies with spiral (also called helical or twist) drills (see, e.g., [29]).
Moreover, a significant part of these studies deals with modeling the drilling process of
titanium alloys and hard-to-machine materials. Parida [30] achieved a good agreement
between measured and modeled cutting forces as well as torque during the drilling of
Ti6AlV4 titanium alloy with carbide tools. A study of temperature distribution in a Ti6Al4V
titanium alloy workpiece during drilling process was carried out by Kumar et al. [31].
Studies also focused on the temperature regime in the drilling process of titanium alloy
using spiral drills were conducted by Patne et al. [32] as well as Li and Shih [33]. To
significantly reduce the simulation time, Matsumura and Tamura proposed a hybrid finite
element model of the drilling process, which is a combination of planar and 3D FEM
models [34]. The coupling between the models was achieved by energy matching. In the
study by Muhammad et al. [35], the numerical modeling of the titanium alloy drilling
process was carried out with an additional energy input by means of heating the machined
material to reduce its strength during the cutting process. Bonnet et al. presented a mixed
numerical experimental approach to verify the multi-scale numerical model they devel-
oped [36]. This model ensured a more accurate determination of thermomechanical loads
during the drilling of titanium alloys. The analysis of equivalent stresses and temperature
distribution in the machined material using a finite element model for drilling Ti6Al4V
titanium alloy was the subject of a study by Yang and Sun [15]. The satisfactory functional-
ity of the FEM model was realized using the purposeful parameter determination of the
triad of constituent models, material model, friction model, and damage model, of the
machined material. Bücker and colleagues proposed a finite element model for drilling
Inconel 718 nickel alloy using carbide drills with modified flank faces [37]. The wear
of TiAIN-coated carbide drills during the drilling of Inconel 718 nickel alloy studied by
Kolahdoozan et al. [38] using a three-dimensional numerical cutting model. Abouridouane
et al. proposed a three-dimensional finite element model for the microdrilling of two-phase
ferrite-perlitic carbon steels [39]. The constitutive equation describing the behavior of the
machined material under thermomechanical loading by the tool was developed for this
model. The influence of the machined material microstructure was taken into account in
this equation. Ucun received adequate agreement between the measured and simulated
kinetic characteristics in the drilling process of aluminum alloy Al7075-T6 [40]. A compu-
tational fluid dynamics (CFD) model was proposed by Oezkaya et al. to study the flow
velocity and pressure of the cooling lubricant during drilling with twist drills of AISI 316L
steel [41]. Girinon et al. proposed a finite element model to estimate the distribution of the
residual stresses in AISI 316L steel after the drilling process with spiral drills [42].

The numerical modeling of the drilling process with single-lip drills, mainly designed
for the production of deep holes, provides significant support for the development of
this machining process. Along with the determination of the main characteristics of
the cutting process, this modeling is made possible by the evaluation of the regularities
regarding chip formation and chip removal from the cutting zone. Klocke et al. developed
a three-dimensional finite element model of the deep hole-drilling process for AISI 4150
steel with single-lip drills [17]. The Johnson–Cook constitutive equation was used to
characterize the material model. Guski and colleagues proposed a three-dimensional FEM
model of deep hole drilling with single-lip drills [18]. The combined Euler–Langrangian
method was applied in the model development. The comparison of measured and modeled
characteristics of the cutting process proved the validity of the developed model. The
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subject of a study by Oezkaya et al. [43] was the simulation of the chip-forming process for
Inconel 718 nickel alloy in the microdrilling of deep holes with single-lip drills. With the
developed model, it was possible to evaluate the influence of the cooling lubricant flow on
the removal of the generated chips. A study by Fandiño et al. [44] examined the kinetic and
thermal characteristics in the drilling process of 42CrMo4 steel (AISI 1040) with single-lip
drills as well as the residual stress formation in the machined material.

The smoothed particle hydrodynamics (SPH) method, designed for numerical model-
ing of various physical processes, was successfully used in the simulation of the drilling
process. Gyliene et al. used the SPH technique to simulate the behavior of the machined
material during drilling with twist drills [27]. Tajdari and Tai used the same technique [45].
In this case, the tool was modeled using the finite element method. By comparing the
simulation results obtained with the finite element method and the SPH method, they
made it possible to sufficiently simulate the machined material behavior in the drilling
process by means of the SPH method.

Drilling short holes with indexable inserts is one of the most energy-intensive ma-
chining processes. In this process, the cutting inserts and the tool body are subjected
to considerable loads. Analyzing the kinetic characteristics of the machining process
through its numerical simulation provides a good opportunity to optimize the cutting
process and the tool design. One of the first works on the application of a finite element
model for the drilling process to tools with replaceable cutting inserts was presented by
Marusich et al. [46]. An explicit method was used to simulate the kinetic process character-
istics. Confirmation of the developed model adequacy was achieved by good agreement
between the measured and simulated values of axial force and torque. Kheireddine et al.
developed a three-dimensional model of drilling with exchangeable inserts [47]. In this
case, the studied influence of cryogenic cooling was modeled using the rapid heat transfer
with a corresponding convective heat coefficient. D. Grinko and A. Grinko examined the
effect of axial and momentary pulses on the deformed state of the machined material [48].
Svensson et al. used the coupled Eulerian–Lagrangian scheme to model the drilling process
for tools with exchangeable inserts [49]. With the help of this finite element model, the
machining process characteristics were simulated separately for the inner and outer cutting
inserts. Jiang et al. also simulated the characteristics of the drilling process for drills with
separate inner and outer exchangeable inserts by means of the developed finite element
model [50]. This study was carried out to evaluate the effect of cutting modes on the radial
force acting on the tool during machining.

If the simulated values of the characteristics in the cutting process are similar to the real
values and conform to the thermomechanical phenomena occurring in the cutting zones,
the following triad model parameters are correctly determined and selected: the machined
material model, the contact interaction model between the tool and the machined material
(friction model), and the machined material fracture model, which all are components of
the numerical cutting model.

Various constitutive equations applied as a material model have been used to describe
the machined material behavior during the cutting process [51]. The most common one
is the Johnson–Cook constitutive equation, which has been very often used in numerical
models of the cutting process [52]. The application of the machined material model in the
form of this equation has been mainly used in three-dimensional finite element models of
material machining with end tools, in particular, models of drilling [53,54], milling [55,56],
and other cutting processes. Moreover, the parameters of the constitutive equation were
mostly taken from previously conducted studies, for example, those found in [57,58]. In
some investigations, the simulation results of the orthogonal cutting process [59,60], as a
simplified case of the spatial cutting process, have been used to determine the parameters
of the constitutive equation. The constitutive equation parameters were also determined
based on the analysis of various models [61]. In addition, various modifications of material
models have been used, e.g., [59,62,63]. Experimental data (see, for example, [64]) were
used as target values of the cutting process characteristics. To determine the parameters of
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contact interaction between the tool and the machined material [65], previously conducted
studies on the estimation of friction parameters [54,56], as well as heat flows in the cutting
zones [66] have been used in the vast majority of cases. For the numerical modeling of
cutting processes with hard-to-machine materials, such as, for example, titanium and nickel
alloys, it is necessary to know the fracture parameters of the machined material [67]. The
same characteristics are needed for modeling the drilling processes of various non-metallic
heterogeneous materials, such as composite materials [68]. They have been determined
using the energy criteria of material damage [68–70] or by means of results comparing the
shape and size of the generated chips [56,62,63].

3. Materials and Methods

The numerical modeling of the drilling process can only be carried out in spatial
terms since the cutting conditions along the tool cutting edge are not constant. Apart from
the cutting speed, which decreases linearly with decreasing cutting radius, the contact
conditions of the tool with the machined material and with the chip change as well. This
leads to a significant gradient in the degree of strain, strain rate, and temperature along the
drill cutting edge. Consequently, when it is necessary to carry out numerical simulations of
such a cutting process, the model triad describing the behavior of the machined material
(material model, friction model, and damage model) must take into account this wide
variation range.

The short hole-drilling process is carried out with two cutting inserts, e.g., carbide
inserts: an outer and an inner one [19,21,48]. The outer insert cuts the machined material
located between the wall of the produced hole up to about half of the hole radius. The
inner insert removes the remaining machined material. The average cutting speed of the
outer insert is significantly higher than the average cutting speed of the inner insert. This
difference in cutting speed of the outer and inner inserts leads naturally to the above-
mentioned different cutting conditions. In order to account for different cutting conditions,
the material model and friction model parameters were determined separately for either
insert in this study. Subsequently, similarly named parameters were combined into a single
generalized parameter by finding the intersection of model parameter value sets [71]. The
parameters of the above-mentioned models were determined using the inverse method.
The orthogonal cutting process was used for this.

3.1. Materials

The thermally treatable steel AISI 1045 was used as a machined material. The proper-
ties of this steel required for finite element models are presented in Table 1 (see the first
row of the table).

Table 1. Mechanical and thermal properties of the steel AISI 1045 steel and carbide insert [72,73].

Material
Strength (MPa) Elastic

Modulus
(GPa)

Elongation
(%) Hardness Poisson′s

Ratio

Specific
Heat

(J/kg·K)

Thermal
Expansion
(µm/m·◦C)

Thermal
Conductivity

(W/m·K)Tensile Yield

AISI 1045 690 620 206 12 HB 180 0.29 486 14 49.8
SNMG-SM-1105 - - 650 - HRC 76 0.25 251 - 59

3.1.1. Orthogonal Cutting

To determine the kinetic characteristics of the orthogonal cutting process, a special
stand for orthogonal and oblique cutting research was used [74,75]. In Figure 1, a scheme
of the orthogonal cutting process and a CAD scheme of a special setup for realizing the
orthogonal cutting process together with an experimental setup for measuring the kinetic
characteristics are shown. The setup table with the workpiece fixed on it, driven at a given
cutting speed VC via a linear motor, is located on a bed from polymer concrete. On the
bed, there is also a tool fixed in the toolholder with the possibility of vertical movement to
set the specified depth of cut [74,75]. The kinetic characteristics of the orthogonal cutting
process were applied as target values to determine the material model parameters and
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the friction model parameters and were further used for the numerical simulation of
the drilling process [71,76]. The cutting forces were measured using a three-component
dynamometer, type 9121, by Kistler. The workpiece had dimensions of 170 × 65 × 3 mm
and was clamped using a special clamping device, which in turn was fixed onto the
dynamometer. The orthogonal cutting process of AISI 1045 steel was realized using a tool
with a clamped, exchangeable cemented carbide insert (SNMG-SM-1105, manufactured by
Sandvik Coromant).
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Figure 1. Test setup for analyzing the orthogonal cutting process: (a) scheme of orthogonal cutting
process; (b) CAD scheme of special test stand for the study of orthogonal and oblique cutting;
(c) experimental installation for measuring the kinetic characteristics.

Table 1 summarizes the basic mechanical and thermal properties of carbide inserts.
(see the second row of the table). The tool was fixed to the stand bed via a gantry. The tool
rake angle was γ = 0◦, the tool clearance angle was α = 8◦, and the cutting edge radius was
20 µm. Through grinding of the tool clearance face, the specified cutting wedge geometry
was ensured. Equal to the undeformed chip thickness, the depth of cut a varied at three
levels: 0.1 mm, 0.15 mm, and 0.2 mm. To make sure that the material model parameters
could be determined for different contact conditions of the tool with the machined material
and that the contact conditions during short hole drilling could be reproduced for both
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external and internal cutting inserts, the cutting speed was chosen within a wide range
of its value change for the experiments on the orthogonal cutting process. Accordingly,
the cutting speed VC was varied at six levels: 12 m/min, 24 m/min, 36 m/min, 48 m/min,
96 m/min, and 144 m/min. The numerical values of cutting speeds were chosen so that
the variable range included cutting speeds that would ensure the occurrence of a built-up
cutting edge on the tool. In addition, the selected numerical values of cutting speeds
guaranteed an integer value of the Péclet similarity criterion [77,78]. The value of this
criterion varied from 5 to 60. This criterion was further used as a similarity criterion to
compare cutting temperatures at different cutting speeds.

The orthogonal cutting process was performed as a dry cutting. The reliability of
the measured experimental values of the cutting forces was ensured by repeating each
cutting test (both during orthogonal cutting and drilling) at least 5 times. The minimum
and maximum measured values of the cutting forces were used to determine the error
bars. The confidence interval was chosen based on the analysis of the scatter in particular
experimental values of the cutting forces. The value of the confidence interval was chosen
to be 0.9. The average value of the measured data was used as a representative value of
the measured data, since no significant differences were observed between the individual
measured cutting force values.

3.1.2. Short Hole Drilling

The experimental setup for examining the short hole drilling process is shown in
Figure 2. The drilling process was carried out with a UWF 1202 H machining center
by Hermle. A four-component dynamometer, type 9272, by Kistler and a mounted tool
was fixed to the table of the machining center. The drill’s stationary clamping ensured
that the cutting force components were constant, which in turn ensured the reduction
in measurement errors. The cylindrical workpiece with dimensions Ø 60 mm × 30 mm
manufactured from AISI 1045 steel was clamped in the HSK-A 63 cylindrical chuck holder,
which was fixed in the center machining spindle. A short hole drill with carbide cutting
inserts was used as a tool (see Figure 2b). The drill diameter was Ø 25 mm. To realize the
cutting process, the short hole drill is equipped with two square carbide inserts: outer and
inner. The outer insert removes the machined material located between the wall of the
generated hole and up to about half of the hole’s radius (see Figure 2b). The inner insert
removes the remaining machined material. The geometrical parameters of the outer and
inner plates are the same. The cutting inserts were installed in the drill body in such a
way that the rake angle was γd = 0◦ and the tool clearance angle was αd = 8◦. The radius
of the cutting edge rounding was about 20 µm, and the rounding radius of the insert tip
was 4 mm. The thickness of the inserts was 5 mm. Equidistant to the cutting edges at a
distance of 2 mm, a thickening of 1 mm was performed, designed for chip curling. Thus,
the geometric parameters of the tool cutting insert for the realization of the orthogonal
cutting process correspond to the geometric parameters of the drill cutting inserts. Three
components of the resultant force, Fx, Fy and Fz, as well as the drilling torque Mz around
the workpiece rotation axis were measured during machining (see Figure 2a). Feeding
during drilling was carried out by moving the table with the drill to the workpiece in the
Z-axis direction. The feed value was varied at three levels: 0.05 mm/rev, 0.1 mm/rev,
and 0.15 mm/rev. The nominal cutting speed was also varied at three levels: 50 m/min,
100 m/min and 150 m/min. Statistical confirmation of the measured kinetic characteristics
was achieved by multiple measurements under the same conditions of the cutting process.
The minimum number of duplications for each measurement was 5.



J. Manuf. Mater. Process. 2023, 7, 195 8 of 22J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 8 of 22 
 

 

 
(a) 

 
(b) 

Figure 2. Test set-up for analyzing the drilling process: (a) experimental installation for measuring 

the kinetic characteristics; (b) short hole drill. 

The cutting modes for the orthogonal cutting process and short hole drilling are sum-

marized in Table 2. 

Table 2. Cutting modes in experimental tests. 

Cutting Process 
Cutting Speed VC (m/min) Depth of Cut (mm) Drill Feed (mm/rev) 

Min Max Step Min Max Step Min Max Step 

Orthogonal 
12 48 12 

0.1 0.2 0.05 - - - 
96 144 48 

Drilling 50 150 50 - - 0.05 0.15 0.05 

2.2. Methods 

The parameter determination of the finite element model components for short hole 

drilling, namely the constitutive equation of the machined material behavior under the 

Figure 2. Test set-up for analyzing the drilling process: (a) experimental installation for measuring
the kinetic characteristics; (b) short hole drill.

The cutting modes for the orthogonal cutting process and short hole drilling are
summarized in Table 2.

Table 2. Cutting modes in experimental tests.

Cutting
Process

Cutting Speed VC (m/min) Depth of Cut (mm) Drill Feed (mm/rev)

Min Max Step Min Max Step Min Max Step

Orthogonal 12 48 12
0.1 0.2 0.05 - - -

96 144 48
Drilling 50 150 50 - - 0.05 0.15 0.05

3.2. Methods

The parameter determination of the finite element model components for short hole
drilling, namely the constitutive equation of the machined material behavior under the
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thermomechanical impact of the tool, the contact interaction model of the tool with the
machined material and with the chip, and the fracture model of the machined material, was
carried out through the numerical model of orthogonal cutting. Finite element models of the
orthogonal cutting process and short hole drilling as well as simulations of these machining
processes were performed in the DEFORM V 12.0 2D/3D™ software environment [79]. In
numerical models of orthogonal cutting and short hole drilling, the cutting tools are taken
as perfectly rigid. The machined material in the above models is assumed to be plastic,
the regularities of its behavior under thermomechanical influence are described by the
Johnson–Cook constitutive equation [51,52]. As a friction model, the Coulomb interaction
of the tool with the workpiece and with the chip is assumed [65]. The determination of
Coulomb friction parameters is based on the authors’ developed methodology [80] and
is an extension of it. In the areas where contact interaction was expected, local friction
coefficients corresponding to the contact conditions were established. The location of
the friction windows used for the orthogonal cutting process is shown in Figure 3. A
similar arrangement of friction windows was also used to simulate short hole drilling. The
friction windows were used to enter these local coefficients [80]. Local friction coefficients,
determined according to the method described in [80], were set in the areas of the tool
where contact interaction was expected with the chip and with the workpiece. Friction
windows were used to enter these local coefficients.
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The chip formation during the cutting of AISI 1045 steel is a continuous process in
which flow chip are produced [81,82]. In the case of flow chip formation, the software
package used provided an algorithm for the automatic generation of the chip forming
process [79]. In this regard, the developed FE cutting model did not utilize a special damage
model for the machined material [67], such as in the machining of titanium alloys [76]. The
separation of the machined material into chip and workpiece is ensured by the process of
permanent remeshing of the workpiece mesh. The criterion for remeshing is a specified
value of the maximum tool penetration into any of the workpiece mesh finite elements
located in the vicinity of the tool boundaries (interference depth).

3.2.1. Orthogonal Cutting Process

The coupled mesh geometric 3D model of the orthogonal cutting process with simu-
lated stresses in the workpiece and chip is presented in Figure 4. The same figure shows
the model’s geometric dimensions, tool motion, initial and boundary conditions. The initial
thermal conditions were determined by setting the room temperature (Tr) at the bottom
and rear of the workpiece and at the top and rear of the tool. The depth of cut (undeformed
chip thickness) a was set by the tool penetration into the workpiece in the negative direction
of the Z-axis. The cutting width (workpiece width) was set equal to the value of w. The
cutting speed VC was ensured with a tool movement in the negative direction of the X-axis.
A characterization of the material model and friction model is presented at the beginning
of Section 3.2.
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Figure 4. Combined view of the initial geometry, boundary conditions, and FE cutting model mesh
with the results of the stress simulation in the cutting zones.

To determine the generalized values of the material model parameters satisfying the
kinetic characteristics of the cutting process in the studied range of cutting modes and
machining conditions, the software procedure [71] was used, which is based on the authors’
previously published work and is an extension of it.

3.2.2. Short Hole Drilling

The numerical modeling of the kinetic characteristics for short hole drilling was
performed using a three-dimensional finite element model. The significant part of the FEM
model for a real cutting process using tools with a particular cutting edge, for example,
shaped turning, drilling, milling, threading, and other similar processes, was the building
of the tool model. The steps for building a short hole drill model are shown in Figure 5.
In the first step, a general analysis of the drill’s CAD model was carried out—Figure 5a.
The second step contained the analysis of possible simplifications of the tool design while
maintaining the tool’s fundamental functional capabilities (see Figure 5b). A simplified
CAD drill model is shown in Figure 5c. In the third step of the tool modeling, the tool’s
geometrical shape was further simplified, and the CAD drill model was converted into a
conformal format of the numerical simulation software (Figure 5d). The last step contained
the partitioning of the geometric tool model into finite elements (see Figure 5e). This
partitioning was carried out either directly in the numerical simulation software package
or in a specialized program.
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Figure 5. CAD model. Initial geometry and boundary conditions of drilling model: (a) CAD-model
of drill; (b,c) different stages of CAD drill model simplification; (d) drill model in the conformal
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Figure 6 shows the initial geometric model of short hole drilling with mesh and
boundary conditions. It also shows the mutual positioning of the tool and workpiece, their
movements in space and relative to each other, and the boundary and initial conditions
used.
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The area of possible contact of the tool with the machined material in the cutting zones
was divided into significantly smaller finite elements than other parts of the geometrical
model. This ensured the necessary accuracy of modeling the stress–strain state of the
machined material. By constraining the displacement of the workpiece in all coordinate
directions, the boundary conditions of the finite element model were set. The drill was
given an absolute rotary motion at a rotational speed n and a translational motion at a feed
rate vf in the negative direction of the Z-axis. At the tool and workpiece boundaries, which
were not in contact during the simulation the initial thermal conditions Tr were set.

The machined material model was defined using Johnson–Cook’s constitutive equa-
tion. The generalized parameters of the constitutive equation were determined by a
numerical simulation of the orthogonal cutting model (see Section 3.2.1).

4. Results and Discussion

Experimental values of orthogonal cutting process characteristics were used as target
values when conducting the DOE sensitivity analysis to identify the parameters of the
material model and friction model: the constitutive equation parameters and friction
parameters. The cutting force components were used as characteristics of the orthogonal
cutting process. The DOE sensitivity analysis and the subsequent determination of the
constitutive equation parameters and friction model parameters were performed by a
numerical simulation of the orthogonal cutting process.

The validity estimation of the developed finite element model for short hole drilling
was assessed by comparing the measured and simulated values of the cutting force compo-
nents, drilling power, and cutting volume rate of the machined material during drilling.

4.1. Orthogonal Cutting Process

The experimental values variation of kinetic characteristics as a function of cutting
depth (undeformed chip thickness) and cutting speed during orthogonal cutting is pre-
sented in Figure 7. An increase in cutting depth caused the expected proportional increase
in both components of cutting force FX and thrust force FZ (Figure 7a,b). The effect of
cutting speed on the components of the cutting force was somewhat different. In the
low-cutting-speed region from 12 m/min to 48 m/min, its increase caused an s-shaped
change in both cutting force FX and thrust force FZ. Initially, the cutting force components
were quite large (at VC = 12 m/min). When the cutting speed was subsequently increased
(in this case to 48 m/min), the cutting forces decreased at first and then increased.
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Such an influence of cutting speed in the region with low values is widely known [81,82].
This kind of cutting force variation could be explained by the formation of a built-up edge
on the tool rake face. With further increases in cutting speed, the built-up edge was no
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longer formed and consequently did not influence the change in cutting forces. In the
region of relatively high cutting speeds (above 50 m/min), in this case up to 144 m/min,
an increase in cutting speed caused a slight decrease in cutting force FX (see Figure 7a).
This change in cutting force FXwas was caused by the thermal softening of the machined
material due to the increase in cutting temperature with increasing cutting speed VC. At
the same time, this increase in cutting speed caused an increase in thrust force FZ (see
Figure 7b). In all probability, the formation of this force component was mainly influenced
by the machined material hardening caused by the effect of strain rate. In this case, the
influence of the machined material hardening predominated over that of thermal softening.

In determining the constitutive equation and friction model parameters, the measured
values of the cutting force components (see Figure 7) were used as target values for the
DOE sensitivity analysis. The cutting force component FX was used as the objective value
to determine the parameters of the Johnson–Cook constitutive equation. The measured
values of the cutting force components FX and FZ were used to determine the friction model
parameters. The constitutive equation parameters were established in three steps. In the
first two steps, the constitutive equation parameters were determined separately for the
outer and inner cutting inserts. In the orthogonal cutting process simulations, different
values of average cutting speeds were used to carry out the DOE sensitivity analysis. These
cutting speeds corresponded to the average cutting speeds of the outer and inner cutting
inserts, respectively. For the particular tool used in the experimental tests and numerical
modeling, the average cutting speed of the outer insert was 2.24 times greater than the
average cutting speed of the inner insert. The value of the average cutting speed was
determined by the average radii of the circles described by the cutting inserts during the
drill rotation. Thus, different contact conditions were modeled for different cutting inserts.
In the third stage, the generalized values of the constitutive equation parameters were
determined by the parameters corresponding to the contact conditions of the outer and
inner cutting inserts.

A similar algorithm was used to determine the local Coulomb friction coefficients
in the plastic and elastic areas of the secondary cutting zone and in the tertiary cutting
zone [80] separately for the outer and inner cutting inserts. Then, the generalized values
of the indicated local friction coefficients were determined. Generalized local friction
coefficients were set in the FEM cutting model in the plastic and elastic regions of the
secondary cutting zone and in the tertiary cutting zone by means of friction windows [80].

Using the developed methodology presented in the previously published work of the
authors [71], the generalized values of the constitutive equation parameters and Coulomb
friction coefficients were determined. The generalized parameter values were established
with this algorithm as the intersection of the parameter sets determined during subsequent
DOE iterations. Table 3 shows the constitutive equation parameters and local friction
coefficients separately for the outer and inner cutting insert as well as the generalized
values of these parameters. These parameter values were used in the further simulation of
the short hole drilling process.

Table 3. Johnson–Cook constitutive equation parameters and local friction coefficients.

Insert
Constitutive Parameters

Friction Parameters in Cutting Zones

Secondary Zone Tertiary Zone

A (MPa) B (MPa) n C m Plastic Area,
fRFp

Elastic Area,
fRFe

fCF

Outer 532.7 654.2 0.2654 0.02135 0.85 0.653 0.324 0.562

Inner 475.9 592.6 0.2145 0.01812 0.92 0.724 0.392 0.637

General 576.3 632.4 0.2561 0.02048 0.87 0.678 0.347 0.587
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4.2. Short Hole Drilling

Figure 8 presents the experimental results of the kinetic characteristics for the short
hole-drilling process (cutting force components FX, FY, and FZ, and torque around the drill
symmetry axis MZ) as well as of the integral characteristics of the drilling process (cutting
power PC and cutting volume rate QC). This figure shows how the cutting modes of drill
feed f and nominal cutting speed VC influenced these kinetic characteristics.
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A significant increase in the cutting force components and torque was observed with
increasing drill feed (see Figure 8a–d). This behavior of the cutting force components
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and torque was to be expected because the material volume removed from the workpiece
increased accordingly as the tool feed increased.

The cutting speed effects on the kinetic characteristics of the drilling process had an
opposite effect on the drill feed. The values of the kinetic characteristics FX, FY, and FZ,
as well as MZ decreased monotonically with increasing cutting speed (see Figure 8a–d).
In this case, the relative reduction manifested itself to a greater extent for the cutting
force components FX and FY than for the axial force FZ and torque MZ. In all probability,
the decrease in the value of the kinetic characteristics was due to the increase in cutting
temperature, which enhanced the isothermal softening of the machined material [77,83].

The integral characteristics of short hole drilling (cutting power PC and cutting volume
rate QC) increased monotonically with increasing drill feed f and cutting speed VC (see
Figure 8e,f). In all probability, this kind of change in the integral cutting characteristics was
due to the fact that the cutting speed was a co-multiplier in the equation for calculating the
cutting power and that the feed rate was a co-multiplier in the dependence for determining
the cutting volume rate. Thus, the effect of cutting speed as a co-multiplier predominated
over the reduction in cutting force as a result of the isothermal softening of the machined
material. Therefore, the cutting power increased with growing cutting speed (see Figure 8e).

The presented measurement results of the cutting force components and torque as
well as the determined results of the integral characteristics were compared with the corre-
sponding numerically simulated characteristics of short holes drilling. Various simulation
characteristics of the short hole-drilling process (cutting force components, deformation-
level development of the machined material during chip formation, stress values in the
chip and machined material, and others) were used to establish the validity, reliability, and
functional ability of the developed FEM model for the drilling process.

The modeling results of short hole drilling characteristics at cutting speed
VC = 100 m/min and drill feed f = 0.1 mm/rev are shown in Figure 9, which shows how
the modeled and measured values of the cutting force axial component FZ vary with the
penetration depth of the drill into the workpiece. In addition, Figure 9 shows the effective
deformation of the machined material and the formed chips, as well as the effective stresses
in the chips and in the cutting zones. The change in the axial component FZ of the cutting
force was characterized by two areas: the predrilling area and the stable drilling area (see
Figure 9a). As the cone part of the drill penetrated the workpiece, the axial component FZ
as well as other cutting force components increased from zero to a particular quasi-static
value, which remained constant during the drilling process until the drill came out of the
workpiece. The second area, which began when the simulation time was greater than 0.8 s,
was characterized by a quasi-static, steady cutting process with the formation of flow chips
produced by the outer and inner cutting inserts (see chip formation images in Figure 9a).
The strain degree distribution of the machined material and in the chip, shown in Figure 9b,
corresponded to a simulation time of 0.9 s. The accumulated deformation degree of the chip
formed by the outer cutting insert and the adjacent region of the machined material ranged
from about 7 in the region adjacent to the outer drill diameter to about 13.5 in the region
adjacent to the inner end of the cutting insert. The accumulated deformation degree of the
chip formed by the inner cutting insert and the adjacent machined material region ranged
from about 13.5 to about 20 (see Figure 9b). The greatest accumulated deformation degree
of chip and workpiece occurred at low cutting speeds up to a cutting speed of VC = 0. In
addition, the distribution of effective stresses was characterized by a higher intensity in the
cutting zones formed by the outer cutting insert (see Figure 9c). In the transition area from
the primary cutting zone to the secondary cutting zone, the value of effective stresses was
approximately 1000 MPa. Approximately half as much stress was observed in a similar
area formed by the inner cutting insert.
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Such a distribution of the main mechanical loads and deformations indicated a sig-
nificant stress–strain state of the machined subsurface layers of the material as well as
significant loads of the cutting inserts and the tool’s working part. In turn, this stress–strain
state of the machined surface layers of the material caused a significant non-uniformity in
the machined surface topography and in the physical as well as mechanical characteristics
in the workpiece subsurface layers. This stress–strain state of the sub-surface layers of
the machined material and the generated physical and mechanical characteristics of these
layers contribute to the significant wear of the drill’s cutting inserts. These features of
the short hole-drilling process indicated that a significant optimization in the machining
process is possible and should definitely be considered in further studies.

The final verification of the developed finite element model’s ability to adequately
simulate the kinetic characteristics of short hole drilling was performed by comparing the
measured values of the cutting force components with the corresponding simulated values.
In addition, the cutting power PC was also compared as it is an integral characteristic of
the machining process. This kinetic characteristic includes all components of the cutting
force, namely the resultant force and the speed mode of machining. Thus, the influence of
various physical and mechanical processes taking place simultaneously during the cutting
process could be determined by using the cutting power as a characteristic for comparing
the kinetic characteristics of the machining process, which were determined by experiment
and simulation.

Figure 10 shows the comparison results for the axial component FZ of the cutting force
as well as the deviations between the measured and simulated characteristics. Figure 10a
depicts the comparison results of the axial component FZ depending on the drill feed,
whereas Figure 10b illustrates the comparison results of the axial component FZ depending
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on the nominal cutting speed. The simulated values of the axial component FZ deviated
from the measured values of this component by about 9% and about 15.2%, respectively,
when changing the drill feed from 0.05 mm/rev to 0.15 mm/rev. In this case, the simulated
values of the FZ component were smaller than the measured values. In all probability,
this difference was caused by an insufficient consideration of the hardening effect on the
machined material in the process of its plastic and rate deformation. It was also possible
that the isothermal softening of the machined material during the drilling process was not
sufficiently reflected by including the influence of the thermal component in the constitutive
equation. It was quite plausible that the kinetic characteristics could be simulated more
accurately by examining the thermal loads in the drilling process, taking account of the
influence of real physical and mechanical processes, which take place in the cutting process.
However, as this would be beyond the scope of this study, it will be the focus of the next
investigation into the short hole-drilling process. When the cutting speed varied from
50 m/min to 150 m/min, the simulated values of the axial component FZ deviated from the
measured values of this component between about 11.2% and about 23% (see Figure 10b).
The reasons for the obtained deviation were similar to the reasons for the deviation between
the simulation and measurement results of the axial component.
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cutting speed.

Figure 11 shows the comparison of cutting power PC values, calculated by means
of experimentally obtained and simulated values for the cutting force components of FX,
FY, and FZ, exemplarily for a cutting speed of VC = 100 m/min, as well as the deviation
between them.
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The deviations of the cutting power PC values, calculated with the measured cutting
force values from the cutting power values calculated with the simulated cutting force
values when changing the drill feed from 0.05 mm/rev to 0.15 mm/rev, ranged from
approximately 19% to approximately 23% (see Figure 11). As mentioned above, the reasons
for these deviations were the inadequacy of the material model and friction model with
regard to the real physical and mechanical processes occurring in the cutting zones. These
reasons include, in particular, an inadequate reproduction of the phenomena causing strain
and the strain rate on the machined material hardening as well as its isothermal softening.

However, despite these disadvantages, the developed finite element model of short
hole drilling can be used for the numerical modeling of the kinetic characteristics of the
machining process, because the greatest deviation between the measured and simulated
values of the examined kinetic characteristics does not exceed 23%.

5. Conclusions

The presented study is focused on the numerical modeling of the kinetic characteristics
for the short hole-drilling process. A three-dimensional finite element model of this process
has been developed to enable numerical simulation. The developed methodology for deter-
mining the component model parameters provided stability, functionality, and reliability
in the kinetic characteristic simulation of the short hole-drilling process, which were close
in value to the measured ones. The parameters of the numerical model components for
short hole drilling: material model (constitutive equation) and friction model have been
determined separately for the contact conditions of the drill’s outer and inner cutting inserts.
Different contact conditions were modeled by using different average cutting speeds for the
outer and inner inserts. The generalized values of the desired parameters were determined
using a previously developed algorithm as the intersection of their individual value sets
previously determined with the Design of Experiment.

The developed numerical model of short hole drilling was verified by comparing the
simulated kinetic characteristics with the corresponding experimental data. The integral
characteristic of the drilling process—cutting power PC—was also used for comparison.
The simulated values of the axial component of the cutting force FZ differed from the
measured values of this component by about 9% to about 15.2% when changing the drill
feed from 0.05 mm/rev to 0.15 mm/rev and by about 11.2% to about 23% when changing
the cutting speed from 50 m/min to 150 m/min. The deviations of the cutting power PC
values calculated with the measured cutting force values from the cutting power values
calculated with the simulated cutting force values did not exceed 23%.

Thus, the developed numerical model of the short hole-drilling process can be used to
simulate the kinetic characteristics of this machining process. The developed finite element
model is a powerful tool for simulating various characteristics of the machining process.
The use of this model will provide a significant reduction in the time needed for and the cost
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of experimental testing for the development of new prototypes of the machining process
and the optimization of existing ones.
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