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Abstract

Modulation equations are the central topic of this thesis. In many cases they can be
derived by using multiple scaling analysis to get a better understanding for more compli-
cated nonlinear partial differential equations. This approach has been used, for example,
in the water wave problem to predict the dynamics of the system. It is essential to justify
the validity of the approximation since there are examples where a formally correctly
derived modulation equation has not described the real behavior of the solution of the
nonlinear partial differential equation over the long time scale.

In the first part of this thesis we justify the Whitham approximation for a coupled sys-
tem of equations, namely for a Boussinesq-Klein-Gordon system with unstable resonances.
The proof is based on an infinite sequence of normal form transformations performed in
the space of analytic functions, their convergence and energy estimates.

In contrast to the previously considered model problem, in the second part we ana-
lyze the derivation of the Whitham approximation around periodic wave packets for the
relevant complex cubic Klein-Gordon equation. Due to two additional eigenvalue curves
which lead to additional oscillatory behavior, the analysis here is more complicated than in
previously considered situations. Similar to the first part, we work in the space of analytic
functions such that our result is valid regardless of the spectral stability of the underlying
wave packet. Here, we use Cauchy-Kovalevskaya theory, a sequence of infinitely many
normal form transformations and energy estimates.

Finally, in the last part we prove a linear Schrodinger approximation result for a
completely integrable system, namely the Korteweg-de Vries equation, over a longer time
scale than the natural time scale of the nonlinear Schréodinger approximation. By using
inverse scattering theory we show the result due to the fact that the scattering data only
satisfies linear equations. This leads to an improved time scale.






Zusammenfassung

Modulationsgleichungen sind in der vorliegenden Doktorarbeit ein zentrales Thema. Sie
konnen in vielen Féllen iiber Multi-Skalen-Analysis hergeleitet werden, um kompliziertere
nichtlineare partielle Differentialgleichungen besser verstehen zu kénnen. Die Herange-
hensweise ist zum Beispiel bei dem Wasserwellenproblem dazu benutzt worden, um die
Dynamik des Systems vorhersagen zu kénnen. Es ist hierbei unerlasslich, die Giiltigkeit
der Approximation zu rechtfertigen, da es Beispiele gibt, bei welchen eine formal korrekt
hergeleitete Modulationsgleichung das tatsachliche Verhalten der Losung der nichtlinearen
partiellen Differentialgleichung nicht tiber die lange Zeitskala beschreibt.

Im ersten Teil dieser Arbeit rechtfertigen wir die Whitham Approximation fir ein
gekoppeltes System von Gleichungen, namlich fiir das Boussinesq-Klein-Gordon System
mit instabilen Resonanzen. Der Beweis beruht auf einer unendlichen Folge von Normal-
formtransformationen, die im Raum der analytischen Funktionen durchgefiihrt werden,
deren Konvergenz und Energieabschatzungen.

Im Kontrast zu dem vorher betrachteten Modellproblem analysieren wir im zweiten
Teil die Herleitung der Whitham Approximation um periodische Wellenpakete fir die
relevante komplexe kubische Klein-Gordon Gleichung. Durch zwei zusétzliche Eigen-
wertkurven, die zu zusatzlichem oszillatorischen Verhalten fithren, ist die Analysis hier
komplizierter als in bisher betrachteten Situationen. Ahnlich wie im ersten Teil arbeiten
wir im Raum der analytischen Funktionen, sodass unser Resultat unabhéngig von der
spektralen Stabilitat des zugrunde liegenden Wellenpakets giiltig ist. Hierbei benutzen
wir Cauchy-Kovalevskayas Theorie, eine Folge unendlich vieler Normalformtransforma-
tionen und Energieabschatzungen.

Schlieflich beweisen wir im letzten Teil ein lineares Schrodinger Approximationsre-
sultat fiir ein vollstandig integrables System, nédmlich die Korteweg-de Vries Gleichung,
iiber einer langeren Zeitskala als der natiirlichen Zeitskala der nichtlinearen Schrodinger
Approximation. Mit Hilfe von inverser Streutheorie zeigen wir das Resultat, da die Streu-
daten lediglich lineare Gleichungen erfiillen. Dies fithrt zu der verbesserten Zeitskala.
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Chapter 1

Introduction

Many physical phenomena, for instance in nonlinear optics, plasma physics, reaction diffu-
sion systems or chemical reactions, can be described by nonlinear partial differential equa-
tions for which it is quite difficult to comprehend the dynamics of the system. Therefore,
it is essential to approximate these equations by simpler nonlinear evolution equations,
called amplitude or modulation equations, in order to gain a deeper understanding for
physical problems and to lead to solutions that cannot be derived in the original setting.
We want to analyze whether a formal approximation of a solution is a good approach to
a true solution of the original dispersive system. Through multiple scaling analysis we
can derive modulation equations in the long wave limit which turn out to be universal.
We prove the so-called validity of these equations which means that the distance between
the exact solution of the original system and the approximation based on the formally
derived equation is small on a long time scale.

To illustrate this technique, we give a simple and well-known example. We consider
the real cubic Klein-Gordon equation

0P = 0*u —u — u’,

with ¢,z € R and u(x,t) € R. The ansatz
u(x,t) = eA(e(x — cgt),e2t)el ko=t e e

with a small perturbation parameter 0 < ¢ < 1, group velocity ¢, € R of the wave packet
and c.c. standing for the complex conjugated terms, leads to the nonlinear Schrodinger
equation (NLS)

2iwgdrA = (1 — 2)0% A — 3A|A]?,

with the rescaled space variable X = e(z — ¢,t), the slow time variable T' = %t and
A(X,T) € C. Here, the amplitude A describes the slowly modulating envelope of a
spatially and temporally oscillating wave packet, cf. Figure below from [SU17|.

It can be shown that the NLS equation makes correct predictions about the behavior
of the solutions in the original system. If we replace the cubic nonlinearity by a quadratic
nonlinearity in the Klein-Gordon equation, serious difficulties arise due to the fact that
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Chapter 1. Introduction
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Figure 1.1: A modulating pulse of the Klein-Gordon equation described by the NLS
equation. The envelope propagates with the group velocity ¢, to the right and modulates
the carrier wave el(fo7+«0t) advancing with the phase velocity c,. The envelope evolves
approximately as a solution of the NLS equation, cf. [SU17|.

solutions of order O(e) must be bounded on the long natural time scale of the nonlinear
Schrédinger equation O(1/e2), cf. [SU17, Section 11].

Other famous examples of amplitude equations that can be derived by perturbation
analysis include the Korteweg-de Vries equation (KdV)

Oy — 6udyu + 02u = 0,
with x,t € R and u(z,t) € R, and the Ginzburg-Landau equation
QA= (1+ia)0, A+ A— (1 +iB8)A|A]?,

with a, 8,2 € R, ¢t > 0 and A(x,t) € C. The KdV equation appears as an amplitude
equation in the description of small spatial and temporal modulations of long waves in
various dispersive wave systems, for instance in the water wave problem or in equations
from plasma physics. The Ginzburg-Landau equation appears as an amplitude equation
in pattern-forming systems.

Among a large class of these modulation equations, in this thesis we consider two
different simpler nonlinear evolution equations, namely Whitham’s modulation equations
(WME) and the nonlinear Schrédinger equation. WME are a universal approximation
system for large classes of nonlinear partial differential equations of periodic wave type and
describe slow modulations in time and space of a periodic traveling wave in a dispersive
wave system.

However, the formal derivation does not guarantee that the solutions of the original
system behave as predicted by the approximation equation. Therefore, validity results
are important. For instance, if we consider a WME approximation, the solutions of order
O(1) have to be bounded on a long O(1/¢e)-time scale. In general, O(1)-solutions are
only bounded on a O(1)-time scale by a simple application of Gronwall’s inequality. In
comparison, the Korteweg-de Vries approximation describes long waves of amplitudes of
order O(e?) on a O(1/e%)-time scale. This is the reason why it is more complicated to treat

12



1.1.  Whitham approximation for a Boussinesq-Klein-Gordon system

a Whitham approximation than a KdV approximation since the smallness of negligible
terms has to be ensured only by derivatives, i.e., with a loss of regularity.

First, in this thesis we show the validity of the Whitham approximation for several
specific dispersive systems. More specifically, in Chapter [2| we justify the Whitham ap-
proximation for a toy problem, namely the Boussinesq-Klein-Gordon system with unstable
short-wave resonances. Furthermore, in Chapter [3| we prove the validity of the Whitham
approximation for the complex cubic Klein-Gordon equation on the natural time scale.
This equation is a relevant example to handle modulations of periodic wave trains in gen-
eral dispersive systems. In contrast, in Chapter [4] we extend the nonlinear Schrodinger
approximation result for the KdV equation, cf. [Sch11], beyond the natural time scale by
inverse scattering theory, i.e., from a O(1/&?)-time scale to a O(1/e3°)-time scale with
0 > 0 arbitrarily small, but fixed.

Further introductory remarks are explained in the following Sections 1.1, 1.2 and 1.3.

1.1 Whitham approximation for a Boussinesq-Klein-

Gordon system
In Chapter [2 we justify the Whitham approximation for a dispersive system with conser-

vation law. More precisely, we consider a Boussinesq-Klein-Gordon (BKG) system with
unstable resonances, i.e.,

Otu = a?0Pu+ 020%u + ?02(auut® + 204 uv + Ay, v?), (1.1)
afv = 85"0 — U+ by tt? + 26 uv + by, (1.2)
where v = u(z,t),v =v(z,t),z,t € R, with coefficients a,,,...,b,, € R and o > 0.

The BKG system is a toy problem since the solution of the Klein-Gordon equation
represents a quantum scalar field and the Boussinesq equation occurs in the context of
the water wave problem. However, the BKG system can be used as a prototype model
for a whole class of systems that have similar spectral curves. For more information, see

Remark 2.1.4] below.
Inserting the ansatz

Uit(w,t) = A(ew,et)  and )" (a,t) = Blew, et),

with small perturbation parameter 0 < ¢ < 1, into (|1.1])-(1.2)) yields Whitham’s modula-
tion equations (WME) for A, namely

8%/1 = 0428?(14 + a28§((auuA2 + 2a,AB*(A) + am,(B*(A))Q),

with the amplitudes A(X,T), B(X,T) € R depending on the long temporal variable
T = et and on the long spatial variable X = ex. Here, we use that we can express B as
a function of A, i.e., B = B*(A), for A and B small.

For the BKG system in [DKS16] for o« < 2, i.e., in case of no additional quadratic
resonances, exactly when wy (k) # wo(k) is satisfied for all k£ € R, cf. left panel of Figure
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Chapter 1. Introduction

Figure 1.2: The curves of eigenvalues +w;, +ws for the linearized BKG system plotted
as a function over the Fourier wave numbers for a? = 1 (left) and a® = 5 (right). The
modes in the (blue) circles are described by the WME approximation.

[1.2] a Whitham approximation result has been established using infinitely many normal
form transformations. Hence, it is the purpose of this chapter to cover the Whitham
approximation in the case of unstable quadratic resonances, cf. right panel of Figure [[.2]
since these unstable resonances were treated for a KdV approximation in [Sch20].

Showing the validity of the Whitham approximation near the trivial solution for the
BKG system is a non-trivial task since solutions of order O(1) have to be bounded over
a O(1/e)-time scale. It is more complicated to show the justification of a Whitham
approximation than the validity of the KdV approximation due to the fact that the
smallness of negligible terms in case of Whitham approximation has to be ensured only
by derivatives.

In the justification we work in spaces of analytic functions which allows us to control
the solutions close to the wave number k£ = 0 by infinitely many normal form transforma-
tions and energy estimates. At the other wave numbers where the resonances could lead
to a growth the solutions are controlled only by working in spaces of analytic functions
in a strip in the complex plane. An artificial damping is obtained by making the strip
smaller in time. This procedure leads to a restriction of the time scale.

An advantage of this chapter is to provide a foundation for Chapter [3| such that we
can use infinitely many normal form transformations without a detailed discussion.

1.2 Whitham approximation for a complex cubic
Klein-Gordon equation

Whitham’s modulation equations (WME) can be derived by a multiple scaling perturba-
tion analysis in order to describe slow modulations in time and space of traveling wave

14



1.2.  Whitham approximation for a complex cubic
Klein-Gordon equation

solutions. So far there are only few approximation results showing that WME approxima-
tions make correct predictions about the dynamics near periodic traveling wave solutions
in dispersive and dissipative systems. In [DS09| a validity result is shown for such waves
of the nonlinear Schrodinger (NLS) equation

;A =in0;A+inA|Al%,

with 7 € R, £ € R, A({,7) € C and coefficients vy, v» € R, as original system. For
more examples, we refer to Remark We want to take a next step in the direction of
handling modulations of periodic wave trains for general dispersive systems. As a relevant
further step, we consider the complex cubic Klein-Gordon (ccKG) equation

OPu = 0%u — u+ yu|ul’, (1.3)

with ¢,z € R, v € {—1,1} and u(z,t) € C, which has a family of periodic traveling wave
solutions

U (37, t) — erq7#+iqx+i,ut,

where p1,q,7,, € R satisfy
e = 2?1,

The analysis for the ccKG equation is more complicated than the analysis for the
NLS equation because there are two additional curves of eigenvalues which lead to an
additional oscillatory behavior, see Figure [1.3]

Figure 1.3: The left panel shows the spectral curves (in red) as functions w over the
Fourier wave numbers k for the NLS equation. The right panel shows the spectral curves
for the ccKG equation with the two additional spectral curves (in blue). WME
describe the modes in the small dashed circles (in green).

By introducing polar coordinates
u = e’l‘-f—l(p-‘r’r’()”u-f—lut’

with 7 = r(z,t) and ¢ = p(z,t), separating real and imaginary parts and introducing the
local temporal and local spatial wave number

19 - atQO and w - ax@,

15



Chapter 1. Introduction

we can derive WME from ((1.3]) with the long wave ansatz

(r, 0, 9) (1) = (7,4, 0) (0, 6t) = (7,4, D) (X, T),

with X = dz, T = 6t and a small perturbation parameter 0 < § < 1 instead of € as in
Section [L.1] due to historical reasons. Further details can be found in Remark [3.1.6] below.

In Chapter |3| we prove the justification of the Whitham approximation near a periodic
traveling wave solution for the ccKG equation. Such an approximation result is non-trivial
since solutions of order O(1) must be bounded on a long O(1/§)-time scale. In general,
solutions of order O(1) are only bounded on a O(1)-time scale. While the spectral curves
in the left panel of Figure look similar to those of the toy problem in Chapter [2] cf.
Figure[1.2] it is more complicated to show the validity of the Whitham approximation for
the relevant ccKG equation as in Chapter 2l Some new aspects and problems arise, for
instance the diagonalization of the system can only be handled locally which is relevant
for the use of normal form transformations. Another difference is that in Chapter [2| we
consider a Whitham approximation around the trivial solution. Whereas in Chapter
the Whitham approximation is studied to describe slow modulations in time and space
of a periodic traveling wave.

The content of this chapter is a joint work with Xian Liao and Guido Schneider and
an earlier version of this chapter has already been published as a preprint in [HLS22]. It is
the plan of future research to handle modulations of periodic wave trains for the real cubic
Klein-Gordon equation, i.e., we want to use a cubic nonlinearity u® instead of u|u|? in
. In this case we have no S'-symmetry which means that if  is a solution, then ue'?,
with ¢ € R, is also a solution. The S'-symmetry allows us to focus on a neighborhood of
k = 0 which would not be possible in general cases.

1.3 A linear Schrodinger approximation for the
Korteweg-de Vries equation

There exist various approximation results where the nonlinear Schrédinger (NLS) equation
8TA = 1V18£2A + iV2A|A|27

with 7 € R, £ € R, A(§,7) € C and coefficients v;, 15 € R, describes slow modulations
in time and space of oscillating wave packets in dispersive wave systems for the natural
time scale of the NLS approximation, see [Dul21] for a recent overview. We are interested
in improving these validity results for the NLS approximation beyond the natural time
scale of the NLS approximation for completely integrable systems. We have succeeded in
showing a Schrodinger approximation result for the Korteweg-de Vries equation (KdV)

Oy — 6udu + aiu =0,

beyond the natural time scale of the Schrédinger approximation using inverse scattering
transform (IST) in Chapter [4]

16



1.3. A linear Schridinger approximation for the
Korteweg-de Vries equation

As a first step, we restrict ourselves to initial conditions for which the scattering data
contains no eigenvalues. Thus, the solution of the KdV equation is completely determined
by the scattering variable b associated to the essential spectrum. We perform an NLS
approximation for this b. Due to the fact that b satisfies a linear Airy equation, the
approximated equation becomes a linear Schrodinger equation. This is the main reason
why we can extend the natural NLS time scale. We only do an error for a linear problem,
i.e., the error is small on a time scale of order O(1/£37%) with § > 0 arbitrarily small, but
fixed, instead of a O(1/&?)-time scale which corresponds to the natural NLS time scale.
Using inverse scattering theory, we can transfer these estimates to the original solution of
the KdV equation.

For completely integrable systems one would expect our better approximation. These
systems have by definition the property that there is a representation in terms of action
and angle variables. The action variables are conserved, while the angle variables satisfy a
linear partial differential equation. Hence, we can approximate the frequency of the angle
variables up to order O(g?), i.e., with an error of order O(£?). This error increases with a
rate of order O(e3)t which means the error is of order O(¢%) over a O(1/&37%)-time scale.

It is the plan of future research to transfer these ideas to other completely integrable
systems, such as the NLS equation, the derivative NLS equation or the Sine-Gordon
equation. We hope that it will be possible to describe the interaction of NLS scaled wave
packets for completely integrable systems with this presented theory.

For the convenience of the reader we keep the chapters self-contained and introduce
the setting at the beginning of each chapter.
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Chapter 2

The Whitham approximation for a
Boussinesqg-Klein-Gordon system
with unstable resonances

Whitham’s modulation equations can be derived via multiple scaling analysis for the
approximate description of long waves in dispersive systems with a conservation law. In
this chapter we show the validity of Whitham’s modulation equations for a Boussinesq-
Klein-Gordon system with unstable resonances. To handle more complicated systems
without a detailed discussion of resonances and without finding a suitable energy, we
work in spaces of analytic functions. The proof is based on an infinite series of normal
form transformations and energy estimates. The whole chapter is inspired by [Sch20)]
where the validity of the KdV approximation for the Boussinesq-Klein-Gordon equation
with unstable quadratic resonances is shown. In our case it is more complicated due to
the fact that the smallness of negligible terms has to be ensured only by derivatives. All
sections in this chapter except Section are an adaption of the sections in [Sch20]. The
main difference is a change in scaling to obtain a Whitham approximation instead of a
KdV approximation. This leads to infinitely many normal form transformations which
we perform in Section in spaces of analytic functions.

2.1 Introduction
We consider the Boussinesq-Klein-Gordon (BKG) system

Otu = a?0%u+ 0102 + a0 (auut® + 20Ut + ayv?), (2.1)
O = 020 — v+ byu® + 2buv + by v, (2.2)
where u = u(z,t),v = v(z,t),z,t € R, with coefficients ayy, ..., by, € R and o > 0. For

notational simplicity we prepend the constant o to the corresponding terms. We insert

the ansatz
Y (2, t) = Aex,et)  and  MP(z,t) = Blew,et), (2.3)
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Chapter 2.  The Whitham approzimation for a Boussinesq-Klein-Gordon system with
unstable resonances

with small perturbation parameter 0 < ¢ < 1, into (2.1)-(2.2)) and get

2024 = aP0% A +*05.0% A + a?e?0% (ay A + 20, AB + a,,B?),
e203B = £20%B — B+ by A* + 2b,, AB + b, B2,

respectively in lowest order

0FA = 0% A+ 0% (auuA* + 20,4, AB + a,, B?),
0 = —B+bu,A®>+ 2b,AB + b,,B?,

)
5)

with the long temporal variable T = <t, the long spatial variable X = ez and the ampli-
tudes A(X,T) € R and B(X,T) € R. For small amplitudes A and B the second equation
(2.5)) can be solved w.r.t. B, i.e., there exists a solution B = B*(A). Inserting this into the
first equation (2.4) we obtain Whitham’s modulation equations (WME) for A, precisely

(2.
(2.

0FA = 0% A+ 0% (auuA® + 20, AB*(A) + a,,(B*(A))?). (2.6)

In the following Theorem [2.1.1], our main theorem of this chapter, we state the validity
of the WME approximation for the BKG system ([2.1))-(2.2)) in case of unstable resonances.
These resonances occur for o > 2, ¢f. Remark [2.1.3]

Theorem 2.1.1. Forly >0, Cy >0, 04 >0, s4 —s >4, s > 1 fized, there exists a C,,
such that the following holds. Let A be a solution of WME (2.6]) with

sup | |A(K,T)|e" (1 + K?)#dK < C,, (2.7)

T€[0,To] /R

and let B be the corresponding solution to the algebraic equation following from (2.5)).
Then, there exist ¢g > 0, Ty € (0,Ty] and Cy > 0 such that for all € € (0,g9) and all

initial conditions of — with
H('LL, ’U)(', 0) - (dth(a 0)7 wyh<'7 0))’

the associated solutions satisfy

sup H(u?v)('?t) - (@byh("t%wyh('vt))'

t€[0,11 /€]

3/2
Gf‘,ASCOE:/u

e < 0132, (2.8)

where the norm || - |lgs s defined subsequently in (2.17)).

Remark 2.1.2. Solutions of order O(1) have to be controlled on a O(1/¢)-time scale of
the WME approximation. Therefore, such an approximation result is non-trivial due to
the fact that solutions of order O(1) are in general only bounded on a O(1)-time scale.
With the help of estimate and Sobolev’s embedding theorem we obtain

sup sup |(u,v) () — (" (2, 1), 03" (2, 1)) < Cre®.
te[0,T1 /e] z€R
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Remark 2.1.3. The linearization of ([2.1))-(2.2)) is solved by
U(ZL‘,t) _ eilcac:i:iu.zl(k)t7 U(ZL‘,t) _ ei/ca::l:iu.zz(k)t7

with

ak
wl(k) = ﬁ, Ldg(k) =V 1+ k2. (29)
If we switch to the Fourier space, WME describe the behavior of the modes in the u-
equation which are strongly concentrated around the wave number k£ = 0, cf. Figure 2.1}
For this reason, the expansion wy (k) = ak+O(k?) at k = 0 is important for the dynamics.

-
BN

Figure 2.1: The curves of eigenvalues +wy, +w, for the linearized BKG system plotted as
a function over the Fourier wave numbers in case o* = 1 (left) and o® = 5 (right). The
modes in the (blue) circles are described by the WME approximation.

Remark 2.1.4. The BKG system is a toy problem for many systems with similar spectra,
such as the poly-atomic FPU problem and the water wave problem over a periodic bot-
tom with O(1)-periodicity and bottom variations of order O(1). The Boussinesq equation
occurs in the context of the water wave problem and the solution of the Klein-Gordon
equation can represent a quantum scalar field. The BKG system also looks less compli-
cated than the water wave problem. Nevertheless, for the WME approximation of the
BKG system some new difficulties arise which could appear for the water wave problem
over a periodic bottom, namely the occurrence of quadratic resonances. The linearized
water wave problem over a periodic bottom, which is solved by Bloch modes, has been
analyzed in [CGLS18|. It will be a topic of future research to transfer the following analy-
sis to more general systems. The main advantage of the approach in this chapter is to
be able to handle more complicated systems without a detailed discussion of resonances
and without finding an appropriate energy which would be different for each different
system. In Chapter [3] we will use the techniques of this Chapter [2] without going into
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too much detail in the associated part. A Whitham approximation has so far only been
verified for systems with a single pair of curves of eigenvalues +iw;, with very few excep-
tions, cf. [CS11,|CBCPS12GMWZ14,BDS19]. In Chapter [3] we also consider two pairs of
curves of eigenvalues +iw; and 4iw, for the relevant physical case of the complex cubic
Klein-Gordon equation.

Remark 2.1.5. For a < 2 there are no additional quadratic resonances in the BKG
system which means that wy (k) # wo(k) is satisfied for all & € R. For this case, a validity
result was established in [DKS16] for a Whitham approximation using infinitely many
normal form transformations in Sobolev spaces. In case of stable quadratic resonances,
in [BCS19] it was noted how to introduce an approximation result for all & > 2, based
on [BDS19|. Thus, the purpose of this chapter is to cover the case of unstable quadratic
resonances for the Whitham approximation. The KdV approximation of the BKG system
is shown in [Sch20]. In our case, the main difficulty is that the smallness of the negligible
terms can only be achieved by derivatives. Therefore, an infinite number of normal form
transformations must be performed to eliminate the non-resonant nonlinear terms that
cannot be included in the energy estimates.

Remark 2.1.6. The plan of proving Theorem is as follows. We control the solutions
close to the wave number k£ = 0 by infinitely many near identity changes of variables and
energy estimates. By working in spaces of analytic functions, we can control the solutions
outside of a neighborhood of £ = 0. Functions in spaces of analytic functions correspond
to functions which are analytic in a strip around the real axis of width 20 4 in the complex
plane. In Fourier space, this leads to functions which decay as e~?4I%l for |K| — oo, cf.
assumption in Theorem For more details see [RS75, Theorem IX.13]. The
strip becomes smaller and smaller in time which leads to an artificial damping of the
modes k = K > 0 under the restriction of time Ty € [0, Tp], cf. (2.§).

The plan of the chapter is based on the order of [Sch20] and is as follows. In the next
section we ensure that the error resulting from inserting the WME approximation ([2.3))
into the BKG system — can be made arbitrarily small. After deriving the error
equations in Section [2.3] we introduce the corresponding spaces of analytic functions in
Section[2.4] We need these spaces to control the unstable quadratic resonances. In Section
2.5\ we estimate the error that we can control in Section [2.2)in the newly introduced spaces.
This error can also be made arbitrarily small. To show the validity of the theorem, we
need a O(1)-bound of the error on the long O(1/¢)-time scale. We achieve this bound
outside of a neighborhood of the wave number k£ = 0 using the spaces of analytic functions.
In this neighborhood of k& = 0, we use infinitely many normal form transformations in
Section to eliminate terms that we cannot include in the energy estimates. These
near identity changes of variables are performed in spaces of analytic functions. Then, in
Section [2.7] we introduce a transformation from the spaces of analytic functions to Sobolev
spaces in order to conclude the proof with energy estimates in Sobolev spaces in Section
2.8l In the appendix in Section we collect a few estimates that we have used in the
proof.
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2.2.  Derivation of the WME approximation

Notation. The Fourier transform of a function u is denoted by Fu or #. Possibly
different constants which can be chosen independently of the small perturbation parameter
0 < e < 1 are denoted by the same symbol C'. In the following [, can be abbreviated as

I

2.2 Derivation of the WME approximation

In this section we ensure that the error which we make by the WME approximation is
sufficiently small. Precisely, we ensure the smallness of the residual terms, i.e., the terms
that do not cancel after inserting the WME approximation (2.3) into the BKG system
([2-1)-(2.2). By improving the ansatz by adding higher order terms to the previous WME
approximation we achieve that the residual can be made smaller.

Inserting the ansatz

Y (x,t) = A(ex, et) and  "(z,t) = Blew,et), (2.10)

into the BKG system (2.1)-(2.2)) gives for

Res,(u,v) = —0u+ &*0%u + 020%u + 02 (ayuu® + 2au,uv + ay,v?),
Res,(u,v) = —02v+ 020 — v + byu® + 2b,uv + byyv?,

that

Resu( yhvdjrh) = 64872"8,%(147
Res, (V3" ¢y") = £*(=0}B + 0% B),

if we choose A and B to satisfy and . By adding higher order terms to the
WME approximation we improve the WME ansatz and achieve that the residual terms
are sufficiently small, i.e., the residual terms must satisfy Res, (2", ¢") = O(e?) and
Res, (v ) = O(e?). To ensure this smallness, we extend our approximation (2.10))
in a canonical way to

Yu(z,t) = A(ex,et), and ,(z,t) = B(ex,et) + ?By(ex, t). (2.11)
This improved approximation provides

Resu(¢u> %) == 0(54)a
Res, (U, 10,) = (=028 + 0% B) + £*(—By + 2by, ABy + 2b,, BBy) + O(&*)
= (9(54),

if we choose B, to satisfy
—03B + 0% B — By + 2by, ABy + 2b,, BBy = 0.

For A, B sufficiently small there exists a unique solution By = By(A, B).
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If we estimate the residual terms in L*based spaces, we lose a factor e~/ due to the
scaling properties of the L?-norm, i.e.,

</R \u(saz)\zdx) v — 712 </R |u(X)\2dX) v :

Therefore, we have the following lemma.

Lemma 2.2.1. For sq —s >4, s > 1/2 and Ty > 0 fized, let A € C(]0,Ty], H*4) be a
solution of the WME (2.6 and 1, and 1, be defined as above. Then, there exist g > 0
and C' > 0 such that for all € € (0,&¢) we have

sup ||Res,||gs < Ce™? and sup ||Res,||gs < Ce™/2.

T€[0,To] T€0,Tp)

Proof. It is straightforward to count the powers of ¢ . We still need to clarify the
assumption sy, — s > 4. The term G%Bg loses the most regularity since both A and B
are sufficiently small. Furthermore, B can be expressed in terms of A and A2. This
term depends on 9B and 020% B. So we analyze 02.0% (A?). We have that 92 A depends
on A,...,0%A due to the right-hand side of the WME (2.4). By differentiating the
WME equation twice w.r.t. T, we obtain that 07(A?) can be expressed in terms of
A, ... 0%A. Hence, 020% B can be expressed in terms of A, ..., 0% A. m

If we write the error equations obtained from the BKG system — as a first
order system, the term 9, 'Res, appears. Therefore, we must also control this expression,
which gives us the following lemma.

Lemma 2.2.2. Under the assumptions of Lemma [2.2.1] we have the estimate

sup <||8;1Resu| Hs+l) < Ce2,
]

TE[O,T()

Proof. Due to the scaling property of 9,1 = ¢7'95" we lose a power of . We need to
show that d%'Res, is again in L. This is obvious since all terms have a derivative dx in
front of them. Therefore, we are done. [

2.3 The equations for the error

To establish the validity of Theorem we have to prove a O(1)-bound for error
functions (¢*2R,, *?R,) which are defined by the difference between a true solution and
the improved approximation on a O(1/¢)-time scale.

Remark 2.3.1. In the following we estimate the difference between a true solution of

(2.1)-(2.2) and the improved approximation (2.11]). The estimate between the true solu-
tion of (2.1)-(2.2)) and the original approximation ([2.3)) follows by the triangle inequality

and
sup  sup | (Yu, o) (2, 1) — (0", 00" (z, )| < Ce?.
tel0,To/e] z€R
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2.3. The equations for the error

The error functions (2R, e%?R,) are defined by the difference between a true solu-
tion and the improved approximation, more precisely

w =1, + *R,, v =1, +*?R,,
and satisfy
PR, = a*0’R, + 0?0’R, + 20°0° LR + 2002 f,,
R, = 0°R,— R, +2L,R+ &%,
where

L R = auwPuBy+ auwtPu Ry + autbo Ry + ayothy Ry,
L,R = buy¥uRy + buythu Ry + byy Ry + byuthy Ry,
3202 f, = 202 (auuR? + 200y RuRy + a0y R2) + e 73 Res,,,
32f, = &32(byuR? + 2byy Ry Ry + by R2) + £7%/Res,,.

We write the system as a first order system

@Ru = iwléw
O Ry = iwiRy + 2iwi LR + /2w fo,
R, = iwR,

OR, = iwsRy+ 2(iws) 'Ly R + 53/2(iw2)_1fv,

with wy,wy from (2.9). We keep the scaling although £73/2(iwy) "' Res, in £3/2(iwy) ™' f, is
of order O(?) and £~%/%iw,0;?Res, in £¥/?iw, f, is of order O(g). Through
1 1 ~

Ri= W(Ru + R,), R = W(Ru - R,),

and

Ry=-—=(R,+R,), R_o=-——=(R,—R,),
2 \/5( ) 2 ( )

we diagonalize the linear part and we get

1
8tR1 = iwlRl + iW1£1R + ﬁé?zs/ziwlfu, (212)
1
ORy = iwsRo+ (iws) 'LoR + —=e**(iwa) " fo, (2.13)

V2
and similarly for R_; and R_,, with
EIR - auul/}u(Rl + R—l) + auv¢u(R2 + R—Z)
+auvwv (Rl + 7—\),,1) + avvwv (RQ + R*Z)a

‘CQR = buu¢u(R1 + R—l) + buku(RQ + R_Q)
+buv¢u(R1 + R—l) + bvvwv(RQ + R—2>‘
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Since ¢, and v, are strongly concentrated at k£ = 0, we separate v, and 1, into a part
concentrated close to k& = 0 and into the rest. We introduce the mode projection Es by
E(;u = Eﬁ, with

= |1, |k| <9,

Es(k) = { 0. k| >3 (2.14)

Thus, ES is defined by ES(k) = 1 — Ey(k). Since the operator EZ(k) vanishes in a 0-
neighborhood of k& = 0, we have the estimate |E§(k)] < Ce®, for all & € R, in that
d-neighborhood of k = 0. Due to this fact, we have that E§i, and E$i, is O(£°4)-small,
for instance w.r.t. the sup-norm, if A is s-times continuously differentiable, see Corollary

and Remark in Section [2.9] We apply this mode projection to the associated
terms in (2.12)-(2.13]) and obtain the error equations

1
OR1 = iRy + iw1£1,éR + ﬁggmiwlgu, (2~15)
1
ORy = wyRy+ (iws) ' LosR + —z"*(iwn) ' gu, (2.16)

V2
and similarly for R_; and R_,, with
El,éR = auu(E5¢u)<R1 + R71> + auv(Eéwu)(R2 + R72)
Fauw(Esty)(R1 + R_1) + av(Esthy) (Ra + R_2),

£2,5R - buu(Etswu)(Rl + R—l) + buv(E5¢u)(R2 + R—Q)
+buv(E6wv)(,R’1 + 'R,,l) + bvv(E6wv>(R2 + R72)7

and

e%g, = 7 fu+ V2(auu(E5tn)(R1 + Ro1) + auo(E5th)(Ra + R_s)
+uy (Es¥5) (R1 + Ro1) + au (E5hy) (R2 + R-2)),

29, = 2 fy + V2(buu(E§thn) (Ra + Ro1) + by (E§th) (R + R—2)
+buy (E515) (R1 + R-1) + buu (E510,) (R2 + R-2)).

2.4 The functional analytic set-up

We introduce the following notation for different function spaces to control the unstable
quadratic resonances. The Euclidean inner product is denoted by (-, -) and the associated
Euclidean norm in R? by | - |. We define the Fourier transform by

Flu)(k)=a

ey (z)da.

1
==/
(k) V2T Re
For m > 0 the Sobolev spaces are denoted by

H" ={ue L*R): (1+]-]))%a() € L*(R)},
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equipped with the inner product
(w0)m = (@0)z5, = [ (14 k)" (k). 5(k)) .

The induced norm )
w= (1 162" 1k 2dk>2
fulln=( [ (14 142)" la)Pd)"

is equivalent to the usual H™-norm

N|=

HMMmZ(ZND%%J ,

J=0

for any m € N. Finally, we introduce
Wm:{wuzf*mmnanmMWm:Au+wmmwn%<aﬁ,

for m > 0. The space H™"(R) is continuously embedded in W™ for any § > 1/2 by
Sobolev’s embedding theorem. Moreover, every u € W™ is |m|-times continuously dif-

ferentiable with finite C’bmJ (R)-norm. The unstable quadratic resonances lead to positive
growth rates, cf. Remark [2.1.3] which we have to control. In order to do so, we introduce

Gm={uec L*R): M1+ -1)%a e L*(R)},

equipped with the norm

fulloy = ( [ [k Fe (1 + k) (217

where ¢ > 0 and m > 0. For m = 0, these functions correspond to functions which
are analytic in a strip around the real axis in the complex plane {z € C: |Im (z2)| < o},
cf. [RS75, Theorem IX.13]. Making this strip smaller in time leads to an artificial damping
which controls the growth rates and to the restriction on the time scale T instead of Ty.
The spaces W are defined by

Wi ={ue O Jullwy < oo},
equipped with the norm
lullwg: = [ o9 (1 [ (k)] .
R

The spaces G' are an algebra for every ¢ > 0 and m > 1/2, and the spaces WI" are an
algebra for every ¢ > 0 and m > 0. For details, see Lemma Corollary and

Corollary [2.9.3]
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2.5 Some first estimates

Since we are working in the new spaces G’ which we introduced above, we have to

reformulate Lemma and Lemma in G%-spaces.

Lemma 2.5.1. For o4 > 0 > 0, sa—s > 4, s > 1/2 and Ty > 0 fized, let A €
C([0, To}, W34) be a solution of WME (2.6)) and let ¥, and 1, be defined as above in (2.11)).
For this approzimation, there exists g > 0 and Cyres > 0 such that for all € € (0,e) we
have

sup ([|[Resullas + [|[Resullas + £]|0; 'Resy|gs+1) < Crese /2.
Te[0,To] 7
Proof. The proof goes line by line as the proofs of Lemma and Lemma by using
Lemma [2.9.1] ]

From Figure 2.1]and (2.9) we deduce that w; is a bounded operator in G¢ and (wy)™*
is a bounded operator from G¢ to G$*!. Using Lemma we have that

€310 £

6p + 12 (12) " Full gz < CE2(IRallE, + [RallZ,) + Cume.

With these estimates and Corollary we find that

e [iwrgulles < 2w fullas + CCwe™ (| Rillas + [R-1llas)
+CCwe** ([ Rallas + IR -2llas ),
|| (iwa) gullg < P (iw2) T follgsr + COwe A (| Rullas + 1R -1llas)
+CCue™ ([ Rallas + [R-2llas)-

2.6 The normal form transformations

To establish the validity of Theorem [2.1.1] we have to prove a O(1)-bound for the error
on the long O(1/¢)-time scale. The main difficulty comes from the terms of order O(1)
in (2.15)-(2.16) which we have to estimate on the long O(1/¢)-time scale. The strategy
is as follows. Outside of a neighborhood of the wave number £ = 0, the modes can
be controlled by working in the spaces of functions that are analytic in a strip in the
complex plane. The terms that do not vanish at the wave number k£ = 0 can be simplified
by infinitely many normal form transformations in a dp-neighborhood of the origin k£ = 0
with dg > 0 small, but fixed. In this section we perform these near identity changes of
variables in the spaces of analytic functions. However, each normal form transformation
generates new terms of order O(1). Some of them are resonant but of long wave form and
can be included in the energy estimates. Some of the other terms are non-resonant but
not of long wave form. So they can be eliminated again and again by another normal form
transformation. This section is an adaption of [DKS16, Section 3]. However, we perform
the normal form transformations in Gevrey spaces instead of Sobolev spaces. This means
that the underlying spaces for the convergence of infinitely many near identity changes of
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2.6. The normal form transformations

variables as well as the corresponding estimates have to be adapted, so that we also list
them here. In Section we handle the transformed limit system by energy estimates in
Sobolev spaces since we establish a connection between the spaces of analytic functions
and Sobolev spaces in Section [2.7]

2.6.1 The first normal form transformation

To illustrate the procedure, we show how to obtain the first near identity change of
variables. Our system has the following form

1
OR1 = iRy +iw LR+ —=e*%iwi gy,

V2

1
ORz = iwyRo+ (iws) ' LagR + ﬁﬁm(im)_lgm

with
El,éR = @uu(Eéwu)(Rl + R*l) + auv<E6¢u)<R2 + R*Z)
+auv(E577Z)v)(R1 + R—l) + avv(Edd)v)(RQ + R—2)7
LosR = buu(Esthy)(R1+ R_1) + buw(Esthy)(Re + R_5)
+buv(E6wv)(R1 + R—l) + bvv(Eéwv)(R'Q + R—2)7
and with
Gu = gu<R:|:1a Rﬂ),
G = gv<R:I:17 7?’:i:2>‘
The term

iWl (auu(E(ﬂDu) + auv(Eéqvbv))(Rl + R—l) =: iwlSl,u(¢17 R:I:l),

with ¥ = au ¥y + auwthy, is controlled by energy estimates in the equation of R4q. In a
dp-neighborhood of the wave number k£ = 0, we can eliminate the term

iWl (auv(E(ﬂDu) + avv(Eéd}v))(RQ + R—Q) =: iwlSQ,u(,le)% Rig),

with 1o = auuy + w1y, in the Rij-equation with infinitely many normal form trans-
formations. Therefore, we introduce a projection Es, onto a dp-neighborhood of £ = 0

29



Chapter 2.  The Whitham approzimation for a Boussinesq-Klein-Gordon system with

unstable resonances

similar to (2.14]). We assume that our system has the following form

8tR1 -

3,5732 -

iwlRl + iwl (auu(E(ﬂDu) + auv(Edd)v))(Rl + R—l)
—i_Eéoi(’le (CLUU(Etﬂ/}u) + avv(E6wv>>(R2 + R72)
—|—E§OiW1 (auU(E6¢u) + avv(E5wv))<,R’2 + R—2)
g,

V2

iwaRa + (iwe) ™" (buy (Estw) + buw (Esthy) ) (Ra)

+Es, (iws) ™ (buu(Esthu) + buw(Esty))(R1 4+ R-1)

+E5, (iw2) ™ (buu(Estbu) + buu(Esthy))(R1 + R-1)

+Esy (iw2) ™ (buo (Esthy) + buy (Esthy) ) (R—2)

+E50 (iws) ™ (buw (Estu) + bou(Esthy)) (R—2)
63/2(1w2)

With infinitely many normal form transformations we can eliminate

Eéoiwl (G/M)(Eéwu) + avv(Eéw'u))(R2 + R72) = iWISZ,u,éo (%; Ri2>7
E50 (iw2)_1(buu(E§wu) + buU(E6¢v))(Rl + R—l) = (iw2)_1sl,v,6o (1/13, 7-\)':i:1)7

E50 (iWQ)_l

(buv(E§¢u) + va(E6¢v))(R—2) = (in)_ls’?,v,ﬁo (¢4a R—2>7

with ©e = @y + Aupy, V3 = buuu + by and Yy = by, + byy,. For the nor-
mal form transformations, we switch to the Fourier space. Therefore, we introduce the
corresponding Fourier space for functions lying in Gevrey spaces by

with

We take the ansatz
Riz
Ro2
R_12
R_22

Gl ={u:ueG},

||17||GZ%* = ||U||ng-

= Ruip+ M (s, Reay),

= Roi+ M21(¢3,Ri1 1) +M2(,12)(@Z4,7/€—2,1)7
= R 11+M (wQ,Rizl)

= R—2,1 + M_2,1(¢37 Rﬁ:l,l) + Mﬁlz),z(i;% 7/3\2,1),

whereARU =R, for | € {+1,£2} and where Mi(l) is linear in its second component. The

term Ss, 5, has the form

§2,u,50 ({/;27 ﬁi?,l) = Z §2,u,50,l (&27 7/-?’\[,1)7

le{2,—2}
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2.6. The normal form transformations

with the following convolution structure

where

Sansna(D2, Ris) = [ Saasualhs k= m.m) ok = m)Roys(m)dm,

§2,u,50,2(k7 k— m, m) = E'éo(k)Elé(k - m)’

and similarly for 53,5, —2.
Therefore, we set

with

Ml(l)({b\%k\:tll) - Z Ml(}l)({ﬁ\%ﬁl,l)?

le{-2,2}

Ml(ll (wg, Rl 1) /mﬁ k,k—m, ’ITL)IZQ(](? — m)7/2\l71(m)dm.

We differentiate RLQ with respect to time and obtain

Rz

= ORi+ > Ml(,lg)(%,@ﬂ/z\m)—l- > Ml(,lz)(at@,ﬁl,l)

le{—-2,2} le{—2,2}

= 1@17/—\)/\1,1"’i@lgl,u({b\l»ﬁil,l)"{'i@l > §2,u760,l(77/b\27,7€l,1)

le{2,—2}
o Y / ES (k) Es(k — m)da(k — m)Ry1 (m)dm
le{2,-2}
+ > Ml,l (@271@17/3\1,1 + (i@z)fl(gm(?z:z, 7/3;1,1) + §2,v<7:b\47 7/3;2,1))
le{-2,2}
+0(¢)
= iRia — iy > Ml(}z)(?ZQ,ﬁl,l)
le{-2,2}
+i@1§1,u(12)\177/€:|:1,1)+i@1 > §2,u,60,l(12)\277/€l,1)
le{2,-2}
+im S / ES (k) Es(k — m)da(k — m)Ry1 (m)dm
le{2,-2}
+ Z Mu @/)2710017311-1—(1001) 1(§1,v(153,7/€j:1,1)+§2,U(IZ4,7/3\¢2,1)))
le{-2,2}
+0(e),

where we use the fact that 81@2 = O(e). To eliminate i@1§2,u,50,1(122, 7/3\;,1), we choose

and get

0

- —1@1M1(,15)(152, Ri) + Ml(ll) (o, i@y Ry1) + 101 59,0,50.1 (102, Ri1),

i(@1(k) — (m)mt) (k, k —mym) = i1 (k) 3o (k, k —m,m),
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respectively

i@l(k)ggﬂﬁml(k, k— m, m)

@ k) -~ olm)
for | € {—2,2}. Since we have @;(0) = 0 and @3(0) = 1, the denominator is bounded
away from zero for |k[ < 0y and [k —m| < 6 for 6o > 0 and 0 > 0 sufficiently small.

Similarly, we use the method to transform (i)~ (5145 (103, Rec1) + Sa.v.g0 (s, R_3)). We
obtain the non-resonance conditions

’Tﬁﬁl)(k, k—m,m)=

i (k)) 15, k,k—
7 (b =y ) — 220D Shesoali b —mym)
i@alk) — 21(m))

for I € {£1}, respectively

. L
/\(1) k k —m.m) = (1&]2(]{2)) S2,v,60,—2(k, ]{7 —m, m)
Tl " i(@n (k) + @a(m)) ’

where the denominator is bounded away from zero. These non-resonance conditions will
be weakened below to make the method applicable to more general systems at the cost
of an error of order O(e). The transformation provides

81&7/3\1,2 = iRy 2+ 1@151 u({b\la R 1)

iy / ES (k) Es(k — m)da(k — m)Ry1 (m)dm
le{2,—-2}
+ ) Mu (s, (i) "1 (S10 (W3, Rie11) + Sa.0(ths, Ran))) + O(e),
le{-2,2}

and analogously for 7/3\2,2, 7€_1,2 and ﬁ—2,2~ To eliminate 7/3\3-71 on the right hand side of
this equation, we invert the normal form transformations via

7/-\)\':i:1,1 = k\il,2+Mill)(@Za7/€,2)7
Rio1 = Rﬂ,2+i\~4$§(w,72,2),

where '¢ = <¢1, ¢2,¢3, ¢4) and RJ‘ = (RiLj,RiQJ‘). Thus, we have

aﬂ/il,z = iRy 2+ i@151 u({b\bﬁil 9) + i@,.5, u({b\lv y (1)(12, R R2))

il / ES (k) Es(k — m)da(k — m)Rya(m)dm
le{2,—-2}
oy 30 [ B (k) Btk — m)da(k — m) M (&, Rog)(m)dom
le{2,-2}
+ 3 M) (s, (@) (S1 (W3, Rsr2) + Sio(s, ME) (4, R 2))
le{—-2,2}
+52v(@/)4,7?¢2 2) +52v(¢47M¢2 (@Z R, R2))))
+O(e).
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As a consequence, new terms of order O(1) arise. The term 1@151711(@51,7/3;172) is the
only term of order O(|[¢|]) in a dp-neighborhood of &k = 0. This term can be controlled
with energy estimates, see below Section 2.8 All other terms are of order O(||¢[|?) or
perhaps higher. Some of them are resonant but of long-wave form. These terms can be
included in the energy estimates. The other terms are non-resonant. We can eliminate
them by another normal form transformation. However, this results in new terms of order
O(1). This procedure can be applied again and again. In the limit, we have to prove the
convergence of this procedure. We use the fact that the j-th normal form transformation
leads to new terms of order O(||¢|]?) or possibly higher. This will be discussed in the
subsequent sections. The terms outside of the dy-neighborhood of the wave number k£ = 0
can be controlled by the artificial damping of the Gevrey spaces.

2.6.2 The recursion formulas

To understand the infinitely many normal form transformations, we analyze the struc-
ture of one transformation, especially after performing j — 1 transformations. The error
equations have the following structure

R (k,t) = iy (k)Ry,(k,t) + epy (K, t)
+iy (k / Al(JT)es k. k—m, €t>(7€1’j + 7/3\,17j)(m,t)dm
+id (k /E50 Al(,jr)mn(ka k—m,et)(Raj + Roz;)(m, t)dm
i1 (k) [ B3, () Fn (ks s = . 8) (Ray + R a.3)(m, t)cdm

(9t7/€27j(k:,t) = 1&\)2(k>7/€2j(k t) + 5]/?\2](]{7 t)

+(i9)~ /E50 Az(Jl) non (ks ke —m, et) (R + R_y1,)(m, t)dm
+(i9)~ /E50 Az(]l) non (ks ke —m, et)(Ry; + R_1;)(m, t)dm
+(i@9) ™ / }”)es k,k —m,et)Ry;(m, t)dm

(i) /E(;O 7)ol — m, ety Ry j(m, £)dm

(i)™ /E50 7)o (ke — m, ety R sy (m, t)dm.

For [ € {£1,+2} we define p;; = p; and we have

fi) (k,k —m,et) =

l,res

k,k —m,et) = Es(k —m)i(k —m,et).

l non(
Since 7/3\_17j is complex conjugated to 73[,]-, we obtain

.]?(lres - o) .]?(lnon - f)

l,resy l,non

and P-1; = Py,
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for j € N and [ € {1,2}. Therefore, it suffices to look at 7/Z\lj for I € {1,2}. We derive

recursion formulas for py ;, AZ(JT)QS and f| lnon We introduce the j-th near identity change of
variables by
Rijalkt) = Rikt)+ > / g (B k — m,et)Ryj(m, t)dm,  (2.18)
le{2,-2}
Rognlht) = Roglet)+ 3 [580(k k= m e)Ros(m, tydm  (2.19)
le{l -1}
+ Z / 22l k k mgt)Rl](m t)d
le{-2}

We temporarily assume that the perturbation of the identity (2.18])-(2.19) is invertible
and its inverse has the following form

Rk t) =Rijn(kt) + 3 /h (k, k — m, et)Ry 41 (m, t)dm,

le{+1,+£2}

for i € {£1,£2}. We differentiate (2.18) with respect to time and get

8t7/€1’j+1(]€,t) = 8t7€1](k’ t + Z /g“) ]{7 /{7 m gt)@ﬂ%l](m t)d

le{2,-2}

+e > /8T§§Jl ke, k —m, et)Ry;(m, t)dm.
le{2,—-2}

Inserting the recursion formulas provides
8t7/€1,j+1(k:,t) = 1w1(k:)7€13 ]{7 t) -+ Eplj(k t)
+iwy (k / Vres(k, k —m, et) (7/3\1,j + k\_lyj)(m, t)dm

o (k /E50 FO) (k. k —m, et) (Ray + Res)(m, t)dm
it (k) /Eg FO) (b k —m, et) (Ray + Ros)(m, t)dm

+ Z /g1 (k,k—m et)[@l(m)i?\,l,j(m,t)+6ﬁ2,j(m,t)

le{2,-2}

+(ir) ~( /E50 1) Fi 3 o (20— 1, £8) (R 5 + R ) (ma, ) dimy
+(i@) /E50 V2 (m,m —my, et) (R, + R_1;)(my, t)dm,

[,1,non

+(iwy)~ 1 / Lres (m, m—ml,et)ﬁ”(ml,t)dml

+ (i)~ /E50 fmmm(m m —my, et)R_yj(my, t)dmy
+(i) ™ /E50 AZ(JQ)mm (m, m —my, et)R_;;(my, t)dmy]dm
+0(¢)
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To eliminate the non-resonant terms
iy (k /E50 1mm (k,k—m 5t)7€lj(m t)dm,

~(7)

for [ € {£2}, we proceed as before and choose gy;” as follows

0 = —idi(k) / G0 (kb — m, et) Ry (m, t)dm + / i@ (m)g (k, k — m, ety Ry (m, t)dm

Fidn (k) / Esy (1) F9) (ko — m, et) Ry (m, t)dm,
respectively
(@1 (k) — @u(m))gy) (k, k — m, t) = i1 (k) Esy (k) flnon (k. k — m, et),

for | € {#2}. Since ¥ is strongly concentrated at k = 0, the difference

Figlht) = Y [ i(@am) = Ga(k)g (k= m, )Ris(m, t)dm

le{-2,2}

is of order O(g). This can be expected for j = 1 and for j > 1 it follows via an induction
argument. Hence, we replace the non-resonance condition by

0 = —io(k) / G0 (k, b — m, et Ry (m, t)dm + / i (k)G (k, k — m, )Ry (m, t)dm

i1 (k) [ By (k) FEn (ks e = m, 28) (Rig) (m, t)dm,
for [ € {£2}, respectively

i@1<k)E60(k)fl(,Jzon(kv k— m, St)
i(@1(k) — (k) '
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This non-resonance condition is weaker and we only make an error of order O(¢g). For
i = £1 we have by direct calculation

FOrD (k k —m,et) — f9 (k,k —m,et)

1,res 1,res

= Y ROk k= =R (1= m,et)dl
ke{-1,1}

Y B )k~ LR~ m, et)l
re{-2,2}

3 ARk = 1et)@o) " () Bsy(m) ) (11— m,et)al

Y ik —nen@) W)

Ae{—-2,2},ke{-1,1}
X Bsy (10) I o (I 1y — Lo, et) B9 (I, 1o — m, et)dlodly

R,

w
X Ak = et @) OB, () (11— m syl

Ae{-2,2}

Y[k - nen@) " w)
re{-2,2},ke{-1,1}
X B (1) FY) on (11, 1y — Loy et)R9), (1o, Iy — m, et)dladly

A, 1,non
0 [ [E8 k- en@) T 0)
re{-2,2},ke{-2,2}
x f) (bl — lmét)ﬁgﬂlm ly —m, et)dlydly

A,res
2 [ [Ehkk—nen@) W)
Ae{—-2,2},ke{-2,2}
X sy (10) 13 o (11 1t — 1o, et) B9, (I, o — m, et)dlodly
+ Y ik ne@) W)
Ae{—-2,2},ke{—2,2}
X S (1) FY3 non (11, 1y — Lo, et)R9) (1o, 1y — m, et)dlydl;,

A,2,non

where we use the abbreviation
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for A € {£2}. If we summarize some of these terms by using the definition of the projection
Es with v = Esu + E§u for each function u, we simplify this difference to

A(jH)(k k—m,et) — 7). (k k —m,et)

1,res

_ /ffﬂmkk—zgt)i}f(H— m)dl

ke{-1,1}

+ % /Eéo FO) (e ke — 1, et)h), (1,1 — m)dl
xe{-2,2}

Gk = L) @) P ol — ety
re{-2,2}

N T // Gy ke — 1y, et) (@) 7 (1)

xe{—-2,2},ke{-1,1}
X P non (11 by = Loy )R, (I, 1y — m, et)dlodl;

A lLnon
Y [ [Ek k- en@) 1)
Ae{—2,2},ke{-2,2}
X f (s by — Lo, et)h9), (12,12 m, et)dlodl;

A,res
Y[Rk nen@) T 0)
Ae{—2,2},ke{-2,2}
X Fu) (ll, ll — lg, €t)h(J (lQ, l2 —m Et)dlgdll,

A,2,non

with g € {£1}. Similarly, for p € {£2} we get the following simplified equation
Esy (k) D (ke k — m, et)

1,non

= Ej,(k ( > / sk, ke — 1, et)h) (1,1 — m, st)dl

re{-1,1}
[ [E00 k- en@) @)
xe{—2,2},ke{-1,1}
X P\ o (115 11 = 1o, )R (1o, 1y — m, et)dladl;

A l,non
+ ¥ /Mkk: L et) (@) () FY), o (1,1 — m, et)dl
re{—2,2}
n 3 // L et)(@) (1)

xe{—2,2},ke{-2,2}
< (1, 1y — Lo, et) B9, (1o, 1y — m, et)dlydl,

Ares

3 [k = L e)@) O 11— et

re{-2,2}
o [ E k- en@) @)
Ae{-2,2},k€{~2,2}

X P\ o (11, 11 = Lo, €Y, (I, Iy — m, et)dlpdly )

A,2,non
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Analogously, we have

E§0<k> i (i, k= m, et) — E, (k) 1non<k k —m,et)

/E(; PO ek — 1,2t (1,1 — m, et)dl
re{-2,2}

+E§O(k:) [ /ﬁ%es (k,k—1 gt)ﬁg (I,1 —m,et)dl
ke{—1,1}
D ST O U T AEAICARICY
re{-2,2},ke{-1,1}
X A)(\Jl non(llv ll - l2a Et)ﬁ ]L<l2, l2 m 5t>dl2dl1

b G0k k= L)@ () m, st

xe{—2,2}

N ) // Gy ke — 1y, et) (@) 7 (1)

xe{—2,2},re{-2,2}
< FO (1, by — T, et) B9 (I, 1y — m, et)dladly

+ ¥ / G, e — 1) (@) "1 (1) FY) oo (1,1 = m, et
re{-2,2}

+ ) // 59 (ke — 1y, et) (@)~ (1)

re{—2,2},ke{-2,2}

X< P mon (11,11 = Lo, )R, (1, 1 = m, et)dlpdh |

for p € {£2}. In contrast to [DKS16|, the non-resonant terms outside of the dp-neighbor-
hood of & = 0 will not be eliminated. These terms can be controlled by the artificial
damping of the Gevrey spaces if the limit is not infinity. By adding up these terms, we
have to ensure that we obtain a convergent series. However, we can choose the rate of
decreasing the strip in time large enough to control these terms. Moreover, we have

Brei(k,t) — pry(k,t) = /aTg1A (k, k — m, )R (m, t)dm
xe{—2,2}
+ [ 300k — s et)pagm )dm + 71k, ).
Ae{—2,2}

Similarly, we obtain the equations for Ro. Note, that in this case we apply the normal
form transformations to the non-resonant terms associated to Ry; and R_,.
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2.6.3 The functional analytic set-up and the inversion of the
normal form transformations

We introduce the norm

s/2

/ 2
8,6 = J‘k‘ _
X: /itelﬂgle f(k,1)] (1+ <€> ) dl,

to control f, g and h which are (infinite) sums of terms of the form &\ (k)e~!@gW) (k=)
where &) is Lipschitz continuous and determined by w; and wy and where PU(., t) is
determined by (-, et). Young’s inequality for convolutions yields

/]

s,e
[e8

H [ Fs k= m,enRm

<CIflx
Gg

We have the following lemma to control the convolutions of f, g and h in the previous
recursion formulas.

Lemma 2.6.1. For s > 0 the following estimate holds

s,€,

H/f(.l,.1 —Dg(l,1 - '2)legi€ < Ifllx

s,€
(e}

|9|X

Proof. We follow the steps from the proof of Lemma 3.1 in [DKS16]. With the help of
Young’s inequality for convolutions in weighted L!-spaces we have

/ sup
keR

< / sup [ sup [ f (k. k — 1)|sup [e"Flg(k,1 — k + m)|di(1 + (m/e)?)*/*dm

kER Y EkeRr kEER

[ (b, k= Dg(1,1 - m)dl’ (1+ ((k — m)/e)?)*?d(k — m)

< /sup sup|e"| f(k, l)|sup\e"|k|g(l;:,m —D[dI(1 + (m/e)*)**dm

k€ER 7 keRr keRr

< C’/sup\e""df (k,0)|(1 (Z/S)Q)S/le/sup]e"‘k‘g(k,m)\(l + (m/e)z)s/zdm
keR
= I fllxs=llg]

P

[
For H@(]l (5t)|| xz< sufficiently small, independent of 0 < ¢ < 1, the normal form transfor-
mation ([2.18))-(2.19) is invertible with the following lemma.

Lemma 2.6.2. For R, ;(t) € G%* with s > 1 we introduce
Rk, t) = (I + TO)(R;(k, 1)),
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where
00 Ty T\ [ Ry
TU(R;) = ?') <Q> T T(Zl)ﬁ > ]
T2J)1 1; j) 1 (O sz Ra,;
T—Jz 1 T—J2 -1 T—Jz) 2 0 R2;
with

(TR0, 1) = [ 59 06 k= m 1)y o, .

Thus, there exists a ¢ > 0 such that the transformation is bijective and its inverse has the
form

—~ —~

Rij(kt) = Rigm(kt) + 3 / 9 (e, ke — m, et) Ry 1 (m, )dm,

le{+1,+2}
where
. CNa@ (et)|] s,
N e
1 — (g0 (et)][ xze
with
~(4) P =(7)
1990z = max | {1557 (1)1}
if
15 (et) | x2+ < g (2.20)

holds for all i,l € {£1, £2}.

Proof. The proof is guided by [DKS16]. Let ¢ be arbitrary, but fixed. The operator
T : (G=*)* — (G=*)* is obviously linear. We introduce

Tl(j):< ) 17, ) T2(j):< ) 1, ) - Té”:( 0 T2(22>
T, 1Y, T, 1Y, %, 0

and set |70 := max{| "], |75”]], | 75"} with

IT2 = sup (z 1T (R e + 3 ||T£ﬂ3,l<nl,j>|é;»)-
le{x+2} le{x2}

[(R2,;,R-2,3)T|I<1

By Lemma [2.6.1] we have

1T Rl ase < ClGD |l xee 1R

8,€ S, %
Xs' Go
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Thus, we have ||TW)|| = O(q). For ¢ > 0 sufficiently small, we can use Neumann’s series
to invert
(1~ (-TO)) = 3 (-7
A=0

Hereby, (TU)°* denotes the A-times composition of 7). For each pair Tl({)

get

and T, S(]t) we

(T({) Tst)le—H (k,t) /gZ (k,k —m,et) /gsjt m,m — m1,€t)R1]+1(m1, t)dmidm

2,

= //gZ (k,k—m gt)ggjt)(m,m—ml,at)Rl,Hl(ml,t)dmldm.

Inductively, we obtain a series of integral kernels. The X>-norm of lAzZ(]k) is bounded by

- = o Cllg? -
”h(])” se < C ||g(J)|| se) = —12 4o
o ;( o) = 1o lg91x5+
This is exactly the form we have in the Lemma [2.6.2] O

2.6.4 The proof of convergence

In Lemma [2.6.2 n we assumed that ( - ) holds. Now, our goal is to show such estimates
or even sharper ones for f 7). 39 and hY). We adapt Lemma [2.6.1| to the differences and
get

105D — ke < A lxes S0 A9 ]Ixse

ke{-1,1}

HIBS Flonllxze 2 1A
Ae{—2,2}

A( .
+ 5 13 e 1Y) ol (2.21)
xe{-2,2}

A( o~ .
+ 3 1E e I ol D R e
xe{-2,2} ke{—1,1}

A(
_'_ Z ’ )\'res| € Z || | SE
xe{-2,2} ke{—2,2}

A( o~
+ 3 1F e 1D ol S 1R e,
xe{-2,2} ne{—2,2}
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for 4 € {£1}. In the dp-neighborhood of £ = 0 we have

X2 < H.}?l(,]}es’ X3¢ Z th(ﬁjjﬁ’
ke{-1,1}

| Bso )|

1,non

s,€
X5

+ > ||gu|xsslx,1,non||x;vs Yo B xee
Ae{—2,2} ke{-1,1}
+ Z ||gl>\||XSE” /\7"65|X;'S
re{-2,2}
+ Z ||g ||XSE|| >\7‘€S||XSE Z || HXS6
Ae{-2,2} re{—2,2}
+ Z ||g ||XgE | >\2non||XS’E
re{-2,2}
=(7) 70
+ Y il I S el X 1R

re{-2,2} ke{—2,2}

with u € {£2}. Outside of the Jp-neighborhood of k = 0 we obtain

1B (FIE) — T ollxss < I nllxse S0 1B xoe

re{-2,2}
ke S0 1RY) ke
ke{—1,1}
AO) K0)
+ Z ||gl)\‘ pid )\,l,non Z H K,H‘X[;’E
Ae{—2,2} ne{—lJ}
=(9) ]
+ 3 3 1Al
Ae{-2,2}
2() - ot
+ 3 e Il >0 1R9) ) xse
are{—2,2} ke{—2,2}
=(9)
+ Z ||gj ‘XSS /\)(\]2)non
Ae{-2,2}
2(7) - 70
+ 3 F e 1A onllxzs S 1B lIxze,
Are{—2,2} re{—2,2}

where p € {£2}. Similarly, we can show inequalities for the corresponding terms of (2.19)).
In the following lemma, we collect important estimates that imply the main convergence
theorem.

Lemma 2.6.3. There exists a ¢ > 0 such that for

1FDllxse + 1 FDonllxe < @,

with v € {£1,+2}, we have the following inequalities

a) (1)l x

1—qi/2
SE < ql q1/27
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b1) | Bsof Gz < 004172,

1—¢i/2
X5° < a1 172 PIVEE

02) | E5, F9)0l
¢) 99|l xse < Cgi*h/?
d) ||BS))\||X§E < 2C,qUtD/2

e) ||fl€]’;zi KTES'

f) ||E50( f'i];lt}n /'-inon)HXs5 < qq]/2

forall j € N and k, X € {1, £2} with

x3e < q¢?,

C, = max sup i@, (k) — i@y (k)| L.
s sup 0,00 — (4]
T (£2,72)}

Proof. The proof is based on an induction argument which is also performed in the proof
of Lemma 3.3 in [DKS16].

i) For j = 1 the estimates a), bl) and b2) follow directly from the assumption of
the lemma and the estimate ¢) from the definition and the weaker non-resonance
condition. Lemma [2.6.2] implies

Cllg¥]lxs
I~ g0

If ¢ is smaller than zc , then we have the estimate d) for j = 1 based on induction.

2

xse <

ii) In the following we will use the abbreviation

|| nonHXSE = E?jl:??i2}||fg%on||xjg-

With (2.21)) we have

H 7(+1) () ‘

1,res 1,res X5° +4C ”f7(1]0)n|§(§’6

X2 < 40 ” lres”X H non|
+2C anon“X +802H non”X95

+802anonHng”f.§Jres| X5° + 803)”»?;%)71”%(;’5
4C H 1T68| |fnon‘XSE+60 ”f(J)
+1602H nonHX +802”fnonHX H 27’68‘

IN

XSE

X3¢
For the induction, we assume

1—¢i/?

1— q1/2'

|| znon”X” < q(j+1)/2 and H ) ||X§,€ < q

Z ,res
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This allows us to estimate

H TG+ J?(j) | se < 4G, (4+3)/2 +6C., ¢ + 1602 3(3+1))/2 + ﬂ
1,res 1,resll X, = 1_ q1/2q wq 1— q1/2q
< qq”.

J+2

Therefore, we obtain e) for ¢ > 0 sufficiently small. Analogously, outside of the

dp-neighborhood of £ = 0 we find

~ . . 60
VB — Pz < 40"+ - oo o
2
_|_1 801/2qj+2 + 1602 (3(j+1))/2
—q
< q(j+2)/2_

We get f) for ¢ > 0 sufficiently small. In addition, we have
j
j+1) I+1 )
/\1(,]7“@3 - 1 res + Z Al(res) Al(res)

Thus, we obtain
1 — quth/2

7G+1) 1/2
||f1res ”X” < qu —QW

=0

In a similar way, we proceed for || ”wn

find
2
A(J+1) 6C., (j+3)/2 i+1 2 (3(j+1))/2 8C%,
HE50 i,non S 1 — q1/2q J + ZCwqj + 16Cwq J + 1 _7q1/2
< q(j+2)/27

x2< in the dp-neighborhood of k = 0 and

J+2

for ¢ sufficiently small. Hence, we have shown b1). Outside of the dy-neighborhood

we get
1 — quth/2

j
se < Ve -4
x: _ng S

1Eg Feh]

1,non

and so we have 02) for ¢ > 0 sufficiently small. The estimates ¢) and d) follow

similarly as in part i).

Remark 2.6.4. Since ||¢||yy; is sufficiently small, we have
15 e

for a 0 < ¢ < 1 independent of 0 < & < 1.

X5c + Hﬁs,lrzon‘ X5° < q,
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2.6. The normal form transformations

Finally, we need estimates for the higher order terms.
Lemma 2.6.5. The terms p;j+1 can be bounded in the following way

cr < C(R-2js1llge + [R-141]
+e' 2(I1R—2js1llgs + R-141]

oo+ Rl + [Rej+1lla

c + Rujsillger + [[Raj1l

172511

R
o

Gf,‘*)2 + 1)7

and
- S Cq1/2,

1Pj+1 — Pujlle
with 0 < ¢ < 1 from Lemma and a generic constant C' independent of j and
0<ex 1.

Proof. Using Lemma we have

1B — Piilles < 0 10rg0 ks Ros e
Ae{-2,2}
+ 30 a0 1Basllas + 1705l
Ae{-2,2}
We obtain N
il <C 2 189 xee IR

le{2,-2}

where C' is independent of j similar to Lemma 3.1 of [DS06]. With the help of Lemma
2.6.1] we find that

15541 — Bjllass < CqU™ 2R ;|| e + CqUT™72||5 4| o,

where p; = (p_aj,D-14,D14,D2;). The inequality shows that (p;)jen converges like a
geometric series and that p ; can be estimated by D ;. O]

2.6.5 Limit system

By Lemma and Lemma we have shown for [ € {£1,4+2} that the non-resonant
terms converge to 0 in a dp-neighborhood of k£ =0, i.e.,

||E50 X3° — 0,

lnon“

7(4)

lnon)jEN are Cauchy sequences in X>° and

for j — oo, the sequences ( f/;(j")es)jEN and (Ego
the sequences (P ;) jen and (Rl,j) jen are Cauchy sequences in G5*. Due to the completeness
of X;¢ and G, we conclude that the limits of these sequences exist in X and G5*.

o )

After infinitely many near identity changes of variables, we can eliminate the non-resonant
terms at leading order €. We obtain the following limit system in physical space

8257?'1,00 = iC"-}1,R'1,<>o + iWlfl,res(,]zl,oo + 72'71,00) + 5P1 + ilego fl,non(RQ,oo + R72,oo>,
ORove = waRooo + (iwz) ' foresRooo + Py
+(iw2)_1Egof2,l,non(R1,oo + 7?'—l,oo) + (iw2>_1Eg0f2,2,nonR—2,oo-

45



Chapter 2.  The Whitham approzimation for a Boussinesq-Klein-Gordon system with
unstable resonances

The system for R_; oo and R_5 o, can be found in a similar way. Hereby, we denote R; o,
fires and P as the limits for j — oo. The higher order terms can be estimated by

17

¢ < ClR-2mlles + IR-1oclles + 1R1c|
+e (IR 200l + IR 1,00l + IRl

a5 + | Raeollas (2.22)
ay + [Raxlles)” +1).

2.7 From analytic to Sobolev functions

Since we want to handle the energy estimates in usual Sobolev spaces similar to [Sch20],
we use this part to prepare the system. To control the growth rates at the unstable
resonances, we make the strip where the functions are analytic smaller in time. Due to
this fact we estimate the error in G¥ -spaces with s > 1 and 0 = o(t) which is decreasing
in time, i.e., we have

o(t)=o0a/c—pBt,

for 0 < t < Ty/e with Ty = o4/8. In the energy estimates below, 5 > 0 has to be
chosen sufficiently large which results in a restriction in time. This leads to an artificial
damping with respect to this time-dependent norm which controls the growth of the

unstable resonances. The solutions of the WME ([2.6]) satisfy

sup [JA(T)lyyea < Cy.
T€[0,Ty) A

This yields

sup ||thup ()]lyea < Cy.
T€[0,To /<] A

To establish a connection between the spaces of analytic functions and Sobolev spaces,
we introduce

Rjoo(t) = Su(t)Rjeo(t) and  thy (1) = Su(t)tuo(t),

where S, (t) is a multiplication operator defined in Fourier space by
§w<k’ t) = eloa/e=B)lk|
As a direct consequence of these definitions, we obtain the following lemma.

Lemma 2.7.1. Fort € [0,04/(B¢)] the linear mappings S,(t) : G5y — H* and S,(t) :
Wi — W2, with o(t) = (o4 — Bet) /e, are bijective and bounded with bounded inverse.

Remark 2.7.2. We introduce the norm

] 9\ 5/2
o ::/i‘éﬂﬁ?lﬂk’m (1+ (5) ) dl.

Furthermore, the linear mapping S,, : Xg’(i) — X*¢ is bounded with bounded inverse.

/]
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The newly defined variables satisfy the limit system

OiR1 o = —PBlklopRioco +iwi Ry oo + P + Swiw1f1,resS;1(Rl,oo + R_10) (2.23)
+Swiw1E§0 fl,nonsujl (R2,oo + RfQ,oo)a
atRQ,oo = _6|k|opR2,oo + i"‘-)2R2,oo + 5P2* + Sw(iWQ)_lfQ,resS(,leQ,oo (224)

+Sw (in)_lEgon,l,nonS;1(Rl,oo + R—l,oo)
+Sw (iw2)71E§0 f2,2,nonS;1R72700,

and similarly for R_; and R_,, where the higher order terms fulfill

17|

e < C(|R-200llms + || R-1,00]
+e' (| R-z00ll s + | Ro1,00]

Hs T+ ||R1,oo| Hs T+ ||R2,oo|
Hs + ‘Rl,ool Hs + HR2,00|

e (2.25)
ms)?+1).

The operator |k|,p, is defined by its operation in Fourier space, namely m(k) = |k|R(k).
To finish the proof of Theorem we need to prove a O(1)-bound for the errors Rj o
and Ry on the long O(1/)-time scale. The terms of O(e) in (2.23)-(2.24) can easily
be controlled with Gronwall’s inequality. Since R_; is the complex conjugate of Ry, it is
sufficient to use R

Remark 2.7.3. The local existence and uniqueness of solutions of the BKG system ([2.1))-
in G%-spaces is provided by a simple application of the contraction mapping principle
to the variation of constants formula since the BKG system is semilinear. Local existence
and uniqueness on the required time interval is guaranteed by the following error estimates
which serve as a priori estimates.

2.8 The final energy estimates

In this section we finish the proof by showing that the error R has a O(1)-bound on a
O(1/e)-time scale. To perform the final energy estimates for the system (2.23)-(2.24), we
define an operator 2 by the multiplier Q(k) = min(@,(k),4) in Fourier space. We will use
this operator in the estimates for the term Re (sg) below. There it leads to a cancelation
which shows that Re (sg) is of order O(g). We define the energy by

Es = HRLOO‘

2
Hs’

e+ |0 Bae

and compute the time derivative

7
—&Es = Re sgood—l—ZRe 55,

j=1
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where
Sgood = (Rio0, —BlklopRico) s + (2 Rao, —Blk|opQ > Ro o) 1,
51 = (Ricoi01Ris) o + (0 Roe, 6n QR
s3 = (Riee,€P)) s + (QR200,6P5) s
Ry oo, Suiwr f1resSy (Rico + Rt oo))

S3 = Hs '

(

(R 00s Siwwr E§, frnon S5 (Rao + Roaoo))
s5 = (QRaeor Suliwa) S, fo1non S5 (Rise + Rot0))

(

(

Sq4 =

Hs’

QRQ ooa ZUJ?) 1f2 res 1R2 oo)H )
QRQ ,00) w 'w2)71E§Of2,2,nonS; R72,oo>

Sg —
S7 = e

In the following, we justify that the terms sq,...s; are either of order O(g) or can be
estimated by the negative terms of order O(1) collected in Sgueq. For instance, it can be
directly concluded that the terms collected in s; and sy are of order O(g). The terms
S3, S4, S5 and s; are preceded by w; or Ef or both and thus vanish at the wave number
k = 0. Therefore, they can be estimated by the “good” terms collected in s4504. The most
problematic term is s¢. We can show that sg must be of order O(e) by using the long
wave character of the Whitham approximation. To estimate the terms s3 and s5, we use

(u,v) s = (U, D)2,
and Parseval’s inequality, so we can work with the norm

S [k (k) = Y 02ulle
=0 =0

in Fourier space.

2.8.1 Estimates for s,,,4, s1, and s

a) We start with the bound for the linear terms collected in Sgpq. Using the Fourier
representation of |k|,, we get

(Rl,ooa _B|k|opRl,oo)HS = _5(§1,ooa ‘ku/%l,oo)Lg = _B(’kyl/Qél,ooa ‘k‘l/zél,oo)Lga
and similarly for (QI/QRZOO, —ﬁ|k]ole/2R2,oo)Hs, so that finally

i = =B Rusel . = B4 2V Ro ],
b) Using the skew-symmetry of iw; and iwy yields
s1 = 0.
c) With the help of the Cauchy-Schwarz inequality and we obtain
89| < CeB, + C*2E3?  Ce.
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2.8. The final energy estimates

2.8.2 Estimates for sz, s4, s5 and s7

The “good” terms collected in sg400¢ do not allow us to estimate terms that do not vanish
at the wave number k£ = 0. We have to use the fact that the terms s3, s4, s5 and s; vanish
at the wave number k& = 0.

a) The terms s; and s; can be estimated by the “good” terms using the fact that
@1 (k)| < C|k| for k — 0. The last estimate implies that the symbol of 9 = |k|_,}/%w

is bounded at the wave number k = 0 and |J(k)| < C|k|*/2. We find

|83\

IN

IN

IN

IN

‘(Rloous 1W1f1res (Rloo+R 100))
(B ook, ), S, )icn (k)

Hs

X [ Frres(b e = m, )55 (m, 0) By + R 100)(m,t)dm>
(1512 Ry oo (s, 1), Sk, )il /21 (k)
x / Fues(ok = m. )83 (m. ) Ry + Rorc) (m, )dm)
Cll\k\

L3

~

/fl res k k—m Et) w <m7t)(él,oo +R—1,oo>(mat)dm

12

s

C||\k\1/231,ooHLz

(H J =128 ) e (e =, ) (B Ry ), )l

L?)

L3

4 H [ 880 Foes b =, 0)m] 2 (Ba + Ry c) (m, 1)

O|||k|1/2R1,OO| Hs (51/2||§wf1,res| X8 |(§1,oo + }A%—l,oo)HLg
11 Fr sl oo [EI (R oo + Rovoo)lli2)
C (2[[k[3)? R ool | R ol 2= + [[1K]3) B ool )

C (Nl Rs ol + KL R el )

X8,

where we used Lemma and that the limit §w fues is in X*®°. Note that R_;
is complex conjugated to R o, and that there exists an isomorphism between H?*
and L2. We also used the estimates S;*(m,t) < 1 and vk < vk — m + /m, with
O(|Jk —m|) = O(e). The term s, can be estimated in exactly the same way as the
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term sz, i.e.,

‘S4| = ‘(Rloo,S lle(; flnon (RQOO+R 200))
= |(Ruool, 1), S, tYicn (k) Es, (k)

Hs

/fl,m kb — m, e8)8- (m, £)(Roso + Rsoe)(m )dm>

(12 Rae U ), Sl )i ] /200 () B, ()

L2

S

« / Frnon(ks k=m0, et)(Roo + Rs o) (m, t)dm)

L3

< Ok Ry ollz2 || S, (k)9 (k)
x / Frnon (ks —m, )85 (10, 1) (Raoe + Bs.o0)(m, t)dm
L2
< C||k[M* Ry coll 2
(H/ |k - m|1/2§w(k>.]?l,non<k7 k —m, 5?5)(}?2,00 + E—Q,oo)(m’ t)dm
L2
| [ Sot) Fran b = . )l 2(Ra o+ ) (m, )k )
L2
< C|||k|});/a2R1HHS (51/2||§w]?1,n0n| XS |(R27oo + R—Q,OO)HL%
H11Su Frnonllxcse [ (Ra oo + B o) (m)|12)
< O[3 Rysoll e (€219 Roooll s + (111322 R oo 11+

< C (IRl + 2192 Ra o

e+ 1K1y QY2 Ry |

2
Hs) -

b) The remaining terms s5 and s; can be estimated by the “good” terms in exactly the
same way as s3 and s;,. We use the fact that s; and s; have an E§ in front of them
which vanishes at the wave number £ = 0. As a result, s5 and s; vanish at the wave
number £ = 0. Finally, we obtain

[ss] + [s7] < CUllkley Ruoolfre + 115 QY Re,ocl I

el Rioollfs + | QY RooollFre)-

2.8.3 Estimates for sg

For the Fourier transform of Re (sg) in case s = 0 we compute

Re (s6)| =

2 / / Roroo (k) (ks £) Fores (ks k — 11, )85 (1, £) B oo (m)dmdk

9 / / R (e, )80 (s ) Foyes (ks k — m, 8)S 1 (m, £) Ry oo (m)dmdk]

20
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where we use Re (2) = 1(z + z) for z € C. Since ]?2,res is of order O(1)), we can rewrite
f/;,res as
Frres(bk—m,et) = fores(k bk —m, 0(k —m,et))
= SYk —m,t) fages(k, k —m, Sy (k —m, t)ih(k — m, et)).

We estimate

—

Reso)l < 2 [ [ |Roolh,)Su(k )5, (k= m, 1)
X fopes(ky ke —m, Sy (k —m, t)ih(k — m, et)) S5 (m, t) R_y o0 (m)
_§—2,oo(k> t)gw(ka t)gc;l(k -m, t)
X fores (b, b =m0, Sk = m, 8 (k — m, €))S (m, 1) R o0 (m)| dmdk
S 2 // ‘RZ,oo(ka t)ﬁ,res(k7 k —m, Qz*(k —m, 5t))R72,oo(m)
— R0, ) fores(k, ke = m, 0" (k = m, £8)) Ry o (m) | dimdl,

where we use S, (k,t)S;'(k — m,t)S; (m,t) < 1 and S,ib = ¢*. In the first term, we
switch the role of k£ and m to obtain

—

ReGo)l < 2 [ [ |Rotm) Faeslim,m — b, (m — b 20) R-ac(h)
— R0 (k) Faea(k, k= m, 40" (k = m, £t)) R oo (m)| dmdk:.
Due to the symmetry of the system — we have
Faes(m,m =k, % (m =k, et)) = foges(m, k —m, " (k — m,et)),

and so we get

—

Re(so)l < 2 [ [ [ Bonclm) fopeslm, b —m, 0 (5 = m, £6) Ry e (1)
—R_g 00 (k) Faea(k, b = m, 40" (k — m, £t)) Ry oo (m)| dmdlk:.
Since
| Fopes(m, k = m, & (k = m, t)) = Foes(ky k —m, " (k — m,et))| = O(|k —m]),

we estimate

—

|Re (sg)| < CeE,
similar to Lemma 4.1 from [DKS16]. For s > 0 the estimate for

(032R2 00, 0, () ™ FareaS (R20)))

is similar to the case s = 0. Whenever a derivative falls on f3,.s and so on ¢ in the second
component of the scalar product, we get an additional power of €. Thus, there is only
one term of order O(1), precisely when all s derivatives after the comma fall on Rj .
However, this term can be estimated line by line as in the case s = 0.

L2
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2.8.4 The final estimates

Putting all the previous estimates together yields

1d

B < (=B84 C+ CPEY) ([Ik1 Rucel[, + 1K 22 R

2
Hs

where C' is a constant that is independent of 0 < ¢ < 1. We choose 5 > 0 to be large
enough, but independent of 0 < ¢ <« 1, that

—B4+C+CPPEY? <0 2.26
B s

+CeFE, + 053/2E§/2 + Ce,

is fulfilled. Under this assumption

1d
§&E5 < CeE, + 063/2E§/2 + Ce

is satisfied. Then, we choose £ > 0 so small, that
V2RV <1 (2.27)

is fulfilled. Under this assumption we have

d
&ES < (C+1)eEs + Ce,

and so Gronwall’s inequality implies
E,(t) < (E(0) + Ct)el®Vt < (E,(0) + CTy)el VT — M = O(1).

The constant M is independent of (3, respectively 77 and 0 < ¢ < 1. Therefore, we
are done with the proof of Theorem if we choose g9 > 0 to be small enough that
5(1]/ *M'2 < 1 which guarantees the validity of . Then, we choose # > 0 to be large
enough that

—B+C+CePMY? <0

which guarantees the validity of ([2.26]).

2.9 Appendix - Some technical estimates

In this section we collect a number of estimates that we have used previously. They can
be found in [Sch20] or as Lemma A.4, Corollary A.5, Corollary A.6, Lemma A.9, and
Corollary A.10 in [HdRS23] with their proofs.

Lemma 2.9.1. The spaces G, are Banach algebras for o > 0 and s > % Precisely, there
exists a o-independent constant Cy such that

|uv]lgs < Cllullas [lv]las,

for all u,v € G5,
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In fact, we use the following estimates version of the previous lemma for our error
estimates.

Corollary 2.9.2. For § >0, 0 >0 and s > 1/2 we have

[u*lley < Cullull gizssllulles,
for allu e G,
Corollary 2.9.3. For o > 0 and s > 0 we have
luvlley < Cullullwsllvlles,

for allu e W; and v € G

The expansion of the kernels in the multilinear maps can be estimated with the fol-
lowing lemma for which we recall the proof, cf. [Sch20, Lemma 7].

Lemma 2.9.4. Let 6y > 0, 0 € R, and let g : R — C satisfy
lg(k)] < Cmin([k|", (1+[k[)™).
Then, for the associated multiplication operator go,, = F'gF the following holds. For
i) o1 > o9 and my,mg >0 or
it) o1 = o9 and my —my > max(6y, 0),

we have
lgop Al )l =< CeP 2N AC) g,

for alle € (0,1).

Proof. We compute

mi1—mso

k: ’ i g1—0
HgOpA(g')”G:lll/s < ilelﬂlg g(k) (1 + <€> ) elo1—02)[k|/e HA(g')HG:;?/E
< O AL e,
where the scaling properties of the L*norm lead to the loss of e~1/2. O

In contrast, there is no loss of e71/2 in W™-spaces due to the scaling invariance of the
norm such that we have the following corollary as a direct consequence.

Corollary 2.9.5. Let 6y > 0, 0, € R, and let g(k) satisfy
|g(k)] < Cmin([k|", (1+[k[)™).

Then, for the associated multiplication operator go,, = F~'gF the following holds. For
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i) o1 > g9 and my,my > 0 or
it) o1 = 09 and my —my > max(6y, 0),

we have
lgop Al ) lwms =< Ce®|AC) e,

for all e € (0,1).

Remark 2.9.6. For instance, we use Corollary to estimate terms with E§. Due to
the definition of the mode projection, Ef(k) is identical zero in a neighborhood of the
origin k = 0. Then, we have |E§(k)| < C|k|*, for every o € N.
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Chapter 3

Validity of the Whitham
approximation for a complex cubic
Klein-Gordon equation

The complex cubic Klein-Gordon (ccKG) equation possesses a family of periodic traveling
wave solutions. Whitham’s modulation equations (WME) can be derived by a multiple
scaling perturbation analysis in order to describe slow modulations in time and space of
these traveling wave solutions. We prove estimates between true solutions of the ccKG
equation and their associated WME approximation. The bounds are obtained in Gevrey
spaces and hold independently of the spectral stability of the underlying traveling wave
solutions. The proof is based on a suitable choice of variables, Cauchy-Kovalevskaya
theory, infinitely many near identity changes of variables in Gevrey spaces and energy
estimates. The analysis for the ccKG equation is more complicated than the analysis
for the nonlinear Schrédinger (NLS) equation which has been handled in the existing
literature, cf. [DS09], due to additional curves of eigenvalues leading to an additional
oscillatory behavior. The content of this chapter is a joint work with Xian Liao and
Guido Schneider and an earlier version of this chapter has already been published as a
preprint in [HLS22].

3.1 Introduction

Whitham’s modulation equations (WME) can be derived by a multiple scaling pertur-
bation analysis, cf. [Whi74], with a small perturbation parameter 0 < § < 1, in order
to describe slow modulations in time and space of periodic traveling wave solutions in
dispersive and dissipative systems. In this introduction and also in the whole chapter we
are going to explain the backgrounds, main ideas as well as some intuitive calculations in
a few remarks.

Remark 3.1.1. [WME approximation results for other systems] So far there
are only few approximation results showing that WME approximations make correct
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predictions about the dynamics near periodic traveling wave solutions in dispersive and
dissipative systems. In [DS09| such estimates were obtained in Gevrey spaces for such
waves of the nonlinear Schrédinger (NLS) equation

0. A = iv10FA + g A| A%,

with 7 € R, £ € R, A({,7) € C and coefficients v, 15 € R, as original system. In [BKS20]
such estimates were obtained in Gevrey spaces for such waves of a system of coupled NLS
equations as original system. For spectrally stable waves of the NLS equation in [BKZ21]
it was shown that WME even make correct predictions for initial data in Sobolev spaces.
The only approximation result, we are aware of, for dissipative systems can be found
in [HdRS23] where the validity of WME was shown for such waves in the amplitude
system which appears at the first instability of the Marangoni problem consisting of a
Ginzburg-Landau equation coupled to a diffusive conservation law.

Remark 3.1.2. [Non-triviality of WME approximation results| Such approxima-
tion results are non-trivial since solutions of order O(1) have to be bounded on a long
O(1/§)-time scale. In general, solutions of order O(1) are only bounded on a O(1)-time
scale. See Remark below for a more detailed explanation.

Remark 3.1.3. [Periodic traveling waves] As a next step in the direction of handling
modulations of periodic wave trains for general dispersive systems, in this chapter, we
consider the complex cubic Klein-Gordon (ccKG) equation

OPu = %u — u+ yulul, (3.1)
with ¢,z € R, v € {—1,1} and u(x,t) € C. It possesses traveling wave solutions
u (x,t) = eontiartint (3.2)

where p, q,7,, € R satisfy
s = 2?1,

Remark 3.1.4. [S'-symmetry] All these equations have in common that the nonlin-
earities possess an S'-symmetry, i.e., with u also uel®, with ¢ € R, is a solution. As a,
consequence, the underlying periodic traveling wave solutions are harmonic which easily
allows us to extract a local wave number variable which is necessary for the derivation of

WME.

Remark 3.1.5. [Two additional spectral curves for ccKG] What makes the analysis
for the ccKG equation more complicated than the analysis for the NLS equation are two
additional curves of eigenvalues which lead to an additional oscillatory behavior, see Figure

below.

Remark 3.1.6. [Derivation of WME for |u| > 1/+/3] For notational simplicity, here
in the introduction, we derive WME for the ccKG equation (3.1]) for the wave train ([3.2))
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Figure 3.1: The left panel shows the spectral curves (in red) as functions w over the

Fourier wave numbers k for the NLS equation. The right panel shows the spectral curves
for the ccKG equation (3.1) with the two additional spectral curves (in blue). WME
describe the modes in the small dashed circles (in green).

associated to ¢ = 0, where we have py? = 1 — ye?ox,

Step 1: We introduce polar coordinates
u = el eI (3.3)
with r = r(x,t) and ¢ = p(z,t). Using
Oyu

U = aﬂ" + 13tg0 + I/L,
OFu . SN2 2. 92
= (Opr + 10k + i) + (01 + 107 ),

Oz
U

and similar expressions for (%*) and (%"), we find by separating real and imaginary parts

that

O2r — (Opp + 1)° + (0ir)* = O%r — (90p)” + (0pr)? — 1 + e T20m,
2(0r) (Ohp + ) + O = 2(0pr) (Dup) + Dep.

Step 2: We introduce the local temporal wave number ¢ = 0;¢ and the local spatial
wave number ¢ = 0, for which we obtain

Ofr = Pr+ 07+ 2u0 — (Or)" = % 4 (0er)” 4+ 70 (e = 1), 3.4)
oY = 0.9, 3.6)

by using
(Op + 1) = (94 p)* =0 + 200 + pi* = 0 + 20 + 1 — o,
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Step 3: For the derivation of WME we make the long wave ansatz
(r, 0, 9) (2, t) = (7,9, 9) (6, 5t) = (,4,9)(X, T),

with X = 0x, T = 6t and a small perturbation parameter 0 < ¢ < 1. Ignoring higher
order terms yields the system

0 = 024 2ud — ) +ye?on(e¥ — 1), (3.7)
Ord) = 20xF) + dxth — 2(8r7) (0 + ),
ord = Ox0.

Step 4: Since the second equation (3.8) contains derivatives of U and ¥ w.r.t. T, it turns
out to be advantageous to work with the variables

<Z> - (22 21” ) <g> ’ (3.10)

which are linear combinations of (,4) with b = 2ye?or = 2 — 2,2, Equivalently, (7, 7))
are linear combinations of (0, ), if |u| > 1/v/3, precisely

T . 1 1 —2,u v (a1 a2 v
0ol ) )= (u) ew
with D = —4p> + b = —(6p*> — 2) = 2 — 62 < 0. Equation (3.7) is then of the form
/l\} - fv(ij, w? w)?

with f, at least quadratic in its arguments. For @ and ’(Z) sufficiently small this equation
can be solved with respect to v, i.e., there exists a nonlinear function g, such that

0= gu(i0, ), (3.12)

with g, at least quadratic in its arguments.
Step 5: Using the second equation (3.8)) in the form

A0 + 2udr7 = 2(Ox 7)) + dxb — 2(9p7)0),
we rewrite the @—equation into

Orth = 2(8x(a10 4 as))) + Ox1h — 2(dp(ar® + asw))(asd + asb)
= 2(Dx (a1 + agh)) + xtp — 2(agh + ag)adpw
—2(agd + agb)a (1 (d, V)07 + bo(w, ) dr1)),

with /1 and /5 at least linear in its arguments. We can replace Ot by the right hand side
of the third equation (3.9)) which is of the form

8T1/VJ = ax<a31§ + CL47I}).
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3.1. Introduction

Hence, for w and QL sufficiently small the second equation (3.8)) can be solved with respect
to Orw, i.e., there exists a nonlinear function g, such that

Orh = gy (0, W, ¥, Ox ¥, Dx W, Ox 1)),

where g, is of the form

v v

G = Guo (B, 0, D)X T + G o (8,10, D)OxD + G 3(8, 0, ).
Substituting v by g, (w0, zz) finally yields WME for (w, Q/VJ) given by

aTw = gw(gv<wa 1;)7 uv)7 727 anv@Da 1;)7 anjj, 8X'QZ)> (313)

aTw = 8}((@391)(711, w) + CL4UVJ), (314)
describing the modes in the (green dashed) circle in the right panel of Figure , where
the right-hand side of the w-equation (3.13)) can be written as

gw,4(uvjv w)gXuv] + gw,S (Uv)> @9)8)(7%
where g, 4 and g, 5 are nonlinear smooth functions in their arguments.

Remark 3.1.7. [Benjamin-Feir (in-)stability and well-posedness of WME in
Sobolev spaces| Depending on the values of u and v WME — can be well-
or ill-posed in Sobolev spaces. It turns out that, equivalently, the periodic wave train is
spectrally stable in the first case and spectrally unstable in the second case. The first
situation is called the Benjamin-Feir stable and the second situation the Benjamin-Feir
unstable case, cf. Remark [3.1.11 and Section [3.2.1]

In the following we prove estimates between true solutions of the ccKG equation (|3.4))-
and their associated WME approximation —. The bounds are obtained in
Gevrey spaces and hold independently of the spectral stability of the underlying traveling
wave solutions.

Definition 3.1.8. The Gevrey spaces
GI'={ue L*: ||ullgn < o0}
are Hilbert spaces equipped with the inner product
(u, V) = /62‘7"“' (1+ k1) " a(k)a(Rdk,
for o >0 and m > 0.

Notation: Here and in the following [ is abbreviated as [.

Remark 3.1.9. Since the right hand sides of WME ((3.13))-(3.14)) only contain first order
derivatives, local-in-time existence and uniqueness of solutions in Gevrey spaces for WME
is well known by the Cauchy-Kovalevskaya theory, see Section [3.4] below.
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ur approximation result in the case g = 0, i.e., for u = e"orTHt i =1 —~e="0
@) t It in th 0,i.e., f ron it ywith p? =1 o
is as follows.

Theorem 3.1.10. Let |u| > 1/v/3, 0o > 0 and m > 3. Then, for all Ty > 0 there exist
Ch, Cy, Ty, 69 > 0 such that for all § € (0,dy) the following holds. Let (Wapp, Vapp) €
C([0,Tp], Gy n CH((0, To), G ) be a solution of WME ([3.13)-(3.14) satisfying

SUp || (Wapps Yapp)ll s < C,
TG[O,TQ} 0

let Vyapp be the corresponding solution to the algebraic equation (3.12) and (Tapp, @app, QZJapp)
is the approzimation constructed from (Vapp, Wapp; Yapp) by (3.11). Then, there exist solu-
tions (r, 9, v) of (B.9)-B0) with

sup  sup |(r, 0, ) (2, ) — (Fapps Vapps Vapp) (07, 6)| < C50%/2,
te[0,71 /6] z€R

Remark 3.1.11. [Benjamin-Feir (in-)stability and Range of y] The approximation
result covers the Benjamin-Feir stable case, |x| > 1, and the Benjamin-Feir unstable case,
lu| € (1/4/3,1), cf. Figure . For |u| < 1/4/3 it cannot be expected that WME make
correct predictions, cf. Figure [3.3] and Remark [3.10.2]

Remark 3.1.12. As already said in Remark [3.1.2] the above validity result is a non-
trivial task. The WME approximation and the associated solution are of order O(1) for
0 — 0. Therefore, a simple application of Gronwall’s inequality would only provide the
boundedness of the solutions on a O(1)-time scale, but not on the natural O(1/J)-time
scale of the WME approximation.

Remark 3.1.13. Although Theorem is not optimal in the sense that the possible
approximation time 7} /¢ is possibly smaller than T /0, we do establish an approximation
result on the natural O(1/0)-time scale of the WME approximation.

Remark 3.1.14. [Counter-examples| There is a number of counter-examples where
formally derived amplitude equations make wrong predictions about the dynamics of
original systems on the natural time scale of the amplitude equations, cf. [Sch95,|SSZ15,
HS20,BSSZ20, FS22].

The plan of the chapter is as follows. In the next section we go on with some further
remarks. We start with the Benjamin-Feir instability in Section [3.2.1| where we explain
that there are stable and unstable wave trains. Modulations of small amplitude wave
trains of the ccKG equation can be described by an NLS approximation. Therefore,
in Section |3.2.2| we relate our approximation result to the associated approximation results
for the NLS equation. The WME approximation is a long wave limit approximation
like the Korteweg-de Vries (KdV) approximation or the inviscid Burgers approximation.
Hence, in Section [3.2.3] we relate our result to other long wave approximation results
and formulate the associated approximation results for modulations of wave trains in
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the ccKG equation (3.1). Finally, in Section we explain the ideas of the proof of
Theorem [3.1.10] In Section [B.3] we redo some calculations for ¢ # 0 and plot a few
spectral curves which look qualitatively different from the spectral curves for ¢ = 0. The
rest of the chapter is devoted to the proof of the main theorem [3.1.10, We use Cauchy-
Kovalevskaya theory in Section to obtain local-in-time existence and uniqueness of
solutions to WME —. After a partial diagonalization of the error equations
in Section |3.5] we use infinitely many normal form transformations in Section to get
rid of the new oscillatory terms appearing in the right panel of Figure [3.1] similar as
in [DKS16]. After some preparations in Section and Section , we obtain a system
for which in Section [3.9] we can use energy estimates, similar to the ones used for WME
in Section [3.4] to control the solutions close to the wave number k£ = 0. At wave numbers
bounded away from k£ = 0 we use the artificial damping coming from the time-dependent
scale of Gevrey spaces to control the solutions. This finally yields the validity of the
main theorem [3.1.10] We close this chapter with Section [3.10] where we discuss related
questions such as difficulties and strategies to obtain estimates in Sobolev spaces. In an
appendix we collect some calculations about the spectral curves plotted subsequently in

Figure [3.5] for the case ¢ # 0.

3.2 Some further remarks

As in the introduction, all further explanations in this section are still made for the wave
trains (3.2)) with the wave number ¢ = 0.

3.2.1 The Benjamin-Feir instability

In this section we explain that there are stable and unstable wave trains. The so-called
Benjamin-Feir instability is a long wave instability.
Remark 3.2.1. The linearization of (3.4)-(3.6) is given by
(937” = 8§r + 2u + 2ye* oy,
@?9 = 8x'¢ — QM(atT),
oY = 0.7,
where for ¢ = 0 we have
—ye?rom = y? — 1.
The Fourier ansatz L
(7’, 197 w) — elkachuut(i;7 19’ w)

yields the dispersion relations

—W’F = =k 4 2u0 — 2(12 — )7,
iwl = ikt — 2u(iw?),
wyp = ikd.
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For k = 0 we find
—w(—w?+6p* —2) = 0.

Hence, we have two eigenvalues equal to zero and the rest of the eigenvalues bounded
away from zero for |u| > 1/4/3, which is exactly the spectral situation necessary for the
derivation of WME;, cf. [BDS19].

Remark 3.2.2. [Spectral curves =*iw; 5] For the calculation of the dispersion relation

we have to solve
w—k*=2(u*—-1) 2u 0

det —2iw —iw ik = 0.
0 ik  —iw
We find
(wW? — K = 2(p* — 1)) (—w? + k?) + 4p*w?® = 0,
respectively
wh — w? (2K + 6% — 2) + K+ 2k (u? — 1) = 0,
and so

22y = (2K + 6p — 2) £ /(2K2 + 6p — 2)2 — A(k' + 26222 — 1)),

which yields

wi, = (k*+3u* —1) £ \/4k:2u2 + (3u? —1)2.

2.5
2
L5
21

Figure 3.2: The left panel shows the spectral curves of (3.4)-(3.6) for p = 1.2 > 1 as
functions over the Fourier wave numbers k. They are purely imaginary (in blue) since
the real part (in red) vanishes identically. The right panel shows the imaginary part of

the spectral curves of (3.4)-(3.6) for 4 = 0.8 € (1/v/3,1) (in blue). The eigenvalues
with vanishing imaginary part have non-zero real part (in red), i.e., there is a so-called
Benjamin-Feir instability.
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Figure 3.3: The left panel shows the real (in red) and imaginary part (in blue) of the
spectral curves of (3.4)-(3.6) for 4 = 0.4 < 1/4/3 as functions over the Fourier wave
numbers k. The right panel shows the same at the threshold p = 1/v/3, c¢f. Remark

BLIT

Figure [3.2| and Figure |3.3| show that the traveling wave solutions are only spectrally
stable for || > 1. In this region an approximation result with initial conditions in Sobolev
spaces would be desirable. For |u| € (1/4/3,1) we have a Benjamin-Feir instability and so
only an approximation result with initial conditions in Gevrey spaces can be expected. For
|| < 1/4/3 the modes associated to w = 0 are imaginary again. However, for k = 0 there
are now modes with positive growth rates, cf. Figure [3.3] and so it cannot be expected
that the WME approximation makes correct predictions, cf. [HS20] for an example of a
non-approximation result.

3.2.2 The NLS limit

In the following remarks we explain how the previous WME approximation results from
[DS09,BKZ21] for the NLS equation are related to our result for the ccKG equation stated
in Theorem B.1.10l

Remark 3.2.3. [NLS as modulation equation for ccKG] Inserting the multiple
scaling ansatz
w(z,t) = cA(e(z — ct), e2t)elor—wot)

with £ = e(x — ct) and 7 = €%, into the ccKG equation (3.1) and then equating the
coefficients in front of e”el(k02=«0t) to zero for n = 1,2, 3 gives the dispersion relation

w§:k8+1,

the group velocity
C = /{Zo/u}(),
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equation
and shows that in lowest order A has to satisfy the NLS equation
—2iwgd: A = (1 — )G A+ ~AJAP.
Remark 3.2.4. [WME for NLS] The normalized NLS equation
0,U = i0;U +~iU|U|?,
with 7 € R, £ € R, U(§,7) € C and v = £1, possesses traveling wave solutions
U q(&,7) = e@+i$r+i¢o+iq$ ’

where g, @, ¢g, ¢ € R satisfy

0= —q* + e (3.15)

WME describe slow modulations in time and in space of these waves. For notational
simplicity, we restrict ourselves in the rest of this remark to modulations of the wave
train to the case ¢ = 0 = ¢y = 0. Hence, becomes w = 7.

Step 1: For the derivation we introduce polar coordinates, with radius also in exponential
form, in a uniformly rotating frame. The NLS equation in such polar coordinates

U(E,7) = o ErIHidtem i
is then given by

O =~ — 20r)(0ct), (3.16)
0,9 = (’327” = (8@)2 + (851”)2 +y(e* —1). (3.17)

Step 2: Introducing the local spatial wave number d¢¢ = 1 yields

O,r = —0gtp — 2(0¢r)1),
o, = 8?7“ - (95(¢2) + 85(857”>2 + 27e27"6§r.

Step 3: The long wave ansatz
r(6.7) = F(66,67), (€ T) = (3, 07),

with 0 < 0 < 1, leads to

O = —0x1p — 2(0x7)id,
Ord = 0%0%7 — Ox (V%) + 8°0x (0x¥)* + 2ve* Ox ¥,

where T'= 07 and X = 6¢. Ignoring the higher order terms gives WME

OrF = —0xy — 2(dx7)Y,
(9T15 = —8X(1Z2)—|—2ye%8X7‘.
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In case v = 1 we recover the Benjamin-Feir instability, cf. [BM95], i.e., the linearization
Ori = —0x, Ot = 2y0x7,

is an elliptic system and so ill-posed in Sobolev spaces for v = 1. However, even for v =1
WME still possess local-in-time solutions in the space of functions which are analytic in
a strip around the real axis in the complex plane, i.e., in Gevrey spaces (see Definition

3.1.8)) by Cauchy-Kovalevskaya theory.

Remark 3.2.5. [WME for ccKG via NLS] We derive WME for the ccKG equation
(3.1) in the NLS limit introduced in the two previous remarks. In this limit we consider
modulations of the traveling wave solution

iwt

u(x,t) =ee,

of the ccKG equation (3.1)) with

w=1/1—ne?= 1—%62—1-(9(54).

Step 1: For the derivation of WME we introduce polar coordinates

u(m, t) = €er(€$’€2t)+i§0(51’7€2t)+iwt‘
Using
&u o 28 . 28 . . 9 2 O .
o €0 r +1e70; 0 +1— 1€ 7/ + (5 )7
atQUI 2 - 2 . ) Y o o
—— = (%0, r+ie0;p+i—1ie"y/2+ O(Y))* + (e°0r + i 0%p),
U
and
Oy
- = €0¢r + ie0ep,
U
v (€0er + 10 p)” + (e70; 1 +1e70; ),

where £ = ex and 7 = £2t, and separating real and imaginary parts we find
0P — (52(97@ +1—e%/2+ 0(84))2 + (828Tr)2
= 20Fr — (e0¢p)” + (e0er)? — 1 + 2ye™,
2e% (0,1) (528Tg0 +1—e%/2+ (’)(54)) + %02
= 2(edr) (e0ep) + €20 p.
In lowest order we obtain

—20p = r—(Oep)’ + (0er)” + (e — 1),
20,1 = 2(0r) (Dep) + o,
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which is (3.16)-(3.17) up to rescaling 7 — —27.
Step 2: In order to relate the equations (3.16)-(3.17) to WME (3.7)-(3.9) for the ccKG

equation, we use the variables from above, namely ¢ = 0:¢ and ¥ = 0.¢. We find

Orr = —0gth — 2(0er)ep,
9 = 8527’ — % 4 (0er)? + y(e* — 1),
0:p = 0.

Differentiating the ¥-equation w.r.t. 7 and replacing then 0,r and 0,1 on the new right-
hand side by the right-hand sides of the 0,7- and 0,1-equations gives the system (3.7))-(3.9)

from above.

Remark 3.2.6. Finally, we show how the Benjamin-Feir instability criterion for the ccKG
equation and for the associated NLS equation fit together. With the notations of Remark

B.1.6| we have p? = 1 — ve® 0 and get from (3.7) that

P(0,0) = -9+ hot.

’YGQTOW

using the implicit function theorem. We find

D = _WGZW Ord + h.o.t.,
aX”F* = —,yeéio p axi\g + h.o.t..

Inserting this in the above equation (3.8) yields

@&:2(-“ &M)@+@ﬂ—2(-” aﬁ>@+u)

,ye2r0,u fyeQro,H

__ 2 (0x9) &b + Ox + 2 (0rd)d + 2 (0rd) .

7627’0# ’}/627"0*“ 7627‘07“
The linearization of this equation is given by
« v 2412 « v 2(1 — e?rom «
Ord) = Oxt) + — %ﬁ:@w+l—gﬁ—l%ﬁ
e 70,1 e 70,1
Hence, we find
Ol = L dx1h = L dx 1
A (e U e O
ye~ O

Since additionally the equation , namely 8T77ZJ = 8X1§, holds, the Benjamin-Feir in-
stability occurs for 3 — 2y te=?0x < (. In this case WME are ill-posed in Sobolev spaces.
In the NLS limit we have ry, — —oc and so 3 < e 2. Therefore, the sign of v decides
about the stability and instability in the NLS limit. The unstable case is possible for
v > 0.
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3.2.3 Other long wave limit approximations

WME appear as a long wave approximation with wave length O(1/§). Other long wave
approximations are the KdV approximation or the inviscid Burgers equation. The KdV
approximation describes long waves of amplitude O(6%) on a O(1/§%)-time scale whereas,

as we have seen, the WME approximation describes long waves of amplitude O(1) on a
O(1/§)-time scale.

Remark 3.2.7. [KdV approximation]| In order to obtain a KdV equation
8TA = V18§’(A -+ VQAaxA, (318)
with coefficients vy, 15 € R, for (3.4)-(3.6) with |x] > 1, we make the ansatz

Tkdv
Drao | (2,1) = 2A(0(x — ct), 5°t)V,
wkdv

where ¢ € R is the group velocity and V' € C? an eigenvector to the eigenvalue 0 associated
to one of the two curves wiy plotted in the (green dashed) circle of the right panel of
Figure [3.1} Then, similar to Theorem [3.1.10| the following approximation result can be
established.

Theorem 3.2.8. Let |u| > 1, 09 > 0 and m > 5. Then, for all Ty and Cy there ezist
Cy, Th, 6o > 0 such that for all 6 € (0,0) the following holds. Let A € C([0, Ty}, GZ:™3) N
C'((0,Tp), G2 be a solution of the KdV equation (3.18)) satisfying

sup || Al|gm+s < Ch.
T€[0,To] 0

Then, there exist solutions (r,9,v) of (3.4)-(3.6) with

sup sup !(r,ﬁ,w)(rc,t) - (demﬁkdmwkdv)(%t)’ < 0257/2-
t€[0,71/83] =z€R

Remark 3.2.9. We explain in the subsequent Remark |[3.2.14] how the proof of Theorem
[3.1.10| has to be modified for proving Theorem [3.2.8 There, we also explain why Theorem
and Theorem [3.2.8|are formulated differently. We refrain from formulating a similar

result for the approximation by an inviscid Burgers equation, cf. [BDS19].

Remark 3.2.10. The spectral situation, plotted in the left panel of Figure [3.1], appears
for various systems with a spatially homogeneous background state and so for this spec-
tral situation various KdV approximation results exist, for instance for the water wave
problem, cf. [Cra85,SWO00b, Dull2|, or the FPU-system, cf. [SW00a]. Less results are
available for the spectral situation plotted in the right panel of Figure Only recently
methods have been developed for the description of the long wave limit of spatially homo-
geneous systems by KdV approximations, cf. [CS11,[Sch20], and WME approximations for
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such systems. In the justification analysis of the KAV approximation the new oscillatory
modes are eliminated by some normal form transformations. In the justification analysis
of the WME approximation a new serious difficulty occurs, namely the fact that due to
the scaling of the WME ansatz infinitely many normal form transformations have to be
performed, cf. [DKS16] and Chapter 2] In [BDS19] for a Boussinesq equation with spa-
tially periodic coefficients the validity of the WME approximation was established with a
suitable chosen energy.

Remark 3.2.11. The spectral situation, plotted in the left panel of Figure 3.1} also ap-
pears in the situation described in Remark [3.1.1] namely in the description of modulations
of periodic wave trains, and so beside the already mentioned WME approximation results,
cf. [DS09,|BKZ21|, also KAV approximation results, cf. [BGSS09,BGSS10,/CR10,CDS14],
do exist for the NLS equation. However, slow modulations in time and space of periodic
traveling wave solutions with a spectral situation as plotted in the right panel of Figure
[3.1] have not been considered before.

3.2.4 Idea of the proof

Remark 3.2.12. [Ideas in the Proof of Theorem The strategy of the proof
is as follows. By using Cauchy-Kovalevskaya theory in Gevrey spaces we obtain local-in-
time existence and uniqueness of solutions to WME (B3.13)-(3.14)). Another application of
the Cauchy-Kovalevskaya theory yields the local-in-time existence of higher order approxi-
mations in Gevrey spaces. These higher order approximations are necessary for the proof
of the main result, Theorem [3.1.10] The solutions of the error equations are controlled
with methods from [DKS16], described at the end of Remark Since we have to
perform infinitely many normal form transformations, we must show the convergence of
this procedure. Energy estimates for the limit system provide the final argument to finish

the proof of Theorem [3.1.10f

Remark 3.2.13. [Differences to [DKS16]] Although our proof is based on the overall
idea of [DKS16|, there are a number of differences between the analysis from [DKS16]
and the analysis of the present chapter. Here, the normal form transformations are only
made in a neighborhood of wave numbers at £ = 0. Therefore, in the present chapter the
validity of non-resonance conditions is only necessary in this neighborhood but not on the
whole real line like in [DKS16]. However, by this restriction due to some incompatibility of
some Fourier modes supports infinitely many new terms are created. For their infinite sum
absolute convergence must also be shown. Moreover, since the Benjamin-Feir unstable
situation is included, the estimates from |[DKS16] have to be transferred from Sobolev
spaces to Gevrey spaces, cf. Chapter 2]

Remark 3.2.14. [Ideas of the proof of Theorem The KdV approximation
result in Theorem [3.2.8| can similarly be proven as the Whitham approximation result
in Theorem B.1.10l Thanks to the smaller size of the solutions one normal form trans-
formation is sufficient for the elimination of the oscillatory terms. This is the reason
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why Theorem [3.2.8] and Theorem [3.1.10| are formulated differently. The smallness of
the solutions of WME is needed for the convergence of the infinitely many normal form
transformations. Finally, we can also use the same energy estimates as for the WME
approximation for the validity of the KdV approximation.

3.3 The case g #0

In the previous Remark [3.1.6] we restricted ourselves to the case ¢ = 0. In this section
we derive the evolution equations in the case ¢ # 0 and investigate the linear stability
of the associated wave trains. Calculations for determining the stability regions in the
(14, q)-parameter plane can be found in Appendix

3.3.1 The evolution equations

Here we redo the calculations to derive (3.4))-(3.6) at the beginning of Remark |3.1.6| for
the case ¢ # 0.

Remark 3.3.1. [(r,9,¢)-system for g # 0] We introduce polar coordinates
r+ip+rg tipttigr

u==ec

with r = r(z,t), ¢ = p(z,t) and —ye*"=» = p? — ¢> — 1. Inserting this into the ccKG
equation (3.1) and separating real and imaginary parts gives

Ofr = —(0r)’ + (9p)” + 2100 + (0u1)” — (Outp)” — 2q0up + O2r
_’_7627’%” <627" . 1) 7
e = —20r0up — 2u0pr + 20,10, + 2q0,7 + O2¢p.

As in Remark [3.1.6], we introduce the local spatial wave number ) = 0, and the local
temporal wave number ¥ = 0;¢ for which we obtain the evolutionary system

Gr = Or +9° 4 200 — () = * + (07)" — 2q¢ (3.19)
+762rw (e27" . 1) 7

00 = 2(0,r) (Y +q) + b —2(0yr) (9 + p) (3.20)

op = 0. (3.21)

3.3.2 Linear stability analysis

In this section we redo the linear stability analysis from Section for the periodic
wave trains in the case g # 0, i.e., we consider the linear stability of (r,v,1) = (0,0,0) of

B-19-(B-21).

69



Chapter 3. Validity of the Whitham approximation for a complex cubic Klein-Gordon
equation

Remark 3.3.2. The linearization of (3.19)-(3.21)) at the origin is given by

OPr = O%r +2ud — 2qp + 2y ry,
816?9 = aﬂﬂ - QM(atT) + 2(](85,;7"),

oY = 0.7,
which yields the spectral problem
—W*F = =k 4 2u0 — 2q0 — 2(p® — 1 — )7,
iwld = ikt — 2u(iw?) + 2qikF,
iqu = ik@,

where we used p2 = 1+ ¢ — yeran,

Remark 3.3.3. For the calculation of the eigenvalues w = w(k) we have to solve

W=k =2 -1-¢* 2u —2q

det —2piw + 2qik —iw ik =0.
0 ik —iw
We find
(W? =k = 2(p* =1 = ¢*))(~w® + k?) — (—2piw + 2qik)* = 0,
respectively

wh — W2k + 6p% — 2 — 2¢%) + w(Bugk) + k* + 2K2(u® — 1 — 3¢%) =0,
which no longer can be solved explicitly w.r.t. w. For £ = 0 we obtain
w(w? — 6p* + 2 +2¢°) = 0.

Hence, we have two eigenvalues equal to zero and two eigenvalues with

w? =6u® — 2 — 2¢°.
If u? > % + %QQ, then wi; = +/6p? — 2 —2¢* € R, cf. Figure below. Otherwise
1? < 3+ 3¢%, then wyy = +iy2 + 2¢ — 642 € iR.

Remark 3.3.4. Figure shows the different stability/instability regions in the (u, q)-
parameter plane. In the (yellow) area Py.p the spectral curves show a similar behavior as
the ones in the left panel of Figure[3.2] In that case WME approximations can be derived
with the same techniques like for ¢ = 0. In the (white) area Pyes there are eigenvalues iw
with positive real part at the wave number k& = 0, see end of Remark In this region
it cannot be expected that the WME approximation makes correct predictions. Typical
spectral curves for the parameter region Ppeyj are shown in the left panel of Figure .
It shows a Benjamin-Feir instability for ¢ # 0. Since the derivation of WME needs a
spectral situation as shown in Figure [3.2] we concentrate in the following on parameters
outside the parameter region Pyes, cf. Remark [3.10.2]
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3-5 T T

25}

0.5

0 0.2 04 06 08 1 1.2 1.4 1.6 1.8 2
u

Figure 3.4: In the (u,q)-parameter plane we identify regions where the spectral curves
look qualitatively different. The boundary between the parameter region Pres; and Phpen;
is determined by the equality 1+ ¢> — 3u? = 0 and the boundary between the parameter
region Ppenj and Pgap is determined by the equality 1+ 3¢*> — p? = 0. For some details,
see Appendix In Pgar, the wave trains are spectrally stable, in Ppen; they exhibit a
Benjamin-Feir instability and in P,y WME are not valid.
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Figure 3.5: The left panel shows the real (in red) and imaginary part (in blue) of the
spectral curves as functions over the Fourier wave numbers k of — for p =0.8
and ¢ = 0.5 which is located in Ppenj. The right panel shows the same for y = 1.2 and
g = 0.7 which is close to the boundary of Ppeyj and Peiap-

3.4 The improved WME approximation

For estimating the error made by the WME approximation we need that the residual
terms, i.e., the terms which do not cancel after inserting the WME approximation into
the ccKG equation (3.1) are sufficiently small. The residual can be made smaller by
adding higher order terms to the previous WME approximation. This section contains
the construction of such an improved WME approximation. The subsequent analysis
is an adaption of [HARS23| Section 2]. The local-in-time existence and uniqueness of
solutions of the approximation equations is guaranteed by an application of the Cauchy-
Kovalevskaya theory in Gevrey spaces.

3.4.1 Some preparations

In the next Remark [3.4.1] we collect some inequalities which we will use in the following.

Remark 3.4.1. [Estimates in Gevrey spaces] a) We use that G2 is an algebra for
m > 1/2 and ¢ > 0. Then in addition, u,v € G implies uv € G and

luwvllay < Cnllullaplvlicy, (3.22)

where the constant C,,, > 0is independent of ¢ > 0. In case that u and v are vector-valued,
the product is replaced by an inner product on R¢. Formula (3.22) can be improved to

luvllgrr < Conyms (lull g [0l gz + lullggz l[ollagz),

which holds for all ¢ > 0 and m; > 1/2 for j = 1,2, where the constant C,, ,,, is
independent of o > 0.
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b) Let ¢ be any entire function with ¢(0) = 0. Then, for any m > 1/2 there exists
an entire function ¢,,(2) which is monotonically increasing on R, and satisfies ¢,,,(0) = 0
such that we have

¢ ()]

ar < Om(l|ullep), (3.23)

for all u € G7'.

c¢) Functions u € G7' can be extended to functions that are analytic on the strip
{z € C: |Im(2)| < o} by the Paley-Wiener Theorem, cf. [RS75, Theorem IX.13]. It is
easy to see that for any o; > g5 > 0 and any m > 0 we have the continuous embedding
GY — G

d) Since ||u(62)]||r2(az) = O(671/?), the WME approximation will be of order O(§~*/2)
in the L%-based spaces G™. In order to estimate the WME approximation without this
loss of powers of § we introduce the following spaces.

Definition 3.4.2. [Spaces W!'| The spaces
Wy ={u € Cy : |lullwy < oo}
are equipped with the norm
olk| 2\/2 |
lullwg = [ e (1+ k2)"" [ae)ldk,

for o >0 and m > 0.

In the following we use

[uv]lap < Callullwgpllvlley  and Jluvlhy < Collullwge ([0l

with m, o > 0, where the constant C,, > 0 is independent of o > 0.

3.4.2 The structure of the problem

For the derivation of the higher order approximations it turns out that the notational
efforts can be reduced tremendously if we exploit the structure of the underlying system
— for (r,4,1) after applying the transformation (7, 13‘) — (0,1) as in @ . The
equations for (v,w, 1)) are obtained by substituting (r,?9) in terms of (v, w) in (3.4)-(3.6)
as explained in the above Remark [3.1.6] i.e., we find

IF(arv + agw) = 02(a1v + agw) + (azv + agw)® + v (3.24)
— (Oy(av + agw))2 —? + (0x(arv + agw))2
+7€2T°’”(e2(“1”+a2w) —1=2(a1v + agw)),

ow = 2¢(0x(a1v + asw)) + O (3.25)
—2(0(a1v + agw))(azv + aqw),
aﬂﬁ = 833(@311 -+ CL4U)). (326)

73



Chapter 3. Validity of the Whitham approximation for a complex cubic Klein-Gordon

equation
We make the long wave ansatz in (3.24)-(3.26]) and set
(v, w, V) (x,t) = (0,0, ) (6, 6t) = (0,0, ) (X, T).
We obtain
6207 (a1 + agw) = %05 (10 + ag) + (azv + agw)® + v (3.27)
—6% (Or(ar0 + ag))? — ¢ + 62 (dx (a1 D + azh))”
‘|"}/62T0’” (62(a117+a21?1) —1-— 2(0/1?7 + &2?1/))),
Orth = 20(9x (a0 + axh)) + Ox 1) (3.28)
—2(8T(a117 + 6@’(1)))(@3{) + CL4UVJ),
8T1/V} == ax((lglv) + CL4UVJ). (329)
The resulting system (3.27)-(3-29) for (¥, , 1) is then of the form
0 = M,(v,u)+ §F,(D%v, Dxu, D7v, D7u), (3.30)
aTu = Mu(va u)aX <V7 11) + MT,u(V7 u)aT(V7 11), (331)
with v. = ¢ and u = (w,7)), where M,(v,u), M,(v,u) and My, (v,u) are entire

(matrix-valued) functions of their arguments. The function F, is polynomial in D% v =
(v,0xv,0%v), D3u = (u,0xu,d%u), Div = (v,0pv,02v) and Diu = (u,dru,dzu),
with the additional property that F, is linear in d2v and d%u. In the following we use
the fact that the only linear term in M, (v,u) is v = ¢ and that Mr,(v,u) is linear in
its arguments.

3.4.3 Derivation of the amplitude equations

The residual contains the terms which do not cancel after inserting the approximation into
the original system. Adding higher order terms to the WME approximation —
allows us to make the residual sufficiently small for our purposes. Like in [BKS20,HdRS23)|
we consider an improved approximation (v, u) of the form

v(X,T,0) =v)(X,T) + v (X,T) + §*V*(X,T) + h.ot.,
u(X,7,8) =u’(X,T) +6u*(X,T) + 6*u*(X,T) + h.ot.

I. In lowest order: We insert the ansatz into (3.30)-(3.31) and equate the coefficients
in front of the §° to zero. In lowest order, i.e., here at §° we get

0 = M,(v",u’),

oru® = M, (v%,u)dx (v°, u’) + MT,u(VO, u?)or(v%, u’).

In the following lines we use the properties, listed at the end of Section [3.4.2l By the
implicit function theorem the first equation can be solved w.r.t. v® for u® sufficiently

74



3.4. The improved WME approximation

small. Inserting the solution v° = v%(u’) in the second equation and solving then the
second equation w.r.t. d;u for u® sufficiently small by Neumann’s series yields

oru’ = M(u?)0x (u), (3.32)

with u®|7—g = ug, which coincides with WME (3.12)-(3.14)).
I1. Higher order: The governing equations for (v, u”),n € N, arise at 6**. We obtain
linear inhomogeneous equations of the form

0 = l\N/Iv(V",VO, u”, u’)
+F,., (D3v, D3®, D3v°, D
L D3Vt Diu" "t Divt T D%u”_l)
oru” = M,(v%,u’)ox(v",u") + DM, (v’ u®)[(v",u™)]0x (v°, u")
+Mr,(v?,u)0r(v",u") + DMy, (v2,u°)[(v", u™)]0r(v°, u?)
+Fu,n(DXVO7 DXuO7 DTV07 DTu07
ceey l)XVn_l7 DXu"_l, DTVn_l, DTun_l).
Herein, DM, (v®, u®)[(v", u")] denotes the linearization of the map (v, u) — M,(v,u) at
the point (v%, u’) applied to (v, u"). DMy, (v°,u’)[(v",u")] is analogously defined. As
above we can use the implicit function theorem to solve the first equation with respect to
Vo= V" (D§(v0, D3u®, D3v0, D2, ..., DAv" Y, D3u™ !, D2v* ! Dau Y, u”) ,

for sufficiently small and sufﬁciently smooth data, where v" is analytic in a neighborhood
of 0 and where v = 0 for (D3 v , DZu""1) = 0 with the help of the properties, listed
at the end of Section [3.4.2] By mductlon v~ 1 and therefore DZv"~! and D%v"™! are

completely described in terms of (v?,u®, ..., v?*™2 u" 2 u"!) and its temporal and spatial
n—1

derivatives. Iteratively, (v¥, ..., v~ v”) is determined in terms of (u’, ...,u""! u"). Thus,

we get the equation
oru” = M, (u®)dxu" + DM, (u’)[u")dxu’
+My, (u®)dru" + DMy, (u®)[(u")]dr (1) (3.33)
_'_Fn(DXVOa DXu07 DTV0> DTuU7
ey DXVn_l, DXu”_l, DTVn_l, DTUN_I),
with zero initial data for n > 1. Here, M,, l\N/IT,u, F,, and the linearizations mu(uo)
and DM, (u) are entire (matrix-valued) functions and F,,(0) = 0. Similar to above we
apply Neumann’s series to solve (3.33]) w.r.t. dru” for sufficiently small and smooth data.
Finally, this yields
oru” = M’ (u)oxu" + EMZ(uO)[u"]aXuO
+DMy,,,(u”)[(u")]0r(u’) (3.34)
+F:(Dxv°, Dxu®, Drv°, Dru®,
ey Dxv" 1 Dxu™ !, Dpv™ Tt Dpu™t),
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for n > 1. In the following we explain how to solve these equations and how to obtain
estimates for the residual.

3.4.4 Cauchy-Kovalevskaya theory in Gevrey spaces

As preparation for the subsequent error estimates, we would like to show for the simple
example of WME

dru = M(u)dyu, u]T_O =uy, XeR,T>0, (3.35)

where u = u(X,T) is an unknown function taking values in R? how to obtain estimates
in a time-dependent scale of Gevrey spaces. The following Cauchy-Kovalevskaya theorem
provides local-in-time existence and uniqueness of solutions in Gevrey spaces for ,
cf. [BKS20,HdRS23].

Theorem 3.4.3. Let m > 1 and R, 09 > 0. Then, for every ug € Gy with 2||lugllgp < R
and o1 € (0,00) there exists an n = n(R,m,09,01) > 0 such that for Ty = (09 — 01)/1
there exists a local solution u € C*! ((O, Tol, G?l_l) N C([O, Tol, G;"l) to (3.35)) satisfying

swp [[u(T)|cy < R. (3.36)
T€[0,T0]

Proof. For a complete proof we refer to the existing literature, cf. [Saf95, Theorem 1.1].
Here, we restrict ourselves to the question how to obtain the bound (3.36)). We define

|k|op := /—0? as a Fourier multiplier operator. Multiplication of (3.35) by

o20(T)[klop (1 + ‘/{5|(2,p)m u,

where o(T') = 09 —nT, and integration w.r.t. X € R leads to
1d 2 1/2, 112
sl all
= Re (((M(u) — M(0))dxu, wm, + (M(0)dxu, u)G;n(T)) .

By the Cauchy-Schwarz like inequality

Re(u, V)ay < [ul gy Vg

Remark with (3.22) and (3.23), and the assumption m — § > 3 we have

liH
2dT

k< IOl + Gyl

where ¢,, is an entire function which is monotonically increasing on R, and satisfies
¢m(0) = 0. Finally, we obtain

1d

L4 2 N N - 2 1/2..112
5 a e, + (0= IMO = dnluller,,)) [ulgna: < nllkglE,, .
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Choosing 7 so large that
1> [[MQO)[| + ¢m(R)

yields
liHuHQm <nllullEn o rvesp. uflge < [lulfm €™
2d7" o) Gor)’ ' Yoy = WG
Setting R = Hu||GZL(O)e"TO/ 2 finally yields (3.36]) by continuity. H

Remark 3.4.4. [Artificial damping thanks to decrease of ¢ in Gevrey spaces]
This approach leads to some artificial damping of the solutions at Fourier wave numbers
k # 0 which we will explicitly use later.

3.4.5 Approximate solutions for the perturbed problem
Line by line as in [HdRS23] we obtain

Theorem 3.4.5. Let m > 1 and oy > 0. Suppose there exists a local-in-time solution
u’ € ¢ ((0, 1), G ') N ([0, Tl G

to (3.32). Then, for every o1 € (0,00), n € N and for all 0 < k < n there exist
Ty =T(o1,k+1) <Ti(o1,k) < Ty and solutions

ut e C'((0,11), G ) nC ([0, Th), G )
to ((3.34).
Then, the n-th order approximations are given by

vi(T) = v(T) + 6*v(T) + - -+ 6*v*(T),
u"(T) = u(T) + &*u’(T) + - - - + 6*"u"™(T),

with corresponding residuals of (3.30))-(3.31])

ResZ(T) = MW(‘NIn7 ﬁn) + 62FU(D§(’\V’”7 Dg(ﬁn7 D%{’n7 D%ﬁn)a
Res!(T) = —0ru"+ M,(v",u")0x(V",0") + Mg, (v",0")0r(v",0").

By the above construction and Theorem we directly obtain
Corollary 3.4.6. Assume that the hypotheses of Theorem|[3.4.5 are met. Then, for every

n € Ny the approzimate solutions (V",0") and residuals (Res,, Res!") are in C([O, Ti], G}Z)
for all 61 € [0,01). Furthermore, there exists a constant C' > 0 such that we have
sup [|(V"(7),0"(T)) — (v*(T),u’(T))ley, < OO,
T€[0,T1] !

sup_||(Resy, Resy)(7T)|
Te[0,T1]

ng S 052n+2 )
1

77



Chapter 3. Validity of the Whitham approximation for a complex cubic Klein-Gordon
equation

3.5 The equations for the error

For notational simplicity the following analysis is carried out for ¢ = 0. It will be obvious
that the proof will also work for ¢ # 0 in the parameter regimes Ppenj and Pgap, cf.
Figure . For estimating the difference between the WME approximation (v",u") and
true solutions (r,9,)(z,t) of (3.4)-(3.6) on the long O(1/4)-time scale, we separate the
modes in a neighborhood of the wave number £ = 0 from the modes bounded away from
the wave number k£ = 0. In the neighborhood of k = 0 we use normal form transformations
and energy estimates similar to the ones in Section to get rid of the terms of order
O(1) in the equations for the error. Outside of this neighborhood we will use that the
time-dependent scale of Gevrey spaces additionally leads to some artificial damping of
the solutions at Fourier wave numbers k # 0.

Step 1: Our starting point is system — which we write as first order system

0V =LV + N(V), (3.37)

where

r T

|7 | %20 + 2(1 — )
V=1lel VY= Ot — 2T ’

(0 0,9

and
0
N(V) = 92— 72 — 2 4 ((%7“)2 + (1 —p?)(e* —1—2r)

2(0,r)0 — 270
0
We introduce the error function R made by the associated WME approximation W
through V = U + §3/?R, where ¥ = U" = (f”,atf",én,én)T which is a function of
(57, %", ") = (v, u™) by the transformation where (v, u") is the WME approx-
imation constructed in Section [3.4
The error function R satisfies

R = LR+ DN (V)R + 6*2G(R) + 6~/ *Resg, (3.38)

with R(0) = 0, where DN (V)R stands for the W-dependent terms which are linear in R,
and G(R) for the terms which are non-linear in R, i.e.,

PPG(R) = 63A(N(V 4 6°*R) — N(¥)) — DN(T)R.

In our notation, we suppress the fact that G depends on V¥, too. In contrast to LR
and DN(U)R, the term G is of order O(5%/2), and therefore, it makes no problems for
obtaining a O(1)-bound for R on the long O(1/6)-time scale. The residual Resg contains
all terms which do not cancel after inserting the WME approximation ¥ into (3.37). Since
the residual Resg is obtained by a number of simple transformations from the residuals
(Resy), Res;;), the residual Resg obeys the following estimates.
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Corollary 3.5.1. Assume that the hypotheses of Theorem|[3.4.5 are met. Then, for every
n € Ny the approzimate solution W™ and residual Resg are in C([O,Tl],G?1 for all

a1 € [0,01). Furthermore, there exists a constant C > 0 such that we have

sup ]||\If”(T) - \IIO(T)HG?1 < 06,

T€[0,Ty

sup [[Resg(T)[lgr < Co*nt2,
T€[0,T1] !

So the residual Resp, is sufficiently small for n large enough and also makes no problems
for obtaining a O(1)-bound for R on the long O(1/d)-time scale.

Step 2: As mentioned above, the error will be handled differently for different Fourier
wave numbers. So for the separation of the modes we introduce the mode projections

E = E(19,), such that Ef(k) = E(k)f(k) with
n _ 17 |k| < 507
Ek) = { 0, |kl > 0.,

and E° = Id — E, such that E°f(k) = E°(k)f(k) = (1— E(k))f(k) on the complementary
part for a 6. > 0, independent of 0 < § <« 1. Since E°(k) is equal to zero in a d.-
neighborhood of £ = 0, we have in this neighborhood the following estimate

[E(k)| < Clk|",

for every @ € N. Due to this fact we have that E°V is of the order O(6°) if ¥ is chosen
s times more differentiable than the error. This is a consequence of the following lemma,
cf. [Sch20, Lemma 7].

Lemma 3.5.2. Let 6y > 0, 0o € R and E: R — C satisfy
B<(k)] < Cmin([kf, (1 + [K])").
Then, for the associated operator E° = FLE°F the following holds. For
a) o1 > gy and my,my > 0 or
b) o1 = 09 and my —my > max(fy, 0),
there exists a C' > 0 such that
| B8 )llgm, < CO 2T () g,
for all 6 € (0,1).

Hereby, the loss of §~1/2 is due to the scaling properties of the L>norm. We introduce
the new error functions R = EFR and R® = E°R which satisfy

OR = LR+ EDN(U)R+ EDN(V)R®+ 6*2?EG(R + R°) + 6 **EResg, (3.39)
OR° = LR°+ E°DN(¥)R+ E°DN(V)R® + §%?E°G(R + R°) (3.40)
+673/2E°Resg,
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by applying £ and E° to . For controlling the error functions R and R° on the long
O(1/0)-time scale we have to get rid of the O(1)-terms on the right-hand sides. It turns
out that the terms

E‘DN(V)R + E°DN(¥)R®

in can be controlled by the artificial damping obtained from the time-dependent
scale of Gevrey spaces, see Section below. We use normal form transformations and
energy estimates to get rid of the terms EDN(V)R+ EDN (V) R¢ in (3.39) with a Fourier
support in a neighborhood of the Fourier wave number k = 0.

Step 3: For the normal form transformations in the neighborhood around k = 0 it is
advantageous to diagonalize the linearized system. A diagonalization is possible since L
is of the form

0 1 0 0
=0 [20—=pH)+0K) 0 2u 0
Lik) = 0 “ou 0 k|
0 0 ik O

for k — 0. There are two eigenvalues iwy of order O(1) and two eigenvalues iwis of order
O(k). The associated eigenvectors are denoted by ¢11(k) and Pig(k). For R* = ST'R,
with the matrix S(k) = (@1(k), p-1(k), p2(k), p_2(k)) for |k| < 6., we find
OR* = AR*+ES'(DN(V)SR*)+ ES ' (DN(V)R°) (3.41)
+6*2ES7'G(SR* + R°) 4+ 6 **ES 'Resg,

where iwr (k) 0 0
A(k) = S7HR)L(E)S(k) = 8 M(l)(k) mo(k) 8
0 0 0 iw_o(k)

Step 4: Since V is strongly concentrated at the wave number k& = 0, the part E°V is
O(6%) in the spaces used subsequently if U is chosen s times more differentiable than the
error. The approximation W appears in the equations for the error not only linearly but
also nonlinearly. Due to product estimates the application of £ on the nonlinear
terms in W is of the order O(d°) if W is chosen s times more differentiable than the error.

Hence, we separate ¥ into
U="Uy+V,,

with
Vg=FEV and V,=FEV,

and write

ES™YDN(¥)SR*) = ES YDN(¥,)SR")
+(ES™YDN(Vy + V,)SR*) — ESY(DN(¥y)SR")),

where by the above argument

ES™'(DN(¥y + ¥,)SR*) — ESTY(DN(¥,)SR*) = O(6°).
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Hence, we rewrite (3.41)) into
OR* = AR* + ES Y(DN(V,)(SR* + R%)) + H;, (3.42)
where

Hy = ESY(DN(Yy+ ¥,)(SR*+ R%)) — EST'(DN(¥)(SR* + R))
+0*2ES7'G(SR* + R°) 4+ 6 *?ES 'Resg.

Step 5: The Fourier support can be restricted further. In fact, the term
ES Y (DN(¥o)(SR* + R°))

can be written as
ES Y (DN(Vy)(SR* + R%)) = ((f: ) (SR* + RC)>
= i J(SR* + R%)),

where the operators L,, are linear operators with L, (Vy) = O(]|¥|™). This term is split
further into

fj Vo)) (SR* + R%)) + Z E((E°L,(¥y))(SR* + R%)),

n=1

where by the above argument
> E((E°L,(¥))(SR* + R%)) = O(8°).
n=1

With the previous remarks we write (3.42)) as

O,R* = AR* + fj E((BEL,(Vo))(SR* + R°)) + H*, (3.43)

n=1

where

H*=Hj + i E((E°L, (%)) (SR* + RY)).

We use normal form transformations to simplify >°°, E((EL,(V,))(SR* + R°)) as far
as possible for subsequently applying energy estimates to get rid of the remaining terms.
The term H* does not make problems to prove bounds for R on the long O(1/0)-time
scale since all terms in H* are at least of order O(9).
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Step 6: We separate (3.43) in its components. With R* respectively R°, written as
(Ry, R_1, Ry, R_5)T, with some slight abuse of notation, we have

OR, = iW1R1+Z Z BV, R;) + HY, (3.44)
n=1j=-+142

Ry = iwsRy+ > > Byuaj(¥o,Rj)+ H;, (3.45)
n=1j=-+142

and similarly for R_; and R_,, where w;R; is understood as

for j € {£1,+2}, where
Bn»j1,j2<\1107 Rj2) = 90;1 ’ E((ELTL<\IIO>)(§O;2 ’ (SR* + RC)SOJé))?
and where @7 (k) are the adjoint eigenvectors of L(k), with the property

(i (k), §j(k))cs = bij.
Obviously, the remaining terms H satisfy the estimates
1 H; lem < Cio||R[gp + 0253/2HR||2G;" + C30,
for all ¢ > 0 and m > 1/2, where the constants C; can be chosen independently of o.

Remark 3.5.3. [Separation of the equations (3.44) - (3.45)] Although ({3.44)) - (3.45)

can be written as one equation, we will not do so, since in the following the nonlinear
terms are handled differently and have different properties, cf. Section 3.9}

Remark 3.5.4. [Terms B, , j,(Wo,R;,)] The terms B, ;, j,(¥o, R;,) consist of a mode
projection E applied on a product of a term EL,(V,) with Fourier support in [—d, 0]
and an error term SR* 4+ R°. In Fourier space the term is mainly a convolution with some
kernel gw'l,jz? ie.,

—

Bujua(Wo, Ris) (6) = [ B k= KKV T5 = K Ry (KK,

where Wi corresponds to a n-times convolution of Wy. More details about this form can
be found in Section 3.1 in [DKS16|. This term is non-zero if |k| < §. and if [k — k'| < ..
As a consequence, only |k'| < 2. has to be considered. In general, the kernels are more
complicated and depend on more variables.
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3.6 The series of normal form transformations

In the following we use the notation
p=O(%ol"RI),
if
olley < Cll¥o[Em IRl ey,
for all 0 > 0 and m > 1/2, where the constant C' can be chosen independently of o.

Our goal is to prove a O(1)-bound for Riy, Ris, and R® on a O(1/§)-time scale.
As already said, as a next step on this path, we simplify ([3.44))-(3.45]) by eliminating all
non-resonant terms of order O(1) by near-identity changes of variables. System ((3.44])-
has a similar structure as [DKS16, system (21)-(24)] and so it can be expected that
the non-resonant terms B, 1 12, Bn1 -1 and B; 2 +1 and similarly B, 1 12, B, 1, and
B, _9 41 can be eliminated with convergent infinite series of normal form transformations,
cf. Chapter[2] With the first normal form transformation we eliminate the terms By 1 1o,
Bi1,-1 and Bj 21, with the second normal form transformation we eliminate updated
versions of the terms By 19, Ba1 -1 and Bys 41, etc.

Step 1: [The first normal form transformation| To illustrate the procedure, we
show how to obtain the first near identity change of variables. We set

Ry =Ry + Z Mi 15, (Wo, Rj,),

n
m
G7

jZG{fl’i2}
Rz,l = RQ + Z M1,2,j2(\1j07 Rj2>‘
Jo==1

The operators M, ;, j, and B j j, are linear in the error functions R;, and possess a
convolution structure in Fourier space, i.e.,

Mlvjl,jz(\lj()? Rjz)(k> t) = /ﬁldl,h(/{? k — klv k/>@0(k - k/v 5t>ﬁ'“;(k/7 t>dk/7

with kernel my ;, j, and similarly for B j, j, with kernel Bl,jm.
We differentiate R;; w.r.t. time and obtain
Ry = R+ Y (M1, Ry,) + My, (Yo, 0iR),))
jae{—1,+2}

= R+ Y Buip(To, Ry) + O([Wol*IR]) + O(5)
joe{£1,£2}

+ > My, (‘I’OJ%'QRJ'QJF > Bl,jg,jg(‘POijg))JrO@
joe{—1,42} jLe{+1,+2}

= dwi Ry — iwy Z M1 ,,(Yo, Rj,) + Z By1,,(Yo, Rj,)

jee{—1,4+2} jee{£1,£2}

+ Y My, (‘1’07iwjsz2+ > Bl,ja,jg(‘l’oaRjg)>

jo€{—1,+2} jhe{£1,+2}

+O([[o*[RI)) + O(9),
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where we used that 0;¥g = O(d) due to the long wave character of ¥g. In order to
eliminate the terms By ; for j € {—1,£2}, we choose M ;; to satisfy

—iwi My 12(Wo, Ra) + M 12(Wo,iweRo) + By 12(Vo, Ry) = 0,

—iw My 1, —2(Wo, Rog) + My 1,—2(Vo,iw_oR_5) + B11,-2(¥o, R—2) = 0,
—iwi Myq—1(Wo, Ro1) + My 1,1 (Wo,iw_1R_1) + B11,-1(¥Yo, R_4) 0,

i.e., we set

byao(k, k— K k)

i) (k) — o (k')
Busalk k— K, K)
iy (k) —iw_o(K")
a1 (b k— KK
iy (k) —iw_1 (k)

ik, k — KL K)

g _a(k,k— K k)

ﬂl,ly,l(k, k — k‘l, kl) -

Since |k| < 6. and |k'| < 20,, the denominator is non-zero for d. > 0 sufficiently small, and
so the my ;4o and my ;1 are well-defined and bounded. As a consequence, the M 1o
are bounded mappings in all G['-spaces. After this transformation we have

atRLl == 1w1R11+3111(\IIO,R1)+(9(||\I/0|| HRH —|—O 5)

+ Z Ml,l,j (\Ijo, Z Bljjl Uy, R i ) —|—O

je{—1,+2} j1e{£1,+£2}

= iR+ Biaa(Po, Ba) + O o[ R]]) + O(5).
We do exactly the same with Ry; and obtain
broa(k kb — K K)
1o (k) — iy (k')
b12 1 (k k=K K
10 (k) —iw_1 (k)

m\17271(k’, k — k,, k’/) —

m12 1(]{7 k — k’, k'/)

such that finally

ORoy = iwsRo1+ Y. Bioj(Wo, R;) + O Wo|*|R]]) + O(0)

j=%2

+ Z Mo, (\IIOa Z B17j7j1(\I/o,le)) + 0(0)

j==+1 j1=41,42

= iweRa1 + Y Biag;(Vo, B;) + O(|Wol*[R]) + O(9).

j=+2

Hence, new terms of order O(1) are created by this strategy and so this procedure must
be performed again and again. The newly created terms by the second normal form
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transformation are at most of order O(||¥yl|?), then O(||¥,||*) by the third transformation,
etc., such that a geometric series in || Wy|| can be used as convergent majorant for ||Vl =
O(1), but sufficiently small.

Since the bilinear functions B are of order O(1), the norm of the normal form trans-
formations M is O(1)-bounded by the norm of Wy and R. This yields the invertibility of
the near identity changes of variables with the help of Neumann’s series for ||V = O(1),
but sufficiently small.

Remark 3.6.1. [Preparation of the first system] Before we eliminate the non-reso-
nant terms of order O(||¥l|?||R||) with a transformation

Rip=Ry;+ Z My ;(Wo, R;),
je{—1,+2}
Rop = Ry1 + Z My (Wo, R;),

j=%1

we again prepare the system as in (3.43). Since the non-resonance condition for the
elimination of the non-resonant terms of order O(||¥|?||R]|) is again i, (k) —iw; (k") # 0,
for |k| < 6. and |K'| < 2., these terms can be eliminated as in the first step.

Step 2: [Induction step]| The normal form transformations

R1,m—|—1 = Rl,m + Z Mm+1717j(\1107 Rj)a

je{—1,+£2}
Ry mi1 = Rojm + Z Myi1.2,(Yo, R;),

j=%1

lead to the same non-resonance condition. Hence, the non-resonant terms of order
O(|[®o]|™||R||) can be eliminated. Before each step we prepare the system as in the

first step in (3.43), cf. Remark [3.6.1]

By this approach we have a sequence of problems

atRLV = iwlRLy + E;;,(\Ifo, Rl,y) + Z E;;,(\Do, Rjﬂ/) + H*

1,v
je{—1,42}

ORoy = iweRoy+ D> Boju(Wo,Rjy)+ Y Boju(VYo,Rjy) + Hs,,
J— =%1

with

Biaw(Wo, Riy) = ORI,
> BV Rj) = O([To]"[IRID,

je{—1,+2}
Y. Boju(Yo. Rjp) = O(|WollIR]),
j==+2
Y. Boju(Yo. Rjp) = O([Wol”[IRID,
j==+1
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HY, = 0(9), H;, = O(5), and a sequence of normal form transformations

R17y+1 = RLV + Z Ml,j,z/(\ljm Rj,u)7

Jje{-1,£2}

Rypi1 = Ry + Z My ., (Wo, Rj,),

j=+1

with

> Miu(%o,Rj) = O([%ol”[IRI)).

je{—1,+2}
> Mo (Vo, Ri) = O([%"[IRI]).
j=+1

Step 3: [Limit system] After these infinitely many normal form transformations
the limit system for v — oo has the following structure

DR oo = 1wiR1 e+ Biioo(Wo, Rico) + Hi o (3.46)
O Roo = iwsRooe+ Y. Bojoc(Vo, Rjos) + Hj o, (3.47)
j=t2

and similarly for R_; o and R_s. For j € {£1,£2} the nonlinear terms obey the
estimates

1H; sollcg < COI (100, Raoo)llcg + 82 (|(Ruoo, Reo) I + 1 REE) + 1), (3.48)

since we eliminated the linear terms in R.; which have no ¢ in front in the R.s-equation,
and vice versa interchanging the role of R4, and R4;. Since R_; o, is complex conjugated
to Rj o for j € {£1,£2}, it suffices to include R; o, and Rs o in the estimates. As already
said, convergence holds for all appearing terms since they can be bounded by a geometric
series in ||Ug|| as convergent majorant, for |[¥y|| = O(1), but sufficiently small.

3.7 Some further preparations

Before performing the energy estimates for obtaining a O(1)-bound for Ry o, Ri2 . and
R° on a O(1/6)-time scale, we need some additional preparations.

Remark 3.7.1. For notational simplicity it turns out to be advantageous if all compo-
nents of R. ., and R° have the same regularity. This is automatically fulfilled for Ry, «
and R, since they all have a compact support in Fourier space. However, for R this
is not the case and so we introduce the multiplication operator M defined by its symbol
M(k) = (14 k*)'/2 in Fourier space. Since in Equation we have 7 € G, ¥ € G
and ¢ € G™, but r € G™ we introduce r = Mr € G™ and from we find

OV =LV + N(V),
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where

’ MF

_|T M) 4+ 2009 + 2(1 — p2) (M)
V = gl LV = op o 7

Y 0,

and
0
N(V) _ 92 72 1/}2 + (@;(M—lr))? + (1 i /ILQ)(GQ(Mflr) 1 2(,/\/1_11-))

2(0,(M~'1))p — 270
0

We introduce the new error function R made by the WME approximation ¥ through
V = ¥ + §%/2?R similar to Step 1 in Section and set R = E“R. Since Ryij . and
Ry9 o have a compact support in Fourier space, it suffices to handle the energy estimates
below with respect to Ry and Ris and R For the transformed error part R¢ we
obtain a system of the form

oR® = LR+ H,
with

[He ey < CilR%lap + C20([[(Ri00s Rooo) e (3.49)
+C36**(||(Ry,00, Raco)llap + R llap)? + Cad.

In this estimate the terms linear in Ry o and Ry« are at least of order O(9) since these
terms come from the procedure described in Section to achieve system ((3.43)), similar
to the end of Section [3.6]

Remark 3.7.2. [Structure of the nonlinear terms in R, ,-equation] In order to
apply the ideas from Section [3.4]in the energy estimates of R; ., we need an additional

structure in the limit system (3.46)-(3.47), namely that the terms >>;_ 15 By j oo (W0, Rj )

can be written in Fourier space as

3 /5* (k. — K K)Uo(k — k', 61k’ R, oo (K, 1)K + O(6).

2,j,00
j=+2
This follows directly from the representation (3.30))-(3.31)) because the terms where a

derivative falls on ¥, give an additional O(d) and can be included in Hj .

Remark 3.7.3. [Structure of the nonlinear terms in R, .-equation] Through the
diagonalization of the linear system R; o, and R_; o have the same regularity. Due to this

fact and in comparison of the original system (3.37) and the diagonalized system (3.41]),
the term B ; o has the form

1
B11,00(Vo, Rio) = EBTJ,OOOI}O, Ri).
1
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3.8 From analytic to Sobolev functions

We want to perform the energy estimates in usual Sobolev spaces, defined through
H™ ={ue L*(R): (1+]- [)™a() € LA(R)},

with the inner product
(w,0)m = (@,0)z5, = [ (1+ [K[2)" @), 5(k))

whereby (-, ) denotes the Euclidean inner product, similar to [Sch20]. The induced norm
is equivalent to the usual H™-norm for any m € N. In addition, we introduce

W — {u u=F@),a e LR, Jullwe = [(L+ [K™)ack) |k < oo} ,

for m > 0.
We establish a connection between the spaces of analytic functions and Sobolev spaces
through

— ~ ~

Rj(k,t) =S, (k,t)R;(k,1),
where S, is a multiplication operator which is defined by
Sk, t) = eloo/d=nbIk
As a direct consequence of these definitions, we obtain the following lemma.

Lemma 3.8.1. Fort € [0,00/(nd)] the linear mappings Sy, (t) : Gy — H™ and S,(t) :
Weiyy = W™ with o(t) = 00/d — nt are bijective and bounded with bounded inverse.

The new defined variables satisfy the system

at7?'1,o<> = _77|k|opR1,oo + iW1721,oo + SwBl,l,oo(\Pm nglRl,oo) + Hiooa
at,]z'Z,oo = _77|k|opR2,oo + iW2722,c>o + Sw Z BQ,j,oo(\Ilm Sulej,oo) + ﬁ;o@
j=+2
RS = —nlklpR¢+ LR+ H,

and similarly for R_; o and R_s ., where as before |k|,, is defined as the Fourier mul-

tiplier operator through (@)(lﬂ) = |k|u(k). Using Lemma [3.8.1 and (3.48]) and (3.49)

we obtain

1 sollzrm < CO([[(R,o0, Rayoo) a1
+82(H(R1,00, Raoo) [ + R Fgm) + 1),
[H:lam < ClIR | am 4+ CO(|(Ra 00, Ray0) lsim
+C82( (R0, Raoo) i + Rl 12m ) + €.
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3.9 Error estimates in Gevrey spaces
Now we have all ingredients to perform the final energy estimates. For the energy

1/2 c
E(t) = [lo1”* R sollfm + | Raollfim + IR G,

we find
1 d 11
iéE:Re;S],
=
where
1/2
s1 = —77|||k|i;/72wl/ R0l Frm
So = (wile,oo,iW?/QRl,oo)Hm;
S3 = (W1R1,oo,SwBLl,oo(‘I’o,S;lRLoo))Hm,
S4 = (Wlnl,waﬁioo>Hm>
ss = =kl Rasoll3m,
s6 = (RaeesiwaRa o) mm,
s7 = | RawoesSu Y. Bajoo(Wo, S, Roo) ;

ss = (Roes Hyoo)rm,
s = —ulKER
s10 = (RE,LR) gy,
s = (RS, H)gm.

Since R_; « is the complex conjugate of R, for j € {1, 2}, it suffices to include Rq
and R in the energy.
In the following we estimate the “bad” terms so, S3, S4, S¢, S7, Sg, S10 and sy by the
“good” artificial damping terms s, s5 and sg.
So: Since iw; is a skew-symmetric operator in the parameter regimes under consideration,
we have
s9 = 0.

s¢: In the Benjamin-Feir stable situation, cf. left panel of Figure [3.2] iw, is a skew-
symmetric operator which yields
Sg = 0.

In the Benjamin-Feir unstable situation, cf. right panel of Figure iwy grows at most
as C|k| such that

O,

[s6] < Coll [kl oy R0 | -

Next, we go on with the higher order terms.
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S4, S8, S11- We find
[sal < CllonRucollarm || Hy ool m
< O (E 1 6Y2E32 4 1) :

where we used @ < 1+ a®. Similarly, we obtain
[ss] < ClRzcollim | Hs ool
< Cgd (E 1 6Y2E32 4 1) .

Finally, we estimate
ClIRE | | 2 |

|511| <
< Cu(|RE|%m + 6(E + 6Y2E*? +1).

It remains to estimate ss3, s7, and sqp.
S10: We start with the energy estimates for the linear term L’'R¢. The parameter regions
we are working in include the possibility of Benjamin-Feir unstable wave trains. Hence,
the eigenvalues of L can be bounded from above by C|k|, cf. the right panel of Figure
3.2 and so we obtain the rather rough estimate

[s10] < Crolllklop" RE (I3
s7: With Remark the term s; can be rewritten as
St = (7/52@0(')7 §w<7t) Z //6;7]-700(‘, t k/a k/)
j=%2
xS = KWL (- = K, 61) S5 (K )ik R oo (K)dK + O(5))

2 )
Lm

~ ~

where S, ¥, = W,. Using S, (k,t)S; (k — K, £)S; (K ,t) < 1 and integration by parts
with [k[}/? yields
|71 < CUNCllwo 1Elo* Res,oollrm + KLy Callwn [ Res,o0 | 1Kl o) Retz ool + O(6)).

Next, we use that [|U,[lwn = O(1), |||k|2L*V.|lw= = O(6'/2) and 6'/2ab < a® + 6b? such
that

|57 < Okl Rezocllzrm + 0" | Resz,ooll 1Kl Rz ol 1 + O(8))
< Crllllkle’ Rezoollzm + 8 Re200l7m)-

s3: For the Fourier transform of Re(s3) in case m = 0 we compute
R ool k,t b} k. k— Kk K
3/ [ o 0R Sk 1) s )
xSk — k)W, (k — K, 6t) 551 (K, 1) R0
—_——— ~ 1 ~
—H'/‘\)l (k)Rl,OO(k)Sw(ka t)l bil,oo(ka k — kla kl)

o1 (k)
xS (k=K )W, (k— K, 6t)5; (K, 1) Ry

|Re(s3)]

90



3.9. Error estimates in Gevrey spaces

~ ~

(247%) for z € C. Using S, (k,t)S; (k—k,t)S; (k' t) < 1 again

where we used Re(z) = 1

yields the estimate

[Re(ss)] - = 2//

01 (R R el L

i 1o (ke b — K K) T, (k — K, 5t) Ry oo (K)

(@Rt 5

ok b — K KU (k — k’,dt)ﬁlm(/ﬂ’)>|dk’dk.

©1(k)
Since iw; = —iw;, we obtain
Re(sy)] < 2//’73100 t (b — KTk — K )Ry ()
R ()0 (s e — K KT (e — K, 68 R o (K| AR dLE.
In the first line we switch the role of k& and £’ to get
Re(ss)] < //‘Rloo oK — o k) U (K — b, 0) Ry oo ()
R ()0 (ks e — K KT (e — K, 68 R o (K)| AR dLE.

Since W, (k' — k,6t) = U, (k — k', 6t), we have

1 _ = ~ —
Re(so)l < 5 [ [ [Ruoe (BB sl = k)0 (k= K )R ()

~Rioe (k)07 1 o (ks k= K KT (k — K, 68 Ry o (K)| AR dL.

Due to the symmetry of (3.44))-(3.45) and of the corresponding complex conjugate equa-
tions, we obtain

b1 (KK — k) =071 (kK — K K),

and so we find

1 — ~ ~ —
Re(ss)| < 2//’R1,oo(k’)b;1m(k’,k— K k)0 (k — K, 6t) Ry 0 (k)

~Rioo(k)0} 1 oo (b k — K KU, (k — K, 66) Ry oo (k)| dk'dk

R Fi K = R R) By (b K~ K )

XU, (k — k', 6t)Ry 0 (k)| dK'dk.

Since R
|b1 loo(k,7 k — k/’ k) - bil,oo(kv k— k/7k,)| = O(|k - k,|)>

we have

]Re(s;;)] S Cg(SE,
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due to the concentration of U, (k—k, 6t) at k—k' = 0, similar to Lemma 4.1 from [DKS16|.
For the estimates in H™ for m > 1 we can use the fact that whenever a derivative falls
on ¥, we gain an additional power of . The term where all m derivatives fall on R4 «
in the second component of the scalar product can be estimated line by line as for m =0
above.

The final estimates: The previous estimates yield

1d
2dt

IN

s1 + S5 + Sg + |Re(ss)| + |sa| + |s¢| + |s7] + |ss| + |s10] + |s11]
—n|l|k[3)w 2 R0 3m — K10 R oll7m — nll k]2 R Fm
+Co|I[ k15 Ra oo Fm
+(Cy+ C8)d (E +6'2E2 4 1)
+C (| RE| 2 m + 0(E + 6Y2E3/2 £ 1))
+C0[[E15) RN + Cr (k]35> Ros2.00]Fm + 0l Rtz 00| m)
+C30F
(=m)[k15fwn* R oo
+(=n + Co + C)[|1E] ) R oo 3
+(=n + Cho + Cua) | k[ 2 R Fm
+(C35+Cy+Cr 4+ Cs+ C11)o (E +0V2ER? 4 1)
< (C5+Cit Cr+Cx+Cn)d (B +0672E 1),

IA

IN

if n > 0 is chosen so large that
—n+ Cs+ Cr <0, —n+ Cio+ Cy1 < 0.
Then, we choose 6 > 0 so small that
SYV2EY? <1 (3.50)

is fulfilled. Hence, we have

;tE < (C+1)6E + C6.

With the help of Gronwall’s inequality we obtain
E(t) < (E(0) 4+ Cdt)e (C+1)ot < (E(0) + CTO)e(C“)TO =M =0(1).

The constant M is independent of 1, T} and 0 < § < 1. We choose dy > 0 sufficiently
small such that 51/ M2 < 1 is satisfied. This guarantees the validity of (3:50). As a
consequence, this proves Theorem [3.1.10]
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3.10 Discussion

Remark 3.10.1. Since the Benjamin-Feir instability occurs for v = 1 respectively |u| < 1,
it is not possible to replace the Gevrey spaces by classical Sobolev spaces, like the plot of
the spectral curves in the right panel of Figure|3.2{shows. However, it is a natural question
whether it might be possible to work in Sobolev spaces for v = —1 respectively |u| > 1.
In this case the wave train is spectrally stable and such a WME approximation result can
be found in [BKZ21| for the NLS equation. It will be the topic of future research to prove
a similar result for the ccKG equation ({3.1)).

Remark 3.10.2. Although in the parameter region P, cf. the left panel of Figure [3.3],
WME can be derived, it cannot be expected that the associated WME approximation
makes correct predictions on the long O(1/6)-time scale. In the left panel of Figure
we have a smooth curve of eigenvalues with positive real part of order O(1) at the wave
number k£ = 0. This leads to growth rates of order O(exp(1/6)) on the long O(1/0)-time
scale. Therefore, to come to the long O(1/§)-time scale, by nonlinear interaction of the
other modes and initially only terms of order O(exp(—1/d)) can be allowed. However,
this is not the case and so the WME approximation fails to make correct predictions in
Prest, cf. [HS20] for an example of a non-approximation result.

Remark 3.10.3. Finally, we remark that the reconstruction of the solution in physical
variables requires the spatial integration of the local wave number ¢ = J,p to
reconstruct the phase ¢. As a consequence, in the original u-variable only a local in space
approximation result can be obtained. The size of the spatial domain where the WME
approximation makes correct predictions is proportional to the inverse order of the higher
order WME approximation constructed in Section [3.4.5] For details about that see for
instance [DS09,BKS20].

3.11 Appendix - Stability regions for ¢ # 0

In this section we consider the case ¢ # 0 and explain where the parameter regions plotted
in Figure [3.4] come from.

Remark 3.11.1. To analyze the case ¢ # 0, we look at the system (3.19)-(3.21)), derive
WME and redo the calculations from Remark 3.2.6. We have

yetr =14 ¢ — i,
and we make the long wave ansatz
(ry 0, 9)(x,t) = (7,4, 9) (8, 6t) = (¥,,)(X, T),
with X = 0z, T = 6t and a small perturbation parameter 0 < § < 1. Ignoring higher
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order terms yields the system
0 = P+ 2ud —¢* —2q0) + yeXran (e — 1),
Ord) = 20x7)(¢ + q) + Oxd — 2(0rF) (I + p),

Ord = Ox.
For ¥ and @/v) small we can solve the first equation w.r.t. 7 and get
(0, 4) = — f J+ 2q U+ ho.t.,
ye Tq,n e Tq,p

with the partial temporal and spatial derivatives

Orit = ——t o + —0rt) + hoot.,
yesan ve?

Oxi* = ——L—0x + —1—0Ox¥ + hot.
yeran ve?

Inserting this in the equations for J and gL yields

aﬂé:Q( i aXz9+7q 8X¢>(¢+q)+8)(¢

'ye27”q I

—2< L Y aw)(&w)
ye?

'ye27”q Iz

— 2 (03 d) (4 q) +

8X¢(¢ +q)+ dx

~e2rau 76%
2 (0ud) (04— 5 (000) ),

where we used 9710 = dx1). The linearization of this equation is given by

2%° .
d 0.

. .9 4
O = Ox b + i o) — —dk an9+7

27’q Iz 'ye27"q Iz

Hence, we find

,-yleq# 1+q2 1+q2 /lQ
dqp R e
=—————0x0+ 0
1+¢— 2" 1+ ¢? ,u2 o
4qu - 1—|—3q
=— ———0x0+ ———
and so finally in the long wave limit
5 dqp v L+3¢ —
ord = ————0 —_— ,
T 132X T pc 2X¢
O = dx 0
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3.11.  Appendiz - Stability regions for q # 0

Thus, the sign of % determines the stability or instability of the wave train w.r.t.
long wave perturbations. If 1+ 3¢® — 2 and 1 + ¢? — 3u? are both smaller than zero, the
spectral curves look similar as the ones in the left panel of Figure [3.2] Spectral curves for

other parameter values are plotted in Figure [3.5]
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Chapter 4

A linear Schrodinger approximation
for the KdV equation via inverse
scattering transform beyond the
natural NLS time scale

We are interested in improving validity results for the nonlinear Schrédinger approxima-
tion beyond the natural time scale for completely integrable systems. As a first step, we
consider this approximation for the Korteweg-de Vries equation with initial conditions for
which the scattering data contains no eigenvalues. By performing a linear Schrédinger
approximation for the scattering data, the error made by this approximation has only
to be estimated for a purely linear problem which gives estimates beyond the natural
nonlinear Schrodinger time scale. The inverse scattering transform allows us to transfer
these estimates to the original variables.

4.1 Introduction

The nonlinear Schrodinger (NLS) equation describes slow modulations in time and space
of oscillating wave packets in dispersive wave systems. It was derived through a multiple
scaling perturbation ansatz in |Zak68] first. Various approximation results have been
established in the mean-time, cf. [Kal88,[KSM92,Sch05, TW12|, see [Diil21] for a recent
overview. We are interested in improving these validity results for the NLS approximation
beyond the natural time scale of the NLS approximation for completely integrable systems.
As a first step in this direction, in this chapter, we consider this question for the KdV
equation as an example of such a completely integrable system.

Using the Miura transformation, cf. [DJ89], and Gronwall’s inequality, in [Schll] a
simple proof was given that the NLS approximation

e, = eA(e(x — ct), %)l k™) L cc. 4 O(?)
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makes correct predictions about the dynamics of the KdV equation
Oyu — 6ud,u + Ou = 0, (4.1)
if A is chosen to be a solution of the NLS equation
Oy A = —3ik0; A — 61k A|AJ%. (4.2)
In detail, it was shown

Theorem 4.1.1. Fizs > 1 and let A € C ([0, To], H***) be a solution of the NLS equation
(4.2). Then, there exist eg > 0 and C > 0 such that for all € € (0,e0) there are solutions
of the KdV equation (4.1)) with

Hs S 053/2 .

sup lu(-, t) — et (-, 1)]
t€[0,To /2]

As already said, we are interested in improving such validity results for the NLS
approximation beyond the natural O(1/£?)-NLS time scale for completely integrable sys-
tems, here the KAV equation. We do so by restricting ourselves to initial conditions of the
KdV equation for which the scattering data contains no eigenvalues and by performing
an NLS approximation for the scattering variable b associated to the essential spectrum.
Since the equation for b is linear, the NLS equation degenerates into a linear Schrédinger
equation. The error made by this approximation has to be estimated for a linear problem
which gives estimates beyond the natural NLS time scale, cf. Section [4.3] Hence, our ap-
proach allows us to extend the approximation time from O(1/g%) to O(1/£37%) with § > 0
arbitrarily small, but fixed. The inverse scattering transform finally allows us to transfer
these results to the original variables, cf. Section [4.4] and Section [£.5] The Chapter is
closed with some discussions in Section [4.6]

Notation. Throughout this chapter many possible different constants are denoted
with the same symbol C' if they can be chosen independently of the small perturbation
parameter 0 < € < 1. The Sobolev space H?® of s times weakly differentiable functions is
equipped with the norm

i

. 1/2
He = (;/\%u(x)\de) :

The weighted Lebesgue space L? is equipped with the norm

i

= ([ Ewra +ryar)
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4.2. IST for the KdV equation

4.2 1IST for the KAV equation
It is well known that the KdV equation
Ou = —3u + 6ud,u

can be solved with the help of the inverse scattering transform (IST). Since this theory
plays a fundamental role in the following, we recall its basics for completeness. For more
details we refer to [DJ89].

For a solution u = wu(z,t) of the KAV equation we consider the associated quantum
mechanical scattering problem, namely

Ly = =02 — wp = M. (4.3)

i) The scattering problem is to find the eigenvalues/spectral values Ay(¢) and the
associated eigenfunctions (-, t) for a given u = u(-,t) where k is in some index set I.

ii) The inverse scattering problem is to reconstruct u = u(-, t) from the scattering data
Ak (t) and (-, t) for k € 1.

4.2.1 The scattering problem

The KdV equation is a completely integrable Hamiltonian system for which there exists

a Lax pair formulation
oL =ML-— LM,

with L defined in (4.3) and M1 = —492¢)—3(ud,p+(0,u)1). The Lax pair representation
implies that the eigenvalues/spectral values A (t) of the operator L are independent of
time. The eigenfunctions (-, t) satisfy

atqvbk(Wt) - Mqvbk(vt)

For spatially localized u the operator L possesses essential spectrum [0, 00) and a finite
number, say NN, of negative eigenvalues A\, € R, withn=1,..., N.

i) The eigenfunctions to the negative eigenvalues decay with some exponential rate for
|z| — oo, in particular we have

Up(x,t) ~ cp(t)e ™"

for + — oo, where k2 = —\, and k, > 0. It turns out that the coefficient ¢, (t) satisfies
the simple evolution equation
OiCy, = 4H§Lcn,

which is solved by ¢, (t) = ¢,(0)e*nt.
ii) The eigenfunctions to the spectral values A\, = k? for k € R are of the form

Ur(x,t) ~ ek 4 bk, t)ek?, for  — oo,
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and
U, t) ~ a(k, t)e for x — —o0.

It turns out that because of
jalk, ) + [b(k, )]* = 1,
it is sufficient to control the coefficients B(k:, t) which satisfy the simple evolution equations

Ayb(k,t) = 8ik>b(k, ). (4.4)

4.2.2 The inverse scattering problem

The solution u = wu(z,t) can be reconstructed from the scattering data by solving the
Gelfand-Levitan-Marchenko equation

K@,y t)+ Fe+yt)+ [ K2 0)F(y+ 2 t)dzs =0 (4.5)

for K(z,y,t) with y > = where
1 oo o~
Flo,t) = > e + / Bk, 1)dk.
7T

The solution is then given by

d
u(z,t) = —2@K(x,x+,t),

where zt indicates that the derivative is computed as right-hand limit in the second
variable. The time ¢ appears in these calculations only as a parameter. In the integral
equation (4.5)) also the variable x is a parameter.

4.3 The approximation for the scattering data

In this section we construct a Schrodinger approximation for the scattering variables
b(k,t), i.e., in the following we consider the case of no eigenvalues, i.e., we assume N = 0
and comment on this assumption later on in Section [4.6]

The evolution equation for the scattering variables b(k,t) is solved by

b(k,t) = **Fh(k, 0).

If k is interpreted as Fourier wave number and b as Fourier transform of a function b, then
b satisfies the so-called Airy equation

Oib(z,t) = —802b(x, 1). (4.6)
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4.8. The approximation for the scattering data

For this equation we make the ansatz
b(z,t) = eA(e(x — ct), e%t)elFor—l) L ¢ e

Plugging this ansatz into (4.6)) and equating the coefficients of e"e!(kor=0)) to zero gives
the linear dispersion relation wy = —8k3 at O(g), the group velocity ¢ = —24k2 at O(g?),
and the linear Schrodinger equation

OrA = —24iky0% A (4.7)

at O(e?). For this equation we have the global existence of solutions in every H* for each

s > 0 with the bound
JAG, D)l = (| TAK, 0)(1+ K2)*?|| 2ax) (4.8)

= JJA(K,0)(1+ K*)*|| 2ar) = (-, 0)|

We have the following approximation result:

Theorem 4.3.1. For each s > 0 there exist C' > 0 and €y > 0 such that the following
holds. Let A € C([0,00), H**3) be a solution of the linear Schrédinger equation .
Then, for all € € (0,g0) there are solutions b of the Airy equation such that for all
to > 0 we have

Hs+3.

sup ||b(z,t) — (eA(e(x — ct), e2t)eFom=<0) 4 ¢ )| grepany < Ce™?to A(0)]
te(0,to]

Proof. Let

R(z,t) = b(x,t) — (eA(e(z — ct), e2t)elFor=wot) 4 ¢ ey,

with R|;—o = 0. This error function satisfies
R = —80°R — *(8elhor=w0t) 93 A 4 c.c.).

Applying the variation of constants formula yields

t .
R(t) = —/ e 80 (=T) A (Rellkor—w0n) g3 A 4 ¢.c)(7)dr.

0

Taking care of the fact that we lose a factor e~%/2 due to the scaling properties of the

L?-norm under x — ex, we immediately find the estimate

IRC, )]|me < Ce'te™2 sup [JA(,7)]

T€[0,t]

He+3 < 067/2t||A(-, 0)]

Hs+3,

due to (4.8)). [

Corollary 4.3.2. For each s > 0 and 0 € (0, 1] there exist C' > 0 and eg > 0 such that the
following holds. Let A € C([0,00), H**3) be a solution of the linear Schridinger equation
(4.7). Then, for all e € (0,e¢) there are solutions b of the Airy equation (4.6) such that

sup  ||b(z,t) — (A(e(z — ct), e2t)e!*or=w0d) ¢ )]

He(dz) < Cel/2ts,
te[0,1/e3-9]
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Remark 4.3.3. The error of order O(¢'/?2%9) is still smaller than the solution and the ap-
proximation which both are of order O(g!/2) in H*. Thus, we improved the approximation
time from O(1/€?) to O(1/&37%) with § > 0 arbitrarily small, but fixed.

Remark 4.3.4. The Schrédinger equation shows a decay rate like 72 for T — oo,
whereas the Airy equation shows a decay rate like t=%/3 for t — co. Due to the strong
concentration of the Fourier modes of the Schrodinger approximation at k = kg, for
A € H? the part around k = 0, showing the slower decay rate t =/, is ¢* initially. This part
and the Schrédinger part at k = ko are of the same order if e5¢t71/3 = T-1/2 = (£2)71/2,
ie., for t = 1/56+D > 1/€3.

Higher order approximations can be computed, too.

Remark 4.3.5. The ansatz for the computation of higher order approximations is given
by

N
b(x,t) =D " Ay(e(x — ct),e’t)e!For0D) 4 e
n=1
leading to the approximation equations
Op A, = —24iko0% A1, Op A, = —24iky0% A, — 80% A, _1,

for n € {2,...,N}. These approximation equations for n > 2 can be solved with the
variation of constants formula

T .
An(T) = = [ AT 85 A, (7)dr,

where we have chosen vanishing initial conditions A,(-,0) = 0 for n € {2,..., N}. This
immediately gives the estimate

sup ||An(,T)llgs < CT sup ||An_1(:,7)| ms+s-
0<r<T 0<r<T
Therefore, we need
Al c H8+3N, A2 c [_I‘<5+3N737 A3 c Hs+3N76’ o 7AN c H3+3.

The error function then satisfies
R = -893R — N +3(gellhor—woh) g3 Ay 4 c.c.).

Remark 4.3.6. For obtaining estimates for the higher order approximation on the long
O(1/e%7°)-time scale with d > 0 arbitrarily small, but fixed, we modify the ansatz into

N
b(x,t) =D T4, (e(x — ct),e%t)e!For0D) 4 cc

n=1
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4.8. The approximation for the scattering data

leading to the approximation equations
OpAy = —24ikg0% Ay,  OpA, = —24ike0% A, — 8 203 A, _1.

Since

sup | An (-, 7)]

0<7<T

all A, remain O(1)-bounded for ¢ € [0,1/e379]. The error function then satisfies

Hs+3,

e < Ce'T sup [|An_1(-,7)|
0<r<T

atR — _88§R o 81+(N—1)5+3(8ei(k0$—w0t)a§(AN + C.C.),

and so

IRC, )]s < Cet 03412 sup || Ay(-,7)]
T€(0,t]

Hs+3.

Thus, we have proved

Theorem 4.3.7. For each N € N, s > 0 and § € (0, 1] there exist C > 0 and g9 > 0 such
that the following holds. Let A; € C([0,00), H**3N) be a solution of the linear Schrédinger
equation (4.7)) and let the A, be solutions of

8TAn = —241]4308?(/1” — 861_68;))(14”_1, An|T:O = 0,

formn=2,... . N. Then, for all e € (0,2¢) there are solutions b of the Airy equation (4.6
such that

sup ||b(z,t) — eVUpn(z,t)]

t€[0,1/e3-9]

where

eUn(z,t) = (=13 A, (e(x — ct), e2t)elFor=wot) ¢

||M2

Remark 4.3.8. Sobolev’s embedding theorem immediately yields

sup  sup |b(z,t) — eUy(x,t)] < Cel/2TN?,
t€[0,1/23-0] w€R

which is a non-void estimate if 1/2 + N§ > 1. Then, the error of order O(g'/2¥N?%) is
smaller than the solution and the approximation which both are of order O(g) in CY.

Remark 4.3.9. Since we are handling linear inhomogeneous equations, the above analysis
holds in various other function spaces. For the subsequent analysis, we need a L°°-
bound in Fourier space. We rewrite Remark to obtain estimates for the higher
order approximation on the long O(1/£37%)-time scale with § > 0 arbitrarily small. The
modified ansatz in Fourier space is given by

N
Z (n—1) 6A 71<k o k0)782t)ei(*wot) ic(k—ko)t + c.c. f ,

n=1
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leading to the approximation equations
anAll = 241]{?0K2A\1, aTA\n = 241]{70[(2//[” + 8151_6[{3;{”_1,

where c.c.f. corresponds to the complex conjugate in Fourier space. Since

oo
L3s

sup || A, (7)o < C°T sup Ao (-,7)]
0<r<T 0<r<T

where

IAC, P)llzge = sup |A(k)(1+ &*)*/2),
keR
all A, remain O(1)-bounded for ¢ € [0,1/£37°]. Then, the error function satisfies
R = 8ik3R — eW—10+3(gel(wot) —ieth=ko)t (i3 A 4 c.c. f),
and so

IR(: 1) pee < CeN7D0H5 sup 1A, 7)]
T€[0,t

oo
Ls+3

for all ¢t € [0,1/£%7°].

4.4 The approximation of the KdV solutions via IST

In this section we use the Gelfand-Levitan-Marchenko equation to construct the approxi-
mation e, for the KAV equation (4.1)) associated to the linear Schrodinger approximation
eV, =¥y and 5 =1/2+ N from Theorem . We compute

Flat) = — |7 ek 1k = b ),

T J—00

for the solutions constructed in Section 4.3} i.e., for b = e¥,. Then, we set

d
eW,(z,t) = —2£(5\PK)(x, zt, t),

where WU is an approximate solution of

U (w,y, 1) + oWy + g, 1) + &2 / We(, 2, 1) Wy(y + 2, t)dz = 0, (4.9)

T

with y > z. In the following we explain how to compute eV iteratively. We have
ey (z,1) = cA(e(z — ct), e2t)elkor—wot) ¢
i) For approximately solving (4.9) we use perturbation theory. We make the ansatz

eV (z,y,t) = e Ky (ex, ey, t)e!Forthoy—wot) v o 4 hot.,
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4.4. The approximation of the KdV solutions via IST

and compute
62/ Ui (x,z,t)Wp(y + 2,t)dz

- / eK(ex,ez,t)eA(e(y + 2 — ct), £%t)e? 07 zetho(#+y) 2ot

2ikgz |°° . )
= &?Ki(ex,ez,t)Ae(y + 2z — ct), %) ez'k etho(wty) o —2iwot
1 0 Z=T
o0 tek‘OZ i .
— / 30, (K1 (ex,e2,t) A(e(y + 2 — ct), €t)) ———dzelko(@ty) g=2iwnt
T 21/{30
2 2 e?ikor iko(z-+y) —2iwot
= —“Ki(ex,ex,t)A(e(y +x —ct), e t)ﬁe olETY) gm0
1Ko
e2ik0m ) )
+830, (K (ex, ex,t) A(e(y + = — ct), £%t)) ——— elFo(@Fy) g 2ot
(2ikg)?
492 2,0y €102 ko (24y) —2iwot
—/ 0, (Ky(ex,ez,t)A(e(y + z — ct), e t))(2ik )dee o#Hy) g ~2lwo
x 0

= ...=0(,
such that equating the coefficient of gefo(#+¥)e=iwot jp to zero yields
Ki(ex,ey,t) = —A(e(x +y — ct), ).
The solution of the KdV equation is then given by

u(z,t) = euy(z,t) + h.ot.,

where
d .
up(z,t) = —Qd—(Kl(gx, ext t)elkorthor—wol) 4 ¢ )
x
d .
= 2d—(A(5(:L‘ + 2 — ct), e2t)elthorthor—wot) 4 ¢ ()
x

= dikoA(e(2x — ct), et )eBkorTiwot 4 ¢ ¢
+4e(0x A)(e(2z — ct), e*t)ekor—iwol ¢ ¢

i(3k0:ﬂ+k0y—2w0t)

ii) For getting rid of the terms of order O(&?) at e , we extend our ansatz

to

5\111((1:’ Y, t) = €K1 (€I7 €y, t>ei(k0&?+koy—wot) tcc
+e2 Ky (e, ey, t)elBRozthoy=20t) 4 o o L hot..

Equating the coefficient of g2e3ifortikoyg=2iwot in ([1.9) to zero yields

1
Ky(ex,ey,t) = Tk:oKl(gx’ ex,t)A(e(y + z — ct), %)
1
= ————A(e(2x — ct), ) A(e(y + & — ct), €°).
21]{50
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The next order solution of the KdV equation is then given by
u(z,t) = euy(r,t) + 2ug(x, t) + h.o.t.,

where
d .
ug(z,t) = —Zd—(Kg(sx, ext t)elGhorthor=2w0t) | .
x
1 d .
= Ea(Az(e(Qx — ct), e%t)elHhor=20t) 4 ¢ ()
0

= 4A%(e(2z — ct), e%t)elWhor=20t) 4 ¢

2 .
+§8(8X(A2))(5(2x — ct), e2t)elhor=2w0t) | ¢
0

iii) We use the same idea to get rid of the terms of order O(e%) at el(Gkoz+koy=3wot)
Again we extend our ansatz to

Vg (z,y,t) = eK(ex,ey,t)elForthoy—wol) L ¢ .
+e2 Ky (ex, ey, t)elGrorthoy=20t) 4. .
+e3Ks(ex, ey, t)elCrozthoy=3wol) v o L hot..
Equating the coefficient of g3e®Fortikoye=3iwot in ([4.9)) to zero yields

1
Ks(ew,ey,t) = %Kg(m‘, ex, t)A(e(y +x — ct),e%t)
1
= 4—l€2A2(5(2x —ct),?) Ae(y + = — ct), €%).
0

The next order solution of the KAV equation is then given by
u(z,t) = eup(z,t) + 2us(z,t) + 3us(z, t) + h.o.t.,

where
d :
ug(x,t) = —Qd—(Kg(sa:, ext, t)el(GRorthor=3wot) 4 .
x
1 d :
= —T%ﬁ(ﬁg(a@x — ct), e%t)elBRor=3w0t) 4 ¢ ¢
3i .
= —k—1A3(5(2x — ct), e2t)e!Gkor=3wot) | ¢
0
1 :
—?g@X(AB))(g(m — ct), e%t)elCkor=Swl) o o
0

iv) As a last example we explain how to eliminate the terms of order O(g?) at
el(Bkoztkoy=2wol) Ve extend our ansatz to
6\11[((513, Y, t) = €K1 (ng €y, t)ei(k0m+k0y_w0t) +c.c
—1—52[(2(51:, £y, t>ei(3kox+koy72wot) 4+ c.c.
+e3Ky(ex, ey, t)elCRovthoy=3wot) 4 ¢

+3 Ky (e, ey, t)elBRosthoy=2w0t) o v 1 h ot
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Equating the coefficient of g3e3ikortikoye=2iwot in ([4.9) to zero yields
1

Kyq(ex,ey,t) = —mﬁx (Kl (ex,ex,t)Ale(y + 2 — ct), 5275))
_ 1 2 2
= —4—%8;( (A(8(2£IZ' —ct), e t)Ale(y +x —ct), e t)) :

The next order solution of the KdV equation is then given by
u(z,t) = euy(r,t) + 2ug(w, t) + 3uz(w,t) + >ug (2, t) + hoot.,

where

d .
ug(z,t) = —2£(K2,1(8:L’,6x+,t)el(3k°$+k°x72“’°t)—i—c.c.)

— _T%@(ax (A2(5(2x —ct), 52t)) ol(tkor=2wot) 4 ¢

2i ;
—ki(aX(A?)) (2(21 — ct), %) elthor=20) ¢ .
0
1

— (0% (A?)) (e(22 — ct), %) /Mhor=200) 4 ¢ ¢
kg

Remark 4.4.1. These calculations can be performed up to an arbitrary order. For solving
(4.9) we make the ansatz

MN,n
eV (]3, Y, t) = Z Z €B(n)+mKn7m<gl’7 ey, t)el((anl)kofE+koyfnwgt)’

nelny m=0

with 8(n) = 1+||n|—1|, Iy = {—N,—N+1,..., N—1, N} and sufficiently large numbers
My, € Ny. To derive equations for the K, ,, and therefore u, ,,, we do analogous steps
as before with K; = K, and u; = u;( for j € N. Hence, we can conclude

eV, (2,1) = —Q(iv(s\PK(x, 2+, 1). (4.10)

4.5 Error estimates via IST

The kernel K is a sum of the approximation kernel eWy constructed in Section [4.4] and
an error ¢’ R. Plugging

K([E, Y, t) = 5\IJK(:E7 Y, t) + 5I8RK<'T7 Y, t)
into the Gelfand-Levitan-Marchenko equation (4.5) yields
eV (x,y,t) + e’ R (,y,t) + eVy(z 4+ y, 1) + e’ Ry(z + 9, t)

+ /Oo(gqu(x, 2 )+ P Ry, 2, 6)) (e Wy (y + 2,8) + P Ry(y + 2,8))dz = 0,
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and so
Ri + Sinh + Stin + Snon + Sres = 0, (4.11)
with
Sin(T,y,t) = Rplx +y,t) +€/;O Ui (z,z,t)Rp(y + 2,t)dz,
Siin(x,y,t) = 6/:0 Ry (z,z, )V (y + 2, t)dz,
Snon(T,y,t) = £° /:o Ry (z, 2, t)Ry(y + 2,t)dz,
Sres(T,y,t) = e P(eWp(x,y,t) + eVy(z +y,t)

+52/ Uy (2, 2, )Wy (y + 2, £)d2).

The function Ry (z,y,t) vanishes identically for y < z since the Gelfand-Levitan-
Marchenko equation (4.5)) is only valid for y > x.
The structure of (4.11)) is as follows:

e The term s;,;, is independent of Ry and does not contain residual terms.

o The term sy, is linear in Ry. This term can be estimated with the help of energy
estimates.

« The term s, is nonlinear in Rx and will be of higher order due to the £ in front.

e The term s,.s is the residual, i.e., it contains the terms which do not cancel after
inserting the formal approximations ¥y and ¥, into the Gelfand-Levitan-Marchenko
equation (4.9). The remaining terms can be written as

= giﬁ(S\DK('x7 Y, t) + g\IJb<£Ij' + Y, t)

87’65’
+52/ Uy (z, 2, )Wy (y + 2, t)d2)
= ¢* (/ 5N+1Krest(x7zat)\1/b(y+Zat)dz> :
where K4 is a function of A, ..., J%* A, with s4 a number depending on N, since

we balanced in the Chapter [4.4] all smaller powers of e.

4.5.1 Outline

Equation (4.11)) will be solved for every fixed ¢. Since (4.11)) is formally of the form Ry
plus some small perturbation in Ry plus some inhomogeneity, we will use Neumann’s

series to solve (4.11)) w.r.t. Rg.
Multiplication of (4.11)) with Rg(z,y,t) and integration w.r.t. y yields

/ ’RK(Q:) y?ﬂ‘zdy + T'mh(x,t) + T‘lm(.’ll',t) + rnOTl(x:t) + rT@S('r?t) = 07 (412)
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with
Tinn(z, 1) = /_O:O Ry (x,y,t)sinn(x, y, t)dy,
Tun(T,t) = /O:O Ry (z,y,t)sun(z,y,t)dy,
Paonl@t) = [ Rk, 0)s0m (9. 1y,
Tres(T,t) = /O:O Ry (z,y,t)Sres(z,y,t)dy.

Remark 4.5.1. In the following we use the fundamental identity, cf. [Seg73, p. 727],
/_O:O /;o eRy(,2,t)Wy(y + 2,t) Ro(2, y, 1)dzdy
= /O:O /O:O eRy(z, 2, )Wy (y + 2,t) Ro(x, y, t)dzdy
- 217r /O:O /O:o eRi(z, 2, t) /O:o Uy (k, £)e* @2 dk Ry (z, y, t)dzdy
= g L e s R Rt )y

1 o - ~ R
_ %/ ey (k, t) Ry (z, —k, t) Ry(z, —k, t)dk

1 oo _ _
= %/ gqu(kﬂt)Rl(xakat)Rz(ZE,kJ,t)dk;,

where we used the definition of the Fourier transform and Ry (x, z,t) = 0 or Ra(x, 2,t) =0
for x > z since Rk (z,2,t) =0 for z > 2.

4.5.2 Estimates for the inhomogeneous term r;,,

In this subsection we are going to estimate

Tinn(x,1) = /_o:o Ry (z,y,t)Rp(x + y,t)dy
e [ Z Ric(z,y,1) / T Wi, 2, O Ryly + 2, t)dzdy.
With the Cauchy-Schwarz inequality we find
[ Bty ) Bula + 3, 0y| < | R, )21 Bole 0l
and with Remark Plancherel’s identity and Young’s inequality that

3

/OO RK(CU,y,t> /OO ‘IIK(x7Z>t)Rb(y + Z7t)d2dy
< Cesup By )R (@ )| 22 | Wi (-, 1)
€
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Hence, we obtain the estimate
|7”mh(l’,t)’ < (Co,l + Co,2€)HRK(9U, '>t)HL2 < 200,1HRK(3?, '7t)”L27
with constants

Co1 = sup || Ro(-, t)|| 2,
t€[0,1/e379]

00,26 = (e sup sup|fib(.7t)] sup SUPH‘I’K(%'J)HL%
te[0,1/e3-9] keR te[0,1/e3-9] z€R

if € > 0 is chosen so small that Cyqe < Cj ;.

4.5.3 Estimates for the linear term ry,

With Remark and Plancherel’s identity we find

€

| Bictayt) [7 a2 )0y + 2 0dzdy| < el Byl | Rrcla, 1) 3

We assume

sup |A(K, T)| < sup |A(K,0)| <1-4§ <1, (4.13)
KeR KeR

for T > 0 and a ¢’ € (0,1) which is a natural restriction due to our underlying problem
which leads to (4.13). Then, the triangle inequality yields

€W ||z < || Apl| e + Oe) < 1—8/2, (4.14)
for € > 0 sufficiently small. Therefore, we achieve
|Tlin(m7 t)| < ClHRK(xv * t)”%??

with a C] < 1.

4.5.4 Estimates for the nonlinear term r,,,

In this subsection we are going to estimate
Tnon(,t) = &7 /_O:O Ry (x,y,t) /:O Ry (x,z,t)Ry(y + z,t)dzdy.
Again with Remark and Plancherel’s identity this can be estimated by
[rnon(,)] < CEP(| Ry (-, 1) || oo || Ric (2, -, 1) -
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4.5.5 Estimates for the residual term r,.,

In this subsection we are going to estimate
Tres(x,t) = &P /O:O Ry (x,y,t) (E\IIK(x, y,t) +eVy(x +y,t)
+&? /;o Uy (x, 2, t)Wy(y + 2, t)dz)dy
= ¢7# /O:O Ry (z,y,t) </:O N K st (2, 2, )Wy (y + 2, t)dz) dy.
With Remark [£.5.7] we find
Tres(z,t) = &7 /_O:O Ry (z,y,t) <8N+1 /:O Krest(, 2, )Wy + 2, t)dz) dy

1o - 5 e
= 8N+1iﬁi/ \Ijb(kht)RK(xv kat)KWSt(x’ k’t)dk

21

The function K4 can be expressed in terms of the functions A, ..., 93 A with s4 a number
depending on N. It contains terms which are at least quadratic in A and its derivatives.
Moreover, there are no terms in K,.i; w.r.t. A and its derivatives of power bigger than
N + 1. Since multiplication becomes convolution under Fourier transform, we have to

estimate for instance ~
JA* N e,

By Young’s inequality for convolutions and the embedding L? C L' for s > 1/2 we obtain
for instance

N+1
Hs >

JA |2 < CRA Dl A= < CAIL Al < CIANET < CJlA

and analogously for the terms containing derivatives of A such that all terms in K,y can
be estimated in terms of C/||Al’, forj=2,...,N+1

Hs+sA

By the Cauchy-Schwarz inequality, Plancherel’s identity and estimate (4.14)) we obtain

< NG ) | R Ol o Ko )1

< OB ) e R Ol S A Ol
N+1 T A

< CeNTPO Rk (x, -, )|| 2 ]Z_; [A(, - ) [ystoa

C’gsN*ﬁHRK(:c, ° t) HL2>
with the constant

N+1
Cy= sup sup |(CCy Y A(@, - t)|heesy | -

t€[0,1/e3-9] z€R j=2
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4.5.6 Final estimates

In the following we choose N so large that N — 5 > 1. From (4.12)) we immediately find
[e.e]
/ |Ric(z,y, )*dy < [rinn(@, O] + 171 (@, O] + [Fuon (@, )] + [rres(2, ).
First, Young’s inequality gives

C
rinn(, )] < 200, |1 R, D)1= < 6| Ric(, -, )13 + —55
1

and
2

rrea(, )] < O P R, D)l < 2 4+ VD R, D)l
such that
IReo Dl < Rl ) +
+C1|| Ry (2, -, ) ||72
+CPCp|| Rk (z, -, 1)]|22

3 | v 2
+ 4 +e ||RK($, '7t)||L27
with C; < 1 and R

Cp=sup |[R(, 1)1
t€[0,1/e3-9]

Rearranging the terms we obtain

82 OB, 2(N=B) 2 Coa G5
(1 51 Cl Ce C'B € )HRK<'T7>t>HL2 < 52 + 4
1

Choosing 6; > 0 and £ > 0 so small that
1-0C4

5% + CPCy + 2NP) < 5

gives

-1 C(0,1 022
sup  sup ||Rg(z,-,t)||z2 <2(1—Ch) +—=| =Cr=0(),

t€[0,1/e3-8] z€R 62 4

and hence

sup  sup || K (x,-,t) — eV (x, -, )| 2 < Cre’.
t€[0,1/e3-9] z€R

In exactly the same way, we prove

sup  sup [|0;70,v (K (v, -,t) — eWpe(w, 1))z < Cre”,
t€[0,1/e3-9] x€R
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for 0 < s, + s, < s. Therefore, we find

d
u(z,t) — eV, (z,t) = —Qd—(K(x,x+,t) — Wk (x,2t,1)),
x
and so
sup  |Ju(z,t) — eWy(x,t)|| g1 < CEP.
t€[0,1/e3-9]

Hence, we have proven

Theorem 4.5.2. For each N € N, s > 0 and § € (0,1] there exist C' > 0 and g9 > 0
such that the following holds. Let A; € C([0,00), (F 1L 5n) N HT Y)Y be a solution
of the linear Schrodinger equation (4.7) and let the A, be solutions of

8TAn = —241/{308?(1471 - 851_58§(An_1, Aan:O = 0,

form=2,...,N. Then, for alle € (0,eq) there are solutions u of the KdV equation (4.1)
such that

sup |u(x,t) — eV, (z, )]
t€[0,1/e3-9]

with eV, as constructed in (4.10]).

4.6 Discussion

In the previous sections we used the Gelfand-Levitan-Marchenko equation and the evolu-
tion of the scattering data to construct a linear Schrodinger approximation for the KdV
equation. Although at a first view this detour only seems to be of theoretical use. The
transfer of a nonlinear PDE problem into a pure integration problem allowed us to extend
the approximation time beyond the natural NLS time scale.

Remark 4.6.1. Our result is what you expect for completely integrable systems for
which a representation in action and angle variables does exist. The action variables are
conserved. The frequency of the angle variables are approximated up to order O(g?), i.e.
with an error of order O(g%). Then, the error for these variables grows like O(g®)t which
is of order O(e?) for a O(1/&37%)-time scale.

Remark 4.6.2. The inverse scattering approach for the KdV equation and the NLS
equation have been related in [ZK86]. Note that in parts our expansion is different from

the expansion used in [ZK86|. Such correspondences have been analyzed in a number of
other papers, cf. [BCP02,|KP03].

Remark 4.6.3. It is the goal of future research to describe the interaction of NLS scaled
wave packets for completely integrable systems. Is it possible to extend the separation of
internal and interaction dynamics of NLS scaled wave packets with different carrier waves
for completely integrable systems even further than in the existing literature [PW95,

CSU07,/CCSU08,CS12,SC15)?
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Remark 4.6.4. Due to the scaling properties of the slow spatial variable X ~ ez in the
NLS ansatz and the scaling properties of the KdV solitons ~ &2Aiton(e(z — ct)), we
expect that the discrete eigenvalues in the scattering data are of order O(£?) for a general
NLS ansatz in the original KdV equation. Rigorous estimates for the number and size
of the eigenvalues can be found with the help of Lieb-Thirring inequalities, cf. [FLW23].
However, a detailed analysis with respect to this question is beyond the scope of this
thesis.

Remark 4.6.5. For the KdV equation only the defocusing NLS equation can be derived.
However, given the IST approach for the KdV equation the sign in front of the cubic term
of the NLS equation did not play any role in the analysis.

Remark 4.6.6. The Schrodinger equation shows a dispersive decay ~ 1/ VT. Hence
for t = O(1/&37?), respectively T' = O(1/e'7°), we have that the solutions are of order
O(e¥/279/2) if they are initially of order O(1) or of order O(%279/2) if they are initially
of order O(g) like for the NLS approximation. For solutions of order O(g%27%/2) for
the mKdV equation Gronwall’s inequality easily gives estimates on a time scale of or-
der O(1/e*7%) w.r.t. t. However, in our situation the solutions are much bigger than
O(£%/27%/2) and only of that order at the end of the time interval. Therefore, our result
is non-trivial.

Remark 4.6.7. Due to the decay of the solutions, cf Remark [4.6.6] we have a global in
time approximation result with an error O(1/£%7°).

Remark 4.6.8. It is the purpose of future research to transfer the presented analysis
to other dispersive completely integrable systems, such as the sine-Gordon equation, the
NLS equation or the Toda-lattice.

Remark 4.6.9. It remains to compute the initial scattering data for b for a given initial
NLS ansatz _ _
u(z) = eAy(ex)e™® + cA_ (ex)e ™" 4 h.o.t..

The scattering problem
—050 —u(w) = —k*)
in lowest order leads to k = ky/2 and
ikaxBl — AlB_l = O, ik‘axB_l — A_lBl = 0,
where ‘
Y(z) = eBi(ex)e™™ + eB_i(ex)e ™ + h.o.t..

This shows where the relation between the spatial scale of the scattering data and the
original spatial scale comes from. It is the purpose of future research to replace the special
initial conditions for the scattering data b by scattering data which allows us to handle
all NLS approximations.

Remark 4.6.10. The previous analysis will work for all other members of the KdV-
hierarchy, too.
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